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Recent results in the theory of turbulent momentum transport and the origins of intrinsic

rotation are summarized. Special attention is focused on aspects of momentum transport

critical to intrinsic rotation, namely the residual stress and the edge toroidal flow velocity

pinch. Novel results include a systematic decomposition of the physical processes which

drive intrinsic rotation, a calculation of the critical external torque necessary to hold the

plasma stationary against the intrinsic residual stress, a simple model of net velocity scaling

which recovers the salient features of the experimental trends, and the elucidation of the

impact of the particle flux on the net toroidal velocity pinch. Specific suggestions for future

experiments are offered.
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I. INTRODUCTION

The needs for understanding of, and predictive capacity for, both the off-diagonal flux of

toroidal angular momentum and the origins of spontaneous or intrinsic rotation are now well

established and accepted. Momentum transport has long been a subject of interest. Histori-

cally, the trend χφ ∼ χi was predicted theoretically[1] and observed in pioneering experimental

studies[2]. Subsequent observations of departures of χφ/χi from unity suggested the possibility of

off-diagonal contributions to the momentum flux. This perception was re-inforced by several more

detailed studies of the momentum flux[3], including dynamic modulation experiments[4]. Fluctu-

ation studies also have indicated a link between sheared E × B flows and the parallel Reynolds

stress[5]. In a related vein, the phenomena of spontaneous or intrinsic rotation is observed in

nearly all tokamaks. In L-mode, the observed trends indicate that intrinsic rotation is strongly cor-

related with scrape-off-layer (SOL) asymmetry-induced flows[6]. H-mode plasmas display clearer

empirical tendencies, namely that[7]:

1. rotation is typically co-current

2. the increment in central velocity ∆vφ at the LH mode transition scales with the increment

in stored energy as ∆vφ ∼ ∆w/Ip, with no observed dependence on ρ∗ or ν∗. The Alfvenic

Mach number at saturation scales as MA ∼ βN

3. the offset value of vφ in a co-to-counter torque scan matches the value of the intrinsic ro-

tation. Moreover, the plasma can be held stationary against its tendency to rotate sponta-

neously by applying a torque in the counter-current direction[8].

Observations suggest that rotation is initiated at the edge and builds inward. Inversions at the

L-H transition are possible. Intrinsic rotation is also possible in the core. In particular, values of

χφ and the momentum pinch velocity V , inferred from perturbative experiments, cannot fit the

measured 〈vφ〉 profiles of steady state plasma in JT-60U[9], and momentum transport bifurcations

are observed in torque-free plasmas in TCV[10] and Alcator C-Mod[11].

The key physics quantity required to confront this body of observational evidence is the turbu-

lent momentum flux. In general, the mean field momentum flux driven by electrostatic turbulence

is given by (see, for example, Ref. [12] for a discussion of neoclassical transport processes)

Πr,φ = 〈n〉〈ṽrṽφ〉+ 〈ṽrñ〉〈vφ〉+ 〈ñṽrṽφ〉 . (1)
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Here the first term is the toroidal Reynolds stress and the second is the convective flux, hereafter

neglected, unless otherwise noted. The third term, 〈ñṽrṽφ〉, represents the nonlinear flux (as op-

posed to quasilinear), driven by processes such as mode-mode coupling, turbulence spreading, etc.

It is hereafter neglected as beyond the scope of this paper. However, given the strongly nonlinear

processes at work in generating rotation, we comment that confronting the nonlinear flux may

ultimately be required. The Reynolds stress may be further decomposed as[13]

〈ṽrṽφ〉 = −χφ
∂〈vφ〉
∂r

+ V 〈vφ〉+ ΠR
r,φ, (2)

where χφ is the turbulent viscosity, V is the convective velocity (i.e. the velocity pinch) and ΠR
r,φ

is the residual stress. Note that χφ and V have well-known analogues in the theory of the particle

flux, while ΠR
r,φ does not. In this paper, we discuss the status of our current understanding of χφ, V

and ΠR
r,φ, and the physics of turbulent transport of toroidal momentum and intrinsic rotation. The

critical issues which are defined by the body of phenomenology which we address are:

1. What is the general structure of the turbulent momentum flux and the physics of its con-

stituents?

2. what is the origin of intrinsic rotation, i.e. how can a plasma self-accelerate from rest? How

is this related to residual stress? Can we predict the external torque required to cancel the

intrinsic (i.e. self-generated) rotation?

3. In the event that intrinsic rotation originates from the inward convection of a flow at the

plasma boundary, what is the physics of the pinch and how is it related to the corresponding

particle flux?

4. What is the physics of the Rice scaling? Given the correlation between Rice scaling and

H-mode, what is the influence of the pedestal physics on intrinsic rotation?

In the remainder of this paper we report on progress toward answers to these questions. In Section

II – which addresses issue 1. – we survey the basic constituents of the turbulent momentum flux

and their underlying physics. In Section III – which addresses issue 2. – we discuss the physics

of the residual stress, which is the most unusual and counter-intuitive element of the turbulent

momentum flux, but also the piece most important to intrinsic rotation. In Section IV – which

addresses issue 4. – we outline a simple model which captures many of the basic scaling trends for

intrinsic rotation. In Section V – which addresses issue 3. – we elucidate the role of the particle
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flux and its impact on the toroidal velocity pinch. Section VI consists of a summary, discussion of

suggested experiments, and brief comments on possible future work.

II. SURVEY OF TURBULENT MOMENTUM FLUX PHYSICS

The turbulent viscosity χφ is now relatively well understood. As was realized 20 years

ago[1], χφ is closely related to the ion thermal diffusivity χi for drift wave turbulence. Recent

simulation[14] and theory [15] works have discovered that near ITG marginality, when transport

is dominated by the resonant scattering of slightly suprathermal ions (with s = ω/k‖vThi ∼ 2),

then
χφ

χi

≈ 〈s2〉
(1 + 〈s2〉/2 + 〈s4〉/2)

(3)

where the average is to be taken over the mean distribution function. Here the analysis used to

derive Eqn. (3) neglected toroidal coupling effects. The simulations reported in Ref. [14] retained

these, however, and appeared to be consistent with the reduced scope of the model utilized in Ref.

