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Transcriptional control of subtype switching ensures adaptation and growth of 

pancreatic cancer 

 

By: Christina Adams 

 

Abstract: 

Pancreatic ductal adenocarcinoma (PDA) is a heterogeneous disease comprised 

of a basal-like subtype with mesenchymal gene signatures, undifferentiated 

histopathology and worse prognosis compared to the classical subtype. Despite their 

prognostic and therapeutic value, the key drivers that establish and control subtype 

identity remain unknown. Here we demonstrate that PDA subtypes are not permanently 

encoded and identify the GLI2 transcription factor as a master regulator of subtype inter-

conversion. GLI2 is elevated in basal-like PDA lines and patient specimens and forced 

GLI2 activation is sufficient to convert classical PDA cells to basal-like. Mechanistically, 

GLI2 upregulates expression of the pro-tumorigenic secreted protein, Osteopontin (OPN), 

which is especially critical for metastatic growth in vivo and adaptation to oncogenic KRAS 

ablation. Accordingly, elevated GLI2 and OPN levels predict shortened overall survival of 

PDA patients. Thus, the GLI2-OPN circuit is a driver of PDA cell plasticity that establishes 

and maintains an aggressive variant of this disease. 
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PANCREATIC DUCTAL ADENOCARCINOMA  

  

Pancreatic ductal adenocarcinoma (PDA) is projected to become the second 

leading cause of cancer-related deaths by 2030 (Rahib et al. 2014), and has a 5-year 

survival rate of <10%. Although significant strides have been made in understanding 

disease development and progression, patient prognosis remains poor. Thus, a 

substantial unmet need exists to better understand the molecular drivers and underlying 

biology of this disease.  

 

Disease development and progression 

PDA arises from normal pancreatic epithelium and can originate from both acinar 

and ductal cells in the exocrine pancreas (Habbe et al. 2008; Gidekel Friedlander et al. 

2009; Kopp et al. 2012; Bailey et al. 2016a). Step-wise progression to PDA occurs via  

acinar-to-ductal metaplasia (ADM), leading to the generation of precursor lesions known 

as pancreatic intraepithelial neoplasia (PanIN) (Hruban et al. 2006; Sipos et al. 2009; 

Kopp et al. 2012; Ying et al. 2016) (Figure 1.1 A). Less common macroscopic precursor 

lesions such as intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic 

neoplasm (MCN) are cystic lesions with variable malignant potential (Hruban et al. 2004; 

Ying et al. 2016; Collisson et al. 2019). PanINs represent the most common microscopic 

precursor lesion and are labeled as PanIN1-3 based on histological features and 

increasing grade (Hruban et al. 2004; Sipos et al. 2009). PanIN1 are considered low-

grade dysplasia, while PanIN2 lesions typically display loss of cell polarity, increased 

nuclear crowding, cell enlargement, hyperchromasia and frequent papillary formation 
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(Hruban et al. 2004; Sipos et al. 2009). High-grade PanIN3 represent advanced lesions 

with severe nuclear atypia, luminal necrosis and epithelial cell budding into ductal lumen 

(Hruban et al. 2004; Sipos et al. 2009). PanIN3 are almost exclusively found in patients 

with PDA while low-grade lesions can be found in normal pancreas or in patients with 

chronic pancreatitis (Ying et al. 2016). Microscopic PanINs are currently below the 

detectable size threshold to screen for using standard imaging techniques, thus the 

identification of screening modalities to effectively detect pre-malignant disease 

represents a key area of research that could have a significant impact in reducing 

mortality rates in PDA (Ying et al. 2016; Collisson et al. 2019).  
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Figure 1.1 
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reaction, which often forms the bulk of the tumor mass. This 
heterogeneous infi ltrate—consisting of activated fi broblasts 
[pancreatic stellate cells (PSC)] and diverse infl ammatory 
and immune cells—co-evolves with the tumor cells and infl u-
ences PDA progression and response to therapy ( 22–28 ). An 
important consequence of the dense stroma is the generation 
of high levels of solid stress and fl uid pressure in the tumors 
and compression of the vasculature, which creates a highly 
hypoxic and nutrient-poor microenvironment ( Fig. 1C ; refs. 
 22 ,  29–31 ). Despite these harsh environmental conditions, 
PDA cells are able to survive and thrive. How do these cells 
subsist in the presence of low levels of nutrients derived from 
the circulation? Which pathways are activated that allow 
unbridled proliferative capacity? This review focuses on the 
recently discovered unorthodox strategies used by PDA cells 
to acquire nutrients and use them for generation of energy 
and as building blocks for  de novo  synthesis of proteins, lipids, 
and nucleic acids. We also provide an overview of how PDA 
pathogenesis is infl uenced by conditions that alter whole-
body metabolism, such as diabetes and obesity. Finally, we 
discuss the translational potential of exploiting knowledge 
about pancreatic cancer metabolism for improved diagnos-
tics and therapy for this disease.   

 Uncoupling Nutrient Sensing in Cancer 
 The adaptive changes in tumor metabolism can broadly 

be categorized into alterations in the sensing, acquisition, 
and utilization of nutrients, and elimination of toxic by-
products. In noncancerous cells, the utilization of nutrients 

 KEY CONCEPTS AND RELEVANCE 

    •  Cancers have heightened metabolic requirements for 
cell growth that need to be coordinated with nutrient 
supply.  

  •  PDAs must contend with further metabolic con-
straints due to their hypovascular, fi brotic microen-
vironment, and ensuing hypoxia and limited nutrient 
availability. To support tumor growth, PDAs acquire 
multiple alterations in metabolic circuitry and acti-
vation of nutrient scavenging processes—autophagy 
and macropinocytosis.  

