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Summary. Multiresolution methods are a common technique used for dealing with
large-scale data and representing it at multiple levels of detail. We present a mul-
tiresolution hierarchy construction based on 3/2 subdivision, which has all the
advantages of a regular data organization scheme while reducing the drawback of
coarse granularity. The {/2-subdivision scheme only doubles the number of vertices
in each subdivision step regardless of dimension n. We describe the construction of
2D, 3D, and 4D hierarchies representing surfaces, volume data, and time-varying
volume data, respectively. The 4D approach supports spatial and temporal scala-
bility. For high-quality data approximation on each level of detail, we use down-
sampling filters based on n-variate B-spline wavelets. We present a B-spline wavelet
lifting scheme for {/2-subdivision steps to obtain small or narrow filters. Narrow
filters support adaptive refinement and out-of-core data exploration techniques.

1 Introduction

Due to substantial improvements in computing power and storage capacity
over the last decade, today’s data-intensive applications are generating huge
amounts of data in shorter and shorter time frames. Downsampling can be
used to reduce the data to a manageable amount. The reduced data can be
examined by scientists to identify regions of interest, for which more detailed
exploration should be applied. Rendering and visualization applications must
deal with large data sets and their representation at multiple levels of detail.

Multiresolution methods for curves and surfaces are widely used in com-
puter graphics [13]. Representing volume data hierarchically is important in
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the context of “volume modeling” and visualization of volume data, e.g., of
scalar or vector fields defined over volumetric domains. Visualizing inher-
ently trivariate phenomena requires one to apply rendering algorithms to
volumetric data - examples being volume slicing via a cutting plane, isosur-
face extraction through marching-cubes-like algorithms, and ray casting. For
time-varying volume data, multiresolution methods have to scale in spatial
and temporal dimensions.

Multiresolution methods can be classified according to (regular and irreg-
ular) data formats and refinement rules. Regular refinement schemes’ main
advantages over irregular refinement schemes are that grid connectivity and
vertex locations are implicitly defined and data can be easily accessed, which
is of particular importance for large-scale data. The main disadvantage of
regular refinement schemes is their coarse granularity and thus low adaptiv-
ity. For example, in one quadtree or octree refinement step the number of
vertices is multiplied by a factor of four or eight, respectively. We use the
{/2-subdivision scheme that only doubles the number of vertices in each sub-
division step regardless of dimension, which is a factor of /2 in each of the n
dimensions. In Section 3, we describe the ¥/2-subdivision scheme in general
and provide more detail for up to four dimensions.

Another drawback of using regular data structures is that downsampling is
done based purely on grid structure, without considering data values. There-
fore, aliasing artifacts occur and scientifically interesting details in a data set
can get lost and be overlooked. To avoid this effect, we use a downsampling
filter based on n-variate B-spline wavelets: The data value at a vertex p is
updated when changing the level of detail, i.e., the value varies with varying
level of detail. On a coarse level, the value represents the value at p itself and
an average value of a certain region around p. This “filtering” removes the
aliasing artifacts and leads to better approximation quality on coarser levels.

Non-constant B-spline wavelets have the property that the computation
of the wavelet coefficient at a vertex p is not only based on the neighbors
of p but also on vertices that are farther away. Such large filters reduce
the adaptivity of the multiresolution representation. Moreover, when using
out-of-core techniques to operate on or visualize large-scale data, substantial
amounts of data must be loaded from external memory with typically low
I/O-performance for applying such large filters. Lifting schemes with narrow
filters can be used to overcome this problem. In Section 4, we describe a one-
dimensional lifting scheme for B-spline wavelets applicable to multiresolution
polygonal representations of curves.

In Sections 5, 7, and 9, we describe how this approach can be generalized
to the 2D, 3D, and 4D settings of multiresolution representations generated
by /2 subdivision (with n = 2,3,4). In Sections 6, 8, and 10, we apply
these techniques to surfaces, volume data, and time-varying volume data,
respectively. We provide several examples and visualize data using standard
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visualization methods such as isosurface extraction, cutting planes, and vol-
ume rendering.

