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Abstract

There are striking parallels between ecological psychology
and new trends in robotics and computer vision, particu-
larly regarding how agents interact with the environment.
We present some ideas from ecological psychology, in-
cluding control laws using optical flow, affordances and
action modes, and describe our implementation of these
concepts in a small mobile robot which can avoid
obstacles and play tag solely using optical flow. This
work ties in with those of others arguing for a
methodological approach in robotics which foregoes a cen-
tral model/planner. Ecological psychology may not only
contribute to robotics, but robotic implementations in turn
provide a test bed for ecological principles and sources of
ideas which could be tested in animals and humans.

Introduction

Classical symbolic systems have proven to be powerful in
modeling some aspects of human cognition. However, the
things humans do easily (e.g., recognizing patterns, moving
around in the world, speaking) are difficult to explain and
mimic with a symbolic approach. (We take the symbolic
approach to mean symbolic/syntactic processing only, de-
spite arguments for its all-inclusiveness (Vera & Simon,
1993).) Within both the cognitive science and Al communi-
ties an increasing dissatisfaction with this approach has led
to the emergence of alternative approaches. In cognitive
science, ecological psychology and especially connectionism
are influential, and in the fields of robotics and computer vi-
sion, non-symbolic and situated architectures are having a
strong impact.

In this paper we explore the similarities between ecologi-
cal psychology and these new trends in robotics and com-
puter vision. For its own reasons, ecological psychology
has avoided explanations of perception and action which
require a central model/planner and has promoted tighter
binding between perception and action through the concepts
of control laws, affordances, and action modes. We present
these ideas and relate some of our work implementing them
in a small mobile robot.

Behavior-Based Robotics and Active
Vision
In the past few years, a new approach has developed in
robotics called behavior-based robotics (Brooks, 1991a).
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Although earlier work on mobile robots had some successes,
e.g., SRI’s Shakey (Nilsson, 1984) and Moravec’s (1981)
CART, they were generally of the “sense-model-plan-act”
variety, requiring intense computation for inferring the
location and identity of objects, updating a central world
model, and planning a course of action to achieve some
defined goal state. In contrast, the new approach (Brooks,
1991b) attempts to build up robots through networks of
simple, fully functional behaviors mapping sensors to
actuators, with no central model. Complex behavior
emerges from the dynamic interaction between the agent
with its simple mappings and the environment, producing
what appears to be goal-directed action.

Most of the work in robotics uses sensors other than vi-
sion. Sonar, infra-red detectors, laser-light stripers, and dead-
reckoning provide metric distance information and tradition-
ally, the robot uses this information to place itself at a par-
ticular point in its world model and to plan a metric path
through the environment. The typical role of vision in these
robots is to create or augment the model. Using visual in-
formation as simply another way to obtain metric values al-
lows one to treat computer vision as a separate task, one of
scene analysis: creating a description of the three-dimen-
sional world from two-dimensional images. The numerous
means of constructing such models (e.g., shape from shad-
ing, structure from motion), as they are presently formu-
lated, are often ill-posed problems requiring assumptions and
noise models which do not generalize to real-world vision
(Aloimonos & Rosenfeld, 1991). However, with active con-
trol of the visual system (active vision) these problems be-
come well-posed, usually with unique solutions and a few
reasonable assumptions (Aloimonos & Rosenfeld, 1991;
Ballard, 1991). Purposive or animate vision (Aloimonos,
1993; Ballard & Brown, 1992) goes one step further than
finding better solutions to the old problems; rather it poses
the question, “What is vision for?” (Ballard, 1991). If vision
is used to achieve the goals of the organism, where a goal
need not be a discrete state of the world, the system may not
need to model the world at all before acting upon it.

Ecological Psychology and Robotics

Many of the papers in animate vision and robotics have
made passing reference to the works of J.J. Gibson, but we
would like to probe further into the relevance of his ideas
(see Pickering (1992) for other points). Ecological psychol-
ogy, as developed by Gibson (e.g., 1955, 1966, 1979),
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views animals and their environments as “inseparable pairs”
that should be described at a scale relevant to the animal’s
behavior. So, for example, animals perceive the layout of
surfaces, not the coordinates of points in space. A main
tenet of the ecological approach is that the optic array, the
pattern of light reflected from these surfaces, provides
adequate information for controlling behavior without further
inferential processing or model construction. This view is
called direct perception: the animal has direct knowledge of,
and a relationship to, its environment as a result of natural
laws. How far into cognition perception plays a role is an
open question, but minimally, the information involved in
both perception and action could ground other, non-
perceptual tasks. The strategy is to push natural law as far
as possible into cognition, thus placing more constraints on
the cognitive system.