  •  PDA development is also infl uenced by conditions that 
change whole-body metabolism (type II diabetes and 
obesity), and reciprocally PDA incites systemic meta-
bolic alterations (cachexia and PDA-induced diabetes).  

  •  How these processes are activated, integrated, and 
regulated has started to come into focus.  

  •  The recent advances in understanding these metabolic 
alterations provide new insights into PDA pathogen-
esis and suggest paths forward for the development 
of improved therapeutics and diagnostics.    

 Figure 1.      Schematic  of the 
multistage progression of PDA. 
A, PDA arises from the multistage 
progression of precursor lesions 
known as PanIN. B,  KRAS  muta-
tions are an early event in disease 
pathogenesis, present in the great 
majority of early-stage PanIN 
lesions. Mutations in a series of 
tumor suppressors occur as later 
events, and contribute to disease 
progression. C, PDA is also associ-
ated with evolving alterations in the 
tumor microenvironment, including 
increasing fi brosis and extracellular 
matrix deposition (desmoplasia) and 
recruitment of immune and infl am-
matory cells. Increasing desmo-
plasia accompanies progressive 
disease (as indicated) and creates 
intratumoral pressure that com-
presses the vasculature, resulting in 
limited blood fl ow to the tumor and 
consequent hypoxia and low nutrient 
delivery. In turn, PDA cells exhibit 
activation of nutrient scavenging 
pathways (autophagy and macro-
pinocytosis) that support tumor 
cell growth. Although autophagy 
activation is a late event in PDA 
tumorigenesis, the precise temporal 
dynamics of macropinocytosis is as 
yet unknown (dotted box).   

Normal
Acinar–ductal

reprogramming PanIN 1a/1b PanIN 2 PanIN 3 PDA

Macropinocytosis

Autophagy

Hypoxia

Solid and fluid pressure

Desmoplasia

PDA microenvironment

Myeloid-derived 
suppressor cells

Stellate cell

Regulatory T cells 

Hyaluronan

Secreted
factors

Collagen
Fibronectin

Fibroblasts

Macrophage

Tumor cell

KRAS                    >90%

TP53                     60%–70%
CDKN2A                   >50%
SMAD4/TGFBR1/2       50%
BRCA2                      10%
ARID1A/B        10%
MLL2/3, KDM6A     5%–10%
RNF43      10%
STK11       5%

PDA mutation frequency

A

B C

a dense fi brotic stromal component (desmoplasia; ref.  21 ). 
Although other cancer types, such as breast, prostate, and 
ovarian cancers, also display prominent stromal infi ltration, 
PDA stands out by the remarkable extent of its desmoplastic 

on January 6, 2016. © 2015 American Association for Cancer Research. cancerdiscovery.aacrjournals.org Downloaded from 

Published OnlineFirst November 3, 2015; DOI: 10.1158/2159-8290.CD-15-0671 
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Re-printed from Perera and Bardeesy. Cancer Discov. 2015

B Most common PDA mutations:

KRAS >90%
TP53 60%-70%
CDKN2A >50%
SMAD4 50%

Less common PDA mutations:

ARID1A/B                 10-15%
SMARCA1/4 10-15% 
ATM                               10%
BRCA2 10%
MLL2/3                        5-10%
KDM6A                       5-10%
BCORL1                     5-10%
RBM10                        5-10%
TGFBR2                     5-10%
RNF43 1-5%                

C
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Tumor cell
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Myeloid-derived suppressor cell
Secreted factors
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determine subtype identity and that account 
for differences in clinical behavior. For exam-
ple, computational analysis of the pattern of 
gene expression could enable the discovery of 
master regulators that drive the growth or the 
biological features of the basal-like and clas-
sical subtypes7,8. Additionally, there is recent 
evidence that PDAC stroma can be induced to 
take on either a tumor-promoting or tumor- 
inhibiting state by manipulating regulatory path-
ways such as the Hedgehog and vitamin D recep-
tor signaling pathways9–11. It will be of interest to 
determine whether these or other pathways are 
involved in specifying stromal subtypes.

The methodology used by Moffitt et al.5 
does have potential limitations. First, there can 
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Figure 1  Molecular subtypes in pancreatic cancer. A pancreatic cancer sample (top), which consists  
of normal pancreatic cells, tumor cells and stromal cells, can be virtually dissected using gene expression 
data. Gene expression patterns, represented by heat maps (bottom), were used by Moffitt et al.5  
to identify tumor and stromal subtypes. Yellow indicates upregulated transcripts, and blue indicates 
downregulated transcripts.

Normal pancreatic tissue Tumor

Classical
genes

Classical
Tumor subtype

Basal-like

Basal-like
genes

Normal
genes

Normal
Stromal subtype

Activated

Activated
genes

Stroma

be marked regional heterogeneity of mutations 
and histological features within PDACs12,13; 
therefore, transcriptional profiles of individual 
regions may not always be representative of the 
tumor as a whole. Second, because the authors’ 
approach is based on the examination of gene 
transcripts that are highly enriched in tumor 
cells as compared to other tissues, informa-
tion about the tumor-specific expression of 
the majority of genes is not used. Thus, it may 
not be possible to comprehensively predict 
which key cellular processes differ between 
subtypes. Laser-capture microdissection and 
single-cell RNA sequencing could provide 
important additional information, although 
both have their own limitations relating to 

cost, data quality and degree of representa-
tion of the tissue. Finally, the present study 
did not fully integrate mutational informa-
tion, which could give further insights into  
the circuitry of the subtypes. Overall, the 
tumor classification developed by the authors 
provides an important step forward as a clini-
cal tool and a guide for research, although 
PDAC taxonomy with an additional diversity 
of meaningful subtypes may be developed 
once more information on molecular features 
is taken into account.

