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ABSTRACT

This report gives a thorough and complete account of the mathenatical
problens involved in the determination of the electromagnetic field components
generated by a horizontal eleciric dipole embedded in a conducting half-space
whose plane boundary is also horizontal. The problem is formulated by
introducing the Hertzian vectors or polarization potentials and employing the
tecinique of triple Fourier transforms in Cartesian coordinates, in configura=-
tion space as well as in transform space. Suitable integral representations
are obtained for the components of the Hertzian vectorse.

It is shiown that this formmlation is fundamental in the sense that it
contains 'per se! all other lmown forrmlations of the problem. Thus, by
suitable transformations of the variable or variables of integration one
readily obtains the formulations of Sommerfeld (1$09), Weyl (1919), Ott (19L2),
etcs Further, by correctly specifying the original path of integration in
Sommerfeld's formulation of the problem and by carefully analyzing the class
of permissible deformations of the original path, the whole moot question of
poles and residues is clarified in a straightforward manners

The report also presents tihe complete independent solution of the static
problem and it is shown that all solutions for tlie alternating case converge
uniforily to the static solutions as tiie freguency is made to vanishe. Further,
the static solution is applied to an extended source pointing out the way for a
sirdlar extension of the alternating dipolar solution.

Tne Carbes1an components of vie ﬂeruzian vecbors and the cylind¢ical

of four iunaamen”*l integrals, wiica are expanaea in mth+uoLLc seriss by
saddie point asethods, two of tlese integrals belonging vo tiie conducting
mediwn and the otuer two to tie free space above. It 1z shown, in the treat-
nenv ol each of the four integrals mentioned, that there are two distinct
ptotic coutiributions arising frow two saddle noints and the notable feature
of the results is that one of the saddle points yields a solution whicnh is

not exponentially attenuated in the horizontal direction in accordance with
known experimental resulits. Thus, the possibility of large ranges of the field
in the horizontal direction at depths which are nolt too zZiyeat is clearly
established.
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NOTATION

Ao Coefficient in the power series expansion of d?(x), Eq. (5.11).
Ag?th) Coefficient in the double power series expansion of éﬁ(x,y), Eqe (5¢53)
“ Qo Coefficient in the power series expansion of w(x), Eqe (5.22)
Bg?hum) Coefficient in the double power series expansion of g(x,y)s Eqe (5.72)-

Cop Coeffécie?g ég)the power series expansion of x?/z qua function of w,
qO -] o

h Depth of dipole source and height of dipole image (Fige 1).

K(n,92) A function introduced for convenience in notation, Eq. (£.67).

ko Value of the transform variable A associated with the zeros of the
Sommerfeld denominator, WN(A), Eq- (2.96).
' kl Propag%tion gonstant for plane ?omogeneous waves in medium (1);
_ kl = aJ)%>Ei + iuyuoci.azlcbec'.
) k, Propag%tion gonstant for plane hogogeneous waves in medium (2)j
ky = wp € +iwn o % WSp € o
My Fundamental integral for medium (1), Eq. (3.18).
Mél) Fundamental integral Mi evaluated over path Cl (Fige ) o
M£2) Fundamental integral M; evaluated over path C, (Fig. )
N(A) The Sommerfeld denominator, Eq. (2.9l).
n Complex index of refraction; n = kp/kj e
Q(n) A function introduced for convenience in notation, Eqs. (6.133), (6.131)-
Ry Distance from dipole source to point of observation (Fige 1), Eq. (2.1)-
B R, Distance frcm dipole image to point of observation (Fige 1), Eq. (2.1).
U Fundamental integral for (h=z) =0, Eqe (2072)e |
Uy Fundamental integral for medium (1), Eq. (2.57).
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Fundamental integral for medium (2), Eq. (2.69). -

Fundamental integral U; evaluated over path Gy (Fige ).
Fundamental integral Uy evaluated over path C, .(Fig. L).
Fundamental integral for (h~z) =0, Eq. (2.73).
Fundamental integral for medium (1), Eqe. (2.68).

Fundamental integral for medium (2), Eq. (2.70).
Fundamental integral Vl evaluated over path Cl (Fige 1) ' .

Fundamental integral V, evaluated over path G, (Fige L).

Component of V(z)
Eq. (6-125 .

Component of V§2) representing the passage through the saddle
point, Eq. (5.125).

representing the contribution from the pole,

Transform variable, variable of integration, parameter.

Variable of integration introduced in the conformal transformation
A= kl sin Ml (Section 6-13.)-

Variable of integration introduced in the conformal transformation
A =kp sinoty, (Section &.2a).

Transform variable, variable of integration, parameter.
Attenuation factor associated with I, Egs. (2.32), (2.58).
Attenuation factor associated with k,, Eqs. (2.35), (2.58).
Transform variable, variable of integration.

Intrinsic impedance for medium (1).

Intrinsic impedance for medium (2).

Transform variable, variable of integration.

Intrinsic admittance for medium (1).

Intrinsic admittance for medium (2).



-9 Angle between positive z direction and R, (Fige. 1), Eq. (2.1).
b Angle between negative z direction and R, (Fig. 1), Eqe (261)-
Transform variable, variable of integration.
Transform variable, variable of integration.

A
g
‘ifl Source function, Eq. (2.45).

—%2 Image function, Eq. (2.66).
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I. INTRODUCTION

The problem originally proposed to us has to do with the complete deter-
mination of the electromagnetic field generated by a horizontal antenna embedded
in a conducting half-space, the antenna consisting of an insulated wire termi-
nated by bare electrodes (Fig. 2). We were asked to determine the near field,
the far field, the current distribution along the antenna wire and the input
impedance of such a device.submerged in a conducting half-spabo and located
close to the horizontal boundary. I soon became clear to us that the problem
of determining the input impedance and the current distribution along thezwire
was in essence tied up with the solution of an extremely difficult antenna
problem and we abandoned all efforts to answer these two questions.

There remained for us the alternative of considering the current disg-
tribution along the wire as prescribed; and, granting that the Green's function
for an elementary, horizontal electric dipole, embedded in the conducting half-
space, had been obtained, ihe problem of the extended source with preseribéa
current distribution could then be solved by integrating over the source using

Green's theorem. Thus, it looked to us that a necessary step towards the

complete solution of this complicated antenna problem was the determination of




the electromagnetic field of a horizontal electric dipole in a cqnducting half-
space (Fig. 1), which is precisely the problem that we have undertaken in a
lengthy investigation covering nearly two years and culminating in the present
report which covers the most essential details of our calculations.

As is well known, the problem in question was first discussed in a bril-
liant memoir by Arnold Sommerfeld® in 1909 and since then a considerable number
~of papers have appeared on vafious agpects of the problem as studied by several
authors. In attacking this problem we have been led to examine some of the
pertinent references and, thus, this report contains also a comprehensive
review of such papers. In this Introduction we wish to stress those results
of ours which are new or which go beyond the work of all our predecessorse.

In Chapter IT we undertake the complete formulation of the two-medium
problem for a dipolar source by employing the technique of Fourier integral
representations using Cartesian coordinates{in both transform and configura-
tion spaces; and, by introducing suitable transformations of the variables of
integration we obtain the known forﬁulations of Sommerfeld (1909), Weyl (1919),
ott (19)42), and others. We examine in particular the Cartesian components of
the Hertzian vectors or polarization potentials and we exhibit them in terms
of four fundamental integrals, two of which correspond to points of observa-
tion in air and the other two to points of observation in the conducting
medium. Because of the magnitude of the present project this report is con-
cerned mainly with the evaluation of the integrals for points of observation
in the conducting medium, and we reserve the evaluation of the integrals for
points of observation in air to a future publication. None of the results

presented in Chapter II are essentially new, except our complete treatment

* See Bibliography at the end of this report.



of the %riple Foqrier-integra%ﬁ;epnggentations and our discussion of the regions
of analiticity for the transform variables which has an important bearing on the
whole question of poles and.;egidues-h In addition, we give a detailed descrip-
tion of the Riemann surface of four sheets in the A-plane (Sommerfeld's plane of
integration) showing how.tondraWJthe,byanch cuts and indicating clearly how to
determine the nature oflthefpo}es oﬂ the .integrand, whether real or virtual, on
the various sheets of the Riemann surface.. .

In Chapter III.WeJdeduce the electric and magnetic field components in
cylindrical coordinates, expresging our results in terms of the Cartesian
components of the Hertzian vectors which in turn are given in terms of the
fundamental inpegrals and their derivatives as mentioned in the preceding para-
grapho,>Making use of,cgrtain differential equatioﬁs which connect the various
fundamental integrals among themgelves, we are able to exhibit the cylindri-
cal components of the field vectors in various forms more suitable for compu-
tational purposes. ﬂFor example, the Cartesian components of the Hertzian vector
and the cylindrical components of the field vectors for points of observation
in the conducting medium can all be expressed in terms of a single fundamental
integral and its derivatives, and similarly for points of observatioen in air.

Chapter IV containg the solution of the two-medium dipclar problem in
the static‘iimit .(hh—+_0). We find that all of our integral representations
converge uniformly to the static .solution (as obtained independently by ele-
mentary methods) for < —» 0, which affords an important partial check on
our formulation of the problem. .Thus, we present the independent solution for
the electric field based on the method of images which in turn allows the
determination of the current distributjon everywhere. From a knowledge of
this current distribution we then determine the complete magnetic field and

we discover that the major contribution (to the magnetic field) comes from




the surface layer discontinuity in V x J which exists at the interface
separating the two media. We believe that the independent solution for the
magnetic field is being presented here for the first time.

In Chapter V we undertake a general discussion of the saddle point method
of integration which we apply in this report to the asymptotic evaluation of
the fundamental integrals and their derivatives. First, we consider the saddle
point method for a single integral and we discuss the necessary and sufficient
conditions for the application of Watson's lemma. It 1s clearly pointed out
that the “asymptotic convergence®" of the resulting series is governed by the
radius of convergence of the power series expansion of the integrand about the
origin in the complex plane of integration, which is the distance from the
origin to the nearest singularity. And we discovered that, when the nearest
singularity is a simple pole (or a pole of any order), the "asymptotic con-
vergence® of the series could be greatly enhanced by the removal of the pole
from the integrand, a process which was discovered independently by van der
Waerden, but which we feel we have developed in the simplest possible fashion.
We wish to call attention to this achievement, for we feel that it constitutes
one of our major original contributions.

In addition, we have developed the saddle point method for a double
integral which arose when we replaced the Hamkel function appearing in the
integrand by a suitable integral representation (thus leading to a double
integral), in turn to be treated by the saddle point method of integration.

We believe that it was this extension of the method to a double integral that
allowed us to determine the asymptotic expansions of the fundamental integrals
and their derivatives to three terms, which had never been attained by any of
the previous authors and which proved absolutely necessary in order to clearly

delimit the range of applicability of wvarious approximationé undertaken later.




In Chapter VI we present the evaluation of the fundamental integrals U;
and Vl and their derivatives fo: points qf observatign in the conducting
medium. As shown in Chapter II, each typical integral can be resolved into
the sum of two integrals, I = Il &+ IQ, by a suitable deformation of the orig-
inal path of integration. Integrals_of the type I, are evaluated agymptoti=
cally by the saddle point method for single integration and, because they are
shown later to be of negligible magnitude in comparison with the contributions
of the integrals of type I, we present only the leading terms of the asymp-
totic.expansiqns:for the fundamental integrals. On the other hand, integrals
of the type I» and their derivatives are evaluated by the saddle point
method for a double integral employing the techniqug of the removal of the
pole from the integrand whenever necessary. The reason for the independent
evaluation of,tha higher order derivatives is clear: asymptotie series can
not in general be differentiated term by term to yield the asympitotic series
of the derivative as we confirmed by actual compariscn. Thus, we fell all
along that it was not sufficient to undertake the asymptotic evaluation of
the Cartesian components of the Hertzian vectors, from which the field com=
penents can be obtained by applying differential cperators, but that to obe=
tain accurate resulis it was necessary to examine the asymptotis expansion
of each derivative. We feel that in this respect we have again gene beyond
all of ouripredeeessors, for in ali the papers that we have studied the
authors content themselves with the asymptotic evaluaticn of the fundamental
integrals, which they then proceed to differentiate %o obtain, sometimes in
error, the electric and magnetis field componentse

Chapter VII contains the results for the conducting medium and repre-
sents the culmination of the present research project. First of all; we

undertake in this Chapter to give a ¢lear-cut and unambiguous definition of




the various ranges in which it is possible to obtain much simpler formlesthan
the ones presented in Chapter VI. We consider the asymptotic range /A —» o
and we present the Cartesian components of thé Hertzian vector and the cylin-
drical components of the electric and magnetic field vectors in this limite
We recognize that this range is of no practical value at low frequencies, but
the results given, which are new, are used here to describe completely the
nature of the electromagnetic field as 2 =>o0 .+ Next, we take up the range
of parameters for which the horizontal range is largé in comparison witﬁ a
wavelength in air but for which, at the same time, we have the condition that
Sommerfeld's numerical distance is very small in comparison with unity. This
range is of interest because it applies to the well-known Sommerfeld - van der
Pol Mattenuation formulas®™ with which we have compared our asymptotic resultis
with complete agreement. And, finally, we consider the range or parameters
which is of préctiéal value in the low frequency case; namely, when the hori-
zontal range is small in comparison with one wavelength in air but large in
comparison with one wavelength in the conducting medium. For this important
range of parameters we present again the simpler forms assumed by the compo-
nents of the Hertzian vector and by the electric and magnetic field components.
Next, we take up the study of the limiting forms of our results when the
source dipole and the point of observation both lie on the surface separating
the two media. In this manner we are able to compare directly our results
with those of Sommerfeld and van der Pol. Furthermore, we undertake a
thorough review of the various papers published on Sommerfehi's.electro-
magnetic surface wave and by a critical analysis of the erroré committed
by several authors we are able, we trust, to reinstate the work of Sommerfeld
to the esteem and respect which it deserves. We point out that the Zenneck

type surface wave first encountered by Sommerfeld in his 1509 solution of




the problem is a legitimate part of the solution in the range of parameters for
which it is wvalid, but that the contribution of this surface wave is of negli-
gible magnktude in all cases of practical interest, e.ge., the low frequency
casee. ‘

Next, we discuss the limiting form,of our results when we assume that
the wavelength in air is infinite. This case was treated by Lien and we
examine in detail Lien's approximation with the conclusion that it consti-
tutes an excellent approximation in the low frequency case. In fact, we are
able to justify Lien's approximation, which he failed to do, and in so doing
we are able to show the exact nature of the approximation and the magnitude
of the errors incurred.

Finally, we take up a numerical example to illustrate the application
of ouf formulas in the low frequency.case. Considering realistic data we
obtain approximate expressions for the electric and magnetic field compo=-
nents which are valid, at a frequency of 900 c.pess, for horizontal ranges

between 50 and 5000 meters. It is shown that the field vectors vary as the

inverse cube of the horizontal range and are exponentially attenuated with

the aggregate depth of source and point of observation.




II. FORMULATION OF THE TWO-MEDIUM PROBLEM FOR A DIPOLAR SOURCE

In this Chapter we are concerned with the problem of setting up suitable
integral representations for the Cartesian components of the Hertzian vectors
which will be employed in Chapter III in the computation of the electric and
magnetic field components. It will be assumed that the sole source of the
electromagnetic field is an oscillating dipole embedded in a conducting half-
space and oriented parallel to its plane boundary. It is shown that the most
convenient formulation of the problem is based on the application of triple
Fourier transforms employing Cartesian coordinates in both configuration and

transform spacess

2.1 STATEMENT OF THE PROBLEM

As shown in Fig. 1, we shall assume that the horizontal plane 2z =0
coincides with the interface between two homogeneous and isotropic media of
different conductivities. In the present instance, medium (1) is a con=-
ducting half-space with conductivity ¢ = 6, and medium (2) is the air

above with conductivity oy = 0. However, for the sake of symmetry which

Rl



facilitates the discussion of the static 1limit (Chapter IV), and to secure the
convergence of the integrals for ‘poin'ts of observation in air (cf. post, Sec-
tion 2.3), it wili be assumed that both conductivities are finite with 6‘2 as
small as desired. It will be further assumed that both media have the magnetic
inductive capacity of free space, Pq = Po =M, 3 and that, as regards electric
inductive capacity, we can put ffl = K—eo and ez = €, where K is the
dielectric constant of the conducting medium and 60 is the electric inductive
capacity of free spacee.

The source, consisting of a horizontal electric dipole, is located at
the point (0,0,~h) in medium (1) and is oriented parallel to the x axis.
It will be convenient to introduce here, as shown in Fige 1, the image point
located symmetrically in medium (2) at (0,0,h). As shown below, the whole
problem can be formulated in terms of functions which éxhibit axial symnetl-*y
about the 2z axis passing through the source point and its image. = Therefore,
it will be convenient to identify points of observation by their cylindrical
c‘oordinates ( P $,2). Figure 1 displays a point of observation in medium (1),
which lies on the plane of the papér (x =0), illuétrating the distances
Ry and R2 s> from the point of observation to the source point and its image
respectively, and the angles &1 and 92 wh}.ch these dista.ncé"s" make witn

the 2 axis. As here defined,
2 5% | :
R, = [[o +(h+z)} s ‘banel":/o/Kh"'Z);
2 . . 1% | :
R2 = [[D + (h - 2)2:{ s 1::;11192 "‘/O,/(n -z) ,

from which it is clear that, with finite depth of source (h > 0), we have

0% e < /2 for points of observation in medium (2) and 0 < 6, < /2

for points of observation in medium Q).




Fig. 1.~ Coordinate system showing the position and orientation of the
source and its image and a point of observation in medium (1), chosen for

convenience on the ' ygz-plane.
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2.2 TFUNDAMENTAL EQUATIONS

The formulation of the present two-medium problem implies the solution
of Maxwell's equations for each medium subject to the classical boundary cén—
ditions at the interface. The solution of this problem is facilitated by the
introduction of the Hertz vectors or polarization potentials from which the
field components are readily computed. The imposition of the boundary condi=~
tions at the interface then furnishes the necessary relations which render

the solution determinate and unique.

2e2a8+ The field equations.- Consider first a homogeneous and isotropic

conducting medium of infinite extent which is fully characterized by the
macroscopic parameters n, €, and ¢ . Assume next that the source func-
tion and all the field variables exhibit the common time dependence e~iwt s
where @ 1is the fixed angular frequency of the driving source. In terms

of the propagation constant k for plane homogeneous waves, which is defined

by

k2 = w2}16+ iwp 6, (2.2)

and in terms of the intrinsic impedance & and intrinsic admittance 7 of

the medium, as given by the relations
kf;gw}lg kn= we+ ioc, (203)
the set of Maxwellian equations, when expressed in rationalized mekes. units,

assume the form

I. V xE = ikZH III. V°H = 0
(261)

II. V x H = -ikrg + J° Ve V *E
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in which J° denotes the vector of prescribed current density distribution
which characterizes the source function.

As is well known, the set I = IV given by Egs. (2e);) admits a solu-
tion in terms of the Hertzian vector or electric polarization potential “TT

as followss:
E = VV Tl 4+ 2T, H = =-iknVxTT, (2.5)

where the Hertzian vector TI' is a particular integral of the inhomogeneous,

vector Helmholtz equation

(V2 + K¥B)TT = =13%Kkn. (2.46)

2¢2b. The nature of the source.- In general, the prescribed current

density distribution JC appearing in the inhomogeneous term of Eq. (246) is
assumed to be confined within a finite region at a finite distance from the
origine 1In this case, the so-called radiation condition demands that the
solution of Eq. (2.6) consist of outgoing waves on the surface of the sphere
at infinity. In the present instance, the source cbnsists essentially of an
insulated horizontal wire of length ZAZ(Fig. 2), terminated by suitable bare
electrodes at the extremities of the wire, and located in the conducting
medium at a depth h below the horizontal interface. The generatér leads
are assumed to be inserted at some suitable point along the wire, eeoges
between one electrode and the immediate extremity of the wire, thus driving
a current Ie t®% along the length of the wire.

It is recognized at the outset that the amplitude factor I is an
unknown function of position along the length of the wire which depends on
the nature of the insulation and on the complicated propagation character-

istics along the wire as affected by its finite length and its proximity to

)



iy

13

the boundary surface separating the two media. As a first approximation we
have assumed, as indicated in Fig. 2, that the amplitude current I is a
constant, independent of position along the wire. Thus, the prescribed cur-
rent density vector J°, corresponding to this idealized source, may be con-

veniently written as
° = e, I {u(x +4) - ulx -i)} 8(y) §(z + h) , (2.7)

where e, 1s the unit vector in the direction of the x axis and where

u(x) denotes the unit step function, which is defined as identically zero for

negative argument and unity for positive argument, while 8 (x) is Dirac's

§ =function which we here regard as the derivative of the unit step function.
In this report we are mainly concerned with points of observation at

distances which are large compared with the length of the extended source.

In this case we may regard the source as a dipole which is generated from the

extended source by letting £ —» 0. Thus, defining the electric moment® of

the dipole as
p = Lim(2I) as Ll—»0 ad I 5w, (2.8)
we readily obtain for the prescribed source function the compact expression
3° = ep 8(x) §5(7) 5(z + 1), (249)

which corresponds to a Hertzian dipole located on the 2z axis, at a depth h,

and oriented in the direction of the positive x axis (Fig. 1).

#* Phis definition differs from the conventional definition of the
electric dipole moment of a Hertzian dipole by a constant factor; in fact,

p = -iw p(l) where p(l) is the conventional electric dipole moment.
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" Fig. 2.- Diagram of an extended source.
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Besides the assumption of a dipole source being an accurate approximation
to the problem at hand, it is a logical first step in obtaining a completely
rigorous solution to the problem of an extended source 3 since, as is well known,

the rigorous solution of the problem of a prescribed extended source may be given

~as the superposition of properly weighted solutions of the dipole problem by

the application of Green's theorem.

2+2¢. Formulation of solution in terms of JI =vectors.- We have shown

that the source vector J° may be regarded as a dipole singularity in the

x direction; therefore, in accorda.nce with Eq. (26), the Tl ~vectors for both
media must have at least an x component. It will be proved later (Section

}1e5) that the interface z = 0 separating the two media is in fact a surface
singularity for V x J (where J = ¢E denotes the conduction current) which
acts as a secondary source; therefore, we must also have the 2 components of
the Tl -vectors. The boundary conditions and the symmetry of the problem clearly
point out that no y components are needed. In consequence, we exhibit at

once the TV -vectors for both media as

-n_(l) = eJ{:“Txl + ezTrzl ’ z< 0,
2) (2.10)
m = exTrx2 + ezTrz2 ’ 220

furthermore, because the source singularity is embedded in medium (1), it will

be convenient to exhibit Tl'x as the sum of two components,

1

o] 1
T\'xl = Tl’xl +1Txl s z <0, (2011)

o
where 'ﬂ'xl s in accordance with Eq. (2.6), is a particular integral of the

inhomogeneous, scalar Helmholtz equation
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2 2 N
(V5 + KDWY = =(in/igm) §(x) §3) §(z + b),  (2a12)
and TTi'l is a solution of the corresponding homogeneous equation, namely
2 2.1
(VT + kl)vxl = 0, z2< 0. (2.13)

The remaining components, Trzl’ Trx2 and T 52’ likewise satisfy identical

homogeneous, scalar Helmholtz equations in their respective media; that is,
2 2
(V Hcl)‘!’Tzl = 0, z£0,
v+ &M, = 0, w30 (2.10)
kz x2 b4 d ’
(V2+ )T, = 0, m»0.
K 22 ’ ‘ .
The boundary conditions imposed on the Cartesian components of the
T =vectors, as defined by Eqs. (2.10), are readily deduced from the continuity
of the tangential components of E and H, at the interface 2z =0, which

are computed for each medium in accordance with Egs. (245). Thus, omitting

details, we obtain at z = 0 the bounciarsf: conditions

2 2 2 37T x1 2 9T 4o

kl_“-xl = k2Trx2 ’ 5 Y ) = ko 2% (2.15)
2T 2T o T

T . = KT xl, 22l [ x2, " =2 (2.16)

1zl 2 'z2 %x 9s CE 4 s

In consequence, we are to choose solutions of the homogeneous Eqs. (2.13) and
(2+1)y) which, when combined through Eqs. (2.10) and (2.11) with a particular

integral of Eq. (2.12), satisfy simltaneously the four boundary conditions

given above.
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2.3 FOURIER INTEGRAL REPRESENTATIONS IN CARTESIAN COORDINATES

The formulation of the present boundary value problem and the satis=
faction of the boundary conditions are more readily effected by expressing the
Cartesian components of the T =vectors in terms of their triple Fourier inte=-
gral representations displayed in Cartesian coordinates in transform space as
well as in configuration space. According to Fourier integral theory such a
representation necessarily yields a complete and unique solution; therefore, as
shown in Section 2.);, all proper formulations of the problem may be obtained by
merely making suitable coordinate transformations in one or both configuration
and transform spaces. Furthermore, the triple Fourier integral representation
in Cartesian coordinates, after performing two integrations, allows the unequiv-
ocal determination of the path of integration in the complex plane of the third
transform variable which must lie within a certain strip of analiticityo* Thus,
the choice of the path of integration in the third transform variable is quite
independent of the boundary conditions of the problem and, once chosen, dig-
tates the proper interpretation to be ascribed to partial results deduced from
certain permissible deformations of the original path. This matter is inti-
mately connected with the correct interpretation of Sommerfeld's electromagnetic

surface wave to which we return in Section 7.3.

2.3a. The particular integral corresponding to the sources= The component

TT;I, which is ‘a particular integral of Eq. (2.12), can be conveniently chosen
as the Green's function for a horizontal dipole embedded in the unbounded con=

ducting medium; that is,

* B. C. Titchmarsh, "Introduction to the Theory of Fourier Integrals,®
(Oxford Press, London, 19)8), 2nd ed.s po N}, Seco 1027
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vl = hﬁklm. Rl s (2 °l7)

where Ry is the distance from the point of observation to the source dipole
as defined by Eq. (2.1) and where, in accordance with Egs. (2.2) and (2.3), we

have for the conducting medium
k2 = 0)2}1 € +iw ‘5' = wiy Ke + iwn o (2,18)
1 11 % Fo™%0 Ho
and
» = e 03 °
kit = W€ +ic WKE +io . (2.19)

For the purpose at hand, we now seek the triple Fourier integral répre?
sentation of the particular integral (2.17), which is most readily obtained
by going back to the original differential equation (2.12). First, we define

the triple Fourier transform

F(gmzs) = J\W;l(x,ysZ)e'i(‘sxwgz)dxdydz ’ (2420)

=00

which represents an analytic function of the three transform variables

(&, M, &) for limited domains of their respective complex planes as pointed
out Below. To compute F(Z,ms), one multiplies both sides of Eg. (2.12) by
the exponential factor e=i(§x+ﬂy¥$z) and integrates with respect to the real
variables x, y and 2z between =00 and +00. The right hand side of

Eq. (2.12) yields at once

(¢0]
ij $(x) §(y) 8§(z + h)e"i(gxw“'?;z)dxdydz = oI5 N (2021)

=00
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while the term kiv;l on the left hand side yields simply kiF(g,n,c:) in
accordance with Eq. (2.20). |

The remaining terms on the left of Eq. (2.12) involve the three second
order partial derivatives of the Laplacian operator in Cartesian coordinates.
Each of the three terms must be treated 'separa‘bely. Thus, for example,

consider the first integral,

X =+

o T . ;
ﬂ-——z’af T g« || 15| T s | ool

X = =00
-2 11;2 N e'i(écwm)dxdydz ,  (2.22)
=0

where we have twice carried out an integration by parts in the x variable.

It is clear that the vanishing of the integrated part at the upper and lower

limits in the double integral on the right of Eq. (2.22) is guaranteed for
all real values of the transform variable & by the asymptotic behavior of

the function ‘)T:;l itself; for we know from Eq. (2.17) that, with y and

z fixed,
o = \
0 L Halxl 44 jx] —» o 3 (2.23)
x1 1xi

‘ o
and, thus, with k, = Pl + iotl, (°<l > 0), le vanishes exponentially
at the upper and lower limits. In consequence, the right hand side of

Eq. (2.22) becomes merely -ng(g,ﬁ,é) under the sufficient condition that

& be real.
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Identical considerations applied to the two remaining terms of the
Laplacian operator yield similar results, whence we obtain from the original

Helmholtz equation the analytic expression

ip ei‘:l'1
2 ) 2
klmf“*ﬂ +87 =k

F(zmZ) = (2.24)
for the triple Fourier transform defined by Eq. (2.20)s Hence, we have
established that a sufficient condition for the existence of the transform
F(&,ms2) s defined by the triple integral (2.20) as an analytic function of
the three complex variables &, 7 and &, 1is that these variables be
rigorously reale.

We now propose to show that this condition is too stringent.> To this
end, we transform to spherical coordinates in both transform and configura-

tion spaces. Writing, with reference to Fig. 1,

x = R, sin 8, cos ? g = K sinkcosg
Yy = Ry sin 6, singp 'n = K sind sin 4
z+h = Ry cos 8 Z = K cosx

we obtain, instead of (2.21;),

eiKh cosx

. (2.25)

F<Ks°(9.!6) = ip 2

Applying the inversion theorem to the transform (2.25) we have

o}
T (B985 7)

[
J‘ K dX sinedxdg,  (2.26)
e}
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which can be written in this form by merely rotating the polar axis in trans-
form space until it coincides with the direction of Rq.

Carrying out the integrations with respect to the angular variables <
and /3 and extending to negative valueé the range of integration in the

K wvariable, we deduce

o0

o p 1 o ERL ip eiK1R1

x1 B ———— — --—--——--——2 > KdK = » (2 °27)
=00 |

in which the last result, obtained by the method of residues, is in full
accord with Eq. (2.17). The essential point to observe is that the path of
integration in (2.27) need not coincide with the real axis in the K-plane,

but that it is sufficient for the path to lie entirely within the strip
‘ .

-, < Im{x} < &) (2.28)

where O%_: Im {Kl} > 0+ We have then shown that the triple integral
(2+20), regarded as an analytic function of the complex variable K and the
rigorously real variables oL and (@, as expressed by Eq. (2.25), is so
defined only 8e long as K remains within the so-called "“strip of anali=-
ticity"‘defined by Eq. (2.28). This means, returning to our original trans=-
form variables &, 7 and &, that the triple integral (2.20) defines an
analytic function of the three cbmplex variables &, 1 and &, as given

by Eq. (2+2);), only so long as
K = (22 +1f + ;2)% : (2.29)

remains within the strip defined by Eqe (2.28). Thus, for example, if we
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choose to keep the variables & and n rigorously real, then the third

variable % may be allowed to wander off its real axis but just so long as
- < {2} < | (2430)

which now defines the strip of analiticity in the & variable when & and
m and both real.
Applying next the inversion theorem to the transform (2.2);) we obtain

for the particular integral 'ﬂ’;l the representation

Q
i | i [Ex+ry+4 (z+h))
| . ek y .
Xk 8l E o+ af +%4%-k] I (231)
—oo

in which the path of integration for each of the three complex variables &,
n and & 1is the corresponding real axis. Introducing the attenuation

factor

wjH

‘Yl = (52"'7’]2°k§_)

w= iky (2032)

where the sign of the radical is so chosen that Re {71} > 0 for allvreal
values of £ and 1, and carrying out the integration with respect to Z
" in (2.31) by the method of residues, we obtain the desired representation in

the form of a double integral,

: @®
l .
Tr;l = ;p el e“Yl‘Z+h]+l(§C*Ty) dgdﬂ: (2033)
=00

where, in accordance with the final conclusions of the last paragraph, the
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paths of integration in the & and m wvariables are taken along their respec-
tive real axes-
Comparison of Egs. (2.17) and (2.33) shows that we have established the

following integral representation for the source function,

00

ikiR
e 1 1 .

- . =T ]z+h|+i(Ex+ry) .
B = Y, e d&in, (2.3))

=00

where Yi(g,n;kl) has the unique definition given by Eqe (2032). The form

of the integral representation (2.3];) is clear: it represents the superposi-
tion of elementary harmonic waves in the x and y directions, exponentially
attenuated in the z direction away from the source and so combined through
the Wamplitude" factor 1/%; that the double integral over all real values

of £ and 7 yields the elementary spherical wave on the left of Eq. (263h)
That we have indeed a superposition of elementary solutions of the homo-
geneous Helmholtz equation is seen at once by noting that Yi - gz - nz = -ki,
which states that the integral representation (2.3l;) is a solution of the
homogeneous Helmholtz equation in the unbounded conducting medium except at
the point occupied by the source, Ry =0 or (0,05,=h), at which point the

integral diverges as l/Rlo

2.3b. Representation of the x components of the 7Tf-vectorso— The

double Fourier integral rebresentation (263);) for the source function sug-
gests at once the form of similar representations for the remaining =x

1 i )
components s jT’xl and 'Trgz, which satisfy the homogeneous Helmholtz equa=-
tion in their respective media in accordance with Eqs. (2.13) and the second

of (2e1)))s First, we introduce, as in BEg. (2.32), the second attenuation



2)
factor

) 1
Y, = (82 +1f -1k3)° En S0 iko s (2.35)

where again the sign of the radical is chosen in such a way that Re {Yé} >0
for all values of & and 71 on their paths of integration and where k,, the
propagation constant for medium (2), is deduced in accordance with Eq. (2.2)

from

2 2 2
kp = Wy G PP = W Ry € P AORT (2.36)

with 07 as small as desired. Similarly, making use of (2¢3), we put
1{27}2 = w62 o+ j_oé = OJeO + id’z ° (2"37)

Then, following the pattern set by Ege (2.33), the desired integral

representations may be written down at once,

[o 8]
l o - .
o R pfzs R )
0 e fl(g,n)e {7 H) @C*‘T}Y dgdn, z<0, (2°3§)
=0
and
00

T = —ip £5(£,m)e~T22="1h+1(&x+y) azdm, z>o0, (2.39)

where in each case the paths of integration for the £ and ) variables are
taken along their respective real axes. The amplitude functions appearing in

the proposed integral representations contain the common convergence factor
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e-yih, introduced here for convenience, and the unknown functions fl and

f, which are to be determined from the boundary conditions. It is seen by
' 1
inspection that the proposed expansions for 'Trxl and 7752 satisfy the
, X
homogeneous Helmholtz equation in their respective mediae

2+3c. Imposition of the boundary conditions satisfied by the x

componentse- The x components of the T ~vectors, Ttxl = 77‘;1 + 'ﬂ'il

and 1T;2, as given by the integral representations (2.33), (2.38) and (2.39),
must comply at 2 = 0 with the boundary conditions given by Egs. (2+15).
Differentiating with respect to 2z under the signs of integration, as called
for by the second of Eqs. (2.15), putting =z = 0 and recalling that both media
are assumed to have the.same magnetic inductive capacity, which means that we

are allowed to write, by virtue of Eq. (2.3),
k = kz/w and = k2/w (2+1,0)
1™h /% ko X o

we obtain the equality of two pairs of double Fourier integral representa=
tionse. Making use of the uniqueness property of such expansions, we are
allowed to equate the corresponding double Fourier transforms, obtaining,
after dropping common factors,

(24)2)
Sl o+ f = ~of,

as a pair of simultaneous equations in the unknown functions fl and fze

The solution of Egs. (2.)1l) yields readily

L - Y2 1 2 2
1" Sy T TR TRy R tyuye @R
1M+ % n o+ Nt
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in which ¥; and %, have the definitions given by Egs. (2.32) and (2.35)
respectively.

Substituting the above results into the corresponding integral represen-
tations, we obtain for the x components of the TN ~vectors the expressions

which we set out to establish,

™
. ) -Yl 'Z“'h' Yl (Z-h) Y]_(Z-h)
ip e e 2e i(Ec+y)
i - + dzd <0 (2.13)
x1 B8 kim Yl Yy Y, + Y, e &ns z (2.13
=®
o
. 2 o )
‘ ip e YQZ Ylh*l(a(""ﬂy) dgdﬂg z2>0, (2°hh>

x2 8"21927}2 YLt Y

in which an essential point to remember is that the paths of integration in

the & and m variables are their respective real axes.

2.3d. Repfesentation of the % components of the Tl -vectors.- The

z components of the M -vectors, Trzl and 1T%2, satisfy in accordance

with the first and last of Egs. (2.1};) the homogeneous Helmholtz equation
in their respective media and have Fourier integral representations of a form
analogous to Egse. (2038) and (2.39). Thus, we propose at once the representa-

v

tions

(0.0]
; . ¥y (z=h) +i (Zx+1y)
"n‘z L = Zﬁi{ﬂ’ lggl(g,n)e dgdn, z <0 ; (2.145)
=
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T = hn2k j[ 28, (5m)e ~rez-Yphi(geiy) agin, 220 (2.16)
2“2
-00 -

in which the only new feature is the explicit factor 1& in both integrands,
introduced here for convenience, and in which g, and .gz denote the unknown
amplitude functions to be determined from the boundary conditions. It is seen
by inspection that the proposed expansions for 1T%l and 1T;2 satisfy the

homogeneous Helmholtz equation in their respective media.

