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Abstract

Introduction: Organophosphate esters (OPEs) are increasing in use as flame retardants and 

plasticizers and concerns have been raised given their endocrine-disrupting activities and possible 

obesogenic consequences. However, longitudinal studies on gestational OPE exposure and 

childhood obesity are scarce. This study examined whether OPE levels in maternal urine during 

pregnancy were associated with the risk of childhood obesity.

Methods: OPEs were analyzed in pregnancy urine samples of 5,087 individuals from 14 studies 

contributing to the Environmental influences on Child Health Outcomes (ECHO) Cohort. BDCPP, 

DBUP/DIBP, and DPHP, detected in > 80 % of the samples, were modeled continuously and by 

tertiles; whereas BCPP, BBOEP, and BCETP, detected in 50–80 % of samples, were modeled 
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categorically (not-detected, low, and high). Childhood obesity was defined by BMI z-score ≥ 95th 

percentile according to WHO (<2 years) and the CDC (≥2 years) metrics. Adjusted modified 

Poisson regression models assessed childhood obesity risk and the mixture effect was assessed 

using Bayesian kernel machine regression (BKMR).

Results: BMI measurements were available for 3,827 children in infancy (0.5–1.9 years), 3,921 

children in early childhood (2.0–4.9 years), and 2,541 children in mid-childhood (5.0–10.0 years). 

Obesity was present in 16–21 % of children across age groups. In mid-childhood DBUP/DIBP 

second and third versus first tertiles were associated with increased obesity risk (RR 1.14; 95 % 

CI: 1.02, 1.28; and RR 1.11; 95 % CI: 0.97, 1.27; respectively); whereas BDCPP second and third 

versus first tertiles reflected an inverse association with obesity risk (RR 0.85; 95 % CI: 0.80, 0.91 

and RR 0.91; 95 % CI: 0.77, 1.07; respectively). No association with obesity risk was observed 

for DPHP, BCPP, BBOEP, and BCETP. Directions observed were consistent with those seen in 

BKMR models.

Conclusions: This study identified mixed associations between gestational OPE exposure and 

childhood obesity. Further investigation across a comprehensive range of OPE exposures is 

warranted.

Keywords

OPE; Childhood obesity; Pregnancy; Flame retardants

1. Introduction

Organophosphate esters (OPEs) are used commercially as flame retardants and plasticizers, 

and are found in various household and industrial products, including polyurethane foam, 

furniture, electronics, construction materials, infant products, textiles, and fabrics (Dou and 

Wang, 2023; Liu et al., 2021; Wei et al., 2015; Yang et al., 2022). OPEs volatilize from 

products, and have been found in indoor dust, water, soil, (Du et al., 2019; Stapleton et 

al., 2009) and even remote areas like the Arctic (Xie et al., 2022). The widespread use of 

OPEs has steadily risen in recent decades as they replaced polybrominated diphenyl ethers 

(PBDEs) as flame retardants in the mid-2000s (Yang et al., 2022). This shift occurred due to 

the known link between PBDEs and adverse developmental, reproductive, and neurological 

outcomes, (Dodson et al., 2012; Linares et al., Mar 2015) as well as the fact that OPEs have 

substantially shorter half-lives—ranging from hours to days—compared to the years-long 

half-life of PBDEs (Carignan et al., 2013; Ohoro et al., 2021; Wang and Song, 2024). Since 

those widespread replacements, OPE production has surged, reaching over 1 million tons in 

2018, far beyond previous PBDE manufacturing levels (Fu et al., 2020). As a result, human 

exposure to OPEs is pervasive, (Boyle et al., 2019; Cequier et al., 2015) with detected 

OPE metabolite concentrations ubiquitous in pregnant populations (Castorina et al., 2017; 

Hoffman et al., 2017; Percy et al., 2020). Data from toxicological and epidemiological 

studies indicate that these metabolites have endocrine disrupting qualities (Dishaw et al., 

2014; Gravel et al., 2020; Kojima et al., 2013; Li et al., 2023; Trowbridge et al., 2021; 

Yao et al., 2021). Endocrine-disrupting chemicals (EDCs) have been shown to influence 

obesity(Gupta et al., 2020) and glucose intolerance (Kahn et al., 2020) among other adverse 
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health outcomes (Gore et al., 2015) with prenatal exposure linked to fetal epigenetic 

programming and metabolic homeostasis (Rabotnick et al., 2023).

Childhood obesity is an escalating global public health concern, with prevalence and 

severity increasing among children at younger ages (Afshin et al., 2017; Apperley et al., 

2022; Skinner et al., 2018). Obesity is implicated in several clinical outcomes including 

elevated risk of diabetes, hypertension, non-alcoholic fatty liver disease, cancer, and other 

health issues (Smith et al., 2020; Weihrauch-Blüher et al., 2019; Weihrauch-Blüher and 

Wiegand, 2018). Furthermore, childhood obesity often persists into adulthood, leading to 

greater morbidity and earlier mortality (Llewellyn et al., 2016). Environmental pollutants, 

including EDCs, have been proposed as contributors to this rising obesity trend due to their 

influences on hormonal processes related to adipose tissue development, appetite, satiety, 

weight regulation, and energy balance (Gupta et al., 2020). Toxicologic evidence has shown 

that OPE exposure may increase the risk of obesity as these chemicals may disrupt energy 

homeostasis through estrogen receptor alpha (ERα)-mediated pathways resulting in altered 

feeding efficiency, insulin tolerance, fat mass, and ghrelin levels (Vail et al., 2020; Vail et 

al., 2022). In mice, gestational exposure to OPEs led to disruption of endocrine metabolism 

and consequent impacts on offspring’s energy and glucose regulation, suggesting a possible 

obesogenic effect in the offspring, with sex-specific effects (Walley et al., 2021). In humans, 

OPE metabolites have been detected in the placenta, suggesting maternal-fetal transfer (Ding 

et al., 2016; Wang et al., 2021; Zhao et al., 2017). However, the extent to which gestational 

OPE exposures may lead to an elevated risk of obesity in children, as well as the potential 

existence of sex-specific effects, remains understudied (Chen et al., 2023).