The Gibsonian approach can be summarized in the idea
that it is more desirable to put the animal in its environment
than to put the environment in the animal. Rather than in-
ternally representing detailed knowledge of the world, ani-
mals detect and use information about it as it is required.
This is the “fundamental hypothesis” of the ecological ap-
proach to vision:

Optical structure specifies its environmental source and
... therefore, mobile organisms with active visual sys-
tems that can pick up this information will see their
environments and suitably adjust their activity, if and
when they detect that information, and only then
(Turvey et al., 1981, p. 243, emphases ours).

Now, if we replace “mobile organisms” with “mobile
robots,” or more generally, “agents,” this hypothesis is just
as applicable to behavior-based robots as it is to animals.
That is, sufficient information is available in the robot-envi-
ronment interaction to control the robot’s behavior without
further inference or reconstruction. In addition, appropriate
perception-action dynamics in the robot provide a non-infer-
ential source of information upon which other aspects of
computation (planning, mapping, reasoning, etc.) can be
based and by which they can be limited.

Similar hypotheses might be made in regards to the other
senses or sensors, but it is primarily vision that seems the
most promising for unifying the fields of robotics and eco-
logical psychology. Both would gain from such a union.
The latter can provide insights into what kinds of informa-
tion can control the actions of agents, that is, what ecologi-
cal laws are at work for a given task; and the former can
provide an experimental and demonstrative setting in which
to test the viability of proposed control strategies and facili-
tate the discovery of new ones. The new robotics and the
ecological approach complement each other well and both
ultimately have the same concerns; thus, mobile robotics
provides a promising test bed for ecological principles.

Optical Flow and Control Laws

A relevant case is the study of optical flow. As an observa-
tion point moves through the environment, the pattern of
light reflected to that point changes continuously, creating
optical flow (Lee, 1980; Gibson, 1958). Optical flow con-
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tains information about both the layout of surfaces and the
motion of the point of observation. For example, if an ob-
server is translating, the focus of expansion (FOE), or center
of the radial flow pattern, specifies the observer’s heading.
If the observer is moving at a constant velocity, then the
time-to-contact with a surface is given by the relative rate of
expansion T = r/v, where 7 is the “optic variable” tau-global
(Tresilian, 1991; Lee, 1976), r is the visual angle between a
point on the surface and the FOE, and v is the rate of change
in this angle.

The observer’s heading and time-to-contact are just two
examples of information available in optical flow. One way
an agent can use this information is by acting to achieve a
certain type of flow. For example, to maintain ambient ori-
entation, the type of optical flow required is no flow at all.
If some flow is detected, then the agent should change the
forces produced by its effectors (e.g., wings or legs) so as to
minimize this flow, according to a Law of Control:

AFinternal = f(Aflow) (1).

That is, the change in the agent’s internal forces (as opposed
to external forces like wind) are a function of the changes in
the optical flow (here, from no flow to some flow).

Gibson (1958) described various control laws an animal
might use for locomotion:

...to begin locomotion, therefore, is to contract the
muscles so as to make the forward optic array flow
outward. To stop locomotion is to make the flow
cease.... To aim locomotion at an object is to keep the
center of flow of the optic array as close as possible to
the form which the object projects (1958, p. 187).

These types of rules have been noted by scientists studying
the control of balance, steering, and braking in humans (Lee,
1976; Lee & Lishman, 1977; Yilmaz & Warren, in press;
Warren, et al., in press) and the control of flight in flies
(e.g., Collet & Land, 1975; Reichardt & Poggio, 1976;
Wagner, 1986a-b). Ambient orientation, or hovering, is
controlled by minimizing the global optical flow: purely
vertical flow (say, upward) will induce increased lift by the
fly to minimize that flow (Srinivasan, 1977; Gétz, et al.,
1979). Similarly, a fly in a rotating drum will produce a
differential thrust with the two wings, tracking the drum by
rotating about its own vertical axis (Collett, 1980a-b).