How might this information be deployed 
in PDAC diagnosis? Molecular features are 
presently not used to guide PDAC treatment, 
although recent data suggest that the small 
subset of PDACs with mutations affecting 
DNA damage response pathways are consid-
erably more responsive to chemotherapy14.  
By subclassifying the rest of PDACs, the authors’ 
system could serve as a more general prognos-
tic framework. Interestingly, the authors found 
that, although individuals with the basal-like 
PDAC subtype had overall shortened survival, 
they showed a trend toward responsiveness to 
chemotherapy, whereas those with the classi-
cal subtype did not. Going forward, subtype 
information could be used to assign patients 
to distinct treatment regimens, to uncover 
new targeted therapies and to retrospectively 
interpret existing data from clinical trials.  
Moreover, the stromal subtypes may be of 
particular value in helping to guide emerg-
ing stromal targeting approaches11,15. Overall, 
this work and the findings from PDAC genom-
ics14 may herald the arrival of more rational 
and specific treatment strategies against this 
deadly cancer.
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Figure 1.1.  Step-wise progression of pancreatic ductal adenocarcinoma (PDA) 
(A) Schematic showing the step-wise progression of PDA from normal pancreatic 
epithelia to acinar-ductal metaplasia (ADM), pancreatic intraepithelial neoplasia (PanIN) 
and frank metastatic adenocarcinoma. Figure re-printed from Perera et al. 2015 (Perera 
and Bardeesy 2015). (B) Common (top) and less common (bottom) genetic mutations 
that occur over the course of PDA progression and their associated frequencies. (C) 
Schematic depicting the overall composition of a PDA tumor to include various stromal 
cell types, secreted factors and a collagen/fibronectin rich extra-cellular matrix. Figure 
adapted from Kottakis et al. 2015 (Kottakis and Bardeesy 2015).  
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Genetic alterations in pancreatic cancer 

Activating mutations in the KRAS oncogene occur in ~95% of PDA precursor 

lesions, highlighting the dependency of PDA development on this genetic alteration. 

During the progression of PDA, common inactivating mutations or deletions occur in 

tumor suppressor genes TP53, CDKN2A and SMAD4 in ~50-70% of cases (Jones et al. 

2008; Biankin et al. 2012; Ryan et al. 2014; Waddell et al. 2015; Witkiewicz et al. 2015) 

(Figure 1.1 B). Additional recurrent genetic alterations in KDM6A, BCORL1, RBM10, 

MLL3, ARID1A, TGFBR2, RNF43, ATM, SMARCA4 and others have also been identified, 

however, the prevalence of these mutations drops to less than 10% (Ryan et al. 2014; 

Ying et al. 2016; Collisson et al. 2019). Interestingly, despite their low prevalence, these 

additional mutations converge on specific pathways that include NOTCH, Hedgehog, 

beta-catenin, axon guidance, chromatin remodeling, and DNA damage response 

pathways (Ryan et al. 2014; Ying et al. 2016; Collisson et al. 2019), illustrating potential 

opportunities for therapeutic intervention. Thus, a lack of actionable targets due to a 

relatively homogenous mutational landscape is a key characteristic of PDA. Therefore, 

successful future therapies will likely encompass combined targeting of the 

aforementioned signaling pathways or other aspects of the disease (i.e. such as stromal 

components - see below). Targeting oncogenic KRAS represents the most 

straightforward approach to treating this disease, however ‘drugging’ RAS has proven 

notoriously difficult. Nevertheless, recent studies have made exciting progress in this 

regard, bringing KRAS targeted therapy closer to entering the clinic. 
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Targeting mutant KRAS 

Despite its central importance in PDA, attempts to target mutant KRAS 

therapeutically have been largely unsuccessful. However, the recent development of 

KRASG12C inhibitors has renewed interest in drugging mutant KRAS in a diverse array of 

tumors that harbor this mutation (Ostrem et al. 2013; Patricelli et al. 2016; Janes et al. 

2018; Lou et al. 2019). Although KRASG12D and KRASG12V represent the most common 

KRAS mutations in PDA (Witkiewicz et al. 2015; Cancer Genome Atlas Research 2017), 

the small fraction of tumors harboring the KRASG12C allele would likely show exquisite 

sensitivity to G12C specific inhibitors. Similar to other targeted therapies, it is not 

improbable that resistance to KRASG12C inhibitors would eventually emerge. Although the 

G12C allele represents a minority of cases in PDA, identifying potential resistance 

mechanisms for this group could inform combinatorial regimens that co-suppress 

pathways that become upregulated in response to KRAS inhibition. Indeed, a recent study 

uncovered a diverse array of unique vulnerabilities once KRAS is inhibited, termed 

“collateral dependencies”, providing a framework to design combination therapies to 

enhance drug response (Lou et al. 2019).  

 

Stromal contributions to disease pathogenesis  

An additional characteristic of PDA is the dense stromal cell content that is 

commonly associated with this disease and in some cases can comprise up to 70% of 

the bulk tumor mass (Lafaro and Melstrom 2019). This stromal infiltrate is comprised of 

pancreatic stellate cells (PSCs), cancer associated fibroblasts (CAFs) and immune cells 

(Figure 1.1 C). Together, PDA stromal components create a rich microenvironment 
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comprised of cytokines, growth factors and other molecular cues whose contribution to 

tumorigenesis and progression are incompletely understood. For example, a novel role 

for PSC-derived CAFs was recently described as a source of secreted lipids such as 

lysophosphatidylcholines (LPS), which sustain PDA cell growth (Auciello et al. 2019). 