[15]. This reveals that in stiff profile regimes, the intrinsic Prandtl number Pr 6= 1, but rather

Pr ∼ 0.2 → 0.5, due to the inherent difference between wave-particle auto-correlation times for

ṽφ andf T̃i. Here, it is important to note that the intrinsic Prandtl number is defined by the ratio

of the purely diffusive fluxes, and differs from the conventionally quoted ‘raw’ Prandtl number

Pr ∼ |Πr,φ/∂〈vφ〉/∂r|/|Q/∂〈Ti〉/∂r|, defined without regard to the presence of non-diffusive

fluxes.

The past two years have witnessed intensive interest in and study of the convective momentum

velocity. Recent detailed theoretical work on the momentum pinch is reported in Refs. [16–

18]. In general, the toroidal pinch may be decomposed into a turbulent equipartition (TEP) and

thermoelectric (TH) piece

V = VTEP + VTH . (4)

The turbulent equipartition convection velocity is purely inward (corresponding to a pinch) and is

robust and mode independent.

Like the TEP pinch for density, the origin of the TEP pinch is in the compressibility of the

E × B velocity in toroidal geometry (∇ · VE×B 6= 0), so that magnetically weighted angular

momentum V‖R/B2 (rather than simply nV‖R) is locally conserved. Thus, it is no surprise that

the TEP momentum and particle pinches are strongly correlated. The TEP pinch has been de-

rived from detailed gyrokinetic analysis[16, 17] and general considerations of angular momen-
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tum homogenization[18]. For a stationary profile in the absence of a residual stress and k‖,

VTEP /χφ ≈ −B2/Rd/dr(R/B2) ≈ −3/R, according to the definition with respect to 〈vφ〉 in

Eqn. (2).

Extending the definition in Ref. [16], for k‖ = 0, the thermoelectric velocity VTH is given by

VTH = −

〈∑
k

Re
ṽ∗r

(
4ωdi +

v2
Thi

〈vφ〉k
Tor
‖

)
T̃i

−i (ω − 4ωdi + i∆ωT )

〉
. (5)

Possible double counting of effects of k‖ here can be avoided by separating its contribution to

residual stress and the thermal pinch based on their physical origins, i.e., the E × B flow shear

effect versus the toroidal effect.

The long wavelength limit (k⊥ρi � 1) of the momentum evolution equation is given by Eqn.

(32) of Ref. [16]

−i(ω − 4ωdi + i∆ωT )ñv‖ = −ṽr
∂

∂r
(n0 〈vφ〉)− in0

(
3 〈vφ〉ωdi + v2

Thik‖
) |e| φ̃

Ti

− in0

(
4 〈vφ〉ωdi + v2

Thik‖
) T̃i

Ti

− iv2
Thik‖ñ. (6)

A set of fluid moment equations for subsonic mean flow (〈vφ〉 � vThi) are completed with the ad-

dition of the continuity equation and the ion temperature evolution equation which can be derived

from Ref. [19] based on a conservative gyrokinetic equation [20] by taking k⊥ρi � 1 limit.

−i(ω − 2ωdi + i∆ωT )
ñ

no

= −iω∗
|e| φ̃
Ti

− 2iωdi
|e| φ̃
Ti

− 2iωdi
T̃i

Ti

, (7)

−i(ω − 14

3
ωdi + i∆ωT )

T̃i

T0

= −4

3
iωdi

ñ

no

− iω∗Ti
|e| φ̃
Ti

− 4

3
iωdi

|e| φ̃
Ti

. (8)

These also agree with equations in Ref. [21] in the local limit, noting that the acoustic branch of

ITG mode[22] was not considered there. Note that while the authors of Ref. [21] did not choose

to decompose their results into TEP and thermoelectric contributions, a decomposition is possible

and useful for physics understanding.

Using Eqn. (8) in the expression for VTH , requires treating the product of two propagators, i.e.,

1

ω − 4ωdi + i∆ωT

· 1

ω − 14
3
ωdi + i∆ωT

.

This quantity can be rewritten as a sum of two propagators

1

ω − 4ωdi + i∆ωT

· 1

ω − 14
3
ωdi + i∆ωT

= − 3

2ωdi

(
1

ω − 4ωdi + i∆ωT

− 1

ω − 14
3
ωdi + i∆ωT

)
.
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Using this identity, we can write VTH for the k‖ → 0 limit as

VTH = 6 (Cφ − Ci)

(
1

Ti

∂Ti

∂r
+

4

3R

(
1 +

Ti

Te

))
− 8

(
V NA,φ

TH − V NA,i
TH

)
, (9a)

where Cφ and Ci have expressions similar to the quasilinear momentum diffusivity and ion thermal

diffusivity, respectively,

Cφ =

〈∑
k

Re
|ṽr|2

−i(ω − 4ωdi + i∆ωT )

〉
, (9b)

Ci =

〈∑
k

Re
|ṽr|2

−i(ω − 14
3
ωdi + i∆ωT )

〉
. (9c)

Here, V NA,φ
TH and V NA,i

TH are defined as

V NA,φ
TH ≡

〈∑
k

Re
−iωdi

(
ñNA/n0

)
ṽ∗r

−i(ω − 4ωdi + i∆ωT )

〉
, (10a)

V NA,i
TH ≡

〈∑
k

Re

(
−iωdi

(
ñNA/n0

)
ṽ∗r

−i(ω − 14
3
ωdi + i∆ωT

)〉
, (10b)

come from the non-adiabatic electron density response,

ñNA

n0

=
ñ

n0

− |e| φ̃
Te

. (11)

While a limiting form of the pinch for pure-ITG was calculated in Ref. [21], using Eqns.

(6) and (7) only, the assumptions of k‖ = 0 and the strong mode localization at the low field

side midplane are not compatible. According to our classification of pinches, a recent numeri-

cal calculation[23] indicates that the kTor
‖ contribution to Eqn. (5) is significant for ITG modes.