To address this knowledge gap, we assessed whether OPE levels measured in maternal urine 

during pregnancy were associated with the risk of childhood obesity in the offspring. We 

also assessed possible sex-specific associations. We hypothesized that gestational exposure 

to higher levels of OPEs was associated with increased risk of childhood obesity. This study 

highlights an important public health issue and could inform potential regulations on the 

manufacture and use of OPEs. The current study was conducted among a geographically 

and racially and ethnically diverse U.S. population of individuals who participated in 

the Environmental influences on Child Health Outcomes (ECHO) research consortium, a 

program funded by the National Institutes of Health.

2. Methods

2.1. Study population

We analyzed data from 14 longitudinal studies within the ECHO program. The ECHO 

program investigates how environmental exposures during pregnancy and early childhood, 

including physical, chemical, social, behavioral, biological, and environmental factors, 

impact child health and development (Blaisdell et al., 2022). All pregnancies within this 

study occurred between 2006 and 2020. The study underwent review and obtained approval 

from Institutional Review Boards (IRBs), including the ECHO Cohort single IRB and the 

local IRBs of individual ECHO study sites. Additionally, Health Insurance Portability and 

Accountability Act (HIPAA) authorization was obtained for access to medical records. 

Written informed consent was also obtained from pregnant participants in each ECHO study 
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site at the time of study enrollment as well as child assent for enrolled children starting at 

age eight.

2.2. OPE analysis

Single spot or first morning urine samples were collected from participants during the 2nd or 

3rd trimester of pregnancy (mean ± standard deviation = 27 ± 5 weeks gestation). Samples 

were frozen for storage prior to being shipped on dry ice to the Wadsworth Center Human 

Health Exposure Analysis Resource (WC-HHEAR) laboratory for OPE measurement. OPE 

metabolites were measured using high-performance liquid chromatography-tandem mass 

spectrometry methods (HPLC, ExionLC™ system; MS/MS from SCIEX, Redwood City, 

CA, USA) with some modifications (Wang et al., 2019). Details of laboratory methods are 

reported in the supplemental materials.

The measured OPE metabolites included bis(butoxyethyl) phosphate (BBOEP), bis(2-

chloroethyl) phosphate (BCETP), bis(1-chloro-2-propyl) phosphate (BCPP), bis (1,3-

dichloro-2-propyl) phosphate (BDCPP), bis (2-ethylhexyl) phosphate (BEHP), bis(2-

methylphenyl) phosphate (BMPP), bis-(2-propylheptyl)-phthalate (DPHP), dipropyl 

phosphate (DPRP) and the composite of dibutyl phosphate and di-isobutyl phosphate 

(DBUP/DIBP). The two metabolites DBUP and DIBP were reported as a composite (DBUP/

DIBP) because they coeluted during analysis and could not be quantified separately. Further, 

we only included OPEs with at least 50 % of samples above the limit of detection (LOD). In 

our study, the LOD for these analytes ranged from 0.0115 to 0.0441 μg/L.

Concentrations of OPEs in urine were dilution corrected using specific gravity or creatinine, 

depending on availability in the ECHO study site. Prior to dilution correction, we imputed 

any value below the LOD with the machine-read values provided by the laboratory. To 

standardize the correction method for urinary dilution across samples, we adopted the 

approach outlined by Kuiper et al (Kuiper et al., 2021; Kuiper et al., 2022; Oh et al., 

Jan 2024). For samples corrected using creatinine, OPE concentrations were adjusted by 

multiplying by the ratio of the ECHO site-specific median dilution value to the participant’s 

dilution value (Kuiper et al., 2021; Kuiper et al., 2022). For those using specific gravity, the 

values were first subtracted from one (Boeniger et al., Oct 1993).

2.3. Childhood obesity assessment

To define obesity, we used weight and height measurements collected within 30 days of each 

other during three different age groups: infancy (0.5–1.9 years), early childhood (2.0–4.9 

years), and middle childhood (5.0–10.0 years). These age groups were used to be consistent 

with previous ECHO wide analyses (Aris et al., 2022). We used the height and weight 

measurements obtained from child medical records or during study-related clinic visits. BMI 

was calculated using weight (kg)/height (m2), where height is either standing height (≥ 24 

months) or recumbent length (< 24 months). Age-and-sex-specific BMI z-scores were then 

calculated based on the growth curves provided by the World Health Organization (WHO) 

(measurements < 2 years of age) and the Centers for Disease Control and Prevention (CDC) 

(measurements ≥ 2 years of age) metrics, as recommended by the CDC (Kuczmarski et 

al., 2000; Grummer-Strawn et al., 2010). Extreme z-scores deemed biologically implausible 
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were removed (CDC, 2023; CDC, 2019). For children under 2 years of age, extreme values 

were defined as WHO BMI z-scores < −5 or > 5. For children aged 2 years and older, 

extreme values were defined as CDC Modified BMI z-scores < −4 or > 8 (CDC, 2023; CDC, 

2019). If there was more than one BMI measurement within the age group for each child, 

the highest after data cleaning was used in the analysis. We defined childhood obesity as a 

BMI z-score at or above the 95th percentile (Ogden and Flegal, 2010).