2 Related work

Multiresolution volume representation is based on a hierarchical data organi-
zation of irregular or regular type. Irregular data structures use non-uniform
refinement steps, which makes them highly adaptive. Unfortunately, grid in-
formation must be stored and data access is not straight forward. Especially
for large-scale data, additional memory requirements and memory organiza-
tion needs are major drawbacks of irregular structures. For regular structures,
grid connectivity and vertex locations are implicit and data is easily accessed.
However, the refinement steps must conform to the topological constraints,
which makes regular structures less adaptive.

Multiresolution representations for curves and surfaces have been subject
of research for many years. An overview of existing techniques (including
regular as well as irregular schemes) is given in [13]. In terms of 3D structures,
irregular schemes are discussed in [5, 10, 9, 34] and regular schemes in [18,
19, 22, 26, 29, 43]. A discussion of regular versus irregular schemes is given
in [33].

Since the advantages of regular schemes are very important for visualiza-
tion applications, the {/2-subdivision scheme we describe is of regular type.
To our knowledge, the {/2-subdivision scheme is a regular scheme with finest
granularity, doubling the number of vertices in each subdivision step regard-
less of dimension. In the 3D case, this fact implies that the {/2-subdivision
scheme, in general, will require less vertices than, for example, octrees to sat-
isfy error bounds. Since finer granularity leads to higher adaptivity, this fact
still holds when using adaptive refinement techniques. Our 3D approach has
been described in [16].

For time-varying volume representation, sophisticated approaches make
use of the data’s temporal coherence and focus on the detection of spa-
tial/structural changes and updates in time [1, 30, 32, 36]. These approaches
consider scaling in time but not in space. However, applications in large-scale
time-varying volume visualization using isosurface extraction [11, 30, 36] or
volume rendering [1, 32] (a comparison is drawn in [39]) requires us to uti-
lize multiresolution representations with scalability in time and space. An
approach dealing with large-scale data in time and space was described by
Shen et al. [31]. Their approach combines an octree with a binary tree to a
Time-Space Partition (TSP) tree, where the octree is used for the spatial and
the binary tree for the temporal hierarchy.

By using a v/2-subdivision hierarchy for representing time-varying vol-
ume data, we treat time as a real fourth dimension. Compared to the TSP
approach, we have finer granularity, which is especially desirable in the spa-
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tial dimension. Our framework deals with spatial and temporal dimensions
equally. Our 4D approach has been described in [17].

3 Multiresolution with /2 subdivision

A multiresolution hierarchy based on {/2 subdivision is constructed by start-
ing with the coarsest resolution of a given mesh and iteratively applying
{/2-subdivision steps. The subdivision steps are performed simultaneously
for all mesh elements.

The splitting step of the {/2-subdivision scheme can be described by us-
ing triangular or quadrilateral meshes (for n = 2) or their generalizations
to higher dimensions (for n > 2). In the 3D case, the splitting step of the
V/2-subdivision scheme is equivalent to the longest-edge bisection of tetrahe-
dral meshes [7, 24, 44]. We consider quadrilateral meshes and their general-
izations, which makes the derivation and the description of the techniques
more comprehensible. For implementation purposes, we have used triangular
meshes and their generalizations, since they support application of existing
visualization tools.

The splitting step of the {/2-subdivision scheme were described by Co-
hen and Daubechies [6] for n = 2 and Maubach [20] for arbitrary n. Figure
1 illustrates four splitting steps of a v/2 subdivision (n = 2). To split the
quadrilateral (), we compute its centroid ¢ and connect ¢ to the four ver-
tices of (). The “old” edges of the mesh are removed (except for the edges
determining the mesh/domain boundary).

[ DA AR

Fig. 1. v/2 subdivision.

Velho and Zorin [41] completed the 1/2-subdivision scheme by adding
an averaging step to the splitting step. Figure 2 shows the masks for the
splitting (a) and the averaging step (b). A v/2-subdivision step is executed
by first applying the mask shown in Figure 2(a), which inserts the centroids
c as new vertices, and then (after topological mesh modifications) applying
the mask shown in Figure 2(b), which adjusts the old vertices.

