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Abstract

Vehicle Reidentification and Travel Time Measurement Using Loop
Detector Speed Traps

by
Benjamin André Coifman
Doctor of Philosophy in
ENGINEERING: Civil Engineering
University of California, Berkeley

Professor Michael Cassidy, Chair

This dissertation presents a vehicle reidentification algorithm for consecutive
detector stations on a freeway, whereby a vehicle measurement made at a downstream
detector station is matched with the vehicle’s corresponding measurement at an upstream
station. The algorithm should improve freeway surveillance by measuring the actual
vehicle travel times; these are simply the differences in the times that each (matched)
vehicle arrives to the upstream and downstream stations. Thus, it will be possible to
guantify conditions between widely spaced detector stations rather than assuming that the
local conditions measured at a single station are representative of an extended link
between stations.

The method is developed using vehicle lengths measured at dual loop speed traps.
These detectors are quite common, often placed at half mile spacings or less on urban
freeways. The proposed approach is a milestone in highway research because no
previous work uses the existing detector infrastructure to match vehicle measurements

between detector stations. The work is also transferable to other detector technologies



capable of extracting a reproducible vehicle measurement, i.e., a vehicle signature, such
as video image processing.

The contribution to the field of traffic surveillance should prove to be significant
since the vehicle reidentification algorithms will allow the study of travel time
applications (e.g., incident detection and dynamic trip assignment) without deploying an
expensive detection system. This will enable cost-benefit analysis before investing in a
new detection system. If travel time measurement proves to be beneficial, the system
could be deployed using speed traps, or the algorithms could be transferred to emerging
detector technologies with better measurement resolution. The methodology should
prove beneficial for research purposes as well, by yielding better insight into traffic

dynamics between widely spaced detector stations.

Professor Michael Cassidy

Committee Chairman
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1. Introduction
This dissertation presents a vehicle reidentification algorithm for consecutive detector
stations on a freeway, whereby a vehicle measurement made at a downstream detector
station is matched with the vehicle’s corresponding measurement at an upstream station.
The algorithm should improve freeway surveillance by measuring the actual vehicle
travel times; these are simply the differences in the times that each (matched) vehicle
arrives to the upstream and downstream stations. Thus, it will be possible to quantify
conditions between widely spaced detector stations rather than assuming that the local
conditions measured at a single station are representative of an extended link between
stations.

The method is developed using effective vehicle |éng#asured at dual loop
speed traps. These detectors are quite common, often placed at half mile spacings or less
on urban freeways. The proposed approach is a milestone in highway research because
no previous work uses the existing detector infrastructure to match vehicle measurements
between detector stations. The work is also transferable to other detector technologies
capable of extracting a reproducible vehicle measurement, i.e., a vehicle signature, such
as video image processing.

Because the proposed algorithm was developed with conventional loop detectors
in mind, it uses the (effective) length measurements to distinguish vehicles. Notably, a
length measurement may be accurate to only 2 feet due to resolution limitations, making
difficult the task of matching pair-wise measurements at upstream and downstream
detector stations. However, if the difference between two measurements exceed this
measurement resolution, then the pair of measurements probahblyt dioime from the
same vehicle. After applying this resolution test to each pair of upstream and

downstream measurements (for some specified group of vehicles), the remaining pair-

1 The effective vehicle length is the length as “seen” by the detectors; i.e., the physical vehicle length and
the length of the detection zone.



wise comparisons that can not be eliminated are consigesstble matchesFor
example, the upstream and downstream length measurements from the same vehicle
should pass the resolution test and the pair will be labgdedsable match Frequently
however, one vehicle’s measurement downstream willgmssible matclto a different
vehicle’s measurement upstream because this pair of measurements likewise passes the
resolution test. Clearly, these possible, but incorrect, matches are false positives.

Toward eliminating these false positives, the algorithm uses a simple trick: it
matches platoons whenever the vehicles pass both detectors in the same relative order.
The sequence of measured lengths in a platoon provides more information than do the
individual measurements. For each vehicle in the platoon, the resolution test applied to
the correct (but unknown) pair of upstream/downstream measurements should yield a
possible matcland the entire platoon should produce a contiguous sequepassdile
matchesn the space of pair-wise length comparisons. The problem is complicated in
that the false positives can form spurious sequengesssible matches the pair-wise
comparison space. However, as a sequenpessible matchescreases in number, the
probability that it is due to false positives decreases. The vehicle reidentification problem
becomes a matter of searching the pair-wise comparison space for contiguous sequences
of possible matchethat are long enough so that they are probably not caused by false
positives.

The research presented in this document has investigated three different
approaches to searching the pair-wise comparison space. The results suggest that it is
possible to extract a sufficient number of platoons for traffic surveillance applications,

while accepting few, if any, false positives.



1.1 Overview

Before addressing the vehicle reidentification algorithms, the motivation for this work is
presented in chapter 2 and other surveillance methods that are relevant to travel time
measurement are described in chapter 3. Chapter 4 presents the vehicle reidentification
algorithms in detail using a pilot study to illustrate the steps. Chapter 5 examines three
large examples to quantify the algorithms’ performance. Chapter 6 discusses extensions
and future research projects based on this work. Following the conclusions in 7 and a list
of references, there are three appendices that explain in a step-by-step fashion how to

implement the algorithms.



2. Motivation

This work could facilitate travel time measurement using existing detector infrastructure
on freeways and would require minimal communications compared to other vehicle
reidentification systems. Although the benefits of travel time measurement may be
inflated in some of the literature, it still is a promising surveillance tool for traffic
engineers. Travel time data could improve existing surveillance applications such as
incident detection, control at ramp meters, and traveler information via existing
technologies (e.g., changeable message signs and highway advisory radio). The travel
time data could also serve as input to emerging technologies such as dynamic traffic
assignment (DTA). More importantly, the data could be used to quantify the benefits
from these emerging technologies using real traffic data, off-line, before making
significant infrastructure investments. Such analysis will allow for quantifying the
necessary level of accuracy for a given application. As accuracy increases, the marginal
costs for further improvements will likely increase. Thus, a municipality can deploy the
least expensive detection system that meets the these specified requirements.

Finally, there are applications which might benefit from the vehicle
reidentification or travel time data, although on their own, probably do not justify the
deployment of a vehicle reidentification system. For example, the travel time data could
be useful for planning applications and the reidentification algorithms could be used to
study individual driver dynamics over time and space. The remainder of this section will
examine four applications: incident detection, DTA, delay measurement for planning

purposes, and for studying driver dynamics.

2.1 Incident detection

A recent report from Caltrans [1] stated that, “Incidents are, by definition, perturbations

in the normal operating characteristics of a transportation system, chief of which is travel



time.” The potential benefits of incident detection have been known for years [2-6].
Faster response to an incident can reduce the number of drivers affected and reduce the
average delay for those who are affected. By reducing total delay, other costs associated
with the incident, such as wasted fuel and increased emissions, will also decrease.

Countless automated incident detection strategies have been proposed, but most
of these systems suffer from high false alarm rates and/or long detection times. A reliable
incident detection system using speed traps has been demonstrated by Lin and Daganzo
[7]. The system uses two widely spaced detector stations to detect two “signals” that
propagate through the traffic stream. The two signals, a backward nstviok wave
and a forward movingdrop in flow are indicative of an incident between the stations. As
noted in [7], “Detection of an incident can happen only when both signals have been
received....” Although thdrop in flowtravels at the prevailing traffic speed, this earlier
work estimated thehock wavepeed to be on the order of 8 mph.

Fortunately, thelrop in flowreflects the fact that vehicles are being delayed
behind the incident. All vehicles that arrive at the station after the drop should experience
increased travel times over the segment. Thus, an incident detection system based on
travel time may not have to wait for the slow movamgpck waveo reach the upstream
station before detecting the incident.

When using travel time to detect incidents, it is necessary to localize the source of
delay. It could either be caused by an incident within thé, loxkoy queues backing up
from some event downstream of the link. In the former case, the downstream detector
station will be downstream of the bottleneck and should observe free flow vehicle
velocities; while in the latter case, the downstream detector station will be observing

congested traffic with lower vehicle velocities.

2 Assuming that there are no recurring bottlenecks within the link

5



2.2 Dynamic Trip Assignment

Many researchers are investigating DTA as a means to reduce traveler delay. As
proposed, a DTA system would observe current [8-16] and historical traffic conditions [8-
15, 17-18], estimate travel times over the network and then route vehicles with the goal
of reducing traveler delay.

Typically, the travel time forecasts are based on traditional traffic parameters
(such as flow, velocity, and occupancy) measured at discrete point detectors [8-16].
Usually, the point measurements are averaged over fixed time periods (20 seconds-15
minutes) to smooth out transients and then generalized to a link of significant length (0.5-
5 miles long). However, the fixed time periods generally do not correspond to a single
steady state condition. Instead, a sample may include multiple traffic states and the fixed
time average may not reflect any conditions that actually occurred at the detector [19].

Unfortunately, there is not a one-to-one relationship between travel time over an
extended link and traffic parameters measured at a discrete point within that link. The
DTA literature does not appear to consider the option of measuring travel time directly,
but the use of direct travel time measurements should improve the performance of a
travel time forecasting algorithm both through real time data, and by providing a set of
historical data.

Although the promoters of DTA systems forecast significant benefits, the systems
have only been tested in simulation or in very limited field studies [20]. The proposed
travel time measurement system could be used for much-needed evaluation under real-

world conditions.

2.3 Planning applications

If a travel time measurement system is deployed for ATIS (Advanced Traveler

Information Systems) applications or incident detection, the system could prove

6



beneficial to planning applications as well. Three such applications are considered
below, quantifying congestion, model validation and calibration, and tracking freight

movements.

2.3.1 Quantifying congestion

Congestion and the associated costs from delay, wasted fuel and increased pollution, have
become significant problems for transportation users and non-users alike. Tracking
congestion trends can help planners assess how fast problems are growing. The trends
can also be used to quantify the benefits of congestion countermeasures.