Warren (1988) proposed a set of control laws a fly might
use for each of its major activities. For example, the laws
of control for hovering in the face of vertical and horizontal
flow, respectively, could be

AU = (k/c)Ay )
A(FL —FR)=(k/c)Aw (3),

where U is the amount of upthrust given by the two wings,
(k/c) is the ratio of the drag constant to an optical scaling
coefficient, y is the vertical component of the optical flow,
F is the forward thrust given by a wing, and w is the hori-
zontal component of the optical flow.

Which control laws govern the fly’s behavior at any one
time depend upon the goal, or “global action mode” of the
fly (Warren, 1988): cruising, landing, foraging, pursuing



conspecifics, etc. For each of these global action modes, ob-
jects in the environment will “afford” certain actions.
Strictly speaking, the “‘affordances” of surfaces in the envi-
ronment are constant for a particular animal (Gibson, 1979),
but the global action mode determines which ones the fly
uses. For example, while foraging, a fly will use a flower’s
affordance of nourishment and support, while avoiding all
other surfaces. However, when tired, the fly might avoid
flowers, but use the affordance of a resting place which large
stationary objects will have. Once an action mode is
adopted, the laws of control direct the actual output of the
fly.

Ecological Robotics

We discuss below some work demonstrating that the control
laws outlined in the previous section can be used suc-
cessfully to control a mobile robot. We call this practice
ecological robotics. It should be noted though that any mo-
bile agent (be it biological or artificial) with a device to reg-
ister the optical flow can use control laws like these to
achieve its goals, with only the adjustment of some con-
stants. Thus the study of optical flow for the control of ac-
tion provides a domain in which experiments in two separate
fields, ecological psychology and mobile robotics, can have
direct relevance to each other.

Obstacle Avoidance

Our first work (Duchon & Warren, 1994) looked into con-
trol laws for the most crucial ability of a mobile agent:
avoiding obstacles. The robot had a 12-inch base and a sin-

gle camera with a 60° field of view placed about 75 cm off
the ground. A fast patch-matching optical flow algorithm
(Camus, 1994) provided a dense, robust flow field at 4
frames per second, allowing us to control the robot moving
at a speed of 4 cm/s. Because we tested the robot in a
tightly constrained office environment with poor lighting,
we equipped the robot with a couple of “emergency” reflexes
which would stop and turn the robot 90° when it got too
dark (i.e., when no flow could be seen) and when a crash was
immanent (t<1 sec).

We investigated the performance of two control laws in
this environment. In the Balance Strategy, the agent moves
so as to equate the average magnitude of optical flow seen
on each side of the FOE (as some bees do [Srinivasan,
1992]). In the Avoid-Closest Strategy the agent turns away
from the point in the visual field with lowest T.

We generally found the Balance Strategy to be more stable
since it takes the entire field of view into account when de-
termining the amount of rotation, whereas the Avoid-
Closest Strategy is based only on a local region. For exam-
ple, to go through an aperture, the Balance Strategy allowed
the robot to head straight down the middle (where the flow
would be equal on the two sides), whereas the Avoid-Closest
Strategy required the robot to sequentially avoid one side or
the other of the aperture until the sides were no longer in the
field of view. However, both of the control strategies al-
lowed the robot to wander and avoid obstacles successfully
as illustrated in Figure 1. Dark regions under the tables and
textureless chair backs caused problems for the robot, but its
ability to avoid hands placed suddenly in its path demon-
strates the utility of these control laws.

KEY

small chair

large chair with arms

table

starting position and orientation of the robot @ trashcan

= hand, temporary
= emergency tau stop

=  emergency dark stop

* end point of run

Figure 1. Obstacle Avoidance. A: Balance Strategy. The robot successfully avoids the hands placed in its

path. The trial is stopped due to floor debris after 500 frames.

