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Abstract

Implementing random time effects in neural networks has
been a challenge for neural network researchers. In this
paper, we propose a neurophysiologically inspired temporal
summation mechanism to reflect real-time random dynamic
processing in neural networks. According to the physiology
of neuronal firing, a presynaptic neuron sends out a burst of
random spikes to a postsynaptic neuron. In the postsynaptic
neuron, spikes arriving at different points in time are summed
until the postsynaptic membrane potential exceeds a
threshold, thus initiating postsynaptic firing. This temporal
summation process can be used as a metric for deriving time
predictions in neural networks. To demonstrate potential
applications of temporal summation, we have employed a
feedforward, two-layer network featuring a Hebbian learning
rule to perform simulations using the semantic priming
experimental paradigm. We are able to successfully
reproduce not only the basic patterns of observed response
time data (e.g., positively skewed response time distributions
and speed-accuracy trade-offs) but also the semantic priming
effect and the time-course of priming as a function of
stimulus-onset-asynchrony. These results suggest that the
proposed temporal summation mechanism may be a
promising candidate for incorporating real-time, random time
effects into neural network modeling of human cognition.

1. Introduction

Neural network modeling of human cognition represents an
attempt to combine two of the three levels of analysis
proposed by Marr (1982), viz.,, the psychological
(algorithmic) and the neurophysiological (implementation)
levels. =~ While considering the role of the real-time
dimension in neural network modeling, two perspectives are
relevant. From the neurophysiological perspective, the
firing pattern of neurons, a basic building block of neural
information processing, is usually described as a real-time
random process (Bialek, Rieke, de Ruyter van Steveninck,
& Warland, 1991; Gerstner, Ritz, & van Hemmen, 1993).
From a psychological perspective, the response time
variable has been an important source of information for
understanding human cognition (Luce, 1986). These
perspectives have motivated us to consider the
incorporation of the temporal dimension into neural
network modeling. Moreover, it can be argued that
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incorporating real-time dynamics into neural networks
represents an essential step in specifying the linking rules
between psychological and neurophysiological levels,
which is critical to understanding cognition.

Although some doubt has been raised about the ability of
extant feedforward neural networks to predict the time
course of information processing (Massaro & Cowman,
1993), some noteworthy mechanisms have been proposed,
including: (1) gradual propagation of activation in time
(Cascade model, McClelland, 1979; GRAIN model,
McClelland, 1993; Cohen, Dunbar, & McClelland, 1990;
Seidenberg & McClelland, 1989" ; Kawamoto, 1993), (2) an
independent decision module having linear integrator with
threshold (see, e.g., Lacouture & Marley, 1991, 1994), (3)
number of iterations required to get from initial state to
stabilized state (e.g., Anderson, Silverstein, Ritz, & Jones,
1977; Masson, 1991, 1995), and (4) vector distance between
initial- and stable states (Sharkey, 1989). In particular,
gradual propagation (McClelland, 1979, 1993) seems to
come closest to implementing real-time dynamics.
McClelland’s models predict mean response times by
assuming a non-linear pattern of the time course of gradual
activation through neural network layers. However, it is not
clear how random time effects can be simulated using
gradual activation, nor what aspect of neurophysiological
mechanisms is responsible for the assumed non-linear
function for the time pattern, particularly if one is to deem
the neurophysiological plausibility as being important.

This research seeks to provide a neurophysiologically
motivated foundation for incorporating real-time random
dynamic processing in neural networks. Many neural
network models have utilized the mean firing rate (which
contains information about the activation level of a neuron)
as the basic metric of communication between neurons. The
mean firing rate is, however, an unsatisfactory metric
because it averages out the information related to the
temporal pattern of firing (Gerstner et al.,, 1993; Palm,
Aertsen, & Gerstein, 1988). Accordingly, when

. Seidenberg & McClelland (1989)
indicator of mean response time based on the cascade model.

used mean square error as an
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incorporating real-time dynamics into neural networks, it
may be advisable to identify and utilize those firing
mechanisms and metrics which are capable of reflecting
temporal processing patterns.

