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Abstract 

To detect and quantify subtle surface CO2 leakage signals, we present a strategy that combines 
measurements of CO2 fluxes or concentrations in the near-surface environment with an algorithm that 
enhances temporally- and spatially-correlated leakage signals while suppressing random background 
noise.  The algorithm consists of a filter that highlights spatial coherence in the leakage signal, and 
temporal stacking (averaging) that reduces noise from temporally uncorrelated background 
fluxes/concentrations. We assess the performance of our strategy using synthetic data sets in which the 
surface leakage signal is either specified directly or calculated using flow and transport simulations of 
leakage source geometries one might expect to be present at sequestration sites.  We estimate the 
number of measurements required to detect a potential CO2 leakage signal of given magnitude and area. 
 Results show that given a rigorous field-sampling program, subtle CO2 leakage may be detected using 
the algorithm; however, leakage of very limited spatial extent or exceedingly small magnitude may be 
difficult to detect with a reasonable set of monitoring resources.   
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Introduction 
The injection and storage of anthropogenic CO2 in deep geologic formations is a potentially feasible 
strategy to mitigate greenhouse gas emissions.  While the purpose of geologic carbon sequestration is to 
trap CO2 underground, CO2 could migrate away from the storage site into the shallow subsurface and 
atmosphere if permeable pathways such as well bores or faults are present.  Due to the potentially 
negative impacts of CO2 leakage on the sequestration objective and near-surface environment, it is 
important that storage verification be conducted as an integral part of geologic carbon sequestration.  
Although a variety of techniques is available to measure near-surface CO2, leakage detection and 
storage verification may be challenging due to the large variation in natural background CO2 fluxes and 
concentrations, within which a potentially small CO2 anomaly may be hidden. We present a strategy 
that combines measurements of CO2 in the near-surface environment with a statistical algorithm to 
enhance properties of the data associated with leakage, while reducing random background 
contributions [1]. Using a suite of synthetic CO2 flux data sets and simulated CO2 surface leakage, we 
investigate combinations of sampling and analysis approaches to optimise leakage detection and 
quantification while minimizing the number of measurements. 
 
Methods 
The statistical algorithm emphasizes two properties of typical natural near-surface CO2 fluxes and 
concentrations that contrast from those derived from CO2 leakage from a storage reservoir. First, the 
production of CO2 by background processes (e.g., soil respiration) is highly spatially heterogeneous; 
resulting soil CO2 fluxes and concentrations are therefore often poorly correlated on moderate to large 
spatial scales (e.g., l≥5 m) [2, 3, 4]. In contrast, CO2 derived from leakage along a permeable feature 
such as a well bore or fault should be relatively coherent in space. Second, the production of 
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background CO2 is controlled by meteorological and biological processes that operate on diurnal to 
seasonal time scales and is therefore correlated on these time scales [5, 6, 7, 8]. In contrast, the leakage 
of CO2 from a storage reservoir should be relatively constant.   

Importantly, the transport of CO2 from both background sources and leakage will be modified in the 
near-surface environment by meteorological and biological processes on predictable time scales. 
Temporal variations in measured soil CO2 fluxes and concentrations related to these background 
processes can be removed at predictable wavelengths [4]. Thus, if one measures soil CO2 fluxes or 
concentrations in an area in which there may be a small CO2 leakage signal within background 
variability, this data can be adjusted to eliminate temporal variability associated with background 
processes. Areas of elevated spatial and temporal coherence associated with leakage can then be made 
more obvious. 

The algorithm we use to detect and quantify leakage is composed of (1) a filter that highlights spatial 
coherence in the CO2 leakage signal, and (2) temporal averaging that reduces noise from temporally 
uncorrelated background fluxes [1]. To highlight spatial coherence, we progressively move a Gaussian 
weighting function over a regularly spaced (l = 5 m) grid, and calculate the weighted average of all 
measured points according to their distance from the specified grid point.  This interpolation procedure 
enhances the spatial correlation of the leakage signal, while decreasing the influence of small-scale 
variability of background fluxes.  To reduce the effect of temporally uncorrelated background noise, we 
either (1) average repeated measurements at each sampling location, then apply the Gaussian weighting 
function, or (2) average flux values at each grid point interpolated using the Gaussian weighting 
function based on repeated measurements at each sample location. 

To test different sampling and processing combinations, we created a suite of synthetic data sets in 
which surface CO2 leakage was treated as either a two-dimensional scaled Gaussian distribution of 
surface CO2 fluxes or was created with a numerical simulator (TOUGH2/T2CA) [9, 10] as the surface 
CO2 flux signal associated with leakage along a well bore or a fault. In all cases, background biological 
noise was added to the surface CO2 leakage and surrounding area (106 m2, to consider a reservoir-scale 
area) using a lognormal CO2 flux distribution measured using the accumulation chamber method [11] in 
central California [4]. These flux data were adjusted to remove diurnal trends and then the mean, 
hereafter referred to as FB, and standard deviation were calculated (= 8.7 and 6.7 g m-2 d-1, 
respectively). Therefore, modeled background fluxes represent the case in which temporal correlation 
has been removed. To model re-measurement of fluxes over time, a new realization of the background 
synthetic data set was repeatedly drawn from the distribution and superimposed on the leakage signal 
and surrounding area. 

