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REVIEW AND

SYNTHESIS

Going through the motions: incorporating movement analyses
into disease research

Abstract

Though epidemiology dates back to the 1700s, most mathematical representations of epidemics
still use transmission rates averaged at the population scale, especially for wildlife diseases. In sim-
plifying the contact process, we ignore the heterogeneities in host movements that complicate the
real world, and overlook their impact on spatiotemporal patterns of disease burden. Movement
ecology offers a set of tools that help unpack the transmission process, letting researchers more
accurately model how animals within a population interact and spread pathogens. Analytical tech-
niques from this growing field can also help expose the reverse process: how infection impacts
movement behaviours, and therefore other ecological processes like feeding, reproduction, and
dispersal. Here, we synthesise the contributions of movement ecology in disease research, with a
particular focus on studies that have successfully used movement-based methods to quantify indi-
vidual heterogeneity in exposure and transmission risk. Throughout, we highlight the rapid
growth of both disease and movement ecology and comment on promising but unexplored ave-
nues for research at their overlap. Ultimately, we suggest, including movement empowers ecolo-
gists to pose new questions, expanding our understanding of host—pathogen dynamics and
improving our predictive capacity for wildlife and even human diseases.
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INTRODUCTION

Discase ecology is a fairly young field, especially compared
to epidemiology, which dates back centuries. The two fields
overlap often and share a similar goal: to understand, pre-
dict, and (sometimes) prevent disease outbreaks. However,
disease ecologists face at least two additional challenges
unique to wildlife research. First, disease ecology frequently
requires a broad, multi-species perspective that captures com-
plex and counter-intuitive ecosystem dynamics; for example,
invasive Burmese pythons’ selective feeding within mammal
communities has indirectly increased mosquitoes’ feeding on
rodents, in turn amplifying the Everglades virus, which
causes encephalitis in humans (Hoyer efr al. 2017). Second,
and equally challenging, is the fact that behaviour is just as
important for wildlife as for human disease, but harder for
researchers to directly interrogate. Epidemiologists frequently
use interviews and observational work to study how human
behaviours such as sexual activity, international travel, or
outdoor labour become risk factors for infectious disease —
often directly inspiring interventions; animal behaviour, while
just as important to disease transmission, is harder to
observe and predict in nature.

Movement ecology, also a comparatively young field, uses
high-resolution spatiotemporal data to make sense of animal
behaviour. The ‘movement ecology paradigm’ treats move-
ment as the outcome of behavioural decisions influenced by
the interplay of animals’ internal states (e.g. physiological
needs), external biological factors (e.g. predation or competi-
tion), and the physical environment (e.g. mountain ranges or
water sources) (Nathan ez al. 2008). Researchers tracking and
modelling animal movement can extract behavioural states
from telemetry and associated datasets, test hypotheses about
what best predicts animal behaviour, and explain how individ-
ual behaviour scales up to landscape-level patterns of animal
distributions. Recent advances in telemetry technology (Kays
et al. 2015), the development of corresponding analytical
methods (Long & Nelson 2013), and the integration of com-
plimentary datasets (e.g. acceleration data; Spiegel et al.
2015a; Wilmers et al. 2015) have all dramatically increased
movement ecologists’ inferential power. Especially in light of
these developments, ecologists can decompose the impact of
individual behavioural heterogeneity on pathogen spread with
much greater ease, making movement ecology a promising
avenue for exploring the behavioural underpinnings of how
and why diseases spread in wildlife.
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Both movement and disease originate in animal behaviour
at the individual level, and a feedback loop between the two
emerges over time at broader ecological scales. For example,
ecological theory suggests that the source-sink dynamics that
naturally emerge between high- and low-quality habitat
(respectively) can be reversed by an environmentally-trans-
mitted disease, which turns high-quality habitat into an eco-
logical ‘trap’ (Leach et al. 2016). In practice, animal
movement is driven by decisions that balance this trade-off
between habitat quality and disease risk, and behavioural
polymorphisms might even evolve as a consequence (Getz
et al. 2015). For example, in an anthrax-endemic region of
Namibia, zebra (Equus quagga) demonstrate a pattern of par-
tial migration, where dominant herds appear to migrate away
from high-quality habitat during the anthrax season, leaving
behind lower-ranking resident herds to graze despite the
higher disease risk (Zidon et al. 2017). Researchers posing
questions solely about movement (why would zebra migrate
away from high quality habitat?) or disease (why do some
zebra select for areas with higher anthrax exposure risk?)
would miss the overall pattern.

Understanding ecological links between movement and dis-
ease has direct implications for the way researchers model,
forecast, and simulate wildlife disease outbreaks. The most
basic models in epidemiology treat disease transmission as a
function of the number of healthy and infected individuals in
a population, linked by a transmission parameter (). Doing
so implicitly combines contact rates and transmission effi-
ciency into one rate (McCallum et al. 2017), but individual
heterogeneity in both is universally recognised as an impor-
tant contributor to disease dynamics in humans (Lloyd-Smith
et al. 2005a) and animals (Paull et al. 2012), and heterogene-
ity in movement can be an important predictor of this varia-
tion (Spiegel et al. 2017a). Where tools in movement ecology
can help measure, describe, and predict heterogeneity in trans-
mission between hosts, there are opportunities to pose novel
questions relating to the effects of movement on contact (e.g.
how do social networks structure contact rates?), the effects of
contact on transmission (e.g. how does duration and proxim-
ity of contact affect the pathogen dose transmitted?), and the
impact of infection on movement (e.g. does infection decrease
or increase future contacts?). According to appropriate com-
plexity methods in modelling (Larsen et al. 2016; Getz et al.
2017), the degree to which movement data should be incorpo-
rated into disease models depends on the kinds of questions
being asked; but simultaneously, the resolution of available
data on both movement and disease, and the level of prior
knowledge, constrain the questions that ecologists can feasibly
answer (Fig. 1).

Here we synthesise the main ways that movement data are
currently used to shed light on the processes underlying dis-
ease transmission, connecting animal behaviour to broad pat-
terns of wildlife (and human) health. Researchers unfamiliar
with one or both fields are encouraged to refer to Boxes 1
and 2 for short primers on disease and movement ecology,
respectively. We begin by describing how tools and methods
from movement ecology can inform our understanding of
how movement affects disease, potentially improving epidemi-
ological models by better representing behavioural variation.

Subsequently, we explore a more tentative application show-
ing how movement data might directly improve disease
surveillance. Throughout, we emphasise case studies that have
successfully applied movement-based methods in these ways
and comment on particularly unexplored avenues and underu-
tilised tools. Finally, we highlight the current state of synthesis
work at the intersection of movement and disease ecology and
discuss the advances in data and models needed to move the
field forward. In doing so, we recommend relevant movement
ecology tools for studying processes underlying disease trans-
mission (Table 1) and conclude by highlighting the broader
implications for conservation and human health.