2. Temporal Summation of Neural Information
Processing

Neural firing results from the operation of two independent
mechanisms: a spatial summation mechanism and a
temporal summation mechanism (see Levitt, 1981; Arbib,
1989). A presynaptic neuron, once excited, sends out a
train of random spikes to a postsynaptic neuron. The
postsynaptic neuron accumulates spikes from different pre-
synaptic neurons (i.e., spatial summation) over time (i.e.,
temporal summation) until activation from the presynaptic
neurons exceeds a predetermined threshold, triggering a
postsynaptic firing (see Figure 1).

ct'? spike potential
¢ | threshod /\
t

1

a

' Te

Time
presynaptic spikes

Figure 1. Pictorial depiction of temporal
summation mechanism

Spatial summation constitutes one of the basic building
blocks in almost all neural network models, and has been
widely utilized (Rumelhart & McClelland, 1986; Hopfield,
1982). Although the existence of the temporal summation
mechanism is equally well-known and established in
neurophysiology, surprisingly little attention has been paid
toward incorporating this mechanism in past neural network
modeling. Accordingly, we contend that the temporal
summation mechanism may provide one way of
implementing real-time dynamics into neural networks.

We will now review and summarize the formal description
of temporal summation at the postsynaptic neuron as it relates
to neural network modeling (for more details, see Ricciardi,
1977; Sato, 1978). An input unit, once excited, sends out a

473

time-series of all-or-none spikes to the output units of a
network. Let us assume that spikes, denoted by S;(t) =0 or 1,
are generated in input unit i via a Poisson process with
parameter A (i.e., the mean number of spikes during a given
time interval is proportional to the time interval itself). An
output unit accumulates trains of spikes from different input
units, weighted by the connection strength (W) between
input unit i and output unit j. Specifically, leaky integration in
temporal summation weakens the activation of an output unit
when no spikes arrive--such a leaky integration is commonly
assumed in simulating a single neuron’s activity (see, for
instance, McKenna, Davis, & Zornetzer, 1992).

Formally, the change of activation in output unit j at time t
(Anet;(1)) can be written as the following stochastic equation:

+N

i) = Y Wya jS(h)ah -Gerell)e N (1)
i=1 t

Leakage
Term

Spatial Temporal

Summation Summation

where W, (> 0) is the connection weight between input unit i
and output unit j, @; represents the activity of input unit i, and
& (2 0) is a leakage parameter.

In principle, temporal summation can be applied to the
modeling of any psychological phenomenon that involves the
time course of processing. In the present study, with the view
of exploring the psychological plausibility of the temporal
summation mechanism, we have applied it to the semantic
priming phenomenon.

3. Simulating the Semantic Priming Effect

3.1. The Neural Network

To implement temporal summation, we constructed a
feedforward, two-layer network with all input units
(semantic feature units) being fully connected to output
units (concept units). We use a binary vector a = (aj, ...,
a,), where a; =1 (on) or 0 (off) to indicate the presence or
absence of the i-th semantic feature in an input stimulus
(e.g., “has-a-wing” for concept “BIRD”). The output of the
network is described by another binary vector b = (b, ...,
b,) where b; =1 (on) or 0 (off) indicates the concept-
triggering response of the j-th output unit (e.g., “BIRD”).
The output b;, corresponding to concept j, is produced using
the non-linear threshold function &;= f [netj(t) —9],
where netj(t) is the activation of unit j at time t, 0 is a
threshold, and fix) = 1 if x 2 0 and O otherwise. As
described in equation (1) above, net,(t) is a random variable
that changes over time according to the nonlinear stochastic

process.
The following form of Hebb’s learning rule was



employed (cf. Hebb, 1949; Grossberg, 1987; Levy, 1982):
AW = aeaebi- §eWj (2)

where o (>0) is the learning rate and & (>0) is a decay
constant. The network was trained to learn concepts; each
concept was defined by the corresponding prototype vector:

Y = (VoY) where yl = Pa=11b=1), G=1..n)

For the purpose of the simulations, these prototype vectors
were artificially generated. On each training trial for a
particular concept (say concept j), a binary vector is
randomly generated from the prototype vector y and
presented to the network as an input while output unit b
remains turned on. Under these modeling assumptions, it
can be readily shown that at equilibrium (i.e., when E[AW;]
=0), we have:

S P(b,= 1)P(ai=11b, = 1)

El(wy] =
(see Clark & Ravishankar, 1990). In other words, a
connection weight is determined by the product of the base
rate of concept j (the prior probability of the output unit
firing) and the conditional probability of existence of
feature i given concept j. The network was trained for six
randomly presented concepts over 12,000 training trials.
The resulting weights were then used for subsequent
simulations.

