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RESEARCH ARTICLE
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Abstract

Past and recent attempts at devising objective biomarkers for traumatic brain injury (TBI) in

both blood and cerebrospinal fluid have focused on abundance measures of time-depen-

dent proteins. Similar independent determinants would be most welcome in diagnosing the

most common form of TBI, mild TBI (mTBI), which remains difficult to define and confirm

based solely on clinical criteria. There are currently no consensus diagnostic measures that

objectively define individuals as having sustained an acute mTBI. Plasma metabolomic

analyses have recently evolved to offer an alternative to proteomic analyses, offering an

orthogonal diagnostic measure to what is currently available. The purpose of this study was

to determine whether a developed set of metabolomic biomarkers is able to objectively clas-

sify college athletes sustaining mTBI from non-injured teammates, within 6 hours of trauma

and whether such a biomarker panel could be effectively applied to an independent cohort

of TBI and control subjects.

A 6-metabolite panel was developed from biomarkers that had their identities confirmed

using tandem mass spectrometry (MS/MS) in our Athlete cohort. These biomarkers were

defined at�6 hours following mTBI and objectively classified mTBI athletes from teammate

controls, and provided similar classification of these groups at the 2, 3, and 7 days post-

mTBI. The same 6-metabolite panel, when applied to a separate, independent cohort pro-

vided statistically similar results despite major differences between the two cohorts. Our

confirmed plasma biomarker panel objectively classifies acute mTBI cases from controls

within 6 hours of injury in our two independent cohorts. While encouraged by our initial

results, we expect future studies to expand on these initial observations.
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Introduction

Commonly known as concussion, mild traumatic brain injury (mTBI) is a frequently encoun-

tered neurological diagnosis in pediatric, neurologic, emergency room, military, and sports

medicine practices. According to the World Health Organization, 100–300 individuals per

100,000 population seek medical attention for mTBI each year. This likely represents less than

half of the actual number sustaining a mTBI however, with real estimates exceeding 600/

100,000 population, and thereby surpassing 40 million estimated mTBI cases worldwide each

year [1]. For civilians in the United States (US) and around the world, falls represent the most

common etiology associated with mTBI [1, 2]. In the US civilian sector, sport-related mTBI

produces up to 3.8 million documented injuries per year [3], providing significant concerns in

amateur (e.g., National Collegiate Athletic Association, NCAA) and professional (e.g.,

National Football League) athletics. During the last two decades, changes in warfare practices

have elevated blast (i.e., explosive) injuries to the primary causative etiology for mTBI in the

US active duty military [2], and from the years 2000–2016 approximately 82% of all military

TBI fell into this category [4]. At least 17% of those deployed during Operation Iraqi Freedom

and Operation Enduring Freedom reported at least one mTBI, and of those reporting mTBI,

nearly 60% suffered more than one [5].

For both the civilian and military sectors, a diagnostic bottleneck currently exists, necessi-

tating the development of an accurate, objective measure of mTBI that allows rapid and accu-

rate screening of those potentially injured. Such a diagnostic measure would reduce the

underreporting of mTBI and allow more appropriate care to be delivered to concussed indi-

viduals. In addition, objective biosignatures could provide a basis for temporal assessments

that could guide clinical decision-making [3], such as when to allow return to play (or return

to combat) [6, 7].

Metabolomic analyses in TBI and brain injury are not new. Investigations from both animal

models [8–11] and the clinic [10, 12, 13] have provided important insights into alterations of

specific metabolites in brain and peripheral blood, especially lipid species. A recent gas chro-

matography-mass spectrometry (GC-MS) investigation on blood serum from emergency

room subjects with various severities of TBI or orthopedic injuries [13] identified metabolite

species whose increased abundance correlated with the severity of brain trauma and subse-

quent poor outcome. Although the latter investigation also included significant numbers of

mTBI subjects that shared similar metabolite alterations to the more severe cases, the differ-

ences between mTBI and controls were much smaller and were not the focus of the analysis.

In addition, despite replicating the discovered metabolite findings in an independent cohort of

TBI subjects, several ions of interest remained unidentified or could only be annotated by their

chemical class [13]. The aim of our investigation therefore was to specifically explore whether

metabolomic analyses of blood plasma could provide accurate, early classification of mTBI

individuals from non-concussed controls (NC). Herein we present a metabolomic biomarker

panel derived from a collegiate athlete (Athlete) cohort, discovered using liquid chromatogra-

phy-MS (LC-MS) technology, which was ultimately annotated and confirmed via tandem MS

(MS/MS). The panel accurately classifies the concussed (mTBI) Athlete group at�6 hours

(�6h) post-injury from their NC Athlete teammates, and is suggestive of providing effective

classification during the first 7 days following injury. The same panel of metabolites was tested

in an independent, more clinically diverse external validation (External) cohort, correctly clas-

sifying TBI from NC subjects, with similar receiver operating characteristic area under the

curve (ROC AUC) analysis results as the internal validation for the Athlete cohort. To our

knowledge, this study provides one of the first human plasma metabolomic biomarker panels,

confirmed via MS/MS, which objectively classify mTBI from NC subjects under discovery,
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internal validation, and external replication conditions. Our biomarker panel supports previ-

ous human blood-based metabolomic results [13] in highlighting specific alterations of lipid

species following TBI. Metabolomic analyses, therefore, appear poised to supplement other

“omic” analyses in helping resolve the complex pathobiology resulting from TBI. If confirmed

by others, through larger replicative studies, our plasma biomarkers may provide a basis for

considering targeted metabolomic assays for mTBI screening and post-injury monitoring in

future civilian and military clinical investigations.

Materials and methods

Study and protocol approvals

For the Athlete cohort participants, the Research Subjects Review Board at the University of

Rochester and Rochester Institute of Technology (Rochester) provided approval for human

subject participation, and all participants provided written informed consent prior to entering

the study. The Medstar Health Research Institute Institutional Review Board (IRB) approved

subject participation in the Washington Hospital Center (Washington) study, for individuals

providing signed informed consent. The University of Maryland Shock Trauma Center (Mary-

land), IRB provided approval for subject participation to consenting individuals. The Head-

quarters, US Army Medical Research Materials Command (Army) IRB approved participation

for individuals that signed informed consent documents. Finally, all the just described external

protocols and informed consent documents, as well as the comprehensive combined study

protocol were reviewed and approved by IRBs at Georgetown University (Georgetown) and

the University of California, Irvine (Irvine), as well as by the Department of Defense Human

Research Protection Office.

Study population

Our Athlete cohort (Athletes) represent a subset of 632 student participants in Division I and

III NCAA contact sports, entered between 2009 and 2014 under a single Rochester sports-

related mTBI protocol. Previously detailed [3], this protocol is briefly presented herein (Fig 1).