B: Avoid-Closest Strategy. The robot is posi-

tioned just in front of a chair and the rau reflex makes it stop and turn 90° to the right. It avoids the hands and just
misses a chair arm before running into a dark area. It has a problem again with the darkness under the tables, but
the reflexes eventually point the robot in a favorable direction and it heads down the middle of the room towards
the farthest corner. The trial is stopped due to cable lengths after 1000 frames.
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At least two other groups have independently implemented
similar ideas. Sandini er al. (1993) built a robot which
would balance the flow seen from two cameras facing later-
ally. Coombs et al. (in press) have recently designed a robot
with two cameras facing forward, one with a wide angle lens
(115°) and one more foveal (40°), both of which are
controlled with active gaze stabilization. Whereas they
balance the maximal normals of the optical flow in the left
and right peripheral fields, we take an average of the entire
left and right fields relative to the FOE. Thus, the Balance
Strategy used here can avoid a head-on collision with a well-
textured wall from only 40 cm away (no such surfaces were
present in the trials of Figure 1), because noise in the
system breaks the symmetry and once a small difference in
the flows is acted upon the difference becomes greater until
the robot has completely avoided the wall. Also, no gaze
stabilization is required since during a fast rotation, the
amount of flow should be equal on the two sides, specifying
no rotation, so optical flow due to the agent’s own rotation
is cancelled.

Other robotic implementations based on the insect
literature (e.g., Cliff (1992), Franceschini et al., (1992), and
Sobey (1994)) have all used metric distance calculations and
a mapping function for planning a (local) path or for
tracking (cf. below). This information is totally absent
here. Aloimonos (1992) and Nelson & Aloimonos (1989)
took a similar approach to ours but required an additional
intermediate representation of a “hazard map” based on
normal flow to find the heading of the safest path.

The Game of Tag

Wandering around and not hitting things may help an agent
avoid getting hurt, but survival requires more goal-directed
behavior such as that exhibited in predator-prey interactions.
A lion attacking a herd of zebras will chase the closest or
slowest animal in the herd, and then use its claws to bring
down the prey. The prey, for its part, must recognize that it
is being attacked and make sure that the predator comes no
closer. In humans, the children’s game of tag is a (usually)
gentler form of this interplay.

Our implementation of tag is slightly different from the
typical game. We consider tag to be a global action mode,
like foraging, and the aspects of tag like chasing and escap-
ing to be subordinate action modes. Instead of the concept
of Ir, there is only an agent and a target. While in the
watching mode, the agent does not move until a moving
target appears in its field of view. It then fixates the target
by centering it in the field of view and tracks it throughout
the trial. In our simplest implementation, no segmentation
of the target is done. Instead, the control law for fixating is
simply to turn to the right (increase force on the left) if
more flow is seen on the right:

(FL —FR) = k(|wg| - |WL|) (@).

While watching, this means that the robot will turn towards
the side where the target appears and will continue to do so
until the amount of flow is equal on the two sides of the
field of view, i.e., it has fixated the target. This control law
will be functional as long the target is the sole or fastest

moving object (e.g., a rabbit in a field), the target is the
closest object, all the moving objects are potential targets
(e.g., a school of fish), or the motion signals are
subsequently filtered (see Prokopowicz et al. (1994) for
further discussion of how and when to use various kinds of
information for tracking—though we would argue that
motion signals can still be used when the agent is moving).

Fp + Fg =0,
or no change in

(FL+ FR)

for some time

escaped!

Figure 2. The action modes for tag and the transi-
tions between them. Fixating takes place continuously
throughout the game. A miss! was recorded if the tar-
get fell outside the robot’s field of view. The transition
conditions and control laws for each mode are described
in the text.

If the target withdraws from the agent (i.e., the optical
flow has an focus of contraction, detectable by 1/T=1n <
-me, where me is a “margin value”) then the agent chases it.
If the target approaches the agent (i.e., M > me) then the
agent enters the escape mode, backing up until it is caught
or successfully escapes. Chasing is defined as having two
parts: a) the shadowing mode in which the agent matches the
speed of the target; and b) the docking mode in which the
agent makes a controlled approach (rather than a hard attack)
with the target. Shadowing is achieved by

A(FL + FR) = -kn (5)

i.e., increasing force if the target is escaping and decreasing
force if the agent is gaining on it. Escaping is essentially
the same except that the agent needs to continue to increase
the distance from the target at all times, which can be done
by adding the term -kp to the right-hand side of equation (5),
where W is the minimum amount of acceleration from the
target. The agent exits the escaping or shadowing modes if
it has stopped accelerating.