Simultaneously, the dense stromal infiltrate can impede the penetration and growth of 

blood vessels, thereby blocking effective delivery of chemotherapy or other targeted 

agents to the tumor, and thus can act as a physical barrier to therapy (Ryan et al. 2014; 

Ying et al. 2016; Lafaro and Melstrom 2019; Whittle and Hingorani 2019). The pro- or 

anti-tumorigenic function of each cell type present in PDA stroma remains under 

investigation and can potentially be leveraged in combinatorial therapeutic strategies. For 

example, depletion of stromal components can enhance delivery of chemotherapy 

through the elimination of hyaluronic acid, which was shown to cause a decrease in 

interstitial fluid pressure, increased vascularity and improved drug delivery (Provenzano 

et al. 2012). Similarly, activation of the vitamin D receptor with a vitamin D analog 

repressed the activated state of cancer-associated PSCs and impaired the secretion of 

pro-tumorigenic factors, leading to overall reduced fibrosis and inflammation and 

increased sensitivity to chemotherapy in vivo (Sherman et al. 2014). While this and other 

studies support a pro-tumorigenic role for the stroma, certain stromal components can 

also restrain PDA progression thereby having an anti-tumorigenic role (Lee et al. 2014; 

Ozdemir et al. 2014; Rhim et al. 2014). For example, targeting the stroma with 

Smoothened inhibitors was initially thought to inhibit pro-growth Hedgehog signaling in 

CAFs and therefore enhance drug delivery to tumor cells and improve patient outcomes 

(Olive et al. 2009). However, several clinical trials in PDA patients demonstrated that 
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Smoothened inhibition either had no clinical benefit or enhanced tumor progression (Olive 

et al. 2009; Catenacci et al. 2015). These studies highlight the complexity of PDA stroma 

and emphasize the need for detailed experimentation that investigates the role of each 

stromal component and the vast signaling interactions that occur between the tumor cells 

and microenvironment.  

 

IDENTIFICATION OF PANCREATIC CANCER SUBTYPES 

 

Transcriptional profiling revolutionizes subtype identification in cancer  

Despite ample studies illuminating the potential clinical utility of targeting mutations 

occurring in individual genes, few examples exist demonstrating successful adaptation 

into clinical practice. Thus, new methodologies are needed to further understand the 

molecular underpinnings of PDA that go beyond genetics. Transcriptional profiling of 

lymphoma and breast cancer has been utilized to successfully establish consensus 

molecular subtypes that can inform the deployment of anti-cancer therapies in these 

cancers (Alizadeh et al. 2000; Perou et al. 2000; Sorlie et al. 2001). Importantly, these 

molecular subtypes correlated with specific histological features and clinical outcomes 

and marked the advent of a new mode of “personalized therapy” for cancer patients. For 

example, diffuse large B-cell lymphoma (DLBCL) was found to exist in two broad 

subtypes largely reflecting the differentiation status of the cancer cells. Patients with the 

well-differentiated or low-grade ‘germinal centre B-like’ subtype displayed dramatically 

better survival outcomes in response to chemotherapy compared to those with the poorly-

differentiated high-grade ‘activated’ subtype (Alizadeh et al. 2000). Similarly, the original 
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classification of breast tumors revealed the presence of luminal and basal subtypes 

(Perou et al. 2000), which subsequently has expanded to include the five distinct subtypes 

that correlate with patient prognosis and response to therapy (Sorlie et al. 2001; Sorlie et 

al. 2003; Parker et al. 2009; Sotiriou and Pusztai 2009). These include the HER2-postive, 

luminal A, luminal B, claudin-low, and basal-like subgroups. Comparable to DLBCL, the 

basal-like subtype of breast cancer represents the most aggressive variant with the 

shortest overall survival and worst prognosis (Parker et al. 2009; Sotiriou and Pusztai 

2009; Perou 2010). Basal-like and HER2-positive breast tumors are also histologically 

distinct from their luminal counterparts in that they are often high-grade and poorly-

differentiated with high levels of proliferative marker Ki-67 (Sorlie et al. 2001; Sorlie et al. 

2003; Parker et al. 2009; Perou 2010). Development of monoclonal antibodies, such as 

Trastuzumab (Herceptin), which target the HER2 receptor, for treatment of HER2 positive 

breast tumors have shown a profound improvement in survival in this patient population 

(Lambertini et al. 2017). Similarly, estrogen receptor-positive breast tumors, which are 

usually identified as either luminal A or B, have been successfully treated with the 

antiestrogen compound Tamoxifen for several decades (Jordan 2003). Conversely, the 

basal-like subgroup largely encompasses “triple-negative” breast tumors, which lack 

expression of HER2, estrogen and progesterone receptors, representing a subgroup 

where effective therapies are still lacking (Perou 2010). Colorectal cancer has also been 

subjected to expression profiling and the following six subtypes were originally identified: 

chromosomal-instable (CIN)-immune down, deficient mismatch repair (dMMR), KRAS-

mutant, cancer stem cell (CSC), CIN-Wnt up, and CIN-normal (Marisa et al. 2013). 

Although mutations in KRAS, TP53 and BRAF occur at ~40%, ~50% and ~10% in this 
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cancer, respectively, subtypes were largely not associated with these genetic alterations 

(with the exception of the KRAS-mutant subtype) (Marisa et al. 2013). Rather, subtypes 

differed based on unique chromosomal arrangements, altered DNA damage repair 

pathways, and differing degrees of differentiation, stemness and Wnt signaling, with the 

CSC subtype displaying the worst prognosis (Marisa et al. 2013). A related study 

identified the following six subtypes: goblet-like, enterocyte, stem-like, inflammatory, 

cetuximab-sensitive transit-amplifying (CS-TA) and cetuximab-resistant transit-amplifying 

(CR-TA) (Sadanandam et al. 2013). Similar to Marisa et al. stemness and Wnt signaling 

played a defining role in delineating subtype identity, where the stem-like subtype 

represented the most aggressive variant with the worst disease-free survival while TA 

and goblet-like subtypes showed the best prognosis (Sadanandam et al. 2013). 