3.2. Response Time

Response time in the network is defined as the time lag
between presentation of an input vector and the earliest
firing of an output unit. From the characteristics of the
temporal summation mechanism, four basic properties of
the simulated response time patterns can be predicted for the
network.

First, response time will be probabilistic rather than
deterministic owing to the random Poisson process
assumption of temporal summation. Consequently, the
network produces a response time distribution instead of
simply the mean response time. In particular, the shape of
the response time distribution will be positively skewed, a
consequence of the accumulation of activation over time in
the presence of a fixed threshold (Ratcliff, 1978).

Second, note that leaky integration in the accumulation of
activation in the network gives rise to non-linearity in
temporal summation. Although this non-linearity is a
common assumption of some random walk models
(Ratcliff, 1980; Smith, 1994), it may, in fact, be attributable
to temporal summation of neural firing. This insight points
to the benefit of giving due consideration to
neurophysiological mechanisms in conjunction with
mathematical modeling (e.g., Link, 1992).

Third, exploiting the properties of the Hebbian learning
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rule, it can be formally shown that the response time is
determined by similarity between an input feature vector
and a prototype concept vector. Defining similarity, s(a, y),
as a dot product between an input feature vector a and a
prototype concept vector y, we derived the mean drift rate
of activation of the corresponding output unit given the
input vector. The mean drift rate is proportional to the
similarity between the two vectors. This implies that greater
similarity of an input vector to a stored prototype vector will
elicit a faster response in the corresponding output unit.
This relation between similarity and response time will be
demonstrated in the following section which reports our
simulation results of semantic priming effects.

Finally, as the threshold (0) of the network is varied, the
response time changes. Manipulating this threshold will
lead to speed-accuracy trade-offs (i.e., reciprocity between
response time and error rate). Speed-accuracy trade-offs
have been a common empirical finding in cognitive studies
(see, Wickelgren, 1977, for a review).

Simulations of our network have confirmed all four
predictions regarding the characteristic patterns of response
times.

3.3. Semantic Priming in the Network

A typical study of semantic priming in experimental
psychology consists of two conditions: a control condition
and a priming condition. In the control condition, a target
word (e.g., “NURSE”) follows a semantically-unrelated
word (such as “TREE”), presented for a fixed duration. In
the priming condition, the same target word (“NURSE”)
follows a semantically-related prime word (such as
“DOCTOR”). The subjects’ task is to identify the target
word as quickly as possible. As might be expected, an
abundance of studies have documented that response times
under the priming condition are shorter compared to the
control condition (for reviews, see Meyer & Schvaneveldt,
1971; Neely, 1991). In particular, the greater the semantic
similarity between the prime and target, the greater the
priming effect. Another important finding is that as the
stimulus-onset-asynchrony (denoted by Tgo,) between
prime and target increases, the semantic priming effect
increases and eventually reaches an asymptote level, which
depends on semantic similarity between prime and target
(Lorch, 1982; Ratcliff & McKoon, 1981).

In the present network, simulation of the semantic
priming effect was carried out by successively presenting
two input vectors (one pertaining to the prime and another
to the target) and recording the response time of the output
unit corresponding to the target vector. All the data
acquired from the following simulations are based on 1,000
simulation trials. Specifically, let the three input vectors
aCT, aPM, and a'® denote the control-, prime-, and target
vectors, respectively. As mentioned earlier, each element of
the binary "target" vector a'* is generated probabilistically
from a prototype vector, say y°. By defining the control and
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Figure 2. The time course of activation for the control and priming conditions

priming conditions as above, the similarity between a prime
vector and the prototype vector corresponding to a target

PM s\ . . . -
output, s(a , y) is greater for the priming condition than
s(a T y") for the control condition. The following diagram
summarizes presentation sequences under the two
simulation conditions:

Priming period Target period
(0=t<Tson) (t> Tson)

Control condition: TREE (aCT) — NURSE (aTG)

Priming condition: DOCTOR(a™ ) — NURSE (a")

