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ABSTRACT OF THE DISSERTATION

Stepped Wedge Designs: Extensions to Studies with Multiple Interventions and Multistate

Outcomes

by

Phillip Taylor Sundin

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2022

Professor Catherine M Crespi, Chair

Stepped wedge design (SWD) trials are cluster randomized trials that feature staggered,

unidirectional cross-over between treatment conditions. Existing literature for SWDs focuses

primarily on designs with two conditions, typically a control and an intervention condition,

and a continuous outcome. The work for this dissertation is motivated by the NORVAX

study, a SWD trial implemented at clinics in a safety-net health system to estimate the

effectiveness of two interventions for promoting HPV vaccination among adolescents. The

outcome for the NORVAX study is patient vaccination status, which is a multistate outcome

(no doses, one dose, or two doses). This dissertation has two parts that make contributions to

the literature regarding two salient features of the NORVAX study: the multiple interventions

in a SWD and the multistate vaccination status outcome.

The first part of this dissertation develops methods for conducting power calculations

for SWDs with multiple treatment conditions and a continuous outcome. We present a

linear mixed model for such designs and derive standard errors of the intervention effect

coefficients. Power for detecting intervention effects is calculated analytically assuming a

normally distributed Wald test statistic under an alternative hypothesis. We apply the

proposed method to both repeated cross-sectional and cohort designs. Design features, with

a focus on treatment sequencing across periods, are examined to determine their impact on
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power. Simulations are used to verify results.

The second part of this dissertation focuses on the vaccination status outcome and quan-

tifying intervention effects for this outcome within the context of a SWD. A goal of the

NORVAX study is to estimate intervention effects as changes in study population-level vac-

cination initiation and completion percentages, clinically meaningful outcomes. We propose

a semi-Markov multistate cure model in which the number of doses of a vaccine received by

the patient are the states. Sojourn times are assumed to be Weibull distributed. To account

for individuals who will never receive their next required dose, we include cure proportions

in the multistate model. Using the multistate cure model framework, population-level initi-

ation and completion percentages are obtained by converting transition intensity estimates

into transition probabilities. Intervention effects are quantified as changes in initiation and

completion percentages attributable to interventions. We apply the model to both simulated

and real-world data and highlight challenges of this modeling technique.
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CHAPTER 1

Introduction

Cluster randomized trials (CRTs) are clinical trials in which entire groups of individuals,

called clusters, are randomized to treatment arms (Donner and Klar, 2010). Examples of

clusters include schools, hospitals, or health clinics. CRTs are often employed to evaluate

interventions delivered at the cluster level, such as a new education program or work-flow

modification. A common CRT design is the parallel design in which each cluster receives

either the control or treatment condition and outcomes are measured at one time point.

CRTs can also utilize a crossover design in which clusters receive either the treatment or

control condition for a fixed amount of time and then switch to the other condition (Hooper

and Bourke, 2015). The focus of this dissertation is on the stepped wedge design (SWD),

an evolving class of CRT designs that incorporate features of both parallel and crossover

designs.

1.1 Stepped Wedge Designs

The key element of a SWD is unidirectional crossover, with clusters transitioning from

a control condition to a treatment condition at staggered time points throughout the study.

Clusters are randomized to different sequences that transition from control to treatment at

pre-determined times. All clusters are typically in the treatment condition by the end of the

study (Hemming et al., 2017). An example of a SWD is shown in Figure 1.1. Because of

the staggered crossover, a SWD introduces new considerations for power calculations and

analysis compared to other CRT designs.

SWDs have several potential advantages over parallel and crossover CRT designs. SWDs
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Figure 1.1: Example of a stepped wedge design with six clusters, four time periods, and
one treatment. A white cell indicates the control condition and a gray cell represents the

treatment condition.

allow comparisons both within cluster and across cluster, potentially resulting in efficiency

gains (Woertman et al., 2013; Hemming and Taljaard, 2016). It may be less costly and

logistically easier to roll out the intervention over time instead of all at once, as would occur

in a typical parallel CRT (Grayling et al., 2017). Additionally, clusters may be more willing

to participate if treatment is guaranteed for all clusters. Finally, SWDs can alleviate some

ethical concerns because all clusters eventually receive the treatment.

One of the first statistical models for analyzing a SWD is a linear mixed model for

a repeated cross-sectional outcome assessment (Hussey and Hughes, 2007). Hussey and

Hughes derive a closed form solution for the variance of the estimated treatment effect in

this model. This closed form solution allows power calculations to be conducted analytically

based on a normally distributed Wald test statistic. For the single treatment SWD with

repeated cross-sectional assessments, Woertman et al. derived a design effect for the specific

case where each cluster has its own transition step (Woertman et al., 2013). Based on this

design effect, closed form solutions for sample size calculations for a repeated cross- sectional

SWD have been calculated (Hemming and Taljaard, 2016).

Hemming et al. propose a number of extensions to the Hussey and Hughes linear mixed

model (Hemming et al., 2017). These extensions include varying time trends across clusters
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using both fixed and random effects, varying treatment effects across cluster using both

fixed and random effects, and a treatment interaction with time. Teerenstra et al. discuss

SWDs with multiple layers of clustering (Teerenstra et al., 2019). Hughes et al. consider

heterogeneous treatment effects across clusters (Hughes et al., 2015).

Sample size calculations have also been determined for both open and closed cohort

designs (Hooper et al., 2016). There is additional literature for determining sample sizes

of a closed cohort SWD with a random effect for individual and a binary outcome using

simulation (Baio et al., 2015). There also exist sample size calculations for generalized

estimating equations (GEEs) analysis (Li et al., 2018). Random effect misspecification has

also been explored in SWDs (Voldal et al., 2022). Power and sample size considerations for

a one treatment SWD with unequal cluster sizes has been explored by Martin et al. and

Girling in separate papers (Martin et al., 2019; Girling, 2018).

Taljaard et al. consider the risks, both statistical and clinical, of having few clusters in a

SWD (Taljaard et al., 2016a). Girling and Hemming detail optimal design considerations for

SWD designs and consider efficiency calculations for different treatment allocations (Girling

and Hemming, 2015). Kasza et al. discuss both treatment heterogeneity across clusters and

how time periods where no data are collected impact power analysis (Kasza et al., 2019).

Analyzing SWDs as a “difference-in-differences” has also been explored when treatment

effects are heterogeneuous with respect to time (Lindner and McConnell, 2021).

The literature for stepped wedge designs is a growing body of diverse work as statisticians

explore many of the statistical models that can be fit to such designs. Existing literature also

features a diverse set of applications of SWDs for many kinds of settings and interventions.

However, much of the literature, both in application and methodology, focus on a stepped

wedge design with only a single intervention and either a continuous or binary outcome.

Stepped wedge designs with more than one treatment have been seen in practice but have

not been studied extensively (Whittingham et al., 2014; Reuther et al., 2014; van der Geest

et al., 2019). SWDs with multiple treatments and a condition receiving multiple treatments

simultaneously have been proposed in literature but without methodological development
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(Lyons et al., 2017). Studies may also wish to define outcomes that are neither continuous

nor binary. The motivating example for this dissertation requires exploring extensions to

both of these modeling features.

1.2 Motivating Example

The University of California, Los Angeles (UCLA) is currently partnering with North-

east Valley Health Corporation (NEVHC) to conduct the Northeast Valley HPV Vaccination

Study (NORVAX) study. NEVHC is a large multi-site federally-qualified health center serv-

ing a primarily uninsured or publicly insured, low-income, Latino population in Los Angeles

County. The goal of the NORVAX study is to evaluate the effectiveness of two interventions

to increase the uptake of human papillomavirus virus (HPV) vaccination among adolescents

(Bastani, 2017). HPV vaccines were first introduced in the U.S. in 2006 (Jit, 2021); how-

ever, the vaccination rate among adolescents remains low, with national rates of HPV vaccine

completion close to 50% as of 2018 (Walker et al., 2019). At the beginning of the NORVAX

study in November 2017, approximately 35% of NEVHC’s patients between the ages of 12

and 17 had completed their HPV vaccine regimen.

The currently utilized HPV vaccine requires multiple doses (CDC, 2019). Individuals

who receive their first dose before age 15 require two doses that are at least 6 months

apart. Individuals who receive their first dose after their 15th birthday require three doses.

(There are very few such individuals in the NORVAX study, and we neglect this possibility.)

Individuals who have received at least one dose are considered “initiated”; those who have

received all required doses are considered “completed”.

The NORVAX study uses a SWD to estimate the effectiveness of two interventions for

increasing HPV vaccination initiation and completion. One intervention is a text message

reminder sent to parents of adolescents due for an HPV dose. The other intervention is

a multi-component clinic-based program comprised of provider and staff education, audit

and feedback, establishment of clinic-level policies and protocols, implementation of work-
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flow modifications to minimize missed opportunities for vaccination, and patient activation.

These interventions are termed the “reminder intervention” and the “clinic-based interven-

tion” for the remainder of the dissertation. The study also features a condition in which

clinics implement both interventions simultaneously, termed “the combined condition”.

The study randomized seven clinics serving pediatric patients to different sequences of

conditions. The SWD of the study is displayed in Figure 1.2. All seven clinics begin in the

usual care condition in Period 1. In Period 2, two clinics begin implementing the reminder

condition; these clinics transition to the combined condition in Period 5. Three clinics

remain in usual care until Period 3, when they begin the clinic-based intervention; these

clinics remain in this condition until the end of the study. Two clinics remain in usual

care until Period 4, when they begin implementing the combined intervention. The study is

currently ongoing as of April 2022, and data have been collected through the end of Period

4. The study is scheduled to conclude data collection in November 2023.

Figure 1.2: NORVAX Study Design
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The study population of interest is the adolescent population at NEHVC between the

ages of 12 and 17 years (i.e., before the 18th birthday). Although the HPV vaccine can be

given as young as 11 years old per CDC recommendations, 12 years was selected as the

younger age limit for the study in order to focus on adolescents who were not yet vaccinated

after a year of being eligible. When combined with the stepped wedge design, this creates

a dynamic, open cohort study population; as the trial progresses, individuals can “age in”

or “age out” of the study. Individuals also have to be active patients to be included in the

study; an active patient is defined as having a visit to any NEHVC clinic in the past two

years. This also contributes to an evolving study population over the course of the study.

There have been several other intervention studies with HPV vaccination completion

as the primary outcome. Some of these studies used parallel designs with fixed cohorts

(Fu et al., 2016; Borg et al., 2018; Hurley et al., 2019). Such studies were able to assess

vaccination outcomes and estimate intervention effectiveness using pre-post comparison of

the same individuals. In a SWD with an open cohort, this approach is not possible. A

few studies utilize a SWD to test interventions to increase HPV vaccination rates. The

DOSE HPV trial utilized a stepped wedge design with the primary outcome measured at

the patient visit level, rather than the individual or clinic level (Perkins et al., 2020). The

outcome was whether or not a dose-eligible patient received a dose at the visit. A second

study, which has a published study protocol but has not yet published an outcome analysis,

plans to define the dose-eligible population at the beginning of each step of the SWD and

determine vaccination status at the end of the period (Rutten et al., 2018). This framework

also uses a binary outcome. A third study in Oregon, also with a published study protocol

but no outcome analysis yet published, plans to analyze clinic-level completion and missed

opportunity rates measured quarterly using generalized linear mixed models (Carney et al.,

2019). No further details were provided on the statistical analysis plan. These three examples

illustrate that there is no standard statistical approach for a SWD with a HPV vaccination

outcome.
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1.3 Modeling Objectives and Challenges

The first notable modeling challenge for the NORVAX study is the implementation of

multiple treatments within a stepped wedge design. Modeling data from stepped wedge

design trials requires careful consideration given the staggered implementation of the inter-

ventions, potential confounding with time trends, and the hierarchical nature of the data

(Hussey and Hughes, 2007). Much of the existing SWD literature focuses on designs with

only a single treatment. Designs with multiple treatment conditions, including conditions

with multiple treatments implemented simultaneously, can be analyzed both as factorial

designs and multiarm trials. In the NORVAX study, an individual can be exposed to mul-

tiple different study conditions over the course of the study. Two of the seven clinics will

experience two different intervention conditions throughout the study. An individual in one

of these clinics could potentially experience up to three different conditions including the

control condition. Any modeling approach will have to account for such individuals. We

noted a lack of literature for these trial designs, particularly in designing and calculating

power for detecting intervention effects.

A second major challenge is appropriately modeling the HPV vaccination outcome and

quantifying intervention effectiveness in a clinically and policy relevant manner. The study

investigators have expressed that defining intervention effectiveness in terms of percentage

point differences in completion and initiation between conditions is a clinically meaningful

approach. We also want to be able to examine potential moderators of the interventions,

some of which are measured at the individual level such as gender. Designing a model that

interprets intervention effectiveness in population-level percentage point changes while also

making use of individual-level covariates poses significant challenges for statistical modeling.

Directly modeling clinic-level initiation and completion percentages could be considered.

However, this would hinder the goal of examining individual-level characteristics as potential

moderators of intervention effectiveness. We would like to be able to include both individual-

level and clinic-level covariates in analyses. Thus the most fruitful approach is likely to

involve modeling the individual-level data.
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The interpretation of intervention effects is also further complicated by the dynamic,

open cohort aspect of the NORVAX study. Individuals can age in or out of the study

population during the trial. Individuals can also move between being active and inactive

patients depending on how often they have encounters at the health clinics. Thus the study

population changes over the course of the study. We would like to be able to conduct

analyses that consider patients to be exposed to a condition if they were dose-eligible and an

active patient at a clinic while it was assigned to that condition. This will yield a practical

estimate of how effective the interventions are at increasing vaccination coverage in the target

population. We would like to be able to answer the question, if we apply this intervention

to this target population, by how many percentage points can we expect HPV vaccination

initiation or completion to increase?

We ideally also want a single model that captures both vaccination initiation and com-

pletion. Each individual in the NORVAX study contributes information on both initiation

and completion; by handling both within the same model, we more properly account for

the correlation of these outcomes. Furthermore, we would be able to determine whether the

effects of interventions or other covariates are the different for initiation and completion.

In this dissertation, we present methodological work based on the NORVAX trial which

can be categorized into two areas. We first develop power calculation methods for SWDs

with multiple treatments and a continuous outcome. Although the NORVAX study has a

non-continuous outcome, it is an important contribution to addressing gaps in the stepped

wedge design literature for multiple interventions. In the second area of our work, we focus

on the vaccination outcome and develop a multistate cure model for the vaccination outcome

within the context of a SWD.

The dissertation is organized as follows. Chapter 2 presents our work on conducting power

analyses for stepped wedge designs with multiple treatments and a continuous outcome.

Chapter 3 then presents a multistate cure model for modeling the vaccination outcome of

the NORVAX. We conclude with a discussion in Chapter 4.
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CHAPTER 2

Power Analysis for Stepped Wedge Trials with

Multiple Interventions

This section is adapted from (Sundin and Crespi, 2022).

2.1 Introduction

Most research on the design and analysis of stepped wedge trials has focused on SWDs

with one intervention condition contrasted with a control condition. There is a small but

growing body of literature on SWDs with more than one intervention condition. Some work

(Grayling et al., 2019) has focused on studies in which there is a nested natural order of

D interventions such that intervention d consists of intervention d− 1 plus some additional

factor. The authors discuss the optimization of treatment sequence allocations and focus

on optimal design for such trials. The variance of treatment effect estimates in SWDs

with nested interventions has also been studied (Zhang et al., 2020). However, SWDs with

multiple interventions that are not nested within one another have not been well studied,

and interaction effects also have not received much attention (Lyons et al., 2017).

SWDs with multiple treatment arms are being conducted despite a scarcity of method-

ological literature. There are several examples of stepped wedge design trials that feature

two interventions implemented alone and in combination, as in a 2×2 factorial design. These

examples include a trial of the comparative effectiveness of two interventions to promote hu-

man papillomavirus vaccination among adolescents (Bastani, 2017), a study examining two

interventions for reducing hyperbilirubinaemia in infants (van der Geest et al., 2019), and a
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study compared two interventions for addressing behavioral problems in children with cere-

bral palsy (Whittingham et al., 2014). In these studies, clusters were assigned to sequences

that could include periods spent in usual care, the two single intervention conditions, and/or

a combined condition.