Velho and Zorin showed that the produced surfaces are C*-continuous at
regular and C'-continuous at extraordinary vertices. This subdivision scheme
for quadrilaterals is analogous to the v/3-subdivision scheme of Kobbelt for
triangles [12]. Therefore, we call it v/2 subdivision. (For an introduction to
subdivision methods, we refer to [42].)
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Fig. 2. Masks of v/2-subdivision step: (a) inserting centroid; (b) adjusting old
vertices.

This subdivision scheme can be generalized to arbitrary dimension. The
splitting step of the {/2 subdivision is executed by inserting the centroid of
the n-dimensional geometrical shapes and adjusting vertex connectivity. The
averaging step applies to every old vertex v the update rule

v=av+(l-a)w,

where w is the centroid of the adjacent new vertices and a € [0,1]. See [23]
for further details.

Figure 3 shows three ¥/2-subdivision splitting steps (a = 1) for structured
rectilinear volume data. Three kinds of polyhedral shapes arise, shown in
Figure 4.

Fig. 4. Polyhedral shapes created by /2 subdivision: octahedron, octahedron with
split faces, and cuboid.

With respect to the start configuration (first picture of Figure 3), the
three subdivision steps can be described in the following way: The first step
inserts the centroid of the cuboid (second picture of Figure 3), the second
step inserts the centers of the faces of the original cuboid (third picture of
Figure 3), and the third step inserts the midpoints of the edges of the original
cuboid (fourth picture of Figure 3).
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Thus, three /2-subdivision steps produce the same result as one octree
refinement step. The two steps in between provide finer granularity. For vi-
sualization purposes, this leads to higher adaptivity in error-bounded, view-
dependent settings. Therefore, it is likely that one must render less data to
obtain a desired image / visualization quality.

In order to generate a four-dimensional hierarchy, we start with a hyper-
cube (or hypercuboid), depicted in Figure 5. Figure 5(a) shows its symmetry
in all four dimensions. In the following, we use illustrations as in Figure 5(b),
where the hypercube is stretched in one dimension. When considering time-
varying volume data, this dimension will represent the temporal direction.

“ A A m T -

Fig. 5. Hypercube.

In Figure 6, four v/2-subdivision steps (o = 1) are shown. We only show
the spatial connectivities within the time steps and omit the connectivity
information between time steps.

Figure 6(a) shows the initial hypercuboid, which consists of two cuboids
at two time steps, t; and t3. The two cuboids are connected according to Fig-
ure 5(b). The first subdivision step inserts the centroid of the hypercuboid,
shown in Figure 6(b), which can be interpreted as the centroid of a cuboid
at time step to = % The second subdivision step inserts the centroids
of the eight cuboids within the original hypercuboid, shown in Figure 6(c).
The third step inserts the centers of the faces of these eight cuboids or of the
original hypercuboid, respectively, shown in Figure 6(d). Finally, the fourth
step inserts the midpoints of the edges of the eight cuboids or of the origi-
nal hypercuboid, respectively, shown in Figure 6(e). The geometric structure
shown in Figure 6(e) consists of 16 hypercuboids.

4 Lifting of B-spline wavelets

When downsampling time-varying volume data in a regular fashion, data is
not grouped due to changes in time or space. Thus, aliasing artifacts oc-
cur and important details may be missing on coarse levels of resolution. We
overcome this problem by using downsampling filters. In image processing,
such downsampling filters are commonly employed with wavelets. Stollnitz
et al. [35] described how to generate wavelets for subdivision schemes.
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Fig. 6. v/2 subdivision.

A family of filters can be derived by using B-splines of various degrees
for wavelet generation. (For an introduction to B-spline techniques, we refer
to [27].) However, when using non-constant B-splines, the size of the wavelet
filters is not limited to adjacent vertices. Localization is desirable when we
want to apply the wavelet filter to adaptive refinement and out-of-core visual-
ization techniques. Lifting schemes as introduced by Sweldens [37] decompose
wavelet computations into several steps, but they assert narrow filters.

We review the idea of lifting in general and lifting of B-spline wavelets in
particular. These concepts are then used to generate narrow wavelet filters
for {/2-subdivision hierarchies.