Participants were age-, gender-, and sports-matched with teammates who would function as

potential control subjects. A prior history of concussion was assessed in participating Athletes

(S1 Table), with all meeting criteria for normal cognitive function at their Preseason baseline

assessment. All Athletes underwent baseline blood sampling and cognitive testing prior to

their sports season (Preseason Athletes). All Athletes were followed prospectively during their

sport season (Season Athletes) and monitored for mTBI. For each mTBI case, a concussion

event was initially suspected by a certified athletic trainer who witnessed the injury and per-

formed an assessment of the subject with the aid of the Sport Concussion Assessment Tool 2

[14], and entered into the study protocol. At a later point, the final mTBI diagnosis was con-

firmed by a team physician using a multifaceted concussion protocol based on the most recent

criteria outlined in the consensus statement on concussion in sport [15]. Only subjects con-

firmed by the team physician to have sustained a mTBI were included as Season Athlete mTBI

cases for this study.

Season Athletes diagnosed with a mTBI underwent phlebotomy�6h post-injury, and then

serially at 2 days (2d), 3 days (3d), and 7 days (7d) post-injury, along with their matched NC

teammates who served as controls. Upon study completion, those Athletes with an mTBI diag-

nosis made during the Season were classified retrospectively as Preseason Athlete mTBI group,

while the Season NC subjects determined the Preseason NC group.

Our External cohort subjects provided TBI and NC specimens via three distinct clinical

groups participating in three unrelated and separate study protocols, allowing us to
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independently test any putative biomarker panel derived from the Athlete cohort. The acute

TBI subjects in the External cohort took part in one of two specific neuroimaging/TBI research

protocols evaluating emergency room (ER) subjects. The Washington External TBI study pro-

tocol originated from the Medstar Washington Hospital Center in Washington, DC, while the

Maryland External TBI protocol took place at the University of Maryland Shock Trauma Cen-

ter in Baltimore, MD. The Washington study design included blood specimens collected

within 48 hours of TBI. The Washington study featured subjects with mTBI, as well as moder-

ate or severe TBI. Blood specimens from the Maryland study were collected within 2 weeks of

injury from mTBI subjects as well as more severe TBI. All NC subjects included in the External

cohort were participants in an Department of Defense-sponsored investigation, from Fort

Carson, CO (ClinicalTrials.gov Identifier: NCT01925963), featuring military personnel

selected as controls for specific military TBI investigations, based on questionnaire responses

denying a history of head injury and/or previous abnormal neuroimaging studies.

Study procedures

We have published detailed methods regarding collection methods and metabolomic/lipido-

mic biomarker analyses related to preclinical Alzheimer’s dementia [16, 17] and exceptional

cognitive aging [18], using both untargeted and targeted metabolomic methods [19, 20]. The

current plasma analyses related to TBI utilized only untargeted metabolomic assessments,

except for the tandem mass spectrometry (MS/MS) [16, 21] used to confirm the final metabo-

lite panel.

Fig 1. College Athlete cohort–metabolomic biomarker study design. In the college athlete cohort (Athletes), the

mTBI (mild traumatic brain injury) and NC (non-concussed control) groups were definitively identified as a result of

longitudinal clinical assessment of study participants throughout their sports seasons. Identification of mTBI during

the Season allowed retrospective designation of group participants in the Preseason. Analytic timepoints following

mTBI occurrence are indicated as�6h =�6 hours; 2d = 2 days; 3d = 3 days; and 7d = 7 days.

https://doi.org/10.1371/journal.pone.0195318.g001
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Blood collection. For the Athletes (Fig 1), venous blood was obtained during a non-fasting

state in sterile tubes containing the anticoagulant ethylenediamine-tetraacetic acid (EDTA).

After thorough mixing, the tubes were placed on ice until centrifuged at 4˚C (3,000 rpm for 10

minutes), within 60 minutes from venipuncture. Isolated plasma was aliquoted and stored at

-80˚C. Selected frozen plasma aliquots were shipped on dry ice to Georgetown for further -80˚C

storage until all Athlete specimens underwent metabolomic processing and analysis in a single

batch. The External cohort collection protocols differed slightly from the Athlete cohort as a

result of their individual study designs. Venous blood specimens from the Washington and

Maryland studies were collected within EDTA tubes from non-fasting ER participants. After

thorough mixing, specimen tubes were immediately packaged in wet ice for same day transport

to Georgetown. For the Army study, fasting venous samples were collected in EDTA tubes from

NC subjects. Specimen tubes were thoroughly mixed and placed immediately in wet ice until

individually packaged with ice packs for overnight transport and delivery to Georgetown.

Unfrozen specimens shipped to Georgetown on ice for analysis that arrived>24 hours from

venipuncture, or without the ice or icepacks remaining cold, were rejected and not used. All

study specimens collected at Georgetown as part of this study were cataloged and either stored

immediately at -80˚C (if frozen plasma), or processed per our published protocol [16] (if EDTA

blood), with blood components isolated and stored at -80˚C until further analysis.

Metabolomic assays. The current plasma analyses were performed in the Metabolomics

Shared Resource at Georgetown, under the supervision of our co-author (AKC). Due to the dis-

parate timing of receipt of the Athlete and External cohort specimens, metabolomic analyses

were performed in two different batches, on different days, but using the same LC-MS equip-

ment. In brief, after sequential extraction [22], untargeted metabolomic profiling of all the

plasma specimens was carried out per our published protocol [16]. Metabolomic relative abun-

dance data output was provided in two electrospray ionization (ESI) modes (negative, NEG; or

positive, POS) for each analyzed sample with the analytic instrument set up to scan the 50–1200

m/z mass range for each ESI mode, for each plasma specimen in the data set. Each ESI mode typ-

ically provides up to 3500 unique m/z values. The MS raw data files are initially pre-processed

using the XCMS software [23, 24] (Scripps Institute, USA). The Excel output file produced is

populated with up to 3500 mode-specific m/z values (up to 7000 total) corresponding to putative

metabolites and their relative abundances within the sample. Whereas targeted metabolomic

approaches allow simultaneous detection and specific quantification of plasma metabolites in a

high-throughput manner [19, 20], with current limitations to between 200 and 400 species [25],

untargeted metabolomic approaches are, as described by others [26], semi-quantitative and

require additional analyses for absolute analyte identification and quantification.

Since there are currently no accepted TBI-specific metabolomic biomarkers, we elected to

analyze our Athlete and External cohort samples using the untargeted LC-MS approach (pro-

viding up to 7000 potential features for consideration). It is not uncommon for specimens run

in different analytic batches to provide slightly different sets of m/z features and relative abun-

dance values. Once putative metabolomic biomarkers are preliminarily annotated, they are

either validated or rejected using available or synthesized standards via tandem mass spec-

trometry (MS/MS) [21] run on randomly selected case and control specimens from the origi-

nal biomarker discovery cohort. Metabolites confirmed via MS/MS spectral matching are

considered fully validated to a high degree of confidence.

Outcome measures

The ability of our confirmed Athlete metabolomic biomarkers to classify mTBI cases from NC

was determined at four post-injury timepoints within the Athlete cohort, at�6h, 2d, 3d and

Metabolomic biomarkers for acute mild traumatic brain injury
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7d following mTBI. The ability of the metabolite panel developed in the Athlete cohort to be

generally relevant to mTBI (and TBI) diagnosis was tested in a separate, more diverse External

cohort of subjects featuring a more variable severity of TBI and post-injury assessment

timepoints.