2.4. Covariates

We selected covariates based on a literature review which were then visualized using a 

directed acyclic graph (DAG) with the DAGitty program (Supplemental Figure S1) (Textor 

et al., 2011). Covariates included in the main analysis were maternal age (years), highest 

level of maternal education (up to high school degree/GED, some college but no degree, 

Bachelor’s degree, and Master’s degree or above), pre-pregnancy BMI (kg/m2), parity 

(multiparous vs. nulliparous), any maternal smoking during pregnancy (yes vs. no), and 

child year of birth. Covariates also included race and ethnicity, as a proxy for structural 

inequities and for disparities in both detected OPE levels (Wang et al., 2019; Ma et al., 2019; 

Bobb et al., 2018) and disease burden of childhood obesity (Skinner et al., 2018). Race 

and ethnicity were modeled as Hispanic (all), non-Hispanic White, non-Hispanic Asian, 

non-Hispanic Black, multiple races, and other races/ethnicities which included: Native 

Hawaiian or other Pacific Islander, American Indian or Alaskan Native, or missing/unknown 

(missing <0.5 %). The source of covariate data varied by ECHO sites and included study 

visits, medical records, and questionnaires. Data were then harmonized by the ECHO Data 

Analysis Center (DAC). Further details on this process can be found in the supplemental 

materials. Child sex and age were not separately adjusted for, as they were factored into the 

outcome. Our DAG identified the minimal sufficient adjustment set for estimating the total 

effect of gestational OPE exposure on childhood obesity to be child birth year, ECHO site, 

maternal age at delivery, maternal education, maternal race/ethnicity, maternal smoking in 

pregnancy, parity, and pre-pregnancy BMI.

2.5. Statistical analysis

Distributions of gestational OPE metabolites were summarized for the full unique sample, 

for participants involved in each age group analysis, and by individual ECHO study site. 

Spearman’s correlations assessed relationships of the metabolites (continuously) within the 

full unique sample and by participants involved in each age group analysis.

We assessed associations between individual OPE metabolites and childhood obesity at 

each age group by using adjusted modified Poisson regression models with robust standard 

errors where children with BMI below the 95th percentile served as the reference group. We 

employed modified Poisson models to estimate relative risk (RR) for all OPE metabolites 

due to the high prevalence of childhood obesity within each age group (>16 %) (Zou, 2004). 

For metabolites that were detected in at least 80% of samples, we imputed the value of the 

remaining samples below the LOD with the machine-read values provided by the laboratory 

which were then log2 transformed. Any machine read values that were negative or zero 

were replaced with 0.001 prior to transformation. For the metabolites that were detected in 

50%-80% of samples, we modeled the metabolites categorically: non-detected (<LOD), low 
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exposure (detected but less than the sample median of dilution adjusted values), and high 

exposure (≥ sample median of dilution adjusted values). For metabolites that were detected 

in at least 80% of samples, we carefully considered the shape of associations present in the 

analysis, initially examining associations in tertiles to accommodate potential non-linearity. 

If non-linearity was suggested, continuous linear associations were considered secondary 

analyses.

All models were adjusted for the covariates listed above. All covariates had little missing 

data (<7%). For all missing values for covariates, with the exception of race/ethnicity, we 

imputed values using multiple imputation by chained equations (MICE) (Azur et al., 2011). 

We generated 50 imputed datasets with 100 burn-in iterations. Predictive mean matching 

was used for continuous pre-pregnancy BMI, and the discriminant function method was 

applied to categorical variables such as maternal education, smoking during pregnancy, 

and parity. The SAS MI procedure was used for imputation, followed by MIANALYZE to 

combine results from the modified Poisson regression, forming single statistical inferences 

based on Rubin’s (1987) combining rule. Race/ethnicity data (<0.5 % missing) were 

grouped into “other” because the assumptions for imputation—that the missing data either 

followed random patterns or mirrored the available data—were not met (Azur et al., 2011). 

Research suggests that individuals who choose not to provide race and ethnicity data often 

belong to underrepresented demographic groups (Moscou et al., 2003). Furthermore, all 

models accounted for ECHO study sites by a cluster on site to consider correlation and the 

variability in recruitment eligibility and possible geographic differences.

Bayesian kernel machine regression (BKMR) was used to model OPEs as a mixture (Bobb 

et al., Jul 2015). BKMR is highly flexible, accommodating non-linear associations and 

complex interactions (Bobb et al., Jul 2015). Metabolites detected in more than 60% of 

samples(Howe et al., 2020; Hernandez-Castro et al., 2023) were included in BKMR models. 

BKMR models were completed using a complete-case analysis due to the inability to use 

MICE for the mixture analysis. Each BKMR model was fit using probit regression for 

binary outcomes with 10,000 Markov Chain Monte Carlo iterations (Bobb et al., 2018). 

Convergence was assessed using trace plots and the Rhat statistic (Bobb et al., 2018; 

Gelman and Rubin, 1992). Results of the BKMR mixture analysis were summarized with 

the posterior inclusion probabilities (PIPs) and plots of the exposure response function. 

Cross-section response plots summarized the univariate association between each OPE and 

the outcome, holding the other OPEs constant at their medians. Bivariate response plots 

summarized the associations between two OPEs and the outcome, showing the response 

function for one OPE while fixing the second OPE at quantiles of 0.1, 0.25, 0.5, 0.75, and 

0.9, and holding the other OPEs constant at their medians.

To determine if associations were modified by child sex, statistical interactions were 

added to models individually for highly detected OPEs (>80% of samples > LOD). We 

also stratified these models by child sex to assess potential effect modification. Multiple 

sensitivity analyses were conducted. Models were restricted to participants with obesity 

outcome data collected at all three assessment points in infancy, early childhood, and middle 

childhood to account for variations in participants across age groups in the main analysis. 

We also conducted a leave-one-ECHO site-out approach to evaluate the influence of each 
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site on our results. Finally, we compared results by referencing obesity to normal weight, 

by excluding children with overweight (≥85th percentile and < 95th percentile), and then 

by referencing overweight (≥85th percentile) to normal weight, excluding those classified 

with obesity. This comparison allowed us to thoroughly investigate how associations 

were influenced by using more refined criteria rather than comparing obesity to all other 

categories in main models.