Since the ion temperature profile is well-known to be stiff, i.e. cannot be significantly perturbed

way above its marginality product, any scaling trend of thermopinch based on the fluid equations

(without kinetic corrections) must be examined carefully since near marginal stability, drift-ITG

modes can take on both a resonant and non-resonant character. Fluid descriptions can be useful,

but higher moments must be retained.

The third element in the momentum flux is the residual stress, ΠR
r,φ[18]. The residual stress is

defined as that part of the Reynolds stress which is not directly proportional to either ∂〈vφ〉/∂r or

〈vφ〉, i.e. the portion other than the diffusive and convective flux. Note that the residual stress

is thus that part of 〈ṽrṽφ〉 which is independent of 〈vφ〉, but proportional to ∂ 〈n〉 /∂r and/or

∂ 〈T 〉 /∂r. The residual stress has no counterpart in the theory of the turbulent particle flux, since
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momentum can obviously be exchanged between waves and particles, while density cannot. Note

too, that the thermoelectric convective particle flux Γn ∼ V (∇〈T 〉) 〈n〉, while the residual stress

Sφ ∼ ∇〈T 〉, etc but independent of 〈vφ〉. The residual stress defines an effective local internal

toroidal momentum source

∂〈Pφ〉
∂t

= Sφ,internal = − ∂

∂r

(
〈n〉ΠR

r,φ

)
, (12)

and so is crucial to the formation of intrinsic rotation profiles. The physics of the residual stress is

discussed at length in the next section.

III. PHYSICS OF THE TURBULENT RESIDUAL (RADIATION) STRESS

The residual stress ΠR
r,φ is that part of the Reynolds stress 〈ṽrṽφ〉 which remains after turbulent

diffusion and convection are subtracted. Its existence is a necessary consequence of wave-particle

momentum exchange, which is enforced by outgoing wave boundary conditions even in a purely

fluid theory. Physically, the residual stress ΠR
r,φ = Π (∇Ti,∇Te,∇Pi,∇Pe,∇n . . . ) converts part

of the driving heat flux Qi or Qe to a net toroidal flow. Observe that the residual stress is the only

way to spin-up a plasma from rest, in general,

∂t

∫ a

0

〈Pφ〉 = −nm

[
χφ

∂ 〈vφ〉
∂r

+ V 〈vφ〉+ ΠR
r,φ

]∣∣∣∣a
0

∼= −nm

[
−χφ

∂ 〈vφ〉
∂r

+ V 〈vφ〉+ ΠR
r,φ

]∣∣∣∣
r=a

, (13a)

for Π (0) = 0. Thus for 〈vφ〉 = 0, 〈vφ〉′ = 0, we have

∂t

∫ a

0

〈Pφ〉dr ∼= −nmΠR
r,φ (a) , (13b)

so the radially integrated momentum drive is set by the pressure, density and temperature gradients

at the plasma edge, acting through the residual stress. Note that a pinch alone cannot spin-up

the plasma from rest, but instead requires some "seed" toroidal flow at the separatrix to initiate

rotation, i.e. it requires 〈vφ (a)〉 6= 0. Of course, the critical pinch for the determination of the rate

of change of the total momentum is that which acts at r = a. The separatrix boundary condition

on the flow is also critical. The total stress corresponds to a net momentum flux, which along with

the boundary condition on 〈vφ〉, determines the profile. In particular, for the relevant prototypical

case where 〈vφ (a)〉 = 0 (corresponding to a no-slip boundary, enforced by strong neutral drag),
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we have for zero net momentum flux (corresponding to an intrinsic rotation solution)

〈vφ (r)〉 = −
∫ a

r

dr′
ΠR

r,φ (r′)

χφ (r′)
, (14)

so that ΠR
r,φ < 0 corresponds to co-rotation while ΠR

r,φ > 0 corresponds to counter-rotation. Note

that either sign of ΠR
r,φ can generate a flow. Of course, ΠR

r,φ (r) can change sign in radius, and

so produce internal flow reversals. The sign dependence of ΠR
r,φ should be contrasted to that for

convection, where V > 0 is unfavorable for core profiles peaked on axis, while V < 0 is favorable.

Thus, we see that ΠR
r,φ is conceptually distinct from a pinch or other convective effect.

The micro-physics of the residual stress is governed by resonant and non-resonant turbulent

transport acting in the presence of broken parallel reflection symmetry (i.e. k‖ symmetry break-

ing). The calculation of ΠR
r,φ, in the resonant limit is discussed in the literature[15]. Here we focus

on the non-resonant or “wave” contribution. Intuitively, this is the most appealing way to envi-

sion the origin of intrinsic rotation, namely as a consequence of the modulation of an anisotropic

quasi-particle pressure. Taking the turbulent χφ momentum diffusivity as already determined and

ignoring the pinch here, for simplicity, we see that the mean flow 〈vφ〉 then satisfies

∂t〈vφ〉 − ∂rχφ∂r〈vφ〉 = −∂rΠ
wave
r,φ , (15a)

where

Πwave
r,φ =

∫
dkvgrk‖N. (15b)

Here, Πwave
r,φ is the net radial flux of parallel wave momentum k‖N . Note that this calculation ig-

nores the distinction between toroidal and parallel momentum, and so neglects contributions from

the flux of perpendicular wave dynamics projected onto the toroidal direction. Note that a com-

plete treatment of this issue will involve analysis of both toroidal and poloidal rotation, along with

the calculation of both parallel and perpendicular wave momentum fluxes and Reynolds stress. At

present, this is beyond the scope of possibilities. Indeed, it is first necessary to better understand

perpendicular stresses and poloidal rotation, and only then to proceed to the full coupled analysis.