2.3e. Imposition of the boundary conditions satisfied by the z com=

ponentse- Proceeding as before, we now substitute the integral representations
(2+)5) and (2.))6) into the boundary conditions given by Egs. (2.16). Carrying
out under the signs of integration the differentiations with respect to =x

and %z, as called for by the second of Egse. (2.16), and evaluating at z =0,

" we obtain the pair of simultaneous equations

L2 . L (2.17)
g = 83 =iz 181 = 7 = To8p (" » ol
KM *Th ks (L * %

from which, noting from Bgs. (2.32) and (2.35) that ¥2 = 43 = k2 = kK2, we

readily obtain
2 2
g = 8 = =2(v - %)/ (kY +KY,) (2.18)

which exhibits the famous Sommerfeld denominator, N = kgwi + ngé, about
which we have a great deal more to say in this report.
Substituting the above results into the proposed integral representa-

tions, BEqs. (2.,5) and (2.),6), and'noting that the explicit factor i¥ in.
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both integrands can be made implicit through the partial differential operator

3/dx outside the integral signs, we obtain finally

[0 0]
ip 3 2(Y = %) —h)+i
7T . - g 2 1 2 e‘Yl(z h)+l(€7c"1‘w>d€d,n, 2< 03 (2.)9)
2L gniymy | kY, + kY,
1™ ax 2" Y
=00
[00)

i 2(¥) = ) —ypz-¥ b
.. 1 22)eﬁf2z WEE g, 220, (2450

%2 2. . 2

=Q0

in which once again an essential point to remember is the fact that the paths

of integration in the & and m variables are their respective real axes.

2.3f. Transformation to cylindrical coordinates in configuration and

transform spaces: Sommerfeld's formulation.- All four integral representations

derived above are surface integrals over the entire &-m plane of a form
which lends itself readily to a transformation to cylindrical coordinates in

configuration space as well as in transform space. Thus, putting

1
x = '/OCOS?‘ ) y = sin @ , L= (x2 +y2)2 ’ (2051)
for the space coordinates and
1
E = Acospg, n = Asing , A = (g?f+ T?)z R (2.52)

for the (real) transform variables, £ and m, and replacing the element of
area d&in by AMMAG, we note that all the double integrals appearing in

Egs. (2.13), (é.hh), (2.149) and (2.50) are of the general form
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8
=]

El;; f(gzmz;z)ei(@CW)dng} = -2];“' £(A252) M | elMPcos(B - ‘P)d/y

= £(3252) 3o (A MA (2653)

in which ﬁe have made use of a well-known integral representation for the
Bessel function of order zero. It may be noted that this transfomation
proves advantageous because the function f‘(gzmz 32) conﬁai.ns the variables
£ and 7 in the form A = (22 + nz)% in all the instances encountered.
Applying the result embodied in Eq. (253) to our four integral repre-
sentatiqns and noting that in transforming to cylindrical coordinates, the
operator 9/@x 1is to be replaced by cos@ (?/3R), . we obtain finally the

integral representations

(8]
i l - 1 o 2) - A
T L o mlzenl_ L m(z-h), 2 mi(z-h) Jo(\@MA, 250, (2.51)
Ly . Y. Yy Y
J |

ip 2

T = -Yoz=Y;h
x2 " meemy | Y T

Jo(AAMN, 2z 20; (2455)

(o)

ip cosp 3 2(vy = Y2) e‘Yl(z—h)
by 97 ngl * k?.*z |

o

T = -
zl

J,(A)MA, z€0, (256)
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x
ip cos 3 2(Yy = )  _woo
T, == 4 > = g~ T22"11h Jo(AO)MA, 2z 20, (2.57)
beomy  3p | K5+ kY5
A

where an essential point to‘remember is that the variable of integration
A= (g? + TF)% is a positiﬁe definite quantity and, thus, the path of inte-
gration is rigorously along the positive half of the real axis in the complex
A-plane. The parameters %; and ¥%,, originally introduced by Eqs. (2.32) and
(2.35) respectively, are now defined as $

qoe R s s w2 ) >k, (2.58)

A—=>0 » X—=>0

in which the sign of the square roots is to be chosen in such a way that
Re %Yl} >0 and Re { 'Yz} > 0 along the entire path of integration,
0<€ AL s :

The above integral representations, Egs. (2.5l;) to (2.58), embody the
results contained in Sommerfeld’s formuiation of the problem. Originally,
Sommerfeld considered only the problem of the vertical electricldipole located
at the boundary surface separating the two media (h = 0) in a classical
memoirl which even today remains as the fundamental basis of'all subsequent
investigations. The horizontal electric dipole was first considered by
HBrschelmann2 in his doctoral dissertation dealing with the theoretical in-
vestigation of the directional properties of the original Marconi antenna.

The horizontal electric dipole located at the interface between the two media

1 A. Sommerfeid, Ann. Physik 28, 665-737 (1909).

2 H. von H8rschelmann, Jahrb. drahf. Telegre. u. Telephes 5, 1l-3l,
188-211 (1911).



is discussed by Sommerfeld in his excellent summary of the whole problem of
propagation of radio waves over the surface of the earth in Riemann—W'eber3
and, finally, the case of the horizontal dipole located at a height h above
the surface of the conducting medium is again treated by Sommerfeld in a more

L

recent book,  where he gives substantially the same integral representations
that we derived above. We feel that our approach, starting with Cartesian
coordinates in both configuration and transform spaces, is fundamentally
simpler, for it embodies all known formulations of the problem which can now
be derived By merely imposing suitable coordinate transformations. In the

present instance, we attain Sommerfeld's form of the integrals in the A-plane

by merely going over to cylindrical coordinates.

2]} VARIOUS FORMS OF THE FUNDAMENTAL INTEGRALS

So far we have established, in Eqé. (245)) to (2+58), the proposed
integral representations for the Cartesian components of the T ~vectors for
the two media, which satisfy the requisite boundary conditions at z = 0 and
which represent solutions of their respective Helmholtz equations. Then,
making use of Egs. (2¢5), we deduce in Chapter III the electric and magnetic
field components which involve the application of various differential oper=
ators under the sign of integration. To facilitate the operations indicated
and to give a systematic presentation of the results, it is desirable at this

time to give a tabulation and discussion of the minimum number of fundamental

31

3 Philipp Frank and Richard von Mises, "Die Differential- und Integral=-
gleichungen der Mechanik und Physik," (Friedr. Vieweg, Braunschweig, 1935),
2nd edition, Vol. II, p. 913.

h—Ae Sommerfeld, "Partial Differential Equations in Physics," (Academic
Press, Ince., New York, 19,9), pe 257.
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integrals in terms of which the Cartesian components of the TI=vectors and

the cylindrical components of the field vectors can.be expressed..

2eha. Tabulation of essential integrals.= It is readily seen from

Eqgs. (2.5)) to (2.58) that our integral representations involve under the

sign of integration two distinct factors,

2 2(vq = )

f = c—— and g = - 5 N (2.59)
1+ EzYi + k17é

in terms of which we now define a number of functions which prove useful

later,
2
2k
v, = f+Ye = e, (2.60)
1l 1 k2Y + k2
oM * KMo
2165
v2 = f = Yag = ----—-—--——--‘-—-s--k2 N k2 s (2061)
2 Y
2 =1 2 -1
klg/Yl = = V:L(l - ‘YZ‘Y:L ) = - (l +n )Vl + 2Yl P (2062)
k%g/?é = v2(1 - Yiﬁgl) = 1+ n"'2)v2 - 2751, (2.63)
in which

n = k2/kl (2.6))

is the so=called complex index of refraction.

The integral representation (2.5};) for 'Tf&l is seen to consist of
three distinct integrals, the first two of which are readily identified with
the source and its image. With R; and R, as defined by Egs. (2.1), we

denote the source and image integrals respectively by
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00
ik Ry 1
. e = =¥y lz+h)
ql = Rl = ‘Yl e l JO(K/O)MK, -0 < z < 00 ’ (2-65)
o
and
o0
ik Ry 1
. e - 1 7 (z-h)
L ¥, 5 v I, PN, zs0. (2.66)
o

The last integral in Eq. (2.5);) and the remaining integral representations,
(2455), (2456) and (257, can all be expressed, as shown in Section 3.1, in

terms of the following four fundamental integrals:

o
U, = {‘f()\)eYl(z-h) I, (WA, z<0, (2.67)
“o
: o
v, - S‘vl(x)en(z'h).ro(vyo)xdx, 2 <0, (2.68)
o
Q0
U, = ff(k)e-YZZ-Ytho(y))\dl, 23>0, (2469)
3]
00
v, = fvz(x)e"yzz'Ytho(zf)m, 220, (2.70)
o

in which the functions £, Al and Vo have the definitions given in the

preceding paragraphe. As indicated, the integrals Uy and V5 are defined

only for z < 0 and, therefore, correspond to points of observation in the
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conducting medium; whereas the integrals Up and Vo are defined only for
z =0 and, therefore, pertain to pbints of observation in the air above,
medium (2).

The fundamental character of the integrals listed above is more force-
fully brought to attention by noting that, as first shown by Somm.erfeld,5 the
integrals Vl and V2 are the only integrals appearing in the solution for a
vertical electric dipole; while the integrals Ul and U2, as first shown by
Elias6 and later by Sommerfeld7 correspond in the same manner to the vertical
magnetic dipole or frame antenna. Thus, the solution of the problem for the
horizontal electric dipole combines, in effect, the solutions for the vertical
electric dipole and the vertical magnetic dipole.

The major portion of this investigation is devoted to the evaluation of
the fundamental integrals Ul and V, for the conducting medium, since we are
primarily interested in the electric and magnetic field components as observed
in the conducting medium. As it happens in all but the simplest diffraction
problems, the real difficulties arise when an effort is made to reduce the
formal solution to a form suitable for numerical computations. The evalua=
tion of the integrals U; and V; has proved é major undertaking, as evinced
by the fact that more than a dozen investigators have published upward of
thirty papers over a period of forty years, mainly on the mathematical aspects
of the reduction of the integrals by approximate methods.* We feel that the

asymptotic expansions presented here go beyond the work of all our predecessors

5 Loc. cit., reference 3, p. 925,

6 G. J. Elias, Physica 2, 207-217 and 361-375 (1922).

T A. Sommerfeld, Ann. Physik 81, 1135-1153 (1926).

* See Bibliography at the end of this Report.
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in that we have considered second and third order terms that are essential
for the correct estimate of the errors involved in our asymptotic solutionse.
As a further point of interest, it should be remarked that the
integrals Uy and V;, Egs. (2.67) and (2.68), are not really independent
of each other. In fact, it can be shown that Ul can be expressed in terms

'62 , 1+ 2 anl
7Ty 7, 250, (2.71)
kl 2% _

2

=% - E?_' 22
which is readily deduced by making use of Eqse (2.59), (2.60) and (2.62).
This would appear to indicate that all our results for the conducting medium
could be expressed in terms of vy and its derivatives, which is true but
unfortunately not useful for practical computational purposes, for it is still
easier to deal with the integral U; on its own merits. A similar relation-
ship between U, and V, may be deduced from Egs. (2.69), (2.70), (2.59)

and (2.61) if one introduces derivatives with respect to h, namely

1 3 (2 a)
U, = V, + —= - v 2 =0 (2.71a)
2 2 B az(az, on) 2’

Finally, it should be noted that the distinction between the integrals
belonging respectively to either medium disappears in the important practical
case when the source is placed at the interface between the two media, h = 0,
and the points of observation are confined to the surfaces; z = 0. In this

case we have merely, instead of Ul and U2 R

00

2
U(p,0) = m Jo(AR) AR, (2.72)
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and, instead of Vl and V2 s

2
2ky

koY) + k1Y

V(f%O) = Jo(Rf)Nik . (2.73)

These integrals have received the attention of many investigators among which
B. van der Pol8 deserves special mention for his ingenious method of attack,
which consists of replacing the amplitude functions in (2.72) and (2.73) by
suitable elementary definite integrals and, then, eliminating the Bessel
funetion JO(KfS by inverting the order of integrations. This procedure
yields for U(f,o) an exact expression which we rededuce in Section 7.2a

as a check on our asymptotic treatment of the more general integral Ul(f,z);
and, for V(Q,0), wvan der Pol obtains an approximate (asymptotic) result
which is identical to Sommerfeld's original formnla9 obtained by a considerably
more elaborate method. Similarly, as a check on our asymptotic treatment of
the more general integral Vl(pgz), we rededuce in Section 7.2b the approxi-
mate Sommerfeld - van der Pol result.lo Finally, W'isell and Ricel2 treated

the integral (2.73) by expanding the integrand into two distinct power series

8 B. van der Pol, Z. Hochfrequenz-Tech. 37, 152-157 (1931).

7 Ao Sommerfeld, Ann. Physik 28, 665-737 (1909). Eg. (47), pe 711,
of this classical paper, gives essentially the formula deduced by van
der Pol except for the famous error in sign that has been so often refer-
red to in the literature and which was corrected by Sommerfeld in Ann.
Physik 81, 1135-1153 (1926).

10 This result was also obtained, using substantially the method of
van der Pol, by L. H. Thomas, Proce Cambridge Phil. Soc. 26, 123-126
(1929); F. He Murray, Proc. Cambridge Phil. Soc. 28, 133-I22 (1932), and
K. Fo Niessen, Ann. Physik 16, 810-820 (1933).

1l W, H. Wise, Bell System Tech. Jo 16, 35-hh (1937).
12 s. 0. Rice, Bell System Tech. J. 16, 101~109 (1937).
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and integrating term by term to obtain asymptotic expansionse.

2«)ibe Weyl's formulation.- It was originally recognized by Sommerfeil.d-"'3

that the source function, Eq. (2.3);), can also be interpreted as a bundle of
plane waves whose wave qormals are characterized by complex direction cosinese.
This point of view waé taken up by Weyllh who based his whole formmlation on
a fundamental integral which, for our source function, becomes

ik Ry :
= & - ikq ikl(—gx-i-my-*n lz+hl)
{‘{—l Rl 21 fe d—Q—, (2°7h)

Where L ,m,n denote the (complex) direction oosines of the elementary
plane wave normals and where dd{l = sinK dot dﬁ is the element of solid
angle in which o represents the (complex) colatitude and (& the (real)
longitude, the direction of the polar axis being wholly arbitrary.

To establish the integral representation (2.7);) and to define more
precisely the ranges of integration in the angular variables o¢ and /@,
we note first of all that our integral representation (2.3);) can be written

in the form

o) ]
ikRy ,
e 1 1 . . .
"I - . e ‘Y]_lz+hl7\d7\ el?x(x cosp +y sing )d(g , (2.75)
1 Ry an | ¥y
o =T

by changing to cylindrical coordinates in transform space in accordance with

13 Loc. cite, reference 1, Section 1ll.

L ¥, Weyl, Ann. Physik 60, 481-500 (1919)-
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Egs. (2652)s Next we introduce the conformal transformation

A = ky sine, dh = kq cosol docy

3 (2.76)
Yl = ()\,2 - %) L "'i_kl cos d_’

from which we deduce that the path of integration in the A-plane, along the
positive half of the real axis (0 < A <€), transforms into the curve shown
in the o -plane in Fige 3, from ® =0 to o= (n/2) - k’«l - ieo, where
K'l = arg { kl} sy 0% K'l < u/lje Thus, making the indicated change of the
variable of integration in (2.75), we obtain for the function hél) (klRl)

15

the representation
n n/2- Ky =i 00

1 ik Ry
hi )(klRl) - = -

1 eikl(=£ x+my+n |z+h} )
ikiR,  2m

sine¢ dtd @, (2.77)

-1 o]

which is identical to Eq. (2e7);) and where the complex direction cosines

j, m and n are given by
d = sine cos @B m = sinet sinA@ , n = COSOLe (2.78)

The particular advantage of the integral representation (A2a77’), as
pointed out by Weyl, is that the direction of the polar axis in transform
space is wholly arbitrary; and, thus, one has the freedom to rotate the
transform coordinate axes into an orientation that may facilitate the evalua-

tion of the integrals. For example, if the polar axis in transform space is

15

See, for example, J. A. Stratton, "Electromagnetic Theory," (McGraw-

Hill Book Coe, New York, 19}1), pe 10, Eq. (66). .
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o-plane

O
4
IN

Fige 3.= Path of integration in the ol-plane corresponding to the

positive half of the real axis in the A-plane, 0 <€ A <.
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rotated until it coincides with the vector I?]-_} in configuration space, we

have that the exponent in Egq. (2.77) can be written as

—>
iky ° By = ikyRy cosd = iky(Lx +my +nlz +hl), (2479)

where ¥ is the (complex) colatitude of the elementary wave normal referred
to the direction of the position vector of the point of observation. Thus,
if ‘L)f denotes the longitude angle associated with the colatitude a9 s We

1
have for hg )(klRl) the simpler form

/2= K 1~100
lklRl
1
()(klRl) " hem - 2",[ JikaRy cosd o9 av d ¥, (2.80)

in which, one notes, the limits of integration are still the same as in

(277), though the variables of integration are note
Finally, to illustrate the form that our fundamental integrals assume

in Weyl's formulation, consider, for example, the integral V, as given by

1
Eq. (2.68). Restoring the integral representation of the Bessel function
and changing the variable of integration from A into oL, 1in accordance

with the conformal transformation (2.76), the integral in question assumes

the form, with vl(x) as in Eq. (2.60),

n w/2-Kq-ieo

= oos > - o1K1RL cc'S'gsino(. docdﬁ z2X0 (2.81)
2 coso¢ + (n° - sine )% ? ’

in which n = ky/ky and, as in Eq. (2.79),




cosa9 = sinB, sine( cos(@ - @) +.cos8,y cosol, (2.82)

which is readily deduced by reference to Fige 1 making use of Eqs. (261)3

that is, ~J  denotes here the (complex) angle between the elementary wave

normal and the direction of R, from the image to the point of observatioh

in medium (1)« According to Wbyl's.method, one would rotate the polar axis

in transform space until it coincides with the direction of BRp, using n9
: and 7#’ as new variables of integration, replacing the element of solid
angle sinol dot 4@ by the new element ‘sinls dr9 d“\f" and noting that
in the remainder of the integrand one must express o in terms of/»9

and 1}" by means of the relation
cosol = coséy casi? - sine, sinr? cos?{; (2683)

which results from the rotation of axes.

This procedure was carried out successfully by Weyl in his treatment
of Sommerfeld!s classical problem of the vertical electric dipole located
at the interface between the two media. Other investigators, notably Strutt16
and Krueger,l7 have endeavored to extend Weyl's method to more general situa=
tions and have obtained alternative asymptotic expansiéns for the fundamental
integrals. In the opinion of the present writers, however, the method of
Weyl does not lend itself readily to further extension, mainly because there
are still two integrations to be performed as against only one integration in
Sommerfeld's formulation. We believe that this difficulty completely offsets

the advantage accruing from the possibility of rotating the polar axis at

will in transform space.

16 M. J. 0. Strutt, Ann. Physik 1, 721-772 (1929); Ann. Phy51k L, 1-16
- (1930), and Ann. Physik 9, 67-91 (1931).

17 M. Krueger, Z. Physik 121, 377-138 (1913).
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2elice Ott's formilatiope.~ To overcome the above difficulty, H. O‘c,'l:l8

undertook a formulation of the problem which combines the methods of Weyl
and Sommerfeld. In effect, Ott adopted the conformal transformation (2.76)
and applieci it to Sommerfeld's original form of the integrals. Thus, to
illustrate Ott's method of attack consider again the source function (2.65)

which we rewrite as follows:

o0
ikiRy 1
’Q:fl _ e = - % ?l_ e-Yl‘z+h|Hi'(7\f°)7\d7\ , (2.8)y) ‘.
-w

where the path of integration has been extended to the negative real axis

in the A=-plane by making use of the f ormulal9
255(2) = Hy(z) - Hy(-2) (2485)

and changing the varié.ble of integration from A into A in the second
integral. Applying Weiyl's conformal transformation (2.76), one obtains the
following integral repreéentation for the function hgl) (klRl) ,

/2= K, -1 00
RS ’

B o)) = = 3 | G psina)eilznl costiny gq, (2.86)

ik Ry

~11/2+ Ky +ioo

in which the path of integration corresponding to the positive A-axis is

18 He. Otts Ann. Ph:y'sik )_{]_-,, hl:3-h67 (19h2), Ann. Physik Ll3, 393"')J.oh (19113)’

6. w. Watson, "A Treatise on the Theory of Bessel Functions_," (The
MacMillan Company, New York, 194l), 2nd edition, p. 75, Eq. (5). -
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again as in Fige 3, while for negative A it is merely the curve symmetric
about the origin in the «l-plane. Here /K = arg {kl} , with 0<K <w/)
in general.

To illustrate the form assumed by our fundamental integrals in Ott's
method, consider again, as an example, the integral V, given by Eq. (2468).
Extending the path of integration to negative values of A, as above, and
changing the variable of integration from A into e, in accordance with

(2.76), one obtains the integral

n/2~ Kp =100

cos ol sinof. d o

H.(kp psin d)e™iKL(2=h) cosot o (5,87

V, =ik o

n? cosac + (n? - sinzoc)%

-1/2+ K| +1 00

which may be compared with Weyl's form, Eq. (2.81). Ott next applies the
saddle point method of integration to permissible deformations of the path
in Eq. (2.87) and thereby obtains the leading terms for the asymptotic
expressions of the integrals. We have adopted Ott's formulation and have
extended his methods in this investigation. We have also computed second
and third order terms which are necessary for the correct interpretation of

‘the asymptotic results obtained.

2o)ide Other forms of the integralse.- In the preceding sections we

have shown that our formulation of the. problem, employing Cartesian coordinates
in configuration and transform spaces, contains per se all other known formu=-
lations of the problem. Thus, by suitable transformations of the variables

of integration we have easily derived the formilations of Sommerfeld (1909),

Weyl (1919) and Ott (1942). Another formulation of the general problem which




deserves special mention is due to B, van der Pol,20 who starts from the
integral representations of Sommerfeld and Weyl and, by making use of
rather ingenious though intricate transformations of the variables of
integrations, is able to express the fundamental integrals U, and Vq,
Egse (2.67) and (2468), in the form of volume integrals extended over a
certain domain in real space which are susceptible of heuristic interpreta-
tion. Further,.by making permissible approximations in the case of high
conductivity for medium (1), van der Pol obtains in a physical way the
purely mathematical approximation obtained by Sommerfeld and Weyle The
reader is referred to the original paper by van der Pol for details of
these interesting transformationse

Finally, the form of the fundamental integrals which we have adopted
in the present investigation is obtained from Eqs. (2.67) through (2.70)
by merely extending the path of integration to negative values of A,

making use of Eq. (2.85) as in Ott's formulation. Thus, we have

22}

f e 1 Mloanan, 2 <o,

=Q0

(o]
n
=

o)

J, vl(?\)eYl(zuh)Hi'(K,O)Ml s 2=<0,

<
i
2

=Q
e o)

Jﬁ s 22 gl (paan, 2 20,

=@

[
|
i

Lk

(2.88)

(2.89)

(2.90)

20 B, van der Pol, Physica 2, 8)3-85) (1935).
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(o 0)

vz(x)e-YQZ'YihH%(RfDAdK, z 20, (2491)

<3
L]
wjH

where the functions f, vy and v, are defined by Egs. (2.59), (2.60)
and (2.61) respectively and where the path of integration is along the real

axis in the A~plane.

2.5 THE RIEMANN SURFACE OF FOUR SHEETS IN THE A-PLANE

As stated in the Introduction, we confine our attention in this Report
to the evaluation of the integrals Uy and Vl which correspond to points
of observation in the conducting medium; and we obtain in Chapter VI, using
the saddle point ﬁethod of integration, asymptotic expansions in a form suitable
for numerical computations. The method of attack, as already indicated, is
an extension of Ott's formilation involving the approximate (asymptotic) evalua-
tion of the contour integrals around the branch cuts in the upper half of the
A-plane which are deduced from a study of the permissible deformations of the
original path of integration. Thus, the integrals in question, (2.88) and

(2.89), are both of the form

[0 o]
I = % J v(x)e"'l(z‘h)ﬁg(x,o)mx, z2 <0, (2.92)

=-Q0

where v(A) stands for f£(A) in the case of U and for vl(l) in the

case of V. In either case, v(\) 1is a function of Y, = (K? - ki)% and

Y, = (A? - k%)% as defined in Eqse (2.58), whereas the exponential function
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contains only ¥;, but not ¥,. Hence, the integrand in (2.92) exhibits the
following singularities: (1) a pair of branch points at A =2 ky arising
from 433 (2) a pair of branch points at A = % k, arising from ¥p;

(3) branch points at A =0 and A = ® arising from 'Hi(KfD; and (}) a
possible pair of poles in the case of the function wy(A) which we discuss
below.

The original path of integration in (2.92) is taken along the real
axis in the A-plane from -e to +00. Before discussing permissible
déformations of the original path, it will be necessary to choose a cut
A=plane in which the integrand of (2.92) is defined as a single-valued,
regular, analytic function of the variable of integratién which vanishes
exponentially as 2 —» e« Furthermore, because of the presence of the
Hankel function, Hi(lfb, in the integrand of (2.92), it is seen that all
permissible deformations of the original path are then confined to the upper

half plane in order to guarantee the convergence of the integrals as L —>®-.

2.5a. Range of parameters in the low frequency case.- With the view

in mind of possible applications of our results to low frequencies, it is
pertinent to introduce at this point some numerical values for the essential

parameters of the problem, k k

1’ "2
the conductivity of medium (1) the representative value 61 = ¢~= ); mhos/meter

and the ratio n = kz/kl. We take for

and for medium (2) we take 6 = 0, except when mathematical expediency
demands that we ascribe to medium (2) a finite though arbitrarily small
conductivity. If we confine our aﬁtention,to frequencies under lO5 CePeSey
then, in consequence of the high conductivity assumed for medium (1), we

have from Eq. (2.18) that ki * iwp 0 to an extremely high degree of

approximation. Thus, we pub



k= (Gepe )

k= @, €

n

= kp/ky

L]

= (-U/c

(real) ;

\kl[ei“/h: [&] = (wp o)

Infe™™/b, In] = (wg/e)E,

In Table I we give, with the aid of (2.93), the values of the wave-

lengths Kl and XQ in the two media, respectively, and of the parameters

Inl and \.nl2

for a selected set of frequency values within the specified

range. It is shown in this study that our asymptotic formulas are valid

at distances from the source which exceed a few wavelengths in the con-

ducting medium; hence, the importance of the second column in Table I is

\ 42
apparent. Furthermore, the parameter Inl”, given in the last column,

plays a prominent part in all of our results; and the fact that in the

frequency range of interest | n|2 4-10-6

tion in numerical results at low frequenciese.

implies considerable simplifica=-

Table I.~ Range of Essential Parameters at Low Frequencies

v ) M In) In)?
“(sec™1) (meter) (km)

10 500 30,000 1.18 x 107> 1.39 x 10710

10° 158 3,000 3.73x 1070 1.39 x 10”7

10° 50 300  1.18x 1074 1.39 x 107 8

10l 15.8 30 3.73x 107t 1.39 x 207

10° 5.0 3 1.18 x 1073 139 x 10~ ©

W7

(2.93)
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2e5b.  Choice of cuts for %, and %,.= As deduced from the exponential

factor in the integrand of (2492), in which (z-h) < 0, we must choose the
branch cut for ¥y in the A-plane in suéh a way that Re {‘Yl }— >0 for all
values of A on the original path of integration, =00 < A < ®, and on the
corresponding sheet of the Riemann surface. This is achieved, as shown in
Fige li, by drawing the cuts for ¥y = (A2 - k{)—lz_ from A=k, to “,7\ o
along the half-branch of an equilateral hyperbola and from A = =kj 1o
wW=»=100 along the symmetric half-branche This procedure guarantees that

Re {'Yl} > 0 everywhere on tiie cut A=plane and Re {‘Yl} = 0 along the
branch cuts, witi arg {1y ==m/2 on the side of the branch cuts facing
the axis of imaginaries and arg '{Yl} = /2 on the opposite sidee Further=-
more, it is clear that the locus, arg {rrl} =0, is given by tue dotted half=
branciues of the equilateral hyperbola in Fige. ) Finally, tiie straight line
through the orj.gin passing through the points 1’1{@ has the*property that, for
points lying on this line between +k; and -kl," arg {Yl}; = ~n/l, while
v-.for points lying outside of this seguent, arg i‘Yl.ir = 4/ L;."”'"‘ Thus it is seen
thaty as A varies from O %0 o -along the positive real axis, tie phase
of ¥, varies between /)y and 0 s With a completely symmetric behavior
for negative values of A.

Since ¥, = (?\2 - kg)% does not enter into the exponential factor in
the integrand of (2.92), but only in the amplitude function w(A), we are
not required to draw the éuts for ‘Y2 as in the case i‘or Yl’ though we
mist still adhere to the agreement, called for by Eq. (2458), that
Re i'YzYS > 0 over the original path of integration along the real axis in
the A~-plane. In this case it proves convenient to choose the cuts in such
a way that Im %‘Y2} <4 0 everywhere on the cut A-plane with Re {YQ} >0

along the real axis. This is achieved, as depicted in Fige. lj, by drawing
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Fig. li-- The A~plane showing the cuts for % and %, and the

deformed path of integration for the conducting medium.
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the cuts for ’Y2 in precisely the converse situation as regards ’Y]_; that
is, from A = k2 (where ko 1is assumed to have an arbitrarily small positive
imaginary part) to A —» @ along the half-branch of an equilateral hyperbola
in the upper half-plane and from A = -k2 to A —»=00 along the symmetric
half-branch in the lower half-plane. Because In {kz} is arbitrarily small,
the branch cuts for ¥, in Fig. li are undistinguishable from the corresponding
segments of the real axis: = < A< =Re {kz} for the left hand cut and
Re { kg} < A <o for the right hand cute. This procedure guarantees that
Im {’Y‘z} < 0 everywhere on the cut A-plane and Im {’Y‘z } = 0 along the
branch cuts, with arg {’Yz} = 0 on the side of the branch cuts facing the
real axis and arg {’YZ} = o on the opposite side. Furthermore, as in the
case of ’Yl s the straight lline through the origin passing through the points
ikz has the property that, for points lying on the segment between -k2 and
+ko, arg {’YZ} = ~1/2 + Ky, where Kz = arg {k2} , while for points lying
outside of this segment, arg 5‘\’2} = - + Ky. Thus it is seen that, as A
varies from O to oo along the positive real axis, the phase of Yo varies
between (-m/2 + K,) and 0, with a completely symmetric behavior for
negative values of Ao

Surmarizing, we have chosen in Fig. }; a sheet of the Riemann surface,
which henceforth will be referred to as Sheet I, on which we have
-1/2 < arg {’Y‘l} < /2, as regards Yy, and ~u <arg {’Y‘z} < 0 or, better,
-n/2 £ arg {i‘Yz}— < w/2, as regards Y,. Furthermore, we have guaranteed
by the present choice of cuts that Re {‘Yl} >0 and Re {72} >0 over the
original ‘path of integration along the real axis in the cut A-plane, in
accordance with the demands imposed by the present boundary value problem
which requires that all our Fourier-Bessel transforms have a common region of

analiticity, namely, the sfrip ‘Im {)\,}] < Im {kz} .
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It is clear that the presence of two pairs of branch points inﬁthe inte=
grand of (2.92) implies that the Riemann surface in the A-plane consists of
four sheets as indicated schematically in Fig. 5. Sheet I corresponds to the
sheet described above and depicted in Fig. li» Access from one sheet to another
can be effected by crossing the branch cuts as indicated in Fig. 5, with the
consequent changes in the signs of the real parts of %¥; and 1Y, as listed

in Table II.

Table II.- Arguments of %Y, and in and nature of poles

on the various sheets of the Riemann surface

Sheet Re {1y} Re f1%,} ‘Poles of vi(A)
I + + virtual
II - + real
III + - real
v - - virtual

It is seen from Fig. 5 and Table II that to guarantee the convergence
of the integrals (2.88) and (2.89) as 2z —» =00 all permissible deforma-
tions of the original path of integration must remain on Sheets I and III,
thus allowlng the crossing of the cuts for ¥,, but not the cuts for *q.
Furthermore, to guarantee the convergence of the integrals as Jp —> 00,
the permissible deformations must be confined to the upper half-planes on
Sheets I and IITI. Because the original path of integration coincides with
the real axis on Sheet I, any proposed deformation of the path must start

and end on Sheet T at A —>2% w.



Sheet Y- eut %-cud

NN N~
J

o—1—0
o—1—¢

Q—0

Fige So= The Riemann surface of four sheets in the

A-plane.
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2+5c. Discussion of the poles of vl(k).v In addition to the branch

points discussed above, the integrand of V,, Eq. (2489), may exhibit a
pair of first order poles depending on the choice of cuts and on the partic-
ular sheet of the Riemann surface under consideration. This is due to the
fact that the amplitude function vy(A), as defined by Eq. (2e60), contains

the famous Sommerfeld denominator
2 2
N(A) = k3¥y *+ KjYp s (2.9L)

which may vanish, depending on the arguments of Y, and Y5, for

A =2k vwhere

(e}
2.2 2
k-k
% L . (2.9)
ki + ks l+n

is given as a symmetric function of k; and kp.
It is important, first of all, to locate on the various sheets of the
Riemamn surface the correct positions of the poles, real or virtual, as the

case might be. To this end we define from Eq. (2.95)

=

ko, = ko/(1+2n%)", (2496)

as a complex number in the first quadrant with k, essentially real and
n = ko/k; as given by the last equation in (2.93). It is clear from (2.96)

that we have for the phase of kg,
162 < arg iko} </l (297)

and because !nJ2-<< 1, it turns out that arg-{ka:} is extremely small

with \ko) <;|k2| o Thus, the roots of (2.9)) are located, as shown in
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Fig. lj, just above and to the left of +ko and just below and to the right
of =ko.

To determine whether N(%k o) vanishes or not on the various sheets
of the Riemann surface, it is necessary to examine carefully the arguments
of ¥, and %, at A= k4 k,+ To this end, let us first compute

L
v (k) = (kg - k§)2 .  liaking use of Eq. (2.96) we have

2 . .
- % 2 |% o 3 =iy ik,
Yl(KO) = - kl = kl -1 =73 F T P (2098)
1 +n2 1 +n? (1 + n2)= n

where the choice of sfgn depernds on the particular sheet of the Riemann
surface in which we wish to operate. Thus, from the discussion of the equi-
phase curves for ¥;(A), as given in Section 2.5b, we deduce that the phase

of ¥(k,), by virtue of (2+97), is subject to the inequalities

-1/l < arg {Yl(ko)} 4 0  on Sheets I and III;

(2+99)
31/ly < arg {Yl(ko)} < T on Sheets II and IV,
from which we conclude that, in Ege (2.98), the choice of sign yields
- ik /n , Sheets I and III
Y, (k) = (2+100)
+ iko/n s Sheets II and IV

where kg, has been defined as a complex number in the first quadrant. In

fact, if we write kg = ,ko, eié where o = [nl2/2 when K’2 =~ 0, then

-n/ly + & , Sheets I and III
arg {Yl(ko)} = (2.101)

3u/ly + & , Sheets I and IV
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as called for by the inequalities (2.99).
Proceeding similarly, we now compute ¥, (ko) = (k% - kg)% and, again
making use of Eq. (2+96), we have

R ! 5 g
Yolk ) = -k = k[ —5-1 = = Link , (2.102)
2¥0 1 + n? 1 + n2 (l+n2)§ -0

where once more the choice of sign depends on the sheet of the Riemann surface.
From an analysis of the equiphase curves for ‘Y2(7\) s as given above, we deduce

that the phase of %,(k,) 1is subject to the inequalities

-1 + Ky < arg {Ya(ko)} < -n/2  on Sheets I and IT ;
(2.103)

K, < arg {wé(ko)}. < /2  on Sheets IIT and IV ,
where K2 = arg {kz} is arbitrarily small, but finite. Thus we conclude
that, in Eq. (2.102), the choice of sign yields

- ink, , Sheets I and II
Yo(ky) = (2.10)

+ ink, , Sheets IIT and IV ;
. i
and, hence, with k, = ‘ ko[ e as above, we have

-3u/l + 8 ,  Sheets I and II

arg {‘Yz(ko)} = (2.105)
a/h+ & Sheets IIT and IV

as called for by the inequalities (2.103)
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With the values of Yi(ko) and wé(ko), as given in Egs. (2.100) and
(2.10)) respectively, we now quickly ascertain that the Sommerfeld denominator

N(A) = k%?i + k%?é, when evaluated at A = & k,, assumes the values

~2ikokiko 4 Sheet I
N(2 k) = O , Sheets II and III (2.106)

+2ik kiko , Sheet IV .