The state of the practice for quantifying delay and congestion on the metropolitan
area level is to use average daily “volume/capacity” measured at discrete points to
estimate delay over extended links [21]. As noted in subsection 2.2, there are many
problems with using point measurements to estimate travel time or in this case, delay. It

would be better to measure delay directly, i.e.,

(actual travel time) - (travel time at posted speed limit)

2.3.2 Model validation and calibration

Model validation and calibration is an important task for the traditional four step planning
process as well as the on-going Travel Model Improvement Program which seeks to
replace this process with microsimulation models. For example, the TRANSIMS
designers at Los Alamos National Labs note that “The most important result of a
transportation microsimulation in [the planning] context should be the delays...” [22]. It
will be important to verify and calibrate these models to real networks, a task that is well

suited to the travel time measurement system.



2.3.3 Tracking freight movements

Finally, because the vehicle reidentification method works particularly well with trucks, it
should allow for generating origin-destination (O/D) data on freight movements, and

thus, track these movements through the urban freeway network. This point is significant
since researchers estimate that freight movement accounts for nearly 1/2 of all
transportation costs, but these movements are virtually excluded from the Urban
Transportation Planning Process [23]. Because trucks are a primary factor for pavement
degradation, the O/D data on freight movements should prove to be significant when

forecasting future pavement needs.

2.4 Driver dynamics

Using traditional surveillance methods, it is difficult to examine individual driver
dynamics over extended distances. Usually, driver dynamics studies rely on aggregate
traffic parameters at multiple sites or restrict the scope to a small number of drivers to
overcome the difficulties associated with following vehicles over large distances. The
proposed vehicle reidentification system could be used to match observations from the
same driver at multiple sites along an extended highway segment. Thus, it will be
possible to study behavioral trends over time and space by examining the driver

parameters (e.g., headway and velocity) at multiple locations.



3. Other Surveillance Methods
This chapter discusses preceding research related to vehicle reidentification or travel time
measurement systems. First, complementary detector technologies are presented in

section 3.1, then competing vehicle reidentification systems are presented in section 3.2.

3.1 Complementary technologies

Although this dissertation focuses on measured vehicle lengths from speed traps, the
proposed reidentification algorithms could be applied to other signature based detector
systems. There are four emerging detector systems under Caltrans sponsorship that
promise to yield more robust vehicle signatures while being compatible with the

reidentification algorithm:

1. Magnetic Vehicle Signatures from Loop Detectors: Stephen Ritchie,
University of California, Irvine [24].

2. Vehicle Dimensions and Velocity From Scanning Laser Radar: Harry Cheng,
University of California, Davis [25].

3. Vehicle Dimensions and Velocity From Overhead Video Detectors: Art
MacCarley, Cal Poly, San Luis Obispo [26].

4. Visual Vehicle Signatures from Wayside Cameras: Jitendra Malik, University

of California, Berkeley, [27].

For example, item 2 above is designed to measure vehicle length with an error of 1

inch at free flow traffic speeds (versus 24 inches with the speed traps).



3.2 Competing technologies

Several systems have been proposed for measuring travel time directly using vehicle
signatures [24, 28-38]. These emerging technologies use specialized hardware to extract
vehicle signatures that are more descriptive than effective length. In most cases, the
systems have only been installed on small test sites. Some of the systems use automatic
vehicle identification (AVI), e.g., machine readable “license plates”, [28-34] that make
vehicle reidentification trivial, but the systems may compromise personal privacy.
Furthermore, the AVI systems do not measure local velocities at the detectors, so, an
incident detection system based on AVI technology would require three stations to
localize the source of delay (see section 2.1 for more information).

Other surveillance systems have been proposed for estimating travel time from
aggregate traffic parameters [39-40]. Although these systems appear promising for free
flow and lightly congested conditions, they currently do not perform well under heavy
congestion.

Another approach for measuring travel time is to match vehicles simply based on the
cumulative arrivals at successive detector stations [41-42], i.e., the n-th vehicle at one
station is matched to the n-th vehicle at the next station. To counter detector drift
between stations, these systems use aggregate measurements to recalibrate during free
flow conditions. Unfortunately, congestion can last several hours, leading to significant
measurement drift between recalibrations.

Tables 3-1 & 3-2 compare the various travel time measurement systems. The
reidentification rate based upon vehicle length measurements at speed traps is not as high
as the emerging signature extraction technologies. But, because the former can be
implemented using the existing detection hardware, the benefits of travel time
measurement can be quantifieefore a jurisdiction commits to purchasing a travel time

measurement system.

10



TABLE 3-1: Comparison of the infrastructure requirements for various travel time
measurement systems

Primary Correlation Wayside Wayside Control
Mode Feature(s) Detectors Hardware
Vehicle mounted transponders / .
. vehicle new new
license plate readers
Visual signature vehicle new new
Magnetic signature vehicle and platoon E)X(;Spt;ng single new
Inferred from aggregate, point  |features in aggregate existing single existin
based measurements measurements loops 9
Cumulative arrivals aggregate existing single existing

measurements loops

. xistin ir I

Measured length signature platoon Ieoospts g paired existing

Although this section presents competing technologies for measuring travel time, it is
not intended to give the reader the impression that any one of the technologies is better
than the others under all conditions. In fact, a hybrid between two or more systems will

likely yield better performance than any one of the systems operating independently.
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4. Vehicle Reidentification Algorithms

This chapter presents three closely related algorithms for matching vehicles at widely
spaced detector stations using the measured values of effective vehicle length (i.e., the
length “seen” by the detectors). A vehicle’s measured length is not unique, it is subject to
resolution constraints and it may be affected by measurement errors. However, a
sequence of measured lengths rapidly becomes distinct and the sequence can potentially
be reidentified at successive detectors. The three algorithms look for short sequences of
measured vehicle lengths that exhibit a strong correlation between two stations. Lane
changes and measurement errors disrupt the sequences, so the algorithms are specifically
designed to match vehicles between these disruptions.

This chapter begins with an example of manual vehicle reidentification in section 4.1,
where a human observer matched vehicles using visual comparisons between measured
lengths at two successive detector stations. The example presents the basic strategies
used by each algorithm to match vehicles and introduces notation used throughout the
remainder of the chapter. The remainder of the chapter, section 4.2, describes each

algorithm in detafland compares them.

4.1 An example of manual vehicle reidentification

The following example uses data collected at two successive detector stations on March
10, 1993 [44]. Both stations have dual loop speed traps in each lane and the example
uses the two speed traps shown in Figure 4-1.

Figure 4-2 shows just over two minutes of time series vehicle length data extracted at
the two statiorfs The upstream and downstream series were observed at different times

to account for the vehicle trip times between stations. These length measurements are

3 See Appendix A for an explicit step by step description of each algorithm.

4 The reader can refer to Appendix C for details on how these lengths were calculated.
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FIGURE 4-3: Minimum length resolution as a function of velocity

subject to resolution constraints that are a function of the loop separation within the given
speed trap, the controller sampling rate and the vehicle velocity. Because the loop
separation and sampling rate are fixed, vehicle length resolution ranges from 0.5 ft at 20
mph to 2 ft at 80 mph and this relation is shown in Figure 4-3. In addition to the
resolution constraint, measurements are subject to external noise caused by misdetections
and vehicles changing lanes over the detector station.

Indexing these vehicles by arrival nuntbether than time, Figure 4-4A shows

the two vehicle length sequences superimposed on the same plot while Figure 4-4B

® These numbers simply reflect the order that vehicles pass the given detector station and the arrival
numbers at one station are not directly related to the arrival numbers recorded at any other station.
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Figure 4-2.

(B) The corresponding measured vehicle velocities.
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shows the corresponding velocities for reference. To simplify later steps in the

discussion, the upstream sequence starts with vehicle number 50. In this example,
subscripts have been added to the vehicle numbers to differentiate between the two
stations: “u” for upstream and “d” for downstream. For each match the human observer
found, the upstream and downstream measurements are plotted at the same horizontal
position, e.g., downstream vehicle numbeyi85natched with upstream vehicle number

81, As part of the matching process, the observer inserted four breaks in the upstream
sequence, where a break is simply a horizontal shift in one of the sequences. A break in
one sequence is analogous to deleting a vehicle that does not have a match from the other
sequence; i.e., breaks represent lane changes that occurred between the detector stations
and/or detector errors at the stations. The breaks were inserted strictly on the basis of
improving the match between the upstream and downstream length measurements. The
difference between the upstream and downstream length measurements is less than 1/2
foot for approximately 75 percent of the matches in this figure. The strong similarity
between the two sequences, in conjunction with the correlation of the two long vehicles
(labeled A and B in the figure), point to the feasibility of reidentifying vehicles from
sequences of measured vehicle lengths.

Replotting the matches from Figure 4-4A with respect to the arrival number at each
station yields Figure 4-5. The vertical axis is increasing downward in this figure because
it was plotted using matrix notation. The matches tend to fall into diagonal sequences at
-45 degreés with occasional deviations due to lane changes. Thus, for all of the vehicles
in a platoon between two successive deviations, the upstream arrival number differs from

the downstream arrival number by a fixed offset.

% 1n other words, a match will usually be to the right one column and down one row from a preceding
match in this figure.
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FIGURE 4-5: This figure shows the matches from Figure 4-4A plotted with respect to
the arrival number at each station. Note that the vertical axis is
increasing downward in this figure because it was plotted using matrix
notation.

4.2 Algorithm description

The three approaches to reidentifying vehicles automatically are presented in this section.
First, subsection 4.2.1 presents the Basic Algorithm, which attempts to find an upstream
match for every vehicle that passes the downstream station. Under free flow traffic
conditions, the vehicle length measurement resolution degrades, making difficult the task
of differentiating between vehicles. The Subsampling Algorithm, which only matches
distinct vehicles, was developed in response to these deficiencies and is presented in
subsection 4.2.2. The Approximation Algorithm presented in subsection 4.2.3 provides a
second approach to overcome the same deficiencies. This final approach tries to find the

best fixed offset for a group of n vehicles, the group offset is used as an approximation
18



for each individual vehicle’s offset within the group. After presenting the three
algorithms, this section concludes with a brief summary contrasting the different

approaches.