Some typical patterns of activation in the output units are
shown in Figure 2. A comparison of the activation patterns
in the first part (priming period) of the two panels in the
figure reveals different levels of pre-activation of the target
output unit (“NURSE”) between control and priming
conditions. During the priming period, owing to greater
similarity, the pre-activation of a target output unit in the
priming condition increases faster than in the control
condition. Next, in the target period, when the target word
a'® is presented to the network at time t=Tgp,, the
activation starts to increase from the pre-activated level.
Because a target output unit has a higher pre-activation level
in the priming condition than in the control condition, the
target output unit activation in the priming condition
reaches the threshold faster, thus producing a shorter
response time. Further, the size of the semantic priming
effect is directly related to the semantic similarity between a
prime and target. Formally, one can readily derive the
following equation for RT, describing the relation between
response time and similarity for both simulation conditions
[q = CT (control) or PM (priming) J:
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G sy _ q 5 _ =& Tsou
iy = 1ln[BE[bs][s(a ¥) -s(a%,y") (1-e )]J

§ B E[b]s(a™,y") -6 +e
3

where B is equal to Aa/ES, O is the response threshold, and €
is time-dependent random noise with zero mean. Note that
from the above equation, we have mean RT-r > mean RTpy
since s@a“", y°) <s(a"™, y°).

Figure 3 shows the influence of varying the SOA on the
semantic priming effect. That is, as the SOA increases, the
priming effect initially increases and then approaches an
asymptote level. This pattern of our results closely
approximates empirical findings (Lorch, 1982; Ratcliff &
McKoon, 1981). It is noteworthy that this asymptotic

#—— Control ‘

[
| s Priming

Response Time

0 Tsoa

Figure 3. Priming effects as a function of Stimulus-Onset
Asynchrony (vertical error bars depict 99%
confidence intervals)



pattern of the priming effect is a direct consequence of the
assumed leaky integration process.

4. Summary and Conclusion

The main goal of the present investigation was to design a
neural network that reflects random time effects in human
information processing. In particular, we have proposed a
temporal summation mechanism inspired by the physiology
of neural firing. As an application of this mechanism, we
have demonstrated that a neural network implementing
temporal summation can successfully simulate response
time data, in particular, the “semantic priming effect” in
human cognition. These results suggest that the temporal
summation mechanism may be a promising candidate for
implementing real-time dynamics into neural networks.

By producing temporal activation patterns that are similar
to those produced by gradual activation, the present study
further develops and extends McClelland’s cascade and
GRAIN models (McClelland, 1979, 1993). However, this
extension is accomplished, not by resorting to further
mathematical sophistication, but by making use of the
neurophysiologically grounded temporal summation
mechanism. We believe that this implementation is an
important advance because it represents a natural and
logical extension to current modeling of real-time random
dynamics in neural networks.

In conclusion, by featuring the proposed temporal
summation mechanism, the present study has opened up a
new avenue for simulating random time effects in neural
networks. Introducing this mechanism into neural network
modeling is likely to enhance our understanding of human
cognition by permitting both a psychological and
neurophysiological treatment of the time dimension.

Acknowledgments

We would like to acknowledge the insightful comments and
suggestions of Sridhar Ramamoorti and Krishna Tateneni on
earlier versions of this manuscript.

References

Anderson, J. A,, Silverstein, J. W., Ritz, S. A., & Jones, R. S.
(1977). Distinctive features, categorical perception, and
probability learning: Some applications of a neural model.
Psychological Review, 84, 413-451.

Arbib, M. A. (1989). The Metaphorical Brain 2. New York:
John Wiley & Sons.

Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R., &
Warland, D. (1991). Reading a neural code. Science, 252,
1854-1856.

Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the
control of automatic processes: A parallel distributed
processing account of the Stroop effect. Psychological
Review, 97, 332-361.

476

Clark, D. M. & Ravishankar, K. (1990). A convergence
theorem for Grossberg learning. Neural Networks, 3, 87-92.

Gerstner, W., Riz, R, & van Hemmen, J. L. (1993). A
biologically motivated and analytically soluble model of
collective oscillations in the cortex. Biological Cybernetics,
68, 363-374.

Grossberg, S. (1987). Competitive learning: From interactive
activation to adaptive resonance. Cognitive Science, 11,
121-134.

Hebb, D. O. (1949). The Organization of Behavior. N.Y. :
Willey.

Hopfield, J. J. (1982). Neural networks and physical systems
with  emergent collective computational abilities.
Proceedings of the National Academy of Sciences, USA, 79,
2554-2558.