Hence, we have established that vl(ko) remains finite on Sheets I and IV and,

therefore, the points A = X k_ are not singularities of the integrand of

o
Vi, Eq. (2+489)« On the other hand, on Sheets II and IIT the integrand of LAl
exhibits a pair of first order poles at A =3 ky,+ As indicated in the last
column of Table II, we denominate these points, A = by k> Wyirtual? poles

on Sheets I and IV to distinguish them from the "real® or actual poles that

do occur on Sheets II and IIT.

2.5d. Deformation of the original path of integration.- It has been

shown that on Sheet I the only singularities of the integrand in (2,92),
apart from the branch points which the Hankel function H%(Xf7) exhibits
at the origin and at infinity, are the two pairs of branch points associated
with the functions Yy and Yo and that, even in the special case of the
function vl(K) in the integrand of (2.89), we have no further singularities
on the chosen sheet. Thus, we may now proceed to discuss permissible deforma-
tions of the original path of integration.

In an effort to evaluate (2.92) by contour integration, we first deform
the original path as indicated in Fige. lo Starting on the real axis at
A —»= o, Jjust above the left branch cut for ¥%,, the proposed path fol-

lows, first, the semi-~circle at infinity in the second quadrant, then the
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contour € completely around the upper branch cut for ¥, thence along
the semi-circle at infinity in the first quadrant and, finally, the contour

Co completely around the right hand branch cut for Yo terminating on

the real axis‘at A —>+ 00, Jjust below the branch cut. By Camchy's theorem,
the proposed path of integration is completely equivalent to the original
path along the real axis, for there are no singularities of the integrand
between the two paths. Furthermore, it can readily be shown that the
contribution over the semi-circle at infinity in the upper half-plane
vanishes, with the result that we can express our original integral (2.92)

as the sum of two integrals,
I = Il + 1, (2.107)

where I, 1s the integral along the contour Cl around the upper branch
cut for Yy and 12 denotes the integral along the contour Cpr around
the right hand branch cut for Yé.

This resolution into two contour integrals differs from Sommerfeld's

original resolution in that he writeSZl

I =1+ Ié +P, (2.108)

where P stands for the contribution from the real pole at A = + k, which

his integrand exhibits by virtue of a different choice of cuts; thus,

+Po (2.109)

The value of P is readily computed as the residue of the integrand at

22

A=+ ko and is seen to exhibit the characteristics of the Zenﬁeck surface

21 a. Sommerfeld, Ann. Physik 28, (1909), p. 619, Eq. (23).
22 j. Zenneck, Ann. Physik 23, 8),6-866, (1907).



wave. Much has been written in the last twenty years on the existence or
non-existence of these so=-called surface waves, and it appeared to us that
this unfortunate confusion should be cleared once and for all. This we have
achieved in Section 7.3 by showing that our resolution (2.107) is completely
equivalent to Sommerfeld's and that there is a contribution from the pole

quite irrespective of the choice of cuts.
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ITI. FIEID COMPONENTS IN CYLINDRICAL COORDINATES

In the preceding Chapter we have given the complete formulation of the
two-medium boundary value problem for a horizontal electric dipole embedded
in the conducting medium. In Section 2.)ia we indicated that the Cartesian
components of the '7T;vectors as well as the cylindrical components of the
field vectors can be expressed in terms of a minimum number of fundamental

integrals, which we now propose to establish in this Chapter.'

3.1 CARTESIAN COMPONENTS OF THE HERTZIAN VECTORS

The Cartesian components of the Hertzian wectors, as first introduced
"by Egs. (2.10), are given by the integral representations (2.5);) through (2.57)
which were obtained by a transformation into ¢ylindrical coordinates in con-
figuration and transform spaces. We now wish to exhibit these representations

in terms of the fundamental integrals tabulated in Section 2}ha.

3.la. The components T,y and T, _and their derivatives.- The

component TTxl for the conducting medium has the integral representation



(245)) which can be compactly written as

ip -
erl = bk {}Il = 7-1'—[2 +U,( » 2 £0, (361)

by making ude of Egse (2.65), (2.66) and (2.67). Similarly, the component

Trzl, which has the integral representation (2¢55), can ve rewritten as
£ i y £
ip cosp o ¥ (z=h) ip cosp o ~
1 A2) 7 _— (Y, - ; < ¢ e
2l h"kl.nl 3(0 ( ge Jo(/\{-‘?),\d}‘_ = kS 3f’ } (Vl Ulj' dny 2£ 0 (3 2)

in which we have made use of Eqs. (2¢59), (2:60), (2.67) and (2+68)s

Eq. (3¢1) exhibits ‘n—xl in terms of the source function '}Z}l, the image
function :(Ifz and the fundamental integral U;; while Eq. (362) gives
Trzl in terms of the two fundamenté.l integrals U, and Vq integrated
with respget to h from the position of the image at 2z =h +to infinity.
Thus, this latter integral may be interpreted as giving, for points of
observation in the conducting medium, the contribution of a continuous
distribution of images of strength pdh located in medium (2) along

the z-axis from 2 ™" h 10 2z —» Q.

Other important representations are similarly obtained. Thus, from

(3+2) we have at once for the derivative

oT, ip cosg 5
zl U} , 1z

23 = hﬂk]_'f'[]_ af’ (‘ f 0o ' (3°3)

By making use of the important connection beiween the fundamental integrals

U; and V;, given in Eq. (2471), we obtain from (3.2) the alternative form
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2
o ip cosp @
K Tp = kg 3, 23 {2 Ty - (1+n )Vl} z £ 03 (321

wherein we note that in (3.3) a.nd (3+}1) we have made use of the fact that
2/2dh = -~ 2/02 when operating upon the factor exp {‘Yl(z - h)} which
is common to all the integrals for the conducting medium. Finally, with
the aid of (3.1) and (3.3) we construct the divergence of the I -vector in

medium (1),

aTTxl o 7T—Zl 1p COSA 2

3]! * 2% - h‘ﬂ'kl'rn_ 9/0 {% - ?2 + Vl}ﬂ z £ O’ (305)

N V' Tr(l) =

which completes our presentation as regards medium (1)-.

3e1be The components ‘Tf;cz and 71;2 and their derivativese-

Proceeding similarly for the non-conducting medium, we have at once from

Egs. (2.55), (2+59) and (2.69)

Trx2 21"“‘2""2 Up

z =0, ‘ (3+6)

and from Eq. (2.57), making use of (2.61), (2+69) and (2.70), we obtain

ip cosd 2 ge-‘Yzz-‘Ylh

. = J (AP IMA
22 lmgmy 9P oM
2 :
1p COS’S {V - U, dz, z 20, (307)
Lt"kg'ﬂg

in complete analogy with Eq. (302). From (3.7) we have for the derivative
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°

z2 _ ip cosf a -
2% Lk, {Vz Ua} (3.8)

Proceeding as in the case of Eg. (3.l}), we have the alternative form for

the 2 component,

kgTrzg = -2 COSIS,“; 'a B '8>V2’ z 2 0, (3-9)
. mkorp, @@ \ 2z Jh

which is deduced from (3.7) by writing

. oG
2 ' ip cosd 2 ~Ypz-1h :
= o z o
ky T, o, 9p az‘f (k2 gYy He I,(Ae)MN, z = 0, (3.10)

' 0O

and then making use of Eq. (2¢63). Finally, resorting to Egss. (3¢6) and
(308) we construct the divergence of the TI =vector in medium (2),

obtaining

Tr(z) [ 2 . 277_22 _ ip cos,éo?Vz
ck: ikym, 9P

z > 0, (3°]-1)

thus completing our presentation for medium (2).

3.2 VARIOUS FORMS OF THE ELECTRIC FIELD COMPONENTS

The electric field components are readily derived from Egs. (2.5) with
the aid of the results presented in the last Section. Thus, exhibiting the

T -vector in terms of its components we have, in general

_§
T = e, Ty +e, T, = e My cosg = e)[g‘r'l’x sing + ez‘fg s (3.12)
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the last form of which expresses the Tl=vector in terms of its cylindrical
components. Accordingly, from the first of Eqs. (2.5), we have for the

cylindrical components of the electric field intensity the general expressions

9 . 2 .
—87 (V1) -k 'ﬂ'x sing ; (3+13)

- 2 . 24r o L
By Fag (VY T *KTy=3

E = & (VT + k2 .

% D2 Z

3e2a. Electric field components ror medium (1)e- The electric field

components for the conducting medium, 2z < 0, are now written down from

(3+13) by making use of Egs. (3+1), (3.l) and (3.5),

ip cosp 4 22

!
Ee1 = 2[?1"71?2”’1]' +id [ﬁ'?&*“ﬂj

(31h)

-

gy [ 2p

ip smﬁ(’l ‘3 - ) - :
%" o [ et e [F T o

. 2
ip cosg 2 - 5
B = hikimy (9290 ‘Egl * 3_?2 - vl]} ’ (328

which exhibit the electric field components in medium (1) in terms of the
source function Q,l’ the image function __ZP2 and our fundamental integrals

U; and Vl o

Other forms of the electric field components can be readily derived from
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the above equations by making various transiormations. Thus, for example,
a useful transformation consists of eliminating entirely the integral Ul
by making use of the important connection given in Eqe (2+71) between our
fundamental integrals U; and V4. In this way we obtain for the transverse

components of electric intensity,

{ unkn

ip cosf (1 2
ferTT L AR [g[l G-l Gaw

ip 31nﬁ('l ) o 32 o ’2
E‘l = hﬂkl‘nl ?\(P a(o kl/)ﬁfl - % + VJ + -é—;-g El +n )Vl - 2%])’(3'153')

in which use has been made of the fact that Vl’ ?l}i and 3l?é are
axially symmetric solutions of the scalar Helmholtz equation, while
recognizing that ’g?i is otherwise singular at the source.

Another useful transformation is obtained by noting that our funda-

mental integral Ul’ ‘BEg. (2667), can be resolved as follows:

2 = 1. -
kU4 kqMy T s 2 %X 0, (3417)

in terms of a new integral, Ni, which is defined as

¥ e'Y]_(Z-h)

5 Jo(AP)MA, 2z € 0. (3.18)

Hli
n
e
Hro
' lro
x
N o
o«
)8

The resolution (3.17) is quickly obtained by noting that the amplitude

function f(A) in Ege (2.67) can be written as
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2 2(Yp = Y1) 2(Yo = )
fw ST T e (3:19)
LI >~ "M k{ = k3

where use has been made of Egs. (2.58). Replacn.ng ka_Ul by (3.17), we

now obtain for the transverse components of electrlc intensity for z < 0,

_ _ipcosp |1
E Pl h"klnl P 3P ﬁzfl l]

, 2
Crean] 3 F‘f“l-nu @] O

- _1ip sing (
E,S]_ hm{lnl L I3 20 Lg?l T2 j

2
+kl [g'? EF +M:LJ ° .yz s (3015b)

in which, as before, use has been made of the fact that 'g;" o is an

axially symmetric solution of the scalar Helmholtz equatione

3e2be Electric field components for medium (2).- The electric field

components for the non-conducting medium, 2z > 0, are likewise written

down from (3.13). IMaking use of Egse. (3¢6), (3.9) and (3.11l) we have

e
E‘pg = ‘ 5 + k2U2 3 (320)
I f_l; 2 |, (3021}
fe . zP 30 KoU2
. 2
- ip cosd 2 V2
Ba2 lkyry, dhopP (3.22)

’



which express the electric field components for medium (2) in terms'of 6ur'
fundamental integrals U2 and V20

Making use of Eqe (2.71la) and noting that V, 1is an axially symmetric
solution to tne scalar Helmholtz equation; we obtain for the’tran5verse
components of the electric intensity, similar to Eqs. (3.1)a) and (3.15a),

. {1 - 2 .
ip cosf |1 3 .9 T, s | (3+20a)

P2 koM Z(o 2P 91zdn

ipsind [1 2 o, 2 (3 2 |
E = e — + ] - A 3 21
g2 ke, | € 2P K2+az(az on )| 2 (3.21a)

thus indicating that besides the source and image functions it is possiblé
in theory to express the electric field in both medium (1) and medium (2)
in terms of just two functions, V; and Voo In the neﬁt Section it will
be shown that these same two functions together with the source and image
functioﬁ§ are also sufficient to determine the magnetic field everywhere;

thus, the entire field is determined by V;, T, 'gfl, and 7\‘72

303 VARIOUS FORMS OF THE MAGNETIC FIELD COMPONENTS

The magnetic field components are likewise computed from Egs. (2.5)

with the aid of the results presented in Section 3.l. Accordingly, we have

in general from Eqe (3.12),
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N oMy 1 3T,

Hp -m{smé 352 P g (°
| oT. oT |
Hy = = ikm{cosg X . z} (3023)
6
_ 22 SPJ
oMy

H, =

which exhibit the cylindrical components of magnetic field intensity.

3e3a. Magnetic field components for medium (1)e= The magnetic field

components for the conducting medium are now written down from Egs. (3.23)

by making use of Eqs. (3e1) and (3.l;)» We thus have for z £ 0,

= Psmfg 2 )_Ir Q’ﬂ; + l -~ (1+n2)v -211r2]}; (3.2h)

H
L Ly p ap
“ . p cosp 2 ey et 2 142 - o 1 (342)
= — NS - Y n - 5 (3o
1 m @z |* L ¥+ 0 2 302 | 1 I‘Vz]( .

h, - - psm;s 2 {-gf 7, } ) - (3.26)

which exhibit the magnetic field components in medium (1) in terms of
the source function 'LFl’ ~ the image function “gfz and our fundamental
integrals Uy and Vl .
As in the case of the electric field components for the conduction

medium, it is possible to express the above results exclusively in terms

of > @rz and V., by eliminating U with the aid of Eq. (2.71),
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“ihus obtaining for 2z <€ 0,

psing 5 (/1 ®
Hﬂnhnklz_ -3_; (f’a{o 35>[‘<l+n)vl'2z[r2_]+kzj %"’V]]},(B 2ha)

==pc:osxf 211 @ » '2_ ) .
Hﬁl IRy k:?. dz /P 9P E% = (];+n )V:J*‘kli[% +q2~nV]]} 3 (3e25a)

2 .
psing 9. |2 2 2 [ - .
- SN <+ - 'S -+ - + °
f1 " 7 K2 op |92 }j(l n°)Vy 21}2] 5 }rrl % e Ges)
in the derivation of which we have made use of the fact that the functions
'lIF 9 and Vl satisfy the homogeneous Helmhoitz equation for z < O

Finally, making use of Eqs (3+17), wnich expresses the fundamental
integral in terms of the new integral H;, Eq. (3.18), we obtain still

another useful form for tne magneiic field components for z < 0, nameiy,

psing 2 |1

- R PR N 2
oL hﬂk:% 2z (oaP (1 +n%)7, 2%]”{ ljyl 71?2 M’l] .
2
- 5 e 2'1’77 (3e2lib)
1-n 2 22

-
Hﬂgpcom‘ ? }_— lf,l} -(1+n)v>(+k2)-lf +“&r‘ - nf | s (3+25b)

b,nkg-'_ 3z [(°of

p sing k3

2
? v, ,
Zl,’- h‘nkl 9‘0 l@f-l +1v1:) -lunz ?z f » (3-20b=)

a8

in which again use has been made of the fact that the function ’L’z is




an axially symmetric soluivion of the scalar Helmholtz equatione

Je3be magnevic fieid componenics for wedium (2)e= The mé.gnetib fieid

components for the non-conductving mediwn are similarly written down from

(3."23);' Making use 'of',vKs.'" (345) and (3+9) we have for z = 0,.

H - P Sm‘ 9 2 + ( ° - 2 V, ¢ 3 (3+27)
e’ L 9z kge 9P \2z 2h/ 2)°
L b \ CJ ’
pcosg | QU I G a P * ’ |
4 1y, = 242 . >v2 ; (3028)
R 2z kg 3{-«92\32 2h ‘ o
.vpvsiz.zﬁ oU |

whicu exhibit tue nagnevic fieid components for mediﬁm (2) in v".;er_ms‘ of our
fundamental invegrals U, cand VU,
. As in tihe case of the electric field componenté for the non—condﬁcni.ng :
medium,- it is possio.LeA to obtain i'ne magnetic field components for medium (2)
in terms of vne single fundamental integral V, by using Eq. (2«71:1) a.ﬁd e
fact that V2 is an axially synuné‘cric solution of the scalar He‘.Lmholtz

equation; thus,

oo o= 2 s?.nﬁ K2 P — 4 2) 2.2 'lvz"; - (3-272)
P2 hﬁkg 222 \LIF 22°/ (32 ah‘) v ,

- - — - V., ; (30208a)
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, psind 2 (2 9 /3 9 _
2 m2 e | 2 oz (Dz P h)J 2 (3+258)

which completes our demonstration that the entire solution may be givem in

terms of IFl, ‘L_E”2, Y, ad V,.




IVe SOLUTION OF DIPOLAR PROBLEIl IN THE STATIC LINIT

An important special case of the present two-mediwm piroblem arises when
we consider tue stabtic Llimit (w —»0) of the preceding results. It is
siiown that our integral representations converge uniformly to tine static
solution as w —0, unus affording a partial check on the whole formula-
tion since the static problem can be solved independently by elementary
methods. Furtnermore, the study of the static case has clarified the role
played by the interface separating the two media which, as shown below,
constitutes a source of secondary waves. In this Chapter we deduce the
limiting form of our fundamental integrals by letting & — 0, process
whiech is simplified by assuming tnat 0’2 is finite. Finally, we consider
tae independent solution of the static problem which is elementary as far

as tae eleciric field is concerned, but which is considerably more involved

in tie case of the magnetic field.
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Jjol  STATIC LIMIT OF THE FUNDAMENTAL INTEGRALS .

Referring vo Section 2.lia, we esvablish readily by letting <& —0,
which implies ki —>ief and k2n2 ...>io'é with k; = k2 = O, The

following limiting forms:

. 1
-y o=, (11e2)
1
’15[‘2 Ul - Ra; (Le2)
26; 1
1 - — e (LL‘B)
1 R
6 *% B
265 1
vz - . — (hoh)
oq t6 B

all of which follow immediately from the corresponding integral

representationse

Jie2 CARTESIAN COMPOWENTS OF THE HERTZTIAN VECTORS

We now proceed to. esteblish the limiting forms in the static case
for the Cartesian components of the Tl -vectors. Considering first the
conducting medium, we obtain immediately from Eq. (3el)

T o= 2

1
—_ £ °
%1 hTfO'i Rl s 2 0, ()15)

where we have made use of Bagse (liel) and (lje2)e Similarly, making use




of (1e2) and (l1e3)s we have at once from the second integral in (3.2)

. _ P cosgp 67 - -
zl Ll,"o- 5 +6 BP [ 2 + (Z - ht)2]% z <X 0,
1 %17 P2 f’

which, after carrying out the integration, may be written in the convenient

form

cosp 07 = On R, + (2 - h
. _pcosp o - > _g o *( ):} , z<o0.
; oy o +op 2z (€

Then, either from (};e7) or else taking the limiting form of (3e3), we have

N

A, p cosg o - 1
- 2 0 ’
o0y R

22 Lmoi +

A o)

3
2¢

with the aid of which, togetner with (he5), we have for the divergence

- c a-
(1) Ty 2T, Peosb o (l %t .
V °Tr o= - + = 4 3 2 \ O,
) +

% on e of R ek,
which completes our presentation of the static limit for the components of
the Tl =vector and their derivatives in the conducting medium.

Proceeding similarly for the non-conduciting medium, we have at once

from Egse. (3+0) and (ljel)

- p 1
= — ? O .
il x2 Imon R ’y Z 5

21

and, in complete analogy with (J1e7), making use of Egse. (3e7), (J1ol)

3

(ko)

(he?)

(118)

(1e9)

(L+10)
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and ()l'h) ’

p cosf o7 = 0, 3 - (z +h)
2 df‘-+28 A , z =0, (4oll)
Op 0176 9= (
from whieh we compute the derivative
2T p cosg -0 31 :
—_—22 - —— — 2 = 0. (h'l2)
dz hmog 6 + 05 2P Ry
Combining the preceding results we have, finally, for the divergence
(2) Q. 2T, .pcosp 26, o 1
VoY . X, _z24 2 z =0, (1e13)

. — s
9 x dz unoé d']'_+o'23(J Rl

with which we complete our presentation of the static limit for the components

of the T -vector and their derivatives in the non-condaucting mediume.

1«3 FIELD COMPONENTS IN CYLINDRICAL COORDINATES

We have already obtained in Section 32 various forms of the electric
field components in cylindrical coordinates in terms of our fundamental
integrals whose limiting forms in the static case are listed in Section lel.

Inserting these limiting forms in lieu of the fundamental integrals in the

corresponding equations, we have for z < O

- )
& -0y 1
. ) p cosp 2 i . a9t ; (lyoly)
L mop 2p° (B4 1t Ry
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ingd 1 91 o =065 1 ‘ i
By = _ps 15___9 {__+_l__+_zR_ ; (14o15)
e, P op | R, & o R,
p cosg ‘82 “l 01-0'2'1
L= —f A2, (116)
bmoy 929 (R, o+, R

which exhibit the static limit of the cylindrical components of the electric
field intensity in the conducting medium. It may be seen from the first of

BEgs. (2.5)- that in the static limit
E=VV-T =« .VY; Y=-v-T, (L17)

where ‘1}/‘ is the scalar potential. Clearly, then, we see from the above

equations that for z £ O tne eledtrostatic potential becomes

. e _ poost 2 (1 H-01
AT oy af’fﬁlﬁ o &

’ (h18)

which yields directly, using ();s17), the cylindrical components listed abovee
Proceeding likewise for 2z = 0O, we have for the cylindrical components

of the electric field intensity in the non-conducting medium the limiting

expressions

2p cosg 82 1

E —
F2 (o] +c*2) QPQ}'L_L

-s

(Lel9)

2p si 1 2 1
B, = -2 121, (1+20)
km(op +6,) ° 3P Ry




2
2p cosg 9 i .
29 = N i ()1021)
L + o%z90 : :
hn(or +07) 920 R,
whici are seen o remain finite as 0‘2 — 0, ULue acitual case for the
non=conuucving medium. Finaily, as in the preceding paragraph, we deduce
from the above equations or directliy from (lje13) that the electrostatic
potential in medium (2) is given by
(@) 5
\ pcosp 2 1
Y, = =T - (Le22)

RECEEYEIE

The computation of the static limit for the electric fieid components
given in tne preceding paragrapis can be carried out eituner by substituting
the iimiting forms of tne fundamental integrals in the expressions of the
electric field components deduced in the general alternating case or eise by
computing tie components anew from Egse. (3e13) and making use of tne limiting -
forms for thne Cartesian components of %ne T =vectors dispiayed in Section [j«2.
The same. two possibilities do not occur, however, in the case of the
transverse magnetic fieid componenis; for, as seen by Eqse (3¢2L), (3¢25),
(3¢27) and (3+28), there are terms containing kzz or k;Q wnicn makes
it necéssa.ry to examine wue svatic ilwlv more carefutily.

In consequence, as far as toe static iimiv of the magnetic faeid
components is concerned, it is more expedient to maxe use of Egs. (3e23)
to compute e magnetic fieia compouents directly in verms of tie static
limiting forms for tne Cartesian components of tne T -vectors as exhibited

in Section lj.2. Tius we uave for tie conducting medium, 2z £ 0, vue

Limiting forms




&

77

psind 21 o7 =o; R, *(z -nh)
1 2 2
H(Ol = - —)— ¢ + 2 ’ (h'23)
b dz(R o ro )
pcosg |1 o -0, |1 R2+(z-h)
i T pon el bl > ; (Lo2le)
b 9z |R o] *0, R, e -
psing o 1
Hzl - s —3;0;_ El— H (ly25)
and for the non-conducting medium, 2z = 0, the corresponding limiting
forms are
.. psind ({1 -0k -(+h (10026)
2 ’ °
P2 b 32 Ry oy * o, e
Hgo = pcos,si = (A% }‘-Rl- (Zﬂl) H (4e27)
- +
] R A U
sind @ 1
H = - p —at—  — Y (h¢28)
z2 Jym 8(0 Rl

Putting 05 = () in the above equations leads to considerable simplifica-
tion in our results. In this important practical case, we have for the
electric field components in the conducting medium for =z < O

| p cosp 82 1 1

= —t= 3 (holha)
1 e 0% | B, R,
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psing 1 3 i 1 |
E | J- —— = —t —— H ()4.153.)
rat o P 3P ZRl R,
2 . N
p cosp D 1 1
—_t — ’ (}1e16a)
zl o~ dzop Ry R2 j

where we have written oy =0 ror the conductivity of medium (1) Similarly
we have for the electric field components in the non-conducting medium for

z =20

2
2p cosfp O 1

3
2psing 1 2 1
E;Sz = .22 5 — — (lie202)
hno~ @ 9F Rl
2p cosp 2% 1 :
S—— . ()[_0218.)
22 lme~ 3230 Rl
The magnetic fielid components become for the conducting medium,
2z < 0, with ozf-o* and 0'2"=G,
' p singd 3 fl R, + (z = h)
By o= — ; (ke232)
hw 2= 2 Rl o J :
N ~N
peosp 9 (1 1 Ry+(z=hn)| «
Hy = — = +—- 3 5 (ke2ha)
L b 9z [ R, R £ (
‘ 1 2 : : J
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psing 3 1 ‘
B, =~ —_— (lre252)
Jyrr ap Ry

and for tihe non-conducting medium, 2z > O, the corresponding magnetic field

components are

( )le 2()8.)

ol

(L1e27a)

= o P s:.nﬁ{ Jd 1 \ (}40288)

z2 Jyrr a0 Rl

It is important to note tinat the magnetic field components, as given above,
are independent of the conducitivity 6, whichh of course is not true of the

eleciric field. This indicates tuat tne body currents tuat fliow througiout

tie condueting nediuvn do not contribute Lo tie observed i
tiie present case of 67 = o and GE = 0 The wroct of this staterent is
1 :

- . 3 e sl e [n¢
civen in Section lebe

lie!y TVDEFELDEIT SOLUTICH FCR TME ELECIRIC FIEID

«

In tiie preceding secivicons we have erzarined the static limit of tle

O

results for the dipolar orobvlei: in thwe ¢ alternating case as o> ~» Co

As a check on tihe previous work ancd because it proves iilwminating, we now

consider tie independent solution of the static provieme. We obseive, first,
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that in the static case tue eleciric and magnetic fieldsare uncoupled; that
is, we can devermine tlhe electric field everywiere independent".i.y oL any
snowledge of tne magneiic field. Tius, consider our isotiropic and uomogeneous
conductor of iniinite exvent for which tne Maxwellian equations (2.);) become
in the statie limit (k = 0, kn = io™)

I. VxE = 0 IITe V¢ H = ¢
(Le29)

3]

Ite Y xH-6E = J We W*E ® « (Ve j%/e

wiere J° denotes tie prescrived current densitvy disirivution cunaracverizing
the source. In ine present instance, the stavie dipolar source is stiil

expressed as in Eq. (2.9); tiai is,
3P = ep §x) &) SG+n), (13+30)

wideh descrives an eliemenvary, current element in tie x direction located
at (0,0,-h) aud wueme v, Uie dipoie moment of the current source, is
still defined by Eqe (248}

We now introduce tie scalar potential "%V and tue Hertzian vector 1T,

reiated to each otuer by tie so=called Lorentz conaition,

Y= -V T, (1e31)

5

whicly we already referred to in Eqe (1e17)+ In terms of (l.31), we nave

from I and TIT of ();+29)
E = « VI’/": VV *TT ana u = o VT . (l1e32)

vaxing use of the expressions for the electric and iiagnetic field vectiors .

in II and IV of Egse (J1+29), we deduce readily wuat tue Hertzian

vector T and the scalar potential ‘L// satisfy respeciively ithe folilowing
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vector and scalar Poisson's equations:
2 0 2 — o
VUM = =J/ec ad VY = (VeI)/o. (l1e33)

In the present instance J° is given by (J1«30), from which YV ° J° becomes

simply
V*3% = p &% ) §GE +hn), (lie3L1)

where $'(x) denotes the derivative of Dirac's delba function. Tius, in

this case the scalar potential satisiies the Poisson's equation
2y = w/e) 8x) §@) 8z +n), (11035)

which admits the particular integral

— (ll°36)

where Rl denotes the distance from the elemenvary current dipole at
(0,0,~h) 1o the point of observation (Fige 1)s It is seen that Eqe ()1036)
has precisely the structure of the elecirostatic potential of a dipole
oriented in the x directione

Restricting our attention to the eleciric field, we now have for the

two-mediwm problem the following fundamental equations:

I = @GE s, B o= = VY, 9Py = (/6) $(x) 5(r) Sz + h), (1e37)

which apply in medium (1) for 2z < 0, and

2
J, = coE , E = - Vl/z y Y ‘t,L"‘z = 0, (1338)

2 22 2
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which apply in medium (2), 2z > 0, with finite conducitivity oy * We
notve that, according to (l1e36), tue elecirostatic potential _'yfi can be

written for z £ 0 as
‘ 0 r; ' ( )
=z S J ,_l039
“L//l ' N Y N .

where ‘\pfz is a particular integrai'Of Poisson's ?quation (Le37), tor
wiich we take the soluivion given in (J1036), and ’1#’1 is a solution of
vapiace's equatione For 2z 2= 0 tue elecirostaivic pbtential T%Wé is
merely a solution of Laplace's equatiomne

The boundary conditions in the present instance require tine continuity
of tie tangential components of E and of the normal components of J upon
crossing the interface at 2z = 0 separating the two media. In terms of the
potentials, tie boundary conditions read

9 Y] 2 Y-
= 1 = 2 = o
1#71 ‘4/5 and o 57 % =3 - at z=0. ()ye)i0)

Next, resorting to the method of images, we postulate for the potentials

‘in and ‘y/é, according to Eq. (}e39), the expressions

Vl-'hnai—a':? €£+R—; y 2 <0 ; (Loh1)

comes  ammmac 2 =2 0y o ' (’10112)

where p! and p" are the dipole moments of image current sources located
at (0,0,h) and (0,0,~h) respectively (see Fige. 1) and whose values are

to be determined from the boundary conditions at 2 = 0. Thus, in this way
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we obtain
o -5 20, Chol3)
pt = ——1p and p* = ———Dp, lto
_ ® to o *+ o,

with which the solution eof the electrostatic problem yields for the potentials

P _ 1 '
Yy, - - 2 = L3 0'51_2_ y 250, (lalih)
ey 2x Ry °1 o By
and
2p 2 1 -
2.2 0, (holi5)

V2 T “imle vy oxE,

which are seen to be identical to Egss (he18) and ()1a22), respectively, ia_.'fr’ter
putting 9/2 x = cosf(2/90)e Thus, we have shown that the static solution
Ior the electric field obtained independently by the method of images coincides
exactly, as it should, with tne limiting forms of the alternating solution
obtained by letting W —>0.

The special case O'é = 0 offers no diffieulty, for it is readily
appreciated that in Eq. (lje}2) the ratio p"/o; is independent of the
conductivity of medium (2)e In this important case, o, = 0, the electric

field may be deduced from the potentials

Ay w311 ,
Y, o 2x {Rl * R.z} » 850, (lo k)
and
Y - ..P 22 g2 >0 (l1oh5a)
2 hﬂo ax Rl ] e ] 10
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wnere we ha#é.written Gi = § « These results admit the following interpreta=-
tion: the potential in the conducting medivm, 2z =< 0, is that due to the
source current dipole at (0,0,-h) and an equal current dipole located at the
image point (0,0,h) in medium (2), whereas the potential in the non-conducting
medium is that of a current source of twice the dipole moment of the source -
located at (0,0,-h) in medium (1)s The electric fields deduced from

Egs. (le)ha) and ()ie)52) have the cylindrical components listed in Eqs. (helha),
(}o19a) et seq. The structure of the electric field in a vertical plane
containing the source dipole is readily deduced from the above considera-

tions. It is seen that,.in accordance with (lie)ja) and the boundary conditions,
the lines of electric intensity in medium (1) and, hence, the lines of current
density are purely tangential at the interface 2z = 0; while the lines of
electric intensity in medium (2) have a normal as weil as a tangential component

at 2z =0, the normal component terminating on the surface charge density

appearing at the interface between the two media.

lie5 INDEPENDENT SOLUTION FOR THE MAGNETIC FIELD

The solution for the electiric field in the static limit has furnished
us the complete current distribution set up throughout both media by the
elementary dipole current embedded in medium (1); and, in principle, we should
be able to compute the magnetic field directly from the knowledge of the cur-
rent distribution. To this end we note that it is more convenient to deal

with the vector potential A which we define from (}.31) and ().32) in terms

of ‘our old Hertzian vector as follows:

A= oT, VA = -0y, H = VxAi. (heli6)
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In consequence of this definition, we note from Egs. (Le5) and (L«10) that the

x components of the vector potential in each medium become merely

Axl = di’rr}-cl = P/hT’Rl ’ z2< 0, (hoh7)

and
A, = 0T, = p/lok, , 2z =0, (L.18)

which are one and the same expression for boinh media. Therefore, we conciude
that, irrespective of the presence of the boundary separating the two media

of different conductivities, we can write the x component of the vector

potential everywhere as

X

A, = Db , (Ls-19)

where Rl is tne distance from the point of observation to the source dipole
in medium (1). Noting that (4.49) is the particular integral of the Poisson's

equation
2%, = -p8x) S(y) Sz +h) (11050)

for the unbounded medium, we conclude from (}.}9) and (}4.50) that the
elementary current dipole gives rise, all by itself, to the magnetic field
derived from A . |

It follows, therefore, that the remainder of the magnetic field which
we associate with the 2z components of the M ~vectors and, nence, with Az
must be due to the current distribution set up throughout the two conducting

media. In fact, we have from Egse (lis7) and (h.ll) that the 2z components



of the vector potential in each medium can be written as

A T peoshop -G Lf B-z < (11+51)
= 6. = - — - Z\O °
l l ’ 3
2 1z hym 51 + 55 e R2
and
p cosp 0] ~ 65 1 h+z
A = g T B - e Al - z =0 11052
22 2 z2 W 03_*6-2'9 Rl ’ ’ (i )

where R, and R, are defined by Egs. (261)s Tt is noted that the two

2
preceding results can be combined inteo a single expression for Az, valid

everywnere, by merely writing

p cosfp 6] =

nS)

A, = -

}-{1- h+lzl (1e53)
o€ [t @]t |

wnich says that AZ is an even function of gz completely symmetric about the
plane 2z = Q0 separating the two media.