MOVEMENT AFFECTS DISEASE

Depending on a pathogen’s mode of transmission, different
tools in movement ecology will be more or less suitable for
exploring transmission risk. We make the broadest possible
division, placing pathogen life histories along a spectrum
between direct and indirect transmission (Fig. 2). Direct trans-
mission refers to pathogens that require contact between an
infected and susceptible animal at the same place and at the
same time. Indirect transmission, on the other hand, describes
pathogens that can occupy some intermediate reservoir or vec-
tor between hosts (i.e. a host of another species or an environ-
mental reservoir like soil or water), making spatial overlap a
more significant requirement than temporal overlap. Whether a
pathogen is treated as directly or indirectly transmitted should
depend on both the duration of time it can survive outside of
hosts and its ability to disperse in the environment separate
from host movement. Temporal overlap between animals mat-
ters less when infective stages survive for extended periods out-
side of hosts or when the infective stage moves independently
(e.g. when environmental forces induce relatively long-distance
dispersion, a feature common in marine systems where patho-
gens are often at the mercy of currents; Lafferty 2017).

Broad categories of infectious agents (bacteria, viruses, para-
sites, etc.) are unlikely to map neatly onto direct or indirect
transmission. For example, some ectoparasites are directly
transmitted among members of a social group (e.g. some spe-
cies of avian lice; Rézsa et al. 1996), whereas others often
spend time freely moving off-host (e.g. several tick species that
infect reptiles; Sih et al. 2017). Some pathogens may also alter-
nate between direct and indirect modes; for example, Zika virus
and canine leishmaniasis are both vector-borne diseases with
rare sexual transmission events. Similarly, influenza is usually
directly transmitted through air or direct contact but can some-
times persist in the environment via fomites (non-living object
or substance capable of carrying infectious material) for hours
or days (Weber & Stilianakis 2008). Whether researchers
choose to focus on spatial or spatiotemporal overlap, corre-
sponding to indirect or direct contact, is likely to depend on the
scale at which other host processes are modelled, and the spa-
tial and temporal extent of the analysis (see Box 3).

Direct transmission

Directly transmitted pathogens rely on contact between
infected and susceptible individuals. Contact rates (process C

© 2018 John Wiley & Sons Ltd/CNRS
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Figure 1 A movement-focused modelling space in epidemiology. Incorporation of movement at different temporal scales can be used to address pathogen
transmission-related questions at three levels (vertical coloured planes). Transmission can be treated either as a single process (as commonly done in SIR
models, where S are susceptible, I infectious and R removed individuals — see Box 1; purple plane), a concatenation of a contact process C and probability
P of pathogen transmission during contact averaged over individuals (orange plane), or implemented at an individual level (green plane). In addition,
transmission can be considered to occur within a homogeneous population, a network of homogeneous groups or subpopulations (metapopulation), or a
spatially continuous heterogeneous population. Each labelled dot indicates a unique level of complexity that can be incorporated into the transmission
process, while the spanning arrows imply that additional complexity can be incorporated at several different temporal scales (horizontal arrows) and

population-structures (vertical arrows).

in Fig. 1) are most easily thought of based on the frequency
and strength of interactions between animals in a population,
a problem that lends itself naturally to network methods (Silk
et al. 2017a,b). Meanwhile, the probability of transmission
during contact (P in Fig. 1) will depend largely on the dura-
tion and nature (e.g. grooming vs. fighting) of the contact
needed for pathogens to spread, which can be incorporated
into network analyses in various ways.

Networks are a statistical model that abstract population
structure as a set of connected nodes, traditionally represent-
ing individual animals in the population. Edges indicate the
connections between individuals, whether these are defined as
interactions of a certain duration or individuals coming within
a certain distance of one another. Such information can be
displayed graphically through the use of directionality (ar-
rows) or weight (line thickness). Directionality could indicate
an epidemiologically-relevant behaviour that impacts the
actors differently (e.g. grooming), while weight can be derived
from the frequency or duration of such interactions (Cross
et al. 2005). The components of a social network may ulti-
mately be spatially implicit (i.e. animals’ position in the net-
work cannot be projected onto a map), but these networks
can be informed by movement data in cases where in-person
behavioural observation is impractical or infeasible, making
them a valuable tool for reconstructing the spread of directly-
transmitted disease. Networks can also be constructed in the
context of indirect transmission, but these might require
different data (e.g. capture histories from an array of traps;
Davis et al. 2015) or the inclusion of a time lag to emphasise

© 2018 John Wiley & Sons Ltd/CNRS

the spatial component of transmission (e.g. Sih et al. 2017).
For a visual example of these concepts, see Fig. 3.

Most networks extracted from movement data are proxim-
ity based social networks (PBSNs). They can be constructed
using either special proximity sensors or from movement data
using a spatiotemporal threshold value to designate contact
between animals (e.g. within M, meters for at least T, time
units; Farine & Whitehead 2015). Observed association pat-
terns in social networks are often compared to expected pat-
terns in null models (e.g. ideal gas model) or randomised
networks to test hypotheses about the mechanisms underlying
social structure (Farine 2017; Silk et al. 2017b). For example,
by randomising the order of daily movement paths within
each individual, rather than between individuals (as is typical
in most network randomisation methods), Spiegel et al. (2016)
developed a method to assess sociality separate from associa-
tions resulting from the spatial structure of the environment.
An extension of this approach allowed for the identification
of the locations of interactions and revealed the sex-specific
patterns underlying the network structure (Spiegel et al.
2017b). These networks have been a key part of efforts to
understand how ticks are transmitted in sleepy lizards (Tiliqua
rugosa), reptiles with an unusual life-long pair breeding pat-
tern that may facilitate tick transmission (Sih ez al. 2017).

Social networks can provide insights into disease spread
even in the absence of explicit disease data (Craft & Caillaud
2011). Different species’ social behaviour may correspond
broadly to different network structures and corresponding
outbreak dynamics; for example, social hierarchies may
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Box 1. A Disease Ecology Primer

Disease ecology as a discipline is focused on understanding the ecological drivers of epidemiological dynamics, referring to the
study of the occurrence, distribution, and control of disease. However, epidemiology conventionally focuses on human disease
(including non-infectious causes of morbidity and mortality), whereas wildlife epidemiology, and more broadly disease ecology,
take a systems perspective on drivers of infectious diseases, those which are contagious within a population. Infectious diseases
are spread by a pathogen, perhaps the most generic term for a bacterium, virus, or other infectious agent (microorganism or
prion) that can cause disease. Pathogens also include parasites, a term defined ecologically that includes organisms that live in
(endoparasites) or on (ectoparasites) another organism — its host — and benefit by deriving nutrients at the host’s expense. Not
all parasites are immediately pathogenic (i.e. disease-causing). Some, such as ticks, could instead be the vectors that spread
infectious agents, such as the bacterium that causes Lyme disease. Pathogens and parasites are spread by some process of shed-
ding, the release of pathogenic material from a host either through passive emission (e.g. HIV in semen) or actively induced
emission when the life cycle of a parasite requires its own ejection from the host (e.g. aerosolisation through coughing and
sneezing or the faecal release of tapeworm eggs from a host). Some hosts, termed super-spreaders, can be particularly active
shedders and infect disproportionately more susceptible individuals than other hosts do. In cases where shedding reaches a new
host and this exposure event leads to infection, this produces an effective contact; what is considered an effective contact will
vary with the mode of transmission of the pathogen in question.

