UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Empirical Analyses of Self-Explanation and Transfer in Learning to Program

Permalink
https://escholarship.org/uc/item/5d30m4kj

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 11(0)

Authors
Pirolli, Peter
Bielaczyc, Kate

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/5d30m4kj
https://escholarship.org
http://www.cdlib.org/

Empirical Analyses of Self-Explanation and Transfer
in Learning to Program

Peter Pirolli and Kate Bielaczyc

School of Education
University of California, Berkeley

ABSTRACT

Building upon recent work on production system models of transfer and analysis-based
generalization techniques, we present analyses of three studies of learning to program recursion.
In Experiment 1, a production system model was used to identify problem solving that involved
previously acquired skills or required novel solutions. A mathematical model based on this
analysis accounts for inter-problem transfer. Programming performance was also affected by
particular examples presented in instruction. Experiment 2 examined these example effects in finer
detail. Using a production system analysis, examples were found to affect the initial error rates,
but not the learning rates on cognitive skills. Experiment 3 examined relations between the ways in
which people explain examples to themselves and subsequent learning. Results suggest that good
learners engage in more metacognition, generate more domain-specific elaborations of examples,
make connections between examples and abstract text, and focus on the semantics of programs
rather than syntax.

INTRODUCTION

One of the classic debates in psychology has concerned the nature of the transfer of knowledge
across situations of potential use (for a useful review see Singley & Anderson, 1989). One school
of thought is typified by Thorndike's theory of identical elements (1903), which holds that transfer
is a function of the stimulus-response elements acquired in one task that can be used in another
task. Another school of thought is typified by Gestaltists such as Wertheimer (1945) or Katona
(1940) who distinguished between senseless and meaningful learning. The Gestaltists did not
deny that transfer of the kind predicted by the theory of identical elements would occur in situations
of senseless learning (Singley & Anderson, 1989). However, the Gestaltists argued that transfer
would be qualitatively different and superior in situations of meaningful learning, in which the
learner grasped the inner structural relationships of the problem or task (Lewis, 1988).

The ultimate goal of the project presented here 1s to develop a model of the knowledge acquisition
and transfer that occurs in a fairly typical lesson on programming. Here we discuss studies that
suggest that transfer can be characterized by an updated version of the identical elements theory,
but also that learners do differ in ways that they come to understand problems and these
understandings have an impact on learning. We suggest that recent work on production system
models of transfer (Singley & Anderson, 1989) and of analysis-based generalization (Lewis,
1988) may provide the basis for a model of learning and transfer that integrates the main ideas of
identical elements theory and of meaningful learning.

THE LEARNING PARADIGM
Our studies focus on learning a lesson on programming recursive functions, which takes place in a

longer sequence of instruction on programming. A typical programming lesson involves reading a
text or listening to an instructor on some novel topic and then working through a set of relevant

450



PIROLLI, BIELACZYC

Prior Explanation Weak Domain
Knowledge Strategies Methods -specific
skills

.

Examples ’ Encodings Solutions

Text & Declarative ’l Problem

Knowledge

compilation
Self-explanation Weak-method priatio

problem solving
FIGURE 1: THE ANALYSIS OF INSTRUCTION AND ITS TRANSFER TO DOMAIN-SPECIFIC SKILL

exercise problems. Typically, the text or instructor will discuss some illustrative examples to
facilitate learning. Figure 1 presents a simplified model of learning in a typical lesson. The boxes
in Figure 1 indicate knowledge content and arrows indicate processes. In this learning situation,
the learner actively constructs representations of texts and examples based on prior knowledge.
This produces a set of example encodings and other relevant facts and principles that are stored as
declarative knowledge in the learner's memory. Upon encountering a partially novel problem, the
learner will use as much of her existing domain-specific skill as possible. At problem-solving
impasses, in which no previously acquired skills are applicable, the learner resorts to weak-method
problem solving. These methods operate on the declarative knowledge acquired from texts and
examples. Knowledge compilation mechanisms (Anderson, 1987) summarize each novel
problem-solving experience into new domain-specific skills.