There are also examples in the literature of several related single-intervention stepped

wedge trials conducted simultaneously. The FallDem study used two stepped wedge trials

to examine two interventions for improving the lives of dementia patients (Lyons et al.,

2017; Reuther et al., 2014), and Durovni et al. conducted two separate SWD trials for

tuberculosis screening (Durovni et al., 2013, 2014). In some cases, it might be advantageous

to combine two separate trials with stepped wedge designs into one trial with multiple

treatment conditions, akin to a multiarm trial.

In this chapter, we consider stepped wedge design trials with more than one interven-

tion, including both multi-arm designs, which involve a control and two or more treatment

conditions, and factorial designs, in which interventions are implemented alone and in com-

bination. Multi-arm trials have several advantages, such as allowing for direct comparison

of alternative treatments (comparative effectiveness) and resource savings due to “reusing”

the same control condition to compare to several interventions. Factorial designs also have

potentially increased efficiency and can allow for the estimation of interaction effects (Oel-

hert, 2010). Thus extending SWDs to incorporate multi-arm and factorial design features

could be quite beneficial. We develop power analysis methods for such trials and examine

factors that influence power for stepped wedge designs with a normally distributed outcome

variable.

The chapter is organized as follows. Section 2.2 introduces the models for the SWD with

multiple treatment conditions. Section 2.3 develops power analysis methods. Section 2.4

uses examples to examine the influence of different design features on power. Section 2.6

presents results from a simulation study. Section 2.6 discusses the implications of our work,

possible extensions, limitations and future work.
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2.2 Model Description

We first present a model for a stepped wedge design with a single intervention and then

consider designs with any number of interventions. We focus on designs with only two

interventions and an interaction effect as designs with more than two interventions have not

yet been seen in practice. The section concludes with an overview of the derivation of the

standard errors of the estimated treatment effect coefficients, with details in Appendix A.

We begin with the classic stepped wedge design model with a single binary treatment

factor (Hussey and Hughes, 2007). For a design with I clusters observed at T times, and N

different individuals per time per cluster, let Yijk be a continuous outcome for individual k

in cluster i at time j. The model for Yijk is

Yijk = µ+ αi + ψik + νij + βj +Xijθ1 + eijk (2.1)

where µ is an intercept, αi ∼ N(0, σ2
α) is a random intercept for cluster i, ψik ∼ N(0, σ2

ψ)

is a random intercept for individual k in cluster i, νij ∼ N(0, σ2
ν) is a random intercept for

cluster i in time j, βj is a fixed effect for time j, Xij is a {0,1} indicator for whether cluster

i at time j receives treatment, θ1 is the treatment effect, and eijk ∼ N(0, σ2
e). The total

variance of an individual level outcome is σ2
y = σ2

α + σ2
ψ + σ2

ν + σ2
e .

It is straightforward to expand this model to include multiple binary treatment factors

(Lyons et al., 2017). Assuming additive treatment effects, the model with R treatment

factors is

Yijk = µ+ αi + ψik + νij + βj +
R∑
r=1

Xijrθr + eijk, (2.2)

where Xijr is a {0,1} indicator of whether cluster i at time j receives treatment r and θr is

the treatment effect for treatment r. For the remainder of this section, we take R = 2 for

simplicity, with results generalizable to R > 2. Adding an interaction effect θ3, the model

becomes

Yijk = µ+ αi + ψik + νij + βj +Xij1θ1 +Xij2θ2 +Xij1Xij2θ3 + eijk. (2.3)
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Individual auto-correlation (IAC) is defined as the proportion of the individual-level

variance (which in this model is σ2
ψ + σ2

e) that is time-invariant. In model (2.3), the IAC

is π = σ2
ψ/(σ

2
ψ + σ2

e). Setting π = 0 yields a repeated cross-sectional design. We can also

define the cluster auto-correlation (CAC) as the proportion of cluster level variance that is

time-invariant. In this model, the cluster-level variance is σ2
ν+σ2

α and CAC = σ2
α/(σ

2
ν+σ2

α) =

ρa/ρw (Teerenstra et al., 2012; Feldman and McKinlay, 1994). We also define two intraclass

correlation (ICC) values. The within-period ICC, Corr(yijk, yijk′) is now ρw = (σ2
ν + σ2

α)/σ2
y

and the across-period ICC, Corr(yijk, yij′k′), is ρa = σ2
α/σ

2
y.

Standard errors are needed to compute power. To derive standard errors, it is convenient

to work with cluster-level outcomes. Let Y ij· =
1
N

∑N
k=1 Yijk be the mean outcome of cluster

i at time j across N individuals. The model for cluster-period means with two treatments

and an interaction term is

Y ij· = µ+ αi + ψi + νij + βj +Xij1θ1 +Xij2θ2 +Xij1Xij2θ3 + eij·, (2.4)

where eij· = 1
N

∑N
k=1 eijk ∼ N(0, σ2

c = σ2
e

N
) and ψi = 1

N

∑N
k=1 ψik ∼ N(0, σ2

ζ =
σ2
ψ

N
). In

this model, the variance of a cluster-period mean is Var(Y ij·) = σ2
c + σ2

α + σ2
ζ + σ2

ν , and

Cov(Y ij·, Y ij′·) = σ2
α + σ2

ζ .

Define the outcome vector Y = (Y 11·, . . . , Y iT ·, . . . , Y I1·, . . . , Y IT ·)
′. Assuming clusters

are independent, the variance-covariance matrix of Y is a IT × IT matrix of the form

V =


V1 0 0 0

0 V2 . . . 0

0 0
. . . 0

0 0 . . . VI

 ,

with each T × T matrix Vi having structure
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Vi =


σ2
c + σ2

α + σ2
ν + σ2

ζ σ2
α + σ2

ζ . . . σ2
α + σ2

ζ

σ2
α + σ2

ζ σ2
c + σ2

α + σ2
ν + σ2

ζ . . . σ2
α + σ2

ζ

...
...

. . .
...

σ2
α + σ2

ζ σ2
α + σ2

ζ . . . σ2
c + σ2

α + σ2
ν + σ2

ζ

 .

Some practitioners find that standardization of the model can be convenient for power

calculations. To standardize the model in (2.3), one divides through by σy. The cluster

random intercept αi now has standardized variance ρa, the cluster-by-time random intercept

νij has variance ρw − ρa for ρw > ρa, the individual-level random intercept ψik has variance

π(1 − ρw) and the error term eijk has variance (1 − π)(1 − ρw). Thus the variances can be

specified in terms of the parameters ρw, ρa and π. The matrix Vi will have diagonal elements

ρw + (1−ρw)
N

and off-diagonal elements ρa + π(1−ρw)
N

.

Now we turn to the design matrix of the fixed effects. While β1 rather than βT is often

set equal to zero when the model is fit to data, we follow (Hussey and Hughes, 2007) and set

βT = 0 for identifiability. The choice is immaterial for power calculations. The (T + 3)× 1

regression coefficient vector for the fixed effects is

η =
[
µ β1 . . . βT−1 θ1 θ2 θ3

]′
.

The full IT × (T + 3) design matrix Z becomes

Z =


Z1

Z2

...

ZI


where each matrix Zi has dimension T× (T+3) and takes the form

Zi =

1T

IT−1

0
′

T−1

Xi1 Xi2 (X1X2)i

 .

13



The elements of the vector Xi1 = (Xi11, Xi21, . . . , XiT1)′ are indicators of whether cluster

i at time j receives treatment 1, the elements of Xi2 = (Xi12, Xi22, . . . , XiT2)′ are indicators

of receipt of treatment 2, and (X1X2)i is the Hadamard product of Xi1 and Xi2, with a

value of 1 if cluster i receives both treatments at time j and 0 otherwise. The matrix IT−1

contains indicators for each time j from 1, . . . , (T −1). The vector 0
′

T−1 corresponds to time

T . For designs with R > 2, Zi can be expanded to include the additional indicators.

2.3 Power Analysis

Inference for fixed effects in linear mixed models can be conducted using Wald tests or

likelihood ratio tests. We focus on Wald tests. For hypotheses of the form H0 : η = 0, where

η is a fixed effects coefficient, the Wald test statistic takes the form η̂/
√

Var(η̂), where η̂ is the

estimated coefficient, and has an approximate standard normal distribution when the null

hypothesis is true (Verbeke and Molenberghs, 2009). The power to reject H0 for a specific

true value of η, denoted ηa, with type I error rate α and a two-sided test, is approximately

P

( ∣∣∣∣∣ ηa√
Var(η̂)

∣∣∣∣∣ ≥ z1−α
2

∣∣∣ η = ηa

)

where z1−α
2

is the (1− α
2
)th percentile of the standard normal distribution.

To calculate power, we need an expression for Var(η̂). We derive expressions for Var(η̂)

using the cluster-period mean models in (2.4). We focus on models with R = 2 treatments

and an interaction term assuming a factorial design; the results are generalizable to R > 2

and multi-arm trials as discussed in Chapter 4. Given the linear mixed model formulation,

the variance-covariance matrix of the estimated fixed effect coefficients has the form C =

(Z
′
V −1Z)−1, where Z is the fixed effects design matrix and V is the variance-covariance

matrix of the outcome vector. Our approach is to find expressions for the variances and

covariances of treatment effect coefficient estimates, θ̂1, θ̂2, and θ̂3. We do so by calculating

Z
′
V
−1
Z then invert it to get the elements of (Z

′
V
−1
Z)−1, corresponding to the variances

and covariances of the treatment effect coefficients.
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Let Z be the IT×(T+3) design matrix and V be the IT×IT variance-covariance matrix

of the cluster-level outcomes. Let σdiag = σ2
c + σ2

ν and σoff = σ2
α + σ2

ζ , and for standardized

models, σdiag = (1−π)(1−ρw)
N

+ ρw − ρa and σoff = ρa + π(1−ρw)
N

. Assuming clusters are

independent, V has block diagonal structure with elements Vi = σ2
diagIT +σ2

off1T1′T , where

IT is a T × T identity matrix and 1T is a T × 1 vector of 1’s. Using the Sherman-Morrison

formula (Sherman and Morrison, 1949; Bartlett, 1951), we can obtain its inverse as

Vi
−1 =

1

σ2
diag(σ

2
diag + Tσ2

off )

[
(σ2

diag + Tσ2
off )IT − σ2

off1T1T
′] .

This matrix has off-diagonal elements

−σ2
off

σ2
diag(Tσ

2
off + σ2

diag)

and diagonal elements
(T − 1)σ2

off + σ2
diag

σ2
diag(Tσ

2
off + σ2

diag)
.

Due to the block diagonal structure of V , we have

Z′V
−1
Z =

I∑
i=1

Zi
′Vi
−1Zi,

where Zi is the T × (T + 3) part of the design matrix corresponding to cluster i. We can

then rewrite

Zi
′Vi
−1Zi =

1

σ2
diag(σ

2
diag + Tσ2

off )

[
(σ2

diag + Tσ2
off )Zi

′Zi − σ2
offZi

′1T1T
′Zi

]
. (2.5)

We then use block matrix inversion techniques to solve for the submatrix corresponding to

the coefficients of interest. A full derivation is provided in Appendix A.

In the case of a design with R = 2 interventions and no interaction term, a closed form

solution for the variance of the estimated intervention effects for intervention 1 and 2 can be
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calculated using the inverse of a 2× 2 matrix, with variances written as V ar(θ̂1) =

l2−z2− y22
fT
− 1
f+gT

(
w2− l22

T

)
(
l2−z2− y22

fT
− 1
f+gT

(
w2− l22

T

))(
l1−z1− y21

fT
− 1
f+gT

(
w1− l21

T

))
−
(
q1− y1y2

fT
− 1
f+gT

(
wXW− l1l2

T

))2 ,

and V ar(θ̂2) =

l1−z1− y21
fT
− 1
f+gT

(
w1− l21

T

)
(
l2−z2− y22

fT
− 1
f+gT

(
w2− l22

T

))(
l1−z1− y21

fT
− 1
f+gT

(
w1− l21

T

))
−
(
q1− y1y2

fT
− 1
f+gT

(
wXW− l1l2

T

))2 ,

with all terms defined in Appendix A. Standard errors are calculated by taking the square

root of these variances. Closed form solutions for the model with the interaction effect are

found in Appendix A.

The standard errors thus derived enable power calculations for hypothesis testing. In

factorial and multi-arm design trials, there will typically be multiple hypotheses of interest.

When multiple hypotheses are tested simultaneously, multiplicity adjustments should be

taken into account in power analysis to control experimentwise Type I error. If a single-step

method such as Bonferroni is used, the power calculations can be adjusted by adjusting the

significance level for each test. Accounting for the use of other multiplicity adjustment pro-

cedures, such as the Hochberg or fixed sequence procedures, can be more complex (Grayling

and Wason, 2020).

The calculations also enable the testing of linear contrasts. For example, a compara-

tive effectiveness hypothesis comparing two active treatments may involve the hypothesis

H0 : θ1−θ2 = 0, which can be tested using the Wald statistic (θ̂1−θ̂2)/

√
Var(θ̂1−θ̂2), where

Var(θ̂1−θ̂2) = Var(θ̂1)+Var(θ̂2)−2Cov(θ̂1, θ̂2) and the variance and covariances can be ob-

tained as described.

The power method described makes use of a normality-based z-test, which may not hold

up well for a small number of clusters. However, for the examples we present in the next

section, there was no evidence of small-sample bias, suggesting that this is not always an
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issue. The topic of small-sample bias corrections for stepped wedge designs has been explored

elsewhere (Ford and Westgate, 2020; Li, 2019).

2.4 Examples

Since the formulas are complex, we present examples to illustrate how power is affected

by design features of SWDs, focusing on the impact of sequencing of treatment conditions

within clusters. The examples in Sections 2.4.1 and 2.4.2 use standardized effect sizes and

realistic but arbitrary values of standardized variance parameters. The examples in Sections

2.4.3 and 2.4.4 use simple effect sizes (in original units) and variance parameter values derived

from a real study. For all examples, we set the experimentwise type I error rate to 0.05 and

use a Bonferroni correction when conducting multiple simultaneous tests within the same

design. Calculations were performed in R version 3.6.1 (R Core Team, 2019) with code

available at https://github.com/phillipsundin/SWFD.

2.4.1 Two Separate Single-Intervention SWDs vs a Concurrent SWD

Several studies have conducted two related but separate single-intervention SWD trials

(Reuther et al., 2014; Durovni et al., 2013). We explore potential advantages of combining

two single-intervention trials into one trial with two interventions, including efficiency gains

and comparative effectiveness.

Consider the two single-intervention SWD trials, each with six clusters and four time

periods, in Figure 2.1a. Figure 2.1b stacks the two designs into a single 12-cluster trial;

such a design has been called a concurrent design (Lyons et al., 2017). Figure 2.1c shows a

concurrent design with only 10 clusters. Let δ1 and δ2 denote the standardized effect sizes for

Interventions 1 and 2 compared to the control condition. We set δ1 = δ2 = 0.4, representing

medium effect sizes (Cohen, 1988). Within each design, power for the two intervention

effects is the same due to symmetry. We specify N = 15 individuals per cluster-period in

a repeated cross-sectional design. Power for detecting an intervention effect in one of the
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single-intervention SWDs was calculated using model (2.1); for the concurrent SWDs, power

was calculated using model (2.2). Type I error was set to 0.05 for hypothesis tests in the

single-intervention SWDs and 0.025 for the concurrent designs. In these examples, we fix

ρw = ρa, equivalent to setting σ2
ν = 0, and examine power under two different values of π.

(a) Two separate single

intervention SWDs

(b) Concurrent SWD with

two interventions, 12 clusters
(c) Concurrent SWD with

two interventions, 10 clusters

Figure 2.1: Examples of two single-intervention SWDs versus concurrent SWDs with two
interventions. White cells indicate cluster-periods in the control condition. Light and dark gray

cells indicate treatment conditions for Interventions 1 and 2, respectively.

Figure 2.2: Comparison of Power for Either Intervention Effect for a Single-intervention
SWD, 12-cluster Concurrent SWD and 10-cluster Concurrent SWD

Figure 2.2 displays power for either intervention effect for the three designs as a function

of ρw. The convex shapes of the power curves are similar to those observed for SWDs

with only one treatment (Woertman et al., 2013; Hemming and Taljaard, 2016; Baio et al.,

2015). For both values of π, the 12-cluster concurrent design, which maintains the same total

number of clusters as the two separate single intervention SWDs, has power gains ranging
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from 0.10 to 0.13 compared to the other designs for the values of ρw considered even with a

reduced type I error rate. The 10-cluster concurrent design, which reduces the total sample

size by about 17% compared to the designs with 12 clusters, has power comparable to that of

a single-intervention SWD when π = 0.35; for π = 0.05, power for the 10-cluster concurrent

design is at most 0.02 lower.