In both humans and wildlife, outbreak dynamics are most readily modelled using a mathematical compartmental systems frame-
work: after dividing the population into epidemiologically-relevant compartments (viz., susceptible: S, infected: I, and recovered:
R), difference or ordinary differential equations are used to describe the transitions of individuals between the disease classes
over time. Typically these models make an assumption of spatial homogeneity, random contact among individuals, and rapid
mixing of individuals within compartments. The course of infection is typically summarised for populations either via an inci-
dence (the rate at which new cases arise) or prevalence (the proportion of the population infected) curve. If at least a low level
of prevalence is maintained at all times, a disease is considered endemic. In contrast, an epidemic starts from a handful of intro-
duced or new index cases and spreads throughout a susceptible population as an outbreak before burning itself out. The latter
occurs because the proportion of susceptible individuals in the population has either dropped below a threshold density or indi-
viduals have altered their behaviour to avoid contact with infected individuals. When an epidemic is truly global (defined by
infection across multiple continents), it is referred to as a pandemic. In wildlife, epizootic and enzootic serve as parallel terms to
epidemic and endemic. Diseases that originate in wildlife and spread to humans are termed zoonoses and are conventionally of
special interest in disease ecology. The process of spillover of zoonotic disease into human populations is complex and often
poorly understood due to the complexities of human-wildlife contact. Conversely, spillback refers to the process by which a zoo-
notic disease is introduced by humans into novel animal host populations (whether domesticated or wild).

comparatively limit the rapid spread of epidemics, whereas
‘gregarious’ species with connected, unfragmented social net-
works are prone to major outbreaks (Sah er al. 2017b). At the
population level, the overall characteristics of a network (e.g.
average degree of nodes, path lengths, and edge densities) can
be vital for understanding the hypothetical implications for
transmission (Craft 2015), including vulnerability to epidemic
spread (Porphyre et al. 2008; Craft et al. 2011). In a meta-
analysis, Sah et al. (2017a) found that modularity (i.e. the
strength of division of a network into separable components)
has a surprisingly limited effect on outbreak size and dura-
tion, especially for higher levels of modularity. However, frag-
mented networks with high subgroup cohesion still experience
comparatively limited and brief outbreaks. In a relevant case
study, Hamede ez al. (2009) used proximity sensors to build a
comprehensive contact network of Tasmanian devils (Sar-
cophilus harrisii) in a population at risk from the introduction
of a directly transmitted parasitic cancer. The entire popula-
tion was connected in a single network, allowing the spread of
a pathogen from a single individual — and therefore, prevent-
ing most containment efforts in the event of an outbreak
(Fig. 3).

At the individual scale, networks can show where individual
heterogeneity in transmission occurs (Lloyd-Smith et al.

2005b; Perkins et al. 2009; Paull et al. 2012). Similar metrics
to those employed at the population level can also describe
single nodes or edges within a network, potentially illuminat-
ing differences among individuals within a population (Silk
et al. 2017a; White et al. 2017). For instance, Weber et al.
(2013) found that degree (the number of connections a given
node has to other nodes), closeness (effective distance between
an individual and all others in the network), and flow
betweenness (a measure of the role of a particular node in
connecting all other pairs of nodes in the network) were asso-
ciated with tuberculosis infections in badgers (Meles meles).
Because causality could not be determined, the researchers
concluded that either an individual’s network position could
affect infection risk or that infection could affect network
position. By showing how heterogeneity among hosts propa-
gates an infection through a susceptible population, analyses
such as these could help identify super-spreaders, which in
turn could help improve estimates of R, (i.e. the expected
number of secondary cases produced by a single infection in a
completely susceptible population; see Box 1; Lloyd-Smith
et al. 2005b).

The use of proximity data synchronised with GPS and
accelerometer data can help better identify social interactions
that are epidemiologically relevant (Nathan et a/. 2012; Brown

© 2018 John Wiley & Sons Ltd/CNRS



592 E. R. Dougherty et al. Review and Synthesis

Box 2. A Movement Ecology Primer

Movement ecology has developed as a field that draws on telemetry data to explore the causes, mechanisms, and patterns of
animal movement, as well as understand its consequences on the ecology and evolution of individuals, populations, and com-
munities. Telemetry refers to the process of transmitting and recording the positions of an animal and represents the primary
means of detecting animal movements. Early telemetry research relied upon Very High Frequency (VHF) radio signals to trian-
gulate the positions of collared or radiotagged individuals. The individual positional fixes obtained can be referred to as reloca-
tions, and when treated consecutively, they are often called a trajectory or path. The relatively coarse temporal resolution of
most relocation data from classical radiotagging methods limits the ability of movement ecologists to observe and differentiate
among fundamental movement elements (FMEs; e.g. a walking vs. trotting step) that make up the movement path of an individ-
ual. However, the relatively infrequent or irregular fixes emerging from such devices can still be used to evaluate patterns of
space use and habitat selection. For example, even coarse movement data can aid in characterising the manner in which an ani-
mal utilises its home range, which represents the area it traverses while foraging, mating, and caring for young. These areas have
been delimited in a number of ways, including: minimum convex polygon (MCP) methods, which simply construct a boundary
around the outermost points of a trajectory; and utilisation distribution (UD) methods, which offer more information regarding
the frequency of space use within the home range. Recently, alternative methods that more explicitly account for the temporal
component of movement data have been proposed, including the time-local convex hull (T-LoCoH) method and Brownian
bridges, among several others. Even with sparse datasets, these methods are expected to create meaningful generalisations of
space use and can form the basis of spatial overlap analyses that aim to determine the level of shared space use among moni-
tored individuals. Several methods for understanding individual and population level habitat selection, such as resource selection
Sfunctions (RSFs), can also be used with relatively coarse movement data. These methods aim to identify the habitat types that
an animal prefers, indicated by disproportionately greater use of a habitat than expected based on its availability on the land-
scape, and create predictive maps of space use.

Today, the majority of movement ecology research depends upon more advanced satellite technology, referred to broadly as
Global Positioning Systems (GPS), to record animal locations at finer spatial and temporal resolutions. Even with this technol-
ogy, consecutive relocations typically span a mix of FMEs. Nonetheless, a variety of summary metrics can be used to describe
the path, the most basic of which are the step length (the Euclidean distance between consecutive relocations) and turning angle
(the angle of one step relative to the step immediately prior). Higher resolution relocations can also enable behavioural analyses,
which often rely on path segmentation methods to split a movement trajectory into segments that look quantitatively similar
(often based on those simple summary metrics). Such analyses can help determine the behavioural state of an individual at speci-
fic points in time. These states occur at coarser time scales than FMEs but represent short-lived phenomena that can be inferred
from GPS data. Similar analyses can allow for the clustering of longer sequences of behavioural states that are considered col-
lectively as canonical activity modes (CAMs; e.g., resting or foraging), which are also readily observable in modern telemetry
data. For example, foraging is a CAM that often consists of a variety of behaviours, including searching, eating, and perhaps
vigilance, among others. A full movement path, however, often consists of a series of CAMs, and movement syndromes are used
to describe movement patterns at the scale of an entire trajectory, enabling discrimination among types of individuals (e.g. terri-
torial vs. nomadic individuals). With recent technological advances to the telemetry units worn by animals, supplementary data
sets, such as those obtained using accelerometers that measure changes in velocity in three-dimensions, have enabled the evalua-
tion of movement behaviours at even finer spatiotemporal scales, getting researchers closer to observing FMEs. Similarly, the
advent of proximity sensors, which record when two collared animals are within a specified distance of one another, has allowed
researchers additional insight into the spatial proximity of monitored individuals. These data can be used to inform contact net-
works, which map the associations among individuals in a population.