We now propose to derive AZ, as given by Eq. (};+53), directly from the
current distribution. To this end we observe first that the two media may be
conveniently regarded as a single medium of discontinuous conductivity ¢ (z)

which is expressed by

. Gi, z £ 0
o(z) = o - (0] - oplulz) = (lo5h)
0-2.’ z'>/ 0

winere u(z) denotes the unit step function defined as zero for negative

argument and unity for positive argument. Thus, we have
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Yo = - {6 - 5;) &(z)e, (11+55)

as a surface vector singularity occurring at the interface z =0 as a
result of the sudden discontinuity in the conductivity of the medium. We
observe, next, that the magnetostatic field everywhere, m accordance with

IT and IIT of Eqs. (L+29), is governed by the equations
YxH = J+J°, V°H =0, J = oF, (Le56)

in which J° 4is the source current dipole in medium (1), Eq. (1.30), and
J = 0E 1is the known current distribution set up throughout the infinite

medium of discontinuous conductivity; that is,

for 2 L0, J = cr]'_El = -O'J'_V\rl s

and ‘. (Ls57)
for z %20, J = 6F = -06,VY;,

where ‘\}fl and ~ ”é are the known electrostatic potentials already given

in Eqse (Lelh) and (Leli5).
To obtain a solution of the first of Egs. ()1e56), we note that the total

3
magnetic field may be resolved into the sum of two components, H = HC + B¥%,

o]

Vxu® =4 and YV xH = J. (11058)

The first of Egs. (1:+58) has already been solved for J° as given by Eqe ();230);
whence, placing H® = W x A° , Yo A° =0 , we note at once that
AC = e A, where A is given by (Lek9); that is, H® =WV x (exchy)

=e-eyX V’%c s and the magnetic field due to the éource dipole is everywhere
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perpendicular to the x axise The second of Egs. (}.58) may now be solved

by putting, from (li.h6),

(-cm, 2 <0

B = Vxat, Vot = -0y - (1-59)

-d‘z"l.}fz, z > 0

from which we deduce that the vector potential A:' must satisfy the vector

Poisson's equation
VxVxAt =7 = -6YY; (11+60)

or, making use of the vector identity V¥V x WV x A= VVeart -VZA' and
of the divergence condition in ();«59), we see that the vector potential A
becomes A' “z e,A, where A, is a solution of the scalar Poisson's

equation

vh, = (- )5y, (161)

which was derived by noting from the divergence condition that
NY'A = V(oY) = <o VY +yvyo, (L+62)

where Y6 is given by Eq. (h._S‘S)'I‘. We may note that the above procedure is
permissible because W}~ is a continuous function of position defined by ‘
Eqse (Lell) and (heli5)s

Thus we have R from (11461), that Az( (o, 4, z) satisfies the equation

1D [ ek} L 2%, . %A, 2p cosf 07 -~ & 2 &(z), 6
eI\l 90/ ©? 242 222  m oy +o, (2 PN T4
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where we have made use of either (L)) or (L.)5) to evaluate }L”(fb, 4, 0):

To solve Eqge. ()1«63) we first write

p cosg 61 - &
Az(’o’ ﬁ, Z) = h“ 6'1"‘65

F(p25 2) (Le6l)

in which the function F(/ﬂ,z) is seen, from Eqes (};1¢63), to be a solution of

1 a( aF)_ F 2% 2o S(a)

— +
D 39

= v (165
o) "2 T3 T eTenl 1065)

In order to obtain a solution of Eqe (4+65), we first eliminate the 2z variable

by introducing the Fourier transform

on
Q0 =00

00 .. ' .
G( (0,4) 'f F((O)z)e-lh,zdz’ F( /O,Z) = X G(Iosé)elézd‘; ’ (14.66)

with the aid of which, using standard procedures which will not be detailed
here, one deduces that the transform G(fT,é) must satisfy the inhomogeneous

Bessel's equation of order one,

19 / 9G\) [/2 1) 2 s
— g:)_~ - 4° o+ - G = 4 . (hoé?)
',O 9{,:) \{ “0 ‘\ 'x,) 2//1 ((’02 + h2)3[2

A particular integral of Eq. (lj«57) is most readily deduced with the

aid of the Fourier-Bessel transform

~00
HOwg) = |

G( 245)d1 (A ) od -2, G(,«o,c;) = j HOLG)IL (A )Mdh ,  (1hedE)
Jo ! o o

according to which we obtain for the right hand term of (11+67)




o0
2

- P A o .~Ah

1 p) (o? + D)2

(o)

by using a formula in Wa.’cson,23 and for the left hand terms of Eq. (11467),

using again standard procedures, we obtain merely -(?\.2 + éz)H()\,é), whence

there results the double transform

9e~M

) = -z

Inverting this expression for H(?x,g) with the aid of the corresponding
inversion formulas in Eqs. (l;+56) and ()j«68), we obtain for the function

F( (O,z) the double integral

e
F(/a,z) 2 %’-J‘ ej‘é’zdékJ~ Jl(?s{o) 3\-2—% ’
-0 )

from which, by inverting the order of integrations and carrying out the

integration with respect to & by the method of residues, we have finally

-~

“A(h+lz]) 1 h + |z
F 3 = - Ji(ApP)AAN = e — {1l = — Tty
‘o) ° 1) L et j2)2 ]
[¢] .

where again we have evaluated the last integral by making use of a formula in

Watsone. 211

90

(11069)

(11270)

(Jpe71)

23 G. No Watson, ®A Treatise on the Theory of Bessel Functieng,¥% (The Mac=-
millan Company, New York, 194li), second edition, ps lU3li, BEqe (2), with ¥ =1

and m = 1/2, and then p. &0, Eq. (13).
2l Loc. cite, pe 386, Eq. (8) and further algebraic reductions.



91

Substituting the above result into‘(h-éh), we have at last for the

component Az the expression

-
R B_pcosﬁdj_’-@i(- AL (72)

which, of course, is identical to Eqe (1;s53), thus proving our contention
that the magnetic field derived from =z components of the T -vectors is
indeed due to the current distribution set up throughout both media and can,
in fact, be computed directly from the current distribution. The above
computation is illuminating on many counts, for it shows that the magnetic
field due to the current distribution is a ®surface®™ phenomenon, having its
source at the interface beiween the two media, 2z =0, where " x J is
discontinuouse.

To prove that the body of the current distribution itself gives rise
to no magnetic field, we first note that our vector potential A can be
expressed in general, in terms of the current distribution, by means of the
Poissonts integral

EICDIE | *
: (I‘_ dv" R = %r - r'f 3 ().1073)

where r denotes the position veetor of the point of observation and r'L
denotes the position vector of the variable point of integration. Computing

the magnetic field from (};.73), we have

-

. !

Al

1 ~ 1 r , . s
H = “"xA =- EJ/. J(rY) x\/‘ﬁ- dv! = EFJ J(irt) x ¥ =av, (1o Thy
v | vt
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in waien ~, ' denotes differentiation with respect to the primed variablese.

Making use of the vector identity

b d wooX d
/ R

o=

- Jx‘i/‘

and assuming that the volume of integration V' is for the moment restricted

to the finite region enclosed by a bounding surface S’, we have from (lj«7h)

1 o xJd ., 1 {‘ nt x J
H = — i L d'v" - e————— da‘ 9 (h'?s)
I R hm § R

wiere n' denotes tue outward normal to the bounding surface S%*. Eq. (4«75)

snows that if the current distrivution is sucni tiat ﬁ,i x Jd =0, wnica is
tile situation in our present problem except at z =0 wnere ¥, Y'x J is a
surface singularity, tnen the only contribution to the magnetic fieid cowes
from the surface integral or tne tangential component of current on the
boundiﬁg surface 8%

Tt is clear, tien, from Eq. (/;«75) that to compute the magnetic field
due to the current distribution in mediumm (1) we need only apply the above
result to a volume consisting oi a hemisphere with center at the origin of
coordinates and with its equaiorial plane coinciding witi tne interface at
z = 0, the hemisphere being drawn into medium (1). ALiowing the radius of

the hemispiiere %o become infinite, we have, because ‘i" x d =0 everywhere

except at 2 = 0, <tnat

daj ’ ( )-1‘ 76)



wihere the surface of integration is the plane 2z =0 and Jl denotes the
current density in medium (1) evaluated at the interface. A similar computa-

tion for the current distribution in medium (2) gives rise to an identical

result,
1 (Gz X J2 .
H, +E;.J. L= dat, (Le78)
Sl

where the change in sign arises from the change in direction of the outward
normale Combining the above results, we have finally for the total magnetic
field anywhere due to the totality of the current distribution throughout both
media the surface integral

&

1 | egx (3 =J9)
/

H = = o daf R (Le79)

Sa

whicih proves that this is a surface pnenomenon, tne magnetic field being due
to the discontinuity in tne tangential component of J which occurs at the
interface z =0 and which results in a surface layer singularity for Y x J,
the sole source of the magnetic fielid component presently discussed. It is
clear tuat the magnetic field given by Eqs (l1o79) must be identical to the
magnetic field component HY defined earlier in (}+59) and which is given
by H' = ¥x egh, = - e, x VA, where A, is given by Eq. (L)) o

’ The above analysis has given a physical explanation for the necessity
of postulating tue z coumponenis of the T ~vectors in the static as well as
in tue general aiternating casee. I@ is true that they were needed to satisfy

the boundary conditions, but their real physical significance was only made



clear after we understood that the fields derived from the - 2 components
of the Tl -vectors have as a source the surface singularity of N x J which

occurs at the interface separating the two media.

9k
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V. ON THE SADDLE POINT METHOD OF INTEGRATLON

The deformation of tne original path of integration proposed in
Section 2.5d has reduced the problem to the evaluation of the typieal
integrals I and I2 defined by Eq. (2.107) along the contours C{ and
02 iliustrated in Fige ho As stated in the Introduction, we nave suc-
ceeded in evaluating tnese integrals asymptotically by the saddle point
method of integration; and, because it was found necessary to introduce
several new elements into the theory, we have collecied in ©his Chapter
a number oi tueorems and formulas whicihh facilitate the systematic evaiua-
tion of the inivegrals discussed in Chapter VI. In addition, it is periinent
to present at this junciure some concepts wuicihh neip to clariiy the foi-
lowing three points that are fregquentiy neglected or improperiy treated in
the literature:

l. Tne asympiotic evaluation oi an integral by means of ¥the saddie
point method of integration is independent of the choice of path tnrough
the saddle point, the only restriction being tnat the path be so chosen

as to guarantee tne convergence of the original integral for all allowable

vaives of the parameters. The so-called patih of steepest descents is not




at all necessary,25 though it ofiers some distineci theoretical advantagese
2+ The order of magnitude of the remainder after a fixed numbver of
terms in the asymptotic expansion is either omitted or else erroneously
estimated.
3. The first few terms of the asymptotic expansion may not be drop-
ping off ifor a given range of parameters and sanould then be grouped together

for computational purposess

5«1 SADDLE POINT METHOD FOR SINGLE INTEGRATION

For points of observation in the conducting medium both integrals

I, and T,, as defined by Eq. (24107), are of the general form

-

I = %\{ v(e Ml opan, 5 <o, (5.1)
C

wnere tie patn of integration in the A=-plane becomes eitner Gy or 02
as illustrated in Fige. lj» In both cases, however, it is possible to
introduce a transformation of the variable of integration wanicih reduces tue

typical integral (5.1) to the form

™y

ranefMay (542)

’i 1
I =
uC

where C denotes a symmetric path in the w-plane which originates at

infinity, passes througin the saddle point w = 0, delined by

?S See, Ior example, Bs L. van der Waerden, Applied Sci. Res. B2,
33-l6 (1551).




A'(O) = 0,

and terminates at infinity, altogether within the strip

which guarantees the convergence of the integral for all allowable values of

larg {4(0) - p)}] < w2 ,

the parameters. In particular, the path C becomes the path of steepest

descents when the condition

arg { 4(o) - ()} = ©

is satisfied on C.

of w,

In the present instance it turns out that 4(w) is an even function

B(~w) = pw) ,

with the result that, introducing the new variable of integration defined

by

x2/2 = $(o) = f(w) ,

and considering only paths of integration C which are symmetric about the

origin in the w-plane, we obtain for the integral (5.2) the expression

where

(4nexp(i@)
elo)r . = E éf(x)e*xz/zdﬁf,
J

o}

P = {F@ +FEFE, v e,

97

(5.3)

(5ek)

(5.5)

(5.6)

(547)

(5.8)

(5.9)
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and in whica |@| < w/l and |arg{x}| < Wk on the entire path of
integration in the x=-plane. In particular, for the path of steepest descents

we nave from Eqe (5.5) tnat

e"“(°)1 = J‘m@(x)e"cz/?dx s (5+10)
[o)

in which the path of integration is rigorously along the positive half of the
real axis in the x-plane. It is clear that the integrals (58) and (5.10)
lead to precisely the same asymptotic expansion; for, by hypothesis, there are
no singularities of the integrand between the path of steepest descents and
any other permissible path within the circle of convergence of the power series

expansion for @ (x) about the saddle point x = O.

S.la. Watson's lemma as applied to the present probleme=- To evaluate

the integral (5.10) asymptotically, we note first that, by virtue of (5.6)
and (5.7), the function dS(x) defined by Eq. (5.9) is an even function

of x and, therefore, admits the power series expansion

(¢ o]
) = > Ay, (5.11)

m=o

x!‘__x

which is valid for |x| < K% where &° denotes the radius of convergence;

that is, the function éﬁ(x) exhibits its nearest singularity to the origin

at x = x, where \xol = %é'- Further, to bring the integral (5.10) within
7

the domain of Watson's lemma,20 it is necessary to make a change of scale in

the variable of integration by putting

26 G. N. Watson, WA Treatise on the Theory of Bessel Functions,® (The
Macmillan Company, New York, 194)), 2nd ede, p. 236.
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x = 7\%11 and é(x) = j_'/(u)- (5.12)

Our typical integral (5.10) then becomes

e-’s(o)I = K%f'g.?(u)e-mz/gdu , (5013)
)

in which, by virtue of (5.11) and (5.12), ‘ﬂ:?‘ (u) has the power series

expansion

&L
"‘ll/(u) = ?.-.ﬂAgm"\muzm ’ (5+1h)

m*=0

which is valid for Ju} < 1. In terms of this new variable of integration

Wavson's lemma as applied to the problem at hand may be phrased as follows:
Lemmat- Let )" (u) be analytic within the unit circle [u] < 1,

ieee, let ’Q (u) have the power series expansion (5.ll); further, assume

that
|y (u)} £ P (5.15)

where A 1is a positive number independent of u and p 1is a positive

integer or zero, when u 1is real and u > l. Then the asymptotic expansion
@
2 & 1
el = o} W (u)e™ M2 /24y NZ "R (m + $)a (5.16)
=0 2m
4]

is valid in the sense of Poincare’ when A 1is sufficiently large, i.e.,

A > e
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Note that the asymptotic expansion (5.15) may also be conveniently

written as

©
e"ﬁ(O)I ~J (_T_r \é' (2m)- Azm - (_Z_} %(AO + A? + BAh + lSAé + oco) (50163.)

ol !
2 m=02m y
in terms of the expansion coefficients Azm which, of course, are themselves
functions of A. In fact, as shown in the sequel, it turns out that in the
present study we need only consider two cases characterized by the fact that

the functions
() WAy and (b)) AL, (5.17)

remain bounded as A —p .
To establish the above expansion we note from Egqs. (5.1ll) and (5.15)

that, if M > p 1is a fixed integer, a constant B can be found such that

M-1
qu (w) -;6_ R uzm/ < ByM (5.18)

whenever u > 0, whether u < 1 or u >1; and therefore

00}
M-l (‘
2 ’ 2
)\% Y (we™™® [2gy = E Ao | e 24y 4 gy
m=0 o
(o]

where RM’ the remainder after M terms, is bounded as follows:

2

m .
' 3 !
R < A2 BJA WM 2, o g (3) %l%‘_)\-m = o(x ). (5.19)
(o]
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The analysis remains valid even when the path of integration in the x-plane
does not coincide with the path of steepest descents and so we have proved

that, with ,,6’ < n/)y and Iarg {x}} < n/?2 on the path of integration,

exp{if) vl
i (x)e-fx2/2dx - (’2‘)% X i_.mgﬂi::_ Azm . 0(7\-M) | (5-203.)
n=o

o

whenever the expansion coefficients satisfy the condition (5.17a), or else,

that

xp(id)
piie M-1 M

B - (23S ‘

+ o(a~M-1y [ (5.20b)

T AL e e H

whenever the expansion coefficients satisfy the condition (5.17b). This last
result is readily established from the foregoing analysis by merely carrying
the summation in Eqe (5.18) to one more term and then grouping tihe last term

with the remainder, since both are now of the same order of magnitude.

It is of interest to remark that the form of the remainder as given
by Eqe (5419) has been established for M = pe. This is a sufficient condition
only, for it can be readily seen that Eqe (5.19) is valid for M > 1
regardless of the value of p. However, it turns out that, for moderately
small values of A > 1, it is sometimes necessary to group the first p
terms in order to guarantee that the remaﬁ_nder is sufficiently small and, in

fact, the first (p + 1) terms must be computed before there can be any

assurance that the remainder has the proper order of magnitudes.
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S.lb. Inversion of the power series expansion for x2lg}- The practical

application of the results embodied in Egs. (5.20) require the evaluation of
the expansion coefficients A2m in Eqe (5¢11). This in turn necessitates
the inveréion of Eq. (5.7) to express w qua function of x, and in many
cases this inversion and the evaluation of the coefficients A2m constitute
the most laborious part of the computation. To facilitate the inversion of
Eq. (5¢7), it is noted that, by virtue of (5.3) and (5.6), the function x2/2

admits the power series expansion
x2/2 = wz(co + 02w2 + cuwh + ooe) (5.21)

which is certainly valid for sufficiently small values of w. Inverting the

power series expansion (5.21), we obtain

W o= ax +.31'32x~3 +%ahx5 + ..oo (5'22)
and
g:_: la=v ao+a_2x2 +ahxh+o-o (5°23)

where the coefficients ay, are given, according to watson,ZT by the

expressions
a, = (2¢,) %,
ay = (2002 é“%%}’ | - (5e2h)
a, = (2¢,) 5/2 f:§%+%§(§.§./\2? .
27

Loco Cito, Pe 2h2, Eqs. (l)n
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Thus, in practice, one first determines the coefficients on in
Eqe (5+21) by expanding the function on the right of Eq. (5e7) into a power
geries in w, which of course is valid only within its own circle of
convergence as determined by the nearest singularity of #(w). Once in
possession of the ¢'s, the computation of the a's in the inverted power
series (5.22) is effected by applying the formilas given in Egs. (5e2l;).

In the present instance we found it unnecessary to go beyond the coefficient ah.

Selc. Calculation of the coefficients Aoy-= According to Eq. (5.9)

the function Q?(x) may be regarded as the product of two functions,
{F(w) *‘F(-w)}' and dw/dx, which are themselves even functions of x.

2

Thus, expanding each factor into a power series in x° and multiplying out

the two series, we obtain, in accordance with (5.11),
b)) = {F(W) + F(-M)'}:-% = Ay *+ Ajx? + Ahxh + A@cé 4 oee (5.25)

where, making use of (5.23), the coefficients of the power series expansion

about the saddle point become

A = 2aoF(O)

(o]
2ay {11 oy &
Ay = —7AF(0) + 2F(0) -2 ,
o! ag
S (5+26)
2agy ) IV 1T ap a)
A, = 0 F7 (0) + 20F (0) 3 + 217 (0) ;é}
(o] (o]
2aZ VI w, . 20 I, . 2 I ag ag |
A, = — (0) + 70F~ (0) — + SOLF (0) + 260F(0) + 720F(0) — -
6 6! ( a> ;3 ;3 al
o o o) o

where the primes over the F's denote differentiation with respect to w and

subsequent evaluation at w =0 .
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Thus, by virtue of Egs. (5.20), the asymptotic evaluation of our
primitive integral (5.2) has been reduced to the evaluation of the expansion
coefficients Azm’ given by Egs. (5.26), which in turn are expressed in
terms of the coefficients a,, in the power series expansion (5.22) and in
terms of the function F(w) and its higher derivatives of even order,

evaluated at the saddle point w =0.

Se.ld. Subtraction of a first order pole in the neighborhood of the

saddle pointe.- It is clear from fhe foregoing analysis and in particular

from Eqs. (5.20) that the magnitude of the remainder, as given by Eq. (5.19),
limits the applicability of our asymptotic expansions to fairly large values
of A, where X% represents the radius of convergence of the power series
expansion of the function éﬁ(x), defined by Eqe (5.9), about the origin

in the =x-plane. Expressed otherwise, it is the singularity occurring nearest
to the origin in the x=-plane which governs the nature of the asymptotic
expansion. If it happens, however, that the nearest singularity of gﬁ(x)
is a pole of the first order (or of higher order), then it turns out that the
radius of convergence can be enlarged to the next nearest singularity by the
subtraction of the pole, thus improving the range of applicability of the
asymptotic‘expansion which now exhibits a remainder RM with a lower upper

28 .

bound. This method was employed by van der Waerden<” in a paper which was not
available to us at the time that we developed independently the method of
subtraction ofhé first order pole presented here and which, we belie&e, has
the merit of greater simplicity.

Thus, we assume that the function é (x) = {F(w) + F(—w)}dw/dx has

a pair of simple poles at x = ¥ X5 where |x,| = 1% denotes the radius of

28

( ) Loc. cits reference (25). See also He Ott, Ann. Physik L3, 393-10h
1913) -
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éonvergence of the power series expansion (5.11) and that the next nearest
singularity of 4) (x)s presumably an algebraic singularity and not a pole,
occurs at x = Xy with ;xli =)d% and B> A Dby hypothesis. Then, the

function

2x,C

—SE‘(X) - i(x) - —2‘—_";27 s (5.27)
°
wnere C 1s defined as
C = Lim 5 (x = x,)F(w) d_".z s (5.28)
x —»x, L dx

1 -
is analytic for |x| < ,15- Hence, in accordance with (5.11), 7} (x)

admits the power series expansion

) '> £A2m 2m'*l }X2m (5:29)
m=e b
which converges for x| < }1
Solving for " ' (x) in Eg. (5.27) and substituting into Eq. (5.10),
we obtain
{Q"
-$(0) oS 7 ox%/2
e I“E WI(X)* dx = Wg * W, , (5.30)
xOJ
o

where Wb, the contribution arising from the pole, is given by

E)
g &
Wp = ZXOC : P—f_—”‘é“dx R (5031)
i o
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while Wé, the contribution over the path through the saddle point,now
becomes, with ,53! < /)y and 'arg {xﬁ}) < mu/l; along the entire path

of integration,

o exp(1f)

- BN (em)! 2 =
W, = Y(x)e-xz/edx = <-g-) ’Z mm: Azm*;ng *By (> (5032)

where the order of magnitude of the remainder after M terms, RM, is given

o} .

by .
() |Ry ] %‘ o™ or  (b) |Ry| = o7 (5.33)
in accordance with Egs. (5.20).

Sole. Evaluation of the contribution from the pole.- It is to be

noted that the path of integration in the integral (5.31) for Wp, the
A
contribution from the pole, must be specified without ambiguity in relation

to the pole occurring at x =x_. and that it must not go through the pole in

o
order to avoid the necessity of computing principal value integrals.© In the
present case we have chosen the path of integration along the positive real
axis in the x=~plane; and, as it turns out, the pole at x = X, occurs in
the first quadrant with 0 < arg {xo}-<é< 7/l This precaution concerning
the choice of path is necessary because, as shown below, the value of the
integral itself depends on whether the pole is above or below the path of
integration;

The integral (5.31) may be expressed in closed form in terms of the

error function defined by
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» [
i -2 ;
erf(z) = "‘"'g% e~ dt . (5.33a)
(m)% |
)
To this end, consider the associated integral
@®
o-x2/2
W) = %0 | s dx, (5+31)
J X%
)

in whieh A 1is a parameter that we will eventually set equal to unity. It
is readily shown that W(A) satisfies the following first order, inhomogeneous

differential equation:

2
L RN O Gan

which admits a particular integral of the form
De~hxd/2 ,
W(A) = f(A)e™™o/c ., (5.36)
Substituting (5.36) into (5.35), we find for f'(A) thne expression
£rA) = = x C(n/23)% e/ < | (5037)

from which we deduce by integration that

1
r’ .
L L 2
f(l) = f(O) - xOC(ﬂ/2)2 ; A 267\3(0/2d-)\
1Y)
(o]

o

= £(0) - imnC erf[;ixo/(z)%?; (5038)
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whence, from Eqs. (5¢31) and (5.36),

W, o= W) = f(l)e-xg/z = e’xg/z{f(o) —“inC e;f[-ixo/(z)%;‘]} s (5439)

there remaining for us only the evaluation of the constant of integration

£(0).
To compute £(0) we note from (5.3)) and (5.36) that

{0

f(O) = W(O) = f -—2—:-;[—- = C lnjcc :zo ’ (50!10)
(o]

in which the evaluation at the lower limit x = 0 must be performed with
due regard to the phase of the logarithmic argument, (x - x,)/(x +x,), as

X —>» 0. In this way we find

" inC, when ./l > arg {xo} > 0
£(0) = , (5e)0a)

- iwC,‘ when - w/); £ are {xo} < 0.

In the present instance, as already stated, the path of integration in (5.3h)
is along the positive real axis in the x-plane and we have assumed that the

pole at x =x

o occurs in the first quadrant with 0 < arg {xo} << wfl.

In consequence, the final evaluation of Wp, ‘making use of (5.39) and (S.}0a),

yields
(¢ o}
2/ -
e'_‘x 2 g/ : J
= [ = =X 2 - i %
W, O 2 dx inCe 1 erf({::l.xo/ (2)

21T {l - erf E—ixJ(?)%} s (Seli1)
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where

—_—dx = 2niCe‘xg/2 (Sels2)

represents simply the contribution from the residue of the first order pole
at x =x,-

It now becomes of interest to investigate the effect of deforming the
path of integration in (5e31) from the positive real axis in the x-plane to,
say, a straight line in the first quadrant starting at the origin and inclined

at an angle (3 with respect to the real axis and such that
0 < arg {x,} < @< 1/k- (5e13)

That is, we ﬁould like to evaluate directly the new integral defined by

o exp(ig)
. e-x2/2
W= 2xC —— dx (5¢1h)
2 2
P x° = x§
[

in which the path of integration, in accordance with (5./;3), now lies above
the pole at x = Xo® To evaluate Wg_ y We first rotate the real axis until
it coincides with the new path of integration by introducing the new variable

of integration

g = xetf , & ~ xoe-i'ﬁ = Ixo)e—i(lg-g) > (5645)

where o= arg {xo} s and obtain
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w; = 20 (5e16)

fos)

i o—exp(2i 8)g2/2
ag ,

} £ - &

o

wnere now the path of integration is the positive real axis in the £-plane.

Proceeding as before, we readily conclude from Eqse. (5¢3)1), (5¢36) and (5.)46)

that
w; = We?if) = f(e2i@)e-§<§/2 - ox5/2 {f(o) - inC erf {:-ixo/(2)%} > (5eli7)

where, in accordance with (5./0a), noting that arg {go}- now is negative,

£(0) Dbecomes «inC and we obtain finally
i g ‘ l .
L LRt errf.mo/(z)a]} : (5218)

where Tl denotes the contribution from the residue of the pole at g =&,
as giveﬁ by (5.h2). ‘

This last expression for w; differs, of course, from the original
expression for Wb- To reconcile fhe above resulis one merely observes that,

according to Camchy's theorem, we ought to have

wp-w; =" or Wy o= ””xl: , (5.119)

which is certainly verified by Egse (5ell) and (5.48). The essential point
to observe is that, if we have once computed the contribution due to the pole
by evaluating the integral (5.31) over the positive real axis in the x=-plane,

and then we undertake a deformation of the path of integration which %sweeps®

past the pole picking up its residue, we still come out with the same result,
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namely 11 + W; = Wy showing that the complete contribution from the pole
integral is certainly independent of the choice of path starting from the
origin, so long as. ]ﬁ’ < u/ly. and ]arg {x}l < u/) along the path;
that is, so long as due care is taken to include the contribution from the
residue of the pole when such accrués.

Sincq Wé,. as given by Eq. (5¢32), is likewise independent of the
choice Qf path in the x-plane, subject only to the restrictions already
annotatéd, we conclude, as already stated, that the original integral (5.l)
in the w-plane may be taken over by any (symmetric) path passing through the
saddle point at w = 0 and extending to infinity in both directions away from
the origin, the only restriction being that the path be permissible in the
sense that it guarantees the convergence of the original integral for all
allowable values of the parameters. This important point has a definite
bearing on the whole question of the existenpe or non-existence of the so=
called Zenneck surface waves, which we take up égain in Section 7«3 where

we settle the whole debate, we trust, in a definitive manner.

5.2 SADDLE POINT METHOD FOR DOUBLE INTEGRATION

The introduction of the Hankel function in ouI; typical integral (5.1)
has made it possible to resort to contour integfation, but it has also
introduced the braqch point of the Hankel fungtion at A = 0. The applica-
tion of the saddle point methed of integratibn discussed in the preceding
section is therefore limited by the presence of this additional singularity
at A =0, particul;rly in the case of the integral I2 which is to be

evaluated over the contour C2 (Fige }). In this case the singularity nearest
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to the origin in the x-piane, save for the possible pair of first order

poles at x =3 X, which we mow how to subtract (Section 5.1d), is

precisely the branch point of the Hankel funciion occurring at A =0 in

the A-plane and it istthe presence oi this singularity that fixes the

radius of convergence of the expansién (g.ll) and consequently dictates the
character of the ensuing asymptotic expansions (5.20)« Notwithstanding this
limitation, we'expanded asymptotically the Hankel function and its derivatives,
appearing in the expansion coefficients (5.26), and discovered that the

- resulting asymptotic series seemed to correspond to a function ég(x) with a
power series expansion having a larger radius of convergence as dictated by
the next nearest singularity. In other w;rds, the process of expanding the
Hankel function and its derivatives asymptotically is tantamount to the
removal of the branch point at A = O.

To justify the above interpretation, to obtain tne correct estimate
for the remainder of the asymptotic series and to further facilitate the
asymptotic evaluation of our integrals, not in terms of Hankel functions anc
their defivatives, but in terms of their corresponding asymptotic expansions,
we replaced the Hankel functions appearing in (5.1) and similar integrals

by the integral representation29

® exp(ia)

bei(z—))ﬂ)

(MEB3° T (9 + 3)2”

2)® '%e-yz/edy ) (5450)

1 D ]
H (2) v2> (hiz - y

which is valid when Vol < n/ly and - ﬁ + L L % arg {z}_ < %? + ol ,

29 G. N+ Watson, loce cits, paragraph 7.2, p. 196, after making the sub-
stitution u = y2/2 for the variable of integration.
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provided that Re {:2J+ % } > 0O Thus, replacing the Hankel function which
is implicit in the integrand of (5.8) by its corresponding integral representa-

tion, there results the double integral

@ exp(ip) exp(ict)
IOT. B (ea)e™ 2 20y (5.51)

JO o

which we now propose to evaluate asymptotically by the double saddle point
metnod of integration. In particular, if the paths of integration in the x
and y planes are made to coincide with their respecitive positive real axes,

then we obtain

QQ
M

e-é(o)I = | \J EJ’:) (x ,y)e-(x2v2)/2dxdy (5.52)

(2] (o]

e

wherein 0 € x < o and 0 <y < ®w, which means that in each plane we

are using the path of steepest descents. It is clear that both integrals (5.51)
and (5.52) lead to the same asymptotic expansion for, by hypothesis, one goes
from the paths of steepest descents in (5+52) to the permissible paths in (5.51)
througih a continuous set oi allowed deformations without encountering additional
singularities within the domain of allowable complex values of x and y for
which the function éﬁ(x,y) is analytic and, therefore, has a valid double

power series expansion.

S5.2a. Extension of Watson's lemma to a double integral.- To evaluate the

double integral (5.52) asymptotically, we note first tnat, by virtue of (5.9)

and (5+50), the function g@(x,y) appearing in the integrand of (5.52) is an
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even function of botn x and y  and, therefore, admits the double power series

expansion
o n
" 2 2(n-m) 2
P ) =§ J ) o (5.53)
2(n=m)
n=o mnm=o

1 1
which we shall assume is valid for |x] <« A® and |y/< 9)2% in the sense
explained below. For example, the trivial case in which the extension of
Watson's lemma to a double integral is immediate is obtained when é (x457)

is of the form

® Goy) = £(x) ely) (55L)
where
(0] .
£(x) = ZA2SX2S, x| < A, (5+55)
S=0
and
o
S Y
ey = ) ¥, Iyl <t , (5.56)
=0

so that multiplying out the two series (5+55) and (5.56) and collecting

terms of the same power, we obtain a series of the form (5.53) with coef=-
2m

= B o
2(n=m) Az(n-m) om
domain of Watson's lemma (extended to a double integral), it is necessary to

ficients A To bring the integral (5.52) within the
change the variables of integration as follows:

1 1 . .
x = NMu, y =92y, whence i(x,y) = ?(u,v) , (5457)

with which the double integral (5.52) becomes
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w
e$0)r = (?\9)%'\[ jw{'ﬂ(u,v)e'(mhvvz)/zdudv ) (5.58)
(¢] (o]

where, by virtue of Egse. (5.53) and (5.57), 'I'(u,v) has the double power

series expansion

T -3 S SRR COR (5459)
n=o m=o n= '
which is valid for |u] <1 and vl < -'lo In terms of these new variables
of integration, u and v, Wa_téon's lemma as extended to a double integral
now reads:

Lemmas- Let 'E_F(u,v) bevanaly'tic for both u and v when |u|] <1

and |v] < 1; iees, let ?‘(u,v) have the power series expansion (5.59).

Assume further that
| W (w,w)) 2 & w22 (5.60)

where A 1s a positive number indépendent of uw and v and p and q are
positive integers or zero, when both uw and v are real and such that

u > 1 and v > 1l. Then, the asymptotic expansion

. o o
ePlo)1 = (7&‘)%_[ J“I’(u,v)e“(?‘uz*ﬁvz)/edudif
o o

n (2m)' 2hm-n)}! on ,
~ 3 pa Tk (0 -t ) o)

n=o m=o
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is valid in the sense of Poincard provided A and v are sufficiently
large, isee, provided A > 1 and Y > 1.
To establish the above expansion we note that, if N is a fixed

integer such that N = (p +q), a constant B can be found for which

- 2 Ne=m 2 m 2 2 N -.
,—g_ﬂum Z Z"A2(n Ly @) < B (w2 4V, (5e62)
n=o m=o

whenever u and Vv are real and positive, whether less or greater than

unity; and, therefore, reverting to the original variables of integration

in (5+61), we have by limiting the summation

lo ) o)
Nl n

e"’é(q)I Z Z.A2(n-m) x2(n—m)e-~x2/2dx y2me-y2/2dy + Ry (5463)

n o m*o
o o}

where Ry, the remainder after N (grouped) terms, is bounded as follows:

_ ® o
\RN\ < (Kv)%Bf f (u2 + ve)Ne'(M2+vv2>/2dudv

o} (o}

"~ N (2s)" [2(N )] N
- n ® S - 8 =N+s =S
B > SE , { Y

— (i - s)+ st N st (v -g)l

from which, replacing the bracket by its largest value attained when s = 0O

or s =N, we obtain

N N
o 1,1 1,1
R - — + ——— = O -_—t —_—" ® 6‘6)
IR} < 2 3 (x *9) (x » (5-61)
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Thus, we have established the asymptotic expansion

[o 0] a
' N-1 n
~(x24y2) /2, _ T (2m)s[2(n - m)]s 2m
é(x’Y)e . Tty 2 é ; 2% ! (n - m)! Ao (nm) * B (5.65)
® [o) '

where, in accordance with the discussion leading to Egqs. (5.20), we are to

write
N N+1 ,
() ’RNg.o(.;+%> or (b ]RN(.O(%+%) (566)

depending upon which of the conditions (5.17) is satisfied by the grouped
expansion terms.
For convenience in tabulating our results we write the asymptotic

series (5.61) in the form

@® o

00
e o)1 - f f S‘@(x,y)e'(xzvz)/zdxdy"’g'zf..@(n) ’ (567)

A n=o

by introducing the expansion terms
. ‘ _
(n) - (2m) e [3(n - mX] ! om

éﬁ ;;;; 2 ml (n-m)i Ay (nem) ? (5.68)

from which the first five terms become
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ém=@,

1. (1) o 40 2

P A+ A,

@(2) = 380 + 42 + 34" (546
BALI. Az BAO ’ . 9)

ATV EEN SR 1520,

é(’i) = 105}\8 + ]_5'A§ + 9Aﬁ + lSAg + lOSAg .

It should be remarked that the above treatment leading to the
asymptotic expansion (5.67) was based on rather stringent conditionse
We assumed that the paths of integration were aiong the positive real
axes in both the x and y planes and we assumed that the function
$ (x,y) was analytic in the region defined by \x| < 7\%: and
Iyl < p %—- It will be shown in Section 6e3, when we come to the actual
application of the present theory, that these conditions, aithough suf-

ficient, are not necessary.

Se2b. Calculation of the terms é (n) in the asymptotic

expansion of a double integral.- The asymptotic series (5.067), expressed

2m
2(n=-m

in terms of the expansion coefficients A ) as listed in Egse. (5.69),
constitutes, so far, a pureiy formal solution. In the praciical applica-
tions of the theory discussed in Section 63 we encounter two types of

functions D (x s¥)e In tne first type we have
& (xyy) = £(x) glxsy) » (5+70)

wnere f(x) is an even runction of x which happens to vanish at the origin

and, therefore, has an expansion of the form (5.25) with A_ = 0, that is,

(o)
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£(x) = Ag? +axl 4+, (5471)

and where g(x,y), as deduced from (5.50), is likewise an even function of
both x and y and, therefore, may be expanded in the vicinity of x =0

and y =0 1in a double power series of the form

gesy) = BO + (Bx? + B2y%) + (3x! + Bx%? + Bly!) + ... (5.72)

Thus, multiplying out the series (5.71) and (5.72) and collecting terms of

the same power in the manner of (5.53), we obtain

Blxsr) = a202 + [(45 + e 4 552 | (5473)

+ |(agBf + a85 + agBx® + (ayB3 + 4 B2)xly? + Agsgczyﬂ * e,

which upon comparison with (5e53) allows the immediate identification of the
expansion coefficienﬁs Ag?n-m)' Hence, finally, noting that all coefficients
with a subscript zero are missing, we obtain directly from (5.69) for the
terms éﬁ(n) of the asymptotic expansion corresponding to the function

&d (x,y) defined by Eq. (5.70) the expressions
$© - o,
ér?(l) = A B
&2
§§(3)

2 o )

(5e7l)

o o) 2
3(AB, + 4)B;) + AB]

15(A,B) + & B) + AcBD) +3(4, 132 + A Bg) + 31121%l .