The second aspect of chasing, docking, is achieved by

A(FL +FR)=k(1+0.5) (6)

where 17 is the derivative of T, and can be used to control de-
celeration prior to contact. If T is kept equal to -0.5, the
observer will just touch the target (Lee, 1976). Docking is
complete when T is below a certain margin value, mg,

167



which can also be used to register that it has been caught if
it is escaping. Once the escape or dock is complete, the
agent stops and the process begins again—the agent waits
for a target to come into its field of view. Figure 2 gives a
summary of these control laws. (Further discussion can be
found in Warren (1988)).

In the office environment of Figure 1, we videotaped a
series of escapes and chases. The experimenter brought a
4x12 inch textured target into the robot’s field of view and
moved it away from (or towards) the robot at an appropriate
rate and with a few changes in direction. Even without
explicit segmentation of the target, the robot successfully
chased down the target 70% of the time, with some chases
lasting 3-4 meters. Escaping was more difficult since the
robot had to move backwards while facing the target and
only 40% of the escapes stopped soon after the target
stopped approaching.

We also implemented these controls laws with segmenta-
tion based on a simple difference-of-boxes operator acting on
the horizontal dimension of the optical flow, but found that
the percent of successful chases did not increase. This may
have been due to the crude nature of the segmentation algo-
rithm. Animals undoubtedly have more sophisticated means
of segmentation which would include other properties of the
target (e.g., color, shape, size, and type of internal motion).
Nevertheless, segmentation is hard and as was seen with the
obstacle avoidance algorithm, reliance on precise segmenta-
tion can lead to less robust performance. Psychophysical ex-
periments in our lab (Warren & Saunders, in press) indicate
that humans do not segment the scene before determining
their heading either. Further work is underway to investigate
the extent to which 3-D models of the environment are used
by humans when navigating under circumstances similar to
the robots here.

Conclusion

We have discussed behaviors like obstacle avoidance and the
game of tag which can be produced in a robot with no
reconstruction of the visual scene (Aloimonos, 1993). At a
minimum, this work points to an approach eschewing a cen-
tral model in favor of a tighter binding between action and
perception. This methodology has been explored by a num-
ber of robotics researchers (e.g., Aloimonos, 1992; Brooks,
1991b; Coombs, er al., 1995; Horswill, 1993; Pfeifer and
Verschure, 1993; Sandini et al., 1993) and has even produced
higher-order behaviors like planning (e.g., Mataric, 1992;
Meeden, 1994). The similarities between these approaches
and ours based independently on Gibsonian ideas suggests
that the application of the theories and results from forty-
five years of ecological psychology will surely enhance this
endeavor.

Our work also ties in with recent physiological studies
and lesion cases (Milner & Goodale, 1993) that suggest sep-
arate “what” and “how” pathways in the brain. The lesion
cases have indicated a difference between knowing what an
object is, and knowing how to maneuver it. This change of
emphasis is also reflected in some philosophical approaches
to knowledge whereby to “know that” first requires one to
“know how” (Bechtel, 1990; Ryle 1949). Our robot does not

need to know what an object is in order to avoid it, nor
identify a target before knowing how to control its escape.
In essence, we have implemented a simple “how” pathway.
But, since an approaching conspecific may afford mating as
well as escape, it is important that all the affordances of an
object be recognized and one of them acted upon. Neural
networks would be an ideal means of satisfying the many
soft constraints (affordances) of an object and choosing a
single output (action mode) (see also Brooks’ subsumption
architecture [1991b] and Pfeifer & Verschure’s distributed
adaptive control [1993]). In any case, knowledge of the
affordances of an environment provides a basis for a choice
of action, and that action, once chosen, can be controlled
without a central model of the world. Such procedural,
functional knowledge seems necessarily prior to more
abstract, declarative knowledge.

Finally, the fact that these control laws are essentially
universal for mobile agents with perceptual systems capable
of detecting optical flow means that they can be investigated
in insects, animals, humans and robots. We are beginning
an interactive approach with the last two kinds of agents.
Robotic modeling helps us determine the plausibility of
control laws that have been hypothesized for biological
agents, and from psychophysical studies we hope to find
new control laws useful in a robot. The study of control
laws based on optical flow thus provides a unique
opportunity for cognitive scientists, computer scientists and
engineers to work together, solving the same problems.
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