χφ is simply the ambient turbulent diffusion of toroidal velocity. The quasi-particle population

density is just N (x,k, t), which obeys the standard wave-kinetic equation, i.e. Eqn. (28a) and

Eqn. (30a) of Ref. [24]. Defining S‖ = δ〈vφ〉′, the modulation in toroidal velocity shear, we have

∂tS‖ − ∂rχφ∂rS‖ = −∂2
r

∫
dkvgrk‖δN. (16)
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The RHS effectively accounts for the quasi-particle induced residual stress. Formulation of the

problem as one of a modulational interaction is useful for clarifying the dynamics of flow shear

amplification. Note that the edge boundary condition discussed above guarantees that flow shear

amplification leads to net flow amplification. Linearizing the wave kinetic equation then yields the

population response

δN = τc,mod

[
kθV

′
E

∂〈N〉
∂kr

− vgr
∂〈N〉
∂r

]
. (17)

Note δN is calculated in the spirit of a Chapman-Enskog expansion for the population of wave

packets. Here V ′
E is the electric field shear modulation and τc,mode is the δN response correlation

time. Thus

Πwave
r,φ =

∫
dkk‖vgrτc

{
kθ

∂〈N〉
∂kr

〈VE〉′ − vgr
∂〈N〉
∂r

}
. (18a)

Note that this result assumes γ
(
+k‖

)
≈ γ

(
−k‖

)
, so symmetry breaking via directional depen-

dence of growth rate, as in the parallel shear flow instability[1, 25], is not significant. This is

discussed further in Ref. [15]. Note that in general, the parallel shear flow is not a particularly

relevant free energy source. If a net external torque T ext modulation was retained, the condition

for a stationary state in the presence of the wave stress given by Eqn. (18a) is easily shown to be

T ext =

∫
dkk‖vgrτc

{
kθ

∂〈N〉
∂kr

〈VE〉′ − vgr
∂〈N〉
∂r

}
a

− nmχφ
∂〈vφ(a)〉

∂r
. (18b)

Several observations are in order here. First note that the net residual stress is driven by the quasi-

particle population gradients in both kr and r. The kr gradient ∂〈N〉/∂kr, induces a stress via

shearing when kθ∂vgr/∂kr 6= 0, so that the net kr-space flow is compressible. Note that for drift

waves, kθ∂vgr/∂kr
∼= −2k2

θρ
2
sv∗/(1 + k2

⊥ρ2
s)

2, so the integrated contribution to the stress is even

in kθ and kr, and exhibits some mode dependence via v∗e. We expect this trend to be generic.

The r-gradient ∂〈N〉/∂r induces a radiative diffusive inward flux of wave momentum, which

may be either co or counter direction, depending on the sign of k‖. The radiative diffusion flux

∼ −Dr∂〈P‖〉w/∂r, where 〈P‖〉w is the wave parallel momentum density and Dr ∼ v2
grτc is the

quanta diffusivity. Note Dr ∼ DGB. The detailed physics of these processes is discussed further

in Ref. [15].

Second, before proceeding to calculate ∂〈vφ(a)〉/∂r-the edge rotation gradient, we note that

〈VE〉′ =
Bθ

|B|
∂〈vφ〉
∂r

+
BT

|B|
〈VE〉′0, (19)

i.e. the net electric field shear is the sum of the contributions due to toroidal rotation and the other

pieces, denoted by 〈VE〉′0. The latter includes both diamagnetic (i.e. ∇Pi-driven) velocity shear



10

and poloidal velocity shear. Of course this means that in the absence of 〈VE〉′0, toroidal velocity

shear can feed back on itself, as in a modulational instability. To see this, note that since S‖ and

δN satisfy Eqns. (16, 17) and since Eqn. (19) implies 〈VE〉′ = (Bθ/ |B|) S‖ + (BT / |B|) 〈VE〉′0,

then in the limit where other drives of ΠR vanish, i.e. 〈VE〉′0 → 0, ∂ 〈N〉 /∂r → 0, Eqn. (16)

reduces to just:

(∂t − ∂rχφ∂r) Ŝ‖ = −∂2
r

{∫
dkvgrk‖τc,modkθ

∂ 〈N〉
∂kr

Ŝ‖

}
.

Hence, we see that the growth rate of a shear modulation of the parallel flow with radial wave

number q is just

γq = q2
r

{[∫
dkvgrk‖τc,mod,qrkθ

∂ 〈N〉
∂kr

]
− χφ

}
.

For standard drift waves, this may be re-written as:

γq = −q2
rχ

eff
φ

where

χeff
φ = χφ − 2V∗

∫
dkk‖

(
k2

θρ
2
s

(1 + k2
⊥ρ2

s)
2

)
τc,mod,qrkr

∂ 〈N〉
∂kr

Hence we readily see that:

1. the effect of the parallel flow shear induced modulation of the residual stress is to augment

or renormalize χφ. Clearly, χeff
φ > χφ and χeff

φ < χφ are both both possible.

2. χeff
φ < χφ is clearly symptomatic of the modulational growth of instability of the test shear.

This is not surprising, since it is well known that modulational instability of shear flows is a

sort of "negative viscosity" phenomenon. This process is also symptomatic of the generation

of toroidal zonal flows.

The toroidal zonal flows discussed above have been observed in gyrokinetic particle

simulation[26, 27]. More generally, this result suggests that any intrinsic rotation feeds back on

itself via its contribution to electric field shearing, and so renormalizes the momentum diffusivity

χφ. To see this, observe that plugging Eqn. (19) into Eqn. (18b) and re-writing gives a modified

diffusivity. We refer to this renormalized diffusivity as χ
φ,R

. Thus, the edge gradient is given by

∂〈vφ(a)〉
∂r

=

[
Text −

{(∫
dkk‖vgrτckθ

∂〈N〉
∂kr

)
〈VE〉′0 + Drad

∂〈P‖〉w
∂r

}
a

]
/nmχ

φ,R
(a) (20a)
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where

nmχ
φ,R

(a) = nmχφ(a)−
(∫

dkk‖vgrτckθ
∂〈N〉
∂kr

)
a

(20b)

is the ‘renormalized’ χφ which includes self-induced rotation feedback via 〈VE〉′. Note that the

sign of the χφ renormalization is determined by the product of the group velocity vgr, the spectral

population gradient ∂〈N〉/∂kr, (which is usually negative) and the spectrally weighted k‖. Ob-

serve that the correction to χφ can be positive and so it is at least conceivable that the observed χφ

– deduced, say, from momentum perturbation experiments – may exceed the observed χi, χφ > χi

which has been observed in JT-60U perturbation experiments[28].