Statistical analyses

General statistical analyses were conducted with IBM SPSS (v23 for Mac, IBM, Armonk, NY,

USA), and STATA/SE (v.11.2, StataCorp LP, College Station, TX, USA). Control and TBI

group comparisons of age within and between cohorts were performed using independent

sample t-tests. In addition to the previously mentioned software programs, we also took

advantage of the Social Science Statistics website (http://www.socscistatistics.com) calculators

to assist us with Chi-square (χ2) analyses for two groups. Cohort and group comparisons of

gender, TBI severity, and time from injury to blood draw were performed using χ2 testing. Sig-

nificance was for all statistical analyses considered at a level of p<0.05.

Preliminary metabolite annotation

Preliminary annotation (naming) of “relevant” m/z values from the total number of features

provided by the LC-MS instrument, were defined from metabolites listed within from the

Human Metabolome Database (http://www.hmdb.ca), the Metlin Database (http://metlin.

scripps.edu), and the Lipid Maps Database (http://www.lipidmaps.org), excluding common

drugs and non-human metabolites. We specifically included metabolite species featured

within the BIOCRATES AbsoluteIDQ1 p180 Kit (Biocrates Life Sciences AG, Innsbruck,

Austria), with which we have prior experience [16–18]. In this current untargeted analysis,

however, we attempted to match and preliminarily annotate m/z features with known metabo-

lites. To improve our preliminary annotation throughput for m/z values in the normalized

XCMS output files received from Georgetown, we developed a proprietary web-based applica-

tion, MSFMetabolomics (https://www.msfmetabolomics.com), that takes a formatted LC-MS

metabolomic dataset Excel file, performs stepwise best matching of database-derived monoiso-

topic mass values, and for each ESI mode in the dataset provides a preliminary annotation for

each respective m/z value. Best-matching using MSFMetabolomics is based on a user-defined

matching threshold value (e.g., 0.05 or 0.01) for an accepted variability from the monoisotopic

mass for the output m/z. The MSFMetabolomics output then generates a new Excel spread-

sheet data file, formatted like the original and containing all the same relevant data for a

reduced number of m/z features, but providing additional columns for each m/z that include

best-matched annotated name, HMDB ID, Pubchem ID, and monoisotopic mass. Preliminary

analytes identified are designated with the matched annotation name_ESI mode (e.g., Carnosi-

ne_N). Additional m/z values falling within the matching threshold of an already annotated

feature are flagged and listed on a separate tab of the same new spreadsheet. The m/z values

that are not annotatable via this best-matching approach are excluded from the new files,

thereby providing an initial data reduction to relevant features based on annotation. In the

current analytic process, this step significantly reduces the total number of preliminary anno-

tated features (and m/z values) for analysis from a theoretical maximum of ~3500 for each

mode to approximately 600 “relevant” annotated species.

Metabolomic biomarker development

Biomarker discovery and validation/replication analyses were carried out utilizing the logistic

regression (LR) and ROC AUC functions on the MetaboAnalyst 3.0 platform (http://www.

metaboanalyst.ca/faces/ModuleView.xhtml) [27] and other defined analytic methods [28–30].
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Input untargeted metabolomic data files, from two comparison groups, are uploaded to Meta-

boAnalyst 3.0 and undergo normalization using selected generalized logarithmic transforma-

tion and auto-scaling functions. Normalized data is then assessed within the Biomarker

Analysis module, where the Explorer function provides an automated identification of signifi-

cant preliminary annotated metabolites and assesses their classification performance in distin-

guishing the two data sets using a variety of multivariate models [31]. Specific algorithms, such

as linear support vector machine (Linear SVM) [32], partial least squares-discriminant analysis

(PLS-DA) [33], and random forests [34], are employed with the goal of maximizing ROC

AUC using the fewest number of preliminary metabolite species. The selected algorithms

within the MetaboAnalyst 3.0 platform provide a list (5–100) of significant features (variables)

in predictive models. From those predictive models the performance (i.e., ROC AUC; 95%

confidence interval, CI) for classifying the input phenotypic groups (e.g., cases versus controls)

are provided. Biomarker panel features selected via these three unbiased statistical/machine-

learning methods are then noted and tested separately for their ability to correctly classify the

same two phenotypic groups using the Tester function of MetaboAnalyst 3.0. Within the Tes-
ter, all individual analytes are provided in the analytic dataset for inclusion or exclusion from

the model, thereby providing the ability to define and refine biomarker panels originally

derived from the Explorer function, that maximize classification performance. The Tester func-

tion rank-lists all input metabolites according to individual ROC AUC classification values,

individual t-test, and fold change comparisons between the two groups being analyzed. The

Tester function also automatically provides relevant LASSO [35] frequencies (0%-100%) for

each metabolite, allowing a separate definition of an optimal LASSO-based analyte panel.

Finally, model performance using selected analytes is provided using the Linear SVM,

PLS-DA, random forests, and/or LR [36] algorithms. We planned comparisons of specific bio-

marker panel classifications between the entire Season Athlete�6h mTBI subjects and the Sea-

son Athlete NC subjects datasets (without splitting each into discovery and validation sets).

Comparison classifications would be defined via ROC AUC values (including 95% CI, sensitiv-

ity, and specificity) derived from a LR analysis for training/discovery, and using LR with

10-fold cross validation for internal validation [37]. The optimal preliminary annotated analyte

panels developed within the Athlete cohort would then undergo hypothesis-testing within the

External cohort, assessing the potential for external replication of the analyte panel(s). In addi-

tion, the�6h Athlete cohort metabolite findings will be tested for relevant classification accu-

racy at later timepoints during the first week following Season Athlete mTBI, to assess

classification applicability beyond the�6h post-mTBI timepoint. Hypothesis testing of Ath-

lete-derived biomarker panels in the External cohort would utilize LR analyses setting the null

hypothesis (H0) as no significant difference between External cohort TBI versus NC discovery

ROC AUC results and those from the Season Athlete�6h mTBI internal validation (LR+

10-fold cross validation ROC AUC) results. Additional H0 testing would carried out between

the Season Athlete mTBI versus NC discovery LR ROC AUC results at each first week time-

point (2d, 3d, and 7d) and the internal validation results for the Season Athlete�6h mTBI ver-

sus Season Athlete NC groups. The Hanley-McNeil test and resulting z-statistic [28] evaluated

the statistical differences between the two ROC AUC results to test H0, with comparisons

derived using the Clinical Research Calculator for assessing the Significance of the Difference

between the Areas under Two Independent ROC Curves (see Vassarstats.net).

To assess potential confounds associated with metabolomic datasets derived from different

batches, a Batch Effect Adjustment module within MetaboAnalyst 3.0 allows correction of dis-

similar data from otherwise similar data groups (i.e., containing both controls and cases). In

our study, the two datasets tested for batch effects included the Athlete cohort, for discovery/

internal validation, and External cohort, for replication [29]. Batch-corrected data is produced
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for each of the two datasets and allows repeat comparisons of ROC AUC results that would

indicate batch-attributable differences.