The idea of a lifting scheme is shown in Figure 7, using the example of
linear B-spline wavelets. For downsampling, the vertices of a level of resolu-
tion £, are split into two groups: the ones that belong to the next coarser
level of resolution £,_; (often referred to as even vertices) and the ones that
belong to L, \ £,-1 (often referred to as odd vertices). Instead of applying a
large downsampling filter to the vertices € £,_1, the lifting scheme decom-
poses the large filter into two narrow ones and executes two steps. First, one
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narrow filter (w-lift) is applied to the vertices € L, \ £,,—1. Second, the other
narrow filter (s-lift) is applied to the vertices € £,_1. This process is usually
referred to as encoding, and the values at the vertices € £,, \ £,,—; are called
wavelet coefficients. The decoding step inverts the two encoding steps and
reconstructs level £, from level £,,_; using the wavelet coefficients.

encoding decoding

1

Fig. 7. One-dimensional linear B-spline wavelet lifting scheme.

The lifting filters can be described by masks. For example, the one-
dimensional B-spline wavelet lifting filters are given by:

s-lift(a,b): (aba) , (1)
w-lift(a,b): (aba) . (2)

Using the s-lift and w-lift masks, a linear B-spline wavelet encoding step
is defined by sequentially executing the two operations

w-lift(—3,1) and
s-lift(%,1) .

A linear B-spline wavelet decoding step is defined by executing the inverse
operations in reverse order. They are

s-lift(—%,1) and

Vel
w-lift(1,1) .

Using the same masks, a cubic B-spline wavelet encoding step is defined
by the three lifting operations

s-lift(—%,2) ,
w-lift(—%,1) and
s-lift(2,1) .

A cubic B-spline wavelet decoding step is again defined by the inverse oper-
ations in reverse order.

For a detailed derivation of the B-spline lifting scheme that we use, as
well as for its analysis (smoothness, stability, approximation order, and zero
moments), we refer to [2, 3, 4].
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5 Lifting for v/2-subdivision hierarchies

The 1D filters described in the previous section for polygons can be general-
ized to 2D filters for meshes representing tensor-product surfaces by convo-
lution of the 1D masks in the two coordinate directions, e.g.,

a a® ab a®
(aba)* | b ] =|abb®ab | . (3)
a a® ab a?

A mesh hierarchy for tensor-product surfaces can be generated using quadtree
refinement. By using /2 subdivision instead of a quadtree-based scheme, we
have an additional level of resolution (see second picture in Figure 1). For this
additional level, we only insert new vertices at the centers A of old faces; at
the midpoints e of old edges, vertices are not inserted before the subsequent
subdivision step (see third picture in Figure 1). Thus, in order to apply the
wavelet lifting scheme to a v/2-subdivision hierarchy, we have to adjust the
mask (3) to the setting shown in the second picture of Figure 1.

Wavelets for general dilation matrices were discussed by Riemenschneider
and Shen [28] who used a box-spline approach. Kovadevi¢ and Vetterli [15]
and, more recently, Uytterhoeven [40] and Kovadevi¢ and Sweldens [14] devel-
oped lifting schemes that can be applied to {/2-subdivision mesh hierarchies.
Uytterhoeven’s method only addresses the two-dimensional case, Kovacevié
and Sweldens’ approach deals with the two- and three-dimensional cases. The
filters used in [14] (that do not degenerate to the identity) are not narrow
enough for our purposes. We derive narrow B-spline wavelet lifting filters for
V/2-subdivision hierarchies and later describe their generalization.

For encoding with linear B-spline wavelets, the w-lift operation is exe-
cuted first. In a v/2-subdivision hierarchy, we have no data values available
at the positions e (see third picture of Figure 1). Since the mask (3) requires
data at the positions e, we compute them by linearly interpolating the values
at the vertices o. Linear interpolation is appropriate, since we are using linear
wavelets. This approach changes mask (3) to

a®+ab a%+ab
w-liftencode (@, ) : . (4)
a?+ab a%+ab

Next, the s-lift operation is executed. Again, we have to determine data values
at the positions e. However, the w-lift operation has (theoretically) executed
1D masks to update the values at the positions e. Since we assumed that the
values at the vertices e were linear interpolations of the values at the vertices
o, the values at the vertices e vanish by executing the 1D masks. The mask
for the s-lift encoding step becomes
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s-liftencode (@, b) : b2 . (5)