The second type of function éﬁ (x,y) in which we are interested is

of the form
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Plxyy) = y2 £(x) glxsy) » (5.75)

where again f(x) and g(x,y) admit, respectively, power series expansions
of the form (5¢71) and (5.72). In consequence, we can write at once for
@ (x,y) 1in this case the double power series expansion
Plxyy) = aBA% + [(A By + 4B O)ly? + a5 Lﬂ
2% * )
'_ (5476)
0o o o, 62 2 2. I h L2 fj
+[(A2Bh + AuBz + AéBO)X y ¢+ (A2B2 + AhBO)x y + A2B°X Y [t eee,

which upon comparison with (5e53) allows the immediate identification of the
coefficients A 2 (=) that abide in this case. Thus, finally, noting that
all coefficients with subscript or superscript zero are now missing, we obtain
directly from (5.69) for the expansion terms @(n) corresponding to the

function é(x,y) defined by Eqe (5.75) the expressions

é(") =0,

(2) .
3 AE (5477)
3G = 3amd e aE) + 32,

@(h) = 15(A B, +AhB + AéB ) + 9(A + AhBo) lSAng .

Ce2¢s Subtraction of a first order pole in the neighborhood of the

saddie point for a double integrale.- As inditated in Egs. (5.06), the order of

magnitude oi the remainder Ry depends on the parameters A and ¥ . When

it happens tnat éj (xs5y) has a pair of first order poles at x = : X, where



121

\xol = 7\%, independent of y, and this pair of poles is very close to the
origin in the x-plane, then the resulting asymptotic expansion (5.55) is
wortirless for all practical purposes. It happens, however, that we can remove
these singularities by extending the methods of Section 5.1d to the present
double integral. Thus, if' the next nearest singularity in the x-plane,
independent of ¥y, occurs at x =Xy where \xli = }1% and (by hypothesis)
Q. > A, then the removal of the first order poles improves the behavior of
the resulting asymptotic series by replacing A with , in the forﬁ of the

remainder (5466)« To this end we note that the function

2xg C(y)

I (xsy) = @(X:Y) - —;"——;-g ’ (5478)
where C(y) is defined by
o) = n {62-x0) 3 @} (5.79)

°x—>x

o . , + . .
no longer has first order poles at x = = Xo* Hence, in accordance with

(5¢53) and noting that C(y) is an even function of 1y,

00
Cly) = ZBZm ¥, |yl< v 5 s (5480)

m=o

we see that ‘Q‘ (x,y) admits the double power series expansion

2B _
Foor) =2 Z‘;‘ 2(n-m) —m—_—?—ﬂ% 2oemlyen (5-81)
n=o m

~

. 3 i
which we may assume valid for |x| < p® and |y| £ )=




i22

In conseguence, solving for é(z& sy)  in Bge (5e78) and subsuvituting

into Eg. (5¢52) we ovtain as betoie

eB0)1 = f fy(m) +§°§g:% PR 2y = iy + i, (5+82)
e]
0 (o]

where Wp, The contripution arising from vie pole, is now given oy

(e8]

-9:2/2 2
: o | ——5ax C(y)e-y/z , (5.83)

and where WS, the coniribution over the path through tne saddie point in the

x~-plane pdecomes, according to (5.55),

© @
ws = J‘ J “fo(x,y‘)e’(xzwz)/Q&;dy
(o]

(¢

" Nl ‘
z 2 (2m) [2<n - ) o o5,

me (n - m)e EZ(n-m) Zm-n:)l’F + Ry (508h)
n=0 mW=o

where 'RN’ tue remainder after  grouped terms, is bounded as incicated

oy Egse (5¢.0)e Tnat is, oriefiy,

00

1 SN § () .
iz ) (5465)

‘n=o

wuere tie werms ol tue agyuptotic expansion, in accordance witi (500} and

(5811}, are given by
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n-m
N ; (2:;)1 m[;zzn _ m;::] S an_zn_mm * } (5.86)
from which, with the aid of Egs. (5.69), one readily computes the first few
termse.

The evaluation of the integral (5.83), at least insofar as the x variable
is concerned, has already been carried out in Section 5ele. Thus, assuming
as before that arg {xo} =~ 0 so that the path of integration in the x=-plane

runs below the pole at x = x,, we have immediately from Eq. (Selil) that

Wp = iﬁe'xg/Q{l - erf -ixo/(2)%]} jmc(y)e'yz/zdy ’ (5.87)
o

or simply

= -xg/ 2 -
Wp inCe o/ {l erf [ :on/(z } (5.88)
exactly as in (5.)41) and where the constant C is given by

e o]

cC = J C(y)e'yz/zdy- (5489)

0

The actual evaluation of the constant € . is deferred until Section b.3e
where we discuss the specific instance of the subiraction of a first order

pole.
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VI. EVALUATION OF THE INTEGRALS PERTAIWING TO THE CONDUCTING MEDIUL

The fundamental integrals corresponding to points of observation in the
conducting mediu.m,. z £ 0, have been defined as U; and vy by Eqs. (2.88)

and (289) respectively,-and are here rewritten for convenience as

(o o]

Uy ( pyz) = e eY1(z=h)gl () o)aan (6.1)
1 e f T, ot
=00
and
[0 o]
V.(psz) = ——-—L—-— "z h)Hl(/\ﬂ)\dA. (6+2)
1 K2y + K2y
KoMy TRy
=

According to Eq. (3.17), however, the fundamental integral Ul can be

resolved into two terms, as follows:

2
2 g
k2U = lxllvil 5 ° 75 2 y Z =90
1 =-n° 2z

> (623)
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wiere Tl;é(f>,z) is given by BEqge (2436) and where iy, according to

Eqe (3+18), is defined as a new fundamental integral from

‘-\00
s 2 2\.. ; - v (Z"‘h)_l ~ N=oan s
(l{l - 152);%1( ‘O ,Z) = ’}23 1 HO(/\fO)“dA s 2 £ 0 s (U'}l)
=00
whici is actually more convenient to deal witn tuan Ul'
Botn intvegrals of interest, I and Vi, as aiready indicated in

Eqe (2+92) are of tvile general form

o

, 1 . £ -h . - »
I((:,z) = ﬁ\fﬁ'v(k)eﬁl(z )H%(AYO)RdA s 2 X0, (645)
-0
where, in tuis case
ZYé
for IVIl( D ,Z) 9
2 .2 !
k1 = k5
v(n) = (5e8)
2
2kg for Vl(;:,z) .
24 24-

Fuithermore, it was shown in Section 2¢5d and illustrated in Fige )i that the
typical integral (S5.5) can be resolved by a suitabie deforumation of the

original path of integration into tue sum of two integralis,

I = I, +1,, (SeT)

waere I, is the integral along tue contour Cl around tie upper brancih cut
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for ACY and 12 denotes the integral along the contour 02 around the
right hand branch cut for Wée In this Chapter we apply the methods developéd
in the preceding one to the evaluation of the integrals Il and 12, cor=-
responding to Mi and Vl’ by the saddle point method of integration. It
will be shown that the contribution from Il is- generally negligible as
compared with 12 due to the fact that Il’ at low frequencies, is of the

order of magnitude of the uncertainty in the asymptotic evaluation of I

2

Notwitnstanding, we present in the next section the asymptotic evaluation of
Il for completeness sake and because the results may prove of interest to

other workerse.

6.1 EVALUATION OF I, BY THE SADDLE POINT METHOD

1

According to Section 5s1, to evaluate I, asymptotically we must
transform the variable of integration in such a way that the integral assumes

the form given in Eq. (5e2), that is,

I, = £‘F(w)e)6<w)dw , (6+8)

3
51

where Ci is the path passing through the saddle point w = O and is

obtained by a permissible deformation from the transformed path corresponding

‘o Cl in the A=plane. This transformation to the w-plane 1is obtained

by considering rirst the conformal transformation

7\. = kl Sj..rldl, . (609)

already introduced in Section 2e)ib, Egs. (2.75), which we discuss at greater

lengtli in tie next sesciion.
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belaes Transformation to the Cﬁl—plane-- The conformal transformation

($e9) takes us from the Ai-plane depicted in Fige )} to the Oel-plane shown

in Fige 6. It is seen that the entire Sheet I of the A-plane maps into the
nalf-period strip of width © in the C’4-1-p1,ame with curvilinear oboundaries
passing turougin tihe points 091 =2 w/2 corresponding to the branch points

at A= 3 Ky Ky = ;kl]ei"/h, in the A-plane. To determine the equations

of the boundaries of tine half-period strip we note from (6.9), making use

of the first of Egse. (2.58), that

L
)

v, o= (02 -k8)* = - ik cos¥, (6410)

whence, recalling that Yy is pure imaginary along the corresponding branch

cuts, we see that the equation of the boundaries is given by demanding that
Re {-ikl cos d-l} = 0, (6-11)

Writing © =u +1iv and recalling that arg { ky } = Wk, the above

condition results in the equation
cosucoshvy = sinu sinhv = 0 , (6.12)
from which, solving for v, one readily deduces
v = =% log tan [u + (J;m = 1)u/u] s, m=0, 31, ¥, ..., (6413)

as the equations for the denumerable infinite set of periodic boundaries
which divide the C(l-plane into alternate strips corresponding to Sheets I

and ITI. In particular, putting m = 0 in (6.13) yields

v = =32 log tan(u - ﬁ) (6elly)
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Fige 6+~ The Oél-plane illustrating tne half-period surip cor-

A-plane and the paths of integration Cq,

responding to Sheet I in the

+
Cl and

“1ls

™
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as the equation for the boundary C; corresponding in the A-plane to

the upper branch cut for 4. It is readily seen from (6e1))) that, as
v—->% o, u-—n/l, 30/k, respectively, and that the slope of the curve,
as it crosses the real axis at Ol—l = /2, is -1 as indicated by the
symmetric curve sketched in Fige 6. Likewise, putting m =1 in (6.13)

ylelds

v = -3 log tan (u + %-:-r- (6.15)

as the equation for the left boundary of the (principal) half-period strip
corresponding to the contour around the lower branch cut for Yi.* It is
seen that the curve given by (6.15) is identical to the contour C except
that it crosses the real axis at o4 = - /2.

To examine further the mapping of Sheet I of the A-plane unto the
principal half-period strip in the c(l-plane, it is of interest to study
how the real and imaginary axes in the A-plane map into the Cll-plane-

The equation of the real axis, Ihl{klsinall} = (0, deduced by the identical

methods indicated above becomes

v = = 3% log tan u+£> s (6416)

which corresponds to a symmetric curve passing through the origin, of
exactly the same shape as the boundaries as ihdicated in Fige 6; that is,
we have from (6.16) that, as v —->% o, u->%F 7/l and the curve crosses
the origin O(l = 0 with a slope of =l. Similarly, the equation of the

axis of imaginaries, Re {_kl s:'_no(l} = 0, becomes

v = = 3% log tan (-E - u) s (6.17)
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which is obtained from (6.16) by merely changing u into =-u. Thus, the
mapping into the Czl-plane_of the real and imaginary axes in the A-plane
results in two curves which are symmetric about the u = 0 axis as indicated
in Fig. 6.

It is clear from the discussion of Section 2.5 that crossing the
boundaries passing through Oél = * /2 in Fig. 6 is equivalent to crossing
the branch cuté for Y, onto Sheet II which according to Section 2453 is not
accessible to us. Furthermore, the présence of the Hankel function in the
integrands under discussion forbids any excursion of the path of integration
into the lower half of the A-plane, which means that in the 04l-plane the
permissible deformations of the original path of integration C; must be
confined to the quarter period strip lying between the mapping of the real
axis, Im {kl sin&i}- =0, and the mapping of the contour C; itself; tnat
is, the region between the shaded boundaries in Fige. 6. It is recalled that
these limitations are imposed by the requirement that our integrals vanish
in the limits P — o and (z =h) —>=a.

Finally, making the substitution (6.9) into the integrand of (&.5)

and writing for convenience

v(ky sinxy ) = E‘i‘c'(“‘l)’ (618)

we obtain for the integral Il along the contour Cl the expression

= L 3 . 1. . -ikl(z-h)cosul ; z
Il 5 1kl\Jﬁ G(Oil) 51n20£lHo(kl(351noLl)e doél R (6619)

Cqy

in which, making use of Eqs. (6.6) and (6.18), and noting that
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Y

) = a2 - kg)% = - ikl(n2 - singﬂi)% p (6+20)

we obtain for G(Oél) the two expressions

1
2 . 2 ]
- (n” - sin 061)2 for (1)
2 )
l=-n

G(oy) = | (6.21)

-1
[nzcosfo!__l_ + (n? - Sin2°‘1)%] for Vil)

where the superscripts (1) on M; and V,; denote the evaluation of the

corresponding integrals along the contour Cl.

6.1lbe Path of integration through the saddle point.- To bring the

integral (6.19) into the required form (6.8) we first rewrite it in the form

I, = % ik; | G(o)sin2oy {Hi'(klesmoll)e-iklesmdl} oliiR2e0sbroo)y o | (6+22)

C

where Rp and ©, are defined by Eqs. (2+1)s This form, which is obtained
from (6.19) by merely extracting from the Hankel function Hi(k1(>shno¢l)
its asymptotic exponential behavior, now has an exponential factor which
for which the derivative vanishese

exhibits a saddle point at ol =@

1 2’
Thus, from the discussion leading to Section 5.la and from our knowledge of

the permissible deformations of the original path of integration €y, dis-
cussed in the preceding Section, we may take for the path of integration Ci

through the saddle point oLl = 92 any curve lying within the permissible

quarter-period strip defined above. In particular, we choose Ci as the
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path of integration, given by Imr{kl sin(oty - 92)} = 0, as shown in Fig. 6,
which is obtained by translating the path Cl parallel to the axis of reals

in the C(l-plane until it crosses the real axis at the saddle point O(l = 92-
Thus, either from (&.1);) or from (6.16), one readily deduces that the equation

of the chosen path of integration through the saddle point, Ci, becomes
v = ~% log tan(u = 9y *:%) , (6.23)

which is seen to cross the saddle point at oLl = 92 with a slope of <1
and which has asymptotes u -6, ¥ /) as v-» ¥ ai, respectively. This
path of integration has the wvirtue that, for 0 < 92 < 1n/2, the entire
path lies within the admissible quarter-period strip.

The path of steepest descent, however, which was employed by OttBO in

similar calculations is obtained from (6.22) by demanding that
Im '{lkle COS(OL]_ - 92)} = Im{lkle} ’ (60210

wnich leads to the path labelled Gls in Fig. 6 and which exhibits the saue
vertical asymptotes as Ci in Eg. (5.23), the only difference being that the
slope at the saddle point now corresponds to an angle of -37m/8 instead
of wﬂ/h- It is seen that, as a consequence of this steeper slope, the
entire length of the path Cls does not lie within the permnissible region
for all values of 92.

To complete the picture in the cil—plane we must indicate the branch

+

points A =2 k2 and the corresponding branch cuts for Yé' Putting

A=12 k2 in (£.9), we obtain for the branch points

oL, = *sinly, (6.25)

20 | o }
-7 H. Ott, Aon. Fhysik L1, LhW3-L67 (1912)-
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wiere n = x /kl is, in general, very smalle As indicated in Fige. 6, the
brancii points occur on the curve Im {kl sin<11»} = 0 which corresponds to

tne real axis in the A-plane (k2, real); and, because |n] << 1l , they
appear very close to the origin. Tle corresponding brancn cuts for Né
coincide with fhe apove curve except for the portion between the branch pointss
It is clear from Fige & that crossing this set of cuts takes us onto Sheet III
whicih in this problem is still accessible to us. IMore explicitly, the
c’(]_--pla.ne is a Riemann surface of two sheets, the top sheet depicted in Fig. 6
corresponding by alternate half-period strips to Sheets I and II of the
A-plane, while the bottom sheet similarly corresponds to Sheets III and IV

(see Fige 5)e >

| Finally, to exhibit our integral in the required form (6¢8), we

transform the origin to the saddle point by the substitution

w = OLl - 92 ] Ml = 92 +w ’ (6.26)

wnence (5.22) becomes

I = %ik JFF(w)e‘S(W)dw, | (6+27)

1
Gy

wiere Gi denotes tihe symmetric path of integration through the saddle point

w = 0, as chosen above, and where
glw) = ikyR, cosw (&e28)
and
Flw) = G(92 + W)SDlZ(Gg + w)-{H%[?l(>s;n(Q2 + wi] e'ik1(>Sin(92+W{3} (2429)

with G(92 + w) as prescribed by Egs. (5e21).
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6elc. Transformation to the x-planee~ In accordance with the

prescriptions of Section 5.1, as embodied in Eq. (5.7), we introduce the

new variable of inuvegration x defined, in the present instance, by

3x? = Blo) - f(w) = iR,(1 - cosw) = 2ikjRysin?¥ , (6430)
which, in this case, can be inverted at once without resorting to the
procedure outlined in Section Selbe. Thus, we have from (6+30)
— . i
w = 2 sin X/(hlklR2)2 9 (6.31)
which, for Jx) < 2(lik1R2|)% can be expanded into a power series as in
Eq. (5.22),
= 1 1.5
w aox +§-a2x3 *galec + eco (6.32)
where
_ 4
ao = (lkle) 2, 3.2 = ag/s, ah = 33.5/128, xXxy} (6033)
In consequence of the transformation (630) and making use of
Egse. (5410) and (6+27), the integral Il may now be expressed as
o)
. S0
I, = % iklelklR2J\ §(x)e-x /2d.x, ' (6e3h1)
A .

where %(x) is defined by (5.9) in terms of the function F(w), with
w = w(x), as given in the present case by Egs. (6.29) and (6+30)e The
path of integration in (6.3l)), as already pointed out (Section _5'.1’),

coincides with the positive half of the real axis in the x-plane for the
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path of steepest descents Cls; however, our chosen path of integration
Ci which has the same termini as the mth of steepest descents (Fige 6)
no longer coincides with the real axis except at x =0 and x —5>m. In

either case, according to Eqe (5+20b), the integral I; admits the asymptotic

expansion
M-1
. ! V]
T
m=0

in terms of the expansion coefficients A2m and in which k% = ]xll, where
X corresponds to the singularity nearest to the origin in the power series
expansion (5e11)e

In the present instance, except for values of 92 near zero, when
the singularity of the Hankel function must be considered, the nearest
singularity of the integrand in (6.3);) arises from the function G(o(l),
Eqe (6e21), and occurs at the branch point corresponding to A = k2 or
041 = sin™mn. Since we are here concerned with the order of magnitude of

the remainder in (6+35) and because |nj << 1, we incur little error by

assuming that the nearest singularity occurs at 9< = 0. Thus from (56+30),

1
putting w = = 92, ‘we have approximately
A= Ldkl]Rz sin (92/2) “ng:;jgé? 2]kl|R2, (6436)

which is valid provided only that 8, > ‘sin’lnl s as is certainly true

in practice.



Gelde Evaluation of the expansion coefficientse= Limitving the

asymptotic expansion (535) to two terms (M = 2);, we have

3 &
L= kel T2 (%)2 {Ao +h,+ 0(7:3)} , | (6+37)

where A is given by (le3%8). Thus, the problem has been reduced to the

evaluation of tihe expansion coefiicients Ao and A.2 as ‘taken firom

Eqs. (R¢2%) in which tihe coefiicients a, and a, are given by (£¢33) in
the present case; and we still need to evaiuvate F(0) and F'(0) where F(w)

is here given by Eqe ($429). To this end we note that F(w) cau be written as
F(w) = 0(6, +w) sin2(8, +w) g(w) , (6438)
where.
gw) = %[hfnm%+wﬂeﬂhﬁmwfw , (6439)
from which one obtains readily

F(o) = G(Oz) 51020, g(o).-': R

Fu(o) = G(Qé.‘) 5in2e, G“(Gz\) + h-(i:-(—?-g-)- cot2s, - U g(o) (6e1,0)
G(e,) @(e,)

G' (e .

+ 12 88 Ly cot26, | g'(o) + g¥(o) [
G(92)

where g(o)s g'(o) and g"(o) are to be computed from Eq. (9s39).

Carrying out tue differentiations in (£.39) and replacing tiie Hankel funce

tlons aud btheir derivatives by their asymptotic expansions whicu are valid

for };l “3 giaw, | >> L, we obtain
[
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’ glo) = (2/inkl[°sin92)%{l + m + O(kllosj_nez)'a} s
gt(o) = =42 cot92(2/nik1{a s:’.nGZ)%{l + O(kl(o s:'_nGz)-l} s (6.141)
gh(o) =

(2/niky p s'mga)%{ B+ cotley ¥ 0<k1_f’5'm92)'1} '

Substituting the results (8¢)jl) into (6.10) and collecting terms we have,

. . e 1 . -2
= 5 2 s ta st
. F(o) G(6,) 5in26,(2/miky P sing,y)Z 1 + ik o 516, + 0(kp £ 5ind,) } s
L fome,) @ (e,)
(o) = G(Qz) 5in2e (2/ﬁiklfsj_nez)2 (cot@2 -2 tan92)

+
G(e,)  G(6,)
- .]E- cot 0, - -g + o(klﬂsinez)'l} . (6.142)

Finally, making use of the first two equations in (5.28), with the

coefficients a, and a, as given in (5433) and substituting the above

results, we have for tie expansion terms A o and A2 the following

asyimbotic expressions:

. 2 \
1 T csc“e csche
(%}2 Ay, = lJ,G(Qz) cos@z{ + 2 5 +0| —"2_ s
; iR,  8(ikR,) (kR,)3

\

1 ;“G--(ez) L 6 (8p)

(iklﬁg)ZL G(ey)  G(6,)

It
} Ay = 26(8p) c038, 1

(cote, = 2 ta.nez) (6.)3)

L
2

csc 92

- 1 2
- 9 + cot<® +0 .

Substituting these results into the two-term asymptotic expansion (6.37) and

noting that for 92 >> (sin-ln/ we have essentially csc92~= o(l), we
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obtain®

1 1 G"(ez)
ik R, 2(1K G(9 )

GGE 2; (cot®y - 2 tanby) - ’J + o) 3>} (6el)

wnere A is given in the present instance by (%.36) and where we have lumped

: ikiR
I} = 2ikG(6p) cose,s 172

together terms in like powers of (ikle)-l.

An interesting check of the above formula is obtained when applied to

the integral, [Eq- (2»56)] )

Q0

f
oj=

xRy

e 1 ¥ (z=h)_ ]

I, - % P e HOena, 2 <o, (6.15)
-0

which represents the elementary spherical wave emanating from the image sourcee.

In this case, in accordance with (£.18), G(OLl) =1 sec™, and the integrand

of (&e)i5) when expressed in the form (4.22) exhibits no singularity in the

finite plane. Therefore, the first term of the expansion ($35) must

"e] SRV vl e S i i i) = OL: int \3:

represent the function ’HPE Substituting G(QLl) % sec 5 into (Gelhy)

is seen to yield the required function (6e.}5) with zero for the second order

term; and the computation of higher order terms would, of course, also yield

Zeroe

1
6.le. Asymptotic expansions for the integrals Mé ) and Vil)

Applying the above results to the integrals of interest, Ml and Vl’ as

* This result should be compared with Ott's own computation of the second
order term, loc. cites paragraph li, pe 1150 Ott did not obtain the correct
second order term and, therefore, arrived at erroneous conclusions.
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evaluated asymptotically over the path Ci throﬁgh the saddle point in the
0C1;pléne, we obtain' the following results:

For Vil) we substitute into (6elyly) the éxpressioﬁ for G(e2) which
is deduced from‘ﬁhé second of Eqs. (6.21) and putting M = 1 we obtain at

once the leading term of the expansion

o N :ik'le |
S ENPY 2 St | (6416)

1 n® q0392 + (n? - sin292)5 R,

© 2 cose

Similarly, for Mﬁl? ‘we substitute into (6e))i) the expression for

G(Oz) given by the first of Egs. (6+21) and, putting M = 2,-_we obtain the

two=-term expansion

w‘il) o _ 2cosey(n® - sinzgz)% elkl.R2(l i(1 = 6 sine,) + 0(n?) R
- 4 - Qe
, ) : . 2 .
(1 = n2) R, 1 2 kiR,sine,
in which the first term is exact and the second term is given only to terms
of 0(n2), in} 4% 1,  under the assumption that e, >> }sin-;n‘. In both,
Egse (6e1i6) and (5.);7), we have omitted writing the remainder which appears

in Eqs (Seliy) and is O(ka'l)‘ in accordance with Eqe (5.20a).

6.2 EVALUATION OF I, BY THE SADDLE POINT METHOD FOR SINGLE INTEGRATLON

The evaluation of I, by the saddle point method for a single integration
now requires, in accordance with the méthod developed in the preceding Section,
that we transform the integrél over the contour G, in thel'krplané (Fige l1)
into an integral of the form (5.2) with a suitable path of integration passing

through tine saddle point w = 0 in the w-plane. To this end, we discovered
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that the conformal transformation
A = k, sinoly, (64148)

which apparently had been overlooked by earlier authors, proved most

convenient in the present problem.

6o02a. Transformation to the Oié-planeo- The conformal transformation

(6e)18) takes us from the A=-plane depicted in Fig. l; to the O¢2-plane shown
in Figs T« It is seen that the entire Sheet I of the A-plane now maps into
tne vertical half-period strip of width = in the 612-plane which, for

k2 real, has straight line boundaries parallel to the axis of imaginaries,

passing through the points of, = ¥ n/2 which correspond to the branch

2
points at A =2 k2 in the A=~plane. To determine these boundaries we

note from (6.)8), making use of the second of Eqs. (2.58), that
Y, = (2 - k%)% = - ik, COSO% s (641,9)

from which, recalling that Wé is real along the chosen branch cuts, we

see that the equation of the boundaries is obtained by demanding that
Inm {- ik, coso(?} = 0, (6450)

ory with k, real, Re {éos<¥?~} = 0. Writing 042 =u + iv, tinis

condition results in

cosu = O or u o= +m, m =0, TL, <co, (6e51)

rof=

which are tiie equations for the denumerable infinite set of periodic

boundaries which divide the Cﬁénplane into alternate vertical strips of
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width w corresponding to Sheets I and III. In particular, putting m =0
in (6¢51) yields u = m/2 which is the equation for the boundary C, cor-
responding in the A-plane to the contour around the right hand branch cut
for ¥, Similarly, putting m = =1 in (651) yieids u = =n/2, which is
the equation for the left boundary corresponding to the contour around the
Lleft hand branch cut for Yoo

Confining our attention to the principal half-period strip
-n/2 < u £ w/2, corresponding to Sheet I, it is seen that the axis of
imaginaries in the A-plane maps simply into the axis of imaginaries in the
Fiz-plane; while the segment of the real axis in tiie A-plane between tue
branch points at A = 3 k, maps into the segment of the real axis in the
OLQ-plane between the corresponding points at o, = 2 n/2. Furthermore,
it is clear from the discussion of Section 25 that crossing the boundaries
u =2 /2 in Fig. 7 away from the principal half-period strip is equivalent
to crossing the branch cuts for ¥, onto Sheet IIT which, according to
Section 2.5d, is still accessible to us. Since we must guarantee the con-
vergence of the integral I, as ° >, which in the A-plane means
that the permissible deformations of the path of integration must be con-
fined to the upper half-plane, we see that in the oLz-plane the permissible
deformations of the original path of integration C2 must be confined to the
upper half of the (principal) half=-period strip for Sheet I and to the lower
half of the half-period strip, say m/2 < u < 31n/2, for Sheet III. This
region for permissible deformations is bordered by shaded boundaries in Fige 7.
Finally, it must be noted that to insure the convergence of our integral I
as (z - h) = =00 we cannot cross the branch cuts for Yi, shown in Fig. 7,

onto the forbidden Sheets II and IV.
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Substituting (6.),8) into the integrand of (6.5), writing for

convenience
vy sineg) = B oyogy), (6+52)

and noting that

v,o= (a2 - k?L)% = = 1k (1 - n? sin2°(2)%, (6453)

we obtain for the integral 12 along the contour 02 the expression

R . 1 . ~ik1(z-h) (1n2sinlel)? |
12 2 1k2 Gz(tzcz)SJ.nzsa&.2 Ho(k2 {os:.nOLz)e d2 d 64y (5e50)

in which the path of integration in the ocz-plane is along the right hand
boundary of the principal half-period strip, u = n/2, from =n/2 +ioc0 to
/2 = 100 and in which, making use of (6.6) and (6.52), we obtain for

G2(O<.2) the two expressions

(-— n2(1 - nz)-l cos o¢ for H:EZ)
/

2
Gp(ty) = «j (6455)
!

1 -1
(n(l - n2 sinzr-vcz)'2 + cos ol.2) for V](_z)

where the superscripts (2) on My and Vl denote tlie evaluation of the
corresponding integrals along the contour 02.
To complete the picture in the c/.z-plane we must indicate the branch

points A =2 kl and the corresponding cuts for Yy Potiting A = I ky 1into
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(6e18)y we obtain for the branch points
oL, = ¥ sin™H(1/n), (6056)

where n = ]n)e'i"/h- The positions of the periodic set of branci poinis
(6e56) and the corresponding brancih cuts for ¥, are shown in Fige 7. As
indicated, the branch points occur in tie 0L2-plane on the curves representing
the mapping of the straight line through the points A =2 ki 1in the A=planee
It is clear from Fige 7 that crossing the brancu cut for % takes us from
Sheet I onto Sheet II or from Sheet III onto Sheet‘IV (Fige 5) depending on
the cut crossed. This is due to the fact that the OLZ-plane is in realiivy

a Riemann surface of two slhieeis, the top sheet depicted in Figs. 7 cor=~
responding by alternate half-period strips to Sheets I and III of tue

A~plane, while the bottom sheet similarly corresponds to Sheets IT and IV.

6+.2b. Path of integration through the saddle pointe- To bring the

integral (6e5];) into the required form (5.2) we first extract the asymptotic
exponential behavior of the Hankel function, as was done in Eqe. (&¢22), and

next we introduce a second transformation of the variable of integration,

°¢2 = w+u/? or w o= OL? - n/2. (6657)

The invegral 12 is finally written in the form

I, = -%ix, Fn)e? ) aw, (%458)

where 02 now becones tue axis of imaginaries in the w-plane traversed in

the negative direction, that iss; from 100 to =ioco, and wiere
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-ik2 (° cosw

F(w) = G(w) sin2w H:é(kzpcosw)e s (6659)

and

blw) = ikq P ]:n cosw + cot.e,z(l - n? cos%f)%‘], (6+50)

with G(w), as deduced from (6e55) and (6457), given by the two distinct

expressions

n2(l - n2) 1
G(w) = (6461)
[n(l - n? coszw)% - sinw] "l for V](_z) .

sinw for I~I§_2) s

This form of the integral I Eqs (6458), exhibits an exponent

2’
g(w), as defined by (6460), which has two stationary points within the
principal halfeperiod strip; that is, g'(w) =0 for w=0 and

W= cos'l(n":L sinGz). The latter saddle point is seen to correspond to the
saddle point 8; at 9‘1 =6, in the ol -plane (Section 6.1b) and,
nence, has already been treated in the evaluation of Il' Therefore, we
choose w = 0 as the saddle point 82 in the w-plane through which mst

pass tie path of integration C,. As already indicated, we have ciiosen

2

for tne path of integration 02 the axis of imaginaries in the w-plane

or the vertical line wu = n/2 in the o/ ,-plane (Fig. 7) traversed in the

2
negative direction.
The path of steepest descents C,g 1is obtained from (6460) Dby

demanding that

m{é(w)} = Im{ﬁ(o)} ., (6452)
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which leads 1o a somewhat complicated path that offers no particular

advantage in the present study. The only important point to oobserve is that,
for all values of 92, the path of steepest descents 025 crosses the

saddle point w =0 at an angle of inclination with respect to the ﬁegative
axis of imaginaries which never exceeds /)i and that the termini of the path

tend asymptotically to Re {wﬂ} =2 92-

6e2c. Transformation to the x-plane.~ In accordance with Eqs (5.7),

we now introduce the new variable of integration x defined from (£.00) as
2 ) 5 4 s
% x° = 4(0) - f(w) = ik @ n(l - cosw) + cotez[(l - n2) - (1 - nosa)® | [, (£.53)

which we now proceed to invert, following the prescriptions of Section 5elbe
Thus, we observe that x2/2 admits, at least for sufficiently small values

of ]xl, the power series expansion

x2/2 = wl(c, + cow® + chwh + ese) (6060)

where

2. (1L - n2)
2
¢ = =ik p o E 1B h=n o b (6465)
2 2b (1-n2)%1.-n2 2

- . . 1 n 16 + 28n2 + nlt .
c), 1k2f3 - {jl - 1o n2)§ @ - 0d)? cote, ( o

According to Section 5.1lb, the power series (0.6);) can be inverted

in the form
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w = aox +%" 32x3 + % ahx5 + e (6.66)

in which the coefficients a,, (n = 0,1,2) are computed by means of
Egse (5.2);) in terms of the c¢'s defined by (+65)s To facilitate the
computations we define the function

n cotd, n(h - z)

K = K(n, e, = = s (6.67)
e Q- nZ)% -n co*bG2 ()(1 - nzf% - n(h - 2)

in terms of which the coefficients of the expansion (6.65) assume the

simpler forms:

1

[ 1+K\*

a,6 = isz’ R

a, = %ag ( -2 i‘n , (6468)
_ L g/ S0k 5K +7K)

2 28 % | TT-m a2/

It is noted from (6.67) that, when (h = z) =0 or 6, = n/2, we have

K =0 and the above coefficients assume the same form as the corresponding

coefficients in Eqs. (6e33).

To complete the transformation to the x=plane we note from (6+60)

tnat

L
$(o) = ikyf =ik (L - n2)%(z = h); (6+69)

and introducing this expression into Eq. (5.10), making use of (6.58), the
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integral 12 now becomes

qaexp(-i@2/2)
: o 2V (e - 2 )
I, = -1 ik2e1k26> ik1(1~n¢)2(z=h) éﬁ(x)e x</?2 dx, (6470)

where @ (x) is defined by Eqe (5.9) in terms of F(w) and dw/dx, with
w = w(x), as given in the present instance by Egs. (6:59) and (6.55)s In
(6+70) the path of integration does not coincide with tine positive real axis,
nor is it even along a straight line, for it corresponds to tie path 02
which in the w-plane becomes the axis of imaginaries traversed in tne
negative direction. The phase of the upper limit in (5.70) is readily
determined from (5¢63) by letting w —>»w ioo . Thus, since tihe conditions

of Watson's lemma are satisfied, we have from Eq. (5.20a) the following

asymptotic expansion:

M-1
Y ¥
.. _iksp =ik1(1-n2)2(z~h u Z (2m) il
12 = . % lk28 2P l( ) ( ) e (.5) 2m ' Azm O(/\ ) 3 (Qa?l)
m=0
1
in whici: A = lxol where x, corresponds bto tue singularity nearest to

0
1

2

tie origin of tne function j?(x); that isy w2 denotes tine radius of
convergence of the power series expansion (5.11) about the origin in the

x-planee.

be2d. Evaluation of the expansion coefficients.=- Limiting tie

asymptotic expansion (5.71) to turee terms (il = 3)s we have

tiem p ik (1en2)5( 1
T T % ik2ell&‘2€"ll€l(-1-“‘n ) (Z"'h) ° (2) {A + A.2 + 3A + O(/\ h)} \)072) .
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where A will be determined when we consider a specific example. Thus, the '
problem has been reduced to the evaluation of the expansion coefiicients

Ay, A, and Ah as computed from Eqs. (5.26) in which we still need to
evaluate F(o), FH(.O) and FIV(o) where F(w) 1is here given by Eqe (6459)-

Thus, we have

F(o) = 0, FIl(o) = 16'(0)e™™2C 1k, o) ,
(6273)
FIV (o) = 83" (0)e K20 HE (k) 9(_}_:_2&_)1 31k2‘0[ﬂ:;(k29) - il'%(sz)] - hHi(kQ,o)} o

Assuming that k2 r >> 1, we expand the Hankel functions appearing in (6.73)

asymptotically, obtaining

F(o) = 0, FII(0) = 16" (o) (2/ ikpe)¥ {1 + m};; 0P 2 b,

, (671)
v o 1 {ag'" (o) 5 -]
F-Y(o) = 8G'(0)(2/n ik2(o)2 {W -5 + O(kz(o) .