Results

Subject characteristics

Demographic details and comparisons regarding the Athlete and External cohort participants

are provided in Table 1. The Athlete cohort consisted of 62 subjects, including 38 that sus-

tained a mTBI and 24 that were matched as NC. During the Preseason, 38 Athletes were desig-

nated retrospectively as being in the mTBI group while 24 were categorized as NC, providing

specimens for comparative analysis. The Season Athletes, at the�6h timepoint, featured 27

mTBI and 24 matched NC subjects providing analytic specimens. For Season Athlete mTBI at

2d, 3d, and 7d following injury, a total of 34, 32, and 37 subjects provided specimens, respec-

tively, while only 4 Season Athlete NC subjects provided specimens at each of the 2d, 3d, and

7d timepoints. The Athlete cohort represented those participating in basketball (n = 6), football

(n = 22), ice hockey (n = 4), lacrosse (n = 4), and soccer (n = 26), with only ice hockey not pro-

viding matched NC subjects to those sustaining mTBI. From the Athlete participants a total of

228 plasma specimens were obtained and analyzed, including from a single Preseason and

four Season timepoints. A total of 84 subjects provided single specimens for the External

cohort, including 31 TBI and 53 NC subjects. The Athlete and External cohorts featured signif-

icant between-cohort differences in age for their case and control groups (p<0.05, 2-tailed

independent t-test), with both Athlete cohort groups being younger than the respective Exter-

nal cohort groups by approximately 8 years (Table 1). There were no significant age differ-

ences between Athlete mTBI and Athlete NC subjects, or between External TBI and External

NC subjects. There were also no significant sex differences between the two cohorts, with the

Athlete cohort consisting of 31 females and 31 males and the External cohort consisting of 34

females and 50 males. While there were no significant sex differences within the Athlete mTBI,

the Athlete NC, and External NC groups, significantly more males than females were repre-

sented in the External cohort TBI group (χ2 = 14.23; p<0.05). Sex comparisons between Ath-

lete mTBI and External TBI groups, as a result, showed a significant difference (χ2 = 5.44; p

<0.05). No significant sex differences were noted between Athlete NC and External NC sub-

jects. Injury severity was significantly different between the Athlete and External cohorts (χ2�

13.18; p<0.05), where all 38 injured Athletes had sustained a mTBI (by study definition),

while of the 31 External cohort TBI subjects, 20 (65%) were classified as having a mTBI, and 11

(35%) as more severe brain injuries (Table 2). Finally, the mean time to blood draw was signif-

icantly different between the Athlete TBI group used for biomarker discovery (Season Athlete

�6h mTBI group) and that noted for the External cohort TBI subjects (χ2� 44.30; p<0.05)

(Table 2).

Table 1. Collegiate Athlete cohort and external validation cohort demographics.

Cohorts (n) Athlete (62) External (84)

Groups (n) mTBI (38) NC (24) TBI-Washington (22) TBI-Maryland (9) NC-Army (53)

Male/Female (n)/(n) 22/16 9/15 18/4 8/1 24/29

Age Range/Mean Age (years) 18.0–22.9/19.2 18.0–21.6/18.7 19.0–35.0/27.3 19.0–35.0/26.8 18.0–35.0/27.7

Mean Age (years) Male/Female 19.3/19.1 18.6/18.8 27.8/25.0 26.3/31.0 26.1/27.7

Group Type College Athlete College Athlete Civilian ER Civilian ER Military

Athlete = college athlete cohort. TBI = traumatic brain injury; mTBI = mild TBI; NC = non-concussed controls; Washington = Washington Hospital Center;

Maryland = University of Maryland Shock Trauma Center; Army = NORMAL study; ER = emergency room.

https://doi.org/10.1371/journal.pone.0195318.t001
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Discovery and internal validation of Athlete cohort biomarker panels

Examination of total ion chromatograms (TICs) showed a near perfect overlay (S1 and S2

Files), with minimal drift in retention times in both ESI modes for the Athlete cohort discov-

ery and internal validation analytic sets. The coefficient of variation (CV) for the internal stan-

dards used in the analyses was <15%. The mass accuracy was within 7 parts per million (ppm)

over the mass range of 50–1200 Daltons throughout the batch acquisition.

An untargeted metabolomics analysis of the Season Athlete�6h mTBI and NC subject

groups provided a total of 2811 distinct XCMS m/z features for consideration in the biomarker

analyses, with 1422 from the NEG mode and 1389 from the POS mode. Preliminary annota-

tion of the NEG and POS mode data with MSFMetabolomics resulted in a reduction to 294

annotated metabolite species, with 82 and 212 from the NEG and POS modes, respectively. An

initial comparison of the Preseason Athlete NC and mTBI groups, utilizing all 294 metabolite

species, confirmed that there were no significant analyte differences between the groups, using

each of the three different multivariate analytic approaches that provided ROC AUC results of

~0.50 (Fig 2A–2C). This confirmed the initial metabolomic similarity between the Preseason

Athlete groups. Using the same analytic algorithms, similar ROC AUC results (Fig 2A–2C)

were determined when evaluating specimens from the Season Athlete�6h NC subjects

(n = 24) and those from the combined Season Athlete NC subjects (n = 12) at the 2d, 3d, and

7d timepoints (data not shown). The lack of major metabolite differences between the Season

NC timepoints supported their combination into a single Season Athlete NC group (n = 36)

for comparison with Season Athlete mTBI subjects at each of the post injury timepoints (�6h,

2d, 3d, and 7d).

Group differences did exist, however, between the Preseason Athlete NC and the Season

Athlete NC (combined�6h, 2d, 3d, 7d) groups (Fig 2D–2F), with similar results when com-

paring the Preseason Athlete mTBI and the Season Athlete mTBI groups (data not shown),

with the latter group tested at each of the post-injury timepoints (�6h, 2d, 3d, 7d). We have

yet to confirm an explanation for the apparent differences between Preseason and Season Ath-

lete plasma metabolite differences noted between NC and mTBI groups. We reasoned, how-

ever, that such differences necessitated our comparison of only metabolites from Season

Athlete mTBI and NC subjects and exclude those from the Preseason in our biomarker devel-

opment process.

The initial number of Athlete cohort mTBI analytes (variables) selected for testing in our

classification algorithms was based on our previous experiences [16–18]. We decided, a priori,
to initially include the top ten (10) analytes provided by the discovery feature selection process.