Using synthetic data sets, we explored a range of sampling and processing strategies.  In each, we 
sampled 100 CO2 fluxes from the underlying synthetic data set. The strategies included: (1) Sample 
CO2 fluxes on a regularly-spaced grid on multiple campaigns, apply Gaussian filtering to each data set, 
and temporally average fluxes at each interpolated grid point; (2) Randomly sample fluxes in space, 
repeat sampling at the same locations over time, apply Gaussian filtering to each data set, and 
temporally average fluxes at each interpolated grid point; (3) Randomly sample fluxes in space and re-
randomize locations during each re-sampling, apply Gaussian filtering to each data set, and temporally 
average fluxes at each interpolated grid point.  We assessed the success of each strategy based on the 
fraction misestimation (fME) of the total CO2 leakage rate ( ILR/CLR)(ILR 2−=MEf ), where ILR and 
CLR are the imposed and calculated leakage rates, respectively (i.e., the spatially integrated leakage 
flux of the synthetic source).   
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Results 
Strategy three, where fluxes were randomly sampled, and then sample locations were re-randomized 
during subsequent sampling campaigns, was most successful in consistently detecting and quantifying 
CO2 leakage of arbitrary magnitude, area, and location.  Figure 1 shows an example of strategy three, 
and the results shown hereafter are based on implementation of this strategy.  We varied the number of 
repeat sampling campaigns (= 10, 50, 100, 200, and 360) for scaled Gaussian distributions of leakage 
with R/L = 0.01, 0.1, and 0.5 (R = Gaussian length scale, L = model domain length in x and y directions 
= 1000 m), while holding FS/FB constant (= 1, where FS is maximum surface CO2 leakage flux). These 
R/L values correspond to ratios of the synthetic leakage signal area (AS) to the total area of the model 
domain (AT = 106 m2) of 3.14 x 10-4, 3.14 x 10-2, and 0.785.  To estimate the distribution of fME for each 
case, we performed 100 Monte Carlo realizations of each number of sampling campaigns.  Results of 
repeated sampling campaigns are shown in Figure 2a.  We then varied the number of sampling 
campaigns for FS/FB = 0.01, 1, and 100, while holding AS/AT constant (=3.14 x 10-2) (Figure 2b).  As 
shown in Figures 1a and b, for a given AS/AT or FS/FB, fME decreases non-linearly as the number of 
sampling campaigns increases, with fME becoming relatively insensitive to number of sampling 
campaigns >100. Also, fME becomes relatively insensitive to the number of sampling campaigns with 
increasing AS/AT or FS/FB. For a given number of sampling campaigns, fME decreases with AS/AT or 
FS/FB by up to 2.5 orders of magnitude. However, fME becomes less sensitive to AS/AT or FS/FB as AS/AT 
or FS/FB increases.  

 

Figure 1  Example of steps in strategy three, 100 repeat sampling campaigns (from [1]).  (a) CO2 
leakage signal is a two-dimensional scaled Gaussian distribution.  (b) A data set is drawn 
from the adjusted background distribution and added to the leakage signal and surrounding 
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areas. (c) One hundred CO2 fluxes are randomly sampled from (b).  Steps (b) and (c) are 
repeated 100 times in repeated sampling campaigns, re-randomizing the sample locations 
each time.  (d) The Gaussian function filter is applied to each flux sample set and point-by-
point averaging is applied to the 100 grids.  fME = 0.02 for this example. 

To consider more physically realistic cases of CO2 leakage, we used TOUGH2/T2CA to model two 
possible leakage scenarios: (1) an abandoned well transports CO2 from a deep storage reservoir to the 
vadose zone and (2) a buried fault transports CO2 to the vadose zone. A CO2 source was specified in 
either the fault (linear, 10 x 1000 m) or well (point, 1 x 1 m) geometry at an arbitrary depth of -27.1 m 
in a three-dimensional vadose zone with surface area = 106 m2. Low, medium, and high source leakage 
fluxes for the well (3.8 x 104, 3.8 x 105, and 3.8 x 106 g m-2d-1, respectively) and fault (3.8, 38, and 380 
g m-2d-1, respectively) scenarios were chosen to generate FS values over a range of CO2 fluxes observed 
in nature (i.e., from biologic low fluxes to volcanic-magmatic high fluxes), in order to assess a range of 
fME values for the two scenarios. The surface leakage fluxes are calculated at t = 100 y of model time, at 
which time they are nearly steady.  FS values corresponding to low, medium, and high leakage fluxes 
for well simulations are ~16, 160, and 1600 g m-2d-1 (FS/FB ~1.8, 18.4, 183.9), and for fault simulations 
are ~0.8, 8, and 80 g m-2d-1 (FS/FB ~0.09, 0.92, 9.2).  As shown in Figure 3, for a given FS/FB for both 
well and fault scenarios, fME decreases non-linearly with increasing number of sampling campaigns, to 
become relatively constant at >200 campaigns. However, even though the low, medium, and high FS/FB 
cases for the fault scenario are ~two orders of magnitude lower than those for the well scenario, fME 
values are similar. For a given number of sampling campaigns, fME decreases with increasing FS/FB. 