4.2.1 Basic Algorithm

The basic reidentification algorithm attempts to match each vehicle’s length measurement
at the downstream station with its corresponding upstream measurement. Of the three
algorithms examined, this approach could yield the most information about the traffic
stream because it attempts to make an exact match for a large number of vehicles.

The algorithm starts by comparing individual length measurements between the two
stations using a resolution test described below. If the difference between the upstream
and the downstream measurements exceed the measurement uncertainty (which is a
function of velocity, as shown in Figure 4-3) then the observations probaltpididme
from the same vehicle. The pair of vehicles can then be markediaBkahly match.

Otherwise, the pair of measurements can not be eliminated by this test and the pair is
marked as @ossible match

The algorithm applies the resolution test to each pair of upstream and downstream
measurements from some specified group of vehicles. In practice, the group is selected
to ensure that the true, but unknown, match for a downstream vehicle will fall somewhere
in the upstream set (see Appendix A for more details). The results of these resolution
tests can be summarized inehicle match matrix The matrix is indexed by arrival
number at each station (upstream and downstream) and each element of the matrix is the
outcome of a single pair-wise resolution test. Figure 4-6 shows an example of the
notation used in theehicle match matrix

The fixed set of vehicles from Figure 4-4 yield tteghicle match matrighown in

Figure 4-7. The horizontal axis is indexed by upstream arrival number and the vertical
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FIGURE 4-6: A simple example of notation: (A) measured vehicle lengths, (B)
possible matches with a length measurement tolerance of 1 unit, (C)
resulting vehicle match matrix.

"0"= possible match, "- "= manual reidentification data

Sd

104

15¢4

20(g

25(

30g

35

404

45(4

50¢g

upstream vehicle number

FIGURE 4-7: Vehicle Match Matrix, summarizing the outcome from many successive
resolution tests
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axis is indexed by downstream arrival number. In this figure, “O” indicgpessible
matchbecause the two length measurements are within the measurement uncertainty,
while all other elements are left empty to indicate that a match is unlikely between the
given pair of vehicles. The manually generated reidentifications from section 4.1 are
shown for reference with the solid line, but they are unknown by the algorithm.

Many false positives are clearly evident in Figure 4-7 since each vehicle can only
have, at most, one true match, yet most rows have more thaossible matclor the
given downstream vehicle. Assuming that any two successive length measurements at a
detector station are independent of each other, the false positives are manifest as random
noise in therehicle match matrix|If a false positive occurs with probability less than 0.5,
a false positive should usually be preceded (moving up one row and shifting left one

column in the matrix) by aanlikely element. Wherea#,vehicles maintained their order

between the two stations and the probability of a false nedatiless than 0.5, a true

match should usually be preceded lpoasible matclelement. Relaxing the order
constraint somewhat, the work of John Windover on driver memory [45] has shown that
long sequences of drivers often maintain their headway, and thus, their order for extended
distances. So, if vehiclesually maintain their order between stations, the true (but
unknown) matches should manifest themselves as sequences (diagonal lines at -45
degrees) opossible matches thevehicle match matrixIn other words, false positives

will typically form short sequences while the true matches will usually form longer
sequences in theshicle match matrix To exploit this property, the algorithm looks for
sequences giossible matches thevehicle match matriand tallies how many

sequential vehicles matched at both stations. These totals are storeseiquiiece

matrix; in which each element contains an integer totaling the cumulative number of

possible matches a sequence up to and including the given eleémémngure 4-8 shows

"Where a false negative is a matrix element markethkisely even though the two measurements
actually came from the same vehicle.

8 Thus, unlikely matches are represented by zeros, or for clarity of display, blanks in the graphical format.
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(A) Vehicle Match Matrix (B) Sequence matrix

upstream vehicle # upstream vehicle #
E ® « e E 1
@ . © I .
o o ® -0 -0 O o 2 1 1
@ .Q © 0o - . o .C 1 -3
| cC C
; C|>_) . . e ©® ; G>) 1
S © + o ® S 1 2

"0"= possible match

FIGURE 4-8: A simple example illustrating the transition from (A) the Vehicle Match
Matrix to (B) the Sequence Matrix. Each non-zero element in the
Sequence Matrix indicates the total number of Possible Matches in the
sequence up to and including the given matrix element.
a simple example of the conversion to sleguence matrixThesequence matrifor the
on-going example is shown in Figure 4-9, where elements of length one have been
omitted for clarity.

Next the algorithm allows for lane changes and/or misdetections in the sequences.

Figure 4-10A-C shows the three lane change maneuvers searched for by the algorithm:

(A)one venhicle exits the lane between stations or a vehicle is not detected at the
downstream station, (upstream vehicle n-1 in the example),

(B) one vehicle enters the lane between stations or a vehicle is not detected at the
upstream station, (downstream vehicle m-1 in the example),

(C) one vehicle enters and one vehicle leaves the lane between stations or there is

a false negative in the data, (vehicles m-1, n-1 in the example).

For each sequence of vehicles in seguence matrjxhe algorithm checks the first
element to see if it can be linked to an earlier sequence (i.e., a sequence starting with a
lower vehicle number) via a lane change maneuver. The procedure is demonstrated using

the sequence starting with element (m,n) in Figure 4-10D, the algorithm checks the
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FIGURE 4-9: Sequence matrix, indicating the sequential number of possible
matches

sequence matrito see if there are any earlier sequences passing through one of the three
shaded elements, where each element corresponds to one of the lane change maneuvers
shown in Figures 4-10A-C. If so, the algorithm increments all elements in the sequence

starting at (m,n) by the highest value from the shaded eleméahissequence matrjx

less a penalty of one vehicle for the lane change, and places the modified-stigubece
lane change matrix The penalty gives contiguous sequences a slight advantage in the
final step of the algorithm. Otherwise, if there are no preceding sequences in the shaded
elements, then the algorithm simply copies the entire sequence unchanged from the

sequence matrito thelane change matrix

9 “modified-sequence” implies that the sequence was modified because of a lane change.
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FIGURE 4-10: A simple example illustrating the possible lane change maneuvers
recognized by the Basic Algorithm: (A) One vehicle exits the lane
between stations, (B) One vehicle enters the lane between stations,
(C) One vehicle enters and one vehicle exits the lane between
stations, (D) The search region for the sequence starting at element
(m,n), (E) a hypothetical sequence matrix with (F) the resulting lane
change matrix with a modified-sequence starting at element (m,n)
shown in black.
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For example, Figure 4-10E shows a hypothesegluence matriwith three
sequences, two of which start before downstream vehicle m-3 and are not shown in their
entirety. When the algorithm reaches the sequence starting at (m,n), it finds that there are
two earlier sequences that pass through the search area (shown in gray). It takes the
highest value in the search area, 7, subtracts 1, adds the result to all of the elements in the
current sequence and then places the modified-sequencdanghehange matrix
shown in Figure 4-10F. Figure 4-11 showsldree change matrifor the on-going
example, again, all elements of length one are omitted for clarity.

Finally, the algorithm identifies final matches by extracting all sequences from
thelane change matrijonger than a pre-specified threshold. Entire sequences (and

modified-sequences) are selected fromléime change matrixsuccessively from longest
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541 - "=manual reidentification data.2 2
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35qr

40gqr
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504 *
49, 54, 59, 64, 69, 74, 79, 84, 89, 94,

upstream vehicle number

FIGURE 4-11: Lane change matrix, allowing for modified-sequences containing a
single lane change maneuver
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to shortest and are copied to the final matrix, called theeshold matrix Once a given
match has been identified, the corresponding row and column leindehange matrix
are removed from further considerations. In the on-going example, a threshold level of
five matches for a sequence yields the two platoons shown in Figure 4-12. Note that both
platoons fall on the manually calibrated data and almost half of the vehicles that passed
the detector stations were reidentified (i.e., matched).

Travel time for a reidentified vehicle can then be measured by taking the

difference in known arrival times at the two stations. To estimate travel time during the

Od T T T T T T T T

5dr - A

"0"= output from the basic algorithm
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15gq
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40q r
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50d 1 1 1 1 1 1 1 1
49, 54, 59, 64, 69, 74y 79, 84, 89, 94y
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FIGURE 4-12: Threshold matrix, retaining only those sequences longer than a
threshold length

10 Note that a modified sequence starts after a lane change from an earlier sequence. The algorithm will
identify the earlier sequence and it will treat the union of the two sequences as if it were a single
sequence.
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short periods with no reidentified vehicles, the reidentification process can be
approximated by pairing vehicles based on the cumulative number to pass each station
after the last correlated sequence, i.e., progress through the matrix at -45 degrees from the

last match until a new match has been identified.

4.2.2 Subsampling Algorithm

The Basic Algorithm works well under congested traffic conditions. But as previously
mentioned, the vehicle length measurement resolution degrades at free flow velocities,
causing the number pbssible matche® increase in the Basic Algorithm. Furthermore,
vehicles may be less likely to maintain their order between detector stations in free flow
conditions due to frequent opportunities to overtake one another. Subsampling a distinct
segment of the total sample can overcome these problems.

Most vehicles on the highway (e.g., sedans, pickup trucks, etc.) are small and
have effective lengths on the order of 16-22 ft. The range of these effective lengths is
only 6 ft, but the vehicle length measurement uncertainty may be as poor as 2 ft at free
flow velocities, making difficult the task of differentiating one small vehicle from
another. Consider the observed distribution of vehicle lengths at one detector station, as
shown in Figure 4-13A, approximately 80 percent of the measurements fall into the 16-22
ft range. The effective length for long vehicles, on the other hand, can range from 22 ft to
over 80 ft!, e.g., Figure 4-13B. By restricting the Basic Algorithm exclusively to long
vehicles, the large range of lengths can offset the degraded measurement resolution.
Because the long vehicles make up a small portion of the population, there will
frequently be large headways between two successive observations. The large headways
reduce the opportunity for overtaking and increase the probability of maintaining the

vehicle sequence between detector stations.