Within this investigation, we had noted that top 10 variables had provided adequate estimates

of the top multivariate AUC result, provided by between 5 and 100 variables (Fig 2A, 2C, 2E

and 2F). Refinement of the number of variables (metabolites) to include and test in a final clas-

sification model would be made as necessary. Within the Athlete cohort discovery dataset,

Table 2. External validation cohort—TBI severity and time to blood draw.

mTBI mTBI� Moderate TBI Moderate TBI� Severe TBI

TBI-Washington (n) 13 3 2 2 2

Mean time to blood draw (hrs. ± SEM) 15.7±2.8 13.4±3.2 32.9±8.5 34.4±4.6 23.9±11.0

TBI-Maryland (n) 7 2

Mean time to blood draw (hrs. ± SEM) 126.9±33.0 204.0±12.0

TBI = traumatic brain injury. mTBI = mild TBI. Washington = Washington Hospital Center. SEM = standard error of the mean. Maryland = University of Maryland

Shock Trauma Center. mTBI� or TBI� = With MRI abnormality present.

https://doi.org/10.1371/journal.pone.0195318.t002
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therefore, we sought to discover an optimal metabolite panel using consistent and conservative

statistical and machine learning approaches for feature selection. The feature selection meth-

ods used included LASSO and five other approaches to develop six distinct preliminary panels

(S2 Table). Application of the six panels within the MetaboAnalyst 3.0 Tester, and deriving

LR-based ROC AUC results for comparison indicated in the S2 Table (shaded cells) that the

best discovery and internal validation results were provided by the Linear SVM and LASSO

feature selection methods. Both models consisted of 10 metabolite panels that provided supe-

rior training/discovery ROC AUC results. With nearly identical classification results, both of

these derived 10-metabolite panels were then tested on the preliminarily annotated External

cohort samples, to examine their potential for classifying the TBI from NC groups. The

remaining panels were excluded from further consideration.

Attempted matching of preliminary annotations from the Athlete cohort Linear SVM- and

LASSO-derived 10-metabolite panels to similar metabolites in the External cohort resulted in

an incomplete match, with only six of ten Linear SVM metabolites common to both cohorts,

and only eight of ten from the LASSO panel (Table 3). Both original Linear SVM and LASSO

panels featured primarily lipid species.

Retesting the ability of common analyte panels (Linear SVM 6 and LASSO 8) to classify

groups in the original Athlete cohort discovery datasets (Season Athlete�6h mTBI versus Sea-

son Athlete NC) provided comparable discovery and internal validation results to those

obtained with the original 10-member panels (Table 4).

Replication of biomarker panels in an external cohort are confirmed. The External

cohort specimens provided a total of 2518 distinct m/z features for biomarker analysis, with

Fig 2. Athlete cohort preliminary multivariate ROC AUC analysis plots. Example college athlete cohort (Athletes)

receiver operating characteristic (ROC) area under the curve (AUC) analysis results from the MetaboAnalyst 3.0

Explorer function of Biomarker Analysis module, with plots of sensitivity (y-axis) and 1-specificity (x-axis). In A-C, the

plots indicate no significant difference between the CAC Preseason mild traumatic brain injury (mTBI) and non-

concussed subjects (NCS) groups using either (i) Linear support vector machine (SVM), (ii) partial least squares

discriminant analysis (PLS-DA), or (iii) random forests methods. ROC AUC values in all three analyses are ~ 0.5. The

legend at lower right of each graph indicates AUC and 95% confidence interval (CI) values for derived models using

5–100 analytes (Var.). Plots D-F provide examples of more significant differences between comparison groups, such as

between Athlete Preseason NC (non-concussed teammate controls) and the Season NC groups, using the same

analytic methods as A-C, but with ROC AUC results ranging from about 0.70 to 0.86.

https://doi.org/10.1371/journal.pone.0195318.g002
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1221 in NEG mode and 1297 in POS mode. Preliminary annotation using MSFMetabolomics
resulted in data reduction to a total of 435 (206 NEG and 229 POS) metabolites for biomarker

testing. While differences in Athlete and External cohort demographics, injury severity, time

to blood draw, and separate batch processing clearly raised the probability for discrepant

group classification results between the cohorts, we did not find this to be the case. Within the

External cohort dataset we tested whether to accept or reject the H0, that no significant differ-

ences existed using either of the two common biomarker panels (Linear SVM 6 or LASSO 8),

when comparing the Athlete cohort internal validation results and External cohort’s replica-

tion results, as in Table 4 (shaded cells). No statistical difference in ROC AUC results is noted

when direct comparisons are made using the Hanley-McNeil Test [28], displayed in Table 4

(far right column). By accepting the H0, therefore, the classification capability of both prelimi-

nary biomarker panels met criteria for external replication, despite the previously defined dif-

ferences between the two cohorts.

Biomarkers are confirmed using tandem mass spectrometry in both

cohorts

The final confirmation of the molecular identities for metabolites originating from the Linear

SVM 6 and LASSO 8 panels, common to both Athlete and External cohorts, was undertaken

via MS/MS. Of the original 13 distinct metabolites in the two combined panels (one was com-

mon to both), six metabolite species received confirmatory annotation via MS/MS (Table 5).

The specific MS/MS fragmentation pattern for each of the six metabolites (S3 File) were com-

pared and confirmed with those of spectra from available standards within the Human Meta-

bolome or Lipid Maps databases, as we previously reported [38]. Comparison of the final MS/

MS 6 panel with the previous preliminary panels disclosed only a slight loss of classification

accuracy in the Athlete cohort and maintenance of replication within the External cohort, as

noted in Table 4 (bottom row). The MS/MS 6 mTBI-derived metabolite panel, therefore, is

confirmed under discovery, internal validation, and external replication conditions using two

independent subject cohorts.

Table 3. Discrepant best preliminary analyte panels between athlete and external cohorts.

Linear SVM 10 LASSO 10

LysoPI a C20:5_N 13-HODE_N

PS aa C42:6_N LysoPA a C22:6_P

13-HODE_N DAG aa C33:2_P

FA C18:0_N PG ae C33:3_P

AC16:2_P LysoPC a C20:4_P

FA 2-OH C16:0_N PC ae C34:4_N

LysoPA a C16:0_N TUDCA_N

LysoPA a C15:1_N FA C28:7 n-6_P

Asparagine_N PE ae C36:4_N

Carnosine_ N PE aa C38:6_N

Shaded cells indicate preliminary annotated analytes common to both Athlete and External cohorts from the original

10-metabolite panels derived using Linear SVM and LASSO feature selection. SVM = support vector machine.

LASSO = least absolute shrinkage and selection operator. AC = acylcarnitine. DG = diacylglycerol. FA = fatty acid.

LysoPA = lysophosphatidic acid. LysoPC = lysophosphatidylcholine. LysoPI = lysophosphatidylinositol. PC =

phosphatidylcholine. PE = phosphatidylethanolamine. PS = phosphatidylserine. TUDCA = tauroursodeoxycholic

acid. HODE = hydroxyoctadecadienoic acid. Note that 13-HODE_N is present in both original panels.

https://doi.org/10.1371/journal.pone.0195318.t003
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Validated panel possibly useful with more severe TBI and in delayed mTBI diagnosis

during the first week following injury. Interestingly, we found evidence that the ability to

classify the TBI from NC groups using the MS/MS 6 panel is not significantly different

Table 4. Comparison of unmatched and matched biomarker panel results between Athlete and external cohorts.