For decoding with linear B-spline wavelets, we first execute the s-lift op-
eration. Prior to executing the s-lift encoding operation, the values at the
vertices @ have vanished, but the s-lift encoding operation (theoretically) ex-
ecuted the 1D mask to update the vertices o. Hence, the values at the vertices
e are given by linear interpolation of the values at the neighbor vertices A,
multiplied by the factor 2a of the 1D mask. We rename the factor a to @ and
obtain the new mask

s-lift gecode (a, b) : b2 . (6)

Finally, the w-lift operation is executed again. The s-lift decoding operation
has (theoretically) applied a 1D mask again to update the vertices e. Since
the 1D s-lift decoding mask is the inverse of 1D s-lift encoding mask, the
values at the vertices e are the same as before the execution of these two
s-lift operations, i.e., they vanish, leading to the new mask

w-lift gecode (a, b) : . (7)

Considering cubic B-spline wavelets, the masks can be derived similarly.
The cubic B-spline wavelet lifting scheme executes one more s-lift operation.
For example, for encoding one can derive the first s-lift mask

ab

2
s-liftencodet (@, b) : 2 p+2a0 2|,

ab
2

while the other two encoding masks are the same as the linear encoding masks
(4) and (5).

6 Surfaces

In Figure 8, we provide an example for a 1/2-subdivision hierarchy combined
with 2D wavelet filters. The original surface shown in Figure 8(a) results from
sampling a 2D Gaussian function at 642 vertices. The surface is encoded and
decoded again. In Figure 8(b), we show a coarse level of detail obtained by
applying v/2-subdivision wavelets filters. In Figure 8(c) and (d), we show the
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same level of detail obtained when establishing the v/2-subdivision hierarchy
using downsampling filters based on bilinear and bicubic B-spline wavelets,
respectively.

(d)

Fig. 8. (a) v/2-subdivision surfaces; (b) encoded and decoded by /2-subdivision
wavelets; (c) by bilinear B-spline wavelets; and (d) by bicubic B-spline wavelets.

In Figure 8(b), obvious over- and undershoots caused by the v/2-subdivision
wavelet filters can be recognized. Over- and undershoots are disturbing dur-
ing visualization, for example, when extracting isocontours from different
levels of approximation. They can cause changes of contour topology when
changing the level of resolution. We would like to preserve topology as much
as possible when changing approximation levels.

In Figure 8(d), less pronounced over- and undershoot can be seen when
using bicubic B-spline wavelet filters. Only bilinear B-spline wavelet filters en-
sure no over- and undershoots, see Figure 8(c), since linear B-spline wavelets
have interpolating scaling functions, which guarantees interpolating refine-
ment filters [14].

Moreover, the last section showed that lifting filters for linear B-spline
wavelet were as narrow as they can be, whereas some of the lifting filters for
cubic B-spline wavelets are larger. These drawbacks of cubic B-spline wavelets
led to the decision to focus on linear B-spline wavelets when generalizing the
schemes to higher dimensions.

For progressive visualization, i.e. when generating images progressively,
the storage of values can be reorganized as shown in Figure 9 for three succes-
sive levels of resolution. Progressive visualization starts by using the upper-
left block in the right picture, then adding the upper-right block, and, finally,
adding the lower block. Reordering ensures that data can be read in a con-
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tinuous stream without reading data multiple times. Moreover, the figure
illustrates that the wavelet scheme does not require additional storage.

reorder reorder

progressive

I oSSV progressive
visualization
——

visualization
-—

Fig. 9. Reordering data for progressive visualization.

7 Lifting for v/2-subdivision hierarchies

In a /2-subdivision hierarchy, three different kinds of polygonal shapes ap-
pear, see Figure 4. Therefore, three different kinds of masks have to be defined
for the lifting filters. For deriving these masks based on trilinear B-spline
wavelets, we start with the situation shown in the second picture of Figure 3
(volume case), proceed with the situation shown in the third picture of Figure
3 (face case), and finally treat the situation shown in the fourth picture of
Figure 3 (edge case), which is topologically equivalent to the situation shown
in the first picture of Figure 3.