1 The upper limit is a semi truck with two trailers.
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FIGURE 4-13: (A) Cumulative Distribution of measured vehicle lengths in one lane
during the evening peek at a detector station. Sample size = 8002
vehicles. (B) Detail of the CDF from part A, showing the large range of
lengths observed in the longest 10 percent of the vehicles.
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Before comparing measurements from two stations, the algorithm “subsamples”
all vehicles longer than some pre-specified minimum length at each station and assigns
sequential integers according to their arrival. Using the data in Figure 4-2 and a
minimum length of 21 ft, the algorithm subsamples about 20 percent of the vehicles at
each station. The Subsampling Algorithm applies the Basic Algorithm only to the
subsamples, i.e., it attempts to match all long vehicles by following the steps previously
described. First, the algorithm generateglaicle match matrixFigure 4-14A); second,

it identifies sequences of potential matches (Figure 4-14B); third, it allows for lane

A) Vehicle match matrix

"0"= possible match

B) Sequence matrix
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FIGURE 4-14: The Subsampling Algorithm, apply the Basic Algorithm to all vehicles

upstream vehicle #

longer than a pre-specified minimum length



change maneuvers (Figure 4-14C); fourth, it keeps only those sequences over a given
threshold (Figure 4-14D). Finally, the matches from Figure 4-14D are transposed back to
the original sample as shown in Figure 4-15. Note that the Subsampling Algorithm has
correctly reidentified two vehicles, downstream numbegsahfl 46, that were not
matched using the Basic Algorithm in Figure 4-12. These vehicles fall into short
sequences using the Basic Algorithm and they are eliminated, but within the subsample,
they fall into longer sequences and they are correctly matched by the Subsampling
Algorithm.

Naturally, travel time for long vehicles, i.e., trucks, may not be representative
of the entire vehicle population. So, this algorithm is intended for free flow conditions,

when local velocity measurements at the detector stations should be representative of the

Og x x x x x x x x
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104 WZ .
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20q
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downstream vehicle number

35q

"-"= manual reidentification data
"0"= output from the subsampling reidentification algorithm
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" "=matrix point from Figure 4-14A
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49, 54, 59, 64, 69, T4, 79, 84, 89, 94y

upstream vehicle number

FIGURE 4-15: Transpose the subsample matches back to the original vehicle indices
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entire link. The trucks serve as a gabagnostic for the onset of congestion and thus,
signal the need to switch back to the Basic Algorithm using the entire population.

Finally, with more advanced vehicle detection systems, it should be possible
to subsample vehicles based on other features, such as vehicle color measured from a
video image processing system. It is a simple extension of the algorithm to process
multiple subsamples in parallel, such as one subsample containing all of the red vehicles

and another subsample containing all of the green veRicles

4.2.3 Approximation Algorithm

The Approximation Algorithm provides a second approach to overcome degraded
measurement resolution as well as addressing the possibility that vehicles may overtake
one another. It attempts to find an approximate match for every vehicle, but it does not
provide an exact match. Like the Basic Algorithm, each downstream vehicle is compared
to a large number of upstream vehicles using the resolution test to iderpibgsilble

matches As previously noted, a given vehicle can have, at most, one true match, with all
otherpossible matcheseing false positives. To reduce the influence from vehicles with
many false positives, those vehicles with an uncommon length and thymdsivle
matchesare assigned greater weight by the algorithm; for a vehicle vatdssible
matcheseachpossible matcls assigned the weight 1/n.

The algorithm generatesvahicle match matrito summarize the comparisons of
successive downstream vehicles with numerous upstream ones. Figure 4-16 shows a
vehicle match matrifor a larger set of upstream vehicles than was used in the earlier
examples. The larger matrix is necessary because the algorithm calculates the average
weight on each diagonal. Columns 50-93 are the same data shown in Figure 4-7. The

lower left and upper right hand corners of this larger matrix are blank, indicating that no

12 Note that the subsamples do not have to be mutually exclusive, the sampling criteria could be selected
so that some vehicles will be included in several different subsamples.
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"0"= possible match, "- "= manual reidentification data
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FIGURE 4-16: A larger vehicle match matrix, this time illustrating a moving window
search

comparisons were made in these regions. These sections were excluded by design: each
row contains the same number of pair-wise comparisons (i.e., 94), but the set of upstream
vehicles is shifted to the right by one vehicle in each new row. Because it is easier to
write computer code to calculate the average weight by column than by diagonals,

vehicles will be indexed by upstream offset rather than upstream vehicle number, where,

upstream offset = upstream vehicle number - downstream vehicle number.

Replotting the data from Figure 4-16 using the upstream offset rather than upstream
arrival number yields theffset match matrixas shown in Figure 4-37 In other words,

by shifting all rows to the left this step has simply removed the blank space in the lower
left hand corner of Figure 4-16. Note that in this new coordinate system, if there were no

misdetections or lane changes between the stations, all of the true matches would all fall

13 Continuing the use of subscripts in this example, the upstream offset is denoted by “uo”.
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"0"= possible match, "- "= manual reidentification data

downstream vehicle number

upstream offset*

* i.e., upstream offset with respect to the downstream vehicle arrival number

FIGURE 4-17: Offset match matrix

in the same column. Any lane change or misdetection, however, will cause a column
shift in the true matches, as demonstrated by the manually matched data (the solid line in
Figure 4-17).

Following the same logic presented in subsection 4.2.1, for any downstream
vehicle, a true positive is more likely to be preceded (moving up one row in this case) or
followed (moving down one row in this case) bgassible matclas compared with the
false positives for that vehicle. To eliminate most of the false positives, the algorithm
searches for short sequencepadsible matche.g., only one or two vehicles) and
eliminates them from further consideration. The remaining data are storediltetbe

offset match matrix Figure 4-18 shows a simple example of this elimination or
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(A) Offset match matrix

upstream offset

12345
1/® «+ ® ® -|<— 3possible matches, thus, each receives 1/3 weight

2|+ ¢« ©® . ©®|<— 2possible matches, thus, each receives 1/2 weight
3|® ® ® - ®|<— 4possible matches, thus, each receives 1/4 weight
"0"= possible match

downstream
vehicle #

(B) Filtered offset match matrix

upstream offset
12345
1 e} <— After filtering, there is only 1 possible match, but the weight of 1/3 from part (A) is retained
2 O O| «— Atfter filtering, both matches remain, the weight of 1/2 from part (A) is retained
3 O O| «<— Atfter filtering, there are two possible matches, but the weight of 1/4 from part (A) is retained

downstream
vehicle #

FIGURE 4-18: An example of notation and weight assignment (A) each row in the
offset match matrix receives a total weight of 1; (B) all vertical
sequences with only one vehicle are removed, yielding the filtered
offset match matrix, however, the weights from the original match
matrix are retained

“filtering” process while Figure 4-19A shows the data from Figure 4-17 after all
sequences shorter than three vehicles have been eliminated.

The algorithm calculates the average weights on each column, this is illustrated at
the bottom of Figure 4-18B, while the resulting averages for the on-going example are
shown by the “X™'s in Figure 4-19B. The larger averages occur in those columns that
include apossible matclior vehicles of uncommon lengths. Since the algorithm has
already shed the false positives for the uncommon vehicles, these high averages indicate
that the true matches likely resided in that column for some collection of downstream
vehicles; because of lane changing (and detector errors), the true matches will tend to
shift columns of thdiltered offset match matrias the downstream vehicle number
increases. But the column shifts due to lane changes will typically be small relative to
the number of upstream vehicles under consideration and the high averages should fall in

a small region, e.g., the averages in Figure 4-19B. A moving sum is used to find the
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"-" = manual reidentification data
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FIGURE 4-19: (A) Filtered offset match matrix, retaining all platoons of three or more
vehicles, (B) Localizing the offset between the upstream and
downstream by calculating the column average weights from filtered

offset match matrix
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center of this region and tlggoup offseis defined as the upstream offset corresponding
to the maximum value of the moving sum, e.g. glwip offseis 49 _for Figure 4-19B.
Thegroup offseshould be close to the true upstream offset for each vehicle within the
group (within +/- 2 vehicles for the preceding example).

This approximation should be sufficient for many applications, e.g., for
stations spaced at one mile, free flow travel time will be approximately 60 seconds while
the error due to missing the true match by two or three vehicles will only be a few
seconds. To find exact matches, the Approximation Algorithm can be used to estimate a
small range opossible matche®r a vehicle. Then, the Basic Algorithm can be applied

to this small range to find the exact match.

4.2.4 Summary

The Basic Algorithm attempts to find an exact match for every vehicle. This property is
particularly desirable during congestion, when travel times are likely to change rapidly
due to disturbances propagating through the traffic. Using 60 Hz speed trap data, the
algorithm works well for freeway traffic moving slower than 40 mph. At higher detector
sampling frequencies, it should be feasible to apply this algorithm during free flow traffic
conditions as well because the length measurement resolution will be improved.

The Subsampling Algorithm works well under all traffic conditions, but it
only attempts to match the trucks (up to 20 percent of all vehicles). As previously noted,
this algorithm is intended for free flow conditions, when local velocity measurements at
the detector stations should be representative of the entire link. The trucks serve as a
gooddiagnostic for the onset of congestion and thus, signal the need to switch to the
Basic Algorithm.

The Approximation Algorithm also works well under all traffic conditions. It

attempts to find an approximate match for every vehicle, but it does not provide an exact
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match. Compared to the Subsampling Algorithm, this algorithm can provide more
frequent information during transitions from free flow to congestion (or vice versa)
because it incorporates information from all vehicles. To find exact matches during these
transitions, the Approximation Algorithm can be used to estimgieadi range of

possible matche®r a vehicle. Then, the Basic Algorithm can be applied to this small
range to find the exact match. When there are no transitions between the detector
stations, the Basic or Subsampling Algorithm should be favored over the Approximation
Algorithm because theses provide exact matches; but the Approximation Algorithm could

be run in parallel to corroborate the other algorithm(s).
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5. Testing and Verification

The examples presented in section 4.2 suggest that automated vehicle reidentification is
possible. But proving that the algorithms work requires sufficient ground truth data to
verify matches between two detector stations. Generating ground truth data is
complicated by the simple fact that vehicle reidentification over extended distances is
inherently difficult, both for an automated system and for a human. It is prohibitively
time consuming for a human observer to generate exact matches for a large number of
vehicles.