Third, observe that Eqn. (20a) defines an effective critical torque which zeroes the edge velocity

gradient, i.e. T ext
crit for ∂〈Vθ〉/∂r|a → 0. This may be thought of as defining a critical torque which

exactly cancels the residual stress-driven intrinsic rotation[15]. Here, the critical torque is

T ext
crit =

{∫
dk

(
k‖vgrτckθ

∂〈N〉
∂kr

)
〈VE〉′0 + Drad

∂〈P‖〉w
∂r

}
a
. (21)

Note that the critical torque is determined by 〈VE〉′0 (i.e. the electric field shear due to diamag-

netic and poloidal rotation), the mode propagation velocity (in vgr), the turbulence spectrum (in

∂〈N〉/∂kr), the wave momentum density profile 〈P‖〉w and Drad, τc, etc. Of course, the critical

torque defines the off-set in the linear plot of ∂〈vφ〉/∂r|a vs. T ext. Interestingly, it is renormalized

χφ – i.e. χφ,eff – which sets the slope of this linear relation. Thus, the feed-back loop physics

of intrinsic rotation enters more than just the off-set! Finally, we should recall that if the edge

rotation velocity is finite,

∂〈vφ〉
∂r

∣∣∣∣
a

=
−1

nmχφ,eff

{
T ext − ΠR

r,φ|a − V 〈vφ〉|a
}

. (22)

In this case, the edge pinch velocity also enters the determination of ∂〈vφ〉/∂r|a. Interestingly only

the edge momentum pinch is relevant to intrinsic rotation. We speculate here that SOL physics

in general, and SOL flow effects in particular[6], couple to core intrinsic rotation via the edge

momentum pinch. The TEP momentum pinch, discussed in reference[16], is surely operative at

the edge. Analysis of other possible contributions requires a study of the regime with collisionless

fluid ion and dissipative/collisional electron dynamics. In particular, it would be interesting to

see if a momentum analogue of the familiar ion mixing mode density pinch[29] exists. This is

discussed further in Section V. In closing this section, we remark that coupling of intrinsic rotation

to 〈vφ(a)〉 should also manifest itself as a sensitivity of the critical torque to SOL asymmetry – i.e.

T ext
crit should differ between single null and double null operation.
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Virtually all of the results in this discussion are sensitive to spectrally averaged k‖, i.e. 〈k‖〉.

One promising example, although not unique, is to follow Eqns. (36a), (36b) of Ref. [15], and

balance nonlinear decay with shearing to obtain

〈k‖〉 = −
∫

dk
∂k‖
∂kr

kθ〈VE〉′
〈N〉
γNL,k

, (23a)

where

〈k‖〉 =

∫
dkk‖〈N〉. (23b)

Here γNL,k is the nonlinear decorrelation rate (i.e. inverse mode lifetime) for wave-vector k.

∂k‖/∂kr 6= 0 requires magnetic shear. This description is equivalent to that developed in real

space, in which the shift of the spectrum off the resonant surface induced by the electric field

shear sets the mean k‖[30–33]. Note that Eqn. (23a) suggests a close link between radial electric

field shear and the residual stress contribution to the momentum flux. This link has been verified

by gyrokinetic simulations performed in Refs. [26, 27] (see Figs. 5 and 6).

IV. SIMPLE MODEL FOR INTRINSIC ROTATION SCALINGS

It’s interesting to note that Equation (20a) effectively states that ∂〈vφ〉/∂r|a – and thus the net

intrinsic rotation – will increase with 〈VE〉′0. Since 〈VE〉′0 = ∂r(∂〈P 〉/∂r/neB0)−∂r(〈vθ〉B0)/ |B|

increases with edge pressure gradient, one direct prediction of this theory is a correlation be-

tween edge pressure gradient and intrinsic rotation velocity. This is qualitatively suggestive of the

∆〈vφ〉 ∼ ∆Wp/Ip scaling proposed by Rice[7], but now expressed in terms of more physical,

local gradient quantities. One can go further and develop a transport model which evolves the:

(i.) toroidal momentum profile, in terms of χφ, V and ΠR
r,φ acting along with the external

torques,

(ii.) density profile, in terms of D, Vn and fueling,

(iii.) ion temperature profile, in terms of χ and heating,

(iv.) fluctuation intensity, evolved by simple E×B shear-induced quenching[34].

This model represents a generalized Hinton model[35]. The model may be solved numerically,

and also analytically, assuming a piecewise linear profile structure. For simplicity we apply a no-

slip boundary condition so that vφ (a) = 0. Results indicate that the central rotation velocity is



13

determined primarily by the pedestal velocity, and that the latter scales as[30, 36]

∆〈vφ〉
vThi

∼
(

∆rc

a

)(
∆ped

a

)
∼ ρα

∗

(
∆ped

a

)
. (24)

Here ∆ped is the pedestal width and ∆rc is the turbulence correlation length. Thus, α ∼ 1 corre-

sponds to the Gyro-Bohm edge turbulence while α ∼ 0 corresponds to Bohm. The pedestal width

is proportional to the pedestal pressure, i.e. ∆ped ∼ Pped, so ∆〈vφ〉 ∼ Pped ∼ ∆Wp, the increment

in the stored energy, as in the Rice scaling. More interestingly, we note that if:

(i.) the edge turbulence exhibits Bohm scaling, so ∆rc/a ∼ (ρ∗)
0 ∼ 1.

(ii.) we assume the Snyder[37] empirical pedestal width scaling ∆ped/a ∼ β
1/2
p which recovers

the Ip dependence of the Rice scaling,

we then recover ∆〈vφ〉/vThi ∼ β
1/2
p which is effectively equivalent to the Rice scaling ∆vφ ∼

∆Wp/Ip[7, 38]. Interestingly, the unfavorable current scaling of intrinsic rotation appears as

a consequence of the unfavorable current scaling of the pedestal width. This seems plausible,

since otherwise transport scalings with current are nearly universally favorable. Note that in this

scenario, intrinsic rotation is strongly tied to pedestal physics, which is also suggested by the

experimental results. The absence of ρ∗ scaling of intrinsic rotation velocity[7] appears as a con-

sequence of Bohm scaling of the pedestal turbulence. The persistence of this unfavorable trend

into the regime of ITER parameters is far from certain.