Another advantage of including two interventions in one study is the ability to directly

compare them. This can be accomplished using tests of linear contrast, which can be powered

using our methods. Suppose we assume standardized effect sizes of 0.30 and 0.70 for the two

interventions compared to control, entailing a difference of 0.4 between them (a difference

this large may be unrealistic for some studies, but helps to illustrate the principle). We set

ρw = ρa and π = 0.05. Type I error was set to 0.05/3 = 0.0167 for each of three tests: the two

intervention-to-control comparisons and comparison between the two interventions. Figure

2.3 displays power for the linear contrast as a function ρw. The relationship between power

and ρw for the comparative effectiveness contrast is similar to that for the intervention-

to-control hypothesis tests. We note that in a concurrent design, the interventions are

conducted in parallel and thus the intervention-to-intervention contrast is less susceptible to

confounding by time than the intervention-to-control comparisons.

Figure 2.3: Power for Comparison of Two Interventions in Concurrent SWDs
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2.4.2 Factorial Designs with Additive Treatment Effects

Our methods enable power analysis for factorial designs, which can be highly efficient

when effects are additive, i.e., when there is no interaction effect. To investigate stepped

wedge factorial designs, we begin by comparing the 12-cluster, 4-period concurrent design in

Figure 2.1b with designs that assign some cluster-periods to a combined condition. Figure

2.4a shows a 12-cluster “late” factorial design in which all clusters transition to the combined

condition in the last period. Figure 2.4b shows an “earlier” factorial design with only ten

clusters that introduces the combined condition earlier. Additive intervention effects are

assumed for these examples.

Both designs feature six cluster-periods in each single intervention condition and twelve

cluster-periods in the combined condition. We assume repeated cross-sectional observations,

moderate effect sizes (δ1 = δ2 = 0.4) and N = 15 individuals per cluster-period.

Figure 2.4: Stepped Wedge Factorial Design Examples.

Figure 2.5 compares power for the main effect of each intervention for the three designs

(Figures 2.1b, 2.4a and 2.4b) as a function of ρw for two values of the IAC. Power for the

two main effects is identical due to symmetry. The 12-cluster “late” factorial design has the

lowest power for all values of ρw and π. For ρw < 0.02, the 12-cluster concurrent and 10-

cluster “earlier” factorial designs have similar power; for ρw > 0.02, the 10-cluster “earlier”

design has highest power while still maintaining a 17% reduction in sample size compared

to the concurrent design.

This example illustrates several points. First, as expected for a factorial design, when
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Figure 2.5: Comparison of Power for Main Effects

intervention effects are additive, including a combined condition can increase efficiency and

reduce the sample size requirement. However, the timing of transitions to the combined

condition matters. Simply assigning all clusters to the combined condition for the last

period reduced power compared to a concurrent design. Rather, the combined condition

needs to be introduced earlier to realize efficiency gains. Further, if an interaction effect is

present, the design in Figure 2.4a suffers from identifiability issues, as the interaction effect

would be perfectly collinear with the last time period.

2.4.3 Factorial Designs with Interaction Effect

To study power for detecting an interaction, we consider hypothetical SWDs for evaluat-

ing two school-based interventions to reduce obesity among children. The primary outcome

will be age- and sex-standardized BMI z-score. Variance parameter values were estimated

using data from a previous study that measured BMI z-scores at three time points over 13

month among 286 children at 9 schools (unpublished data). A linear mixed model based on

Equation 2.1 was fit to the these data to obtain the estimates σ2
e = 1.11, σ2

ν = 0.14, σ2
ψ = 3.54,

and σ2
α = 0.24 with total variance σ2

y = 5.29. On a standardized scale, these values corre-

spond to ρw = (0.24+0.14)/5.29 = 0.07, ρa = 0.24/5.29 = 0.05, π = 3.54/(3.54+1.11) = 0.76

and CAC = 0.24/(0.24+0.14) = 0.63. The study is to be powered on detecting effect sizes

of 1 on the z-score scale for each intervention and an interaction effect of 0.5 (also on the

z-score scale), corresponding to standardized effect sizes of 1/
√

5.29 = 0.44 for main effects
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and 0.22 for the interaction effect. We note that the z-score outcomes are based on the 2000

Centers for Disease Control and Prevention (CDC) growth charts (Kuczmarski et al., 2002)

and not our sample, which had substantially higher variance. The planned study will involve

8 schools with 90 children at each school, and will have five 6-month periods. For simplicity,

we assume no dropout.

We consider the designs displayed in Figure 2.6. Each of these designs has seven cluster-

periods in Intervention 1 only, seven in Intervention 2 only, and ten in the combined condition.

Design #1 is a concurrent design with the combined condition as another “stack”. Design

#2 is similar to a two-intervention concurrent design but has most clusters further transition

to the combined condition. Designs #3 and #4 combine elements of Designs #1 and #2;

they are distinguished by Design #4 having earlier introduction of the combined condition

and featuring some clusters that never transition to the combined condition. Designs #1,

#3, and #4 are symmetric in Interventions 1 and 2 and thus have equal power for these two

effects. Design #2 is close to symmetric, but symmetry can be impossible to achieve with a

small number of clusters. Type I error was set to 0.05/3 = 0.0167 for three hypothesis tests.

The investigators considered the IAC of π = 0.76 in the prior study to be relatively high

and thought that it might be lower in the planned study. To explore the impact of IAC on

power, Figure 2.7a displays power for main effects for a range of plausible values of π. As

shown by others (Hooper et al., 2016), power is an increasing function of π. Design #2 has

the highest power for main effects for all values of π. In this design, power for Intervention 1

is slightly higher than that for Intervention 2 due to its more balanced sequencing over time

(2 clusters receiving intervention in periods 2, 3 and 4 rather than 1, 2, then 3 clusters). For

all values of π, Design #1 has lowest power. Focusing on power for the interaction, displayed

in Figure 2.7b, Design #2 has by far the highest power; power for the three other designs is

similar. Overall, power to detect the interaction is low.

Design #2 is clearly superior for detecting both main and interaction effects. In Design

#2, clusters transition between conditions more than any other design. When there are

more transitions, within-cluster comparisons are increased, and thus power to detect effects
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Figure 2.6: Varying sequences in a stepped wedge factorial design.

is increased. In Design #1, cluster transition only once, and thus this design has the lowest

power for main effects. Beyond power, other drawbacks of the designs should be considered.

For example, in Design #3, time in the combined condition occurs almost entirely during

the last period, risking confounding with time. This example also illustrates that to power

on the interaction term, designs should include two features: clusters that experience the

control, single intervention and combined conditions, and relatively early introduction of the

combined condition.

2.4.4 Four-Arm Design

To study multi-arm trials, we continue with SWDs for child obesity interventions using

BMI z-score as the outcome variable and the variance parameter estimates from the previous

similar study described in Section 2.4.3. We study the designs in Figure 2.6 but regard

the combined condition as a third intervention (Intervention 3), and assume the goal is to
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Figure 2.7: Comparison of power for detecting main and interaction effects

compare each of the three interventions to the control condition. Other hypotheses could

include direct comparisons of interventions. We assume a simple effect size of 0.92 for each of

the intervention arm, corresponding to a standardized effect size of 0.4. Each cluster-period

has N = 90 individuals. We use the same variance parameters as above, and allow the

individual auto-correlation π to vary. Type I error is set to 0.05/3 = 0.0167 for each of 3

tests. We compute power for each intervention as well as average power.

Power to detect all three interventions individually and averaged is shown in Figure 2.8

as a function of π. This example shows that unlike factorial designs, power in multi-arm

trials is less dependent on clusters transitioning to multiple intervention conditions and more

dependent on when interventions are first introduced in the study. For Interventions 1 and

2, Design #2 yields the highest power across all values of π, as it introduces the intervention

early in the study across multiple clusters. However, for Intervention 3, we see that Design

#1 yields the highest power, as this design introduces Intervention 3 earlier in the study than

any other design. We also note that for Intervention 3, Design #3 yields the lowest power,

as only two cluster-periods are in this condition prior to the final time period, resulting in a

significant amount of confounding between time and an intervention effect.

Design #2 has higher power than Design #3 for all interventions. However, Design

#2 only outperforms Designs #1 and #4 for Interventions 1 and 2 and has lower power

for Intervention 3. This can be attributed to the fact that Design #2 primarily features
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Figure 2.8: Comparison of Power for Each of Three Interventions for Multi-arm Trials

Intervention 3 in time periods 4 and 5. Looking at average power for all three interventions,

Design #1 has the highest average power, but for higher π, has about average equal power

with Design #4. Design #2 has about 0.03 lower average power compared with Design #1

for all π values shown, and Design #3 has about 0.07 lower average power than Design #1.

2.5 Simulation

We used simulation to verify the power calculations and Type I error rates for all ex-

amples in Section 2.4. We simulated 1000 data sets under the alternate hypothesis using

representative values of the variance parameters that were allowed to vary to verify power for

each example. Linear mixed models were fit to each simulated data set using restricted max-

imum likelihood as used in other stepped wedge simulation studies (Hooper et al., 2016),

using the lme4 package in R (Bates et al., 2015). No small sample size corrections were

made. Power was calculated as the percentage of simulations in which the null hypothesis
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was rejected using a Wald test at the Bonferroni-corrected type I error level. Type I error

rates were estimated by simulating data under the null hypothesis, i.e., setting all treatment

effects to 0, and calculating the percentage of simulations in which the null hypothesis was

falsely rejected using an experimentwise Type I error rate of 0.05 and Bonferroni corrections

as described in the examples.

Tables 2.1 - 2.4 compare power calculated using our method to power estimated by

simulation for each set of examples. For all examples, power calculated numerically using

our method and simulated power were similar, with no indication of systematic under- or

over-estimation of power. Similarly, Type I error rates from the simulations were reasonably

close to the nominal level, and did not appear to be systematically over- or under-estimated.

π = 0.05 π = 0.35
ρw = 0.05 ρw = 0.30 ρw = 0.05 ρw = 0.30

Design δ1 = 0.4 δ1 = 0.4 δ1 = 0.4 δ1 = 0.4
Single Intervention .61 (.61) .71 (.70) .78 (.75) .86 (.85)
12-Cluster Concurrent .73 (.71) .80 (.79) .83 (.85) .93 (.92)
10-Cluster Concurrent .60 (.60) .68 (.68) .77 (.75) .88 (.85)
Type I error (nominal error = 0.025)
Single Intervention .026 .027 .020 .023
12-Cluster Concurrent .022 .019 .039 .026
10-Cluster Concurrent .027 .024 .024 .032

Table 2.1: Comparison of Power Based on Simulation and Proposed Method (in
parentheses). Single-Intervention and Concurrent Designs in Section 2.4.1.

π = 0.05 π = 0.35
ρw = 0.05 ρw = 0.30 ρw = 0.05 ρw = 0.30

Design δ1 = 0.4 δ1 = 0.4 δ1 = 0.4 δ1 = 0.4
12-Cluster Concurrent .73 (.71) .80 (.79) .83 (.85) .93 (.92)
12-Cluster Late Design .66 (.65) .76 (.75) .79 (.80) .89 (.89)
10-Cluster Early Design .71 (.72) .83 (.79) .88 (.86) .94 (.94)
Type I error (nominal error = 0.025)
12-Cluster Concurrent .019 .018 .036 .022
12-Cluster Late Design .018 .024 .028 .016
10-Cluster Early Design .026 .026 .023 .020

Table 2.2: Comparison of Power Based on Simulation and Proposed Method (in
parentheses). Concurrent Designs and Factorial Design in Section 2.4.2.
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ρw = 0.07, ρa = 0.05, π = 0.5 ρw = 0.07, ρa = 0.05, π = 0.7
Intvn 1 Intvn 2 Intxn Intvn 1 Intvn 2 Intxn

Design δ1 = 0.44 δ1 = 0.44 δ3 = 0.22 δ1 = 0.44 δ2 = 0.44 δ3 = 0.22
1 .83 (.82) .85 (.82) .15 (.11) .85 (.85) .89 (.85) .15 (.11)
2 .94 (.94) .91 (.92) .28 (.29) .95 (.96) .94 (.94) .31 (.31)
3 .88 (.89) .89 (.89) .13 (.10) .91 (.91) .92 (.91) .14 (.11)
4 .87 (.85) .86 (.85) .15 (.13) .90 (.88) .89 (.88) .16 (.14)

Type I error (nominal = 0.0167)
1 .016 .019 .014 .014 .018 .013
2 .011 .013 .015 .009 .014 .014
3 .016 .021 .017 .015 .021 .011
4 .011 .017 .011 .012 .016 .008

Table 2.3: Comparison of Power Based on Simulation and Proposed Method (in
parentheses). Factorial Designs in Section 2.4.3.

2.6 Discussion

Stepped wedge designs with more than one intervention are being used in practice despite

a paucity of literature on their statistical design and analysis. We have presented power

calculation methods for stepped wedge design trials that have multiple interventions, both as

multi-arm and factorial designs. We focus on studies that include a relatively small number of

clusters, which is common for stepped wedge trials (Taljaard et al., 2016b). In our examples,

it was not feasible to explore all possible design options. However, the examples demonstrate

several principles. We found that a concurrent design, in which two one-treatment stepped

wedge trials are conducted as a single study, is more efficient than two separate one-treatment

studies, which is supported by Lyons et al. (Lyons et al., 2017). Our methods enable power

calculations for such studies. In concurrent designs, cluster-periods in the control condition

perform “double duty” by serving as controls for both treatment conditions. Such trials

are essentially three-arm trials in which two interventions are each compared to a control

condition.

Our results also illustrate that stepped wedge factorial designs that include cluster-periods

in a combined condition can increase power substantially compared to concurrent designs

when treatment effects are additive. However, since the presence of an interaction generally
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ρw = 0.07, ρa = 0.05, π = 0.5 ρw = 0.07, ρa = 0.05, π = 0.7
Intvn 1 Intvn 2 Intvn 3 Intvn 1 Intvn 2 Intvn 3

Design δ1 = 0.5 δ1 = 0.4 δ3 = 0.4 δ1 = 0.4 δ2 = 0.4 δ3 = 0.4
1 .75 (.74) .79 (.74) .91 (.91) .79 (.77) .81 (.77) .93 (.93)
2 .89 (.88) .85 (.85) .58 (.56) .91 (.91) .88 (.88) .62 (.60)
3 .81 (.81) .81 (.81) .52 (.53) .84 (.85) .85 (.85) .57 (.57)
4 .80 (.76) .79 (.76) .80 (.81) .83 (.80) .82 (.80) .84 (.84)

Type I error (nominal = 0.0167)
1 .016 .019 .016 .014 .018 .016
2 .011 .013 .010 .009 .014 .009
3 .016 .021 .024 .015 .021 .025
4 .011 .017 .010 .012 .016 .011

Table 2.4: Comparison of Power Based on Simulation and Proposed Method (in
parentheses). Multi-arm Designs in Section 2.4.4

decreases power for detecting main effects in factorial designs (Green et al., 2002), power

may end up being inadequate if a potential interaction was not taken into account in power

calculations. One approach for guarding against this eventuality is to conduct sensitivity

analyses that assume some interaction between interventions when designing the study. Our

power calculation methods can be used for this purpose.

In some studies, detecting an interaction effect may be of interest. Our work shows

that in a stepped wedge factorial design where the aims include detecting an interaction

effect, treatment sequencing is critical. We found that in general, designs in which clusters

transition from control to single treatment to a combined treatment will be more powerful

than designs in which clusters make only one transition, from control to a single treatment

or control to combined condition. Such multiple-transition designs allow for more within-

cluster comparisons, which are a driving factor in power for stepped wedge trials in general

(Hemming et al., 2020).

A common method of handling interactions in factorial designs is to test for an interaction

and drop it if it is not significant. This approach has been shown to lead to biased results

(Kahan, 2013). We follow Kahan in recommending reporting results both as a factorial design

and as a multi-arm analysis, where a condition with multiple treatments is considered as a
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separate treatment condition altogether.