Fortunately, it is not necessary to match every vehicle manually to verify a
vehicle reidentification algorithm. If the given algorithm is correctly matching vehicles,
it will also yield the true travel times for those vehicles. Although travel time over a
segment can change dramatically in a short period of time, the travel times for two
successive vehicles will be very similar. Thus, the human observer must manually match
a sufficient number of vehicles to capture changes in segment travel time, but this can be
accomplished using a small fraction of the passing vehicles. Manual verification is still a
labor intensive process, but now it becomes feasible to generate ground truth for
significant samples.

This study used video data, recorded concurrently with the speed trap data, for
manual verification. Two approaches were used to collect the video data. The first
approach placed a camera at each detector station and the human observer matched
vehicles between the two cameras. The second approach used a single camera view to
capture both detector stations and thus, replaced the problem of matching vehicles
between two video tapes with an easier task, tracking vehicles on a single tape. The
single camera approach required a suitable location for camera placement and was
limited to detector stations less than half a mile apart. Above this separation, it was
impossible to view both stations while being able to discriminate between vehicles at the

distant station.
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In either case, it was necessary to synchronize the video and detector clocks
before comparing travel times from an algorithm against the ground truth. Coordinating
a camera’s clock and a detector station’s clock is fairly straightforward. Just as a
sequence of vehicle lengths rapidly becomes unique when the number of vehicles
increases, the sequence of vehicle headways also becomes unique. Because the video
includes the same headways recorded by the detector station, the user had to note vehicle
arrival times from the video relative to some arbitrary reference vehicle and then find the
matching sequence of headways in the detector station data.

Using the preceding steps to generate ground truth matches and coordinate the
video data with the detector data, the remainder of this chapter presents each algorithm’s
performance over a large set of vehicles. The first section examines free flow traffic
using the Subsampling Algorithm. The next section examines congested traffic using the
Basic Algorithm, while the final section considers the transition from free flow to

congestion using the Approximation Algorithm.

5.1 Subsampling Algorithm verification

The Subsampling Algorithm was tested during free flow conditions over a two mile
segment of State Highway 99 in Sacramento, as shown in Figure 5-1. The algorithm
attempts to match trucks in the right hand lane. Although it may seem counterintuitive,
these conditions are very challenging for feature based vehicle reidentification for several
reasons. First, vehicles are free to overtake one another, decreasing the probability that
platoons will persist over the two miles that span the detector stations. Second, entering
and exiting vehicles from the three intervening ramps disrupt the sequence even more.
Finally, the high velocities reduce the measurement resolution to approximately 2 feet,

further complicating the task of reidentifying vehicles.
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FIGURE 5-1: The segment of State Highway 99 in Sacramento, California used to
verify the Subsampling Algorithm.
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FIGURE 5-2: Travel times for matched trucks using the Subsampling Algorithm.
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The algorithm matched 46 trucks, or approximately 60 percent of the trucks
that passed the downstream station during the 25 minute study period; the travel time for
these matches are shown with “O™s in Figure 5-2. Travel times ranged between 100
seconds and 135 seconds, i.e., the segment velocity ranged between 53 mph and 72 mph.
Using concurrent video, the human observer matched vehicles between the two stations
and measured ground truth travel times; yielding the “X™’s in Figuré&.5@Gomparing
the travel times as measured by the algorithm against the ground truth, we see a good
performance by the algorithm. The average measurement error was 0.69 percent,

corresponding to an average segment velocity error of 0.5 mph.
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FIGURE 5-3: Comparing travel times for matched trucks using the Subsampling
Algorithm against ground truth matches.

14 Note that the set of vehicles used for ground truth is not identical with the set of vehicles matched by
the algorithm because the two processes were independent.
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5.2 Basic Algorithm verification

The Basic Algorithm was tested during congested conditions over a 0.35 mile segment of
Interstate 80 in Berkeley. The algorithm attempts to match all vehicles in lane two, as
shown in Figure 5-4. The study period was approximately 70 minutes. Velocities at the
detector stations ranged between 0 mph and 40 mph for this example while twenty five
disturbances passed through the segment (the average increase or decrease in travel time
due to these disturbances was 28 seconds).

The solid line in Figure 5-5 shows the travel times measured by the algorithm.
Travel times ranged between 50 seconds and 130 seconds, i.e., the segment velocity
ranged between 9 mph and 25 mph. The algorithm matched 907 vehicles, approximately
60 percent of the vehicles that passed through the segment. The time between successive
matches is typically on the order of a few seconds, with 1.5 minutes being the longest
period without a reidentification in this example. Figure 5-6 compares the ground truth
matches, the “X™'s, against the matches generated by the algorithm. Again, the algorithm
traces the ground truth quite well; note how the algorithm follows the increasing and
decreasing travel time as disturbances pass through the link. The average measurement

error was 2.4 percent, corresponding to an average segment velocity error of 0.4 mph.

5.3 Approximation Algorithm verification

The Approximation Algorithm was tested during the transition from free flow to
congestion over a 1.5 mile segment of Interstate 80 in Berkeley. In this test, the
algorithm attempts to find an approximate match for every vehicle in lane two, as shown
in Figure 5-7. Initially, velocities were on the order of 60 mph, they drop to 20 mph as a
downstream queue overruns the segment and then, towards the end of the two hour

sample, the velocities drop further to about 15 mph.
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FIGURE 5-4: The segment of Interstate-80 in Berkeley, California used to verify the
Basic Algorithm.
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FIGURE 5-6: Comparing travel times for matched vehicles using the Basic Algorithm
against ground truth matches.

The algorithm found an “approximate” match for almost all of the vehicles
that passed during the study period. Travel times for these matches ranged between 70
seconds and 260 seconds, as shown in Figure 5-8, i.e., the segment velocity ranged
between 18 mph and 67 mph. Comparing the algorithm against ground truth travel times,
indicated with “X™’s in Figure 5-9, the average measurement error was 4.8 percent,

corresponding to an average segment velocity error of 1.5 mph.

44



— — — — — —— —— — — — — =4

A
Y

1.3 miles

Upstream Speed Trap Downstream Speed Trap
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FIGURE 5-8: Travel times for matched vehicles using the Approximation Algorithm.
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6. Extensions and Future Work

This chapter presents several extensions that could be realized through future research
projects based on the dissertation work. Section 6.1 discusses the Berkeley Highway
Laboratory, which will transmit high resolution speed trap data in real-time to the
University of California, Berkeley, and from campus, on to Caltrans. Section 6.2 presents
three emerging detector technologies that, in conjunction with the vehicle reidentification
algorithms, should improve performance beyond what is possible with speed traps.
Finally, section 6.3 discusses a number of applications of the new vehicle reidentification

system.

6.1 Berkeley Highway Laboratory

All of the analysis in this dissertation was conducted off-line, that is, the data were
collected and then the algorithms were run several hours or several days later. Although
the algorithms run faster than real time, Caltrans does not currently have the
communications infrastructure to transmit event datareal time. As an extension to
the dissertation research, work is underway to develop an inexpensive means to transmit
these data using wireless modems.

The new communications infrastructure will be deployed at the Berkeley
Highway Laboratory, which consists of eight detector stations along a 2.2 mile segment
of Interstate 80 in Berkeley and Emeryville, as shown in Figure 6-1. The
communications hardware are currently operational at two stations and should be up and
running at all of the stations by early 1999.

The event data will be used as real-time input to the vehicle reidentification

algorithms and the measured travel times will be available over the internet in real-time.

15The event data is simple the individual loop detector “events” used as input to the algorithms and
discussed in Appendix B.
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Travel times over one segment (i.e., between two successive stations) should be on-line
before the end of 1998, with the other segments following shortly thereafter. A related
project will provide video surveillance, which will be useful for generating ground truth
manually and perhaps enabling automated routines for generating ground truth using
video image processing to track vehicles [27, 35].

Because the vehicle reidentification algorithms will run 24 hours a day, the
Berkeley Highway Laboratory will provide extensive verification of the dissertation
work. In addition to manually matching vehicles to verify the algorithms, it is possible to
conduct rudimentary tests using the local velocity measurements. During free flow, a
vehicle’s velocity as measured by its trip time over a segment should be close to its
velocities measured by detectors at the upstream and downstream ends of the segment.
The segment travel time will increase above the free flow travel time under two
conditions: when a disturbance enters the segment by passing over one of the detector
stations, or when a bottleneck forms within the segment. In either case, the associated
disturbance(s) should eventually be observable in the local conditions at one or both of

the detector stations.

6.2 Emerging detector technologies

Through collaboration with controller suppliers, state DOT’s, and other
researchers, this work could be used to improve vehicle reidentification beyond what is
possible with speed traps. As noted earlier, the vehicle reidentification algorithms are
compatible with several vehicle detectors. Briefly examining three emerging
technologies that should be compatible with this dissertation work, first, controller
suppliers are producing new hardware to extract a detailed magnetic vehicle signature.
So, rather than having two detector states, “on” or “off”, the controller reports a

continuous response as a vehicle passes over the loop detector(s).
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Next, using a video image processing system, it should be possible to extract
vehicle lengths using pseudo-loops in a speed trap configuration. More importantly, the
image processing system could be used to extract a multidimensional feature vector, say,
color and length. The additional information could be used to make the existing routines
more robust, as well as enabling new strategies such as subsampling by color and
processing each color group in parallel. For example, the algorithm could process all of
the green vehicles in one group, and all of the red vehicles in another.