In previous research on the acquisition of skills for programming recursive functions (Pirolli,
1986), we developed production system models of novice skill acquisition in the GRAPES
production system language which emulates the skill acquisition components of the ACT* theory
(Anderson, 1987). Goals are explicitly represented in GRAPES goal memory. Operators are
represented by production rules that implement the basic actions available in programming (e.g.,
writing out a function name). Programming plans are implemented as productions that achieve
goals activated in goal memory.

Such production system analyses can serve as a useful starting point in the analysis of the transfer
of cognitive skill. Singley and Anderson (1989) have recently presented an ACT* theory of
transfer that is in the spirit of Thorndike's identical elements theory of transfer. In its bare-bones
form, the ACT* theory of transfer states that productions are the elements of transfer. Complexity
is added to the ACT* analysis of transfer by considering the role of declarative knowledge. New
productions are compiled as summarizations of the operation of weak methods, such as analogy,
over declarative structures. Studies (Chi, Bassok, Lewis, Reiman, & Glaser, 1987; Pirolli, 1987)
suggest that the effectiveness of analogy is related to the richness and content of the representations
of example solutions.

Recently, Chi et al. (1987) analyzed the statements made by students learning from a physics text
as they explained examples to themselves and solved a set of physics problems. Subjects were
divided into groups of good and poor learners based on their problem solving performance. Good
learners made significantly more elaborations of presented examples than poor students and
showed greater evidence of monitoring their comprehension. In addition, there were qualitative
differences in the kinds of elaborations made by good vs. poor learners with good learners
showing more explanations and justifications of content relevant to subsequent problem solving.

451



PIROLLI, BIELACZYC

Computational models that address the analysis of examples and subsequent generalization to novel
problem solutions are called analysis-based generalization techniques by Lewis (1988). These
models include production system models of analogy (Anderson & Thompson, 1986; Pirolli,
1987) and explanation-based learning methods (DeJong & Mooney, 1986; Mitchell, Kellar, &
Kedar-Cabelli, 1986). One deficiency in current analysis-based generalization models is that we
know little about the strategies and knowledge that learners use in constructing and using their
analyses of examples. In the following studies, we present analyses of the acquisition and transfer
of knowledge from instructional texts and examples to novel solutions and across problems. Our
analvses build upon production system models of transfer and models of analysis-based
generalization.

EXPERIMENT 1: EFFECTS OF EXAMPLES AND INTER-PROBLEM TRANSFER

Subjects (N = 20) in Experiment 1 proceeded through a series of programming lessons in LISP
centered around an intelligent tutoring system called the LISP Tutor (Reiser, Anderson, & Farrell,
1985). For each lesson, students read some text introducing some new programming feature or
technique and then worked through a set of programming problems with the LISP Tutor. The
LISP Tutor instructs using a model tracing methodology which involves comparing a student's
programming behavior to the behavior of the LISP Tutor's internal ideal and buggy models. An
ideal model is a production system model of the programming skill to be acquired by subjects. A
buggy model is a representation of common misconceptions and mistakes made by subjects.

Subjects were divided into groups that received a text on recursion that included either (a) an
example program that worked with list inputs (list recursion example), or (b) an example program
that worked with integer inputs (number recursion example). After reading their texts on
recursion, subjects solved 10 recursion programming problems using the LISP Tutor. Five of
these problems worked with list inputs (list problems), and the other five worked with integer
inputs (number problems). Subjects were also divided into groups that received either: (a) a
blocked sequence of problems, in which four number recursion problems were followed by four
list recursion problems, with two final problems, or (b) an intermixed sequence, in which four
number recursion problems occurred as problem trials 1, 3, 5, and 7, and four list recursion
problems occurred as problem trials 2, 4, 6, and 8 (with the same final problems as the blocked
sequence). For all subjects, the ordering of number recursion problems and list recursion
problems was the same (although the two kinds of problems may or may not be intermixed).

Inter-Problem Transfer

Figures 2 and 3 present the mean number of errors per problem across problem trials for the
intermixed and blocked sequences. An ANOVA of Sequence by Example by Problem Trial carried
out on the errors per problem data revealed a main effect of Problem Trial, F(9, 144) =5.74,p <
.0001, but no main effect of Sequence, indicating that the two kinds of sequence did not produce
substantially different performance overall. However, as suggested by Figures 2 and 3, there was
a significant Sequence by Problem Trial interaction, F(9, 144) = 84.38, p < .0001, indicating that
performance across problem trials was radically different for the two problem sequences.