V. ROLE OF PARTICLE FLUX IN FLOW EVOLUTION

While the conserved angular momentum density is a natural quantity of theoretical interest

and is what is probed in perturbative momentum transport experiments[4], the flow profile is of

great practical interest, because its magnitude and radial profile influence the stability of resistive

wall modes (RWM), turbulence-driven transport and the L→H power threshold. Similarly, we

are interested in discriminating momentum transported by the parallel Reynolds stress and that

originating from particle fluxes. This decomposition is particularly illustrative since it provides

insight into the role of non-adiabatic electrons in determining the flow profile. The effects of non-

adiabatic electrons on the momentum flux have not been addressed in prior published work. Recall

that the radial flux of parallel flow is given by the Reynolds stress, ΠREY ≡ 〈ṽ∗r ũ‖〉 which satisfies

n0R0ΠREY
∼= Πang − 〈vφ〉R0Γptl. (25)
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It’s generally safer to calculate the particle radial flux from drift wave turbulence using the non-

adiabatic electron response

Γptl =

〈∑
k

Re(ṽ∗r ñe)

〉
=

〈∑
k

Re(ṽ∗r ñ
NA)

〉
. (26)

Before delving into details of the calculation, some general remarks are in order. For electron

drift waves (including trapped electron modes and collisional drift waves, but not ETG modes), to

be linearly unstable, net particle flux, including diffusion and particle pinch, should be outward.

Since the last term in Eqn. (25) has a multiplier 〈vφ〉, this outward flux of particles will manifest

itself as an inward pinch of toroidal flow velocity[39]. This pinch will generally add to the TEP

pinch and thermoelectric pinch of flow which has been calculated in the previous papers and

Section II of this work. As shown in the Appendix, |VTH | ∼ O
(

ωdiγ
Re(ω)2

)
|VTEP | << |VTEP |

for electron drift waves with Re(ω) ∝ ω∗e, and ωdi, γ < Re(ω). Therefore, the total convective

pinch of parallel velocity, mostly consisting of the TEP pinch and the particle flux, from electron

drift wave turbulence will almost certainly be inward. We gain useful insight from the previous

works on particle flux. For ITG, the evaluation of the thermoelectric pinch is complicated by the

strong sensitivity of this term to the linear dispersion relation. Thus, we will leave a quantitative

evaluation of this term for ITG modes to a future analysis.

There exist at least three relevant asymptotic regimes classifying electron drift waves. In the

order of decreasing collisionality, these are

(i.) Collisional drift wave: thermal electrons are in the so-called semi-collisional regime which

satisfies νe > k‖vThe > ω ∼ ω∗e, but k2
‖v

2
Te > νeiω∗e, so that they (diffuse and) thermalize

along the magnetic field line faster than one wave period. Magnetic trapping of electrons

plays no role due to the long time scale associated with it.

(ii.) Dissipative trapped electron (DTEM) mode: ν∗e ≡ (νe/ε)/ωbe < 1, but νeff = νe/ε >

ω, ω∗e > ωde. Therefore trapped electrons suffer collisions. Their non-adiabatic response

decreases with ω∗/(νe/ε), and associated particle flux is small.

(iii.) Collisionless trapped electron (CTEM) mode: ν∗e < 1, and ω, ω∗e & ωde > νe/ε, so that

collisional effects are negligible, but trapped electron procession can resonate with electron

drift waves to destablize it.
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For DTEM, the particle flux is approximately given by

Γptl = −

〈∑
k

ε1/2|ṽr|2
1 + 3

2
ηe − Re(ω)/ω∗e

(νe/ε)

〉
∂n0

∂r
, (27)

Since it’s expected that the saturated fluctuation spectrum peaks at a relatively low (k⊥ρi)
2, the

electron temperature gradient driven particle flux will dominate the residual density gradient driven

particle flux (due to finite (k⊥ρi)
2). This outward particle flux will be seen as an inward electron

temperature-gradient driven convective flux of parallel velocity. For CTEM, the trapped electron

resonance between precession drift-wave is a dominate excitation mechanism. For this,

δnNA

n0

= i2
√

πε

(
ω

ωdeG

)3/2

e−ω/ωdeG

[
1− ω∗e

ω

{
1 + ηe

((
ω

ωdeG

)
− 3

2

)}]
|e| φ̃
Te

, (28)

(see Ref. [40]). Once again, ∇Te-driven particle flux dominates a residual ∇n-driven particle

flux due to FLR-induced down-shift of DW frequency. These∇Te-driven inward pinch of parallel

velocity expected for both CTEM and DTEM is an intriguing result since it must be ions which

carry the momentum according to the recoil (last) term of Eqn. (25). However, the flux really

depends on the trapped electron related quantities due to the quasi-neutrality constraint!

For a plasma in which ITG is the dominant microturbulence but modified by non-adiabatic

electrons, the direction of particle flux depends on the collisionality and ηe. It is well-known that

the net particle flux can be inward if electron collisionality ν∗e is either very low or very high, and

ηe is high enough. For the semi-collisional passing-electron-modified ITG mode, better known

as the ion-mixing mode[29], the electrons are in the collisionality regime which corresponds to

the collisional electron drift waves, i.e. ν∗e > 1, νe > k‖vThe > ω, ω∗e, but k2
‖v

2
The > ωνei.

While this regime is no longer relevant to large present-day tokamaks’ core turbulence, it’s still

applicable to some tokamak edge turbulence, characterized by high collisionality. For instance