Our examples included both repeated cross-sectional and cohort designs. Power for re-

peated cross-sectional versus cohort designs has been addressed by others (Feldman and

McKinlay, 1994); in general, cohort designs have higher power than cross-sectional designs

(Hooper et al., 2016; Feldman and McKinlay, 1992). However, there is often a lack of in-

formation about parameter values to support power analysis for cohort designs. ICCs are

typically reported as the within-time, within-cluster correlation, ρw; the across-time, within-

cluster correlation ρa and individual auto-correlation π are often not reported. Given this

lack of information, it may be sensible to make the simplifying assumption that ρw = ρa,

which corresponds to the repeated cross-sectional design.

When conducting multiple hypothesis tests in stepped wedge trials with multiple inter-

ventions, investigators should consider the need to control the experimentwise type I error

rate. We note that when multiple treatment groups are each compared to a common control

group, Dunnett’s method may be used for experimentwise type I error rate control (Dun-

nett, 1964). For other multi-arm or factorial designs, there are several possible methods to

control for familywise error rate (Soulakova, 2011). In our examples, we used a Bonferroni

correction. As the number of hypotheses increases, the familywise error rate may be better

addressed using other techniques.

In this dissertation, we focus on SWDs with 2 or 3 treatment conditions. However,

our results are generalizable to designs with more interventions. Consider a model with

M main effects and B two-way interaction terms, where M ≥ 2 and 0 ≤ B ≤ M(M−1)
2

.

The variance-covariance matrix of the regression coefficients would be a (M+B)×(M+B)

matrix. The elements of this matrix would have the same form as the elements of the 3×3

matrix in Appendix A for diagonal and off-diagonal elements for both main and interaction

effects. Solving for [(M+B)×(M+B)]−1 would yield the variance-covariance matrix for the

estimated coefficients. Note that this approach holds for two-way interactions only; higher-

order interactions are not considered.

There are several limitations to our work. We use standardized effect sizes. Standardized
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effect sizes may be misleading if underlying distributions are skewed (Botta-Dukat, 2016).

A more extensive discussion of advantages and disadvantages of simple versus standard-

ized effect sizes is found elsewhere (Botta-Dukat, 2009). We consider continuous outcomes

only; further development is needed for non-continuous outcomes, including binary, survival,

categorical and count outcomes. In the model we present, the cluster autocorrelation is

constrained to be the same for cluster means across time periods, regardless of the length

of time between observing cluster level outcomes. This may not be an accurate assumption,

as cluster means observed closer in time may be more correlated than those that are farther

apart (Hemming et al., 2017). There are models for one treatment SWDs that allow the

correlation between cluster means to decay over time (Li, 2019; Grantham et al., 2018; Li

et al., 2020). For linear mixed models with a decaying correlation structure, the covariance

matrix is a Toeplitz matrix and requires the use of the Trench algorithm to numerically invert

(Grantham et al., 2018). We did not include this feature in our work here as we focused on

the derivation of closed form variances and covariances of treatment and interaction effects.

We only consider complete SWDs. Incomplete designs, in which data are not collected from

some clusters in some periods, have been addressed for stepped wedge trials with a single

treatment (Hemming et al., 2014; Kasza et al., 2019). Another topic that could be explored

further would be determining the minimal designs to yield a certain level of power. By fixing

certain parameters, investigators may be interested in knowing the minimum number of clus-

ters, individuals per clusters, or design sequences to obtain a level of power. Finally, we have

assumed that treatment effects are instantaneous and do not consider delays in treatment

effects, which have been considered for SWDs with a single treatment (Hussey and Hughes,

2007; Li et al., 2020; Hughes et al., 2015). Future work could explore how delays in one or

both treatment effects may impact power of main and interaction effects.
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CHAPTER 3

Vaccination Outcome via Multistate Modeling in a

Stepped Wedge Design

In this chapter, we focus on estimating intervention effects for stepped wedge trials with

a vaccination outcome. We first discuss some existing methods that might be applied to an-

alyzing the NORVAX data, and provide rationale for the need for a new modeling approach.

We propose a continuous time multistate cure model. Key features of our proposed model

are the use of individual-level data, modeling the multiple-treatment design and estimation

of treatment effects in terms of completion and initiation percentage point differences.

3.1 Introduction

There are a few other studies that share the goal of the NORVAX study of estimating

the effectiveness of interventions to promote HPV vaccination, and some use a stepped

wedge design. In a recently proposed SWD trial for increasing HPV vaccination, analysis

will be conducted by following fixed cohorts of individuals throughout each step and using

random effects logistic regression for analysis (Rutten et al., 2018). However, the NORVAX

study has an open cohort design, and we wish to utilize all available information if possible.

Thus this approach is not a good fit. Another trial with a stepped wedge design and HPV

vaccination outcome conducts statistical analysis using clinic-level outcomes (Carney et al.,

2019). We have fit such models, and discuss their strengths and limitations below. Finally,

there is a study that uses data at the patient-visit level (Perkins et al., 2020), with the

outcome of whether or not a patient who was eligible for a vaccine dose actually received a
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dose at the visit. The main outcomes of the NORVAX study are initiation percentage, the

percentage of population that has received at least one dose, and completion percentage, the

percentage of the population that has received all required doses. This approach does not

estimate population-level completion and initiation percentages. Thus, none of these studies

use methods that will achieve the goals of the NORVAX study.

One possible approach is to use clinic-level completion or initiation percentages at specific

time points (e.g., quarterly) as the observations. The data could then be modeled using

linear mixed models. Random effects can be included to account for dependencies of repeated

observations from the same clinic. The use of linear models allows for flexibility in specifying

the covariance matrix of the error terms. For example, we could allow each clinic to have

a unique error variance to account for different trends by clinic. Another possibility would

be to incorporating clinic size and allow observations to have size-weighted contributions to

the likelihood function.

Percentages are bounded by 0 and 100 and thus could violate the assumption of normality

of errors of linear models, particularly if these percentages approach either the upper or lower

bound. An alternative approach is to use a beta distribution, which restricts outcomes to

take values between a and b (a < b). Ferrari and Cribari-Neto propose a modeling technique

for beta-distributed outcomes (Ferrari and Cribari-Neto, 2004).

Models with a clinic-level percentage outcome variable have several advantages. Regres-

sion coefficients from these models are easily interpreted and provide intervention effects in

terms of initiation and completion percentage differences. Another advantage is the abun-

dance of existing software for linear mixed models and beta regression (Cribari-Neto and

Zeileis, 2020; Magnusson et al., 2020). Even the more complicated linear mixed models with

weightings can be fit using existing software (Pinheiro et al., 2020). Finally, given the small

size of the data set, they are computationally inexpensive.

However, the clinic-level modeling approach has significant limitations. Because clinic is

the unit of observation, only clinic-level covariates can be included. Thus we cannot adjust

for individual-level covariates such as age, gender, and socioeconomic status nor test them
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as moderators. In the NORVAX study, we only have seven clinics, and using clinic as the

unit of observation means a rather small sample size. Additionally, we would need to choose

the frequency for examining the cluster-level outcomes. Should it be annually, quarterly,

monthly, or even daily? This is a somewhat arbitrary decision and the impact of different

sampling frequencies would need to be explored.

Another possible method for analysis is using individual-level initiation and completion

status as the outcome. Mixed effects logistic regression models have been used in parallel

study designs with HPV vaccination outcomes (Borg et al., 2018; Fu et al., 2016; Hurley et al.,

2019). A possible approach is as follows: create a repeated binary outcome for each individual

at specific time points (e.g., quarterly or monthly); fit a mixed effects logistic regression

model, with random effects for individuals nested within clinics. Indicators for each time

point could be included to indicate intervention condition and to control for secular trends.

The individual-level logistic regression framework suffers from the same frequency issue as

the clinic-level analysis, as we need to arbitrarily select the time points to examine each

individual’s outcome. Also, it would be difficult to model time-varying covariates that do

not align with selected time points. However, the major issue with using repeated measures

of individual-level initiation or completion as the outcome is that these outcomes are not

probabilistic; once an individual is initiated, they remain initiated, and once they complete

the vaccine series, they remain completed. So by repeating observations of an individual who

has already completed or initiated their vaccination, we would be recording observations that

cannot change. This violates basic model assumptions. Despite this concern, we attempted

to fit such models, and found that models with random intercepts for individuals did not

converge.

Due to these limitations, we pursued an alternative modeling framework for the NOR-

VAX study. Our aim was to use individual-level data on vaccination status in a modeling

framework that would enable us to estimate intervention effects as changes in initiation and

completion percentages. To accomplish the modeling objectives, we propose a multistate

cure model.
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3.2 Data

Data for the study are extracted from the electronic health records of individual patients.

To be considered part of the study-eligible population at any point in time, an individual

must be aged 12-17 years and an “active” patient, defined as having had an encounter at

any of the seven clinics in the past two years. These criteria create a dynamic cohort, with

individuals entering and exiting the study over time as they age in or out and change from

being active to inactive patients or vice versa. The dynamic cohort combined with the

stepped wedge factorial design means that an individual may contribute data over multiple

time periods and intervention conditions.

Another salient feature of the data is that the exact dates of vaccination are known,

because they are recorded in the electronic health records. Thus the time points at which

patients transition from one state to another (e.g., unvaccinated to one dose) are known.

An example of data from an individual in the study is shown in Figure 3.1. In this figure,

the top graphic displays the individual’s times of receiving doses in days, and the middle

graphic shows the sequence of treatment conditions at the individual’s clinic. The individual

enters the study with 0 doses at the beginning of Period 1, when his/her clinic is in the

usual care condition. The individual continues to have 0 doses when the clinic transitions

to the reminder condition at the start of Period 2. At day 700, while the clinic is still in

the reminder condition, the individual receives his/her first dose. After the first dose, there

are 152 days of ineligibility before they are due for their next dose. The individual remains

due for their second dose until they receive it on day 1600, by which time the clinic has

transitioned to the combined condition (Period 5).

To address this combination of time-varying exposure and time-varying vaccination state,

we break an individual’s contribution to the dataset into multiple observations, with a new

observation starting whenever the intervention exposure or the individual’s state changes.

The bottom graphic shows the distinct observations that this individual would contribute to

the dataset. Given the nature of these observations, we develop a continuous time multistate
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model for the data.

0 doses Not Due for Dose 1 dose 2 doses

0 700700 852852 16001600

Enters Study Dose Dose End

Usual Care Condition Reminder Condition Combined Condition

Period 1

0 365

Period 2

365 730

Period 3

730 1095

Period 4

1095 1460

Period 5

1460 1825

Contribution to Data No Contribution

Obs 1

0 365

Obs 2

365 700700 852

Obs 3

852 1095

Obs 4

1095 1460

Obs 5

146016001600 1825

Figure 3.1: HPV dosing example. Time measured in days

3.3 Multistate Models

In multistate models, individuals transition among a finite number of states, and the

model parametrizes the rate or intensity of transitions among states. These models have

been used in a wide variety of health-related applications, such as illness-death models (von

Cube et al., 2017), tumor progression (Wu et al., 2008), and psoriatic arthritis development

(O’Keeffe et al., 2017).

One use of such models is to evaluate the effects of interventions. When the model pa-

rameterizes transition intensities between states, intervention effects for multistate models

can be estimated as hazard ratios. For example, in a multistate model for stroke therapy,

states represent increasing levels of disability for recovering stroke patients, and intervention
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effects were modeled as reductions in the hazard rates for transitioning to states correspond-

ing to worsened disability (Cassarly et al., 2017). These are other examples of this approach

in the literature (Le-Rademacher et al., 2018; Fintzi et al., 2021; Gran et al., 2015). How-

ever, hazard ratios can be difficult to interpret in clinically meaningful terms. Estimation of

intervention effects on population-level percentages, such as the percentage of individuals in

a given state, may be of interest to clinicians and statisticians alike. For example, it would

be of interest to quantify the change in the percent of the population that has received at

least one dose of the HPV vaccine due to exposure to an intervention.

We propose a Bayesian continuous time multistate cure model for the HPV vaccination

outcome using the number of doses as different states within the stepped wedge design. We

include a cure model component because not all individuals will receive the next required

dose of their HPV vaccine for a variety of reasons (Dilleya et al., 2020). The multistate

cure model (also known as mover-stayer model (Yiu et al., 2017)) is an extension to the

continuous time multistate model in which a percentage of individuals never transition out

of each states (Beesley and Taylor, 2019). We then use parameter estimates from fitting the

multistate cure model to estimate intervention effects on population-level HPV vaccination

percentages. This model overcomes several of the challenges posed by existing models for

both HPV vaccination outcomes and stepped wedge designs. This multistate cure modeling

framework 1) allows the model to adequately account for a dynamic cohort 2) incorporates

cure proportions to estimate the percentage of individuals who will not receive their next

required dose and 3) makes use of individual-level data to model population-level vaccination

percentages.

Continuous time multistate models can be parameterized by transition intensities

λcd(t,F (t)), the instantaneous probability of transition from state c to state d at time t with

filtration F (t). The transition intensity is defined as

λcd(t,F (t)) = lim
∆t→0

qcd(t, t+∆t)

∆t
,

where qcd(t1, t2) is the transition probability between states c and d during times t1 < t2. In
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this dissertation, we assume semi-Markov processes. Semi-Markov processes feature transi-

tion intensities that are independent of the event history contained in F (t) but dependent

on the time spent in the current state. The transition intensity for a semi-Markov process

between states c and d is λcd(t, t−Tc) for t < Tc, the time of most recent entry into state c.

A continuous time multistate process also can be fully defined by the transition probability

matrix Q(t1, t2), with entries qcd(t1, t2), t1 < t2. Let S be a state space with s states and the

state process Y (t) take a value from the set c, d ∈ {0, . . . , s−1} at time t. For a semi-Markov

process, the entries in the transition probability matrix are

qcd(t1, t2) = P (Y (t2) = d | Y (t1) = c; t1−Tc) for t1 < t2.

For the HPV vaccination trial, the states of the multistate model are the current number

of doses received, with s = 3 states corresponding to 0, 1, or 2 doses. We ignore the possibility

of third doses because our data include very few individuals who become due for or receive

a third dose. We write the transition intensity matrix for the 3-state model as

Λ(t) =


−λ01(t) λ01(t) 0

0 −λ12(t)λ12(t)

0 0 0

 .

Individuals may enter the study in any of the three states. In this model, the transition

intensity λ01 corresponds to the rate at which individuals without any doses receive the first

dose. Because individuals must receive 1 dose before receiving 2 doses, an individual must

go through State 1 before reaching State 2 i.e. λ02 = 0. Individuals in each state only

have one possible transition, making our model a progressive multistate model (Hsieh et al.,

2002). When an individual receives their first dose, they cannot return to having received

0 doses, i.e. λ10 = 0. Finally, State 2, in which an individual has received 2 doses, is an

absorbing state, and all transition intensities in the final row of Λ(t) are 0. A feature of

transition intensity matrices is that its rows sum to 0; thus we have λ00(t) = −λ01(t) and
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λ11(t) = −λ12(t), i.e., the distribution of sojourn times for States 0 and 1 are equivalent to

the distribution of time it takes to transition to States 1 and 2, respectively. The progressive

nature of our multistate model also leads to λ01(t) and λ12(t) having the form of parametric

hazard functions in our model.

For multistate models in which exact transition times are unknown, likelihood formula-

tions are constructed using transition probabilities rather than transition intensities

(Kalbfleisch and Lawless, 1985) and rely on a Markov assumption for mathematically

tractability (Kay, 1986). In our application, we observe exact transition times between states

and do not rely on the Markov assumption. Instead, we can directly model the sojourn times,

i.e., the time spent in a state, and construct the likelihood using a time-to-event framework.

We assume Weibull distributions for sojourn times and therefore transition times as well. A

Weibull distributed random variable T for the time spent in state c before transitioning to

state d has probability density function (pdf)

f(t; αcd, γcd) =
αcd
γcd

(
t

γcd

)αcd−1

exp

(
−
(
t

γcd

)αcd)
, αcd > 0, γcd > 0, t > 0,

where γcd is a scale parameter and αcd is a shape parameter. Transition intensities λ01 and

λ12 now have the hazard and survival functions for the Weibull distribution as

h(t; αcd, γcd) =
αcd
γcd

(
t

γcd

)αcd−1

S(t; αcd, γcd) = exp

(
−
(
t

γcd

)αcd)
.