According to the ACT* model of transfer of cognitive skill, the data in Figures 2 and 3 should be
captured by a production system analysis that takes into account the individual productions used to
solve a problem, their strength from prior practice, and the learning of new productions at the
appropriate opportunities. We performed a simplified version of this analysis in which production
strength was ignored, and all productions were treated as equals (i.e., we ignored variations in
learning difficulties and errors rates across different productions). In this simplified model, errors

452



PIROLLI, BIELACZYC

12 127 @
E 10 E 10
r ® r
r . \./. r 8 * “®- Observed
6 (o Y 6 85-0 BmO
° QS LA T o /o-o- On 0- .
-0, o) Predicted
r 4 \o/ \o * o r 4 \3/ \0{ / \0
s 21 & v 'Y s 2 & ®
0 - 4 0 i S—
123456 78910 1 23456 7 82910
Problem Trial Problem Trial
FIGURE 2: FIGURE 3:
ERRORS PER PROBLEM ERRORS PER PROBLEM
FOR THE BLOCKED SEQUENCE FOR THE INTERMIXED SEQUENCE

on problem trial, ¢, are a linear function, E() of the number of previously acquired productions,
Pold(t), that apply in a problem solution on trial ¢, and the number of novel problem solving steps,
P pew(t), for which new productions will be acquired. Pplq and Ppew were estimated by
examining the productions used by the LISP Tutor's ideal models for the minimal program
solutions across a sequence of problems. Regression of this linear model to the data in Figures 2
and 3 yields:

E(t) = .56 Ppew(t) + .14 Pol4(t) (1)

with R =.51. Thus a substantial proportion of the variance in Figures 2 and 3 can be captured by
a simple characterization of the opportunities for the application of previously acquired productions
and the places where new productions will need to be acquired.

Effects of Examples

Figure 4 presents mean errors per problem on list and number recursion problems broken down by
the type of example available during instruction. Performance on problems similar to the available
example is superior to performance on problems different from the example, and the interaction in
Figure 4 is significant, 7(144) = 2.00, p < .05.

7
6 0.8
5
Eh;‘?jps 4 Average 0.6 B Number
per @ Error Example
Problem 2 Planning 02 B List Example
; ;
0 y 0
Number List First First
Problems Problems Number List
Problem Problem
FIGURE 4: FIGURE 5:
EFFECTS OF EXAMPLES EFFECTS OF EXAMPLES
ON PROBLEM ERRORS ON PLANNING THE RECURSIVE CASES

453



PIROLLI, BIELACZYC

Another measure of the impact of examples can be attained by examining a particular skill that is
especially important in the task of programming recursive functions. This is the skill of planning
the recursive cases of a recursive function. This skill involves characterizing how a function will
make a recursive call to itself and use the result of that call to form an output. Figure 5 presents the
LISP Tutor's diagnosis of whether or not subjects had determined a correct plan for recursive
cases. The data in Figure S concern the first list or number problem encountered by subjects and
are broken down by the kind of example presented in instruction. Again, subjects make more
errors on problems that are different from the presented example. On list problems the effect is
significant, Fisher p = .02, but on number problems it is only marginal, Fisher p = .18.

Summary

The results of Experiment 1 indicate that a production system analyses of the transfer of skill
across problems captures a substantial amount of the performance effects as subjects progress
through a sequence of problems. Interestingly, there was no effect of differences in problem
sequencing as is predicted by a production system model of transfer. The examples used in
Experiment 1 had clear effects on both general performance on problems and on specific skills,
again in line with the general idea that knowledge is very tied to specific situations. In Experiment
2, we examine the impact of examples on the acquisition of domain-specific skills in further detail.

EXPERIMENT 2: A PRODUCTION SYSTEM ANALYSIS OF EXAMPLE EFFECTS

Subjects in Experiment 2 learned to program recursion in a simplified version of LISP without the
aid of the LISP Tutor. In the target lesson on recursion, 19 subjects were presented with a text
introducing recursion, and an example program was available on-line on their computer terminals.
A set of 16 recursion problems and associated program solutions were created for Experiment 2.
Subjects received four of these problems in a training phase, in which they received feedback for
errors. The selection of examples and training problems was counterbalanced across subjects.