2.6. Analytic sample

Initially, there were 7,038 individuals with OPE data measured in pregnancy, of which 6,893 

were singleton pregnancies. Among these, 5,335 had at least one measurement of child 

height and weight collected within 30 days of each other between ages six months and 10 

years, which allowed for the calculation of BMI. We excluded 23 children with biologically 

implausible extreme z-score BMI data (CDC, 2023; CDC, 2019). Of the remaining 5,312 

ECHO children, we removed 105 mother–child pairs for child weight and/or height being 

self-reported, parent-reported, or from unknown sources, leaving 5,207 pairs. To maintain 

sample independence, if multiple children of the same mother participated in ECHO, we 

retained only the eldest child resulting in the removal of 75 younger siblings and a sample 

size of 5,132 children. Lastly, we excluded any ECHO study site contributing fewer than 30 

participants at any single age group, resulting in a final sample size of 5,087 unique mother–

child pairs. Among these, 3,827 children had a BMI measure during infancy, 3,921 during 

early childhood, and 2,541 during middle childhood; 1,772 children had BMI measures 

in all three age groups (see flowchart in Supplemental Figure S2). The included ECHO 

study sites, number of participating mother–child pairs, years of study recruitment, and their 

geographic enrollment locations are listed in Supplemental Table S1. Source of child growth 

(EHR vs. study measured) by individual ECHO sites is shown in Supplemental Table S2.

3. Results

The characteristics of all study participants and by age group are provided in Table 1. 

Mothers on average were 30.2 ± 5.7 years of age at time of delivery and had an average 

pre-pregnancy BMI of 26.9 ± 6.7 kg/m2 with 25% of the sample having obesity before 

pregnancy. Nearly half of mothers had attained at least a college education and 51% were 

non-Hispanic White, 20% non-Hispanic Black, 19% Hispanic, and a smaller subset of 

5% being non-Hispanic Asian. Across age groups, there were 16–21% of children with 

obesity (Table 1). Characteristics were similar to those with OPE concentrations available 

in ECHO but who were excluded from the analysis based on inclusion criteria (N = 1,937, 

Supplemental Table S3).

Three metabolites were detected in at least 80 % of samples: BDCPP (87%), DBUP/DIBP 

(96%), and DPHP (99%). An additional three metabolites were detected in 50–80% of 

samples: BBOEP (66%), BCETP (69%), and BCPP (52%). Three metabolites were detected 

in less than 50 % of the samples and were not included in the analysis: BMPP (36%), 

BEHP (30%), and DPRP (26%). The highest median concentration was observed for DPHP 

(0.92 μg/L), followed by BDCPP (0.89 μg/L). Full distributions of the OPEs are shown in 

Table 2 and by each ECHO study site in Supplemental Figure S2. The percent of children 
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with obesity within each tertile of BDCPP, DBUP/DIBP and DPHP as well as category 

of BBOEP, BCETP, and BCPP are shown in Supplemental Tables 4 and 5, respectively. 

OPE distributions by age groups were similar to those observed in the full unique sample 

(Supplemental Table S6). Metabolites were weakly correlated with each other (Spearman 

R = −0.07 to 0.26, Supplemental Figure S3). OPE distributions were similar to those with 

OPE concentrations available in ECHO but who were excluded from the analysis based on 

inclusion criteria (N = 1,937, Supplemental Table S7).

3.1. Associations of gestational DBUP/DIBP, BDCPP, and DPHP exposure with childhood 
obesity

Results for obesity risk at each age group across tertiles of DBUP/DIBP, BDCPP, and DPHP 

exposure are shown in Fig. 1; whereas Supplemental Figure S4 reports the association 

between continues levels of DBUP/DIBP, BDCPP, and DPHP and childhood obesity. The 

cut points for tertiles are shown in Supplemental Table S8.

Gestational exposure to DBUP/DIBP, when analyzed in tertiles, showed no associations with 

obesity in infancy. In early childhood when compared with the first tertile (T1), the second 

tertile (T2) was inversely associated with the risk of obesity (T2 vs. T1: RR 0.88; 95 % CI 

0.78, 1.00). However, this association was attenuated for the third tertile (T3 vs T1: 0.98; 

95 % CI: 0.82, 1.16). In contrast, in middle childhood the second tertile was associated 

with an increased risk of obesity (T2 vs T1: 1.14; 95 % CI: 1.02, 1.28), whereas this 

positive association was attenuated for the third tertile (T3 vs T1:1.11; 95 % CI: 0.97, 1.27). 

Gestational exposure to DBUP/DIBP, when modeled continuously, exhibited no association 

with the risk of obesity in any age group (Infancy: 1.02 per doubling of exposure; 95 % CI: 

0.96, 1.09; Early Childhood: 0.99 per doubling of exposure; 0.93, 1.06; Middle Childhood: 

1.02 per doubling of exposure; 95 % CI: 0.96, 1.09).

For BDCPP when modeled as tertiles, evidence of non-linear associations was observed, 

the second tertile was associated with a higher risk of obesity in infancy (T2 vs T1: 1.14; 

95 % CI: 1.07, 1.21), which was attenuated for the third tertile (T3 vs T1: 1.02; 95 % CI: 

0.90, 1.17). In early childhood, no association with obesity risk was observed in association 

with BDCPP (T2 vs. T1: 1.03; 95 % CI: 0.91, 1.17; T3 vs T1: 1.17; 95 % CI: 0.91, 1.51;). 

In middle childhood, the second tertile of BDCPP was inversely associated with childhood 

obesity risk (T2 vs. T1: 0.85; 95 % CI: 0.80, 0.91) whereas the inverse association was 

attenuated for the third tertile (T3 vs T1: 0.91; 95 % CI: 0.77, 1.07). Gestational exposure to 

BDCPP, when modeled continuously, showed no association with increased risk of obesity 

in infancy (1.01 per doubling of exposure; 95 % CI: 1.00, 1.02) or early childhood (1.01 

per doubling of exposure; 95 % CI: 0.99, 1.04). However, consistent with the analysis by 

tertiles, an inverse association was observed for the risk of obesity in middle childhood (0.98 

per doubling of exposure; 95 % CI: 0.96, 0.99).

Gestational exposure to DPHP, when modeled by tertiles or continuously, showed no 

association with the risk of obesity in any age group (Fig. 1 and Supplemental Figure S4).
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3.2. Associations of gestational BBOEP, BCETP, and BCPP, with childhood obesity

Gestational exposures to BBOEP, BCETP, and BCPP, modeled as non-detected (reference), 

low exposure (detected but lower than the median), and high exposure (median and above), 

were not associated with childhood obesity in infancy, early childhood, or middle childhood 

(Fig. 2).