Importantly, the authors found that a subset of TA tumors responded to EGFR inhibitor 

cetuximab while the remaining tumors were more sensitive to cMET inhibition, further 

delineating this group into two distinct subtypes (Sadanandam et al. 2013). Additionally, 

TA and goblet-like subtypes demonstrated significantly better disease-free survival after 

surgical resection relative to the other subtypes with no added benefit in receiving 

chemoradiotherapy, suggesting that patients with these tumors may be spared from 

receiving chemotherapy if presenting with localized disease (Sadanandam et al. 2013). 

Furthermore, the authors were able to identify stem-like tumors as being significantly 

more responsive to FOLFIRI chemotherapy compared to the other subtypes 

(Sadanandam et al. 2013). Thus, transcriptional subtyping of a remarkably heterogenous 

disease such as colorectal cancer has identified appropriate treatment courses for 

specific patient groups, independent of genetic mutations. Collectively, these studies 
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highlight the importance of utilizing genetic and transcriptomic classifications to establish 

distinct subtypes of cancer and create a framework for defining molecular signatures that 

can stratify tumors that do not harbor obvious genetic heterogeneity – such as PDA and 

other cancers (De Sousa et al. 2013; Marisa et al. 2013; Sadanandam et al. 2013; Cancer 

Genome Atlas Research 2014; Damrauer et al. 2014).  

 

Pancreatic cancer subtypes 

Despite progress in this area, the difficulty of capturing high purity patient PDA 

samples due to stromal cell contamination has made it difficult to sub classify this disease. 

Recent advances using laser capture microdissection and improved computation analysis 

have allowed several groups to successfully identify subtypes of pancreatic cancer with 

distinct molecular features (Collisson et al. 2011; Moffitt et al. 2015; Bailey et al. 2016b; 

Collisson et al. 2019) (Figure 1.2). Although these studies differ in methodology and 

resulting taxonomies, two broad groups emerge as bona-fide molecular subtypes of PDA 

– one that represents a well-differentiated, progenitor-like subset with better overall 

survival (classical) while the other represents a poorly-differentiated, mesenchymal-like 

subset that correlates with markedly worse prognosis (basal-like) (Moffitt et al. 2015; 

Cancer Genome Atlas Research 2017; Aung et al. 2018). Indeed, a study conducted by 

The Cancer Genome Atlas (TCGA) reproduced each classification scheme identified by 

Collisson, Moffitt and Bailey and found that tumors emerge as either basal-like or classical 

in samples enriched for high epithelial cell purity (Cancer Genome Atlas Research 2017). 

Classical PDA is enriched for expression of epithelial differentiation genes, whereas 

basal-like PDA is characterized by laminin and basal keratin gene expression, stem cell 
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and epithelial-to-mesenchymal transition (EMT) markers, analogous to the basal 

subtypes previously defined in bladder and breast cancers (Perou et al. 2000; Sorlie et 

al. 2001; Parker et al. 2009; Curtis et al. 2012; Cancer Genome Atlas Research 2014; 

Damrauer et al. 2014). Furthermore, these subtypes are preserved in different 

experimental models of PDA including organoids (Boj et al. 2015; Huang et al. 2015; 

Seino et al. 2018; Tiriac et al. 2018) and cell line cultures (Collisson et al. 2011; Moffitt et 

al. 2015; Martinelli et al. 2017), providing an important opportunity to identify key factors 

responsible for establishing and maintaining subtype specificity and how these programs 

integrate with pathways known to be deregulated in PDA.  
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Figure 1.2 
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Figure 1.2. Identification of PDA subtypes 
Two consensus molecular subtypes have been identified in PDA according to the 
Collisson, Moffitt, Bailey transcriptomic signatures. The heatmap and Kaplan-Meier 
survival analysis are re-printed from Moffitt et al. 2015. The basal-like subtype (left) 
exhibits poorly-differentiated histology, is associated with proliferative, invasive and 
inflammatory signatures with high enrichment for genes associated with EMT, and 
displays overall worse survival outcomes in patients, while the classical subtype (right) is 
associated with well-differentiated histology, an epithelial/progenitor-like gene signature 
and overall better survival outcomes. Hematoxylin and eosin stained images are adapted 
from Kalimuthu et al. 2019.  
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Few studies have aimed to define master regulators of subtype identity in PDA. 

However, several have uncovered aspects of phenotypic heterogeneity and plasticity that 

are relevant to our work. For example, GATA6 was identified as being enriched in the 

classical subtype and shown to be important for inhibiting de-differentiation, EMT and 

metastasis in human PDA cell lines (Martinelli et al. 2017). Importantly, this study showed 

that GATA6 status was predictive of response to treatment in that patients with GATA6 

high tumors responded better to 5-FU/leucovorin treatment compared to those with 

GATA6 low tumors (Martinelli et al. 2017). Others have identified SMARCB1, a SWI/SNF 

chromatin remodeling factor, in a genetically engineered mouse (GEM) model of PDA as 

a gatekeeper for an epithelial cell state (Genovese et al. 2017). Additionally, studies 

aimed at studying the role of EMT regulator ZEB1 in PDA pathogenesis observed 

significant heterogeneity in GEM models of PDA in regard to epithelial and mesenchymal 

phenotypes, with ZEB1 depleted tumors found to exist solely in an epithelial-locked state 

(Krebs et al. 2017). These tumors were unable to metastasize and were enriched for the 

classical subtype gene signature (Krebs et al. 2017). More recently, loss of KDM6A, a 

histone demethylase and member of the COMPASS-like epigenetic complex, was found 

to frequently occur in basal-like/squamous PDA, where activated super enhancers 

normally silenced by KDM6A activate TP63, ZEB1, and MYC driven transcriptional 

programs (Andricovich et al. 2018). Interestingly, KDM6A loss sensitized PDA cells to 

bromodomain inhibitors, highlighting a potential vulnerability of the basal-like/squamous 

subtype. Consistent with these findings, TP63 (ΔNp63 isoform) was confirmed to be an 

important regulator of the basal-like/squamous subtype in loss-and gain-of-function 

experiments, emphasizing the significance in further understanding and identifying 
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master regulators of phenotypic heterogeneity and subtype identity in PDA (Somerville et 

al. 2018). Although these studies lay the groundwork for identifying regulators of subtype 

identity, future work will be necessary to determine how we can leverage this knowledge 

to better design targeted therapies in patients.   