Finally, other researchers are working to reduce vehicle length measurement
uncertainty. Cheng’s [25] scanning laser radar is one example. It is designed to measure
vehicle length with an error of one inch at free flow traffic speeds, compared to nearly

two feet using existing speed trap hardware.

6.3 Applications

After completing this dissertation, the work will be used to investigate several
applications of vehicle reidentification and travel time data, including those described

below.

* Incident detection strategies that include travel time measurements between
detector stations might be able to decrease the time to detection without

sacrificing reliability.

» Conventional volume/capacity estimates of congestion fail to account for the
temporal and spatial distribution of travel. By comparing traditional congestion
measures against actual delay (travel time - travel time at posted speed limit), it
will be possible to quantify the performance of the old metrics and perhaps

develop new metrics that are more informative measures of congestion.
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* By matching individual truck measurements between many detector stations, it

should be possible to generate O/D data on freight movements.

* The proponents of ATIS and DTA believe these technologies will provide
significant operating improvements on the freeway network, but providing better
information does not necessarily reduce congestion. Using measured travel times,
it should be possible to quantify the benefits to drivers if they were aware of the
most recent travel time measurements, had a perfect prediction of future travel
times (i.e., if the current travel times were predicted some time earlier), or had an

imperfect prediction of future travel times.

* Examine traffic dynamics in the context of the additional information available

from vehicle reidentifications.

The vehicle reidentification algorithms would be used to acquire the vehicle
reidentification data from speed traps, but the applications would be designed to be
source independent. There are several sources of speed trap data to work with, including
the forthcoming Berkeley Highway Laboratory mentioned above and the large pre-
existing Freeway Service Patrol (FSP) database [44]. The FSP database contains speed
trap data from 20 detector stations, as well as incident data and probe vehicle travel times

over 7 miles of Interstate-880 south of Oakland, CA for 50 days.
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7. Conclusions
This dissertation has presented the development of three closely related algorithms to
match a vehicle’s length measurement at a downstream detector station with the vehicle’s
corresponding measurement at an upstream station. The algorithms rule out unlikely
matches and look for sequencepossible matchdsetween measurements at the two
stations. Each algorithm uses a different strategy to eliminate spurious sequences due to
false positives. The algorithms were used to measure travel times on a large data set and
the average measurement error for the different algorithms ranged between 0.7 percent
and 4.5 percent, corresponding to an average segment velocity error between 0.4 mph and
1.5 mph.

The beauty of the approach is in its simplicity. Matching vehicles between detector
stations is a difficult task and some of the best minds have tried to tackle the problem
with varying degrees of success. Preceding work emphasized computationally intensive
strategies and/or hardware intensive strategies. By creating the solution gpessldé
matchesthis research has enabled vehicle reidentification using existing detector
hardware and inexpensive computers.

The contribution to the field of traffic surveillance should prove to be significant
since the vehicle reidentification algorithms will allow the study of travel time
applications without deploying an expensive detection system and thereby enable cost-
benefit analysis before investing in a new detection system. If travel time measurement
proves to be beneficial, the system could be deployed using speed traps, or the algorithms
could be transferred to emerging detector technologies with better measurement
resolution. The methodology should prove beneficial for research purposes as well;
yielding better insight into vehicle dynamics between widely spaced detector stations

without the host of assumptions necessary with simulation.
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9. Appendix A

9.1 Implementation

This section details the steps used to realize each algorithm. The initial steps are the
same for all of the algorithms. First, each vehicle is processed as it passes a single
detector station. Second, for a given vehicle at the downstream detector station, a range
of feasible upstream matches is established; i.e., all of the upstream measurements that
may have come from the same vehicle are identified. These steps are presented in
subsections 9.1.1 - 9.1.2. Next, each algorithm uses a slightly different strategy to go
through the feasible upstream matches and identify the final matches. The algorithm
specific steps are detailed in subsections 9.1.3 - 9.1.5, where each subsection corresponds
to the Basic, Subsampling and Approximation Algorithm, respectively. Although the
different algorithms are presented separately, the common steps make it simple to run two

or more algorithms in parallel with the same input data.

9.1.1 Common steps for each vehicle at a single detector station

This subsection details the analysis applied to each vehicle that passes a detector station,
independent of any other station. Each detector station used in this study has a speed trap

in each lane, where the speed trap consists of two loop detectors spaced 20 ft apart.

1) Vehicles are assigned successive arrival numbers as they pass a detector station. The
numbers in one lane are assigned independently from the other lanes and the numbers are
not directly related to the arrival numbers recorded at any other station. If a vehicle only
activates a single loop of a dual loop speed trap, it is not included in the numbering

sequence and the vehicle is excluded from further analysis. These discarded detections
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typically account for less than one percent of all vehicles. Appendix B provides more

information on how unmatched and erroneous pulses are detected.

2) A venhicle’s arrival time, velocity, effective length and length uncertainty, as defined in
Appendix C, are recorded as it passes a speed trap. The effectivetlbatftbf the

length uncertainty bound thength rangeor the vehicle.

9.1.2 Common steps for each vehicle at the downstream detector station

The preceding steps are applied independently at two consecutive detector stations.

Starting from step 3, the algorithms use data from the same lane at both stations.

3) Thelast feasible upstream matchidentified for a downstream vehicle using the

distance between the detector stations, vehicle arrival times at the two successive detector
stations and an assumed maximum possible speed of 100 mph. To illustrate this process,
consider two stations 1470 feet apart. A vehicle arriving at the downstream station
traveling less that 100 mph (147 ft/sec) must have passed the upstream station at least 10
seconds earlier. So, the last vehicle to pass the upstream station in the same lane, at least
10 seconds earlier is considered It feasible upstream matébr the given

downstream vehicle.

4) A set of reasonable upstream matckseglentified for each downstream vehicle; where
this set is the last n successive upstream vehicles in the same lane endinglasth the
feasible upstream matchrhe constant, n, should be set large enough to ensure that the
true match will always fall within in the set of reasonable upstream matches, while being
small enough to allow the computer to process the data. For the examples presented in
chapter 5, n was set arbitrarily to 100 vehicles; then, after running the algorithms, it was

verified that the true matches were always within 100 vehicles ddghéeasible
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upstream matchIn practice, a conservative value of n could be set from estimated jam

density and the distance between stations.

9.1.3 Basic Algorithm

The following steps are used to implement the Basic Algorithm and they are specific to
this algorithm. To emphasize this algorithm specificity, the steps are indicated with a “b”
for “Basic”. To implement the algorithm, steps 5b-12b are repeated for each vehicle as it

passes the downstream station.

5b) The downstream vehicldisngth rangeis compared against thength rangdor

each vehicle in theet of reasonable upstream match&®sr each pair-wise comparison,
if the two ranges intersect, the pair ipassible matchotherwise, a match is unlikely.
The results are stored in a row vector with “1” indicatingpasible matcland “0”
indicating that a match was unlikely. Finally, the upstream offset (as defined in

subsection 4.2.3) is calculated for each vehicle irs¢t®f reasonable upstream matches

6b) The row vector is placed irsaquence matriwhere each row is indexed by the
downstream vehicle number and the columns are indexed by the upstreath dftset
eachpossible matchthe value from the corresponding column in the previous row is
added (if it exists). Thus, the row stores the total number of consepatisidle matches

in a sequence up to and including the given downstream vehicle for each upstream offset.

7b) The same row vector is placed in ldx@e change matrixsing the indices from step
6b. Again, for eacpossible matchthe value from the corresponding column in the

previous row is added (if it exists). Each new sequence in the current rowlarighe

18 This step deviates from the notation used in subsection 4.2.1. As previously noted, sequences will fall
into columns in this coordinate system and thus, it is easier to write computer code to manipulate the
matrices compared to working with the non-shifted matrices. This shift has the added benefit of
decreasing matrix width.
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change matrixi.e., those of value 1) is examined to see if it can be joined to an earlier

sequence in theequence matriy a simple lane change maneuver, as shown in Figure

9-1A-C'. To demonstrate this process using the sequence starting at (m,n) in Figure
9-1D, the three shaded elements ofsbguence matriare searched for earlier
sequences. If any of these elements contain a value greater than one, the largest value is

copied to element (m,n) in th@ne change matrix Thus, the row indicates the total

(A) upstream (B) upstream
offset offset

g4 M3 £«
o m-2 o
h © h ©
£5 m £5
% > m % >
© m+1 ©
"0"= possible match
(C) upstream (D) upstream
offset offset
N FE N FY
CcC CccCc cCc Cc CcCcCccCc
%Iﬂ: m_3 %:ﬁ: m_3 e o e o o
S5 m2 o m2|- [T
w C » Q S P
2 = m-1 2 = m-1 | - []
=S¢ m =S¢ m|- -0 -
o m+1 ke m+ll- - ® -

[-] = element to check for
an earlier sequence

FIGURE 9-1: A simple example illustrating the possible lane change maneuvers
recognized by the Basic Algorithm: (A) One vehicle exits the lane
between stations, (B) One vehicle enters the lane between stations,
(C) One vehicle enters and one vehicle exits the lane between
stations, (D) The search region for the sequence starting at element
(m,n).

17 This figure simply shows the lane change maneuvers from Figure 4-10 transposed to the new
coordinate system.
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number of consecutieossible matchef®r each upstream offset up to and including the
given downstream vehicle after allowing for individual lane change maneuvers.

Note that by using values from teequence matrifor the pre-lane change data,
the totals in théane change matriinclude, at most, one lane change maneuver. For
sequences that include a lane change maneuveedoence matrigontains the portion
of the sequence before the lane change anldtieechange matrigontains the portion of
the sequence after the lane change. In this fashiompamséble matclecan be included in
several different sequences in thee change matrix Finally, in the event a sequence
does not include a lane change maneuver, both matrices will store the same values for the

sequence.

8b) Any sequences that end in the previous row are identified, as exemplified in Figure
9-2A. For eaclpossible matcln the previous row, r-1 in this example, the current row, r,
is checked to see of there ip@ssible matcim the same column. If there is no
corresponding match in the current row, the sequence has ended. In the example, the
sequence in column s has ended at (r-1,s) because (r,s) does not coogaibla match
However, at this point in the analysis, it is impossible to determine if the sequence in
column s-2 has ended at row r since we do not know if there wilpbsesable matcim

(r+1,s-2) until vehicle r+1 arrives at the downstream station.