3.3. BKMR OPE mixture results with childhood obesity

Five of the nine OPEs (BDCPP, DBUP/DIBP, DPHP, BCETP, and BBOEP), were detected 

in more than 60% of samples and were included in BKMR models (Infancy n = 3,166, 

Early Childhood n = 3,368, Middle Childhood n = 2,325). PIPs for individual OPEs 

across all age groups were generally similar (Supplemental Table S9). In middle childhood, 

BDCPP had the highest PIP suggesting a potentially greater contribution to the mixture 

than the other OPEs. Exposure-response function plots generated from BKMR analyses 

were similar to results of individual modeled OPEs. BKMR exposure–response function 

plots for middle childhood obesity depicted a curvilinear inverse association for BDCPP 

(Fig. 3), similar to the tertile analysis. Fig. 3 showed a relatively null association for DBUP/

DIBP, BCETP and DPHP, and a suggestive positive association for BBOEP and obesity 

risk in middle childhood. For infancy, BDCPP, BBOEP, and BCETP exhibited suggestive 

positive associations with obesity risk, while DBUP/DIBP and DPHP suggested a null or 

flat association (Supplemental Figure S5). For early childhood obesity risk, DBUP/DIBP 

suggested an inverse association, whereas DPHP and BBOEP, indicated suggestive positive 

associations, and BDCPP and BCETP had flatter associations (Supplemental Figure S6). 

Bivariate exposure-outcome relations of one OPE exposure with childhood obesity showed 

mostly parallel lines and curves, showing little evidence of interaction between OPEs in the 

mixture in all age groups (Supplemental Figures S7–S9).

3.4. Associations of BDCPP, DBUP/DIBP, and DPHP with childhood obesity by child sex

When assessing whether child sex modified the association between gestational OPE 

exposure and childhood obesity across different age groups, potential differences by sex 

in some age groups were observed (Fig. 4). Among females, the second tertiles of both 

BDCPP and DPHP were associated with increased risk of obesity in infancy for (T2 vs. T1: 

1.22; 95 % CI: 1.03, 1.44 and 1.23; 95 % CI: 1.06, 1.42, respectively). Among males these 

associations were decreased (BDCPP T2 vs. T1: 1.10; 95 % CI: 0.94, 1.28 and DPHP 0.98; 

95 % CI: 0.82, 1.17). When modeling the metabolites continuously, a significant interaction 

by sex was detected in middle childhood for both BDCPP (Pinteraction = 0.02) and DPHP 

(Pinteraction = 0.01). Upon stratifying the models by child sex, BDCPP showed a slightly 

stronger inverse association with obesity risk in middle childhood (0.97 per doubling of 

exposure; 95 % CI: 0.95, 0.99) in boys than in girls (0.99 per doubling of exposure; 95 % 

CI: 0.98, 0.99). Similarly, for DPHP, sex-stratified models revealed a null association with 

risk of obesity in female children compared to lower risk in male children (females: 1.01 per 

doubling of exposure; 95 % CI: 0.97, 1.05; males: 0.96 per doubling of exposure; 95 % CI: 

0.91, 1.01). No other significant interaction terms were observed with child sex at other age 

groups within continuous models (Supplemental Figure S10).
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3.5. Sensitivity analysis for associations of OPEs and childhood obesity

In sensitivity analyses restricted to the 1,772 children who had BMI assessed in all three 

age groups considered in this study, results remained comparable to those obtained using 

all available data (Supplemental Figures S11–S13). When conducting leave-one-site-out 

sensitivity analyses to assess whether results were driven by individual ECHO study 

sites, the directions of associations remained consistent for metabolites at each age group 

(Supplemental Figure S14). Results also remained consistent across all models when the 

risk for obesity was assessed in comparison to normal weight (i.e., excluding children with 

overweight) and when the risk for overweight was assessed in comparison to normal weight 

(Supplemental Table S10).

4. Discussion

This study conducted an innovative investigation on in utero exposure to various OPEs 

measured in maternal urine during pregnancy and their associations with childhood obesity 

across different age groups, addressing an important but understudied public health issue. 

The study utilized data from the nationally representative and racially and ethnically diverse 

ECHO consortium in the US. Although gestational exposure to several OPE metabolites 

did not show strong evidence of association with childhood obesity, gestational exposure 

to DBUP/DIBP was associated with increased obesity risk whereas gestational exposure 

to the second tertile of BDCPP was associated with an inverse association with obesity 

risk in middle childhood. However, a non-monotonic dose–response relationships emerged 

for these metabolites. In addition, notably U-shaped and inverted U-shaped patterns with 

the child obesity risk were observed for DBUP/DIBP and BDCPP across the age groups. 

We also observed a small potential increase in risk of obesity in girls compared to boys 

for BDCPP and DPHP exposure. When assessing five OPEs concurrently through BKMR, 

no association with obesity at any age group was observed overall. However, the findings 

overall remained consistent with the directions observed in individual model assessments. 

Other studies looking at OPE exposures and childhood outcomes have detected non-linear 

inverted U-shaped relationships between gestational OPE exposure and neurobehavioral 

outcomes(Hernandez-Castro et al., 2023) and birth outcomes (Oh et al., Jan 2024). 

Further research is needed to elucidate the underlying mechanisms driving these non-linear 

associations and their implications for public health interventions targeting obesity and 

related metabolic disorders.

Prenatal exposure to OPEs may impact fetal programming, potentially contributing to health 

issues in childhood and adulthood, aligning with the Developmental Origins of Health and 

Disease (DOHaD) hypothesis (Haugen et al., 2015). While some early literature suggests 

prenatal OPE exposure may lead to lower infant birthweight, (Crawford et al., 2020; Luo et 

al., 2020; Luo et al., 2021) and gestational DBUP/DIBP exposure to higher odds of preterm 

birth and DPHP exposure with lower birthweight within the ECHO consortium (Oh et al., 

Jan 2024), little is known about their influence on long-term childhood weight and obesity. 