We reparametrize the scale parameter γcd using a proportional hazards framework to

incorporate covariates, defining

γcd = exp

(
−γcd0+Xβcd+u

αcd

)
, (3.1)

where γcd0 is an intercept, X is a design matrix and βcd is the vector of regression coefficients

corresponding to the transition between states c and d. In our model, we estimate two sets

of transition intensities, λ01 and λ12. We assume the same set of predictors X across both
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transitions but allow regression coefficients to differ for each transition intensity. The model

also includes a clinic-level random intercept for unobserved heterogeneity where ui is an

instance of u = {u1, . . . , uI} ∼ N(0, σ2
i ) and II is an I×I identity matrix for I number of

clinics. This clinic-level effect is assumed to be the same across transitions.

Models for stepped wedge designs typically include indicators for each time period to

account for secular trends (Hussey and Hughes, 2007). In our model, every regression co-

efficient vector βcd contains (j−1) binary {0,1} indicators periods 2, . . . j, with Period 1

used as reference. The two columns in the design matrix corresponding to indicators for

the two interventions are denoted as X tx. The interventions are modeled as time-varying

{0,1} indicators, per the time intervals in the study design in Figure 1.2. Clinics only switch

intervention conditions at the start of a time period. If individual k in clinic i enters into a

time interval in which an intervention is implemented at the clinic, that individual’s value

of the intervention indicator becomes 1 for all time spent in that clinic-interval.

3.3.1 Cure Proportions

It is expected that some patients will never receive their next dose of HPV vaccine and

thus will remain indefinitely in State 0 (no doses) or State 1 (one dose). To address this, we

introduce cure proportions into our model. Being “cured” means not receiving a dose and

thus not experiencing a transition to the next state.

Let Vck be a latent indicator variable with Vck = 1 indicating that individual k is “cured”

and will stay in state c and Vck = 0 indicating that individual k is “non-cured” and will

eventually leave state c. Let πck(Zk) = P (Vck = 1 | bc,Zk) be the probability of individual

k being cured in state c, which depends on the regression coefficient vector bc and covariate

values Zk. We use a logistic link for πck to incorporate covariates,

πck =
exp(bc0+b′cZk)

1+exp(bc0+b′cZk)
, (3.2)

where bc0 corresponds to an intercept for the cure proportion in state c. We assume that
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covariates in Zk are measured at the individual level, and allow for different effects of these

covariates depending on state, i.e., for states c 6= d, the vectors bc and bd may not neces-

sarily be equal. The survival function for each transition is only defined when Vck = 0 for

an individual in state c. Using a mixture cure model framework, the conditional survival

function Sck(t) for individual k in state c at time t becomes

Sck(t) = πck+(1−πck) Sck0(t | Vck = 0),

where Sck0(t | Vck = 0) is a proper Weibull survival function and Sck(t) is no longer proper

as lim
t→∞

Sck(t) = πck.

3.3.2 Likelihood and Bayesian Formulation

Our population contains individuals with both known and unknown cure status. For an

individual who is observed leaving state c, the cure indicator Vck = 0 . We write the observed

likelihood for an individual k with Vck = 0 who experiences a transition out of state c into

state d at time t as

Lck = (1−πck)
jr∏
j=j1

Scjk0(t1jk, t2jk; X){hcjk(t;X)}δckj ,

where the individual is observed during time intervals j1 to jr, Scjk0 and hcjk are the proper

survival function and hazard function, respectively, of the sojourn time of state c during

interval j for individual k who survives from times t1jk to t2jk dependent on set of covariates

X. The {0, 1} censoring indicator δckj is equal to 1 if individual k leaves state c during

interval j at time t and 0 otherwise. For every individual, the time in state c starts at

t1j = 0 for j = j1.

The individuals who do not leave state c are a mixture of those who are cured and those

who are uncured and have not experienced a transition yet. For an individual k who does
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not leave state c, the likelihood contribution is

Lck = πck+(1−πck)
jr∏
j=j1

Scjk0(t1jk, t2jk; X),

allowing for the possibility to be either cured or not cured. Time-dependent covariates are

represented as a series of left-truncated survival times, which may also be right-censored

(Austin, 2012).

An example of likelihood construction is found in Figure 3.2. The individual enters the

study in State 0 at calendar day 0 and is censored in State 1 at calendar day 950. This

individual has covariate value changes at times 365 and 730 days. The individual receives

their first dose after age 15 and therefore must wait at least 28 days until s/he is eligible

for the next dose. This wait time is not included in the likelihood. For sets of time-varying

covariates X 6= X∗ 6= X∗∗, this individual’s likelihood contributions for each transition

would be

L0k = (1−π0k)

(
S0j1k0(0, 365; X)S0j2k0(0, 600; X∗)

S0j2k0(0, 365; X∗)

)
h0j2k(600;X∗) and

L1k = π1k+(1−π1k)

(
S1j2k0(0, 102; X∗)S1j3k0(0, 322; X∗∗)

S1j3k0(0, 102; X∗∗)

)
.

Optimizing the likelihood function with the inclusion of both clinic-level random intercept

and cure model parameters would prove challenging. We therefore use a Bayesian framework

for estimating the parameters of the model. Cure models often have been formulated using

the expectation-maximization (EM) algorithm. However, Bayesian techniques are a viable

alternative to the EM algorithm for the estimation of cure models (Ma et al., 2020), with

several applications seen in practice (Yu and Tiwari, 2012; Wang et al., 2020).

For our 3-state multistate cure model, the parameters of interest include Weibull pa-

rameters γ010, α01, γ120 and α12, fixed effect regression coefficients β, clinic-level hierarchical

components u and σI , and cure parameters b00, b10, b0 and b1. The joint posterior of
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Figure 3.2: Likelihood Example for an individual who receives their first dose after age 15.

these parameters is analytically intractable, and so we conduct posterior estimation using

the Monte Carlo Markov Chain (MCMC) technique. In particular, we use the no-U-turn

sampler (NUTS), a variant of Hamiltonian Monte Carlo, via STAN to estimate posterior

distributions (Stan Development Team, 2022). The target average acceptance probability

(adapt delta parameter in Stan) is set to 0.95, which results in a smaller sampling step size

to reduce the frequency of divergent transition after warmup.

We specified diffuse prior distributions for all parameters, as there is not much prior in-

formation about these parameters. We expect that our data will provide enough information

to estimate each parameter. For covariates in βcd, we specify a normal prior distributions

of ∼ N(0, 2). The random effect ui had a prior distribution of N(0, 1), and for the rest of

the covariates, we use default prior distributions in STAN, which are flat, improper uniform

distributions from (−∞,∞) (Stan Development Team, 2022). Prior distributions for each

parameter are assumed independent. To assist convergence, boundaries were placed on cure

intercepts −5 ≤ b00 ≤ 4 and −5 ≤ b01 ≤ 4, corresponding to cure probabilities between 0.6%

and 98%. Further constraints were placed on Weibull scale and shape parameters and σI to
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ensure non-negativity. For each model we present, 8,000 samples were drawn with a burn-in

of 4,000 iterations. R-hat values are close to 1, which while not guaranteeing convergence, is

an indicator of adequate model fit. Our models also show good effective sample size for all

parameters. Posterior analysis was conducted in R version 3.6.1 (R Core Team, 2019) with

the RStan package (Stan Development Team, 2020).

3.4 Population Level Percentage Estimates

The model estimates intervention effects as hazard ratios. An objective of the NORVAX

study is to estimate intervention effects in terms of differences in study population-level

initiation and completion percentages attributable to interventions. This requires solving

for the transition probability matrix Q.

3.4.1 Solving for Transition Probabilities

For a multistate model, the relationship between the transition probability matrix Q and

transition intensity matrix Λ between times t1 and t2 is defined by the Kolmogorov Forward

Equation (KFE). The initial condition is Q(0, 0) = Is, where Is is an s×s identity matrix.

If transition intensities are assumed to be constant over time (i.e. time homogeneity), a

solution to the KFE is the matrix exponential Q(t) = Exp(tΛ) (Clements, 2019). If the

transition intensities in Λ(t) are non-homogeneous and a function of t, the KFE must be

solved directly, which can be difficult. Solving for transition probabilities has been explored

extensively for non-homogeneous Markov models (Titman, 2011) and non-Markov models

(Titman, 2015). Obtaining such solutions also has been explored in a frequentist setting

using B-splines (Titman, 2011).

Solving for transition probabilities is less challenging for progressive multistate models.

Hsieh et al. (2002) provide closed form solutions of transition probabilities for a three-state

progressive multistate model, which can also be derived from Cook & Lawless (Cook and

Lawless, 2018). For a 3-state model with states denoted as s = {0, 1, 2}, the transition
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probability matrix has entries

p00(t1, t2) = exp[−H0(t1; t2)] p01(t1, t2) =

∫ t2

t1

exp[−H0(t1; t)]h01(t)exp[−H1(t; t2)]dt

p02(t1, t2) = 1−p00(t1, t2)−p01(t1, t2) p11(t1, t2) = exp[−H1(t1; t2)]

p12(t1, t2) = 1−p11(t1, t2) (3.3)

where H0(t1; t2) and H1(t1; t2) are cumulative hazard functions for an individual between

the time t1 that an individual enters the study and some time t2 > t1, for States 0 and 1,

respectively. The term h01(t) is the hazard function associated with the transition intensity

between States 0 and 1 evaluated at time t. To evaluate the integral in p01(t1, t2), Hsieh

et al. (2002) use a trapezoidal approximation; we use a Monte Carlo estimator. Let f(t) =

exp[−H0(t1; t)]h01(t)exp[−H1(t; t2)] and F =
∫ t2
t1
f(t)dt. We approximate F with a Monte

Carlo estimator

F̂ = (t2−t1)
1

N

N∑
i=1

f(Xi), Xi ∼ Unif(t1, t2).

There is a specific amount of time after receiving the first dose before an individual is

eligible for the second dose. We denote this required time as t∗. For t2−t1 ≤ t∗, we let

p00 = exp[−H0(t1, t2)], p01 = 1−p00, and p02 = 0. For t2−t1 > t∗, we let

p01(t1, t2) = (1−exp(−H0(t2−t∗, t2)))+

∫ t2−t∗

t1

exp[−H0(t1, t)]h01(t)exp[−H1(t, t2−t∗)]dt,

where p01 is now the sum of the probability of either 1) receiving the first dose up until

t2−t∗, in which a patient could theoretically have received both doses during that time or

2) receiving the first dose in the most recent t∗ days, in which that individual would not be

eligible for the second dose.

The transition probability matrix Q(t1, t2) with cure proportions for an individual be-

tween times t1 and t2 is now
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
(1−π0)p00(t1, t2)+π0 (1−π0)p01 (1−π0)p02(t1, t2)

0 (1−π1)p11(t1, t2)+π1 (1−π1)p12(t1, t2)

0 0 1

 ,
with entries defined as


p∗00(t1, t2) p∗01(t1, t2) p∗02(t1, t2)

0 p∗11(t1, t2) p∗12(t1, t2)

0 0 1

 .
The transition probabilities in the matrix Q(t1, t2) are all functions of the transition

intensities in Λ(t) in Equation 3.3. To obtain values for the elements of Λ(t), we use Bayes

estimators from the posterior distributions. Bayes estimators are estimates from a posterior

distribution that minimize the posterior expected loss value with respect to a loss function

(Samaniego, 2010). Common Bayes estimators include posterior mean, median or modes.

Posterior distributions for both simulated and real data did not yield substantial differences in

these estimators. We use posterior means for populating the elements of Λ(t), corresponding

to minimizing the posterior expected value with a mean squared error loss function.

3.4.2 Intervention Effect on Study Population-Level Percentage Outcomes

For the NORVAX study, we seek to estimate study population-level initiation and com-

pletion percentages. We denote the study population-level initiation and completion per-

centages at time t as ζi(t) and ζc(t), respectively. In the multistate framework, initiation

corresponds to the percentage of individuals in States 1 or 2, or equivalently, the percentage

of individuals not in State 0. Completion corresponds to the percentage of individuals in

State 2. Estimates of these outcomes at time t can be formulated as

ζi(t) =

∑N0(t)
k=1 (1−p∗00(t1k, t))+N1(t)+N2(t)∑S=2

s=0 Ns(t)
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ζc(t) =

∑N0(t)
k=1 (p∗02(t1k, t))+

∑N1(t)
k=1 (p∗12(t1k, t))+N2(t)∑S=2

s=0 Ns(t)
(3.4)

where t1k is the calendar time an individual enters the study and Ns(t) denotes the number

of individuals who entered the study in state s and are study-eligible at time t.

We obtain a model-based estimate of the effect of a treatment on study population-level

initiation and completion percentage outcomes as follows. We first estimate ζc(t) and ζi(t)

by estimating transition probabilities for all individuals at some time t, given the observed

intervention conditions. We then set X tx = 0, corresponding to the absence of intervention,

and estimate ζc(t) and ζi(t) again. One can set either one or both columns of X tx to be 0, to

estimate the effects of each intervention or the combined effect. In our model, intervention

effects are assumed to be additive. Study population-level completion and initiation values

with either column ofX tx set to 0 are denoted ζ∗c (t) and ζ∗i (t), respectively. The intervention

effect on either outcome is then quantified as ζc(t) - ζ∗c (t) for completion and ζi(t) - ζ∗i (t) for

initiation.

3.5 Simulation

We conducted a simulation study to examine the performance of the model in quantifying

intervention effects. For the simulation study, we used the patient population of the NOR-

VAX study and retained all patient characteristics, including study entry time, the state a

patient entered the study, and demographic information. Clinic membership was also fixed

for each patient, which dictates treatment sequencing based on the stepped wedge design pre-

sented in Figure 1.2 across I = 7 clinics. We simulated cure indicators Vck ∼ Bernoulli(πck)

for all individuals and set the time to next dose to infinity for those individuals who are

cured in their current state. The models for the cure proportions πck include an intercept

bc0 and a single covariate for gender. For every non-cured individual, we simulate time to

receive their next dose based on the model presented in Equation (3.1). Covariates in the

time-to-event model are indicators for reminder and clinic-based interventions, time trend

indicators for each time period j and gender. Because the NORVAX study is ongoing and
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our simulated data mimic these data, individuals are censored at the end of Period 4, cor-

responding to the most recent data pull. We used the inverse cumulative density function

(CDF) method to simulate from a piecewise Weibull distribution with cure proportions, with

details in Appendix B. A single dataset was simulated with N = 26430 unique patients from

the NORVAX study. We fit the Bayesian multistate cure model described in Section 3.3.2.

Initiation and completion outcomes are estimated with posterior means using Equation 3.4.

Intervention effects are then estimated by setting Xtx = 0 and calculating the differences

between ζi−ζ∗i and ζc−ζ∗c .

Due to difficulties in estimating cure proportions when times to event are long, we first

conducted a simulation with short time-to-event values to ensure the model was estimating

parameters accurately. In this simulation, individuals are observed beyond their 18th birth-

day and 2-year visit interval, which is in contrast to the study inclusion/exclusion criteria.

Results shown in Table 3.1. For the transition between 0 and 1 dose, the 95% credible in-

tervals all contain the true values. This is also the case for the transition between 1 and 2

doses, but posterior means are further from true values. This can be explained by the higher

percentage of censoring for this transition. Censoring in State 1 occurs for many individuals

who enter the study in State 1 during the later part of the study and for individuals who

enter the study in State 0, receive a dose, and are censored in State 1 at the end of the study.

The second simulation more closely mirrors the NORVAX data. Both time to receive dose

and cure proportions were increased from the previous simulation, and exit times were based

on the study inclusion and exclusion criteria. If a simulated dose occurred after a patient’s

18th birthday or beyond 2 years from an encounter at the health system, that individual

was censored. Results are shown in Table 3.2 in the column labeled “Simulation 1”. In

this simulated data, all credible intervals for the intervention effects contain the true value.