9b) All of the sequences that ended in the previous row and contained a lane change
maneuver are identified. Figure 9-2B shows a simple example illustrating this process
with asequence matrign the left and the correspondilage change matrion the right.

If a given sequence includes a lane change maneuver, the final valuéaimeticbange
matrix will be higher than the corresponding position ingaguence matrpotherwise

the two values will be equél In the example, two sequences end in row r-1. Examining

18 The reader should note that if a sequence ends lartaechange matrpxy definition, it must end in
thesequence matrias well.
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FIGURE 9-2: (A) The end of the sequence in column s can only be detected after the
first unlikely element has been observed in the column. In this case
once vehicle r passes the downstream station. (B) This figure shows a
simple example of how to differentiate between sequences in the lane
change matrix that do not contain a lane change from those that do. If
the sequence does not contain a lane change, the ending value will be
identical to the sequence matrix (e.g., element (r-1,s+2)), otherwise, it

will be greater (e.g., element (r-1,s)).

thelane change matrixhe first sequence includes a lane change and ends with element

(r-1,s). Comparing the value in (r-1,s) between the two matrices, we see taatthe

change matrixhas a higher value. The second sequence, ending at (r-1,s+2), does not

include a lane change and thus, the values in (r-1,s+2) are identical for both matrices.

10b) Once a sequence ends, all of the elements in that sequence are set equal to the

sequence length, as illustrated in Figure 9-3. Part A sheeguence matriafter the

b-th vehicle passes the downstream station. Allowing for individual lane change
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(A) A simple sequence matrix containing three sequences. After

allowing for individual lane change maneuvers, three sequences
emerge, as shown in (B)-(D). In practice, the lane change matrix would
evolve as vehicles pass the downstream station, as shown in (E)-(H).
(E) This is the lane change matrix immediately after vehicle b-5
passes. The end of the first sequence has been detected and all of its
elements have been set equal to its length of 3. (F) The same matrix
after vehicle b-2 passes, two sequences were extended by this vehicle.
Note how the pre-lane change portion of the third sequence (from part
D) is obscured by the second sequence (from part C). (G) After
vehicle b-1 passes, the end of the second sequence is detected. All
appropriate elements are set equal to the sequence length of 6. (G)
Finally, after vehicle b passes, the end of the third sequence is
detected and again, the sequence length is passed back to earlier
elements in the sequence. This time, however, the pre-lane change
matches are not changed because they have already been assigned to
a sequence of greater weight in part G.
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maneuvers, three overlapping sequences would be recordedandlehange matrix

Each of these sequences are shown one at a time in parts B-D. Note that the second
sequence (part C) overlaps a portion of the first sequence (part B) and the third sequence
(part D) overlaps a portion of the second sequence.

By definition, the last element of a sequence contains the sequence length, while
the earlier elements will contain lower values. After a sequence ends, the algorithm
searches thiane change matriand finds all of the elements in the sequence. For a
sequence with t matches and no lane change maneuver, the sequence will simply be the
preceding t elements in thene change matriand all of these elements are set equal to t.
This situation is demonstrated in part E, where the end of the first sequence has been
detected and all of its elements have been set equal to its length of 3. If the sequence
contains a lane change, the algorithm finds the post-lane change portion by successively
stepping back one row at a time in the same column until it finds an element with a value
of zero (note that all elements with value zero are left blank in the figures). All of the
non-zero elements are set equal to the sequence length, e.g., in part H, all of the post-lane
change elements in the third sequence (column c+1) have all been setto 5. Using the
same logic from step 7b, the algorithm identifies the pre-lane change portion of the
sequence by examining three preceding elements sethieence matrpas illustrated in
Figure 9-1D° Any pre-lane change elements in ldnee change matriwith values
lower than the current sequence length are set equal to this new value, as illustrated by
elements (b-7,c-1) and (b-8,c-1) of the second sequence in part G (compare the values of
these elements to what they held in part F). However, the pre-lane change elements may
already have a higher value, in which case, they will not be changed, as illustrated by

elements (b-4,c) to (b-6,c) of the third sequence in part H.

19 In the event there are two or three possible lane change maneuvers with the maximum value, the
algorithm will follow all of the maneuvers that correspond to the highest value.
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11b) The active rows of tHane change matriare selected, i.e., all rows containing a
sequence that could be extended by subsequent vehicle arrivals are identified. To this
end, the algorithm only needs to find the longest sequence that may be modified by
subsequent vehicle arrivals. Figure 9-4 is used to illustrate this process. The longest
sequence will usually correspond to the highest value in the current roniafi¢he

change matrixas shown in row d of part A. However, there may be a lane change
maneuver that skips the current row of ldx@e change matrixe.g., Figure 9-1B-C) and a
sequence ending in the preceding row, d-1, obdtpience matrigould be joined to a

new sequence starting in row d+1. In the former example, if the next downstream vehicle
yields apossible matcim element (d+1,e), then the entire sequence will be extended and
all rows from d-3 onward will be affected. This figure shows the worst case, where the
sequence contains a lane change that skips a row, thus, the highest value in row d is two
less than the number of active rows. In the latter example, since vehicle d+1 has not
arrived yet, the algorithm must consider the largest value in the preceding row of the
sequence matrias well. In this case, the value will always be one less than the number

of active rows since th&equence matrigan not contain a lane change at this point and

(A) upstream (B) upstream
offset offset
et e Nt 7Y
QOO OO OO OLOO
% 3 44 % 4 d-4
© o d-3 1 © o d-3 1
%2 d2 2 32 d-2 2
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FIGURE 9-4: (A) A simple lane change matrix. (B) A simple sequence matrix
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the value does not include the d-th vehicle. In either case, row d-4 can not be affected by

vehicle d+1 or any subsequent vehicles. Thus, row d-4 is inactive. In summary, given:

x = the largest value in the current row of lfwee change matrix
y = the largest value in the preceding row ofgbgquence matrix

Z = max(x+2,y+1)

the active rows are the z most recent rows and all preceding rows are inactive.

12b) Final matches are extracted from any inactive row itatfteechange matrion a

row by row basis, as follows: first, the element with the largest value in the given row is
found. If two or more elements contain the largest value, the row is deleted without a
match°. Next, if the value is less than the pre-specified minimum final sequence length,
the row is deleted without a match. Otherwise, the downstream vehicle number and the
upstream offset of the element are saved as a final match, then the row is deleted. After
deleting a row in thé&ane change matrixhe corresponding row is deleted from the
sequence matrixNote that by deleting rows after they have been processed, the matrices

are kept small.

9.1.4 Subsampling Algorithm

The Subsampling Algorithm explicitly identifies distinct vehicles that are easier to
identify, i.e., the long vehicles. All other vehicles are excluded from the analysis. Then,
this algorithm applies the Basic Algorithm to the long vehicles. Continuing the emphasis
on algorithm specificity, the steps are indicated with a “s” for “Subsampling”. To
implement the algorithm, steps 5s, 7s-8s are repeated for each vehicle as it passes the
downstream station, while step 6s is repeated for each vehicle as it passes the upstream

station.

20\When deleting a row, the indices for all other rows are preserved.
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5s) All downstream vehicles longer than a threshold length are identified or subsampled.
This threshold was set to 23 feet for the example shown in section 5.1. These vehicles
are assigned a new set of sequential arrival numbers based on their order in the
subsample. The algorithm does not attempt to find matches for any vehicles shorter than
the threshold length; thus, steps 3-4 may be omitted for the vehicles excluded from the

subsample.

6s) All upstream vehicles that are longer than the threshold length or thatlbagéa
rangethat includes the threshold length are subsampled. Similar to step 5s, these
vehicles are assigned a new set of sequential arrival numbers based on their order in the

subsample.

7s) All upstream vehicles that were not subsampled are removed freet thie
reasonable upstream matchedsing the resolution test, these removed vehicles would

not yield anypossible matchesith the subsampled downstream vehicles.

8s) Indexing rows and columns by the subsample arrival numbers, rather than the arrival
numbers for the entire population, the algorithm applies the Basic Algorithm (steps 5b-
12b) to the subsamples. Note that the upstream offset in step 6b is calculated with respect

to the subsample arrival numbers.

9.1.5 Approximation Algorithm

The Approximation Algorithm is implemented in two parts. First, steps 5a-10a are
repeated as each vehicle passes the downstream detector station; note that the suffix “a”
is used to denote the steps specific to the Approximation Algorithm. After a fixed

number of vehicles pass the downstream station, steps 11a-15a are applied to a large

number of downstream vehicles and the downstream vehicle count is reset to zero.
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5a) ldentical to step 5b of the Basic Algorithm.

6a) ldentical to step 6b of the Basic Algorithm.

7a) The Approximation Algorithm counts the numbepos$sible matche®, in theset of
reasonable upstream matcheBhe results are stored in a second row vector with 1/n
indicating apossible matcland “0” indicating that a match was unlikely. Thus, the fewer
possible matcheshe greater the weight assigned to each match. Finally, the new row
vector is placed in aoffset match matriwhere each row is indexed by the downstream

vehicle number and the columns are indexed by the upstream offset.

8a) ldentical to step 8b of the Basic Algorithm.

9a) Out of the sequences that ended in the previous row sédluence matrpany
sequence that is shorter than a threshold number of véhisleminated from theffset
match matrix In other words, the elements of thféset match matrigorresponding to

the short sequences are set equal to zero.

10a) Using R to denote the threshold number of vehicles from the last stegqtiesce
matrix must contain enough downstream vehicles to differentiate between sequences
shorter than R and those that are not. Sosdlgaence matrignly needs to store the
most recent R rows. All preceding rows are inactive and they are discarded from the
sequence matrignote that the inactive rows are not eliminated fronoffeet match

matrix in this step).