The only other longitudinal study known to date that assessed OPE exposure in pregnancy 

and childhood obesity was conducted by Chen et al. in a Shanghai, China population of 

733 mother–child pairs, with obesity assessed at 0.5, 1.0, 4.0, and 6.0 years of age (Chen 
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et al., 2023). Of the eight OPE assessed during pregnancy, BBOEP and BDCPP, were also 

included in the current analysis. Median dilution-corrected values were higher in the ECHO 

pregnant population for BDCPP (0.11 μg/L) compared to the Shanghai population but 

slightly lower for BBOEP (0.06 μg/L). In the Chen et al. study, neither BDCPP nor BBOEP 

were significantly associated with the risk of obesity at any age but associations tended to 

be positive (Chen et al., 2023). However, Chen et al. found possible effect modification by 

breastfeeding duration for BDCPP, with those who were breastfed less than four months 

of age having an increased risk of obesity in early childhood compared to those who were 

breastfed longer (Chen et al., 2023). We were not able to assess possible effect modification 

by breastfeeding duration due to lack of data availability, however, this data is actively 

being collected as part of the ECHO-wide protocol and will allow assessment in the future. 

BKMR models for the full mixtures in Chen et al. supported the individual results and the 

overall OPE mixture tended to be associated with higher adiposity measures for BDCPP and 

BBOEP in the mixture.

A study using the National Health and Nutrition Examination Survey (NHANES: 2013–

2014) assessed the cross-sectional relationships of five OPEs and childhood obesity among 

784 children aged 6–19 years (Boyle et al., 2019). Overall, DPHP (median 1.43 μg/L), 

BCPP (median 0.20 μg/L), and BDCPP (median 1.56 μg/L) concentrations were higher in 

these children than in pregnant individuals in the present analysis, which spans a broader 

range of years (2006–2020). In NHANES, children’s levels of BDCPP and DPHP had non-

significant inverse associations with obesity. BCPP, which was only modeled as detected 

vs. non-detected, showed a non-significant positive association (Boyle et al., 2019). Given 

the cross-sectional design the authors speculated that OPEs potentially accumulating in 

adipose tissue (Sousa et al., 2023) could result in reduced urinary biomarker concentrations, 

potentially leading to the observed inverse association with childhood obesity (Boyle et al., 

2019).

We are in the early stages of understanding the biological mechanisms linking OPE 

exposure to obesity. While laboratory investigations on OPEs and metabolic outcomes 

are scarce, existing evidence suggests potential links with adiposity. For instance, 

in vitro studies have indicated that OPEs like tributyl phosphate (TBUP) and tris(2-

butoxyethyl) phosphate (TBOEP) exhibit high peroxisome proliferator-activated receptor 

gamma (PPARγ) ligand binding potential at high doses, indicating a possible role fetal 

programming and in promoting obesity development (Fang et al., 2015; Green et al., Mar 

2017). Furthermore, animal studies have demonstrated that exposure to flame retardant 

mixtures containing OPEs during prenatal and early postnatal stages can lead to increased 

body weight in both male and female rats (Patisaul et al., 2013). Additionally, in vitro 

exposure to these mixtures has been shown to trigger adipocyte differentiation, suggesting 

a potential role of OPEs in adipogenesis (Pillai et al., 2014). The primary metabolite 

of Tris (1,3-dichloro-2-propyl) phosphate (TDCPP) is BDCPP, and TDCPP has shown 

sex-specific adiposity, fasting hyperglycemia, and insulin resistance in male mice (Tenlep et 

al., 2023). This study specifically found that TDCPP activated farnesoid X receptor (FXR) 

and pregnane X receptor (PXR), while it inhibited the androgen receptor (AR) (Tenlep et 

al., 2023). Cross-sectional epidemiologic studies in adults have found that higher levels of 

OPEs were associated with concurrent obesity, central obesity, hyperglycemia and metabolic 
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syndrome (Boyle et al., 2019; Hoffman et al., 2017; Li et al., 2024; Luo et al., 2020; 

Romano et al., 2017).

The present study has several strengths. It represents the largest investigation to date to 

assess the association between urinary OPE biomarkers measured during pregnancy and 

childhood obesity across multiple early life age groups, extending up to 10 years of age. Our 

study included a diverse sample, incorporating harmonized data from 14 pregnancy studies 

across the United States. This diversity not only captures geographic variation but also 

encompasses a wide range of sociodemographic backgrounds, including racial and ethnic 

identities and education levels. Furthermore, OPE biomarkers were measured by a single 

laboratory using standardized protocols, minimizing variability, and ensuring consistency in 

measurement across all study participants. This meticulous approach enhances the reliability 

and comparability of results, strengthening the validity of the study findings. We also 

had access to high-quality covariates of interest with relatively low missingness (<7%) 

that were harmonized across ECHO sites. We conducted Multiple Imputation by Chained 

Equations (MICE) for covariates to reduce the likelihood of introducing selection bias into 

our analysis, rather than running complete case models. Additionally, we utilized a clinically 

relevant endpoint of obesity to enhance the applicability of our findings in real-world 

settings. Our large sample size also allowed examination of associations by child sex, an 

important effect modifier. Finally, an innovative strength of the study was the evaluation 

of OPE mixtures using BKMR methods to account for OPEs concurrently, considering the 

simultaneous exposures encountered in real-life settings.

Our study also has certain limitations that may affect the interpretation of our findings. 

We recognize that OPEs are rapidly metabolized in the body, (Hou et al., 2020) and our 

study only included one measurement per participant across two trimesters in pregnancy. 