Finally, making use of the first three equations in (5.26), with the
coefficients a  and a, as given in (6¢68), we obtain for the expansion
coefficients the expressions

3/2 -
(iky ) Bik, P |
(6479)
3 5/2 | :
1 +K Grii -
(g)zAh =1 G' (o) ( ) h _(0) -5 = 15K + 0(kp P) 1 ’
6 (ik,0)3 G'(0)  1-n?

where K has been defined by Eqe. (6667). Substituting these expressions into
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(5.72) and collecting terms of the same order, we obtain the asymptotic

expansion

. ot 3/2 ikoP=ik (l--nz)%:(z-h) 1 (02
I, 2ikoG' (0) (14K)7/ “e™ 201 (ik2€)2 8(1k2(°)3£( 14K) & o)
(676)

lan

- 25}.{.(.}%),- 5K e ﬂ + o(kz(o)"h + o(?\'h) ’

which is valid so long as k,@ >1 and A > 1, and in which we have
lumped together terms in (ikz‘O)"lo The form of the remainder in (&.76)
deserves special attention. It is seen to consist of two terms: the first
term, O(kzp)'h, arose from the asymptotic expansions of the Hankel functions
and implies kz(o > 1; the second term containing tue facvor O(?C"L‘) arose
from the original asymptotic expansion as given in Eqe (5e72) and is seen o
contain explicitly the radius of convergence '/\% of the power series
expansion (5e11)s Thus it may happen that one or tiie other of the terms

in the remainder predominates depending on whether A << k2 (° or vice

versae

7

bs2e. Asymptotic expansion for VJ(__2_)_.- To illustrate tine foregoing

developients, we will now apply the formula (5.75) to deduce the asymptotic
expansion V§_2) for the integral Vl( (O,Z) > Ege (6e2), as evaluatied over
the path 02 in the 0L2-plane. To tiils end, we note from tue second of

Egss ($e01) that the derivatives of G(w), evaluated at w = 0, bvecone

1 6 = n2 - 5plt o
G' (o) = —— and G''t(o) = . (677)
n2(1l =~ n2) nlt(1 - n2)?

Furthermore, it is recalled from the discussion of Section 2s.5¢, that the
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funcition G(w) exhibits first order woles on Sacets II end III of the
w=olanes Thus, in Fige 7 waicn displays in e Oi?-plane alternate half-
veriod strips coiresponding to Sheets I and III of the A~plane we find from
Egse (2.96) and (6.51) vhat the periodic sel of real poles (labelled P in

Fige 7) occur in the o, -plane at o, = w/2 + w, where

W, o= tanntar (=0, %, 2, .00) , | (6+78)

corresponding o Sheet III; whereas wtie periodic set (labelled P, in Fig. 7)
given by 0¢2 = /2 - W, and occurring in Sheet I corresponds to the so-calied
virtual poles for which G(w) actually remains finitee

Since In| << 1, we see from (6.78) that the pole occurring at
w =W, 1in tne w-plane is the singularity nearest to tie origin and, hence,
also in the x-plane. Thus, we have that the radius of convergence of the

1
expansion (5.11) is given by A= = ,xol where x, 1s determined from

Eqge (5653) by putting w = Wys Yyielding

- . _ _ _ i
" ]”‘1‘"{“[ ] e T‘“‘é‘fj*’% i

(6479)

which, neglecting higher powers of n, can be written approximately as

A% ,n2k2 [(a +n(z - h)] / (6+80)

or, for alil practical purposes, simply as
— 2

Thus, substituting the derivatives (6.77) into tihe formula (6e76),

we obtain finally for the integral Viz) the expression
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V](-Z) = o 2ik2n2(l - n2)(l + K)3/2eik2p°ﬂq(l-n2)%(z“h) 1

' [}nz(l - nz)iszi] 2

(682)
+ 2_1&(!. + K) - n2(8 + 2JK + lSKZ) = nb’(lé + 15K) + 0(n% )"'h
80201 - n2)3 3 2f° g
n(lL-n )1}:2 ("j
where we have retained only the largest term of the remainder. The leading
31

term in (6.82) is seen to agree exactly with Ott's so-called "Flankenwelle®
except for differences in notation, and thus we have extended Ott's results
to the next higher order terme

The above result, Eq. (6.82), is essentially useless in the present
instance, because |n| << 1 and Watson's lemma requires that A > 1. The
difficulty arises from the fact that thé singularity nearest to the saddle
point w = 0 1is the first order pole at w = W, = tanéln; and, thus, the
radius of convergence for the power series (5.11) turns out to be X% = lxol
which is extremely small. The difficulty, however, can be resolved by
extracting this singularity from the integrand;as already explained in
Section 5.1d, but which we undertake by the_saddlgvpoint method for double
integration in Section 6e.3e. Likewise, the evaluation of the integral M&z)
is handled more conveniently by the saddle'point method for double integra-

tion which was explained in Section 5.2 and which we now proceed to apply

in the remainder of this Chapter.

31 roc. cito, Section h, Eg. (24), p- L55.
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6e3 EVALUATION OF I2 BY THE SADDLE POINT -ETHMD

FOR DOUBLE INTEGRATION

In accordance with the prescriptions of Section 5.2, we now proceed
to evaluate 12 asymptotically by applying the double saddie point method of
integration. Thus, the first step consistis of replacing tne function
H-(ky Poosw)e ™ K2P COSW  ynscn ig implicit in the integrand of (6+56) by its
integral representation

' o exp(ix)
}g.o(kzecosw)e-ikzpcosw = % (Lik, p cosw = yz)-%q;'}.'z/2 ay; (6483)
o

where, in accordance with Eq. (5.50) afier putting V =0 and z = kz,ocosw,
we must have JoLl < /Ly and = n/l) + &L < % arg {kzﬁcosw } < (3n/)) + oL
and where we take as the path of integration in tne y-plane the straight

line from the origin to wel™. With tnis substitution in (6458), we

obtain from (5.70) the integral I2 in the form of a double integral

o exp(=189/2) g exp(iot)
Y ' .
12 = -(gjkz/n)eik2p"’lk_'l.(l"nz)2(2'h) é(x,y)e-(xzvz)/zdxdy, (&a8ly)

) o
with

P Gy) = £x) glxy) s (6+85)
where we have from Eqs. (5.9) and (4.59), with w = w(x),

£(x) = [G(w) - G(-w) | sin2u v, (5486)
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G(w) being given by Egse (5.51), and

l‘J1l—‘

gGe) = (likypoosw - 32)7F (687)

Thus, we have exhibited our integral 12 in the forh»required by Eqe (5651)

and there remains for‘us to show that the function éékx,y), as defined ﬁy

(6+85), leads to results which fall within‘the jurisdicfion_of Watson's |

lemma, Section‘S.Qa, although the function g(x,y), Eqe. (5.87), is obviouély
not uniformly analytic in both x and y in an arbitrary neighborhood of

the origine.

b5e3a. Extension of Watson's lemma to include the case at hande.=- Since

g(x,y) is not analytic in both x and y in an arbitrary neighborhood of
the origin, Watson's lemma, as stated in Section S.2a, cannot be applied
directly. However, as is often the case, the integration of a series which
is apparently not properly convergent will yield the correct result, which

we intend to show is the .present situations The singularities of g(x,y)
which make the Taylor series expansion for g(x,y)s Eqs (572), -and therefore
the expansion of éE(x,y), Eqe (5653), invalid in any fixed region are given

by ‘the vanishing of the radical in Eq. (5.87); that is,

y = (hﬂcz‘ocosw(x)>% (5.89)
oxr
%
1 y2 cot@2 Coa n2yh 3 -
x = H(y) = (2ik, )% 41 = — + 1 =n2)% = {1~ 5(6290)
ik, @ n ) (iiky (@)

where the latter exrpression is obtained by substitution tiie value of cosw
I J

L
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as ovtained from Eq. (&¢89) into Ege (%4l3). By exanining Eq. (Ce87) it is
seen that the Taylor series expansion (5¢72) will be valid in tie following
variable regions and in tne following sense: If x 1is fixed, x = &, then

.l 3 3
2; and if y is

the expansion will be valid for ’y | < ,hik2 € cosw(g)f
fixed, y =7, then the expansion will be valid for Jx| < |H(m)| where
H(y) is defined by Ege (&¢90)e This immediately suggests that it may be
possible to break up tie integral in such a way that it will always be taken
over regions in which tine expansion (5.72) is valide This is achieved by

showing that it is possible to find a function y = s(x) such that the double

integral in Eq. (£+89) may be written as

exp(~i8,/2) coexp(iet) o exp(=18,/2) 5(x)
& Gesy)e ) 2y = ax dy Fxsy)e”XEH2)/2
© 0 , o o
| (6e91)
wexp(iot) . 57H(y)
+ dy dx P xpy)e= K22/
o o

wiere for the firstvintegral on the right ]y/ < )Ld.kz‘a cosw(x) f% and for
tile second integral on the right |x| < ]H(y)l . Tﬁe_ power series expansion
for @(x s¥) when substituted into the first integral on twie right of

Ege (Ze91l) will then be valid for all valuves of y which are present and will
be limited to values of x given by |x]| < 7\% where A is ceverined by uhe
singularity nearest wo tue oirigin of tue funciion f(x) given by (S.80).

Tnis singularity, save for a possible pair of first order poles which we know

" how to subtract s 1s seen to be the branch point which occurs in the A-plane
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at A =ky orin the ww-plane at cosw = 1/n. From this we deduce that tue
parameter A is given as A% =|x,] where Xy 1s the value of x cor-

responding to tihe above branch point; that is, from (5.63),
%— . 2 L %— ’
o= x| = ]2lkl,o (L-n=(1-n )zco’oez), . (692)

The power series expansion for di(x,y) when substituted into tie second
integral on the right of Eq. (£.91) will then be valid for values of x given
by x| < ¥ and for values of y such that |y | < P iere VE is
given by

L x
2 2

= ’hkl {01 s (5+93)

%

= 1 L;:l_lc2 e cosw(xl),

as obtained from (6+89)e Thus, if we can demonstrate that it is possible
to find a function y = s(x) such that the resolution into two integrals,
Eq. (5.91), is fulfilled, then the power series expansion for gg(x,y),
Eges (5¢53), is valid insofar as the integration is concerned and we may apply
the results of Watson's lemma to the present case.

In particular, we need only show that it is possible to choose a region
of integration, Region (I), for the first integral on the right of Eqe (6.91)
wnich overlaps a region of integration, Region (II), for the second integral
on the right of Eq. (6.91); any function y = s(x) contained in the region
of overlap will then be sufficient to satisfy all requirements. Consider a

1
fixed value of x, say x =%, where £ lieson C, and 0 < |Z| < A?;

2
then the function é?(g,y) is an analytic function of y for all positive
real values of ¥y within Region (I) shown in Fige 8; that is, as deduced

from Bqg. (5.89), for all values of y which lie below the boundary given by

L
y = h(x) = (lk,pcosw)? , (6+90) .
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Fig. B.- Regions of analiticity of the function <P (xsy)-
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where k2 is real and in which it is understood tnat w = w(x), *

2
limit, y = ¥y for this region of analyticity of i(g,y) is obtained

s . y . . .
x| < 22, 1lies on €, and thererore cosw is also real. Tie upper

by putting cosw = 1/in{ into Eq. ($e9))) whicu yields Vy =‘D% = | hkl(O ,%,
as given by Eqe (%¢93). Putting x =0 or cosw =1 into Eqe (5e9)), we
obtain the intercept y, = (hk2 (O)%. Thus, for intermediate values of |x]|
on C,, O < |x| < 7\%’7, the upper boundary for Region (I), as given by
Ege (54911), is a monotonically increasing curve between the points (O ,yo)
and (7\%,‘\7%).

On the other hand, for fixed y, say y =1n and 0 < 47?% on
the chosen path of inﬁegration in the y=-plane, the function é (x,m) 1is an
analytic function of x for all values of x oh C2 whicih lie within
Region (II) in Fige 8; that is, as deduced from Eq. (590), for all values v‘

1
of |x| <« A2 which lie to tiue left of the boundary given by
x| = |HG) | (6495)

where H(y) is defined by Eqe (4.90)e Putting y =0 into (5.95), we
determine the intercept of the cu:;'ve on the }xl-a.xis given approximately
by }xo P ‘21{2‘0(1 - 30 cotGQ))% where we have neglected n? and higher
powers. lext, putting y =y = (J_lkz(v)% into Eq. ($.95), we obtain

Ile L |21{2 (0(1 +i-n cot@z)l% where again we have neglected higher
powers of n. And finally putting vy =19% = 'h_kl(o,% into Eqe (5e95),
which corresponds to the upper limit of y, we obtain.

2k, P {eiﬂ/h +n + cots, [(1 - nQ)% -1 - i)%_]})% .

Assuming temporarily winat 92 is limited to tue range

’X3I=

w/l, < o, £ /2, so Lhat cote, < 1, we see from Eg. (Le&3) and from

1
the equations of the preceding paragraph that we have 0 <[x ]| < ‘XQI <A < le\, s
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which states, as shown in Fig. 8, that‘the right boundary of Region (II), given
by tie monotonically increasing curve |x| = \H(y)[, lies entirely to the
right of the upper boundary for Region (I) as given by the curve y = h(x)e
Since these two r;gions, therefore, have a cormmon strip, we have demonstrated
that a monotonie curve lying in this strip may be used for y = s(x) as

called for by Eqe (5¢91)¢ Thus we may use the results of Watson's lemma to

obtain the asymptotie evaluation of the integral 12 which, according to

Eqse (5.65), (5.66a) and (6.8)y), becomes

’ H-1 )
. 1 N41
I, = - tkylief-ika (1-n2)E(am) Zé(n) vo(3+3) (6.96)

where the expansion terms éﬁ(n) are defined by Eqe (5+58) and A is
given by Eqs (6.92) and V' by Eqe (6+93) under the assumption that the

poles, if present, have been remo#ed.

6e3b. Evaluation of the expansion termse- The problem has now been

redqced to the computation of the expansion terms éﬁ(n) as listed in
Egss (5+¢7l) in terms of the A's and B's which correspond, respectively,
to the power series expansions for the factors f(x) and g(x,y) in
accordance with Egs. (5:71) and (5:72).‘ The A's are determined from
Eqs. (5426) in terns of the coefficients a,,, Listed by Bqse (6+58), and

in terms of the derivatives of the function

F(w) = G(w) sin2w (697)

which;éppears in Eqe (6486), evaluated at w = O. In this way we obtain
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A =

=

3/2
1 +K ?
(ﬂfz P) Gile)
| 5/2 2 |
b 31k, T oo

o1 fiexy/2 V(o) _ w_\oio)
% Sil(ikzP) (){ 51 (o) l°<3+1-n2> 51(0)

1[5 + TOK__ 105K(B + 9K) ,
L 1 =n? (1 = n2)2

(6+98)

in which K has been defined by Eqe (6e67)e Similarly, the B!'s are found _
by expanding the function g(x,y), given by Eqe (6.87); into a double

power series of the form (5.72), yielding
-
By =3 (i 0)7
o1 . -3/2 2 .1 (4 -3/2
B) =3 (1 + K)(lke e) » By =i (ik, () ’

(699)
~5/2

2K’é> (11,02, B =g (R e)

= ._];. . 2 -

' Bﬁ 6l o (3 1l = n°
I -5/2

B = 2 (i, ) /2

Substituting the A's and B's listed in (5+98) and (46.99) into

Eqse (5.7);), we obtain the expansion terms
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5(0)"05

P wp QK2 K272 1(o)

ik ©)
3O L g B g DYy,
b (ik,e)3 G (o) 1-n? )~ '

(3) 1 a+r¥? 2 (o) [ 35R(L#K) a1 1 o)
P = W 6'(0) 116(1 + K) O B4K) [l + 5K + = e

:‘ 2 ‘
- (48 + 128K + 71K2) - 10 K(1 +K)(S2 + 19K) _ , K(L +K)°(8 +9K) }

1 = n¢ 105 (1 - n2)2

be3c. Asymptotic expansion for the integrals I~11(2) and 9 I«I](_Z) /D Zem
-(2)

We now apply the resulis of the preceding Section to the evaluation of Hy

and its derivative 314{2) /22, where Ml is defined by (5el;) and where
the superscript (2) denotes evaluation of the integral along the contour

-l
¢ Thus, for 1\1](_2) we have from (6e¢51) that G(w) = n(l = n?) sinw; and,

2.
hence, the derivatives of G(w), evaluated at w = 0, which must be inserted

in Eqse (64100) are simply

2 2 2

- G''1(o) = = 5 s V(o) = —
l-n

Gt(o) = ,
l - nz ’

e 6.101
5. (6100)

Since we wish to examine the higher ‘order terms in the asymptotic
expansion of 1;'(2) we take N =), and, tims, substituting (5.101) into
(54100) and introducitng the results in (5.96), we obtain the three-term

asympiotic expansion
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M](-z) - -25.1(1(1-1’12) (1+K)3/Zeik2(3—ikl(lan2)%(z-h) {’5(1) + ,5(2) + ,5(3) + o(%‘: + %)5}
(5102)

where A and 4 are given by Eqs. (6.92) and (5.93) respectively, and

where

d(o) =0,

T [ I (6:103)

5(2? = =3[ (8 + 21 + 15K%) - n2(8 + 9K)] (@ - ige]?,
43) = i%%; [é(éh + 2)OK + 280K2 + 105k3) + 2n2(18 + 80K + 35K°)
- nlis +50)] [ - )uce]

Similarly, the integral 9 P(g)/a %z may be obtained from (6.96) by
taking a new definition for G(w). Thus we have in the original A=plane,

from Eq. (6e5),

¥ (z=h)

o

= % f?‘ly(',\,)e H%('/\.(O )MA, 2z £ 03 (6+100)

Q

2

Gy

whence, we deduce at once from (6.53) and (6.61) that for 2)M§2)/EDZ we

have, instead of G(w), the new function
1
Gz(w) = - iklna(l - 2)-l sinw(l - n coszw)2 . (6.105)

Computing the odd derivatives of Gz(w) and evaluating at w = 0, we obtain
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ikqn?

R

ikgn? 1 - In?
1
(L -n2)%1 - n?

Gznl(o) s (64106)

ilgn? 1 - 3202 + 6ol
(1-02)% (1 -n2)?

G’ (o)

Proceeding as before, we now substitute the derivatives (6.106) into
the expansion terms (6.100) and introducing the results into (5¢96) with

N = ];, we obtain the three-term asymptotic expansion

(2)
M : : . %
7 _Zki(l_nZ)3/2(1+K)3/2e1k2(°-1k1(l-n2) (z=h) {¢§1)+¢§2’¢§”+ 0 (_l_ + _l_>5}
22 AP
(6+107)

where A and ) are again given by Egs. (6.92) and (6.93) respectively

and where
550) =0,
ﬁsél) =n }:(1 - nz)ikl‘o] - ’

4(2) - . 5 [(8 + 9)K + 15K2) - n2(20 + 21Kﬂ [(l - n2)ik1("] 2,
(6.108)

1653) = %5 [(BK/n)(éh + 2),0K + 280K? + 105K3) = én(32 + 96K + 100K? + 35K3)

+n3(112 + 221K + llSKh)] [(1 - nz)iklP] b,

Tt is of interest to compare the asymptotic expansions (6+102) and

(64107) which correspond to the integrals M:Ez) and 9 M](_e)/az respectively.




16)

It is seen that the first term in the expansion of tie derivative

91“11(_2)/ dz 1is obtained by merely taking the derivative with respect to

z of the exponential factor contained in the first term of the expansion
for IvI](-2), without regard to the fact that the parameter 2z also appears
in the term K as shown in Eqe (6467). Tt is noted that differentiating
the factor (1 + K)B/2 would result in a term of higher order; and, hence,
it is correct to state that, to the same order, the derivative of the first
term in the expansion for M](_e) yields precisely the first term in the
expansion of the derivative 3 1\,5(-2)/ éze It is evident, however, by
inspection of the remaining terms in (4.103) and (6.108) that the same
statement does not hold true for higher order terms. Therefore, it is
concluded that, in the present instance, differentiation of an asymptotic
series term by term is not permitted except for the first term.

As a further point of interest, it is seen by comparing the .expansion
terms (60103) and (6.108) that in both cases successive terms appear to be
multiplied by the factor (iklto )":'L and thus we have obtained asymptotic
series in inverse powers of iklf’ where kl is the propagation constant
for the conducting medium. This is in accord with the form of the remainder

A 1,1)VH . :
which is O(-X +‘]j. s, wherein Y = ]bkl(ol and A, as given by (6.92),

can be written A= |2k;©| provided |1 - coté,] > 0. That is, from

(692), if In] << 1 we can write

AR \Zklf’ {(l - cot@z) -n(l -3%n cotgz)}[ , (6+109)

which confirms the above statement. However, when cot@2 = 1, we see that

AR |2k,p| and the magnitude of the remainder in (6.102) and (6.107) becomes

"
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so large as to render useless the corresponding asymptotic series. In
practice the range most commonly employed corresponds to co*bez_ <L 1; and ,
hence, this limitation imposed already in the analysis at the end of

Section 6.3a proves to be not a serious onees

6e3d. Asymptotic expansion for the integral 3M§.2)/3p = In the
original A-~plane the derivative of 12 with respect to (O becomes, from

(645),

91 ‘
-5‘32 = -3 f v LMl (ap )02, 2 € o, (6+110)
’ c
2

which in accordance with (6.58) and (6.70) becomes in the x~-plane

o exp(=i8s/2)
-;—;3- - %ikgeikzp'ikl(l'nz)%(z'h) é(x)e‘“?/2 , (6.111)
o
where (i(x) = {F(w) + F(-w)} (dw/dx) with
F(w) = G(w) sin2w cosw {Hi(kz(o cosw)e-ﬂczpcosw} ) (6.11.2)

~in which G(w) 1is given by the first of Eqs. (6.61).
Next, replacing the Hankel function and exponential factor by the

integral representation deduced from Eq. (5.50),

o exp(ix)

-ikg(ocosw

H}_(kz e cosw)e = -(nkz(o cosw)"1 y2 ( Lp‘.k2 P cosw-—‘y)‘ke'y2 / 2dy,

(6+113)
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where Jot| < 1w/} and -E-+°¢ < % arg {thOcosw} 4}[:1"'044, we

transform (6.111) into the double integral

@ exp(=10,/2 ) _ooexp(ist)

-—;—;—2- - (kg/Zﬂikz p)eika"ikl(l"nz)%(z'h) §(x,y)e'(x2+y2)/ 23xdy,
° % . (6.111)
wnere we now have
Plw) = 3% £6x) glear)s o (6as)

with f(x) precisely as beforé, Bge (6485), and with
; : 23
glx,y) = (hlkz pecosw =y )2, ‘ (6-l;|.6)

which now differs from (5.87).

The conditions imposed by Waison's lemma are still Tie same as in
Section Ge3aj and, thus, ﬁe can proceed inmediately o the computation of
the expansion terms é(n) which tiuis time, because of tie factor y2
in (6.115), are given by Eqs. (5.77) in terms of A's corresponding to tie
expansion of the same f(x), already listed in Eqse. (5.96), and in terms

of new B!'s which correspond to the double power series expansion for the

function g(x,y) given in (6.116), namely

B o= 20ige), B o= 30+ Dige)T,

2 . 1. -4 6 o i noam2] oK ) i =3/2
BO - 'E \lk2{°) ?, BL[ ']-'(7)' (.L + Ix) J:;L‘—:.;;z - L (lkz(a) 9 (uc.Ll7)

_ 1 o x“3/2 = i ‘
By = =3¢ (1+K)(ik,p) ; Bé‘ =7 (iky @) ’
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Substituting the A's and B's listed in (Z.96) and (£.117) into

Bgse (5.77), we obtain the expansion terus

é(O) - 0, é(l)' = 0,

3/2
H(@ = 8 (C TR Y. ::k:?" G! (o),

(3) o @erd? (1 +x) 30) g L gk o LKA+ K) (6.118)
5] “—5(&2(0) G'(0)< 11 + K) 7o) 20 = 17K " [

+K)3/2 V¢ 1
$W . L G 6 (0) 4 16(1+%)? = o) | 8(1+K)| 28 + 25K + 35K(l+K)]G ;
16 (ik, )3 G (o) 1 - n? ] 6(o)

+3(18 + 96K + 13K?) +

1OK(14K) (Ll + 35K) 105K(1+4K)2(§ + 9K) {
1 -n? (1 - n?)° 3

To apply the above results to the integral BM](_Z)/ 3@ we need only
substitute into (8.118) the deriv‘a.tives of G(w), evaluated at w = 0, which
are lisved in (6.101). Next, pﬁtﬁing N = 5, and substituting the.results
from (65.118) into (6.11);) we obtain the three-term asymptotic expansion for

‘QM’:(Lz)/a/O which we write in the form

e (2) . . =
aM - 2k§-(1_n2)(]._...K)B/Zelkgp-lkl(l-nz)%(Z-h)» {’5}2).%/&3)‘%(&&) +;0(.7.\]:.+é)5}i:

9, )
(64119)
where A and ¥ are given respectively by Eqgs. (6¢92) and (6.93) and
where
;4/(03) = - 3811[8 + 12K + 5K2 - n(8 + 7K)] [(l - n2)iklf->:{ =, (g.lzo.)

() = : 2 3 2 ‘ “
B’ o [128 + 768K + LOK? + 112087 + 315k - 2n2(108 + 368K
*+38r% + 10563) + nl(108 + 208K + 1156?)| | (@ - )ik |
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Once uiore, comparing tie asymptotic series for I-I](_2) and 31‘11(_2)/ oL,
it is readily ascertained that tie first term of the derivative is ‘equal, ©o
wie samwe orvder, vo tue derivative of tue first terin of tne function itself
whicin is obtained by differentiating the exponential factor alone, but tuat
tiie same statement does not nold ;'crue for nigier order terus. Furbvher s We
note agaln tuat successive terms of (C+120) are muitiplied by the factor
(ii-:l/")'l; anid, tius, we have again an asympiotic series in iecipiocal
poweis of kl P+ As already explained in Seciilon Ce2, Uile use of wie douvle
saddie point :eti:od oi dutegration wi.ich euwploys e Hankel funcvion in its
integral representation is equivaient to tle rewcval of tie branci: soint for
ZerC arguient ol vie Honwel iuactlony and, vuerefore, Uiie series obtained are
expiessed in reciprocal powers of kl(O ravier than kz(c « It is, qi‘ course,
tiils feature that makes tiie present computations of practical value, for une
series obtained are valid av distances firom tiie source dipole whicii neasure
a few wavelienguus i tie conducting medium. Thus, for exauple, rererring

vo Table I, at a frequency of only 1000 sec™t

s & wavelength in tie conducting
medium is 50 meters; and, hence, at this frequency, measurements stariving at

500 meters or more ought vo agree very well witii our compuied resuicss

é.3es Subtraction of tie pole from the integrand of V](f_)_.- As already

explained in Section $.2e, tihe poor asyuwptotic behavior of the expansion (&.82)
for V§_2) whicn is valid for ]n2k2 (°I > 1 stems from tie presence of a
first order pole in tie lwmediate vieinity of tue saddie point at w = O in
tile w-plane- T}w.ié"dii:'ficulty can be resolved, as siiown in Section 5.2¢, by

(2)
1

extracting tine pole from tne integrand of tihe double integral for V which,

according 1o Egs. (5.62) and (S.8l;), we now write in terms of the new integrals

w's)

L (p)

and as
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w2 . . (2ik2/n)eik2‘°"ikl(l"nz)%(z'h){ws +wp} = s WP (6a01)

where Wy is evaluated from the asymptotic expansion (5.8);) and Wb is given
by (5:67).
. The integral W

P
and of the constant C, defined by Eq. (5.89), which is still to be evaluated.

is given by Eq. (5.88) in terms of the paraueter x,

The point x = x, in the x-plane corresponds to the position of tue first
order pole of G(w), as given by the second of Egs. (6+51), which occurs at
W =W, as defined by (6.78). Inserting this value into (&.83), we obtain

for x, the expression

- . l b
l 2 = j.k n l - l + l - 112 _2— - l cot@ 6'122
AT ( ) G - e )

which we have already encountered in (£e79). Next, ©o coupute C(y), as
defined by (579), we note that with éﬁ(x,y) = f(x)g(x,v)s given by

Egse (Ze85), (£e88) and (£e87), C(y) Dbecoues

)
c(y) = g(’zoyx ,Hn {62 -2}

= T -
1 +n2 | (1 +nd)3

1 2 _ .2 P
bcoWL—J;nwo (& = x5) [G(W) o W)]d,x ’

from which, substituting for G(w) +the expression for Vie) in (5.81) and

applying L'Hospital's rule, we obtain

-l-
2n liiko @ 2 2 .
C( = - - [ ol

) (1L + nz)%(l -nly {1+ nz)% yl;> (6-123)

Inserting this expression into (5.89) and making use of (&+83), we

have
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(e9)
2n Lik, @ < 2
C = = 2! - 2 -y /2 a
I ———r -y e y
(1 +n2)%(1 - al) (1 + n?)?
(o]

2n " k : ' 2\%

= - T AR g [ o1/ (1) (6o121;)
(L +n2)2(1 - nh) L (1 + n2)2

Thus, finally, substituting (5.12);) into (587) and making use of (6.121),

we obtain, after some reductions,

ikpp-iley (1-n2)%(zh)

w(P) = o (21ky/m)e :

.- __,.’TELP.;,AL___,_ Y -1k (zeh)/ (14n2)2 { | - ert(eix, /2%>} .
(1 + n2)Z(1 - nl) (1 +n2)z

(6.125)

To ciieck this last result, it may be readily verified tnat tie factor in front
of the bracket is precisely one~half of the residue of the pole as computed
in eituer the A or w planes, in complete accord Wiﬁh tile demands of
Eq. (5e¢)1) and subsequent discussions

Next, we proceed to the evaluation of Wg Dy the double saddle point

method of integration. First, we consider the funcition

Ty = P er) + Loy, (6+126)

wiici now replaces Eqe (5.78). Here é (x,y) 1is given by Egss (5.85),
(£485) and (Se87) wherein G(w) corresponding %o V](_2) is given by the

second of Egs. (5¢81) and ° X(x,y) becomes, from (5.78) aud (J.123),

, 2%o0 () onx (x2 = x2)™F [ Lik, o % o
W Gosy) = = =2 = o~ 0 2l -y2 ) 2, (6e127)
x2 - xg (14n2)5(L-nk) (1 + n2)3
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which is of the form (5.5];) and, tnerefore, has a readily compuied double
power series expansion. To facilitate the algebra, we rewrite tie expression

(£.122) in terms of our parameter K, Ege. (5.867), in the form

| ikln3‘° Q 2 [ ] 2K
R == 2% 1]+ = 2k (1 - a2k 22|, (.
X5 (l + nzg(l + K), Q n2 (1 + n%) 1] + nh (L +n ) (1 n¢) n], (64128)

in whichtthe factor Q can be conveniently expanded as

. né nlt  nb 708 10
Q lfT'E(l'K)*'é"ZE(S'm+I’2‘8'+°(“ ) . (6.129)

Thus, to evaluate Wy in accordance with Eq. (5.8)4), we choose

N = 3 and proceed to the calculation of the expansion terms

*y(n) = é(n) + X(n)’ n = 0,1,2, (64130)

by applying Eqe (5¢86). In this manner we obtain for the expansion

coefficients i (n) the expressions

@(0) -0,

éf‘z(l) - 2
nl(1n2) (i) )2

3/2
(1+K) (6.131)

(2) . 1_ 1 (1#)3/2 { 2 2y
= = 2 (14K) =-n= (842}, K+15K< ) =n*(16+15K
¢ L ST G oy A (Bealas®) mlasas | 5
which were obtained from (6.100) after inserting for G'(o) and G!'!''(o)
the expressions given in (6e77). Proceeding similarly, we obtain for the

corresponding expansion coefficients %(n) the expressions
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_pamfo?
n(1-n) (ik; p)

j(}o)

(12)? (1ex) 232
Inlt(1=nk)

'y_(l)

[8(1+K)+n2Q] (k@)% , | (6.132)

. () )i 5/2 [381045)2016m (o)au9nt? | (11 2)73
647 (1onlt)

-1(2) -
‘which were obtained by first expanding ;Z(x,y) into a double power series
and then inserting the coefficients into the first tiree of Eqs. (5.55).
Adding corresponding terms of (6.131) and (6.132) to obtain the
expansion terms jg?(n) for W, . as given by (64130), and inserting the
corresponding asymptotic expansion (5.8};) into (67121), we obtain, after
considerable agebraic manipulation, the three-term expansion for W(S),
namnely

wls) = -(zﬂzfn)eik*'ikl(l’ﬁ)%(Z'h)ws

(6.133)

= zj_kl(lﬂ{)%eikz(o-ikl(l-ne)%(Z-h) {W(O)m(l)w(2)+ 0 (% +;]:)>h}

where A and » are given respectively by Egs. (5.92) and (6.93) and where

w(0) = {1 + 02 (1 - k) +o(lt) | (i, 00T,
T | _ l()
W(l) = o %‘((kK/n)(h*BK)" %{61_ (3—19K-13K2+5K3) + O(nB)] (j_kl(o)"z 9 (6013h)

w(2) = -l—gg [(K/n)2(h8+8OK+35K2) + '8'5“(5+72K+27hK2*299K3+77Kh-2lK5)

"'515 K(14K) + O(nz):i (ik, ?)7



which were obtained to O(n2) by expanding the resulting terms in powers

of n and neglecting higher order termse.

6e¢3f. Asymptotic evaluation of the derivatives of V](_Q.-a Applying

the methods developed in the preceding sections, we now proceed to the
asymptotic evaluation of the derivativés BV{Q)/ Qz, BV](_Q)/ 8/0 and
'32\1{2) / 3[03 2z which v;'e need in Chaptier VII in the computation of the
electric and magnetic field componentse

The derivative av§2)/az, according to Eq. (6.10);), can be
obtained by the method of the preceding section if we merely replace G(w)

by Gz(w) defined as

-:i.k]_(l-n2 coszw)%

G, (w) =
Z n(l-n? coszw)% - sinw

whose odd derivatives, evaluated at w = 0, become

_ikl
n2(1 - nZ)% ?

6 = n2 - 2ol
1@ - 2372’

G,(0) = 6,'"(0) = - ik

and veplace C(y) in (6.123) by Cy(y) = (—ikl/(l*nz)%)c.(:;r), ices,

2inky liky @ o\ 2
C(y) = T =y .
(1 +n2)(1 - nlt) \(1 +n?2)2
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(64135)

(64136)

(64137)

As before, we write our integral 3V§.2)/2 z as the sum of two terms,

as in Eqe. (6.121), thus

(2) o ,
3;7;; = - (2ik2/ﬂ)elk2(°'lkl(l"n2)%(Z"h){WZS + sz} = wés) +W§p_),

(6.138)
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where the subscripts 2z on tie W's do not mean differentiation with respect
to 2z, since Wzs and ‘sz are not the derivatives of Ws and W_o. From
Eqe (5.87) we see at cuce that wP) 4y Ege (£.125) can be converted into

Wép ) by merely multiplying by the facior ‘[-ikl/ (1"112)%} which is the factor

that converts C(y) into Cz(y)n Thus,

11m2ic2 1 ‘
wép) i (l"‘n;u)l(linh) Hg ((:ﬁn(:)%) e-ikl(z-h)/(lmZ)z{l ) erf(_ij/Z%)} » (60239)

which can also be obtained from W(p), Eqes (5+125), by merely taking the
derivative with respect to 2 of the exponential factor. Similarly, the
expansion terms x(n) listed in (5.132) are readily converted into the

terms X;n) through multiplication by the factor [—ikl/ (l*n2)%j s yielding

. i L

Y(°) _ 2:.k1(1+K)2Q§ o -1 ,
2 n(l-nh)(lmz)i( 1)

L R o2
PLIGELY

[8(1+K) + nZQ] (iklp)~2 , (6.1),0)

Y L o
Y (2) _ Ba@m?)Pa#)2 q
6l nT (1-nl)

5/2
[381;(1+K)2+16n3(l+K)Q*9nhQ2 (ikl(‘>)'3 s

while thie new expansion terms C_Eén) are again determined from (6.100) by
replacing G(w) with Gg(w) and using the evaluated derivatives given in

(6¢136). In this manner, we obtain
&,(0) _
z

F2 ,  Ha O
2 Ll n7(l=n2)3/§

@ _ 2-j_kl(]_+K)3/2 . -
@Z nll(lnz)"ZT (a0

H
o
)

(6.111)

[ 2u14) - w2 (@voa152) - nl(8) | (P )
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Combining the above expansion terms in accordance with (6+130) and
substituting the resulting asymptotic expansion (5.8);) into (6.138), we

obtain, after considerable simplification,

2 3 ' 1
(s) _ (T2 ) o1 (1-n2)2(z=h) 4 (o) , (1) , (2) 1,1)\k
wz ) Bme 2‘011( T ) (Z ) Wy +WZ +WZ, + 0 -i‘.'.z—j (601&2)
where again A and *’ are given by Eqse (6+492) and (6+93), respectively, and

where

wo) = [1 o2 (1) + ol | (g ),

wgl) = -%[—E (4*3k) -%(73‘*7K-39K2+15K3) + o) | (k)2 , (6.113)

w(2) = %5 [3(5)2(h8+eox+351<2) - %(h37*97lK~1611K2-35251€3-1155KB+315K5)

+ Q<n2‘5] (k3 0)73 .