et al. 2013). Some pathogens require sexual contact for trans-
mission (like herpes viruses), whereas others need only a brief
physical contact (like influenza). In this sense, movement-
based behavioural analyses can decompose sociality into inter-
actions with implications for disease transmission, improving
the relevance of network analyses. Even without network
data, movement analyses might identify behaviours that can
be linked to interactions among individuals (Bartumeus et al.
2005; Fryxell et al. 2008) or to the social standing of individu-
als (Wittemyer et al. 2008), allowing for inferences about the
vulnerability of individuals to disease. For example, Witte-
myer et al. (2008) used wavelet analysis of three-hourly loca-
tion data to infer that the social rank of elephants (Loxodonta
africana) affects the periodicity of their movement at a

© 2018 John Wiley & Sons Ltd/CNRS

multiday scale. In addition, they found that lower social
standing correlated with higher movement variability during
the resource-deficient dry season. This and similar analyses
can be used to identify which individuals might interact most
frequently (here, based on social rank). They could also be
used to identify individuals whose irregular access to resources
stresses them to the point where they become vulnerable to
infection. Social structure could influence susceptibility in
other ways (Altizer et al. 2003). For example, social rank can
determine the form and frequency of breeding behaviours in
the group, making it especially relevant to sexually transmit-
ted infections. Additionally, social living could confer anti-
parasite benefits such as increased parasite resistance or toler-
ance (e.g. due to regular or low dose transmission between
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Indirect
transmission

Direct
transmission

Duration of infectiousness outside host

o STIs

Movement Potential relative to host

Figure 2 The transmission continuum. Transmission mechanisms vary
across a continuous spectrum. The classification of a particular pathogen
or parasite in a given system depends on the movement potential of
pathogens relative to their hosts and the ability of pathogens to remain
infectious outside hosts. Those pathogens that require two agents to
interact directly for successful transmission, often via a specific behaviour,
such as sexually transmitted infections (STIs), are an unambiguous
example of a directly transmitted disease and are represented here as a
point. Pathogens that transmit successfully over a broader set of
conditions, such as influenza or arboviruses, are represented conceptually
across the gradient as a line and might vary across one or both of the
axes. Along this spectrum, we have determined a somewhat subjective
threshold between what we describe as direct transmission and indirect
transmission, visualised by the white dashed lines. Even within the same
pathogen taxon (and thus, the same characteristic duration of
infectiousness), this threshold could shift along this gradient depending on
the relative speed of host movement.

conspecifics), or could mitigate disease (e.g. due to increased
fitness as a result of superior resource acquisition in a group;
Ezenwa et al. 2016).

Indirect transmission

In the case of pathogens and parasites that are transmitted
indirectly (Fig. 2), the processes by which one host sheds a
pathogen and another host is exposed are independent and
might rely upon different host behaviours (e.g. defecation for
the former and foraging for the latter). Tools from movement
ecology offer a way to consider these processes separately
from the perspective of the infected individual and susceptible
individual at various time scales (sub-hourly to multi-week
time, as depicted in Fig. 1).

High resolution movement data (i.e. sub-hourly; Fig. 1)
enable researchers to estimate the frequency and duration of
encounters with known pathogen hotspots on a landscape (e.g.
mosquito breeding sites at standing water). Though practical
considerations might limit the number of animals that can be
monitored in a study population (Williams et al. 2014), appro-
priate sampling schemes offer a basis for statistical inferences
that apply more broadly. For example, existing tools can

© 2018 John Wiley & Sons Ltd/CNRS

identify associations between habitats or time periods and ani-
mal presence, thereby offering insight into overlaps with infec-
tious sites (Fig. 4). Further, if movement data help identify
behavioural drivers (e.g. resource distribution and its seasonal
changes), then insights from the monitored subset of the popu-
lation could be used to mechanistically model encounter proba-
bilities or factors contributing to shared space use (e.g. Cross
et al. 2005; Spiegel et al. 2015b).

Clustered observations reflect spatial regions that individuals
frequent, and can indicate areas where encounters among indi-
viduals (tagged or untagged) are more likely. Applying tech-
niques to identify such clusters in data from multiple animals
(Webb et al. 2008; Seidel & Boyce 2015; Van Moorter et al.
2016) can aid in identifying population-wide aggregation points
with potential epidemiological significance. These aggregation
points might reflect underlying environmental heterogeneity
(e.g. waterholes) or social contacts (e.g. leks) (McNaughton
1988; Carter et al. 2009); regardless of the mechanism driving
aggregation, these locations are likely to be important for esti-
mating relative exposure risk. Various methods can help distin-
guish social and environmental causes of such aggregation
patterns (e.g. Spiegel et al. 2016; Borchering et al. 2017), poten-
tially offering a way to assess transmission risk.

Areas of dense use are also identifiable through the construc-
tion of utilisation distributions (UD), which illustrate the rela-
tive frequency distribution of the location of a particular
individual over time (Van Winkle 1975). UDs are most com-
monly derived using kernel density estimation techniques (Wor-
ton 1989). Methods for estimating space use at broader scales,
especially estimates of seasonal range size and overlap, have
been included in epidemiological models. For example, Ragg &
Moller (2000) used radiocollars, in conjunction with other
methods, to track the microhabitat selection of both active and
denning feral ferrets (Mustela furo), a vector of bovine tubercu-
losis (Mycobacterium bovis) in New Zealand. Ferret movements
were found to be concentrated in grazed areas and at ecotones
between pastures and vegetation cover, thereby increasing their
risk of transmitting tuberculosis to possums and livestock. Simi-
larly, Conner & Miller (2004) used cluster analysis on mule deer
(Odocoileus hemionus) location data to identify population
units, and used kernel density estimation to delineate seasonal
ranges for each population. Subsequent analysis showed that
winter ranges rarely overlapped (< 1%), likely due to their
smaller size, whereas summer ranges had > 22% overlap among
population units. Therefore, researchers concluded that sum-
mer ranging behaviour was likely responsible for the spread of
chronic wasting disease (CWD) among subpopulations,
whereas winter ranging behaviour had the potential to amplify
CWD prevalence within a sub-population if an infected individ-
ual was present. In an extension of the study, Farnsworth ez al.
(2006) used area estimates of summer, winter, and individual
home ranges to frame regression models at different scales.
They found that movements within individual home ranges had
the greatest implications for CWD exposure, highlighting the
potential of high-resolution movement data to alter our under-
standing of the mechanisms underlying observed patterns of
transmission.