Volume case. A convolution of 1D masks in the three coordinate directions
leads to a generalization of mask (3) to a 3D mask, which can be used for
mesh hierarchies based on octree refinement. In the situation shown in the
second picture of Figure 3, we have no data values available at the vertices e
and A (see fourth picture of Figure 3).

Again, we assume that the value at a vertex e is defined by linear inter-
polation of the values at the two vertices o (with which the vertex e shares
an edge), and that the value at a vertex A is defined by bilinear interpolation
of the values at the four vertices o (with which the vertex A shares a face).
One obtains the mask w-liftepcoqe(a,b), which can be depicted as

o a’+ 3ab+ 3ab?
A b3

The 1D and 2D masks for updating the vertices e and A are only “applied
theoretically.” However, since the values at the vertices e are assumed to be
linear interpolations of the values at the vertices o, and since the values at
the vertices A are assumed to be bilinear interpolations of the values at the
vertices o, the values at the vertices e and A vanish.
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Therefore, the mask for the s-lift encoding operation reduces to the mask
s-liftencode (@, b):

For the decoding, we can proceed in the same way (and analogously to the
2D case) and derive the mask s-liftgecoqe(a, b):

[e] b3
+ a* 3aab+ 3a%ab?

)

where @ is the parameter a from the s-lift encoding mask, and the mask
w-lift gecode (a, b):

°oa
Ab3

These 3D masks are as narrow as they can be.

Face case. In the next +/2-subdivision step, we have to deal with the sit-
uation shown in the third picture of Figure 3. We have to ensure that we
do not violate the assumptions made for the volume case. We assumed that
the values at the vertices A are bilinear interpolations of the values at the
neighbor vertices o. Thus, when the values at the vertices A are available,
their values should be computed only from the values at the vertices o. This
insight leaves us with the 2D case, and we can apply the 2D masks of Section
5.

Edge case. When applying linear B-spline wavelet encoding to the situation
illustrated in the fourth picture of Figure 3, we must not violate the assump-
tion that the values at the vertices e are linear interpolations of the values
at the neighbor vertices o. When the values at the vertices o are available,
their values must be computed only from the values at the vertices o. This
fact leaves us with the one-dimensional case, and we can apply the 1D masks
of Section 4.

While in [14] and [40] the boundary cases for the non-separable filters
are not addressed sufficiently, the face and edge cases of our scheme cover
naturally boundary faces and boundary edges of the domain.
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8 Volume data

We use our techniques for scientific visualization of volume data. We compare
the results obtained by applying a +/2-subdivision multiresolution scheme
with and without applying trilinear B-spline wavelet filters for downsampling.
Since we want to show how our wavelets improve image quality at a low
resolution, all examples are provided at a coarse level of resolution.

Our first example data set is of a human brain data set. It is given as
753 slices, and each slice has a resolution of 1050 x 970 points, where 24-bit
RGB-color information is stored. The original data set was preprocessed with
a segmentation algorithm described in [38] to eliminate noise. We generated
a mesh hierarchy based on v/2 subdivision and applied the trilinear B-spline
wavelet filters to each color channel independently.

Since the data was too large to be stored in main memory, we used out-
of-core techniques. Due to the narrow masks of our lifting scheme, at most
three slices were used simultaneously.

(2) (b) ()

Fig. 10. (a) Slice through 3D brain data set at full resolution; (b) slice at reso-
lution of 1.6% without and (c) with B-spline wavelet filters on a +/2-subdivision
scheme. (Data set courtesy of A. Toga, Ahmanson-Lovelace Brain Mapping Center,
University of California, Los Angeles)

For the generation of Figure 10, we used an interactive progressive slicing
visualization tool, see [25], to generate an arbitrary cutting plane through the
brain data set. Figure 10(a) shows a part of the slice at highest resolution,
Figure 10(b) after downsampling to a resolution of 1.6% with /2 subdivi-
sion, and Figure 10(c) after downsampling to a resolution of 1.6% with /2
subdivision and trilinear B-spline wavelet filters.

Compared to Figure 10(b), the contours of the brain in Figure 10(c) are
much smoother. Moreover, the slice in Figure 10(c) does not only contain
information of the slice in Figure 10(a) but also of the full-resolution slices
next to it. Without the averaging performed by the wavelet filter, some detail
information of the neighbored slices can get lost.