 

EMT CONTRIBUTES TO TUMOR CELL PLASTICITY AND SUBTYPE CONVERSION 

 

EMT promotes cancer cell plasticity  

The ability of a cell to undergo a change in cell state is an important contributor to 

tumor cell plasticity and heterogeneity and provides a potential explanation for treatment 

failure and resistance (Polyak and Weinberg 2009; Singh and Settleman 2010; Nieto 

2013; Kemper et al. 2014). The best described example of cellular plasticity and the ability 

to dynamically interconvert between states is the process of EMT and MET, where 

epithelial cells lose their differentiated characteristics (cell-cell contacts, planar and 

apical-basal polarity, lack of motility) and acquire mesenchymal features (loss of cell-cell 

contacts, increased motility and invasiveness), and vice versa (Yang and Weinberg 2008; 

Thiery et al. 2009) (Figure 1.3). Originally described as a phenomenon limited to in vitro 

cell culture, its relevance to physiological settings such as embryogenesis and 

tumorigenesis has since been demonstrated (Yang and Weinberg 2008; Thiery et al. 

2009; Nieto 2013). Specifically, EMT has been shown to contribute to invasion, metastatic 

dissemination and resistance to therapy in cancer, while MET has been shown to be 

important for the formation and out-growth of distant metastasis following cell seeding 

(Polyak and Weinberg 2009; Singh and Settleman 2010). In addition to these two states, 
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recent work has highlighted that tumor cells can exist along a continuum of EMT with 

intermediate states conferring different levels of phenotypic plasticity and invasive 

properties (Jordan et al. 2011; Huang et al. 2013; Aiello et al. 2018) (Figure 1.3). For 

example, in a GEM model of PDA, a “partial-EMT” was seen in carcinoma cells that lost 

plasma membrane-associated E-cadherin yet retained high levels of transcript and 

protein (Aiello et al. 2018). Cells that had undergone partial-EMT and to a lesser extent 

those that had undergone a “complete-EMT” retained the ability to re-localize E-cadherin 

to the plasma membrane, demonstrating that inherent plasticity allows PDA cells to switch 

EMT subtypes (Aiello et al. 2018). Furthermore, differences in EMT subtype was shown 

to affect migration capacity where tumor cells that underwent a partial-EMT invaded as 

multi-cell clusters that retained cell-cell contacts while tumor cells that underwent a 

complete-EMT invaded as single cells that disseminated from the primary cell mass 

(Aiello et al. 2018). In agreement, an independent GEM model demonstrated PDA cells 

with different degrees of epithelial plasticity preferentially metastasized to different sites, 

where p120-catenin and E-cadherin positive PDA cells were prone to seed the liver in 

contrast to lung metastasis which favored negative expression of p120-catenin and E-

cadherin (Reichert et al. 2018). Together, these studies suggest that EMT is an important 

contributor to phenotypic plasticity of carcinoma cells, which can impact critical steps of 

PDA pathogenesis including metastasis. 
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Figure 1.3 
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Figure 1.3. EMT and subtype switching promote plasticity and aggressive disease 
in PDA 
Schematic depicting EMT and subtype switching between epithelial and mesenchymal 
phenotypes. An epithelial-like state is broadly associated with the classical subtype of 
PDA and the equivalent in other tumor types, is reported to be more sensitive to specific 
chemotherapy regimens and is less metastatic. A mesenchymal state is associated with 
the basal-like subtype of PDA and other cancers and exhibits de novo and acquired 
resistance to chemotherapy and targeted inhibitors while being particularly invasive and 
metastatic. A continuum of EMT and cell states is becoming more appreciated as a 
contributor to cancer cell plasticity and therapy resistance.  

 

  



 21 
 

The role of EMT in basal-like pancreatic cancer 

Aggressive subtypes of many cancers, such as the basal-like subtype in breast 

and bladder cancer, often display features of EMT (Perou et al. 2000; Sorlie et al. 2001; 

Parker et al. 2009; Curtis et al. 2012; Cancer Genome Atlas Research 2014; Damrauer 

et al. 2014). Indeed, these particular tumors have a higher incidence of metastasis, are 

more refractory to therapy, and have higher expression of EMT markers such as ZEB1, 

TWIST1, and SNAI1/2. Similarly, in PDA, basal-like patient tumors and patient-derived 

organoids have higher expression of TWIST1 and ZEB1 and are enriched for EMT by 

gene set enrichment analysis (GSEA) compared to classical tumors, suggesting that the 

underlying aggressive phenotype observed in basal-like cancers is due at least in part to 

the inherent plasticity that exists in mesenchymal cells (Collisson et al. 2011; Krebs et al. 