Kawamoto, A. H. (1993). Time-course of processing in feed-
forward connectionist networks: An analysis of the
exclusive-or  problem. Jowurnal of Mathematical
Psychology, 37, 556-574.

Lacouture, Y. & Marley, A. A. J. (1991). A connectionist
model of choice and reaction time in absolute
identification. Connection Science, 3, 401-433.

Lacouture, Y. & Marley, A. A. J. (1994). A mapping model
of bow effects in absolute identification. Manuscript
submitted for publication.

Levitt., R. A. (1981). Physiological Psychology. New York:
Holt, Rinehart and Winston.

Levy, W. B. (1982). Associative encoding at synapses. In
Proceedings of the Fourth Annual Conference of the
Cognitive Science Society (pp. 135-136). Hillsdale, NIJ:
Lawrence Erlbaum Associates.

Link, S. W. (1975). The relative judgment theory of two
choice response time. Journal of Mathematical Psychology,
12, 114-135.

Link, S. W. (1992). The Wave Theory of Difference and
Similarity. Hillsdale, N.J.: Lawrence Erlbaum Associates.

Lorch, R. F., Jr. (1982). Priming and search processes in
semantic memory: A test of three models of spreading
activation. Journal of Verbal Learning and Verbal
Behavior, 21, 468-492.

Luce, R. D. (1986). Response Times. New York: Oxford
University Press.

Marr, D. (1982). Vision. San Francisco: W. H. Freeman &
Company.

Massaro, D. W. & Cowman, N. (1993). Information
processing models: Microscopes of the mind. Annual
Review of Psychology, 44, 383-425.

Masson, M. E. J. (1991). A distributed memory model of
context effects in word identification. In D. Besner and G.
W. Humphreys (Eds.), Basic Processes in Reading: Visual
Word Recognition. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Masson, M. E. J. (1995). A distributed memory model of
semantic priming. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 21, 3-23.



McClelland, J. L. (1979). On the time relations of mental
processes: An examination of systems of processes in
cascade. Psychological Review, 86, 287-330.

McClelland, J. L. (1993). Toward a theory of information
processing in graded, random, and interactive networks. In
D. E. Meyer & S. Komblum (Eds.). Attention and
Performance XIV. Cambridge, MA: MIT press.

McKenna, T., Davis, J., & Zometzer, S. F. (1992). Single
Neuron Computation. Boston, NJ : Academic Press.

Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in
recognizing pairs of words: Evidence of a dependence
between retrieval operations. Journal of Experimental
Psychology, 90, 227-234.

Neely, J. H. (1991). Semantic priming effect in visual word
recognition: A selective review of current findings and
theories. In D. Besner and G. W. Humphreys (Eds.), Basic
Processes in Reading: Visual Word Recognition. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Palm, G., Aertsen, A. M. H. J., & Gerstein, G. L. (1988). On
the significance of correlations among neuronal spike
trains, Biological Cybernetics, 59, 1-11.

Ratcliff, R. (1978). A theory of memory retrieval.
Psychological Review, 85, 59-108.

Ratcliff, R. (1980). A note on modeling accumulation of
information when the rate of accumulation changes over
time. Journal of Mathematical Psychology, 21, 178-184.

Ratcliff, R. & McKoon, G. (1981). Does activation really
spread? Psychological Review, 88, 454-462.

Ricciardi, L. M. (1977). Diffusion Processes and Related
Topics in Biology, Lecture Notes in Biomathematics, Vol.
14. Berlin: Springer-Verlag.

Rumelhart. D. E., & McClelland, J. L., (1986). Parallel
Distributed Processing, Vol 1 & 2. Cambridge, MA: MIT
Press.

Sato, S. (1977). Evaluation of the first-passage time
probability to a square root boundary for the Wiener
process. Journal of Applied Probability, 14, 850-856.

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed
developmental model of word recognition and naming.
Psychological Review, 96, 523-568.

Sharkey, A. J. C. (1989). The lexical distance model and
word  priming. In Proceedings of Eleventh Annual
Cognitive Science Society Meeting (pp. 860-867). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Smith, P. L. (1994). Multiple detector models of visual
simple reaction time. Unpublished manuscript.

Wickelgren W. A. (1977). Speed-accuracy tradeoff and
information processing dynamics. Acta Psychologica, 41,
67-85.

477



	Cogsci_1995_472-477