Example Effects

A production system model was developed in GRAPES that was capable of coding all 16 recursive
functions used in Experiment 2. Of the 19 productions in this model, 16 yield some identifiable
portion of code. Each attempt at coding a training program by each subject was scored for errors
on the code associated with these 16 productions. Further, we identified the productions that
would be used by our GRAPES model to code the example presented to each subject. On training
problems, we expected subjects to show better performance on these analogous productions than
on nonanalogous productions that are not used by our model in coding the example solution. This
expectation is based on the assumption that subjects would have a better chance of inferring and
using declarative knowledge from the example in situations involving analogous productions than
in situations involving nonanalogous productions.

Figure 6 presents percent error data for analogous and nonanalogous productions over the first six
opportunities for coding an action associated with a production in the training phase. The practice

curves for both kinds of productions show the usual power law effects. Power functions of the
form

P(t)=ar-b 2)

are fit to the data in Figure 6, where P(t) is the probability of error on trial ¢, @ is the error rate on

454



PIROLLI, BIELACZYC

102

8 Analogous
¢ Nonanalogous

10!

Percent Errors

i aaaaal

L

100 . ———
109 10!
Production Opportunity

FIGURE 6: ERROR RATES AS AS A FUNCTION OF PRACTICE FOR ANALOGOUS AND
NONANALOGOUS PRODUCTIONS

the first trial, and b is a rate parameter. For the analogous productions, @ = .23 and b = .80, with r
= . 93. For the nonanalogous productions, a = .55, b = .73, with r = .97. Thus, the major
difference, as indicated by differences in @, is in the error rates on the initial trials of analogous and
nonanalogous productions. Given that the rate parameters, b, are relatively close for the two kinds
of productions, it appears that the available example largely acts as if it were several trials of
practice for the analogous productions. Thus, the results of Experiment 2 show that examples
have a substantial effect on the first opportunity for acquiring a production but little or no
interaction with subsequent improvement due to practice.

EXPERIMENT 3: EFFECTS OF SELF-EXPLANATION OF EXAMPLES

The model outlined in Figure 1 suggests that the manner in which subjects analyze examples will
have an impact on subsequent acquisition of skill. Experiment 3 was partly modelled after the
research of Chi et al. (1987). Subjects in Experiment 3 (N = 12) learned to program recursive
functions in LISP using the LISP Tutor. While subjects were reading through their text-based
instruction on recursion, we asked subjects to think out loud, and further, we asked subjects to
explain all examples to themselves.

Self-explanations

Our first pass in analysis has focused on correlations between the number and kinds of self-
explanations made while processing the text instruction (including examples) and subsequent
performance in problem solving with the LISP Tutor. Based on the mean error rates per problem
using the LISP Tutor, we performed a median split, dividing subjects into groups of good and
poor learners. Verbal protocols collected while subjects read texts and examples were segmented
into individual statements. Table 1 presents a summary of the mean number of elaborations
produced by good and poor subjects as they worked through their examples. The elaborations in
Table 1 are divided into different kinds. A monitoring elaboration refers to statements about the
subjects' strategies or state of knowledge. Activiry elaborations are comments about the instruction
or the task. Domain elaborations concern statements about programming and recursion. The other
category refers to incomplete phrases. Good subjects are superior to poor in all but the "other"

455



PIROLLI, BIELACZYC

ELABORATIONS OF EXAMPLESTI;/IAEII)-‘E IISY GOOD AND POOR LEARNERS
ELABORATIONS
SUBJECTS Monitoring Activity Domain Other
Good 19.00 6.00 23.17 T
Poor 2.50 .50 10.33 .00

category in Table 1 (p <.05 by t-tests). That good learners show more evidence of monitoring
themselves and the instructional situations suggests higher amounts of metacognition. The greater
amounts of domain-specific elaborations made by good learners also suggests that they are
producing, in general, more information of potential use in later problem solving contexts.