Figure 11 shows an isosurface for the value 78 extracted from the same
data set at a resolution of 0.2%. For isosurface extraction, we converted the
RGB data to the HSV color model and used the value V. For Figure 11(a),
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(2) (b)

Fig. 11. Hierarchical visualization of brain data set, (a) based on ¢/2-subdivision
without and (b) with B-spline wavelet filters. (Data set courtesy of A. Toga,
Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles)

we used a +/2-subdivision hierarchy without using downsampling filters, and,
for Figure 11(b), we combined the </2-subdivision hierarchy with trilinear
B-spline wavelet filters. Figure 11(b) exhibits much more detail than Figure
11(a).

For the generation of Figure 12, we applied our techniques to numerically
simulated hydrodynamics data. The data set is the result of a 3D simulation
of the Richtmyer-Meshkov instability and turbulent mixing in a shock tube
experiment [21]. For each vertex of a 1024 structured-rectilinear grid (one
time step considered only), an entropy value between 0 and 255 is stored.
The figure shows the isosurface corresponding to the value 225 extracted
from two different levels of resolution (one time step). Again, we contrasted
the results of the +/2-subdivision hierarchy without (left column) and with
(right column) trilinear B-spline wavelet filters.

Considering the example shown in Figure 12, when using the wavelet
approach low-resolution visualizations suffice to see where turbulent mixing
takes place. For example, Figure 12(c) shows clearly the big “bubble” rising in
the middle of the data set. The bubble can hardly be seen in Figure 12(a). The
averaging steps of the wavelet filters lead to a much better approximation.

Since the generated wavelet filters are narrow (as a result of the lifting
scheme), they do not restrict the application of the ¥/2-subdivision hierarchy
to an adaptive setting. For adaptive mesh refinement in a +/2-subdivision
hierarchy, we refer to [8]. In Figure 13, we show a view-dependent visualiza-
tion based on an adaptively refined {/2-subdivision mesh. The data set we
used is a computerized tomography (CT) scan of a primate lung consisting
of 512 x 512 x 266 sample points. Figure 13(a) shows the adaptively refined
mesh, where the viewpoint is positioned at the center of the right face of the
bounding box. Figure 13(b) shows an isosurface extracted from the adaptively
refined mesh for isovalue 86, chosen from the interval [0,255].
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Fig. 12. Entropy in a 3D simulation of Richtmyer-Meshkov instability, visualized

by isosurface extraction from a 4/2-subdivision hierarchy without (left column) and
with (right column) B-spline wavelet filters (at resolutions of 0.003% and 0.2%).

(a) B : (b) .

Fig. 13. View-dependent visualization of lung data set using an adaptively re-
fined ¢/2-subdivision mesh and B-spline wavelet filters. (Data set courtesy of Erik
R. Wisner, Department of Radiology, University of California, Davis)

9 Lifting for ~/2-subdivision hierarchies

For the 4D case, we have to distinguish between four different cases refer-
ring to the four different configurations shown in Figure 6. We start with
the situation shown in Figure 6(b). By convolution of the 1D masks in four
coordinate directions we obtain a generalization of mask (3) to a 4D mask.
We adjust it to the +v/2-subdivision setting of Figure 6(b) by assuming (i)
that the value at a vertex e is defined by linear interpolation of the values
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at the two vertices o (with which the vertex e shares an edge); (ii) that the
value at a vertex A is defined by bilinear interpolation of the values at the
four vertices o (with which the vertex A shares a face); and (iii) that the
value at a vertex A is defined by trilinear interpolation of the values at the
eight vertices o (with which the vertex A shares a cuboid). Consequently, one
obtains the mask w-liftencoge(a, b):

o a'+2ab+ 3 alb’+ Jab®
° b4

We proceed as for the lower-dimensional cases and obtain the mask
s-liftencode (a, b)

o b4
o at

o b4
o a™ 4aab+ 6a%ab¥* 4atabd

where @ is the parameter a from the s-lift encoding mask, and the mask
w-1ifterncode (@, b)

When inserting the vertices A, the vertices A, and the vertices  as done in
the situations in Figure 6(c), (d), and (e), respectively, we must follow the
assumptions (i)-(iii) described above. The filters reduce to the 3D, 2D, and
1D filters, respectively.