 

Figure 2  Fraction misestimation (fME) versus number of repeat sampling campaigns for (a) well and 
(b) fault scenarios (modified from [1]).  The mean and 68% lower and upper bounds of fME, 
calculated based on 100 Monte Carlo simulations, are plotted as the symbols and error bars, 
respectively.  Dashed line shows fME = 0.5.   
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Figure 3  Fraction misestimation (fME) versus number of repeat sampling campaigns for (a) well and 
(b) fault scenarios (modified from [1]).  The mean and 68% lower and upper bounds of fME, 
calculated based on 100 Monte Carlo simulations, are plotted as the symbols and error bars, 
respectively.  Dashed line shows fME = 0.5.   

Discussion and Conclusions 
For a given number of sampling campaigns, fME is sensitive to both the ratio of the maximum leakage 
flux to the average background flux (FS/FB) and the ratio of the synthetic leakage signal area to the total 
area of the model domain (AS/AT). If we conservatively assume that fME values ≤0.5 represent leakage 
anomalies detectable within a reasonable error and values >0.5 are “undetectable” anomalies (Figures 2 
and 3), we can make the following statements. (1) Leakage with FS/FB = 1 is detectable with only 10 
sampling campaigns when AS/AT ≥3.14 x 10-2, but for smaller AS/AT = 3.14 x 10-4 is undetectable with 
up to 360 campaigns. (2) Leakage with AS/AT = 3.14 x 10-2 is detectable with only 10 sampling 
campaigns when FS/FB ≥1, but for smaller FS/FB = 0.01 is undetectable with up to 360 campaigns. (3) 
Simulated surface leakage resulting from CO2 leakage from a well with AS/AT ~4.34 x 10-2 and FS/FB 
≥18.4 is detectable with only 10 sampling campaigns; but leakage with smaller FS/FB = 1.8 requires at 
least 100 repeats. (4) Simulated surface leakage resulting from CO2 leakage from a fault with AS/AT 
~0.161 and FS/FB ≥0.92 is detectable with only 10 sampling campaigns; but leakage with smaller FS/FB 
= 0.09 requires at least 200 repeats.  

Due to the relatively high AS/AT of simulated leakage anomalies associated with the fault source, it is 
possible to detect anomalies with low FS with a reasonable number of samples. This emphasizes the 
importance of maximizing AS/AT in studies where seepage fluxes could have FS within the background 
variability of CO2 flux or could have small AS (e.g., wells, mostly sealed faults/fractures).  We based 
our example on soil CO2 flux measurements made using the accumulation chamber method due to its 
well-tested reliability, the rapidity of each measurement (typically a few minutes), and the availability 
of a large background CO2 flux data set collected using this method. However, our method also applies 
to other gas species (e.g., CH4) and to subsurface gas concentrations.  Due to our ability to rapidly 
measure soil CO2 flux or concentration over variable terrain conditions, our example of making 100 
measurements within a study area within a given day is reasonable in most circumstances. Therefore, 
the number of repeat sampling campaigns will equal the number of days required to apply to storage 
verification. In most cases, 10–50 repeat sampling campaigns should be reasonable within a year; a 
greater number will depend on available resources. 
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Our analysis assumes that background CO2 fluxes and concentrations are statistically uniform over a 
study area. This may not be the case if there are features such as topography or vegetation that cause 
relatively consistent CO2 production over time. To avoid misinterpreting background CO2 signals in 
these areas as subtle leakage and distinguish the two sources, physical properties of the study area 
should be characterized along with soil gas chemical and isotopic analyses. Our method also assumes 
that CO2 leakage is slowly evolving over the observation period. If there is interest to detect leakage 
that is rapidly changing, then additional analysis taking into account a temporally evolving source will 
be required.  In summary, our strategy provides a means to locate and quantify potentially small CO2 
leakage signals derived from geologic storage reservoirs within natural background variability. If 
leakage is detected, then further geophysical, geochemical, and reservoir management techniques can 
be applied to locate and mitigate the leak. 
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