2017; Tiriac et al. 2018).  The basal-like subtype of PDA was similarly shown to be 

associated with significantly higher rates of metastasis. Specifically, every patient with a 

basal-like tumor exhibited widespread metastatic PDA, whereas patients who had 

classical tumors were associated with both localized disease and metastatic cases (Aung 

et al. 2018). Additionally, partial response to chemotherapy was observed in 34% (13/38) 

of patients with classical tumors while only 8% (1/12) of patients with basal-like tumors 

experienced benefit, providing further evidence that the basal-like variant is especially 

aggressive and refractory to first line chemotherapy (Aung et al. 2018). A study that 

generated PDA patient-derived organoids with the aim of performing therapeutic profiling 

revealed that longitudinal generation of PDA organoid cultures from the lung metastasis 

of a patient who initially responded to gemcitabine, paclitaxel, 5-FU, and oxaliplatin, but 

eventually succumbed to disease, acquired amplification of the KRAS allele, gained 
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resistance to the aforementioned therapies, and switched to the basal-like subtype (Tiriac 

et al. 2018). This patient acquired resistance to all commonly used chemotherapeutics 

for PDA, highlighting a common issue encountered in the clinic, and the need to uncover 

new vulnerabilities in refractory cases.   

Although EMT has been implicated in tumorigenesis, progression and metastasis, 

its true role in PDA development is yet to be fully understood. For example, EMT and 

stem cell features (defined as the ability to self-renew, proliferate and differentiate) have 

been linked to ZEB1-mediated repression of epithelial promoting and stemness-inhibiting 

microRNAs. This dual regulation by ZEB1 was shown to be crucial in promoting PDA 

metastasis (Wellner et al. 2009). Strikingly, ZEB1-mediated EMT was also shown to 

contribute to early dissemination of pancreatic cells harboring the KRASG12D oncogenic 

mutation in a lineage-tracing GEM model of PDA (Rhim et al. 2012). This study challenges 

the paradigm of metastasis occurring as a late event in PDA pathogenesis since 

dissemination of pancreatic cells occurred before the development of the primary tumor 

and were associated with EMT and maintained a mesenchymal and stem cell-like 

phenotype (Rhim et al. 2012). Importantly, the authors also found that the EMT status of 

transformed cells is not a stable property and that MET can also spontaneously occur in 

vivo (Rhim et al. 2012). These findings support a role for EMT and a stem cell program in 

the early dissemination and metastasis of PDA cells in vivo (Rhim et al. 2012), however, 

the molecular mechanisms and specific transcription factors important for maintaining a 

mesenchymal state or promoting EMT to MET plasticity are yet to be fully defined. 

Context-specific roles for traditionally described EMT transcription factors such as 

SNAI1/2, TWIST1/2 and ZEB1/2 are important to consider in PDA. For example, in a 
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GEM model of PDA, ablation of SNAI1 or TWIST1 was found to have no effect on the 

rate of metastasis, leading to the conclusion that PDA cells can metastasize without 

activating an EMT program (Zheng et al. 2015). If correct, this finding represents a major 

shift in how we understand malignant progression of PDA cells. However, significant 

caveats exist in this study including how the authors confirm attenuation of EMT following 

genetic ablation of EMT factors, and the assumption that SNAI1 or TWIST1 alone are the 

relevant master regulators of EMT during the development of metastatic disease. In 

response to this study, Aiello and colleagues show that the methods used by Zheng at al. 

to classify cells as having undergone EMT are incomplete (Aiello et al. 2017). The authors 

show that α-SMA (the primary EMT distinguisher used by Zheng et al.) is an unreliable 

marker.  Thus, the true effect of SNAI1 and TWIST1 deletion on EMT is still unclear. In 

contrast to this study, ZEB1 knockout using an autochthonous PDA GEM model used in 

Zheng et al. strongly inhibited mesenchymal cell state, formation of precursor lesions, 

invasion and metastasis during tumor progression. This study suggests that ZEB1-driven 

EMT is important for PDA pathogenesis and metastatic progression (Krebs et al. 2017). 

Overall, the exact contributions of EMT to PDA initiation, maintenance and dissemination 

remain highly contested. Moreover, whether alternative regulators of EMT exist in PDA 

that can compensate for loss of classical EMT factors such as TWIST1 and SNAI1 have 

not been explored. Finally, the molecular mechanisms of how EMT and epithelial plasticity 

contribute to defining subtypes is an open area of research, on which our study provides 

much needed clarity.  
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Contributions of EMT to drug resistance in cancer  

The contribution of EMT to dissemination and metastasis is becoming widely 

accepted, however, its role in promoting drug resistance and relapse requires further 

investigation. EMT has been broadly associated with drug resistance. For example, in 

lung cancer, an epithelial rather than a mesenchymal gene signature was associated with 

sensitivity to EGFR inhibition (Yauch et al. 2005). In clinical trials, non-small cell lung 

cancer (NSCLC) patients with high expression of E-cadherin in tumors were found to be 

more responsive to EGFR inhibition than tumors with low E-cadherin expression, 

suggesting that mesenchymal-like NSCLC cells are inherently refractory to EGFR therapy 

through de novo mechanisms (Thomson et al. 2005). Since these initial findings, others 

have similarly found that restoring E-cadherin expression through the co-treatment of a 

HDAC inhibitor or silencing of ZEB1 reverts the EMT phenotype and re-sensitizes lung 

cancer cell lines to EGFR inhibition (Witta et al. 2006; Yoshida et al. 2016). Furthermore, 

an EMT gene signature was identified as being predictive of resistance to EGFR and PI3K 

inhibition in vitro and in patient samples (Uramoto et al. 2010; Byers et al. 2013).  Similar 

parallels have been observed in head and neck squamous cell carcinoma, urothelial 

carcinoma, colorectal cancer and other tumor types (Frederick et al. 2007; Black et al. 