ν∗ ∼ 10 in some C-Mod edge plasmas[41]. This mode is potentially of high theoretical interest

since intrinsic rotation (in particular, those in C-Mod[6]) seems to initiate at the very edge and

propagate inward. Therefore, any viable theory for intrinsic rotation should include not only a

rotation build-up mechanism at the edge (such as the residual stress[15, 30]), but also an inward

pinch mechanism, in particular, at the edge where rotation develops. Indeed these two mechanisms

can be mutually re-inforcing otherwise it’s very difficult to explain core intrinsic rotation. With this

in mind, a quantitative assessment is necessary for a possibility that the ion-mixing mode driven

inward particle pinch can manifest itself as an outward flow pinch and reduce or even reverse the

inward TEP inward pinch of flow. Extending a pioneering work by Coppi and Spight [29], Lee and
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Diamond [42], have obtained a more precise expression for electron response from the Braginskii

equations. The semicollisional passing electron density perturbation is

ñNA

n0

= −i
ω∗eνe

k2
‖v

2
Te

(
0.51

χ̂e

)[
χ̂e + (1 + αT )2 − 3

2
(1 + αT )ηe

]
|e| φ̃
Te

, (29)

where χ̂e = 1.61, αT = 0.71. Consequently, the particle flux is given by

Γion mixing
ptl = −1.02

[χ̂e + (1 + αT )2]

χ̂e

(
1− ηe

ηcrit

)〈∑
k

νe |ṽr|2

k2
‖v

2
TE

〉
∂n0

∂r
. (30)

Therefore, an inward particle flux is expected for ηe > ηcrit
e = 1.77.

For less collisional plasmas with ν∗e < 1, magnetically trapped electrons play an important

role in determining radial particle flux from ITG-mode. For dissipative trapped electrons with

νe/ε > ω, ω∗e, Eqn. (29) still applies. It yields an outward flux since Re (ω/ω∗e) < 0 for ITG

modes. For collisionless trapped electrons (with ω, ω∗e > ωde > νe/ε) however, the precession-

drift wave resonance is no longer possible since ITG modes typically propagate in the ion diamag-

netic direction. However, there exists non-resonant reactive contribution to non-adiabatic electron

response. Since it depends sensitively on the linear dispersion relation, we don’t present it here.

It’s well-known that for the collisionless trapped electrons, net particle flux can be inward[43–45]

for high enough ηe values. Particle TEP inward pinch should contribute in this regime where the

second adiabatic invariant exists [46–48]. While particle TEP pinch is in general comparable to

momentum TEP pinch in magnitude, they are not identical and have different scalings with respect

to magnetic shear. Therefore, with CTEM-dominated turbulence, we expect a partial cancellation

between momentum TEP pinch and particle TEP pinch.

We speculate that an ensuing weak flow pinch in collisionless core plasma may not be a se-

rious concern regarding confinement improvement. We expect that by having sufficient residual

stress and flow pinch in the outer plasmas extending to the last closed flux surface, significant

confinement improvement can be achieved relying on the flow shear in that region.

VI. SUMMARY AND DISCUSSION

In this paper, we have reported on recent progress on the theory of turbulent momentum trans-

port and the origins of spontaneous rotation in tokamaks. The principal results of this paper are:

1. elucidation of the decomposition of the total momentum flux into diffusive (∼ χφ), pinch

(∼ V ) and residual stress components. These originate from the Reynolds stress (for χφ, a
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portion of V and residual stress) and convective (for a portion of V ) fluxes. The physics of

each component is discussed.

2. the observation that generation of intrinsic rotation requires either

(a) a non-zero value of the residual stress at the plasma boundary. In this case coupling of

SOL flows to core rotation is not necessary.

(b) or, a non-zero value of the product V 〈vφ〉 at the boundary, along with V < 0 (an

inward velocity pinch). In this case, 〈vφ (a)〉 is very likely determined by SOL flows.

3. calculation of the residual stress via a mesoscale, modulational approach which captures

both shearing and wave momentum transport effects. The intrinsic wave radiation stress

which is also the residual stress, is shown to be proportional to 〈VE〉′ and to ∂
〈
P‖
〉
/∂r.

4. the result of 3. is used to calculate the external torque required to maintain the edge velocity

gradient ∂ 〈vφ (a)〉 /∂r at a fixed value. This is essentially equivalent to the calculation of the

torque required to cancel the residual stress-driven intrinsic rotation (i.e. ∂ 〈vφ (a)〉 /∂r → 0

for exact cancellation). This cancellation torque is inversely proportional to a dressed χφ,

which includes the feedback via the 〈vφ〉′ piece of 〈VE〉′. The modification of χφ can be

large enough to affect interpretation of experimentally determined V/χφ ratios.

5. demonstration that inclusion of non-adiabatic electron effects generates a ‘recoil contribu-

tion’ to the turbulent velocity pinch via the coupling between flow and particle transport

which is inherent to the transport of (conserved) angular momentum. We calculate this ef-

fect for collisional, DTEM and CTEM drift waves, and ITG turbulence. In most cases, an

inward flux of toroidal velocity results.

6. we show that the Rice scaling of intrinsic rotation velocity can be recovered by a simple

model which assumes only that:

(a) intrinsic rotation is linked to the L→H transition

(b) the edge turbulence follows Bohm scaling (i.e. radial correlation length ∆r0 ∼

(a)1 (ρ∗)
0)

(c) the pedestal width scales as ∆ped/a ∼ β
1/2
p .
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Note most of the results listed above are concerned with the generation or acceleration of intrinsic

rotation. Optimization of total angular momentum content and rotation profile control so as to su-

press RWMs requires actual profile calculations which, in some sense ‘match’ the edge or pedestal

layer (controlled primarily by residual stress) with the core (controlled primarily by diffusion and

the convective pinch). These calculations are beyond the scope of this paper and will be addressed

in a future publication.

Ongoing and future work will focus on studies of electron heat transport driven regimes[49],

electromagnetic coupling and saturation[50], alternative symmetry breaking mechanisms (espe-

cially polarization stresses[51] and GAM shearing), coupling to poloidal rotation effects, and

SOL-core interaction. Understanding the edge pinch of momentum and its interaction with the

edge rotation velocity driven by SOL flows is a particularly important near-term goal. Finally we

also plan to apply the theory to the interesting TCV internal momentum transport bifurcations[10].

The theoretical and computational investigations summarized in this paper suggest several chal-

lenges which necessitate further experimental work in order to formulate an effective response.

These include, but are not limited to:

1. Residual stress physics;

(a) exploring the relationship between the Rice scaling and the cancellation torque’s de-

pendence on energy content W and plasma current Ip

(b) identifying 〈vφ〉 profile corrugations induced by zonal flows and characterization of

the degree of 〈vφ〉 profile "choppiness".