However, posterior intervals for several of the intercepts, including γ01 and b10, and some

covariates effects do not include the true value. We attribute the bias to several factors. The

study features a large number of individuals entering the study throughout the duration of

the study. Late entry into the study leads to shortened observed times and biased survival
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Parameter True Value Model Value

0 to 1 dose

Transition Intensity
γ01 5.10 5.08 (4.97, 5.18)
α01 0.90 0.89 (0.86, 0.93)
Period 2 0.10 0.04 (-0.11, 0.19)
Period 3 0.50 0.42 (0.23, 0.61)
Period 4 0.30 0.23 (-0.05, 0.50)
Male (transition intensity) -0.10 -0.05 (-0.16, 0.07)
Reminder -0.40 -0.34 (-0.51, -0.17)
Clinic-based -0.60 -0.63 (-0.85, -0.42)
Cure Proportion
b00 -1.00 -1.05 (-1.18,-0.93)
Male (cure) -0.20 -0.19 (-0.39, 0.01)

1 to 2 dose

Transition Intensity
γ12 5.10 5.18 (5.10, 5.24)
α12 1.10 1.10 (1.07, 1.13)
Period 2 0.10 0.07 (-0.02, 0.15)
Period 3 0.50 0.45 (0.33, 0.57)
Period 4 0.30 0.16 (-0.01, 0.34)
Male -0.10 0.02 (-0.04, 0.08)
Reminder -0.40 -0.43 (-0.54, -0.33)
Clinic-based -0.60 -0.47 (-0.60, -0.34)
Cure Proportion
b10 -1.00 -0.89 (-1.00, -0.81)
Male -0.10 -0.02 (-0.14, 0.10)
σ2
c 0.02 0.02 (0.00, 0.04)

Table 3.1: Simulation Multistate Results. Covariate effects for time-to-event model are
reported as log hazard ratios

parameters, particularly intercepts (Betensky and Mandel, 2015).

Another reason for biased estimates comes from the high percentage of right-censored

observations. Right-censoring in NORVAX comes from several sources. The study eligibility

criteria contribute substantially to individuals being right-censored; according to the eligibil-

ity criteria, individuals exit the study upon reaching their 18th birthday, and are considered

“inactive” patients and removed from the study if they go two years without a health en-

counter. The second criteria is particularly noteworthy, as individuals who leave the system

are likely a combination of 1) individuals who may have moved out of the geographic area

and 2) individuals who simply have not come back for health visits in two years. It is well-
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Parameter True Value Sim. 1 Sim. 2

0 to 1 dose

Transition Intensity
γ01 6.20 5.82 (5.61, 6.03) 5.88 (5.80, 6.13)
α01 0.80 0.82 (0.78, 0.85) 0.81 (0.80, 0.86)
Period 2 0.10 0.25 (0.11, 0.40) 0.26 (0.21, 0.43)
Period 3 0.50 0.86 (0.68, 1.06) 0.98 (0.89, 1.25)
Period 4 0.30 0.42 (0.17, 0.67) 0.67 (0.51, 1.12)
Male -0.10 0.04 (-0.14, 0.24) 0.09 (0.00, 0.35)
Reminder Intvn -0.40 -0.36 (-0.52, -0.20) -0.24 (-0.31, -0.01)
Clinic Intvn -0.60 -0.78 (-0.98, -0.58) -0.78 (-0.88, -0.49)
Cure Proportion
b00 -0.20 -0.05 (-0.21, 0.09) -0.20 (-0.27, -0.01)
Male (cure) -0.70 -0.28 (-0.48, -0.08) -0.23 (-0.32, 0.05)

1 to 2 dose

Transition Intensity
γ12 5.90 5.89 (5.72, 6.05) 5.89 (5.84, 6.05)
α12 1.10 1.12 (1.10, 1.14) 1.11 (1.10, 1.13)
Period 2 0.10 0.13 (0.08, 0.18) 0.13 (0.11, 0.18)
Period 3 0.50 0.42 (0.35, 0.49) 0.40 (0.37, 0.48)
Period 4 0.30 0.17 (0.06, 0.27) -0.08 (-0.13, 0.08)
Male -0.05 0.00 (-0.04, 0.03) -0.01 (-0.02, 0.03)
Reminder Intvn -0.40 -0.40 (-0.47, -0.32) -0.39 (-0.42, -0.31)
Clinic Intvn -0.60 -0.55 (-0.63, -0.47) -0.46 (-0.50, -0.36)
Cure Proportion
b10 -0.70 -0.51 (-0.56, -0.46) -0.54 (-0.56, -0.49)
Male 0.05 0.00 (-0.07, 0.06) -0.01 (-0.03, 0.07)
σI 0.10 0.05 (0.01, 0.20) 0.05 (0.02, 0.19)

Table 3.2: Simulation Multistate Results. Covariate effects for time-to-event model are
reported as log (hazard ratios)

known that censored observations in time-to-event studies can bias estimates of the Weibull

survival parameters, both for likelihood maximization and Bayesian techniques (Ducrosa and

Pamphile, 2018). Heavy censoring has also been shown to introduce bias into cure models,

especially when estimating intercepts (Lin and Huang, 2019).

It has been observed that cure models are biased when censored observations are not

observed long enough to differentiate between non-cured and cured individuals (Kearns et al.,

2021; Stedman et al., 2014). When the population is a mixture of cured and non-cured

individuals, censored observations can belong to either group. Heavy censoring has been

shown to bias cure model parameter estimates, and there is no straightforward relationship
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between censoring patterns and patterns of bias for estimates of either survival or cure

parameters (Othus et al., 2020). Further discussion of identifiability in cure models has

been explored elsewhere (Hanin and Huang, 2014). A non-parametric method for estimating

cure proportions has been developed (Escobar-Bach et al., 2021). However, this method is

not unbiased and maintains consistency only under certain restrictions. Further, including

covariates in this nonparametric estimation approach would be challenging. It has been

observed that no modeling or prior selection can overcome insufficient follow-up time for

estimation of cure proportions, unless the cure proportion is known ahead of time (Felizzi

et al., 2021).

To address the issues of late entry and insufficient followup time for estimating cure

proportions, we conducted another simulation restricting the sample to individuals who

entered the study in the first two time periods, thus allowing for a longer observation time.

Results from fitting the model to these simulated data are shown in the “Simulation 2”

column of Table 3.2. These results show improvements in the estimation of cure and survival

intercepts, and slightly worse estimation of certain covariate effects including intervention

effects.

Table 3.3 shows estimates of study population-level initiation and completion percentages,

calculated using posterior means in Equation 3.4, at three time points, corresponding to the

end of Periods 2, 3 and 4. Columns labeled “Observed” initiation and completion are the

observed percentage of individuals at time t who are study eligible and have received at

least one dose or two doses, respectively, in the simulated data. “Anticipated values” are the

model-based estimates initiation and completion percentages calculated using the specified

simulation parameter values. We obtained model-based estimates of population percentages,

using results from both “Simulation” 1 and 2.

“Anticipated” initiation and completion percentages were close to the observed percent-

ages at all time points. For Simulation 1, the estimated initiation percentage was higher than

the observed percentage, and completion percentage was underestimated at all time points.

Initiation and completion percentages were estimated more accurately using Simulation 2.
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The poorer performance of Simulation 1 can be largely attributed to the heavier censoring,

leading to estimation of a shorter survival time for transitioning from State 0 to 1, and an

overestimation of the cure intercept for transitioning from States 1 to 2.

Initiation ζi(t) Completion ζc(t)

Time Observed
Ant.

Values
Sim. 1 Sim. 2 Observed

Ant.
Values

Sim. 1 Sim. 2

730 days 82.9% 83.2% 83.7% 83.7% 38.3% 38.8% 36.4% 36.9%
1095 days 81.5% 82.2% 82.2% 82.0% 40.0% 40.4% 38.4% 38.8%
1460 days 81.7% 82.2% 82.9% 82.0% 43.5% 44.0% 42.2% 43.5%

Table 3.3: Simulation Results: Study-Population Percentages

To estimate intervention effects on initiation and completion percentages, we fit the model

in Equation 3.4 to obtain ζ∗i and ζ∗c by settingX tx = 0, for both Simulation 1 and Simulation

2. Results are shown in Table 3.4. Intervention effects were overestimated for initiation and

underestimated for completion. These biases can be partially attributed to biased estimates

of intervention effects from the multistate model; for example, posterior estimates for the

log hazard ratio for the clinic-based intervention from States 1 to 2 for Models 1 and 2 were

-0.55 and -0.46, respectively, compared to true value of -0.60. However, the main source of

bias is from estimation of the intercepts of both time-to-event and cure parameters. Both

Simulations 1 and 2 underestimate survival times for transitioning from State 0 to 1, leading

to larger estimated intervention effects in initiation. Cure percentages are overestimated

for the transitions from States 1 to 2 in both Simulations 1 and 2 compared to true value.

Larger estimated cure percentage leads to underestimation of the true intervention effects

on completion.

3.6 Application to NORVAX Data

We applied the proposed multistate cure model to data from the NORVAX study using

the individual-level time to receipt of HPV doses as the observations. Based on the biases

observed in the simulation study, we fit models to different subsets of the data. Dataset 1

uses all data from the start of the study through the end of Period 4 and uses the study
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Initiation ζi(t)
Time (Days) Observed Simulation 1 Simulation 2

730 82.9% 83.7% 83.7%
1095 81.5% 82.2% 82.0%
1460 81.7% 82.9% 82.0%

Completion ζc(t)
Time (Days) Observed Simulation 1 Simulation 2

730 38.3% 36.4% 36.9%
1095 40.0% 38.4% 38.8%
1460 43.5% 42.2% 43.5%

Table 3.4: Simulation Population Intervention Effects. Columns labeled “Reminder” set
the reminder intervention log hazard ratio to 0, columns labeled “Clinic” set the

clinic-based intervention log hazard ratio to 0, and columns labeled “Both” set the log
hazard ratio for both interventions to 0.

eligibility criteria regarding age and active patient status. To address the issue of late

entry and insufficient followup time for estimating cure proportions, Dataset 2 only includes

individuals who enter the study in the first two years, corresponding to Periods 1 and 2.

Model 3 restricts to the same individuals but also relaxes the eligibility criteria. Dataset

3 continues to observe individuals beyond their 18th birthday and does not stop observing

individuals if they have gone more than two years without an encounter at a clinic. Relaxing

these criteria reduces the amount of early censoring and only allows individuals to be censored

at the end of the study.

Table 3.5 shows results from fitting the model to the different subsets of data. In all

cases, both interventions are associated with a negative log hazard ratio for both transition

intensities, corresponding to reducing the time to receive either dose. Dataset 1 estimates

a shorter time-to-event but higher cure proportion for the transition between States 0 and

1 compared with Dataset 2. For the transition between States 1 and 2, survival times and

cure proportions are estimated to be slightly lower in Dataset 2 compared with Model 1.

Dataset 3 estimates shorter survival times but higher cure proportions for both transition

intensities. In this subset, individuals who would have been censored are observed for longer

amounts of time and contribute more information to the cure proportion part of the model.
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Parameter Data. 1 Data. 2 Data. 3

0 to 1

Transition Intensity
γ01 6.43 (6.22, 6.66) 6.90 (6.44, 7.54) 5.76 (5.61, 5.91)
α01 0.78 (0.74, 0.81) 0.73 (0.68, 0.78) 0.81 (0.77, 0.85)

Period 2 -0.45 (-0.62, -0.28) -0.42 (-0.60, -0.23) -0.24 (-0.40, -0.07)
Period 3 -0.15 (-0.35, 0.05) 0.69 (0.34, 1.04) 0.61 (0.31, 0.92)
Period 4 -0.86 (-1.11, -0.61) -0.22 (-0.73, 0.28) 0.21 (-0.30, 0.75)

Male -0.17 (-0.4, 0.05) -0.44 (-0.97, 0.06) -0.18 (-0.37, 0.00)
Reminder Intvn -0.27 (-0.43, -0.10) -0.27 (-0.51, -0.04) -0.44 (-0.67, -0.21)

Clinic Intvn -0.02 (-0.23, 0.18) -0.28 (-0.66, 0.10) -0.01 (-0.41, 0.40)
Cure Proportion

b00 -0.08 (-0.29, 0.09) -0.69 (-2.38, -0.03) 1.66 (1.56, 1.75)
Male -0.12 (-0.34, 0.11) 0.20 (-0.50, 1.53) -0.45 (-0.57, -0.33)

1 to 2

Transition Intensity
γ12 5.92 (5.84, 6.01) 5.91 (5.83, 5.99) 5.78 (5.71, 5.85)
α12 1.10 (1.08, 1.12) 1.06 (1.03, 1.09) 1.03 (1.00, 1.05)

Period 2 -0.12 (-0.19, -0.05) -0.14 (-0.21, -0.06) -0.17 (-0.25, -0.10)
Period 3 0.30 (0.21, 0.39) 0.37 (0.24, 0.49) 0.30 (0.18, 0.41)
Period 4 0.08 (-0.05, 0.21) -0.15 (-0.35, 0.05) -0.20 (-0.39, -0.01)

Male -0.03 (-0.09, 0.03) -0.04 (-0.10, 0.03) -0.03 (-0.08, 0.03)
Reminder Intvn -0.14 (-0.23, -0.05) -0.19 (-0.29, -0.08) -0.17 (-0.26, -0.07)

Clinic Intvn -0.27 (-0.37, -0.17) -0.24 (-0.39, -0.10) -0.24 (-0.37, -0.11)
Cure Proportion

b10 -0.59 (-0.67, -0.53) -0.59 (-0.67, -0.52) -0.03 (-0.09, 0.04)
Male 0.07 (-0.02, 0.16) 0.03 (-0.07, 0.14) 0.01 (-0.08, 0.10)
σI 0.07 (0.01, 0.16) 0.06 (0.01, 0.15) 0.03 (0.00, 0.10)

Table 3.5: Model Applied to NORVAX Data

Observed and model-based estimates of initiation and completion percentages are shown

in Table 3.6. For Datasets 1 and 2, observed percentages are based on the full eligible study

population, whereas for Data 3, observed percentages are based on the relaxed criteria.

In general, the observed and model-estimated percentages are closest for Data 3. This is

consistent with the expectation that less censoring will lead to more accurate parameter

estimates.

Model-based estimates for the effects of the two interventions on initiation and completion

percentages are shown in Table 3.7. Overall, the estimated intervention effects are small, in

most cases less than one percentage point. Dataset 2 estimates larger intervention effects

for the reminder intervention for both initiation and completion at all times. This may
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Table 3.6: NORVAX Study: Study-Population Level Percentages

With censoring from study criteria

Initiation ζi Completion ζc
Time Observed Dataset 1 Dataset 2 Observed Dataset 1 Dataset 2

End Period 2 79.0% 82.5% 83.2% 54.4% 54.8% 55.7%
End Period 3 81.0% 83.0% 82.3% 55.6% 53.6% 53.8%
End Period 4 85.2% 84.6% 84.1% 60.1% 53.8% 54.9%

Without study criteria censoring

Initiation ζi Completion ζc
Time Observed Dataset 3 Observed Dataset 3

End of Period 2 68.9% 69.8% 46.0% 47.8%
End of Period 3 71.2% 71.7% 51.8% 52.8%
End of Period 4 72.4% 72.6% 54.8% 55.1%

be attributed to an estimated lower cure proportion for transitioning out of State 0 and a

larger estimated effect of the reminder intervention for the transition between States 0 and

1. For the clinic-based intervention, we see a higher intervention effect from Dataset 2 for

the initiation percentage and a higher intervention effect from Dataset 1 for the completion

percentage. The small intervention effect for the clinic-based intervention on initiation in

Dataset 1 (0.02% at the end of the third period and 0.13% at the end of the fourth period)

is attributable to the small estimated log hazard ratio for the transition intensity between

States 0 and 1 (-0.02, hazard ratio = 0.98). For the clinic-based intervention, the difference

in intervention effects on completion are not very different between Models 1 and 2 across

all time points.

Estimates from the model fit to Dataset 3 are the most accurate in when compared to

observed completion and initiation percentages, as seen in Table 3.6, but estimates lower

intervention effects compared to Datasets 1 and 2. The smaller intervention effects can be

attributed to the higher estimated cure proportion for both transitions, particularly from

States 0 to 1.
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Initiation Tx Effect ζi-ζ
∗
i Completion Tx Effect ζi-ζ

∗
i

Time Dataset Reminder Clinic Both Reminder Clinic Both
Dataset 1 0.24% – 0.24% 0.25% – 0.25%
Dataset 2 0.29% – 0.29% 0.36% – 0.36%End of Period 2
Dataset 3 0.10% – 0.10% 0.14% – 0.14%
Dataset 1 0.24% 0.02% 0.26% 0.33% 0.51% 0.84%
Dataset 2 0.30% 0.19% 0.49% 0.44% 0.46% 0.89%End of Period 3
Dataset 3 0.10% 0.00% 0.11% 0.15% 0.18% 0.33%
Dataset 1 0.32% 0.13% 0.46% 0.70% 1.14% 1.83%
Dataset 2 0.68% 0.76% 1.42% 0.92% 1.13% 2.04%End of Period 4
Dataset 3 0.17% 0.05% 0.22% 0.24% 0.30% 0.54%

Table 3.7: Estimates of Intervention Effects on Initiation and Completion Percentages.
Columns labeled “Reminder” set the reminder intervention log hazard ratio to 0, columns

labeled “Clinic” set the clinic-based intervention log hazard ratio to 0, and columns labeled
“Both” set the log hazard ratio for both interventions to 0. Estimates are percentage point

change in initiation and completion attributable to the interventions.