OPE exposures may fluctuate throughout pregnancy and thus a single measurement may not 

accurately capture an individual’s typical exposure levels, we were also unable to determine 

the influence of OPE exposure in early pregnancy which may have a stronger influence 

on fetal programming (Haugen et al., 2015). However, reproducibility, as measured by 

interclass correlations, of certain OPEs across pregnancy have been moderate to high 

(Romano et al., 2017; Hoffman et al., 2014). Future studies should include numerous 

timepoints in pregnancy for urine collection and prioritize early pregnancy. Furthermore, 

although our study included a wide range of OPEs, examined in previous epidemiologic 

literature, some were not measured as there are 12 established and characterized OPEs 

and upwards of 83 emerging OPEs (Ye et al., 2023), which may have implications for 

the comprehensiveness of our analysis and the potential for associations with unmeasured 

OPEs that may influence childhood obesity risk. Despite our efforts to adjust for potential 

confounding variables, as in all observational studies, there remains the possibility of 

residual confounding from unmeasured or inadequately controlled factors that may influence 

the association between gestational OPE exposure and childhood obesity such as diet 

exposures or breastfeeding. However common covariates included in previous studies on 

OPE exposure in pregnancy and obesity were also included in this assessment. There may 

also be effect modification and mitigation of this association by healthy eating and physical 

activity during childhood, which should be explored in future studies given their role in 

obesity. The assessment of childhood obesity was conducted at various time points during 
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early life age groups, which allows for the examination of obesity trends over time but may 

not capture changes in obesity status beyond the assessed time points. Finally, our sample 

size varied across age groups, due to children not being old enough to be included in the 

sample or loss to follow-up within ECHO study sites. However, results were consistent when 

limiting analyses to children with measurements at all age groups.

5. Conclusions

We found limited evidence of associations between gestational exposure to the OPEs 

assessed in this study and childhood obesity risk. Associations also varied in direction, as 

gestational exposure to DBUP/DIBP was associated with an increased obesity risk, whereas 

gestational exposure to BDCPP showed an inverse association with obesity risk in middle 

childhood. Overall, our findings suggest a complex interplay between gestational OPE 

exposure and childhood obesity. Future research should aim to assess a broader range of 

OPE metabolites, employ mixture analyses, and focus on populations with known elevated 

exposures. It should also include greater coverage of exposure across gestation, repeated 

measurements during pregnancy, and mechanistic animal studies.
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Abbreviations:

OPEs Organophosphate esters

PBDEs polybrominated diphenyl ethers

EDCs Endocrine-disrupting chemicals

HIPAA Health Insurance Portability and Accountability Act

ECHO Environmental influences on Child Health Outcomes

BBOEP bis(butoxyethyl) phosphate

BCETP bis(2-chloroethyl) phosphate

BCPP bis(1-chloro-2-propyl) phosphate

BDCPP bis (1,3-dichloro-2-propyl) phosphate

BEHP bis(2-ethylhexyl) phosphate

BMPP bis(2-methylphenyl) phosphate

DPHP Bis-(2-propylheptyl)-phthalate

DPRP dipropyl phosphate

DBUP/DIBP composite of dibutyl phosphate and di-isobutyl phosphate

LOD limit of detection

MICE multiple imputation by chained equations

BKMR Bayesian kernel machine regression

BMI Body mass index
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Fig. 1. 
Adjusted associations of gestational BDCPP, DBUP/DIBP, and DPHP tertiles with 

childhood obesity in infancy, early childhood and middle childhood. Note: Regression 

models reflect multiple imputation by chained equations (MICE) for covariates and were 

adjusted for urinary dilution, ECHO site, maternal age at birth, maternal race/ethnicity, 

maternal educational attainment, pre-pregnancy BMI, maternal smoking in pregnancy, 

parity, and child’s year of birth. Infancy 0.5–1.9 years, Early Childhood 2.0–4.9 years, 

Middle Childhood 5.0–10.0 years. Obesity defined ≥ 95th percentile. DPHP, diphenyl 

phosphate; DBUP/DIBP, composite of dibutyl phosphate and di-isobutyl phosphate; BDCPP, 

bis(1,3-dichloro-2-propyl) phosphate.
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Fig. 2. 
Adjusted associations of gestational BBOEP, BCETP, and BCPP with childhood obesity in 

infancy, early childhood and middle childhood. Note: Regression models reflect multiple 

imputation by chained equation (MICE) for covariates and were adjusted for urinary 

dilution, ECHO site, maternal age at birth, maternal race/ethnicity, maternal educational 

attainment, pre-pregnancy BMI, maternal smoking during pregnancy, parity, and child’s 

year of birth. Infancy 0.5–1.9 years, Early Childhood 2.0–4.9 years, Middle Childhood 

5.0–10.0 years. Obesity defined ≥ 95th percentile. BCETP, bis(2-chloroethyl) phosphate; 

BBOEP, bis(butoxyethyl) phosphate; BCPP, bis(1-chloro-2-propyl) phosphate; LOD Limit 

of Detection. <LOD (value not detected), Low Exposure (Detected but less than median), 

High Exposure (Median and above).
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Fig. 3. 
Exposure response function for each organophosphate esters (OPE) from Bayesian kernel 

machine regression models in middle childhood.
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Fig. 4. 
Adjusted associations of gestational BDCPP, DBUP/DIBP, and DPHP tertiles with 

childhood obesity in infancy, early childhood and middle childhood by child sex. Note: 

Regression models reflect multiple imputation by chained equations (MICE) for covariates 

and were adjusted for urinary dilution, ECHO site, maternal age at birth, maternal 

race/ethnicity, maternal educational attainment, pre-pregnancy BMI, maternal smoking in 

pregnancy, parity, and child’s year of birth. Infancy 0.5–1.9 years, Early Childhood 2.0–4.9 

years, Middle Childhood 5.0–10.0 years. Obesity defined ≥ 95th percentile. DPHP, diphenyl 

phosphate; DBUP/DIBP, composite of dibutyl phosphate and di-isobutyl phosphate; BDCPP, 

bis(1,3-dichloro-2-propyl) phosphate. T = Tertile.
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Table 1

Characteristics of 5,087 mother–child pairs participating in the Environmental influences on Child Health 

Outcomes (ECHO) program in the full sample and by age groups.