11a) After M vehicles pass the downstream station, the algorithm calculates the average

value over the most recent 2*M inactive réifsr each column in theffset match

21 This threshold number was set to 3 for the example in section 5.3.

22 For the example in section 5.3, M was set to 20.
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matrix. These averages are placed in a row vector indexed by upstream offset, and the

oldest M inactive rows are discarded from tififset match matrix

12a) As previously noted in subsection 4.2.3, a large average indicate that the true
matches likely resided in the given column for some portion of the 2*M downstream
vehicles; because of lane changing and detector errors, several adjacent columns will
typically have large averages. A moving sum of three elements is used to find the center

of this region.

13a) The group offset for the 2*M downstream vehicles is defined as the upstream offset

corresponding to the maximum value of the moving sum.

14a) If the group offset is measured correctly, it should be similar from one group to the
next. In the extreme case where there were no lane changes or misdetections, the true
group offset would be constant across groups.

Unfortunately, for uncommon vehicles, step 7a may vyield false positives with large
weights and occasionally these false positives are not eliminated in step 9a. These false
positives may be large enough to disrupt step 13a and the algorithm will calculate a false
group offset for the 2*M vehicles. These errors will be random, the false group offset has
an equal probability of occurring at any upstream offset within the row vector of average
weights.

To eliminate these errors, the current group offset is compared to the group offset
for the four preceding, non-overlapping groigs follows. If the current group is

number 0 and the preceding groups are numbered 1 through 4, where group 1 is most

23 Note that the groups contain 2*M downstream vehicles, but a new group offset is measured every M
vehicles and two successive groups overlap by M vehicles.
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recent and group 4 is the oldest; the algorithm calculates the following four parameters,

i.e., thet's:

O [G,-G|six(2xM)xp
, otherwise

t

Where,

| = group number

G = the group offset for the i-th group

p = assumed maximum percentage of vehicles that may change lanes between
detector stations, set to 30 percent for the example in section 5.3

(2x M) x p = maximum allowable difference between two successive group

offsets.

Then, the current group offset is accepted if,

4
=3
2!

and rejected otherwise. Thus, the current measure must be similar to three out of the four

preceding, non-overlapping values of group offset to be accepted.

15a) The algorithm calculates the final matches for each downstream vehicle. As noted
in step 14a, each set of M vehicles contribute to two overlapping groups of 2*M vehicles,
where each group has its own group offset. For a given set of M vehicles, both group
offsets will usually be accepted by step 14a. So in this case, the offset for each vehicle is
set equal to the average of the two group offsets for the overlapping groups.

A false positive with large weight may disrupt two overlapping groups, but the

vehicles that only fall into one of the two groups will have a second measured group
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offset that does not include the false positive. So, for a given set of M vehicles, if one

group offset is accepted and the other rejected by the previous step, the offset for each of
the M vehicles is set equal to the group offset for the accepted group. On the other hand,
if both group offsets are rejected, then the M downstream vehicles are not matched. This

redundancy increases the number of vehicles matched in the presence of false positives.
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10. Appendix B

10.1 Speed trap data from one detector station

The following section provides a brief review of speed trap operation. A given speed trap
records vehicle arrival and departure times from each loop, as shown in Figure 10-1.
Typically, these data are aggregated to calculate flow, occupancy and average velocity
over a fixed observation period. For this study, however, each vehicle was treated
independently. From the four events indicated in Figure 10:18,,,, tea ups

tase donns tracL downs the following parameters were calculated: travel time via the rising

edges (T7)), travel time via the falling edges (J;Ttotal time the upstream detector is on

(OT ) and total time the downstream detector is on JO$pecifically:

Trr = tRISE_down - tRISE_up
TT =tea donn ~trait uwp
OTu = tFALL_up 1t SE_up

OTy = tea down ~ trise doun

10.2 Loop errors at an individual speed trap

Loop detectors are prone to frequent errors. Two common errors prevent simple vehicle
length estimation, as described below. First, an unmatched event at one loop (e.g., two
consecutive rising edges when the events should alternate between rising and falling).
This error is illustrated in Figure 10-2 and occurred approximately once for every 10,000
vehicles in the data set. To address this error, if n consecutive rising edges were recorded
from a given loop, the first n-1 rising edges were discarded (n=2 in the example).
Likewise, if m consecutive falling edges were recorded from a given loop, the last m-1

falling edges were discarded.
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FIGURE 10-1: One vehicle passing over a speed trap, illustrating the four time
measurements. (A) Time space representation showing the loop
detectors and both ends of the vehicle. (B) Detector output, yielding the
upstream and downstream, rising and falling edges at the indicated times.
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FIGURE 10-2: An example of an unmatched event at one detector, in this case, a
rising edge at the upstream detector.
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The second, more common error, occurred when two pulses were observed at
one detector, but only one pulse was observed at the other detector. These unmatched
pulses occur when a vehicle is only detected at a single loop, as illustrated in Figures
10-3A and 10-4A, or when a vehicle activates one loop more than once, as illustrated in
Figures 10-3B and 10-4B. Rather than attempting to discriminate between the two
sources of error, all questionable pulses were removed, (i.e., all pulses within the dashed
circles in Figures 10-3 and 10-4). Following this removal, the modified data would
suggest a vehicle changed lanes when in fact it did not. Provided these phantom lane
changes were relatively infrequent, they will not disrupt the vehicle reidentification
algorithms. This latter type of error occurred approximately once in every 100 vehicles
for this study, which is sufficiently low that they did not interfere with the algorithms.

After eliminating these errors, it is possible to establish a one-to-one match
between events at the upstream and downstream loops, and thus, match pulses directly.
There are other loop errors that are less significant for vehicle reidentification, e.g.,
missing a vehicle altogether or simultaneously observing a vehicle in two adjacent lanes.
These errors do not preclude vehicle length estimation but they will create noise when

attempting to match vehicles between stations.
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FIGURE 10-3: Two examples of unmatched pulses at the upstream loop, (A) four
vehicles activate the upstream loop, but only three activate the
downstream loop, (B) a vehicle activates the upstream loop twice but it
only activates the downstream loop once.
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FIGURE 10-4: Two examples of unmatched pulses at the downstream loop, (A) four
vehicles activate the downstream loop, but only three activate the
upstream loop, (B) a vehicle activates the downstream loop twice but it
only activates the upstream loop once.
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11. Appendix C

11.1 Vehicle parameter measurement

Once the individual speed trap data were cleaned up by matching upstream and
downstream pulses, as per Appendix B, it was possible to measure a vehicle’s effective
length,L, and the associated measurement uncertainty,Effective length is simply the
measured velocity multiplied by the time the detector was on, i.e., the on-time. In
practice, for each vehicle that passes the speed trap, there are two measurements of on-
time, one from each loop, and two measurements of velocity , one for the front bumper
(using the difference between the time each loop is activated) and one for the rear (using

the difference between the time each loop clears).

. - 20 [gOft O
velocity from rising edge: V. =— =—
Y g.edg " TT  BecH

r

. : 20 gft O
velocity from falling edge: V., = — —
Y gedg CoTT, BecH
where 20 (ft) represents the loop separation, i.e., the spacing between corresponding
points on the two loops.

These measurements are used to calculate two estimates of vehicle length: the

first uses the front bumper velocity and the upstream loop on-time, while the second uses

the rear bumper velocity and the downstream loop on-time.
length measurement #1: L, =V, [OT, [ft];

length measurement #2: L, =V, [OT, [ft];

The logic for pairing the given on-time with the given velocity measurement is as
follows: for a short vehicle, such as a sedan, the effective length is on the order of the
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spacing between the two loops in a speed trap. Thus, the period that the upstream loop is
occupied is roughly concurrent with the time that the front bumper velocity is measured
over the speed trap. Similarly, the period that the downstream loop is occupied is roughly
concurrent with the time that the rear bumper velocity is measured over the speed trap.
For longer vehicles, the period a loop is occupied includes the time of the respective
velocity measurement, but exceeds the duration.

The average of the two length measurements is recorded as the effective vehicle

length.

effective length: L=

Next, three constraints are used to estimate the length uncertainty for the vehicle. First,

the difference between the two length measurements yields a length based constraint.
constraint #1: C, =max(L,,L,) - min(L,L,) [ft];

Second, the controller samples at 60 Hz, so time measurements are accurate to 1/60th of a
second at the detector station. Thus, as discussed in section 4.1, the length resolution
degrades as velocity increases. The algorithm generates a velocity based length

resolution constraint from the larger velocity measurement
constraint #2: C,=mL Dmax(\/r,vf) [ft];

where,

mL = minimum alowableL,, per 1 ft/sec; currently set to 0.017 sec.
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Third, at low speeds, constraint #2 is too restrictive. To counter this problem, a

prespecified minimum measurement uncertainty provides the final constraint:

(L - 20) fdLy, - dL,)
60

: .00 O 0O
constraint #3: C3=m|nH'naxETjL20, +dL2°EdL8°H [ft];

where,

dL,, = total minimum allowable L, for avehicle under 20 ft; currently set to 1 ft,
dLg, = total minimum allowable L, for avehicle over 80 ft; currently set to 10 ft.

Note that the minimum measurement uncertainty increases linearly with vehicle length
for vehicles between 20 ft and 80 ft. This increase is to account for two factors; first, the
fact that longer vehicles tend to have higher suspensions, increasing the separation
between the vehicle underframe and the roadway or loop detectors. The larger separation
increases the chance that a loop will “clear” prematurely for these long vehicles. Second,
the preceding analysis assumes the vehicle travels at a constant velocity as it passes over
the speed trap. By ignoring the possibility of acceleration, there will be some errors in
the length measurement. The magnitude of this error increases as vehicle length
increases because the time the vehicle occupies the detector increases.

The largest of the three constraints on the length resolution was used as the length

uncertainty for the given vehicle, i.e.,
length uncertainty: L., = max(C,,C,,C,) [ft].

Finally, the length range was bounded by:

maximum reasonable length: L, =L+0.50,,

minimum reasonable length: L L-0.50,,.

min
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