10 Time-varying volume data

The time-varying volume data used for the example shown in Figure 14 rep-
resents the evolution of an Argon bubble disturbed by a shock wave. The
simulated data consists of 450 time steps, each one having an associated
640 x 256 x 256 rectilinear grid. For each vertex, a density value between 0
and 255 is stored. We have constructed a v/2-subdivision hierarchy combined
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Fig. 14. Density of a time-varying simulation of an interaction of a shock with
an Argon bubble, visualized by volume rendering time step 192. Downsampled
to 0.78% using combined +/2-subdivision hierarchy in four dimensions and one
dimension without (a) and with (b) linear B-spline wavelets.

with quadrilinear B-spline wavelet filters. For visualizing the results, we have
used volume rendering.

Considering Figure 14(b), we have performed a v/2-subdivision downsam-
pling combined with quadrilinear B-spline wavelet filters down to a resolution
of 6.25%, followed by 1D downsampling steps with linear B-spline wavelet
filters down to a resolution of 0.78%. The fact that our 4D wavelet lifting
scheme is decomposed into a 4D, 3D, 2D, and 1D step allows us to integrate
linear B-spline wavelet schemes of any dimension into one framework. One
can compare this result to the one obtained when downsampling without
wavelet filters, see Figure 14(a). Both pictures are the results of applying
volume rendering to time step 192. Figure 14(a) only shows data from time
step 192, whereas Figure 14(b) contains information of a short sequence of
time steps close to time step 192, including all possibly significant changes.

To quantify the improvement in approximation quality, we computed ap-
proximation errors for coarser levels of approximation by comparing them to
the highest-resolution level. Given the original four-variate function F', repre-
sented discretely by sample values at locations x;, 1 € [1,n;][1, ny][1, n.][1, 7],
we have used the root-mean-square (RMS) error

Epms = \/W Z(F(Xi) - f(Xi))2 ;

i

where f(x;) denotes the approximated function value obtained by quadrilin-
ear interpolation applied to a hypercuboid in the coarser level of resolution.
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In other words, the value of f(x;) is obtained by performing quadrilinear
interpolation of the 16 function values associated with the corners of the
hypercuboid containing the point x;.

Figure 15 shows the improvement when applying quadrilinear B-spline
wavelet filters. The figure shows for various levels of resolution (in a logarith-
mic scale) by how much the RMS error is reduced on average when using our
wavelet filters.

error reduction
A
15%-

10%t

5% T
resolution

0% : : : : —
100% 12.5% 1563% 0.195%  0.024%  0.003%

Fig. 15. Average RMS error reduction when applying linear B-spline wavelet filters.

Since the masks of our lifting scheme are of constant size and the number
of steps for our lifting scheme is constant, our algorithms run in linear time
with respect to the number of original data points. Since the masks are narrow
and linear B-spline wavelet operations are decomposed into only two steps,
run-time constants are small.

11 Conclusion

We have presented multiresolution hierarchies based on /2 subdivision and
n-variate B-spline wavelet filters. We have described the methods in a general
setting with particular focus on the 1D, 2D, 3D, and 4D case, since they can
be used for hierarchical representations of curves, surfaces, volume data, and
time-varying volume data, respectively.

The {/2-subdivision scheme leads to a regular data organization. Mesh
connectivity and vertex locations are implicitly defined (no additional stor-
age space is necessary), and data access is simple and fast. In general, regular
schemes have the drawbacks of coarse granularity and low adaptivity. The
{/2-subdivision scheme only doubles the number of vertices in each subdivi-
sion step regardless of the dimension n.

For high-quality data approximation on each level of detail, we use down-
sampling filters based on n-variate (linear) B-spline wavelets. The filters must
be defined for the {/2-subdivision connectivity without restricting adaptiv-
ity. We derived B-spline wavelet lifting schemes for {/2 subdivision leading
to small / narrow filters.
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We have demonstrated the benefit of using these filters by providing 2D,
3D, and 4D examples and applying various visualization tools (including
view-dependent isosurface extraction from adaptively refined meshes) and
even out-of-core data exploration techniques.
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