Novel methods that consider the temporal autocorrelation
inherent in movement data enable more detailed home-range
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Box 3. Balancing Scales: Simultaneous Modelling of Movement and Epidemiological Processes

Deciding on a spatiotemporal scale for epidemiological models is usually a function of the timescales of host and pathogen pro-
cesses, including temporal aspects of transmission like latency, persistence in the environment, or replication rates during early
infection. The rates of biological processes might not map directly onto the models we build, if the temporal scale of data is
necessarily coarser due to the resolution of available movement data. However, some of the greatest successes of movement
ecology have involved explicit model formulation with attention to spatiotemporal resolution of processes (Lyons et al. 2013),
potentially offering a template for integrated work. We outline some brief guidelines as follows:

Space pixel. The corresponding spatial resolution S is related to time through the diffusion relationship:
AS = 3(An)'?

This is where movement comes in: 6 is a movement diffusion constant estimated from empirical data and will vary among
organism types. An alternative approach is to use a velocity relationship:

AS = vAt

for organisms that mainly execute directed movement at average velocity v at fine time scales. Since empirical tracking data has
repeatedly shown that movements of animals (and humans) are often super diffuse, we suggest that former approach as gener-
ally more favourable (Raichlen er al. 2014; Spiegel et al. 2015a).

Coarse graining. Going from the scale of individual transmission upwards to emergent processes like landscape structure, epi-
demic wavefronts, or even range shifts requires proportionally aggregating data and model structure, a process typically termed
coarse graining. There are various levels of coarse graining, each representing close to a one magnitude of size step up. Coarse
graining requires aggregating over a union of pixels using an appropriate integral kernel. Integral kernels can take several forms
including the bounded uniform, truncated Gaussian, or other more idiosyncratic choices. Optimal kernel choice can be guided
by wavelet analysis of movement data.

Time pixel. The minimum time resolution should be based on some fraction of the most fundamental cycle pertaining to the
problem; for example, movement data might be recorded at a resolution Az of every 15 min, though this is much shorter than
the typical interval in epidemiological models.

Temporal scaling. Increasing scales of temporal aggregation can provide different results and absorb more noise in data by
matching biologically-relevant timescales. For example, if Az is 15 min then 100A¢ is approximately one diurnal cycle, 3000A¢ is
approximately a lunar cycle, and 10 000A7 is approximately the length of one season in a four season year. Models can also be
downscaled, which might be appropriate under highly data intensive conditions. However, as fine-scale processes emerge at finer
scales, models might lose predictive accuracy without incorporating finer data or processes.

Appropriate complexity. At various spatiotemporal levels of resolution different epidemic models might apply and the question
arises as to the appropriate level of complexity in the model (Larsen et al. 2016). For example, models should include a within-
host component at the level of Az = 15 min, while epidemiological models might include daily rates of detection and isolation
of individuals at diurnal levels of resolution, or could include transmission rates that exhibit seasonal variation if epidemics last
several months or more. Additionally, incorporation of movement into models might require individual-based approaches for
the finest scales of analysis (Getz 2013).

Multiscale modelling. As data and models are aggregated, models can be run to reflect the multiple timescales on which move-
ment and epidemiological processes operate. Wavelet decomposition of movement data can inform the most important concur-
rent scales of movement processes; similar analyses can be performed with time-series epidemiological data, when available.

delineations than those that emerge from traditional, purely
spatial, estimators (Benhamou & Riotte-Lambert 2012; Lyons
et al. 2013). Additionally, these methods might produce more
accurate results when home-range overlap is used as a proxy for
exposure risk, especially in cases where the pathogen’s ability to
survive outside a host is limited. One such method, time-local
convex hulls (T-LoCoH; Lyons et al. 2013), creates time-depen-
dent hulls within the utilisation distribution from which various
metrics can be derived. Two such metrics are the duration of a
visit to a particular point or area of interest, known as the resi-
dence time, and the rate at which individuals return to them,
known as the visitation or return rate. Used together, these

metrics can offer a means of evaluating the relative risk of con-
tact or exposure among individuals (Dougherty et al. 2017).
Site-fidelity metrics such as these could be particularly impor-
tant in the case of indirectly transmitted pathogens because high
levels of fidelity increase exposure risk if an infectious reservoir
is present in the range but will buffer an individual from expo-
sure if the range is free of relevant pathogens or parasites. Thus,
higher mean visitation and duration rates should indicate
greater heterogeneity of infection risk across individuals in a
spatially-structured population.

Beyond general descriptions of space use, tools that explore
landscape level patterns and probability of use — which are
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some of the most developed in movement ecology — can offer
predictions regarding where susceptible individuals might be
exposed to disease. Habitat-selection methods, such as

© 2018 John Wiley & Sons Ltd/CNRS

Figure 3 Networks for disease research. Network analyses can serve to
identify particular contact network structures that might be conducive to
disease spread through a population and identify individuals within
networks that make disproportionate contributions to the transmission of
a disease (Ryan er al. 2013). A network with relatively low edge density
and high path lengths might prevent a directly transmitted parasite (or
pathogen) from spreading through a population (networks a and b).
Contrastingly, a network with high edge density and low path length
could facilitate parasite spread through a population (networks ¢ and d).
In addition, the position of the first infected individual (shaded in black)
in a network might facilitate or inhibit a parasite from spreading.
Individuals with relatively high degree or node betweenness could be
super-spreaders (networks a and c¢), whereas individuals positioned at the
periphery of a network, with lower degree and node betweenness, might
cause transmission to fade out (networks b and d). At both the
population and individual levels, these network characteristics depend on
resource distribution, social relationships, and ultimately, the movement
behaviours that arise from both. It should also be noted that the same
general principles would apply if this schematic were imagined as a spatial
network instead of a contact network, with nodes representing locations
rather than individuals.

resource-, path-, or step-selection functions (RSF, PSF, and
SSF, respectively), can illuminate landscape features and types
preferred by individual hosts or the population as a whole
(Leclerc et al. 2016). These methods, used to infer the proba-
bility of use of any given resource unit within the range of a
population, quantify which habitats animals select within their
range (Boyce & McDonald 1999; Manly et al. 2002). By com-
paring points used by animals in the population to those
available within their range, RSFs provide a statistical model
of habitat preference (Boyce et al. 2002). In the context of dis-
ease, these models can identify habitats where pathogen depo-
sition and, thus, exposure are most likely to occur based upon
their relative probability of selection. For example, Morris
et al. (2016) built an RSF for elk (Cervus elaphus) ranging in
the presence of soil-borne anthrax (Bacillus anthracis) in
southwestern Montana. Based on the preferences of the elk
and a parallel evaluation of the landscape features that
enabled long-term persistence of anthrax spores (with ecologi-
cal niche modelling), Morris et al. (2016) mapped the areas of
highest risk to the elk population.