Feature Selection

Method

Number of analytes in

panel (n)

Athlete Cohort Training/

Discovery

ROC AUC

(95%CI)

(sens/spec)

Athlete Cohort

Internal Validation

ROC AUC

(95% CI)

(sens/spec)

External Cohort

Replication

ROC AUC

(95% CI) (sens/spec)

Hanley- McNeil Test

Results

(z, p)

Linear SVM 10 0.976

(0.965–0.988) (0.778/1.00)

0.864

(0.750–0.978) (0.815/

0.917)

6 0.913

(0.888–0.938) (0.835/0.907)

0.851

(0.745–0.957) (0.815/

0.861)

0.830

(0.798–0.861)

(0.817/0.715)

0.293, 0.770

LASSO 10 0.974

(0.963–0.985)

(0.663/1.00)

0.865

(0.771–0.960)

(0.704/0.944)

8 0.948

(0.930–0.965)

(0.852/0.914)

0.848

(0.746–0.949)

(0.741/0.861)

0.811

(0.781–0.841)

(0.778/0.686)

0.502, 0.616

MS/MS 6 0.847

(0.815–0.879) (0.770/0.784)

0.791

(0.677–0.905) (0.741/

0.778)

0.738

(0.703–0.773) (0.695/

0.644)

0.633, 0.527

Shaded areas highlight same row comparison group results used to test the null hypothesis (H0) via the Hanley-McNeal Test, that no significant difference exist between

CAC and EVC ROC AUC results. Training/Discovery = uses logistic regression analysis. CI = confidence interval. ROC AUC = receiver operating characteristic area

under the curve. sens/spec = sensitivity/specificity. Internal Validation = uses logistic regression with 10-fold cross validation analysis. Replication = uses logistic

regression analysis, similar to Training/Discovery. MS/MS = preliminary metabolites from Linear SVM 6 and LASSO 8 panels definitively confirmed using tandem

mass spectroscopy (MS/MS). z = Hanley-McNeil Test statistic. p = 2-tailed level of significance. Statistical significance considered if p <0.05.

https://doi.org/10.1371/journal.pone.0195318.t004

Table 5. Final MS/MS-confirmed biomarker panel analyte details.

Analyte FA 2-OH C16:0 FA C18:0 TUDCA PE ae C36:4 PE aa C38:6 LysoPC a C20:4

Other Name 2-hydroxypalmitic acid;

2-hydroxy-hexadecanoic

acid

Stearic acid;

Octadecanoic acid

Tauroursodeoxy-

cholic Acid

PE (P-16:0/20:4);

Phosphatidylethanolamine

Plasmalogen

PE (16:0/22:6);

Diacyl-Phosphatidyl-

ethanolamine

PC (20:4/0:0); Lyso-

phosphatidylcholine

ESI Mode NEG NEG NEG NEG NEG POS

Level With TBI Down Up Down Up Down Up

m/z value 271.2266 283.2629 498.2936 722.513 762.5081 544.3411

Monoisotopic

mass value

272.235 284.272 499.2968 723.5203 763.5152 543.3325

Pubchem ID 92836 5281 9848818 52925126 9546799 24779476

HMDB ID HMDB31057 HMDB00827 HMDB00874 HMDB11352

HMDB11353

HMDB08946 HMDB10395

LM ID LMFA01050047 LMFA01010018 LMST05040015 LMGP02030093 LMGP02010095 LMGP01050048

Biomarkers derived from the Athlete cohort and replicated in the External cohort. MS/MS = tandem mass spectrometry. FA = fatty acid. Phospholipid designations

include: typically, ae = ether bond (e) at sn1 position and ester acyl bond (a) at sn2 position. Ether bonds are either alkyl (ether, O-) or alkenyl (plasmalogen, P-). Lipid

species nomenclature features C (number of carbons):(number of double bonds). Phospholipids feature glycerol conjugated fatty acyl, alkyl, or alkenyl species

designated to sn1/sn2 positions (e.g., C16:0(sn1)/22:6(sn2)). ESI = electrospray ionization mode. TBI = traumatic brain injury. m/z = mass/charge. HMDB ID = The

Human Metabolome Database identification (www.hmdb.ca). Pubchem ID = Open Chemistry Database identification (https://pubchem.ncbi.nlm.nih.gov/). LM ID =

Lipid Maps Lipidomics Gateway identification (www.lipidmaps.org).

https://doi.org/10.1371/journal.pone.0195318.t005
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between the Athlete cohort mTBI cases and the External cohort TBI cases despite the latter fea-

turing more complex/severe injuries (S3 Table). We extended our assessment of the Athlete-

derived preliminary and MS/MS-confirmed biomarker panels to include the first week follow-

ing mTBI (S4 Table), again testing the H0, regarding whether biomarker panel provided simi-

lar classification results at the 2d, 3d, and 7d timepoints following mTBI as was originally

provided at the at the�6h timepoint. For the two preliminary and the final MS/MS confirmed

biomarker panels tested, there were no significant classification differences noted during the

Season Athlete group’s first week timepoints, based on Hanley-McNeil analyses. Semi-quanti-

tative relative value (RV) plots for the six MS/MS-confirmed metabolites (S1 Fig) in Season

Athletes over the first week following mTBI show no significant individual differences.

Batch correction does not significantly alter discovery/internal validation and replica-

tion results. Assessing the Athlete cohort (�6h mTBI versus Season NC) and the External

cohort (TBI versus NC) data, prior to and following Batch Correction, provide evidence via

principal component analyses (PCA) (S2 Fig) of differences between the two cohorts that can

be ameliorated via the data adjustment. When assessing semi-quantitative RV plots for the two

cohorts, from before and after Batch Correction, the varying abundances between the same

metabolites in the two cohorts prior to Batch Correction (S3A and S3B Fig) are appreciated.

As a result of the Batch Correction Adjustment (S3C and S3D Fig) there is a noticeable

improvement in the comparability of the metabolite abundance data, while not eliminating

specific cohort differences (as previously described). A repeat ROC AUC analysis for discov-

ery, internal validation, and external replication, before and after the Batch Correction Adjust-

ment (S5 Table) indicates no significant differences in ROC AUC results for each of the

preliminary biomarker panels and for the final MS/MS 6 panel.

Discussion

The alterations of certain measurable blood proteins continue to receive the major focus of

experimental and clinical TBI biomarker research since the 1980s [39–50], despite their kinet-

ics of expression [51] making them difficult (moving targets) to develop as reliable diagnostics.

Additional limitations to relevant blood-based proteomic assay development include a combi-

nation of inherent (genetic, etc.) and technical (collection and processing) variabilities [52,

53], as well as constraints related to assay-imposed detection limits. With some recent excep-

tions, these factors continue to provide significant constraints on the development of proteo-

mic-based TBI diagnostics, especially for mTBI.

Reliable, objective, minimally invasive biomarkers for mTBI would be immediately impact-

ful to the practice of civilian and military medicine. The objective diagnosis of mTBI would

enable earlier and more specific treatment options to be considered and initiated. Likewise,

novel mTBI biosignatures might permit serial monitoring of individuals during their recovery,

affording healthcare providers objective evidence of recuperation, in support of return-to-play

(or return-to-fight) determinations [6, 7] or may herald impending post-concussive sequelae

[54] requiring additional treatment or monitoring. The latter clinical distinctions are more rel-

evant today than ever, as we better appreciate the consequences of multiple concussive [55]

and subconcussive [56] injuries in the etiopathogenesis of the neurological consequences that

may follow mTBI.