Comparing the asymptotic expansion (6.133) for W(S) with (6.1)3) for

s wWe see that the latter is not the term by term derivative of the

(s)
W;
former and that not even the leading term of Wés) is the derivative of the
leading term of the pfimitive function except to within terms of O(nh).

The asymptotic expansion for the derivative 8V§_2)/ 9 can again be

written, from Eqe. (6.11);), as the sum of two terms

(2) .
Al il (1o ] |
a((1) - (&/2miky @)e 20 ikq (1-n2)3 (2 h){wps . WPP} ) W,(OS) . wfj-?), (621100

wihere tue subscripts f’ do not mean differentiation with respect to e



Thus, from Eq. (5.78) as applied to P (x,y) in Bqe (£.115), we have

: 1
L 2ny? ik 5 \2 |
Co () = - mlr itkep — - y‘) ; (6+115)
(L +02)2(1 - al) )2

and from Egse (5686) and (5¢89), waking use of (&.1l);), we vhen obtain

3,2 / i .
m- k- k P . 2\2
W) o R o =ik (z=h)/ (1m®) {1 - erf(~ix,/28) | ,
» 2+ -aly =@ + a0
(Ee1li0)
which can be deduced from W(p), Eqe. (64125), by merely taking tne derivative
wita respect o (0 of tiie Hankel function.
Proceeding as before, the expansion terms 'X%) are deduced by
first expanding ’X,‘o(x,y), obtained from (6.127) after repiacing C(y)
by C(a(y), Eqe (64145), into a double power series and then making use of

Egs. (539). In this way we obtain

YO o, ) m . BGrOP g
e P (1L +02)3(1 - nb)
, + k)3 0=3/2 -
)(_572) N C RS ILE [8(1 +K) - 3n2Q] (i)™, (6e117)

n3(1 - nb)

¥3) . L2 (12)3(1+4K)5 q=5/2
e 16 n®(Lenlt)

[128(14602 - 1602 (198)6 - 52 | (30072

and the expansion terms 6_5((,“) are next obtained from (&.118) with G'(o)

and G'''(0) as takeun from (£77), yielding
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_ 8L+ K)3/2

ik "l
n3(1 = n?) ( (0)

O W) . o, (2)
Do d. S

y x1+mﬂ2 . (64118)
2 n -n

Combinine the above expansion terms in accordance with (6+130) and inserting
the resulting asymptotic expansion (5.8)) into Eqe. (6.14i), we obtain, after

some simplification,

W{S,s) - o 21;1‘&:;;1){; ik ‘O-:Lkl(l-nz)%(z-h) {wt(aO)." wﬁal).‘. W(<(>2)* W{SB) +0 <% *%)h} ,

| (6a)
wiere. A .and » are again given by Eqs. (6.92) and (6+93), respectively,

and where ‘_

w{,(,o) =0, w((ol) =n [l + %E (1K) + O(nh)J (iky )L,

WF(Z’).\,,._*_ él- LS + 8K + 3k% + i‘-z- (79 + 97K + 39K2 - 15K3) + O(nh)] ()72, (6.250)..

éB) - l_zg[__(sh + 1)K + 120K2 + 35k3) - n(35 - 1059K = 21,89K% - 2035K3

- 385kt + 105K5) + Q(nB)] (ik, P )3 .

The asymptotic expansion for the mixed second derlvatlve 2V:](_2) /3= o/°

can also be written, as in Eqe. (6.1l);), as the sum of two terms



178

‘av§_2)
3P Az

eikg,o-ikl(l-nz)%(z—h){w (8) 4 wl®) | (s.50)

2, ., 1.
= (k2/2n1k2p) L 28 + wf’zp} W{Oz Pz?

where the subscripts © and z do not mean differentiations. From Eqe (5.78)
as applied to @(x,y) in Eqe (64115) where G(w) is replaced by G,(w),

Eqe (6e135), we have

’ 1
24k ny* liikey P 2 |
1 2
C. (z) = -y 3 (6152)
ez (1 +n2)(1 - nl) | (1 +n2)%
and, thus, comparing (6.152) with (64145), W(p) may be obtained from W(p )

ol rz r
by multiplying by the factor E'ikl/ (1+n2)_] , yielding

- (p) mikin’ o Ky a1k (z-h)/ (1#n2)% : %}
W = - ‘ e 1 - erf(=ix./22) (e (60153)
P2 (am2)3/2(1mb) l<(1m2)%> g

Proceeding as before, the expansion terms x{(on) . are obtained from

(6e1147) by simply multiplying by the same factor, [-lkl/ (l*na)%j; thus

, W x
Biky (1+K)3 Y

?

(o) _ () -
7¢Pz Os X

ez (1m2)3(1-nlt)

(2) kg (146)F @3/2
Pz n3(1m2)5(1-nk)

(81 + 1) = 3% ] (), S (6a18h)

(3) 3 iky(1#K)F /2
ez 16 nO(1-nlt)

[3.28(1««)2 - 16n%(1#K)Q - 5an2:] (.1.1«:;._;0)“’2 3

and the expansion terms §(n) are next obtained from (6.118) with the odd
Cz
derivatives of G(w) evaluated at w =0 given for Gz(w) in Egs. (6.136),
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yieiding

(o) (1) : '(2) Bikl(l+K)3/2 A
@(Oz =0, é{ez =0, @PZ = n3(l-n2)'% (iklf’) ’ ‘

(3) 31k (14)3/2 , _
$ o ne(i_ng)m [e(m) - n%(8 + 12K + 5k%) + nli() + 3Kﬂ (1 2)™2

Combining the above expansion terms in accordance with (6+130) and inserting
the resulting asymptotic expansion (5.8);) into Eqe (6¢151), we obtain, after

some simplirication,

(s 2ikdn(10) JHepp-1key (1-12)8(z=h) { (), ()4 (2 (Blu of L 4 2 )l‘
2z (1m2) (1=nlt) rz  PB ez P2 Y

(6.156)

where A and 2 are given by Eqse (6.92) and (6+93), respectively, and where

_ ) i
wf:i =0, w((al: =n ('l +%—‘ (#- - K) + O(Hh)] (ik 0) a ’

¢
3

ocd oy

[8 + 8K + 3K2 + 3.26_ n2(5 + 11K + 13K2 - 5K3) + O(nhﬂ (ik]_(a)'z, (6e157)

w3 = 31K (6) + 11k + 100k2 + 35K3) - B (547 + 201K - 1901K2 - 17253
{oz 128 | n 8

- 385k + 105%) + o(n3):{ (k@)
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VII. RESULIS FOR THE CONDUCTING MEDIUM

In the.present Chapter we discuss the approximate expressions for the
fundamental integrals, the components of the Hertzian vector, and the electric
and magnetic field components pertaining to points of observation in the
conducting medium. In particular, it is important to note that all of our
results are necessarily restricted to |nl < 1, }klfol > 1; and
)kl,o (cot@2 = 1)) > 1 when ky@ < 1, where tie fifst condition was
inposed initially and the latter two arise from the form of the remainder
in tie asymptotic evalumation of the integrals. Rather than merely cataloguing
tiie resulte wuicn could be obtained directly from our '‘expressions for the
fundamental integrals and. tieir derivatives, as given in the previous Chapter,
we present also further approximations of our results appropriate to dif;
ferent ranges of tue paraeters and obtain simpler and more useful expfes—
sions. We consider bie three principal ranges: © —> o0, )n2k2{0| < 1
<L szn, and k2(9'< 1 < ]kl{Dl, the only range of practical interest
for tue present low frequency investigation being for kg o < L < ]k1f5{,
particularly when 8, > 50; other ranges are included in order to éompare

our resulus wilu tue resulis obtained by other workers. In addition, we
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consicer vue two important limiting cases in which (h-z) =0 and n =0
that have been considered by ouner autiors. In so doing, we have been led
to examine anew tine wnole question of the existience or non-existence of the
so-called Zeuneci surface waves; and, as uentloned earlier, we trusi that we

have settled tie guesivion veyond furither controversy.

7.1 APPROXTIAATE RESULTS FOR VARIOUS RANGES OF THE PARAIETERS

In this Secvion we consider the form assumed by our results in various
ranges of the parameters. First, we consider the effect of imposing the
condition 'kl/°, > 1 required by our asympltoitic series wnici means thav
tile point of observatiion st be at least a few wavelengtns in the conducting
medium away from the source and we show that, under this condition, all
exponentially attenuated terms can be neglected which results in considerable
simplification. Next, we take up the analysis of ocur asymptotic resulis in
tue limit /0 —> 00 and we show that tihe interface at 2z = 0O separating
the two media acts as a source of secondary waves. In order to be able to
compare our results witih those of Sonmerfeld we then consider the range
\nzszoi £ 1< sz’ whicih implies that tie point of ouservation is at
least several wavelengths in air away from tue source wiile Sommerfeld's
mumerical distance® (measured by | n2k2 @l) is small; and, finally, we
take up thie range of parameters which is the only one applicable to the low
frequency case; namely, k,° < 1 < lklP] and which implies that the
distance of the point of observation from the source is at least a few wave=-
lengths in the conducting medium but only a small fraction of a wavelength

in aire.



182

Tela. Imposition of the condition \kl_pl > le= The equations

developed in Chapters II and III were obtained without any assumption as
regards tine order of magnitude of e paramevers ovier than Jn| < 1;
however, some simpliiication can be acnieved by now imposing the condition
)kl(ol > 1 which was found necessary in order to ovtain ine asympiotlc series
evaiuation or tue integialss Thus, for ’klf)] > 1 we may neglect terms
wulcu are exponenicialily avienuaved whicuh include ?l and 'gfz,
EQs. (2455) aud (2.6), rvespectiively, as well as all integrais of wue type I
and vieir derivavives, aii of wnicu way be regaided as arising frow contribue-
tlons over tue patih Cy around tuhe cut for A6t in vhe A=piane. Thus, we
convena wuaat all integrals of tue type Il are of tue order of wagunitvude of the
erioy coundiited in tue asyuwptotic evaluation of tie invegrals of tiie type 12
whicli are computed over tue patii 02 around the brancu cut for 4, d1u The
h=piace (see Figs li) To see tuis, consider an integrai of tue form (5.10)
in el é {x) possesses a branci point at x = x; aud 1s avaiytic
i

for |x| < A2 wuere 7\% = lxll and let tue branci cut exienw frow x = X
O Lni il wwolaur e secthor )alg {X}-’ < w/ly as suowa iu Fige 9. Thei,
accourding o Waiusoi's lemma, Secivion 5eia, the integrai yields identical
results for path (1) and for pati (2) which differ from each other only in
that wuey go wo infinity on dirferent sides of tue cuosein brancu cut. The
diffeieunce between tne invegial taken-over patii (1) and uie integral vaken
over path (2) is clearly the contrioution around the branch cut. Thus, this
contrivution itseif must be of the oider of tiie magnitude of the uncertainty
in the asymptobic evaluation of the integral over eivner pach (1) or patir (2)e

Applying tue vesults of tie previous paragraph, we obtain from

Egs - ;‘\’;'43) and (Se7)
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Fige o= Diagram Showing that the difference between the integral
over path (1)} and the integral over path (2) is the contribution around

the branch cute
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Y Ivi](_z) ,
" (741)
~ yi2
LESER s

with similar relations for the derivativese. Using (7.l), the Cartesian
components of tue Hertzian vector for thne conducting medium given by Eqs. (341)

and (3e];) become

T =~ _ip 1"(2)
Xl hﬂklnl Il ’
| (702)
T = ip cosf (1 + n?) 82V§_2)
= ey 9pds
Similarly, the electric field components from Eqs. (3e1la)s (3.15a) and
(3+13) become
(2) 2 2
5 o~ -2 1N, nH [v@ -],
) h’ff kl‘nl fo B/O 1 +n
N . (2)
ip sing { 1 9V- .
By, ™ =——— = = +id w2 o, (723)
i klnl { 3/0

E. =~ ,}P_f_?f_{ n2_?.213(fi
Z1 l;nklﬁl 9/035

and finally the magnetic fieid compoients from Eqs. (3¢21b)s (3+25b), and

(5+20b) Dpecoue
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(2)
H ————gp snd 2 (1n2) A N ¢)
Pl b k€ 2 P 3P T
p cosf 2 2 9V£2) 2,2y(2)
Hﬁ‘l o .- W -—3——; (l"ll ) To‘ 2 +n kl 1 ’ (7'11)

All of the integrals appearir;g in the above equations have been evaluated
subject only to tie conditions |n| < 1, lklp| > 1, ,klp(cotgz-l)l > 1
when k2,0 £ 1 and are presented in Chapter VI.

Before proceeding with the investigation of the resulis for the tiree
principal ranges of parameters, ro > ®, |n2k2f>/ £ 1< k2(° and
ko < 1< |ky©|, it is important to note that our results are not
discontinuous, even though the approximate expressionsv derived for one
region of the parameters may not fit smooth;l.y with the approximate expres-
sions derived for anotiher region. If one wishes to investigate the transition
from one region to another, itb‘is only necessary to return to the exact
expressions of the asymptotic series and chioose the appropriate ap'éroximation
for tiis transition region to obtain the continuity which actually existse

In order to illustrate the type of additional approximations which
are appropriate for particular ranges of tne parameters, we single out for
special study the fundamental integral V](_Q). To facilitate later discussion
we collect together in one set of formulas the most general expression that
we have been able to obtain for V](_z) which is valid for all ranges of the
parameters that are considered; thus, from Egs. (6.121), (£.125), (64133),

(64131) and ($e137), using the definition (5.123) for Q, we may write
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(2) ), (s)  _200F 1 g Puikt(lr-nz)z(z-h){ (p) s)}
AR e —-——————7— Gl ST+ W, (75)
+ (.l.'ﬂ'l l.,!l +

where

" 1 )
PN Tik 2 .. . DNE - ks P 1 i g _ A
A\ e 2 -°1K2f’/(.t.+11 )2 2 2 s /o “'Xo/Z"—_ PSS
V\L.‘ —T e HO (———2—;;> mey l.{o/cz)e (.l. eri| l};o/c@ .

- 2(1m2)2 (1

is an exact expression exhiviting tue term as vhe product of two distinet

facoul'sy ana where

wis) ~ L - (““ )5 [:8(4.-0-1 1HK) - 8(LHK)Q” -3/2 nZQ"%:] iy )™ -1
¢ .
+ 2 (E) (18 + BOK + 35K2) +.2. (5 + 72K + 271K> + 299K
128 |\n 8

+ 77Kh - 211&5) - :-S'EK (14K) + O(nz)] (i.l{l(.")m2

is a three-term asymptotic expansione Here K is defined by Eq. (6+07) and

X, by Bge (lo122). A similar general expression for I-L}_z)

o is given by

Eqe ({o102) whicii, accordingly, is not reproduced here.
4(2)

Despite tie fact tuat wost or our attention is given to 1 s it is

(7e5a)

(7+5b)

extremely ilupoirtant ©o note tuat tue componenis of the Hertzian vector and the

field components, in general, are not obtainable by differentiating the

asympiotic series expressions for 1~1§_2) and Viz), since an asymptotic

series may not, in general, be diiferentiated term by term (only for the case

(0 —3 00 is it found to be a valid process)e The components of the Heritzian
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vector and the field components must be obtained by applying the additional
approximations which are appropriate for a particular range of the parameters
to the asymptotic series evaluation of the derivatives as given in the

previous Chaptere.

Telbe Asymptotic results for 2 - oo.= Although the investigation of

this case has no direct practical applicatioii-for tie present low frequency
case, it is of :m‘berest to further demonstratd’that the interface between
the conducting and non-~conducting media acﬁs as a distributed source of
secondary waves, as was demonstrated for the static case, Section lj«5, and
to illustrate the nature of the transition in the form of V](_2) between the
ranges of the parameters P —>om or )n2k2p] > 1 and )nzkzp) <1 < k2.0
which is of particular interest when we wish to compare our results with those
of Sommerfeld for (h-;z) = 0,

The integral Viz) for the case ° —>® or in particular for
)nzkz(o, > 1 may be obtained directly from the evaluation of V](_z) without

first removing tie pole; thus, from the first term of Eqe (5482), we obtain

2204032 1 si0miiq (1n2)¥(aem)

.6
n2k2(l-n2) (02 (7-6)

(2
7@

where X 1is given by Eqe (6467)s This result may also be obtained from the

:f_z) by first removing tne pole, as givén by Eqe (7+5), by

evaluation of V
first expanding asymptotically both the Hankel function and the function
{ . L . . (p) . . .  ps .

1l - erf(-1x0/22) arising from W\P/, process which is justified since

ko @ > !xi l > 1 where ,ng -7 ‘nzke(", from (6.122)e To two terms,32 we

32 . 7. Whittaker and G. N. Watson, "A Course of Modern Analysis," (The
macmillan Co., Wew York, 1918), Ame Ede, ppe 3110=3}43, Section 16e3.
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nave roi tie secona factor in (Ye5a)

mlr'

ﬂ%(-le/ET?')e '1"0/2 5)? {J. - erf(-lxo/Z } = L= 3(=ix,/22)7C * eees (77) *

Sidiarly, erpanding tie Hankel iunction in Bge. (7e5a) asyupiotically we obtain

0O Two lers for t.e comtiivutionn fiow bue poie

-y i % - 5
WP E.fff Pk et (i 2 % (z) il [ LK)+ ngj (748)
\.L-n P 8112 1}{2‘0 .

where use nas peen made of Eqe (J.128) w0 express X, in verms o K aud Qe
Combining (/e8) witi Wks), givein Oy BEge (7e5) and (7e5b), auid negiecoiug t.e
vulrd terin of tue seiies for W(s) s we again obtain ine result (7e5) whichi was
VO De provede
(2)
The derivaitives of V,: 7 in vue idwdd ° —> o uay ve obbained by

differentiating (7el), noting from Bye (Jel7) thab

9K K(1+K) 9K n(1+K)2 \
—_— = - and = - ; (7+9)
2P r = ey’ (ima?)Zp

aud ievaluing ouiy wie Leadiig teiuy pootess walch may ve veiiried by erd.er wue
sadile politt weviiod beroie tie reioval of tue poie oir after tuc removal, as
deuioisteaved above.

(2)

Tne invegrai i Toi tue case (P —»o00 1is given directiy by tue
ol

ricsv verm of Bge (Je102), tius

'“_"(2)/\/ 2in(1¥K) 1 eikao_j_l;l(_i_-nQ)%\z-n)

1 ke (L=02) 2 (7.10)
Kl(“"’“ P
The derivauvives of 1""_‘(&. ) in tue iimit P —> © nmay be obtained by differentiating
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(7+10) and retaining the leading term, as may be verified by examining the
- leading terms of Egse (64107) and (64119).
The components of the Hertzian vector as given by Egse. (742) become in

the limit (©-> ®, making use of Eqs. (7+5) and (710),

- N_p(l+K)3/2 n 1 eikaa_ikl(l_nz)%—(z_h)
- oy 102 o2 R
- (7‘11)
p(14)3/2 (1n?)-cosf 1 JHopmiky (1n2)¥(z-h)

. —“‘zl i 2"1(%”1 n2(l_n2)% {02
Apart from the cosf factor, it is apparent that we have ]"!T'xl/‘ﬂ"zll = 0(113 )s
whicu indicates that in the low frequency case tre field, aéi L —> ®©, may ‘e
descrived primarily in terms of the 2 component of tihe Hertzian vecuvor, which
in tue static limit was associated with a secondary source distributed over
tile boundary between tiie conducting and non-conducting mediae

Hext, we compute the field componenté and further demonstrate tnat they
are essenvially produced by a secondary source distributed over tine surface
z = 0 YUy suowiug tnal tue power flow, as represented by Poynting'!s vector,
is essentially a vector in tne negative z direction and therefore not a
vector along the line from the original source. Thus, by inserting Eqse (7.3)

enc (7410) into Egss. (73), we obtain for tie electric field compo_r;ents

as P>
e p cosd (1+K)3/2E 1 eikao-ikl(l-nz)%(z-h)
‘ Pl ~ 2111]1 n (o ’
§ p sing (1"'K)3/2 n 1 :Lkgf’-ik]_(l-nz)%(z-h) -
Eﬁl ~ Eﬂ"nl | l—r}Q ? e ’ (7‘12)
By~ cosf (1#)3/2 1 1 ikpp-iky (1en?)3(z-h) _

2my (1-n2)% 2
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Tiese sauwe 1estlbs to witidn O(nz) may be obtained from Eqs. (3.13) by

inserting Bus. (Teil), thus
32 Tl 2
T 22 B/, A2~ ky sing Tl
rL ™ Pz ? $1 1 x1°
(7+12a)
2%,
E . A e ek,
zl 2

e

1% i seen tlat apart frow the factors sing cud cosg, tie eleciric field

omponents stvand in tiue relative order of magnitude - n )

c ts stand lat rder of tude | Eoy/E,1/Bgy | = O(1/ /n2)
Similarly, by inserting Egqse (7.5) and (7.10) into Eqs. (7+!;) we obtain

for tihe magnetic field cowpounents as P>

p sing (1+K)3/ 2n 1 eilcao-ikl(l-nz)%(z-h‘) ,

H ~ .
rFL 21 (1-112)% (‘02

. ’ T 3 » 1 »
Hg{l -2 cosg \l+n)3/2 11 elkzﬁ-lkl(l-nz)ﬁ(z-h) , (7.13)

ow (1mm2)5 1 2

. Y
D sing (l+K)3/ 2 n? 1 ikop=iky (1~n?)Z(z=h) ,

H ~ = T
2r (1=n?)%  (1-n2)% p?

2zl

which can also be obtained to within O0(n®) from Egse (3.23) by iuserting

Egse (7+11), tuus

a7Txl

H, 4 = ikq1y sind XL He, = ik zl ,
AL 1m —— ’ 41 1771 2P
(7.13a) -
a‘n’xl

Hpy = tam sind
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and, tuerefore, we obtain the relative order of magnitudes
‘H;Sl/le/ Hzl\ = 0(1/n2/n3), apart from the factors sind and cosfe
Next, we examine the components of the complex Poynting's vector,

S, = %(El b d Hf) 3 ‘and readily determine from the relative orders of magnitude

1
of the field components given in the previous paragraph uiatb
)Szl/sel/séﬂ = 0(1/n/n3). Heglecting the # component as being negligible

the remaining components can be expressed to an accuracy of O(nh) simply as
3

where it may be seen from Egqse (7¢12) and (7.13) that to an accuracy of
0(n2) the Poynting'!s vector is associated with "IT‘zl only. To obtain the

net power flow we consider the time average Poynting's vector3 3 given by

(81> = e {leél} ) <S¢°1> ~ 3Re - ziﬂﬁl} . (7.15)

Substituting the first and third of Egs. (7+12) and the second of Eqse (7e1l3)

2 as compared with uwnity, recalling that

into Bgse (7e15), negleciing n
i
1/ =6 = asu fk;s and putting ki = (1+1)/8 where &= (2/wp )2  is

the so~called "skin depth", we obtain

<s > ~ p? 11 cos?d -2(h—z)/5
al 8‘“ 0"6]11' 2 ‘oh
(7416)
) x meqtinl D ces?s o(nars [
<f’l> x e 0% 3,,2 0—5'n|2 (oh © 0

wiere K is given by Eq. (5467). Since <S,°l was set equal to zero by

33 Je A Stratton, #Electromagnetic Theory," (licGraw-Hill Book Coey New
York, 19)1), pe 137, Eqs (29). .
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negieciving n2 as coupared wivwi wiivyy, we couciude tuat vo an accuracy of
0(u3) +tue time average Poynbing's vector for L —> o is ;iven exclusively
Oy v 2 Cowpoiieirve

Tius, i couciusioii, since tie tlae aveiage Poyutiug's vecvor (7eil)
(eard Guerefore tie uev power flow) is essentially a vector in tie negative =z
direcvion wilci arises from vie 2 component of the Hertzian vectior, Trzl,
vie asymplotic field way be regarded as arising essentially from a secondary
source distributed over the boundary between tne conducting and non=conducting
media, at ieast as far as the conducting medium is concernede. These conclusions

are in complete accord witin our findings for the static limit, Sections liel;

and hds.

7.ics Results for tie range |n%k,|< L < k,© .- Tnis range,whici

impiies tnat the point of observation is several wavelengths in air away from
vlne source, is again of no practical interest for the present low frequency
case and is included here in order to be abie to compare our results witih those

of Sommerteid and oviiers wnen we consider tne iimiting case (h=z) = 0. Tnus

we 1imit ourseives o tne consideration of the fundamental integrals VJ(_Z) and
u](- 2) and leave 10 tnose who are particularly interested the provlem of

compuiving the fieid components from Egse (7e3) and (7ely) by substituting the
resulis of tihe previous Chapler and maxing tne appropriate approximations for
tuls range of tie parameters.

By examining Eqs. (5.103) we see that in this range, ]klp[ > ke > 1,

M:(L 2) may be satisfactorily representied by the first terms; and, therefore,
Eqe (7010) may be used to represent M](_z).
The situation is dirferent for Viz) 3 we are no longer permitted to

use Eq. (705), since it was derived under tiie assumption that }nzkz ﬁ? > le
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(2)

Thus, we must consider tue compleie expression for Vl as given by the set of

Egse (7¢5), (7e5a) and (7¢5b) which were obtained by the removal of the pole

from the integrande. In tne present range, k2 /°7 l, we distinguish two cases:

(1) when k !0 >X 1, which allows the asymptotlc expa.ns:.on of the Hankel

function in the first factor of Eqe. (7.53.), and (2) when k o [° 1, which

permits tue power series expansion of . ‘bhe error functlon factor in Eqe (T7e5a)e
Thus in case (1), with ]«:,2 r > 1, w___e ’.expand the first factor in

Eqe (7o5a) asymptotically retaining only 'bhe leading tverm which is just equal

to unity; and, to the same approximation, we retain only the leading term for

(2)

Wl(s) in Eqs (705b) which is again unity. In this manner we obtain for Vl

from Eqe (7e5)y

3
viZ)N ‘?{‘%‘;%Q‘Iz% lsz’-lkl(l"n ) (Z"h){ - ﬂz( -ix /22)3«. ye[l-_erf(_ixo/zﬂ}(.? 17)

which is tne desired approximate expression valid in tne range
\nzkzpl < 1 X kP« In obtaining the above result we retained only the
leading terms of the asymptotic expa.nsio:n.s_for the Hankel function in Wip ) s
Eqs (7e5a), and for the term W(s), Eq. :(705b)o Since the neglected terms will
certainly become smaller as [ > ® we conclude that the above result must
also be valid as L > and, nence, that Eq. (7.11) is restricted only by
the condition k2[° > lo In fact, if we allow g > o which implies
X, —» 0, We can expand the bracket in Ege (7.17) asympto;tically by making
use of Eqes (7e7), obtaining zero to O(l/(°2) in agreement with Eqe (7+5)e

In case (2), witn k2(3 close to unity, we retain the Hankel function
in the first factor of W](_p), Eq. (7+5a), and since |n2k2 (°] << 1 we expand
tiie second factor into a power series in x.. 7Thus, retaining only the first

0
terms in w(s> and w§p> we obtain for v§2), from Eqe (7+5), the useful
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expression

- vr"';‘"‘ - . \’ P .
vgz) P i e:i;t{ao-ix;l_\.l-n? )#\z-h) {J.
Y GeaheE P

(7.18)

2(i42)3(i)% (1m2)%

wnich is valid for ]nkzp) 4 1 < k,© when ko© is close to univye.

Told. Resuits for ko @ < 1< |iiP| and [kip (coibp = 1)] > ie=

Thls raige is tne oniy one of praciical intverest in iuhe present iow frequency
case ana impiies chat uhe point of observation is away from the source at least
severai wavelengins in the conducting medium but oniy a fracuvion of an air
waveiengune In addition to tie restriciions lk_‘.f’l > 1 and
K, @ (00"602 - .n.)l > 1 whicu are imposed vy tvhe form of tne remainder in our
asyupootic series we inpose tue additional condition 92 > 5% in order o
be able o negiect K2 and higuer powers, wiere K is defined by Egs ($e07),
and unus furcuer simpiify our resultse

‘To examine tne order of magnitude of the function K»(n‘,92), we obtain

from Eqe {C.07)
i L
|k ~ |n] co-t92{\n72 cot292 = 2%|n| cote, + 1}’% (7019)
wihere we have placed

n = |n]e il (7+20

2

in accordance witi previous assumptions and winere we negiect n“ in comparison

Wita UWilbye duus, we find approximacely wiat 0 < \nf < 2% wnere wie

il 15 avieiied woen {n | cos, = 2% aud wnere }hl =1 for o, =0C. In
[
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addition, it may be seen from Table I and from tne faci that cotb 5° =~ 11
that ]K] < 2 x 107 for 92 > 5%, whence we neglect K2 and higher powers.

Furthenore, from the definition of K, Ege (6+67) we may expand K as follows:

00
n - n -1 cotl 8
K = cotl, | 1L = ———r cote, - E n® -———-—-2§ R n cotl, (721)
(1-n2) (1=n2)z (1-n2)

s=1

with an error of less than I x lO"Zl for the largest value of n given in
-Table T and assuming as above 92 > 50 .

Since for the present range of parameters we are considering k2 P <1
we will expand our functions, including the exponential factor eik?P s tTo
second powers of kz(a neglecting third and higher powerse.

Finally we are content to consider only the first power of n neglectirig
n? and higher powers where K must be regarded as O(n). Thus, three
additional approximations beyond those used to obtain the evaluations of the
integrals in Chapter VI are to be applied to the results of Chapter VI in
order to obtain results appropriate to the present range of the parameterse.

If higuer accuracy is required, additional terms in powers of K, n, kzp 9
1/ kl(° may be obtained from the resultis of Chapter VI.

To obtain Még)

for the present range of parameters we must use the
first two terms of Eqs. (5.102); and carrying out the approximations indicated

in the preceding paragraphs, we obtain the result
MT(L2) ~ - 35 1 - Hikyp)? +2 (3 + 2ik, @) cotl, L e~tka(z-h) (7+22)
kg 2 (03

where the bracket may be usually chosen as unity for the interesting range of

the paramneters.
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An exnression for V§_2), adequate for the present range of parameters, is
given already by Eq. (7.18), which was derived from Eq. (7.5) by retaining only
wue ieading veii of wne asymptoiic expansion for W_{s) s Ege (7.5b), and retaining
only tne first term in the power series expansion of the second factor in Wip) s

Eq. (7+5a)s For k,(° << 1, we may replace the Hankel function by the leading

term of its expansion about the origin to obtain
w®) 2ik, n log(2/4k, (»')e’lkl(z'h) (7.23)

wiiere ¥ = Le78L07++s and where n2 has been neglected in comparison with

unity. To +the present approximation W(S) becomes
W) o o {1 +iky P+ %(ik2|°)2 + 2n cot@e} o~ik1(z=h) | (7e2))

Adding Eqs. (7«2l) and (7.23), we obtain

viQ) ~ 2{1 + ik,P + 3(ik,e)2 + n [:isz’ log(2/¥iy ©) %°°t'92]} ge-ikl('z-fh)('?.zs)

wnere again the bracket may be taken as unity for most practical purpo'ses for the
present range of parameters k2(° L 1< \kl(’] .

The Cartesian components of the Hertzian vector in the present rangé of
parameters and to the same approximation may be obtained f.rom Eqs. (7;2) and the
integrals evaluated in Chapter VI. Thus, in this manner we obtaj.n

Ty ~ - —P‘*z 1- Jé"(ikzﬂ)z + -;- n(3 + 2iky0) cotee} _1_3. o~te1(z-h)

zrrckl
¢ | (7426)
ip cosg . 2 . 3 . L -iky (z=h)
.~ e 1 = 3(ik,p) +n[1k P+=cote, +1i cotG] —_—e 1
2l p—— 2i1kop 2% 7 00ty * 1k p ooty e

wiere we have put kl“l =~ 16~ 1in accordance with the second of Egqs. (2+3)s To
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derive Eqe. (7+26) for Tl::l we merely inserted the result (7.22) into the first

of Eqse (7e3); and to derive Eqe (7+26) for U we made use of the expression

zl
for BZV](_z)/ 9o dz, Eqe (6.151), noting that

W(p) ~S - 2k2 "1'-" Q-ikl<z-h) ’ (7027)
Pz e
and retained only the first two nonvanishing iterms of the expression for W(s)

Fz’
Ege (64156)e For most practical purposes the brackets in both Egs. (7¢26) and
(7+27) may be set equal to unity. A4nd, finally, it is seen that for the present
range of parameters Trzl is again of greater importance than ’]T;cl; since,
apart from the cosfp factor, we have )“l'rzl/'ﬂ;l| = Olklf’l.

To obtain tne electric and magnetic field components for the present
range of parameters we proceed similarly; that is, we neglect n2 s K2 9
(]:<2(~:\)3 and n(kz‘o)z in comparison with unity. Thus making use of the
formulas of the preceding Chapter, withoul other appraximations than the ones

indicated here and taking due care to retain all terms of the same order, we

obtain for the electric field components, from Eqs. (7¢3), the leading terms

p cosp

. 2 0. 1 «ik,(z=h)
Ef’l ~ 1+ %‘(1kzp) + ;E:Lkzﬁ + 3cot92 + ikzp cotezj -Ej- e 1

(e

ong”

g ~ 2 p sing {1 - %(ikz(o)z + gEkzp + 6cot92 + ik, cot92] %7(1' e"ikl(z"h) (7428)

‘_pcosg . o w2 . nl 1 wiky(z-h
By~ = g M(ikpe){ 1 = 3(ikpp) +-2-E1k2€+300w2+21k2pcowzj}?e 1(z=h)

and for tie magnetic field components we obtain, from Eqse (Tel)s the leading

terms
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}}ol ~ 2 }'E;‘El;n"é 1- %(isz)a + 2‘ r ik,p* 6cot9 + hilgxeotaj = g~ik1(z=h)

ip cosg 1 o nf_ 1 -iky(z=h)
R R 31k, 0)" E' 2k, f* + 3cot8, * ik,p coil, | r—5 €
L (7+29)
Hy ~ - ipsind (3 Moo i(ikzp)z ‘2 nE‘ + 3ik,plcotd, = g7Hu(z-h)
z ok, \ ik 6 2 2 p3

A further approximation of itne above results may be obtained by neglecting
(k2 9)2 and n as compared with unity yielding for tiie componenis of the
Hertzian vector from Eqs. (7+29),
T . ~ Pt -ik;(z-h)

x1 ™7 2 3
21‘«7'1(:L e

(7+262)
ip cosp 1 _iic;(zeh) .

Mo~ = o2 °

emoky
Tue sawe approxiwation yieids fou tue ereciric fieid componenis from Egse (7.28)

. _P_ 088 ik (z-h)
Pl ong (33

. p 2sing o= _ o
Eél -~ —2—;; 03 ik (Z h) (7-208)

p cosp ik (z=h)
E .~ = ik,ne L 3
zZl ong (,2 4 3

and the magueitic field couponeuts from Egss (7:29) vecome
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g, P 2sind sk (z-n)
£l 2nkl (:3

Hy ~ - ip co;é o=iky (z=h) (Te298)
2nkl e
0 - ip sind/ 3 o-ikq (z-h)
zl

o) P3| ik

The electric’.field components in the form given by Eqe. (7e.28a) except for an

kg were recently derived by Ferrith by an ingenious

exponential factor e
application of Green's theorem employing the known results of Wise and Rice for
the fundamental integrals in the case (h-z) = 0, which he extended to arbitrary
values of h and 'z by approximate methods; although he failed to éoint out
the exact range of validity of his method. The above derivation of Eqs. (7.28a),
which save for matters of notation and the exponential factor eik2(° are
equivalent to Ferris's Eqs. (62), establishes quite precisely the domain of
applicability of his formulase.