(c) assessment of residual stress effects in the core, primarily in high ∇P regimes with

and without ITB’s.

2. Boundary effects and SOL flow-core interaction;

(a) studying the evolution of intrinsic rotation during slow transitions

(b) exploring the relation between intrinsic rotation velocity and local edge quantities

which control the residual stress

(c) comparison of single null and double null rotation in L and H mode

(d) comparisons of rotation on low and high neutral opacity regimes
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(e) performing experiments which explore the viscous stress of SOL flows on core plasma

rotation

(f) studies of poloidal rotation with the aim of determining the degree of departure from

neoclassical values.

3. Core transport physics relevant to rotation;

(a) comparisons between momentum and density pinch velocity

(b) studies of intrinsic Prandtl number in stiff profile regimes

(c) studies of intrinsic rotation in electron-dominated plasmas – a topic which is highly

ITER relevant!

(d) studies of the comparative stiffness of ion, electron and toroidal momentum profiles

4. Basic studies;

(a) studies of intrinsic azimuthal rotation[52] in linear basic experiments, where detailed

measurements of fluctuation induced Reynolds stresses, etc. are readily available

Clearly, there is no lack of interesting work to be done on the subject of intrinsic rotation!

Acknowledgements

This research was supported by the U.S. Department of Energy Grant Nos. DE-FG02-

04ER54738, DE-FC02-08ER54959, DE-FC02-08ER54983 and DE-AC02-76-CHO-3073. We

thank J. Rice, M. Yoshida, Y. Kamada, W. Solomon, S. Kaye, K. Ida, X. Garbet, L. Eriksson,

J. deGrassie, C.-S. Chang, F. Hinton, K. Burrell, C. Hidalgo, K. Itoh, S.-I. Itoh, J. Myra, B.

LaBombard, P. Snyder, R. Groebner, B. Duval, and G. Tynan for useful conversations.

Appendix: Estimation of thermoelectric pinch for TEM modes

In this appendix we provide an explicit quasilinear estimation for the magnitude of the ther-

moelectric pinch for TEMs. In order to evaluate the thermoelectric pinch given by Eqn. (9a) it

will be necessary to compute the difference between V NA,φ
TH and V NA,i

TH . This can be facilitated by



20

rewriting this difference in the form:

V NA,φ
TH − V NA,i

TH =

〈
Re
∑
k

(
ωdi

(ω − 4ωdi)
− ωdi(

ω − 14
3
ωdi

)) ṽ∗r ñ
NA

〉
≈ CTEM

2 Γptl + CTEM
1 ΓIm, (A1)

where Γptl ≡
〈
Re
∑

k ñNAṽ∗r
〉
, ΓIm ≡

〈
Im
∑

k ñNAṽ∗r
〉
,

CTEM
1 ≡ |ωdi|2

{
1

(Re (ω) + 4 |ωdi|)2 −
1(

Re (ω) + 14
3
|ωdi|

)2
}

,

CTEM
2 ≡ |ωdi|2

{
1

Re (ω) + 14
3
|ωdi|

− 1

(Reω) + 4 |ωdi|

}
.

Here, we have also assumed that there’s a dominant k⊥ which contributes to this expression, as

well as the local approximation.

Utilizing Eqn. (A1), Eqn. (9a) can be rewritten as:

VTH = 6
(
CQL

φ − CQL
i

)( 1

Ti

∂Ti

∂r
+

4

3R

(
1 +

Ti

Te

))
−8

(
CTEM

2 Γptl/n0 +
Im (ω)

|ωdi|
CTEM

1 ΓIm/n0

)
.

(A2)

The coefficients CTEM
1 and CTEM

2 have been evaluated numerically via the use of a simple linear

model for TEMs based on Eqns. (7) and (8). This system yields a dispersion relation which

is quadratic in complex ω. We have only taken a root for which Re (ω) > 0 for TEM. Their

magnitudes are bounded by
∣∣CTEM

2

∣∣ < 0.036 and
∣∣CTEM

1

∣∣ < 0.016 for R/Ln > 3 and R/LTi < 3

(i.e. ITG stable case). From this estimate, it is clear that the second term in Eqn. (A2) is negligible

in comparison to the momentum transported by particle fluxes. Figures 1-4 contain plots showing

in more detail the behavior of CTEM
2 and CTEM

1 as the density and ion temperature gradients are

varied, such that the magnitude of this term for a variety of parameter regimes is made clear.

Similarly, the first term in Eqn. (A2) can be estimated via rewriting the difference of the

coefficients as

Cφ − Ci =

(
Im (ω)

|ωdi|

)
CTEM

1 .
γ

|ωdi|
(0.016) , (A3)

so that the magnitude of VTH can be estimated as

VTH . 6× 0.016× 2× 8

3R
� 3

R
= VTEP . (A4)

Here we have used the fact that for TEM (i.e., stable ITG),
∣∣∣ 1
Ti

∂Ti

∂r

∣∣∣ . 8
3R

. Hence, the thermoelectric

contribution to the flow pinch can be seen to be negligible in comparison to the TEP portion for

TEMs.
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Figure 1: Plot of CTEM
1 as a function of R/Ln. The dashed line corresponds to R/LTi = 0, the dash-dotted

line to R/LTi = 2 and the solid line to R/LTi = 3.
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Figure 2: Plot of CTEM
2 as a function of R/Ln. The solid line corresponds to R/LTi = 0, the dash-dotted

line to R/LTi = 2 and the dashed line to R/LTi = 3.
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Figure 3: Plot of CTEM
1 as a function of R/LTi. The solid line corresponds to R/Ln = 9, the dash-dotted

line to R/Ln = 6 and the dashed line to R/Ln = 3.
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Figure 4: Plot of CTEM
2 as a function of R/LTi. The dashed line corresponds to R/Ln = 9, the dash-dotted

line to R/Ln = 6 and the solid line to R/Ln = 3.
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Figure 5: Time evolution of momentum flux (blue) and the spectrally averaged parallel wave number (red).
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Figure 6: Time evolution of E×B shear rate (blue) and the spectrally averaged parallel wave number (red).