The biomarker discovery methods chosen for our study took advantage of closely matched

teammates within the Athlete cohort in attempting to differentiate potential metabolomic dif-

ferences directly related to mTBI. The total number of subjects used in our Athlete cohort’s

discovery group (Season Athlete�6h mTBI and NCS subjects) was projected a priori to pro-

vide adequate power for a classification ROC AUC of 0.70 at the .05 significance level. In
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actuality, the Athlete cohort internal validation ROC AUC result of nearly 0.80 exceeded those

projections. At the discovery phase of biomarker identification, there is always the potential

that a discovered biomarker panel is overfit to the particular discovery cohort used to generate

it. In our study, such overfitting is less likely since to the same biomarker panel provides com-

parable classification, as displayed in Table 4 (bottom row), in an independent External cohort

which features subjects with different age, severity of injury, and time to blood draw, and with

specimens run in a different batch from those for the discovery (Athlete) cohort.

Our metabolomic results support those of others [13], adding to evidence that mTBI-

related alterations in specific blood metabolite abundances occur early and may persist during

the first week following injury. Case/control classification during the first week following

mTBI using metabolomic biomarkers may increase the accuracy and rapidity of diagnosis,

may influence therapeutic choices, and based on specific metabolites [13] may offer prognostic

significance. Important oxidative changes are known to occur within minutes to hours follow-

ing mTBI in the brains of rodents [57] and humans [58], and have also been reflected in the

periphery [59]. Systemic molecular species that may mirror brain lipid peroxidation and anti-

oxidant levels following experimental TBI, however, have typically recovered to baseline after

48 hours [58, 59]. Orešič and colleagues [13], however, have reported elevations in two

medium chain fatty acids (C8 and C10) during the first week following moderate and severe

TBI. While three metabolites in our confirmed plasma biomarker panel show elevated relative

abundance values (Table 5, S1 Fig, and S3A and S3C Fig) at the Season Athlete mTBI�6h

timepoint compared to NC, there are slight abundance discrepancies within the External

cohort (S3B and S3D Fig). The remaining three MS/MS-confirmed metabolites express reduc-

tions in abundances following mTBI in our Season Athletes. Although similar metabolite alter-

ations in CSF might pose a less daunting interpretation, our confirmed biomarkers might

represent either CNS-specific and/or non-CNS expressions following at least an mTBI. Addi-

tional investigations beyond this current study are required to confirm whether our biomarker

panel reflects confounds associated with non-CNS trauma. The addition of non-CNS injury

controls (i.e. orthopedic injuries) has been effectively utilized [13], and will be essential to a

more complete interpretation of our metabolomic results in future investigations. Despite this

limitation of our current study, we are encouraged by the fact that the Season Athlete NC sub-

jects were otherwise closely matched to their Season Athlete mTBI teammates, enduring simi-

lar sport-related workouts and sustaining comparable non-CNS trauma during their sports

season. The latter allows us to suggest, therefore, that metabolomic differences between the

groups of teammates are more than likely related to the mTBI than other group differences.

The extended classification applicability of our Athlete mTBI metabolite panel during the first

week following injury needs further replication with larger numbers of subjects. Larger sample

sizes at all timepoints following mTBI will help clarify specific metabolite fluctuations sug-

gested by our proposed biomarkers (S1 Fig) during the first week following injury. Interest-

ingly, the MS/MS 6 panel provided similar classification in the External cohort for TBI and

NC subjects, despite the varying injury severity and assessments at more variable and pro-

longed post-injury timepoints.

Despite having an unconfirmed CNS origin, our six plasma biomarkers (Table 5) appear

causally and temporally associated with mTBI. The metabolite 2-hydroxypalmitate, for exam-

ple, is typically generated by fatty acid 2-hydroxylase (FA2H) [60], either in association with α-

oxidation of odd-chain fatty acids [61] or in generating the 2-hydroxy fatty acids for incorpo-

ration into sphingolipids [62], including myelin. Since galactosylceramide and sulfatide com-

prise approximately 25% of myelin lipids [63], and more than 50% of these sphingolipids in

myelin feature 2-hydroxylated fatty acids [64], reduced levels in plasma may indicate post-

injury flux into the CNS [17, 65], possibly in an attempt to repair white matter injuries
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commonly associated with mTBI [66]. Palmitic acid (palmitate) is the most common saturated

fatty acid in human plasma [67]. Stearic acid, the second most common saturated fatty acid in

human plasma [67] is known to increase in rodent brain following a controlled cortical impact

with blood-brain-barrier disruption [68], and could consequently be elevated in blood plasma

following TBI. Sphingolipids [10] and medium-chain fatty acids [13] have been reported to

increase in blood following TBI and stroke, with the fatty acid species possibly reflecting mito-

chondrial failure associated with TBI [12]. The taurine conjugated bile acid, tauroursodeoxy-

cholic acid (TUDCA), has been shown to be neuroprotective in humans through the

prevention of apoptosis and other pathobiologic cascades in a variety of human neurological

disorders, including TBI [69]. Decreased plasma levels of TUDCA, therefore, could possibly be

associated with more detrimental effects following mTBI, although the mechanism associated

with the observed reduction is yet to be defined. Brain glycerophospholipids typically have

unsaturated or monounsaturated 16 or 18 carbon fatty acids (or fatty alcohols) at the sn-1 posi-

tion [70], as in our panel’s two phosphatidylethanolamines (PEs). The sn-2 position, especially

in plasmalogens (e.g., our P-16:0 species) usually features either arachidonic acid (AA, C20:4)

or docosahexaenoic acid (DHA; C22:6), providing a pool of second messenger precursors for

release from membrane phospholipid pool via phospholipase A2 (PLA2), especially in cortical

gray matter [71]. Altered levels of our two PE species have been previously reported in rodent

plasma up to 3 months following TBI [72], possibly in association with persistent generation

of brain AA- and DHA-derived second messengers. Finally, in experimental brain trauma,

lysophosphatidylcholine (lysoPC) levels are known to increase above normal levels in CSF for

up to 6 days following TBI [73], primarily as a result of PLA2 activation. In plasma, however,

lysoPCs are used to transport polyunsaturated fatty acids (PUFAs) to various tissues (including

brain) [74]. Elevations in plasma lysoPCs containing AA, as in our study, might reflect a com-

pensatory response to increased demand for AA membrane precursors as a result of TBI and

the enzymatic or oxidative removal of such a PUFA from the brain’s Lands’ Cycle [75, 76].

Alternatively this observation could reflect abnormalities in the concussed brain’s ability to

take up such lysoPC species from blood, as has been associated in some humans the carrying

apolipoprotein E ε4 allele [77]. Determining the underlying mechanisms responsible for our

specific plasma biomarkers (and those of others investigators) may ultimately reflect on spe-

cific pathobiologic mechanisms associated with mTBI.