Examining the order of magnitude of thé électric field components as
given by Egse. (7.28) or Eqs. (7.28a), we see that E,; 1is of O(nz). as
compared with %01 or E‘l; and, since Ezl is less than the order of the
error in the expressions for %01 and Edl’ it may be altogether neélected
when considering the field as a whole. Similarly, examining the orderiof
magnitude of the magnetic field components, we find that Hzl, is negligible
and of 0(1/ky ) as compared with He

components which are all horizontal satisfy the vector equation

1 and Hﬁl’ The remaining field

El X e, - élHl (7'30)

3h Horace G« Ferris, Scripps Institution of Oceanography Report 53-1),
(October, 1952), Egs. (62).
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where e, 1is a wiib vecior directed in itne positive 2z direciion and

{1 = 1/771 2 - ikl/a", as defined b;‘y‘qu. (2.3)'; Thus the eniire field is
essentiells deseiived Ly Culy YWo yueutities, €egey Hf’l and Hﬁl s Lu8 vller
WO guantities being given oy (7.30). In addition, Bge (7.20) tells s thal the
Zield way be regaiaed essentially as a plane wave propaga‘bed3 5 and atienuated in
biie negavive 2z direction wlhiose airpilocude is a funciion of ‘O o« Thus for tie
present range of parameters une field in ﬁhe conducting medium may be desecribed
essentvialiy as arising from a secondary source distributed over the boundary
betwaéﬁ the conducting and non-conauciing media, as was dewonsviaiea fou tiwe
sta"u;c case and Ior (@ ~» . A compiete analysis foi ail of the i’eg;;.0ng |
cuaruCieiized b;y" tue condition ‘klp ' > 1 }shows vhat Eq. (7.30) way 08 used

2

for bue transverse compoucilvs wunenever 0% 18 negilgible in comparison withh uwnity.

7¢2 THE LIMITING CASE (n=z) = Q

]

When tne dipoie souice 1s piaced at tue inuverface beiween uiie two media
we have n = 0 iu Fig. 1; wueii, fUiiheiwuie, wue point of ouservavion 1s on
bue bounding suriaCe, 2z ® U, We Nave bie Lupoitant pracitiCai case (u=z) = 0
Uit Was Oiigluaaly disCussed by Souwwusifelia u.iu SULSBYUSLILL, Uy Oluel L'z'V'cQ‘bi—
BATULE s TaGIelii€y di de.o preS€ny SECUL0H We GiruCuSs tue rilmaviug forus of our

ge.aeial iresulus ilu vue case (u=2) = U w.ilCh we Lins. T ve Ll Cooizle agree=-

csub o wat. B Castlvs of ealilel WiwUuers, Luus aliording a necessary CLeCil il

- -

je2a. Bveluation o Ua(L ,0) .~ As poinied out i Seciion 2.ha, the

)

Luvegral in question, Ui(R,0), Dvecomwes sluply

35 Je As Stiatboiiy 10Ce Citey pe 272, Ege (27)-
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U (p0) = 7—%_@ I (he) 2an, (7.31)

which, it is recalled, was evaluated exactly by van der Pol,36 who started from

an elementary integral and by a very ingenious transformation obtained the result

2 1 2
U3(50) 2 Zaa?) © 3P (He P - —-},mI,o) (7.32)

which has been rewritten in our notation.

Considering our resolution of the integral U; into two terms, Eq. (6.3),

we have, letting (h=z) =0,

2
2 23 Y,
U;(050) = M (ps0) = ——s Lim J—=2 p; (7433)
1 K F ki(l-ng) (h=2)->0 912

rewriting 32 Q:I/z/ 2 22 in terms of derivatives witi respect to R2 s

according to Eqs. (2e1) and (2.66) and proceeding to.the limit, we obtain

2.
_a__’gz P S —
(hif;-ao 9 4? e 3("[ . 3

which yields precisely the second term of van der Pol's exact result (7.32).

1
The limiting form of Ml M( ) M_{z) is obtained by examining the limiting
forms of the individual integrals M:E ) and M{z) o From (6.,,7) we have at

once (1) ( P ,0) = 0, since the whole asymptotic series vanishes when

92. = u/2 which corresponds to (h=z) = 0. From (6.102), putting (h=z) =0,

which according to Eq. (6.67) implies K = O, we obtain

36 B. van.der Pol, Z. Hochfrequenz-Teche 37, 152-157 (1931).
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M§.2)((°.vo) = """“"""“2 Ez"i- K2 o 2 r P g

which is seen to be identical to the first term of the exact solution,

Eq. (7e32)¢ Thus, we have shown that our asymptotic results for the integral
Ul(f3, h=z) reduce to van der Pol's exact formula, Eq. (7.32), when we put

(hez) = 0. The fact that the first two expansion terms, #%) and 4(2) in
Egss (6.103), yield thé exact solution for M§2)(/9,O) while the third term,
5(3), vanishes in this limit implies that all ex;}ansion: terms A(n), n = 3,
must vanish with K. The fact that our solution to three terms doesireduce

to the exact result when both source and point of observation are on the

surface has led us to accept this as further evidence that our results must

certainly be correct for other values of (h=z) > 0.

7.2be Evaluation of - Vl((o,o).w To:obtain the limiting form of the

integral V, = vil) + V](_Q) = vil) +w'®) +§'®) s (hez) >0 we need to
‘examine the limiting forms of the individual terms. Thus, from (6.1;6) we

- (1)
have at once Vl

(ps0) =0, since the whole asymptotic expansion again
vanishes when 6, = n/2, which corresponds to (h-z) = 0. Next, from

Eq. (6.125), putting (z=h) =0 we have

Wk
W(p)(‘o,O) S t H1< 0 %> {l - erf(-ixo/2%)‘} ’

(1n2)3(Lnk) ©\ (14n2)
e (7436)

where x,, originally defined by Eq. (6.122), now becomes with 6, = w/2

x2 = 2ik2(=>{1 - (14n2)'%~'} = inzkz.f’[ - % n® + .;oj . (737)
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Similarly, putting (h-z) =0 and K =0 in the expansion (6+133) for W(s)
and the exact expressions for the first two terms as obtained directly from

(6.131) and (6.132), we obtain in this 1limit

ot 2)} o
W(S)((‘),O) ~ __2__5_‘_k__:!-__ eikgf’ Q - (14n%) [8(14-,‘2)% - BQ-B/Z - nZQ'%J___.].'_.._

(1-nl) P o3 (i £)2
PSS SN S (7.38)
102}, (ik; )3
\ .
where, from Eqe. (6ﬁ128),
Q = 2n-2 ( (imz')‘l‘_-l)- 1 - n2/l +nl/8 - ... | (7439)

and where the third term in.thé'bracket is given to 'O(nz). Thus, our complete
result for Vy(@,0), valid in the range |k;@©| > 1, is obtained by adding

the individual terms
T (ps0) = WP (p,0) +wH(p,0) (T.10)
as given by Eas. (7.36) and (7.38).

7o2ce Results for (h=z) =0 as { —» @+~ The results for (h=z) =0

as (& —» o may be obtained directly from Section T7.lb by the substitutions
(h=z) = 0 and K = 0. However, as indicated in Sections 7.2a and 7.2b the

results take on an added element of accuracy as a result of the fact that the
contributions over the path C1 maf be shown to be zero. Thﬁs, from either

(7¢32) and €7.33) or from (7.10) and Section 7T.la we obtain

13050 & WP (,0) v e s glkaf (7.11)

ky (1n?) (=2
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for © -» o. Similarly, from (710}, (;',\7“.38) and (7.36) using the expansion

(7e7)s or by putting (hez) = O directly into (7.6), we obtain

2i 1 ik,
e
2 2 2

1,000 = 72 (p,0)~ (7412)

for L > . The components of the Hertzian vector and the field components
may be obtained from Eqs. (7.11), (7.12) and (7.13) by letting (h=z) = D.

7.2d. Results for (h-z) =0 when |n%k,@| < 1 < ko .~ The results

for (h=z) =0 valid in the range ]nzkgﬁl < 1 < ]kg ] may be obtained
directly from Section Telc by substituting (h=z) = 0 or from Sections 7.2a
and 7.2b for Ul(‘o,o) and Vl( P,,O), respectively. Thus, for this range of
parameters we use the exact expression for U]_(F »0) as given by Eq. (7.32);
and, for Vl( P,O) we make use of Eqs (7.10), retaining the leading term of
W(s)( Ps0)s Eqge (7¢39), and replacing the Hankel function in W(p)((b,O),
Eqe (7.36), by its leading term or, else, we merely set (z-=h) =0 in

Eq. (7.17) to obtain
1,000 = 72 (0,0

2 230 ] % .
N 2[(2/ - )((i:z)) )] %eisz’ L = ¥ (cix /2b)e /2 E.-erf(-;ixo/’c’%)] (7413)

where x_ = 1s given by Eq. (7.37)-
To within terms of O(n2) for the constant in front it may be shown that

Eq. (7.3) for Vl((b,o) is identical to the result obtained by Sommerfeld-37

To do this we introduce Sommerfeldl!s ®numerical distance™ /Os defined as

37 A. Sormerfeld, Ann. Physik 28, 665-737 (1909), Eqe (L7).
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(os = ik, - k) (P (74LL)
where k= k2(1"1;12‘)'% as given by Eq. (2.96); that is,

R, = isz’{l - (1m2)'%} = x2/2 (7+15)

in which the last result is obtained by making use of Eq. (7+37)e Thus,

putting xo/2% = (f’;)é, the error function in (7.);3) becomes

<i(f)? ()}
2 21
erf(-i( PS)%) = = e-tzdt = o I eyzdy (7el5a)
o o

in which the last form is obtained by putting + = -iy in the integral
definition of the error function. Next, we see that the factor in front of
Eqe (7e13) reduces to 2° to an accuracy of O(n2) where it is assumed that
|n]2 <L 1.

Thus, finally? we obtain in this notation the celebrated Sommerfeld-

van der Pol formula
(e}

e~ £ ei“zp{i +1(np ks - 2(p,)F &S jey"’ dy} o (.18)
. o

which, it is important to recall, is valid for k, 3> 1 bt |n’k, @) « 1.

2
The first condition allowed us to expand the Hankel function asymptotically
and the second condition implies, from (7.37) and (7.)5), that the numerical
distance (°s is very small, )/‘,’s ’ << 1, which was explicitly imposed by

Sommerfeld in his original expans:l.on.3 8 The same formula was obtained by

38

Loc. cits
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van der P01339 employing his ingenious scheme of starting with an elementary
integral. In contradistinction to his derifation of Ul(fJ,O) mentioned in
Section 2./2 which is exacts Eq. (7.35), the procedure leading to Eqe (7oli6)

in van der Pol's method implied iwo approximations, one of which is equivalent
to our requirement ln2k2f°} << lo. Other workers, notably Thomas,hO« Murray,hl
and Niessenh2 have re-derived the same formuila by different treatmentis of the

fundamental integral (2073).

Ts2eo Results for (h-z) =0 when k, P < 1< |k @|.= The resulis

for (h=z) = O in the range of parameters k, £ < 1 < \klPI may be
obtained from the corresponding equations for (h-z) = O given in Section 7.1d
by substituting (h=z) = 0O which implies K =0 from Eq. (6067)» The resultis
for Mi = N§2) and V1 = Viz? may also be obtained from Sections 7.2a and
To2b, respectively. The results‘bf this Section also apply to the case

(h=z) > 0 whenevef K can be neglected as compared with unity; in order to
convert the results of this Section to the caﬁe (h=z) > 0, we need only

ik (2=h) | g4 fact may be utilized when we consider

multiply by the factor e
a numerical exampls in the last Section.

Accordingly, from Eqs (7.32) or from Eq. (7.22), putting (h=z) = 0,

we obtal
2 1
U (0:0) 2 i 2 (p10) o = =5 11 = Bliky@ >2}—-3- ; (1a17)
k ©

39 B. van der Pol, loce cite
W01, . Thomas, FProc. Cambridge Phil. Soc. 26, 123-126 (1929).
hi F. Ho Murray, Froc. Cambridge Phile. Socs 28, l33-hl2 (1932).

42 g, F. Wiessen, Amn. Physik 16, 810-820 (1933)-
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and similarly from Eqs. (7+40), (7.38) and (7.37) or Eq. :(7.25), we find

V](_2) ~ -(%— {1 + ik, 0 + %(ikz(a)z + n(ikz(o) logz/'rkz ﬁ} . (7.148)

The components of the Hertzian vector become from Egse (7.26)

D . 1
Ma™ "ol '*‘”‘Wz} P
’ (7+50)
ip cosg 2 1
~ - l - ik ik —
Mo — { #(iky )" + (i, p) p
The electric field components, obtained from Eqs. (7.28) are as follows:
£ p cosg 2rs o ’
Mg o G 2(ikp )" + n(ik, )
p 2sing Lo 5 1 ..
B~ G 3 |1 e nliin 0) (7451)

Bpp~ - 2,:0‘ S‘;?‘Sgén(ikz(") 1= %(ikgﬁ)z +n(ik2(°)} .

The transverse components of the magnetic fieid, HI"l and H 410 may be
obtained from EPl and Edl s as given by the first two equations in Eq. (7.51),
by using Eqe (7¢30)¢ The =z component of the magnetic field may be obtained
from the last of Egs. (7429), thus

ip sinp‘ 3 i 2 ‘
H . - - - . .5
zl " 21k, (’3 <ikl(°‘> {1 Z (ik, P) } | (7+52)
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7.3 SOMMERFELD'S ELECTROMAGNETIC SURFACE WAVE

Consider again the fundamental integral vl( Ps h~z) as defined by
Eq. (6+2) which, in accordance with our choice of cuts and consequent selection
of Sheet I of the Riemann surface (Fige i), can be resolved into the sum of

two integrals

V,(ps h=z) = Y{l) +V§2), z 20, (7.53)

around the respective branch cuts.. As pointed out at the end of Section Z.Sd,
Sommerfeld chose his branch cutg for Yo in the same manner as our common
choice of cuts for Yqs with the result that in Sommerfeld!s Sheet I of the
Riemann surface the points A = =k , where k, is defined by Eq. (2.96),
are real poles of the integrand of (6.2). Hence, according to Sommerfeld,

we should write

1)

V(s hez) = vi + 72

s lS + P 9 Z S O, (7.5&)

where the subscript s denotes the evaluation of the respective contour

integrals on Sommerfeld's Sheet I of the Riemann surface and where P denotes

the contribution from the residue of the pole at A = + kos that is, from (6.2)
(k,*) )

2

k L)

P(‘o, hwz) = 1 5 eYl(z h)}%(xp) MA, z X0, (7.55')
Y,

>
KoYy * K9

which when properly evaluated with due regard to the phases of ?i(ko) and

Yé(ko) in the new Sheet I of the Riemann surface yields

P( sh') =
€ (1n2)E el © | (1m2)%

szkl Hl k2 (o ) e-ikl(Z'h)/(lmz)%, 72 < 0 (7056)
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and, as pointed out by Sommerfeld, it has all the characteristics of an electro-
magnetic surface wave.

We are not here concerned with details of the interpretation of the
term P, but merely wish to point out the correctness of Sommerfeld's resolution
(7+5))) which agrees in every respect, as shown below, with our own resolution

(753)s Thus, we must prove that

V](-1) +v§2) = Vg.) +V](-:) +P;

and, since it is clear that the integrals Vil) and V{i) s being taken
around the identical cut for *%; and being independent of choice of cut for

Yé, must be identical to each other, we need only prove that

(2) . (2)
s v er.

But this we have already accomplished in Section 5.1d where we showed that the

value of the integral

~6(0)
e P\ 1 = Wy + W

1s independent of the choice of path through the saddle point in the ccz-plane.

Briefly, then, we have shown that

i@ L o)

v(z) +P + w(p) s (758)

1s = W

where W(S), the contribution of the integral over the path (any permissible

path) through the saddle point is given asymptotically by (6.133) and 'w(P),
the ®contribution" from the pole integral taken over any permissible path
through the saddle point, is given exactly by (6+125)e« The situation is most

clearly seen for the case ]n2k2(°] £ 1< k2 Py for whichever way Vl is
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computed, either by Sommerfeld!s method or our own, the complete and correct
result for (V:Eg) + P) or for VJ(_Q)’ contains the term %P as shown by
comparing Eqs. (7.56) and (6.125) and by noting the origin of the second term
of Sommerfeld's formula for (h=z) =0 as given by Eqe (7¢46), the term
identified by Sommerfeld as coming from £P. Similarly, agreement is obtained
for }nzszl > 1 or for (° —» o where it is seen from either Section 7.le
or Section 7.2d that the term %P disappears in this limit; that is,
asymptotically, W(s) in (7.58) contains precisely the terms corresponding to
the asymptotic expansion for (= %P), which is evident from the very method
that led to the subtraction of the pole in the first place. Finally, agreement
between the Sommerfeld results and our own occurs for k,(° < 1 < )klf’| where
the contribution 3P becomes negligiblee

The situation can be summarized as followst:

1) Our resolution of the integral V;( s he=z) into two terms,
Eqe (7e53), is identical to Sommerfeld's resolution into three terms, Eqe (T7eSk)e

2) TFor the range of parameters k,p < 1< }1&(—“) the solution by
either method yields a so-called Zenneck-type surface wave, an explicit
contribution from the residue of the pole, of value %—P, which is negligible
as compared with the remainder of the solutione.

3) For fnzkz p] < 1 < kypo the solution by either method again
yields the same Zenneck-type surface wave, associated with the term %P,
which is retained and contributes to the resulte

4) TFor )nzszol >1 or P ->om the solution by either method
yields no Zemmeck-type surface wave, the contribution %P being cancelled
aslymptotically' in this region by the remainder of the solution.

‘5) Although a Zenneck-type surface wave or contribution %P does

appear explicitly in the solution for ] n2k2 p| < 1 and although we have
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been able to show that our entire solution is essentially a surface wave, the

so-called Zenneck surface wave is never a major part of the solutione

The above summary of conclusions might be the proper ending for the
present Section, except for the fact that in the past ten years a number of
writers have pretended to disqualify the Sommerfeld-van der Pol results by
claiming the non-existence of Sommerfeld!'s electromagnetic surface wave and it
seems appropriate to indicate here wherein these writers have erred. Thus, for

13

example, reading Stratton™ one finds an excellent summary on the mathematical
aspects of the effect of a plane earth on the propagation of radio waves with
a fairly complete bibliography up to 194l which, however, contains a summary
on surface waves that is unfortunately not entirely accurate. Specifically,
Stratton opens up the discussion of surface waves with the statement: "Doubt
as to the validity of Sommerfeld's resolution was first raised by Weyl in his
1919 paper, etce® That the Sommerfeld and Weyl surface wave terms are not
identical is merely a consequence of two widely different methods of attack
leading to results which are valid for different ranges of parameters, Weyl'!s
applying for ‘nzkz(of > 1l or 50 > o while Sommerfeld's apply for
lnzkz(ﬂﬂ <1< k2f3¢ When the two complete solutions are examined in a
common region of validity they are seen to agree with each other, since they
are botih correcto.

Stratton goes on to say: "Burrowshu has pointed out that numerically
the transmission formulas based on Sommerfeldt!'s results differ from those of

Weyl by just the surface wave term P and has made careful measurements which

b3 Je A. Stratton, "Electromagnetic Theory." (lMcGraw-Hill Book Coes, Ince,
New York, 19ljl); Chapter IX, Section 928 et seq.

bl g, g. Burrows, Nature 138, 28 (1936); Proc. I.R.E. 25, 219-229 (1937).
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support vne resulis of Weyi. TIne discrepancy is large oniy when tue displacement

current in the ground is comparabie to the conduction currento"* This is a

cousequence of tie fact thal Soumerfeld's transmission formuia, specifically

Eqe (745l), is strictly valid only for [n}2 << 1L and fnzkz(ol << 1 as
specified by Sommerfeid himself; and, thus, Soumerfeid's formiia is not valid

in Lue range where tiie displacement current is comparable to itne conduction
curient in vhe earth. In ouvuer words, Burrows had no right to apply Sommerfeldt's
forimla outside its range of applicability. Further, Stratton states that

¥tne resuits of Sommerfeld and the cnarts of Rolfhs whicn are based upon tnem,
can not be reiied upon when the displacement current is appreciable, as is the
case at ultrahigh fregquencies," which is of course true, but not due to any
error in Sommerfeld!s work or to tne non=~existence of the surface wave <teru,

buv mereiy due to lue limivavions aiready annovated of Sommerfelid'!s formulae
Finaily, Stratiton makes a statement that may easily be misinterpreted; namely,
that cile asymptoiic expansions given by Wisehé and Riceh7 show that the term P
in Sommerfeid's soliution, Eqe (7e5l;), is cancelled when all the terms of the
series for Vii) and Vig) and P are taken into account. The statement

is of course true asymptotically in accordance witn our conclusion (l}) aboves
but it does not mean, as one might erroneousiy read by implication, thav the
surface wave term P does not beiong in Sommerfelid!s formuia in the first
places.

. 8 _ .
The argument nas nov ended here. In 1747 Eps’c.e:'l.nl1 puovlished a paper in

* Ttalics are ours.

5 B, Holf, Procs IeReBs 18, 391-L0Z (1330)e

4O . H. Wise, Beii Sysiem TeCie do i, 35=ifly (1¥37)e
BT S, 0. wice, Beul System PeCie de 16, 101=109 (1y37)

W8 p. s. Epstein, Proce Nate acads Scie 33, 195-199 (19LT)e
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which he disqualified Sommerfeld's original formulation of the problem and
proposed a new solution which was shortly afterwards shown to be in error by
Bouwkamp.h9 Epstein alleged that the term P arising from the residue of the
pole did not belong in the final answer at all because such a singularity was
not contained, sgy, in the original Fourier integral representation for the
source function, Egs. (2.3];) or (2.65)e And he proposed a new solution by
deforming the path of integration in the A-plane from the positive real axis,
0 X A< ®, to another path in the first quadrant having the same termini
but curving upward beyond the point A = +k, in Fige y and, tihen, proceeded
to satisfy the boundary conditions with integral representations over such a
path. Naturally, his final result is the Sommerfeld answer minus the term Pj
but, as pointed out by Bouwkamp, he overlooked the fact that his proposed
solution is singular for ( = 0 everywhere on the z axis, which is, of
course, incompatible with the physics of the si?uation- The error committed
by Epstein is simple to point out. In accordance with our lengthy‘discussion
of Section 2.32, it is clear that all our integral representations in the
A=plane have a common region of analiticity, namely, wie strip
!Im {7\}[ < Im{kz}; and that, in applying boundary conditions, we must
coniine tue path of integration in all of the integral representations,
including the source function, to the prescribed strip of analiticitye.
Epsteint's path of integration violates this requirement and therefore it is
not surprising that it leads to erroneous resultse.

Lastly, Kahan and Eckartso in a series of papers which have been justly

51

criticized by Bouwkamp”— aivlbempted to show that Sommerfeld's well-=known

L9 C. J. Bouwkawp, matine Reve 9, 126, 537 (15)8).

50 7. Kahan and G. Eckart, Compies Fendus 226, 1513-1515 (1918); Couptes
Rendus 227, 969-971 (1516); J. de phys. et rad. 10, 155-177 (1949); Physe Reve
755 MOS=TAL (A5L9) .

51 C. J. Bouwkamp, Phys. Reve 80, 29) (L), (1550).
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electromagnetic surface wave, P, does not exist in the radiation of a
Hertzian dipole over a plane earth because it does not fulfill the so-called
wradiation condition®. Since the radiation condition applies only to the

case IQ —>» 00 and Sommerfeld's complete solution contains no such P term
for (P—>mo, their argument is irrelevant; for it matters not whether the
term P alone satisfies or does not satisfy the radiation condition, the
behavior of the complete solution being conelusive. Actwally, their conclusion
that P alone does not satisfy the radiation condition which is undoubtedly
correct can only be interpreted as supporting Sommerfeld's results; although,
according to Bouwkamp, the authors failed to prove theirrpoint.

Thus, finally, we trust that there will be no more papers attempting to
disprove the existence of the term P in Sommerfeld's solution and that our
summary of conclusions together with the foregoing discussion has sufficiently
clarified the iésue so that there will be no more coﬁtroversy on a subject |
which being both physical and mathematical is capable of complete determination

with no reom for debateec

7oLy THE LIMITING CASE kp, = O

For small frequencies it is of interest to consider the appraximation
obtained by putting kp, = O; that is, by assuming that the wavelength in
ir is infinite. Two limiting processes are considered in this Section and
compared with each other. The first method consists of letting k2 > 0 in
the integrand of Vl((°9 h=z), Egs. (2.60) and (2¢68), and then integrating
the resulting approximate integral, which is essentially the method employed

by Lien as described in a posthumous papernsz The second method consists of.

52 R. H. Lien, Jour. App. Physics 2}, 1=5 (1953).
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1
letting k2 —> 0 in our general asymptotic results for Vl = V§ ) +’V§2)

which were originally obtained with k2 > 0. The two limiting processes
do not yield the same result, for the integral Vq( P h=z3 k2) does not

converge uniformly in the vieinity of k, = 0; that is, we have from (2.60)

and (2.68),
o0 [s 0]
) Y1 (z=h) . ¥, (z=h)
j { kﬁﬂ . vl(l,kz)} e L (Ap )M a;kggc v1(Rskp)e 1 Jo(Ap)Aan .
0 o . (7459)

However, it is shown that the two limits differ only beginning with the third
term when expanded asymptotically. The limit which represents Vl for k2 =0
correctly is the limit obtained by the second method where k2 is set equal
to zero after the asymptotic evaluation of the integral. The first method
yields the result in a closed form, which in certain ranges of parameters and

frequency proves to be a useful approximatione

Tshiae First limiting process: Lien's approximatione.- Putting k2 =0 in

vl(K), Eq. (2.60), and inserting this result into (2.468) we obtain an integral

which leads immediately to Lien's integral,

' 0 v - 1 Y - (he v
A (pobmz) = -2 EYr j (12 +x2) QJO((Y%*k]z_)Z(’ g~ M1(n z)d')’l ,  (7+60)
Sy

1
by changing the variable of integration from A to Yi = (K2 - k%)z. In
(7+60) the path of integration is the contour from Y, ==1k; to 1§ =
on the real axis, along the curve defined by ]hz{}i + ki}- = 0 which

corresponds to the originei path of integration 0 € A < o in the A-planee.
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The integral (7.60) has received considerable attention in the past. It
was apparently first considered by Foster53 who gave the result without suf-
ficient references. Lien refers to Foster's paper and adds that, by extending
the Laplace transformation to the complex plane and making use of a formula in

Magnus and Oberhettinger,Sh he obtains' (in our notation)

Al( £ sh~2) - im _a_(-%;)_ Jo(%—kl[Rz - (h-zﬂ) HJO'(%-kl[Rz + (h-zﬂ> s (7461)

where R2 = [}?2 + (h-z)%] 3 as originally defined by Eg. (2.1)e The formula
given in Magnus and Oberhettinger is strictly valid only for a real- variable
of integration with a real lower limit and Lien does not explain how he
Justified the extension of the formula to the complex plane, nor have we been
able to find a satisfactory justification. On the other hard, W’oli‘55 comments
that the result given by Foster and hencé by Lien, Eq. (7¢61), can be verified
by observing that the right hand sides of (7.60) and (7.61l) satisfy the scalar
Helmholtz equation, (%72 + ki)./\.l = 0, and that for (h=z) =0, the
result (7.61) is correct according to Watson (Op. cit.), Sec. 13¢6, Eq. (3),
page 1,35, Thus, we feel confident that the result given by Lien, Eqe (7+61),
whicii is valid for [0 2 0 and (h=z) 2 0, represents the correct evaluation
of the integral (7.60) in closed forme.

Differentiating (7.61) as indicated and replacing the Bessel function by

the sum of two Hankel functions we obtain

53 R. M. Foster, Bell System Tech. J. 10, 1,08-119 (1931)-

Sh,Wo Magnus and F. Oberhettinger, "Formulas and Theorems for the Special
Functions of Mathematical Physics,® (Chelsea Publishing Cos., New York, 1949),
pe 133

55 A- Wolf, Geophysics 11, 518-537 (1916)-
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(1) (2)
/\,l ""/\1 +,/\,1 , (7+62)
where
(1) ink
. thl {xzng%klxl) ) (Bepxp) = s Fy (B P%%klxz)} ’ (763)
and
ik
A@ . L-ﬁ-z-l{x?Hi(%klxl) 0 (Bepx,) = 3y (B ) Hf,(%kftz)} , (72611)
in which
x, = R,-(hz) and  x, = R, + (n-z). (7.65)

1
The functions q/\i ) and ~/\§2) correspond respectively to our integrals

Vil) and Viz) evaluated for k2 = 0. In order to compare the results with
the correct second limiting process, where it has been assumed that fklf'l > 1,
we expand asyuptotically the Hankel functions appearing in (7.63) and (7.8l) to

obtain

1(xo=x1) il (x 2(xn*iq)
./\j(-l) - . 27X, el.l(Ag*xll/Z {l +.]§_[ 2 l:]

i

R, (XiXZ )2 1kqxq%s
(7+56)
2 - 3
L2 ?(xe*xl) . o) ?(X2*xl)
128 k%%, ik, %%,
and
A@ o A% agGex)/2{q 2 ?(xl'xz)J
1 R2 (xlX2)2 8 ]_klxlx2 (7.67‘)
9 2(xl—x2)A 2 + on(Xl-Xz) 3 ]
128 J_klxlx 5 :Lklxlx2
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Substituting the values of x; and x, according to Egse (7+55), the above

expressions become

(1 51 cosGs 1 1 12 3
q/\i ) . . 2EC0S%2 S L]kescly + ?_|Lesc8y +0 K508 (7568)
A 8| ik, ¢ 128] ik £ ik, €
and
A2 9 |Lcots, Leots, ’ 5
_ ——— - + O " * - (7“69)
i1 128 -ik, ik @

Telibe Second limiting processe= We now proceed to put k, = 0 in our

previously established results which physically is equivalent to the approxima-
©ioii kgfn << 1 and, in fact, negligible but with 1kl(°| > 1. Thus, noting
that k2 =0 implies n =0 and (K/n) = coté,, we obtain from Eqs; (6.121),
(65125) and (£.133),

(2) _ 2 iky(h-z) L | keot®, 3 (. .2 Efu 1
Vl ~ 2 e {l "’-8- -fk;__@— "‘1—2-5 i8cot 8, *+ 5 _—_‘——-2(11{1(9) (7.70)

to three terms. Comparing (7.70) term by term with (7.69) we see that the

resuits hegin to differ in the tihird term of the expansion,

#2 _ A2 751k, Gk (n-z)

1 + higher order terms, (771)
s12(ik, )’

(2)

and thus we have established that the Lien approximation for Vl s namely his
A iz), is in error by the amount given above for tie region

e < 1< kel . ,
Similariy, for Vil) in the limit k2 = 0, we make use of Eqe (6olyl)

by substituting for G(92) the expression deduced from the second of Egse (5021)
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after placing n = 0; that is,

G(e,) = =i csce, , (7.72)
obtaining
1 2i cose Lhesce
) L 2295 dak 2 (7.73)
2 5 ik O

whicii is seen to agree to two terms with 'Al ) as given in (7.68). Tius,
again we find that the two limiting processes lead to results which begin to
differ in tie third term' of their respective asymptotic expansions; and, there-
fore, conciude that ‘Al is an adequate approximation to viue physical
situation when }:2 L <1< \lcl(ol .

Putting k, =0 and u =0 in Zgs. (7.2%) and (7+27) we obtain the

coirponents of the Hertzian wvacior

P 1 .ikq(z=h
T~ -y o 7R (7.70)
2n0’kl e
T,y ~ - 2R fogf ptialenh) (7.75)
: 2nc—kl l°

which could have also been obtained from the Lien integral and which are
suitable approximations when k2(° << 1< ]kl(ol e Similarly, from
Egs. (7.28) the electric field components become

p cosp -ikq(z=h)
E o~ -3 € s

p__sind _i) (g
5 o—iky (z=h) ,

3 (776)
2no~ Pl

E‘lN

p n(ikp @) cosd o—ik1(z-h)

B -
71" ong~ (\3 3

= (.
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The transverse components of the magnetic field for tiiis liwmiting case,
k, = 0, may be obtained from Egs. (7.30) and (7.76); and all three components

may be obtained from Egqs. (7.29) by setting k2 =0 and n =0, yilelding

H,Ol"’ ip 2sir31¢5 -1k (z=h) ,
! 211k1 (o

ip cosp( e"ikl(z'h) ,

Hél ~ - -~ (03 (7.77)
. L~ - ip 3 \ sing e'ikl(z'h) : '
2 oy \iky @) (23

7.5 NUMERICAL EXAMPLE

By way of illustration of the results given in the present Chapter we
now consider a numerical example. DBefore we can choose the appropriate
expressions for the electric and magnetic field components, we must examine
the magnitudes of the parameters involved; in particular, thie three
guantities: PV = w/2n, the frequency; ¢, ®he conductivity of the
conducting mediumy and p, the so-cailed *electric dipole moment" as
defined by Eq. (2.8) Another parameter which must be specified but has
little to do with the form of the equations'is h, +the depth of the source.

For tne present numerical example we choose tie following values:

33

i}

900 Cepes. ; o 5 mhos/meter ;

(7.78)

1t
i}

500 amp x meter 3 h 7.5 meters

p

from winich we readily deduce
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|-

Kk, 2 (iwpo)® = (1 +1)/8 k, = %/ =6mx 107 uster™ ,
i
5 = (Q/w}lof)z = 7.5 ueters , ‘Az = an/kz =333 kn ,
1 » (7.79)
]kll = 22/85 = .189 meter-l ’ [n,z = weo/d- = 10"9 s
A = 2nd = 7.5 wuet = 3,16 -5
v «5 neters , in{ 3.16 x 10 .

The two quantities which mmust be considered in deteriiining the proper form
for tne field couponenivs are )1:1(0‘ and k2 g ‘Wiiern }klPI = 10, we find
© = 53 ueters, and when ky p = lO"l, we find /0 = 5300 ueters; so that
vie reglons ]klrl < 10 and Kk, p > 10'-:L are to be excluded. Thus, for

values of /3 satlsfying the condition
50 meters £ p £ 5000 ueters (7.60)

we may use our results for the case k2 P < 1K Ikl,o] as presented in
Sections 7e1ld aind 7.2e where, froum Baes (7.2)) and similar relations and from
the value of |In| in (7.79), we uay neglect the contributions from the poles
Furthermore, from the discussion at tiie beginning of Section 7.ld it is
apparent for tihe present case, ‘nl = 3,16 x 10-5, that we may neglect n
and K altogetier iii cowparison witit unity especieilly for values of

e, 7 n/)l uhich are of practical interest. Thus, the expressions for the
electric éild mnagnetic field components tihat anply to ti.e preseut numerical
crample are decduced from ‘Eqs. (7.28) and (7.29) by neglecting the parts
imltiplied by ne. It way be noted from the last of Egs. (7.28) and the last
of Eqse (7.29) that the 2 components of the electric and magnetvic fields
are of less than O0(n) as compared with the transverse components and are

therefore negligible in the present exanmplee.
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The equations whicih are applicable to Tiie present case are then given

by
p cosg e (e
E_ ~ {1 - %(k?lo)2 et1li=z) |
Pl 2’ /03
(7.81)
p 2sing o ikq (h=z)
B/~ — {1+ (K 1
ﬁl Py PB 2( 2F) } €
from wihich the magnetic field components, according to Eqe (7.30) ,are given
by the vector equation
ig”
Ho= — (B xe,) (7.82)
kq : v

where e, is a unit vector in the positive =z direction. TFinally by
neglecting k2 F laltogether s the case which corresponds to the asymptotic
expansions of Lien's results, Egs. (7+76), we have to an accuracy better

than 0.5 percent for the whole range k, P < 01<1<¢10 < \klpl ’
which for the present case limits the horizontal range from 50 to 5000 meters,

the expressions

p cosé e(i-—l) (h—z)/é"

{Jl‘ 2no’7 ’

(7.83)

p 2singd o (1-1) (n=z)/5

y4ilen FB

1
where & = (2/w poo’)2 is the so-called "skin depth®.

The structure of the electric and magnetic field components is further

elucidated by introducing the function

e-(h-z)/é‘

f(/o ’2) = (p/ncr/OB) volts/meter (7.8))




in terms of which tiie magnitudes of the fleld cowponents assume tie siwple

foruis
\EP,s = —%—f('o,z) cosg , ‘Eﬁll = f(f),z) sing ;

lHPll = %—i;—f(f),z) sing , ‘Hﬁlj =

:(j)%f(/o »2) COSH o
It is clear tuat tie field components vary inversely as tie cube of the
horizontal range /0 and are exponentially attenuated with the aggregate
depth of source and point of observatione.

It is proper to point out in closing tihat thie formmlas employed in
the present nuuerical example, Eqse. (78l}), were contained already in the
papers by Lien and Ferris, as indicated in the references, and that our
addivional contribution in this respect has been to clearly point out the
range of applicability of the results and tue order of magnitude of the

errors incurred in the corresponding approximate expressions.
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