Characteristic Full Sample N = 
5,087 n(%)

Infancy 0.5–1.9 yrs N 
= 3,827 n (%)

Early Childhood 2.0–4.9 
yrs N = 3,921 n (%)

Mid Childhood 5.0–10.0 
yrs N = 2,541 n (%)

Maternal age, years

Mean (SD) 30.2 (5.7) 30.1 (5.7) 30.2 (5.6) 30.1 (5.6)

<25 912 (17.9) 676 (17.7) 693 (17.7) 437 (17.2)

25–29 1266 (24.9) 994 (26.0) 992 (25.3) 674 (26.5)

30–34 1694 (33.3) 1282 (33.5) 1328 (33.9) 860 (33.8)

>=35 1215 (23.9) 875 (22.9) 908 (23.2) 570 (22.4)

Maternal education

High school degree, GED, or 
equivalent or lower

1490 (29.3) 1163 (30.4) 1150 (29.3) 619 (24.4)

Some college, no degree 821 (16.1) 606 (15.8) 603 (15.4) 402 (15.8)

Bachelor’s 1324 (26.0) 998 (26.1) 1032 (26.3) 741 (29.2)

Master’s and above 1155 (22.7) 794 (20.7) 915 (23.3) 598 (23.5)

Missing 297 (5.8) 266 (7.0) 221 (5.6) 181 (7.1)

Maternal race and ethnicity

Non-Hispanic Asian 264 (5.2) 208 (5.4) 227 (5.8) 114 (4.5)

Non-Hispanic Black 1030 (20.2) 816 (21.3) 894 (22.8) 581 (22.9)

Hispanic All 970 (19.1) 744 (19.4) 600 (15.3) 230 (9.1)

Non-Hispanic Multiple Race 153 (3.0) 111 (2.9) 129 (3.3) 101 (4.0)

Non-Hispanic Other 40 (0.8) 19 (0.5) 33 (0.8) 21 (0.8)

Non-Hispanic White 2606 (51.2) 1908 (49.9) 2029 (51.7) 1484 (58.4)

Missing 24 (0.5) 21 (0.5) 9 (0.2) 10 (0.4)

Pre-pregnancy body mass 
index, kg/m2

Mean (SD) 26.9 (6.7) 27.1 (6.9) 27.0 (6.8) 27.1 (6.9)

Underweight, < 18.5 151 (3.0) 122 (3.2) 123 (3.1) 74 (2.9)

Normal Weight, 18.5–24.9 2185 (43.0) 1619 (42.3) 1678 (42.8) 1106 (43.5)

Overweight, 25.0–29.9 1264 (24.8) 929 (24.3) 976 (24.9) 640 (25.2)

Obese ≥ 30.0 1255 (24.7) 992 (25.9) 987 (25.2) 663 (26.1)

Missing 232 (4.6) 165 (4.3) 157 (4.0) 58 (2.3)

Parity

Nulliparous 2226 (43.8) 1661 (43.4) 1735 (44.2) 113 (44.6)

Multiparous 2713 (53.3) 2055 (53.7) 2115 (53.9) 1391 (54.7)

Missing 148 (2.9) 110 (2.9) 71 (1.8) 17 (0.7)

Any tobacco use during 
pregnancy

No 4383 (86.2) 3249 (84.9) 3380 (86.2) 2296 (90.4)

Yes 350 (6.9) 279 (7.3) 289 (7.4) 239 (9.4)

Missing 354 (7.0) 300 (7.8) 252 (6.4) 6 (0.2)

Infant sex
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Characteristic Full Sample N = 
5,087 n(%)

Infancy 0.5–1.9 yrs N 
= 3,827 n (%)

Early Childhood 2.0–4.9 
yrs N = 3,921 n (%)

Mid Childhood 5.0–10.0 
yrs N = 2,541 n (%)

Female 2490 (48.9) 1786 (46.7) 1935 (49.3) 1264 (49.7)

Male 2597 (51.1) 2041 (53.3) 1986 (50.7) 1277 (50.3)

Year of birth

Median (IQR) 2012 (2010–2016) 2012 (2010–2016) 2012 (2010–2015) 2011 (2010–2013)

2006–2010 1466 (28.8) 1255 (32.8) 1272 (32.4) 924 (36.4)

2011–2015 2310 (45.4) 1441 (37.7) 1845 (47.1) 1495 (58.8)

2015–2020 1311 (25.8) 1131 (29.6) 804 (20.5) 122 (4.8)

Child mean age, years N/A 1.0 (0.3) 3.2 (1.0) 7.5 (1.5)

Child BMI

Underweight N/A 76 (2.0) 111 (2.8) 46 (1.8)

Normal N/A 2304 (60.2) 2591 (66.1) 1656 (65.2)

Overweight N/A 661 (17.3) 607 (15.5) 397 (15.6)

Obese N/A 786 (20.5) 612 (15.6) 442 (17.4)

Note: Weight distributions and age cannot be provided for the entire sample as some children may be represented in only certain age groups or 
in all age groups of outcome assessment. If > 1 BMI was available, the highest after cleaning was used for analysis. Child BMI: Underweight 
less than 5th percentile, Normal Weight 5th percentile to less than the 85th percentile, Overweight 85th percentile to less than the 95th percentile, 
Obesity 95th percentile or greater.
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Table 2

Organophosphate esters (OPEs) limit of detection and urinary concentrations of OPEs across percentiles 

among 5,087 pregnant women in the Environmental influences on Child Health Outcomes (ECHO) 

consortium.

Analyte LOD μg/L Percent above LOD 5th μg/L 25th μg/L 50th μg/L 75th μg/L 95th μg/L

DBUP_DIBP 0.04 95.7 0.07 0.12 0.19 0.3 0.87

DPHP 0.03 99.5 0.26 0.55 0.92 1.82 8.51

BDCPP 0.02 86.9 ND 0.34 0.89 1.75 5.31

BCPP 0.02 51.6 ND ND 0.08 0.74 3.34

BCETP 0.02 68.9 ND ND 0.52 1.66 9.04

BBOEP 0.02 66.1 ND ND 0.05 0.09 0.25

BMPP 0.01 35.5 ND 0.01 ND 0.03 0.13

BEHP 0.02 29.8 ND ND ND 0.04 0.54

DPRP 0.03 25.6 ND ND ND 0.03 0.33

ND = Not Detected, LOD = Limit of Detection
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