3.7 Discussion

We have proposed a Bayesian multistate cure model for a HPV vaccination promotion

trial using a stepped wedge design. Parameter estimates from the multistate cure model

can be converted to transition probabilities and these transition probabilities can be used to

quantify intervention effects as changes in study population-level initiation and completion

percentages. Our modeling approach is a novel contribution that allows for use of individual-

level time-to-dose data to estimate intervention effects on study population-level initiation

and completion percentages.

The estimated intervention effects in our data application are smaller than what was

projected when the NORVAX study was designed. The COVID-19 pandemic began midway

through Period 3 and impacted the number of individuals receiving vaccinations. The num-

ber of patients receiving their next dose has been increasing in the study clinics but as of

the end of Period 4, it still has not recovered to pre-pandemic levels. It is hoped with more

data collected in the future that we see stronger intervention effects.

In our model, we only allowed for time-varying covariates that change values in alignment

with changes in study design periods, such as the implementation of interventions. However,
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this could be generalized to allow for covariates to change values at other time periods;

the solution involves breaking the observation time of individuals into other segments with

constant covariate values. We also defined study population-level initiation and completion

outcomes in Section 3.4 that are specific to our HPV study, but other outcomes could be

defined based on a percentage of individuals in certain states for other studies.

The simulation study showed that heavy censoring and insufficient follow-up time can

lead to biased estimates of parameters in the multistate cure model. The patients in the

NORVAX study have relatively long time intervals between doses. When there are long

average times-to-dose, it is necessary to observe patients for a long duration to get more

accurate estimates of cure probabilities. Estimating intervention effects on study population

initiation and completion relies on accurate estimation of survival and cure model intercepts,

which can be biased with large amounts of censoring and the inability to distinguish between

cured and non-cured individuals.

The NORVAX study uses a factorial design and includes a condition in which individuals

can receive both interventions simultaneously. We fit models with interactions terms in

preliminary work. Estimates of an interaction effect were very small and thus we did not

include an interaction term in the final model. As more data are collected, an interaction

between the two interventions may materialize and necessitate estimation in the model.

There are several limitations to the proposed model in addition to the censoring and

follow-up challenges. We used fixed, time-invariant regression coefficients in the time-to-

event model in Equation 3.1, but one could model more complex relationships with time. The

time-to-event model can incorporate time dependency by replacing the vector of regression

coefficients in Equation 3.1 with βcd(t). We also fixed the covariate vector in the formulation

of the cure proportion with respect to time. The cure proportion could incorporate time-

dependent covariates by substituting in bc(t) in Equation 3.2. Models with time-varying

coefficients and cure proportions have been explored elsewhere (Dong et al., 2021; Beretta and

Heuchenne, 2019), as have models with time-varying covariates incorporated into the cure

proportion (Dirick et al., 2019). Inclusion of time-varying coefficients in both time-to-event
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and cure model would make estimation of the transition probabilities more difficult. Finally,

we assumed a common clinic-level random intercept ui across all transitions. The model

could be extended to accommodate different hierarchical structures, such as individuals

nested within clinics or transition-specific clinic-level intensities.
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CHAPTER 4

Discussion

In this dissertation, we have presented methods to address several gaps in the stepped

wedge design literature. We first proposed methods for conducting power calculations for

SWDs with multiple interventions and a continuous outcome, which has been published

(Sundin and Crespi, 2022). We then presented a multistate cure model that was applied

to model the number of doses for HPV vaccine received by patients in a stepped wedge

design trial. Parameter estimates from the multistate cure model were then used to quantify

intervention effects as changes in the percentage of study population that have initiated or

completed their HPV vaccine regimen.

For power calculation for SWDs with multiple interventions, several areas of future work

are discussed in Section 2.6. One area of further interest is continued development of methods

for power for SWD trials with non-continuous outcomes. There is sparse literature for design

and analysis of SWD trials with non-continuous outcomes and a single intervention, let alone

multiple interventions. Standard errors for intervention effects can be difficult to calculate

analytically for models with non-continuous outcomes; power calculations for such trials

currently tend to use simulation (Barker et al., 2017).

Combining the two methodological developments proposed in this dissertation for future

projects would provide an exciting, challenging opportunity to conduct power calculations for

studies using multistate cure models. Power and sample size methods have been developed

for proportional hazards mixture cure models (Wang et al., 2012) and Markov multistate

models (Cassarly et al., 2017). Neither of these approaches consider stepped wedge designs,

nor do they consider semi-Markov models. It would also be of interest to conduct power
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calculations on changes in study population percentages due to interventions instead of

hazard ratios acting on transition intensities.

Further areas of work for the multistate model are discussed in Section 3.7. A prominent

area for future work is the issue of censoring and insufficient followup times for mixture

cure models. These features of the data lead to biased parameter estimatation that cannot

be easily overcome using current statistical methods (Bernhardt, 2016; Jiang et al., 2017).

Existing non-parametric estimators that attempt to overcome heavily censored data are not

unbiased and do not allow for inclusion of covariates (Escobar-Bach et al., 2021). Cure

models have ample room for further methodological study, particularly for estimating cure

proportions with censored observations that are not easily identifiable as cured or not.
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Appendix A - Derivation of Standard Errors

Derivation of Standard Errors of Treatment Effect Estimates

The variance-covariance matrix of the fixed effects in a linear mixed model is found by

taking the inverse of Z
′
V
−1
Z where Z is the fixed effects design matrix and V is the

variance-covariance matrix of the outcome variable. In model (2.4), Z is the IT×(T+3)

design matrix and V is the IT×IT variance-covariance matrix of the outcome. Here, we find

closed form expressions for the variance-covariance matrix of the treatment effect estimates,

θ̂1, θ̂2, and θ̂3 for this model by first finding an expression for Z
′
V
−1
Z and then using block

matrix inversion techniques to get the desired elements of (Z
′
V
−1
Z)−1. We use the repeated

cross-sectional model. For the nested exchangeable and cohort models, the appropriate

elements of V can be substituted.

Defining the Precision Matrix

Assuming that clusters are independent, for the repeated cross-sectional model, the ma-

trix V has block diagonal structure with elements Vi = σ2
cIT +σ2

α1T1′T , where IT is a T×T

identity matrix and 1T is a T×1 vector of 1’s. Due to the block diagonal structure of V ,

we can write the precision matrix as

Z
′
V
−1
Z =

I∑
i=1

Z
′

iVi
−1Zi.

Using the Sherman-Morrison formula (Sherman and Morrison, 1949; Bartlett, 1951) for the

inverse of a matrix of this form, we obtain

Vi
−1 =

1

σ2
c (σ

2
c +Tσ2

α)

[
(σ2

c +Tσ2
α)IT −σ2

α1T1
′

T

]
.

The submatrix Zi is the T×(T+3) subset of Z corresponding to cluster i. Thus

Z
′

iVi
−1Zi =

1

σ2
c (σ

2
c +Tσ2

α)

[
(σ2

c +Tσ2
α)Z

′

iZi−σ2
αZ
′

i1T1
′

TZi

]
. (4.1)

In the following, the vectors X,W , and XW denote the columns of the design matrix

corresponding to treatment 1, treatment 2, and the interaction term, respectively. Let Xi
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be the (T×1) vector that corresponds to cluster i, and Xi,−T be the (T−1)×1 vector for

cluster i that does not include the value of Xi at time T . We use similar notation for

Wi and Wi,−T for treatment 2, and we use XWi and XWi,−T for the interaction. Using

the summation of submatrices in (4.1), we can write the precision matrix Z
′
V
−1
Z as a

(T+3)×(T+3) symmetric matrix whose lower triangular elements are

Z
′
V −1Z =



Tf

f1T−1 (f+gT )IT−1−g1T−11
′

T−1

y1

∑I
i=1

X
′
i,−T

σ2
c
−σ2

αh11
′

T−1 l1−z1

y2

∑I
i=1

W
′
i,−T

σ2
c
−σ2

αh21
′

T−1 q1 l2−z2

y3

∑I
i=1

(XW )
′
i,−T

σ2
c

−σ2
αh31

′

T−1 q2 q3 l3−z3


.

The term 1T−1 is a (T−1)×1 vector of 1’s and IT−1 is a (T−1) identity matrix, and we

define

a =
1

σ2
c +Tσ2

α

, b =
1

σ2
c

, c = ab,

XT =
T∑
j=1

Xij, W T =
T∑
j=1

Wij, (XW )T =
T∑
j=1

XijWij,

XIT =
I∑
i=1

T∑
j=1

Xij, W IT =
I∑
i=1

T∑
j=1

Wij, (XW )IT =
I∑
i=1

T∑
j=1

XijWij,

f = Ia, g = Icσ2
α,

y1 = aXIT , y2 = aW IT , y3 = a(XW )IT ,

h1 = cXIT h2 = cW IT , h3 = c(XW )IT , z1 = cσ2
α

I∑
i=1

(XT )2,

z2 = cσ2
α

I∑
i=1

(
W T

)2
,

z3 = cσ2
α

I∑
i=1

(
(XW )T

)2
, l1 = bXIT , l2 = bW IT , l3 = b(XW )IT ,

q1 = l3−cσ2
α

I∑
i=1

(
XT
) (
W T

)
, q2 = l3−cσ2

α

I∑
i=1

(
(XW )T

) (
XT
)
,
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q3 = l3−cσ2
α

I∑
i=1

(
(XW )T

) (
W T

)
.

The terms q2 and q3 make use of the relationship X2
ij = Xij and W 2

ij = Wij.

Blocking the Precision Matrix

We partition the precision matrix into a 2×2 block matrix where (Z ′V −1Z)11 is the T×T

submatrix, (Z
′
V −1Z)21 = (Z

′
V −1Z)

′
12 is the T×3 submatrix and (Z ′V −1Z)22 is the 3×3

submatrix corresponding to the precision of the parameters of interest: θ̂1, θ̂2, and θ̂3. Using

block matrix inversion (Lu and Shiou, 2000),

(Z ′V −1Z)−1
22 =

(
(Z ′V −1Z)22−(Z ′V −1Z)21(Z ′V −1Z)−1

11 (Z ′V −1Z)12

)−1
.

We first obtain (Z ′V −1Z))−1
11 using another variation of block matrix inversion (Lu and

Shiou, 2000) and Schur complements, yielding

(Z ′V −1Z)−1
11 =

1

(f+gT )

 (g+f)
f

−1′T−1

−1T−1 (IT−1+1T−11
′
T−1)

 .
Let B = IT−1+1T−11

′

T−1 and M = (Z ′V −1Z)21(Z ′V −1Z)−1
11 (Z ′V −1Z)12. We can

find

M =
1

(f+gT )


y1

∑I
i=1

X
′
i,−T

σ2
c
−σ2

αh11
′

T−1

y2

∑I
i=1

W
′
i,−T

σ2
c
−σ2

αh21
′

T−1

y3

∑I
i=1

(XW )
′
i,−T

σ2
c

−σ2
αh31

′

T−1


 (g+f)

f
−1
′

T−1

−1T−1 B

 ∗

y1

∑I
i=1

X
′
i,−T

σ2
c
−σ2

αh11
′

T−1

y2

∑I
i=1

W
′
i,−T

σ2
c
−σ2

αh21
′

T−1

y3

∑I
i=1

(XW )
′
i,−T

σ2
c

−σ2
αh31

′

T−1


′
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=
1

(f+gT )


y1

∑I
i=1

X
′
i,−T

σ2
c
−σ2

αh11
′

T−1

y2

∑I
i=1

W
′
i,−T

σ2
c
−σ2

αh21
′

T−1

y3

∑I
i=1

(XW )
′
i,−T

σ2
c
−σ2

αh31
′

T−1

 ∗


g+f
f
y1−1

′

T−1

(∑I
i=1

Xi,−T

σ2
c
−σ2

αh11T−1

)
−y11T−1+B

(∑I
i=1

Xi,−T

σ2
c
−σ2

αh11T−1

)
g+f
f
y2−1

′

T−1

(∑I
i=1

Wi,−T

σ2
c
−σ2

αh21T−1

)
−y21T−1+B

(∑I
i=1

Wi,−T

σ2
c
−σ2

αh21T−1

)
g+f
f
y3−1

′

T−1

(∑I
i=1

(XW )i,−T

σ2
c
−σ2

αh31T−1

)
−y31T−1+B

(∑I
i=1

(XW )i,−T

σ2
c
−σ2

αh31T−1

)

′

.

In the second matrix in this product, we simplify the term

−1′T−1

(∑I
i=1

Xi,−T

σ2
c
−σ2

αh11T−1

)
, and similarly simplify similar terms in the other rows, by

rewriting this term as

=

(
T−1∑
i=j

I∑
i=1

Xij

σ2
c

−hσ2
α1T−1

′
1T−1

)
=

(
T−1∑
i=j

I∑
i=1

Xij

σ2
c

−σ2
α(T−1)

I∑
i=1

T∑
j=1

Xij

σ2
c (σ

2
c+Tσ2

α)

)

=

(
T∑
i=j

I∑
i=1

σ2
cXij+Tσ

2
αXij

σ2
c (σ

2
c+Tσ2

α)
−σ

2
αTXij−σ2

αXij

σ2
c (σ

2
c+Tσ2

α)

)
−

I∑
i=1

XiT

σ2
c

=

(
T∑
i=j

I∑
i=1

Xij

(σ2
c+Tσ2

α)

)
+

(
T∑
i=j

I∑
i=1

σ2
αXij

σ2
c (σ

2
c+Tσ2

α)

)
−

I∑
i=1

XiT

σ2
c

= y1+σ2
αh1−

I∑
i=1

XiT

σ2
c

.

Substituting these simplifications back into M yields M = 1
(f+gT )


m11m12m13

m21m22m23

m31m32m33

 with

elements

m11 = y1

(
g+f

f
y1+

(
−y1−σ2

αh1+

I∑
i=1

XiT

σ2
c

))
+

(
I∑
i=1

X
′

i,−T

σ2
c

−σ2
αh11

′

T−1

)(
−y11T−1+B

(
I∑
i=1

Xi,−T

σ2
c

−σ2
αh11T−1

))

m12 = y1

(
g+f

f
y2+

(
−y2−σ2

αh2+

I∑
i=1

WiT

σ2
c

))
+

(
I∑
i=1

X
′

i,−T

σ2
c

−σ2
αh11

′

T−1

)(
−y21T−1+B

(
I∑
i=1

Wi,−T

σ2
c

−σ2
αh21T−1

))
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m13 = y1

(
g+f

f
y3+

(
−y3−σ2

αh3+

I∑
i=1

(XW )iT
σ2
c

))
+

(
I∑
i=1

X
′

i,−T

σ2
c

−σ2
αh11

′

T−1

)(
−y31T−1+B

(
I∑
i=1

(XW )i,−T

σ2
c

−σ2
αh31T−1

))

m21 = y2

(
g+f

f
y1−

(
y1+σ2

αh1−
I∑
i=1

XiT

σ2
c

))
+

(
I∑
i=1

W
′

i,−T

σ2
c

−σ2
αh21

′

T−1

)(
−y11T−1+B

(
I∑
i=1

Xi,−T

σ2
c

−σ2
αh11T−1

))

m22 = y2

(
g+f

f
y2−

(
y2+σ2

αh2−
I∑
i=1

WiT

σ2
c

))
+

(
I∑
i=1

W
′

i,−T

σ2
c

−σ2
αh21

′

T−1

)(
−y21T−1+B

(
I∑
i=1

Wi,−T

σ2
c

−σ2
αh21T−1

))

m23 = y2

(
g+f

f
y3−

(
y3+σ2

αh3−
I∑
i=1

(XW )iT
σ2
c

))
+

(
I∑
i=1

W
′

i,−T

σ2
c

−σ2
αh21

′

T−1

)(
−y31T−1+B

(
I∑
i=1

(XW )i,−T

σ2
c

−σ2
αh31T−1

))

m31 = y3

(
g+f

f
y1−

(
y1+σ2

αh1−
I∑
i=1

XiT

σ2
c

))
+

(
I∑
i=1

XW
′

i,−T

σ2
c

−σ2
αh31

′

T−1

)(
−y11T−1+B

(
I∑
i=1

Xi,−T

σ2
c

−σ2
αh11T−1

))

m32 = y3

(
g+f

f
y2−

(
y2+σ2

αh2−
I∑
i=1

WiT

σ2
c

))
+

(
I∑
i=1

XW
′

i,−T

σ2
c

−σ2
αh31

′

T−1

)(
−y21T−1+B

(
I∑
i=1

Wi,−T

σ2
c

−σ2
αh21T−1

))

m33 = y3

(
g+f

f
y3−

(
y3+σ2

αh3−
I∑
i=1

(XW )iT
σ2
c

))
+

(
I∑
i=1

XW
′

i,−T

σ2
c

−σ2
αh31

′

T−1

)(
−y31T−1+B

(
I∑
i=1

(XW )i,−T

σ2
c

−σ2
αh31T−1

))
.
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Simplifying the diagonal elements of M

The three diagonal elements of M have the same form, so we work with m11 and apply

the form to m22 and m33. Let η1 = y1+σ2
αh1−

∑I
i=1

XiT
σ2
c

. Then we can rewrite the diagonal

term m11 as

=
1

(f+gT )

(
y2

1(f+g)

f
−2y1η1+

(
I∑
i=1

X
′

i,−T

σ2
c

−σ2
αh11

′

T−1

)
B

(
I∑
i=1

Xi,−T

σ2
c

−σ2
αh11T−1

))
.