In cases where pathogens or parasites are difficult to study
but follow predictable patterns of occurrence on a landscape,
RSFs and other movement tools could allow researchers to
identify potential hotspots for vector-borne or environmental
transmission (Fig. 4) using geographic information system
(GIS) technology. The application of GIS tools is particularly
suitable when vector preferences on a landscape are well
understood, as in studies of the use of fragmented forests near
agricultural land by ticks (a vector for Lyme disease; Allan
et al. 2003; Brownstein et al. 2005) or mosquito use of stand-
ing water for breeding sites (Perkins et al. 2013). The rele-
vance of these approaches will be strongly dependent on how
far vectors can move, as well as the importance of dispersal in
the life cycle of vectors and the overall prevalence of disease.
A similar application can easily be imagined for pathogens
maintained in soil, such as anthrax (Bacillus anthracis) or pla-
gue (Yersinia pestis); or in water, such as cholera (Vibrio cho-
lerae) or cryptosporidiosis (Cryptosporidium parvum). The
pathogens in all four of these examples follow predictable
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Figure 4 Calculating spatial risk from movement data. For vectors with known associations to abiotic covariates, resource selection functions can be a
powerful tool to identify areas of overlap with host movement and map areas of increased exposure risk. In this hypothetical example of an arbovirus,
maps of resource selection or association (the top layer of each stack) are derived for a terrestrial host and a water-dependent vector from associated
environmental layers (e.g. land cover or soil type) and movement or presence data. Combined, these maps of resource selection can produce a map of
overall transmission risk. Alternatively, a similar approach could be used with a pathogen, such as anthrax, that relies on mappable soil characteristics,
such as calcium levels and pH (Mullins et al. 2013). The other layer would correspond with host habitat preferences, including indicators of watering hole
locations (i.e. Mean Normalised Difference Water Index; MNDWI) and graze or browse quality (i.e. Normalised Difference Vegetation Index; NDVI).

patterns of occurrence and persistence based on abiotic envi-
ronmental variables (Carlson et al. 2017). The dual RSF
framework helps researchers to identify whether host popula-
tions select for areas with high infection risk. In addition,
such methods can indicate whether certain individuals are
using these features more than others, offering insight into the
heterogeneity of exposure throughout the population.

DISEASE AFFECTS MOVEMENT

Movement tools may also provide a more direct (but under-
explored) tool for disease surveillance, as infection often
affects host behaviour in observable ways. Pathogens can alter
host movements either through vigor loss (i.e. the appropria-
tion of resources towards an immune response) or host
manipulation (direct chemical or physical modification by the
pathogen). Examples of infection-induced behavioural shifts
range from Cordyceps fungi in arthropods, which cause hosts
to climb to the upper part of a plant before death (Roy et al.
2006), to Toxoplasma gondii in rats (Rattus norvegicus), which
results in higher activity levels and loss of fear in infected
hosts (Berdoy et al. 2000). Importantly, such changes can
alter movement trajectories (Murray et al. 2015; Cross et al.
2016) in ways detectable by movement tools (e.g. risk-taking
behaviour or a dramatic shift in habitat preference), poten-
tially allowing researchers to identify shifts in individuals’
behavioural patterns once individuals become infected.
Movement trajectories can be characterised by sets of met-
rics extracted from consecutive relocations. These include step
length (the distance between two consecutive points), relative
turning angle (the angle between the trajectory indicated by

two points relative to that inferred from the previous step),
and persistence (the tendency of a movement to persist in a
particular direction). Since these telemetry data are discrete, if
they are not sufficiently fine-scaled, they cannot be used to
characterise fundamental movement elements (FMEs, Box 2;
Getz & Saltz 2008). They can, however, be used to cluster
movement path segments into canonical activity modes
(CAMs; Fig. 5; Getz & Saltz 2008) using thresholds, cluster-
ing, and behavioural change-point techniques (Gutenkunst
et al. 2007; Gurarie et al. 2009, 2016; Van Moorter et al.
2010).

The above movement trajectory metrics might differ suffi-
ciently between healthy and infected individuals to allow them
to be used to identify an individual’s disease state. Further,
infection with a pathogen could affect daily activity budgets,
potentially altering the number or distribution of change
points seen across a day. The segmentation of movement
paths into CAMs or, at a finer scale, behavioural states
(Nathan et al. 2012), represents an active area of study in dis-
ease ecology (Edelhoff et al. 2016). For example, Cross et al.
(2016) established that infection with mange (Sarcoptic sca-
biei) in wolves (Canis lupus) was associated with decreased
daily movements, with later stages of infection reducing total
distance more than earlier stages. In addition, infected wolves
spent significantly less time in an active behavioural mode (de-
fined as hourly movements greater than 50 m) than healthy
wolves, with degree of infection once again affecting activity
level. Similar comparisons can be performed with data col-
lected at a coarser scale, as exemplified by Murray et al.
(2015) who demonstrated that the disease state was related to
differences in home-range size of coyotes (Canis latrans)

© 2018 John Wiley & Sons Ltd/CNRS
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infected with mange. Movement data derived from comple-
mentary sensors, on the other hand, offer researchers even
deeper insight into the impacts of disease on movement

© 2018 John Wiley & Sons Ltd/CNRS

Figure 5 Canonical activity modes (CAMs) from movement data. Several
alternative methods enable a researcher to infer different canonical
activity modes (CAMs; thematic mixes of behavioural states). In this
schematic, a hypothetical trajectory of a zebra can be easily divided into a
foraging CAM (boxes labelled ‘a’), defined by relatively small step lengths
and an almost uniform distribution of turning angles, and a dispersing
CAM (boxes labelled ‘b’), defined by relatively larger step lengths and a
distribution of turning angles with a low variance. For disease research, if
a pathogen is known to have environmental reservoirs with predictable
locations (e.g. due to its dependence on certain soil types or pH), the
CAM during which the animal is susceptible (in this case, foraging, when
the zebra eats plants or soil harbouring the bacterium) can be isolated to
identify the areas or times of greatest risk. One can also identify
individuals or classes (e.g. sex or age groups) who could be at greater risk
than others due to the higher proportion of time they spend foraging in
their activity budgets. In this specific example, the host is at low risk of
transmission from the LIZ in box ‘b’ and at high risk from the LIZ in ‘a’
due to the different behavioural states. The grey lines between GPS
relocation points represent estimated paths between known locations
rather than an exact trajectory.

behaviour. Accelerometers, for example, enable the detection
of tremors in individual paths and can help differentiate
between bold vs. submissive walking gaits, which can be
indicative of different disease states. In a study of cockroaches
(Blaberus craniifer), Wilson et al. (2014) extracted the vecto-
rial dynamic acceleration (VDA; Shepard et al. 2008), a met-
ric for characterising the tremors in an animal’s movement,
and found that the dynamism in each stride decreased with
progressing fungal infection.

While the application of movement ecology to disease diag-
nostics remains relatively unexplored, an ability to identify
infected individuals from movement tracks could be highly
useful in systems where diagnosis is difficult, invasive, or
lethal (especially important for species of conservation con-
cern). These methods might also enable researchers to infer
the approximate onset time of symptoms, in turn improving
disease models. The increasing availability of detailed move-
ment data provides researchers an opportunity to develop and
validate new methods along these lines.