The domain explanations given by subjects were further categorized into syntax-oriented
statements Or semantics-oriented statements. Syntax statements are ones that refer to the syntax of
program code, or other surface features of the examples. Semantic statements are ones that
provide an abstract interpretation of the process generated by a piece of code, indicate the
significance of a program element, or identify the goal or purpose achieved by a piece of code. All
six of the good subjects made more semantics-oriented than syntax-oriented elaborations, whereas
four of the six poor subjects showed the opposite trend, an interaction significant by sign test, p <
.05. This focus on the semantics of programming, rather than syntax, suggests that the good
learners are indeed grasping the "inner structural relations" of the examples.

Connecting Examples to Text

The text of the instruction used in Experiment 3 was constructed at a fairly abstract level, with no
direct references to the examples. We identified statements made while explaining the example that
connected portions of the example back to concepts introduced in text. The mean number of such
connections for good subjects was 4.33 and for poor subjects was .50, which is a significant
difference, r(10) = 2.18, p < .05. The generation of connections between the examples and
abstract information derived from text is the sort of process that would be predicted to be effective
by analysis-based generalization methods.

GENERAL DISCUSSION

The results of Experiments 1 and 2 indicate that transfer of knowledge derived from examples to
subsequent problem solving and across problem solving tasks can be substantially accounted for
by production system analyses of transfer. Our current analyses in Experiment 3 indicate that
complexity is added to this analysis by individual differences in the processes used in
understanding instructional texts and examples. Our model in Figure 1 suggests that such
differences can be attributed to differences in the prior knowledge and explanation strategies used
in processing texts and examples. Current models of analysis-based generalization say little about
the ways in which example analyses may vary (Lewis, 1988). In future analyses, we expect to
focus on identification of process models that characterize the learning strategies of good and poor
learners in programming. Although our results suggest that aspects of both the identical elements
theory and the theory of meaningful learning are corroborated by our data, we do not see any
reason that precludes their integration into a process model of learning and cognition.

456



PIROLLI, BIELACZYC

REFERENCES

Anderson, J.R. (1987). Skill acquisition: The compilation of weak-method problem solutions.
Psychological Review, 94, 192-210.

Anderson, J.R. & Thompson, R. (1986). Use of analogy in a production system architecture.
Unpublished manuscript, Carnegie-Mellon University, Department of Psychology,
Pittsburgh, PA.

Chi, M.T.H, Bassok, M., Lewis, M.W., Reiman, P., & Glaser, R. (1987). Self-explanations:
How students study and use examples in learning to solve problems (Tech. Rep. 9).
Pittsburgh, PA: University of Pittsburgh, Learning Research and Development Center.

DeJong, G. & Mooney, R. (1986). Explanation-based learning: An alternative view. Machine
Learning, 1, 145-176.

Katona, G. (1940). Organizing and memorizing. New York: Columbia University Press.

Lewis, C. (1988). Why and how to learn why: Analysis-based generalization of procedures.
Cognitive Science, 12, 211-256.

Mitchell, T.M., Kellar, R.M., & Kedar-Cabelli, S.T. (1986). Explanation-based generalization:
A unifying view. Machine Learning, 1, 47-80.

Pirolli, P. (1986). A cognitive model and computer tutor for programming recursion. Human-
Computer Interaction, 2, 319-355.

Pirolli, P. (1987). A model of purpose-driven analogy and skill acquisition in programming. In
Proceedings of the Cognitive Science Society Conference.

Reiser, B.J., Anderson, J.R., & Farrell, R. (1985). Dynamic student modelling in an intelligent
tutor for LISP programming. In Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, 8-14, Los Altos, CA: Morgan-Kaufman.

Singley, M.K., & Anderson, J.R. (1989). Transfer of cognitive skill. Cambridge, MA: Harvard
University Press.

Thorndike, E.L. (1903). Educational psychology. New York: Lemke & Buechner.
Wertheimer, M. (1945). Productive thinking. New York: Harper and Row.

ACKNOWLEDGEMENTS

This research was supported by a National Academy of Education Fellowship granted to the first
author. We would like to thank Beatrice Lauman for her work in running subjects and coding data
and David Rockower for implementing the GRAPES models used in Experiment 2.

457



	cogsci_1989_450-457