The presence of plasma metabolite signals that accurately classify mTBI from NC subjects

may help spur the development of next generation metabolomic technologies that are no lon-

ger dependent on MS (or NMR). Parallel novel diagnostic tools are currently being advanced

for a number of TBI-associated proteomic biomarkers [78]. Such efforts are likely to portend

point-of-service (POS) products capable of rapid, objective mTBI diagnosis in the ER, the

sports field, and the battlefield. We anticipate advancing our mTBI metabolomic investigations

to assess the CNS-specificity of our confirmed biomarkers in other mTBI cohorts while explor-

ing novel diagnostic technologies.

Supporting information

S1 Fig. MS/MS-confirmed metabolite panel fluctuations over first week following mild

traumatic brain injury in the athlete cohort. Individual mean metabolite relative values

(RVs) ± SEM for Athlete NC and mTBI timepoints (�6h, 2d, 3d, 7d) are plotted for each of

the MS/MS confirmed metabolites. No statistically significant changes from NC values are

noted for each metabolite, despite some fluctuations. NC = non-concussed controls.

SEM = standard error of the mean. MS/MS = tandem mass spectrometry.

(TIF)
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S2 Fig. Principal component analysis plots of athlete and external cohort datasets before

and after batch correction adjustment. Note the dense clustering of Athlete cohort data in

PC1 prior to Batch Correction (left) compared to after (right). Both Athlete and External

cohorts appear more evenly distributed based on PC2, before and after adjustment. Although

the Athlete and External cohort data overlap is improved with the Adjustment, the datasets

continue to show differences.

(TIF)

S3 Fig. Pre- and post-batch correction relative abundances for the MS/MS-confirmed bio-

markers. Mean relative values (RVs) ± SEM for NC and mTBI groups in the Athlete cohort at

the�6h timepoint (A & C) and for the External cohort TBI and NC groups (B & D) are pre-

sented for each of the MS/MS-confirmed 6 plasma biomarkers. Note the relative improvement

in quantitative comparability of metabolite RVs in both cohorts following Batch Correction (A

vs. B; C vs. D). The individual analyte relative value (RV) differences did not reach statistical

significance between the NC and mTBI (or TBI) groups, before or following batch correction.

NC = non-concussed controls. TBI = traumatic brain injury. mTBI = mild TBI.

SEM = standard error of the mean. MS/MS = tandem mass spectrometry.

(TIF)

S1 File. Quality Control (QC) total ion chromatogram–negative mode. Athlete cohort dis-

covery/internal validation specimen set. Note the complete QC pool overlay, and apparent

consistency across all QCs.

(PDF)

S2 File. Quality Control (QC) total ion chromatogram–positive mode. Athlete cohort dis-

covery/internal validation specimen set. Note the complete QC pool overlay, and apparent

consistency across all QCs.

(PDF)

S3 File. The specific fragmentation spectra for each of the six MS/MS-confirmed metabo-

lites. These six fragmentation spectra obtained from discovery specimens were matched with

those known standards within the Human Metabolome or Lipid Maps Databases, using stan-

dard methods [38]. The six included spectra, therefore, confirmed our 6-metabolite panel that

was discovered and internally validated within the Athlete cohort and replicated in the Exter-

nal cohort.

(PDF)

S1 Table. Athlete cohort—prior history of traumatic brain injury. mTBI = mild traumatic

brain injury. NC = non-concussed teammate control.

(DOCX)

S2 Table. Athlete cohort analysis using six feature selection-derived models. Shaded areas

indicate models with best results when comparing ROC AUC values using various feature

selection methods in the Athlete cohort. LR = logistic regression. CI = confidence interval.

ROC = receiver operating characteristic. AUC = area under the curve. sens/spec = sensitivity/

specificity. SVM = support vector machine. PLS-DA = partial least squares-discriminant anal-

ysis. LASSO = least absolute shrinkage and selection operator. Targeted 1 = selected based on

highest-ranking metabolites AUC values in the Tester for analytes included in Biocrates Abso-
luteIDQ1 p180 Kit. Targeted 2 = selected based on the highest-ranking lipid AUC values in

the Tester for analytes included in Biocrates AbsoluteIDQ1 p180 Kit.

(DOCX)
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S3 Table. MS/MS 6 panel classification accuracy for the TBI severity groups. Gray shaded

area depicts comparison Season Athlete�6h internal validation values for testing the null

hypothesis on External cohort Replication ROC AUC results from each of the mTBI and

>mTBI groups. CI = confidence interval. MS/MS 6 = Final six metabolite panel confirmed via

tandem mass spectrometry (MS/MS). ROC = receiver operating characteristic. AUC = area

under the curve. sens/spec = sensitivity/specificity. Training/Discovery = uses logistic regres-

sion analysis. Internal Validation = uses logistic regression with 10-fold cross validation anal-

ysis. Replication = uses logistic regression analysis. NC = non-concussed controls. mTBI =

mild traumatic brain injury. >mTBI = TBI noted to be worse than mTBI, including mTBI

with abnormal MRI, moderate TBI, or severe TBI. �No statistically significant difference when

compared to shaded value in same row, via Hanley-McNeil test. Statistical significance consid-

ered if p<0.05.

(DOCX)

S4 Table. Biomarker panel classification in the athlete cohort at�6h, 2 days, 3 days, and 7

days after mTBI. Gray shaded areas depict comparison Athlete cohort mTBI and NC�6h

timepoint comparisons for testing the null hypothesis with other Athlete cohort first week

timepoints (2 day, 3 day, and 7 day). Training/Discovery = uses logistic regression analysis.

mTBI = mild traumatic brain injury. NC = non-concussed teammate controls. CI = confi-

dence interval. SVM = support vector machine. LASSO = least absolute shrinkage and selec-

tion operator. Internal Validation = uses logistic regression with 10-fold cross validation

analysis. Replication = uses logistic regression analysis. ROC AUC = receiver operating char-

acteristic area under the curve. sens/spec = sensitivity/specificity. MS/MS 6 = final metabolite

panel confirmed via tandem mass spectrometry (MS/MS). �No statistically significant differ-

ence in ROC AUC values when compared to shaded values in same row, per Hanley-McNeil

test. Statistical significance considered if p<0.05.

(DOCX)

S5 Table. Classification comparisons of preliminary and final biomarker panels between

athlete and external cohorts, without and with batch correction adjustment. Gray shaded

areas depict comparison values, within the same row, for testing the null hypothesis via Han-

ley-McNeil test between the Athlete and External cohort ROC AUC results. ROC AUC =

receiver operating characteristic area under the curve. SVM = support vector machine.

LASSO = least absolute shrinkage and selection operator. sens/spec = sensitivity/specificity.

Training/Discovery = uses logistic regression analysis. Internal Validation = uses logistic

regression with 10-fold cross validation analysis. Replication = uses logistic regression analy-

sis. z = Hanley-McNeil statistic. p = 2-tailed level of significance. MS/MS = Resulting 6 metab-

olites confirmed via tandem mass spectrometry (MS/MS). Statistical significance considered if

p<0.05.

(DOCX)
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