SYNTHESISING MOVEMENT AND DISEASE

Ecology, as a scientific discipline, advances through the inter-
play of data, models, and theory: work at the interface of
movement and disease ecology is rapidly growing on all three
fronts. We briefly comment on how models can bridge data-
driven understanding into theoretical results, and then present
a systematic literature review showing the biases in how dif-
ferent movement tools are currently used to explain and pre-
dict disease dynamics.

Scaling models to theory

Compartmental models (Box 1) are a nearly universal tool for
studying human and wildlife diseases (Anderson et al. 1992;
Keeling & Rohani 2008) and have been applied to a broad
range of host—pathogen systems, with numerous extensions
for host-age effects, pathogen-strain effects, or even the influ-
ence of pathogens on host behaviour. Compartmental models,
however, are not easily adapted to account for the effects of
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Figure 6 Study bias in movement & disease ecology literature. We preformed a systematic review of scientific literature, identifying 70 studies currently
using movement data and methods within disease research since 2000. In the above chord diagram, the host taxonomic order (left) is linked with the
associated pathogen or parasite taxon (right), with the width of the bar indicating the proportion of studies investigating that particular pairing.
Expectedly, pathogens with possible spillover threats to humans or livestock receive most of the attention. For example, studies of bovine tuberculosis
(Mycobacterium tuberculosis) systems were particularly prevalent in the literature, likely because of the risk faced by cattle in proximity to possums,
raccoons, badgers, and other mammals. Other well studied pairings included bighorn sheep with bacterial pneumonia (Mycoplasma ovipneumoniae),
raccoons and canines with rabies; and deer with various livestock spillover diseases, such as anthrax (Bacillus anthracis), brucellosis (Brucella abortus), foot
and mouth disease (FMD; Aphthae epizooticae), and chronic wasting disease (CWD).

landscape and population spatial structures on risk of infec-
tion (Fig. 4). Accounting for this level of variation requires a
representative sample of individuals within the population to
be tracked and their contact rates with other individuals (di-
rect transmission) or infectious environmental locations (indi-
rect transmission) recorded. Mechanistic models allow
researchers to upscale individual patterns (such as behavioural
rules or contact patterns) to a broader population and are fre-
quently used to validate or test experimental results. For
example, disease outbreaks are easy to project on simulated
networks, allowing researchers to confirm hypotheses about
how modularity and fragmentation link animal social struc-
ture to outbreak size (Sah er al. 2017a,b). However, directly
upscaling animal behavioural rules into spatiotemporal pat-
terns of disease may require researchers to build individual-
or agent-based models (IBM, ABM; Grimm et al. 2005).
More specifically, IBMs can use step length, turning angle,
canonical activity mode distributions, habitat or resource pref-
erences or even various network-based metrics to generate
likely movement paths for all individuals in the population.
With basic assumptions about transmission rates as a function
of contact duration, these trajectories can be used to simulate
disease outbreaks on real landscapes with ‘real’ animal move-
ment principles. A number of IBMs that incorporate mecha-
nistic movement rules to explore disease dynamics have been
constructed (Bonnell et al. 2010; Dion et al. 2011; Tracey

et al. 2014; Belsare & Gompper 2015). One of these (Bonnell
et al. 2010) used individual host energy levels to generate
movements toward higher resource patches. These foraging
decisions ultimately drove microparasite transmission dynam-
ics among red colobus monkeys (Procolobus badius) as they
shifted their distributions on the landscape in search of food.

An obvious drawback of IBMs compared to compartmental
models is the high computational demand associated with
running simulations at this scale, though this limitation is
becoming less prohibitive with the increasing availability of
high performance computing. Perhaps a more serious limita-
tion, IBMs involve many more parameters than compartmen-
tal models, thereby increasing difficulties associated with
verification and validation procedures (Filatova et al. 2013).
In addition, IBMs generally include stochastic elements, which
can make statistical inference using IBMs very challenging
(Hartig et al. 2011). While recent methodological advances
have overcome some of these limitations, they remain impedi-
ments to the broader application of IBMs in disease mod-
elling. Continued efforts to synthesise movement and disease
ecology, however, are likely to inspire the development of new
solutions for translating risk (based on movement behaviours
on a specific landscape) into generally applicable rates for epi-
demiological models.

We also caution that mechanistic models (individual-based
or otherwise) that explicitly incorporate movement rules from

© 2018 John Wiley & Sons Ltd/CNRS
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empirical data might not be transferable across space, or even
across seasons or years. For instance, if environmental change
alters behaviour (e.g. annual migration targets shift in
response to climate change), even mechanistic models based
on empirical movement data might become inaccurate. This
could be problematic for predicting pathogen dynamics in
response to rare movement events (e.g. atypical long-distance
dispersal events) or transmission (e.g. cross-species spillover
events). Some tools exist in epidemiology to address model
building based on limited data (e.g. fitting R, for rare spil-
lover diseases; Blumberg & Lloyd-Smith 2013; Kucharski &
Edmunds 2015), but this problem requires special attention in
the context of movement research and given the ongoing
anthropogenic changes to local and global environments.

Current State of the Synthesis

In a review of Web of Science, we found 70 papers published
between 2000-2017 using movement tools in disease research
(see Supplementary Appendix 1 for details). For the purposes
of the review, we did not include agent-based modelling stud-
ies without empirical basis, though we noted they followed
similar biases. This literature review revealed a notable bias
across study organisms (Fig. 6). Most studies focused on
pathogens that can spillover to human and domestic animal
populations, including bovine tuberculosis (Mycobacterium
tuberculosis), anthrax (Bacillus anthracis), brucellosis (Brucella
abortus), foot and mouth disease (FMD; Aphthae epizooticae),
and chronic wasting disease (CWD). Hosts with relatively
large bodies (e.g. ungulates, carnivores, and mesocarnivores)
were substantially more common than those with small bodies
(e.g. birds, reptiles, amphibians, and small mammals). These
biases might reflect the high data requirements for many of
the methods in movement ecology, meaning that only exten-
sively monitored systems are regularly considered at the level
of individual hosts. Alternatively, the taxonomic bias in hosts
could be indicative of technological limitations that, until
recently, prohibited the tracking of animals with smaller bod-
ies with advanced instruments. It should be noted, however,
that taxonomic bias patterns closely track phylogenetic hot-
spots of zoonotic and agriculturally relevant pathogens.

For the 70 studies that met the criteria for inclusion, all
methods of analyses used by the researchers were sorted into
four broad groups: spatial overlap, habitat selection, network
analyses, and behavioural analyses. In several cases, more
than one of these methods were used in a single study, result-
ing in a total of 91 analyses. Spatial overlap was the most fre-
quently used analysis, with 41 cases applying some form of
overlap method. These ranged from examinations of home
range dynamics (e.g. Yockney ef al. 2013) to studies that
attempted to measure the number of contacts between animals
(e.g. Woodroffe & Donnelly 2011), often using proximity sen-
sors to do so (e.g. Marsh er al. 2011). Habitat selection analy-
ses were also quite common, with 24 cases using selection
functions (e.g. Morris et al. 2016) or performing basic com-
parisons between habitat types (e.g. Parsons et al. 2014). Simi-
larly, studies that drew upon the wide array of network
analysis tools were fairly common, with 19 constructing some
form of network, often with the use of proximity sensors (e.g.