We begin by expanding the term

(∑I
i=1

X
′
i,−T

σ2
c
− l1−y1

T
1
′

T−1

)
B
(∑I

i=1
Xi,−T

σ2
c
− l1−y1

T
1T−1

)
=

(
I∑
i=1

X
′

i,−T

σ2
c

− l1
T

1
′

T−1

)
B

(
I∑
i=1

Xi,−T

σ2
c

− l1
T

1T−1

)
+

y1

T
1
′

T−1B
y1

T
1T−1+2

y1

T
1
′

T−1B

(
I∑
i=1

Xi,−T

σ2
c

− l1
T

1T−1

)
.

We simplify each of these three summands. We will use the relationship
∑I

i=1

∑T−1
j=1

Xij
σ2
c

=

l1−
∑I

i=1
XiT
σ2
c

. Moving left to right, we simplfiy by the first summand by

(
I∑
i=1

X
′

i,−T

σ2
c

− l1
T

1
′

T−1

)
B

(
I∑
i=1

Xi,−T

σ2
c

− l1
T

1T−1

)

=
T−1∑
j=1

(
I∑
i=1

Xij

σ2
c

)2

+l21−2l1

I∑
i=1

XiT

σ2
c

+

(
I∑
i=1

XiT

σ2
c

)2

−2l21+2l1

I∑
i=1

Xij

σ2
c

+l21−
l21
T

T∑
j=1

(
I∑
i=1

Xij

σ2
c

)2

− l
2
1

T
= w1−

l21
T
,

where w1 =
∑T

j=1

(∑I
i=1

Xij
σ2
c

)2

. Similarly, let w2 =
∑T

j=1

(∑I
i=1

Wij

σ2
c

)2

and w3 =∑T
j=1

(∑I
i=1

(XW )ij
σ2
c

)2

.

Simplifying the second summand yields

y1

T
1
′

T−1B
y1

T
1T−1 =

y2
1

T 2
1
′

T−1(IT−1+1T−11
′
T−1)1T−1 =
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y2
1

T 2

(
(T−1)+(T−1)1

′

T−11T−1

)
=

y2
1

T
(T−1).

Simplifying the third summand yields

2y1

T
1
′

T−1B

(
I∑
i=1

Xi,−T

σ2
c

− l1
T

1T−1

)
=

2y1

T
(1
′

T−1+(T−1)1
′

T−1)

(
I∑
i=1

Xi,−T

σ2
c

− l1
T

1T−1

)

= 2y11
′

T−1

(
I∑
i=1

Xi,−T

σ2
c

− l1
T

1T−1

)

= 2y1

(
−

I∑
i=1

XiT

σ2
c

− l1
T

+
y1

T
−y1

T

)
= 2y1

(
y1

T
+σ2

αh1−
I∑
i=1

XiT

σ2
c

)
.

Substituting these expressions back into m11, we obtain

=
1

(f+gT )

(
y2

1(f+g)

f
−2y1η1+

(
I∑
i=1

X
′

i,−T

σ2
c

−σ2
αh11

′

T−1

)
B

(
I∑
i=1

Xi,−T

σ2
c

−σ2
αh11T−1

))

=
1

(f+gT )
(
y2

1(f+g)

f
−2y1(y1+σ2

αh1+ (4.2)

I∑
i=1

XiT

σ2
c

)+w1−
l21
T

+2y1

(
y1

T
+σ2

αh1−
I∑
i=1

XiT

σ2
c

)+
y2

1

T
(T−1)

)

=
1

(f+gT )

(
y2

1

(
f+gT

fT

)
+w1−

l21
T

)
=

y2
1

fT
+

1

(f+gT )

(
w1−

l21
T

)
.

The second and third diagonal elements of the matrix M , m22 and m33, will have the

same form with the corresponding values of y1,Xi,−T , l1, and h1.

Simplifying the off-diagonal elements of M

To simplify the off-diagonal values, we consider m21 and apply the results to the other

off-diagonals. We have

m21 =
1

(f+gT )
(y2

(
g+f

f
y1−y1−σ2

αh1 +

I∑
i=1

XiT

σ2
c

)
+
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(
I∑
i=1

Wi,−T

′

σ2
c

−σ2
αh21

′

T−1

)(
−y11T−1 +B

(
I∑
i=1

Xi,−T

σ2
c

−σ2
αh11T−1

))
).

We simplify terms, moving left to right. The first term simplifies to

y2

(
g + f

f
y1 − y1 − σ2

αh1 +
I∑
i=1

XiT

σ2
c

)
= y1y2

f + g

f
− y1y2 − σ2

αh1y2 + y2

I∑
i=1

XiT

σ2
c

.

We now consider the second term and multiply

(∑I
i=1

W
′
i,−T

σ2
c
− σ2

αh21
′

T−1

)
through. The

first product simplifies to

(
I∑
i=1

W
′

i,−T

σ2
c

− σ2
αh21

′

T−1

)
(−y11T−1) = −y1

T−1∑
j=1

I∑
i=1

Wij

σ2
c

+ (T − 1)σ2
αh2y1.

The final product can be written out as

(
I∑
i=1

Wi,−T
′

σ2
c

− σ2
αh21

′

T−1

)(
B

(
I∑
i=1

Xi,−T

σ2
c

− σ2
αh11T−1

))

=

(
I∑
i=1

Wi,−T
′

σ2
c

− l2 − y2

T
1
′

T−1

)((
IT−1 + 1T−11

′

T−1

)( I∑
i=1

Xi,−T

σ2
c

− l1 − y1

T
1T−1

))

=

(
I∑
i=1

Wi,−T
′

σ2
c

− l2
T

1
′

T−1 +
y2

T
1
′

T−1

)
∗((

IT−1 + 1T−11
′

T−1

)( I∑
i=1

Xi,−T

σ2
c

− l1
T

1T−1 +
y1

T
1T−1

))
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=

(
I∑
i=1

Wi,−T
′

σ2
c

− l2
T

1T−1
′

)((
IT−1 + 1T−11

′

T−1

)( I∑
i=1

Xi,−T

σ2
c

− l1
T

1T−1

))
+

y2

T
1
′

T−1(IT−1 + 1T−11
′

T−1)
y1

T
1T−1+

y2

T
1
′

T−1(IT−1 + 1T−11
′

T−1)

(
I∑
i=1

Xi,−T

σ2
c

− l1
T

1T−1

)
+(

I∑
i=1

Wi,−T
′

σ2
c

− l1
T

1
′

T−1

)
(IT−1 + 1T−11

′

T−1)(
y1

T
1T−1).

We simplify each term in this product. The first term in this product can be simplified

as (
I∑
i=1

Wi,−T
′

σ2
c

− l2
T

1
′

T−1

)(
B

(
I∑
i=1

Xi,−T

σ2
c

− l1
T

1T−1

))

=
T−1∑
j=1

(
I∑
i=1

Wij

σ2
c

I∑
i=1

Xij

σ2
c

)
+

(
T−1∑
j=1

I∑
i=1

Wij

σ2
c

)(
T−1∑
j=1

I∑
i=1

Xij

σ2
c

)
− l1
T

T−1∑
j=1

I∑
i=1

Wij

σ2
c

−

l1(T − 1)

T

T−1∑
j=1

I∑
i=1

Wij

σ2
c

− l2
T

T−1∑
j=1

I∑
i=1

Xij

σ2
c

− l2(T − 1)

T

T−1∑
j=1

I∑
i=1

Xij

σ2
c

+
l1l2(T − 1)

T 2
+
l1l2(T − 1)2

T 2

=
T−1∑
j=1

(
I∑
i=1

Wij

σ2
c

I∑
i=1

Xij

σ2
c

)
+

(
T−1∑
j=1

I∑
i=1

Wij

σ2
c

)(
T−1∑
j=1

I∑
i=1

Xij

σ2
c

)
−

l1

T−1∑
j=1

I∑
i=1

Wij

σ2
c

− l2
T−1∑
j=1

I∑
i=1

Xij

σ2
c

+
(T − 1)l1l2

T

= wXW −
T∑
j=1

(
I∑
i=1

Wij

σ2
c

I∑
i=1

Xij

σ2
c

)
− l1l2

T
, where wXW =

T∑
j=1

(
I∑
i=1

Wij

σ2
c

I∑
i=1

Xij

σ2
c

)
.

Let wX(XW ) =
∑T

j=1

(∑I
i=1

Xij
σ2
c

∑I
i=1

(XW )ij
σ2
c

)
and

wW (XW ) =
∑T

j=1

(∑I
i=1

Wij

σ2
c

∑I
i=1

(XW )ij
σ2
c

)
for the other off-diagonal elements. Simplifying

the remaining terms,
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y2

T
1
′

T−1B
y1

T
1T−1 +

y2

T
1
′

T−1B

(
I∑
i=1

Xi,−T

σ2
c

− l1
T

1T−1

)
+

(
I∑
i=1

Wi,−T
′

σ2
c

− l2
T

1
′

T−1

)
B(

y1

T
1T−1)

=
y1y2(T − 1)

T
+ y2

(
y1

T
+ σ2

αh1 −
I∑
i=1

XiT

σ2
c

)
+ y1

(
y2

T
+ σ2

αh2 −
I∑
i=1

YiT
σ2
c

)
.

After simplifying as much as possible, we yield the form of the off-diagonals:

= y1y2
f + g

f
− y1y2 − σ2

αh1y2 + y2

I∑
i=1

XiT

σ2
c

− y1

T−1∑
j=1

I∑
i=1

Wij

σ2
c

+ (T − 1)σ2
αh2y1+

y1y2(T − 1)

T
+ y2

(
y1

T
+ σ2

αh1 −
I∑
i=1

XiT

σ2
c

)
+ y1

(
y2

T
+ σ2

αh2 −
I∑
i=1

YiT
σ2
c

)
+ wxy −

l1l2
T

= y1y2
f + gT + fT

fT
− y1l2 + Tσ2

αh2y1 + wxy −
l1l2
T

= y1y2

(
f + gT

fT

)
+ wxy −

l1l2
T
.

Multiplying the off-diagonal term by the constant 1
f+gT

yields y1y2
fT

+ 1
f+gT

(
wxy − l1l2

T

)
.

Solving for Variances

We now have a simplified expression for M . To obtain (Z ′V −1Z)−1
22 , we calculate

(Z ′V −1Z)22 −M and take the inverse of this matrix. We have (Z ′V −1Z)22 −M equal to


l1−z1− y21

fT
− 1
f+gT

(
w1− l21

T

)
q1− y1y2

fT
− 1
f+gT

(
wXW− l1l2

T

)
q2− y1y3

fT
− 1
f+gT

(
wX(XW )− l1l3

T

)
q1− y1y2

fT
− 1
f+gT

(
wXW

l1l2
T

)
l2−z2− y22

fT
− 1
f+gT

(
w2− l22

T

)
q3− y2y3

fT
− 1
f+gT

(
wW (XW )− l2l3

T

)
q2− y1y3

fT
− 1
f+gT

(
wX(XW )

l1l3
T

)
q3− y2y3

fT
− 1
f+gT

(
wW (XW )

l2l3
T

)
l3−z3− y23

fT
− 1
f+gT

(
w3− l23

T

)


=


b11 b12 b13

b12 b22 b23

b13 b23 b33

 .
For a stepped wedge design with only a single intervention (i.e. only θ1 is included
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in the model), the variance of the θ̂1 would be the reciprocal of the first diagonal term

b11 = l1−z1− y21
fT
− 1
f+gT

(
w1− l21

T

)
, which can be shown to be the same variance as found by

Hussey and Hughes (Hussey and Hughes, 2007). If treatment effects are assumed to be

additive and an interaction term is not included (i.e. θ1 and θ2 are in the model), we can

take the inverse of the upper 2×2 matrix for the variance-covariance matrix of the treatment

effect regression coefficients. For the full model with two treatment effects an interaction

(i.e. model includes θ1, θ2, and θ3), we take the inverse of the 3×3 matrix, yielding

V ar(θ̂1) =
b22b33−b2

23

b11(b22b33−b2
23)−b21(b12b33−b13b32)+b13(b12b23−b13b22)

,

V ar(θ̂2) =
b11b33−b2

13

b11(b22b33−b2
23)−b21(b12b33−b13b32)+b13(b12b23−b13b22)

,

V ar(θ̂3) =
b11b22−b2

12

b11(b22b33−b2
23)−b21(b12b33−b13b32)+b13(b12b23−b13b22)

.
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Appendix B - Simulation Procedure

Piecewise Weibull Simulation Procedure

Let S(t) = 1−F (t), where F (t) is the cumulative distribution function (CDF) of a proba-

bility distribution at time t. It is known that the CDF of a continuous random variable follows

a uniform distribution ranging from 0 to 1. Letting U ∼ Unif(0, 1), then F (t) ∼ Unif(0, 1)

and therefore S(t) = 1−F (t) ∼ Unif(0, 1). Combining the uniform distribution of U with

S(t) = exp(−H(t)), where H(t) is the cumulative hazard function, solving for t in this rela-

tionship yields H−1(log(1−U)) = t. The survival time for each individual, tk, can be solved

from generating a uniformly distributed random variable and applying the inverse of the

cumulative hazard function H−1(t) (Austin, 2012).

Under the piecewise Weibull formulation, the transition intensity between states c and d

during interval j = 1, . . . , J at some time t with an interval-specific hazard ratio kj can be

expressed as:

λcj(t) =



k1αγ
αtα−1
k for 0 = τ0 < t ≤ τ1

k2αγ
αtα−1
k for τ1 < t ≤ τ2

...

kJαγ
αtα−1
k for τJ < t ≤ τJ+1

From here, we can construct the cumulative hazard for individual k who enters at time

0 and survives up to or is censored at time tk in interval j(k), the last interval for which

interval for individual k is observed. We can write cumulative hazard for as
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Hj(tk) =



H1 = k1(γtk)
α for 0 < tk ≤ τ1

H2 = H1+k2(γtk)
α−k2(γτ1)α for τ1 < tk ≤ τ2

H3 = H2+k3(γtk)
α−k3(γτ2)α for τ2 < tk ≤ τ3

...

Hj = Hj−1+kj(γtk)
α−kj(γτj−1)α for τj(k)−1 < tk ≤

τj(k).

We solve for tk by equating each line in this piecewise cumulative hazard to −log(1−Uk),

where Uk is an instance of the random variable U for individual k. We can then write the

inverse cumulative hazard function H−1
k (tk) as



tk = (−log(1−Uk))1/α

k
1/α
1 γ

for 0 < −log(1−Uk) ≤ H1

tk = (−log(1−Uk)−H1+(k2γ(τ1))α)1/α

k
1/α
2 γ

for H1 < −log(1−Uk) ≤ H2

...

tk =
(−log(1−Uk)−Hj(k)−1+(kjγ(τj(k)−1))α)1/α

k
1/α
j(k)−1

γ
for Hj(k)−1 < −log(1−Uk) ≤ Hj(k)

To simulate cure proportions, we generate cure indicators for every individual Vck ∼

Binomial(1, πck). For any individual such that Vck = 1, their time to transition out of state

c is set to infinity.
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