© 2018 John Wiley & Sons Ltd/CNRS

Hamede et al. 2009). The least common form of analyses
encountered during the literature review were behavioural
analyses, where researchers explicitly measured the probability
of a particular behaviour (e.g. dispersal; Caron et al. 2016) or
compared individuals of two different behavioural classes (e.g.
migratory vs. resident; Pruvot et al. 2016). Only six cases of
behavioural analysis appeared in the resulting literature. Since
the role of behaviour in influencing disease dynamics is well
established, this represents an under-explored avenue for
investigation of disease systems.

There was a demonstrable correlation between the mode of
transmission exhibited by a pathogen and the methods ulti-
mately selected to study it. Although some studies (13) did
not identify a transmission mode, many emphasised whether
the pathogen studied had a direct (20) or indirect (11) trans-
mission route. Many studies (26), mostly on bovine tuberculo-
sis, mention that both transmission modes are possible, but
researchers often selected their methods based on one or the
other (4 of the 26 emphasise direct transmission, while 7 focus
on indirect). Of those studies focused on the indirect mode of
transmission, spatial overlap methods were used in approxi-
mately 56%, habitat selection in about 44%, network analyses
in nearly 17%, and behavioural analyses in only 6%. By con-
trast, studies of direct transmission used network-based analy-
ses (46%) and behavioural analyses (17%) more frequently,
but spatial overlap methods were nearly as common as in
studies of indirect transmission (50%), and habitat selection
methods were far less common (13%). These differences are
to be expected: pathogens with particular transmission modes
require the use of tools and methods relevant to the move-
ment processes that underlie them.

DISCUSSION AND FUTURE DIRECTIONS

Complex patterns in ecology frequently emerge from simple
rules at fine scales. Basic rules of animal behaviour drive the
complex interplay of animal movement and disease dynamics,
with serious implications for wildlife and human health.
Incorporating movement behaviour into epidemiological mod-
els could improve predictions of disease dynamics, provided
the additional level of complexity is handled correctly (Getz
et al. 2017). While we have highlighted specific well-developed
pairs of pathogen transmission mode and analysis methods
(like networks and direct contact pathogens, or landscape
models and vector-borne disease), we also note that many
pathogens exploit several transmission strategies, and
researchers will correspondingly need several methods in these
cases. Developing protocols that include movement data in
basic disease research, and vice versa, will be an important
first step towards making these advances more feasible — and
towards making broad advances in ecological theory, as some
disease ecologists have begun to do with network methods
(Sah et al. 2017a).

Movement tools will likely increase in value with ongoing
improvements in biologging technologies (Kays er al. 2015).
For example, advancements in radar and radio-frequency
technologies allow tracking of a broader range of insect move-
ments (Kissling et al. 2014), offering the potential to include
these movements when considering vector-borne disease
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dynamics. Further, accelerometer-based data and very-high
resolution GPS tracking (e.g. 1 Hz fix rates) will help
researchers parse movement tracks at an even finer scale than
current path segmentation methods allow (McClintock et al.
2017). In doing so, proximity-based social networks could be
further informed with the behavioural states of individuals,
potentially clarifying the epidemiological relevance of such
points of contact (Spiegel ez al. 2016; Sih et al. 2017; Spiegel
et al. 2017b). The decreasing costs of these technologies could
soon offer opportunities to monitor entire populations,
thereby shifting researchers from extrapolating risk across a
population to measuring contact rates directly. More compre-
hensive surveillance may also enable the development of mod-
els that more accurately infer dose exposure, based on
duration of contact between animals and infected hosts or
environmental reservoirs, vastly improving models of the
heterogeneity in transmission efficiency.

Though the host-environment and host—pathogen interac-
tions reflected in movement data can offer significant insight
into disease dynamics, important processes might also occur
at the pathogen—environment (or vector—environment) inter-
face. In benthic marine systems, for example, suspension-fee-
ders that filter large volumes of water while feeding can be
particularly vulnerable to infection by microparasitic patho-
gens floating in the water (Lafferty 2017). This accumulation
process has been modelled through the incorporation of parti-
cle diffusion (Bidegain et al. 2016), but the nature of these
pathogens and their deposition makes the precise tracking of
their movements in such dynamic environments very difficult.
Thus, the validity of forecasts based on host movement alone
is in question when pathogen-environment interactions (e.g.
pathogen movement, rates of growth or decay, or the length
of vector life history stages) occur at time scales comparable
with the host—pathogen interactions themselves (e.g. lengths of
latent and infectious periods). When response time scales are
comparable, coupled host-pathogen—environment models are
required. Though this has not been the emphasis of much of
the recent work in movement ecology, the expansion of meth-
ods and technologies to accurately track minute particles
through three-dimensional space is a frontier worthy of explo-
ration. The resulting models could replace assumptions
regarding the diffusion of such particles and further aid in
our understanding of contact processes in highly dynamic
environments.

Although we have focused on host populations, these tools
also apply to multi-species transmission, such as in the spil-
lover of wildlife diseases into livestock, or spillback of diseases
from domesticated animals into wildlife (Barasona et al.
2014). Furthermore, these methods could just as easily be
used to assess the risk of zoonotic spillover into human popu-
lations. Currently, ecological niche modelling is a popular
proxy for zoonotic disease risk, but this only summarises
high-level landscape patterns (often treating host-pathogen
systems as one coupled phenomenon); replacing these, or
combining them, with movement models like RSFs can more
accurately characterise average or seasonal patterns of host
movement, and therefore risk to human health. In particular,
in the case of pathogens that affect free-ranging and often
migratory hosts such as bats (i.e. Ebola, Marburg, or Nipah

viruses), overlap analyses could illuminate potential risk zones
for future spillover events. With additional data collection
using advanced monitoring devices, researchers can move
beyond treating overlap (spatial or spatiotemporal depending
on the pathogen or parasite in question) as a proxy for con-
tact; in fact, we note the clear but unexplored potential for
animal movement studies to act as part of a realtime early
warning system for difficult-to-surveil zoonoses.

With a common language and mutual appreciation for their
respective disciplines, disease ecologists and movement ecolo-
gists can collaborate to help solve pressing problems. Like
Ebola or Nipah, most emerging diseases spill over from wildlife
(Jones et al. 2008). Controlling such diseases is difficult, and
interventions can be controversial (e.g. wildlife cullings), infea-
sible (e.g. mass wildlife or livestock vaccination), or ineffective;
for example, culling badgers can spread bovine tuberculosis
because badgers will move into treated areas (Woodroffe ez al.
2006). Studying animal movement might help predict disease
spread, help explain why some interventions fail, and identify
new interventions, such as wildlife relocations or vaccination.
Furthermore, movement ecologists can benefit from consider-
ing how parasites alter animal movement, thereby accounting
for otherwise unexplained variation in movement among indi-
viduals. Advances in disease diagnosis, combined with new
technologies that remotely monitor an animal’s physiology and
motion make this an opportune time for studies to embrace
both disease ecology and movement ecology.
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