2008; Dallas et al. 2009; Shibue and Weinberg 2017). Future work will require a deeper 

understanding of the intricate mechanisms that potentiate de novo drug resistance 

caused by EMT.  
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SUBTYPE SWITCHING UNDERLIES FEATURES OF AGGRESSIVE DISEASE 
 

The ability of a cell to undergo a broad phenotypic switch has been demonstrated 

as critical “escape route” in evading growth arrest or cell death in response to therapy 

(Kemper et al. 2014). One example of this phenomenon is the rare but consistent 

observation that EGFR mutant NSCLC adenocarcinoma transforms to histologically 

distinct small-cell lung cancer (SCLC) as an acquired resistance mechanism to EGFR 

inhibition (~14% of acquired resistance cases) (Sequist et al. 2011; Yu et al. 2013; Oser 

et al. 2015). Treatment strategies for NSCLC and SCLC differ substantially, thus their 

identification is an important step in deciding a relevant course of action. NSCLC 

adenocarcinomas have a high prevalence of activating KRAS and EGFR mutations, ALK 

translocations, are commonly localized peripherally, and believed to originate from 

alveolar type II cells (Oser et al. 2015). SCLC are characterized by high frequency of 

TP53 and RB1 loss of function mutations and are thought to arise from neuroendocrine 

cells within the distal part of the conduction airways and are therefore positive for 

neuroendocrine markers synaptophysin, chromogranin and NCAM by 

immunohistochemical staining (Oser et al. 2015). Genomic sequencing of repeat biopsy 

samples revealed that 100% of patients with EGFR-mutant adenocarcinoma that 

transformed to SCLC harbored RB1 loss, suggesting this genetic alteration is a required 

event leading to transformation from NSCLC adenocarcinoma to SCLC (Yu et al. 2013). 

Additionally, each transformed SCLC tumor retained the original EGFR-activating 

mutation and occasionally acquired additional mutations such as in PIK3CA (Sequist et 

al. 2011). Despite retaining the original EGFR mutation upon transformation to SCLC, 

these tumors express low-levels of EGFR protein, which is thought to contribute to their 
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resistance to EGFR inhibitor treatment (Oser et al. 2015). This observed plasticity 

between adenocarcinoma and SCLC and their ability to switch histologies has called into 

question whether a shared cell of origin exists between these two subsets of lung cancer 

and highlights that the overall mechanistic understanding of how this switch occurs is 

unknown. For example, it is undetermined whether a small percentage of NSCLC 

harboring RB1 loss preexists in the original tumor and is able to expand upon drug 

treatment, or if this mutation is acquired later to promote an active switch to the SCLC 

phenotype. Additionally, in melanoma cells, an “invasive” signature was associated with 

low levels of MITF, a master transcriptional regulator of melanocyte development and 

differentiation, and de novo resistance to BRAFV600E or MEK inhibition (Konieczkowski et 

al. 2014). Moreover, melanoma cells were shown to adapt to BRAFV600E or MEK inhibition 

in an acquired resistance setting by switching to an invasive phenotype, which was also 

associated with loss of MITF expression (Zipser et al. 2011) . Collectively, these studies 

demonstrate that inherent plasticity and the ability to undergo a change in cell state is an 

important contributor to therapy resistance in various tumor settings. 

Phenotypic switching as a resistance mechanism to oncogenic KRAS inhibition is 

an important issue to address in PDA given the near universal occurrence of activating 

KRAS mutations and the ongoing development of clinically useful inhibitors. A study 

aimed at identifying a “KRAS Addiction” signature identified lung and pancreatic cell lines 

that either do or do not require KRAS to maintain viability (Singh et al. 2009). Those that 

were more reliant upon KRAS expression were associated with a well-differentiated 

epithelial phenotype and expressed high levels of E-cadherin whereas KRAS- 

“independent” cells expressed readily detectable levels of Vimentin, indicating strong 
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association between KRAS-dependency and EMT (Singh et al. 2009). Interestingly, 

altering EMT status based on treatment with TGFβ1 to induce EMT and RNAi depletion 

of ZEB1 to promote MET was shown to either reverse or promote KRAS dependency, 

respectively (Singh et al. 2009). These findings suggest that KRAS dependency is not a 

stable feature of cancer cells, and that changes in cell phenotype can dictate the degree 

to which cancer cells are oncogene addicted. However, it is unclear whether this observed 

phenomenon is applicable in vivo since GEM models of PDA demonstrate that tumors 

are highly dependent on the presence of oncogenic KRAS. Indeed, in a GEM model of 

PDA where the expression of mutant KRAS is under the control of a Tet-inducible 

promoter, removal of doxycycline leads to rapid loss of KRAS expression and complete 

tumor regression, demonstrating oncogenic KRAS addiction in vivo (Ying et al. 2012; 

Kapoor et al. 2014). However, most tumors escaped from doxycycline-induced KRAS 

silencing and tumor relapse was evident after 9-47 weeks (Kapoor et al. 2014). Relapsed 

tumors exhibited poorly-differentiated or sarcomatoid features and incidence of lung and 

liver metastasis increased (Kapoor et al. 2014). Interestingly, half of relapsed tumors re-

expressed KRAS expression whereas the remaining tumors did not and were designated 

as KRAS-independent (Kapoor et al. 2014). KRAS-independent tumors were found to 

cluster with the quasi-mesenchymal subtype identified by Collisson et al. whereas the 

KRAS-expressing relapsed tumors clustered with the classical subtype (Kapoor et al. 

2014). The transcriptional co-activator YAP1 was found to be genomically amplified in 

three of the KRAS-independent tumors and was shown to effectively substitute for 

oncogenic KRAS in maintaining survival and viability, representing a novel bypass 

mechanism to KRAS ablation (Kapoor et al. 2014). In related work, Shao et al. aimed to 
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identify genes that functionally substitute for oncogenic RAS in a human colon cancer cell 

line. YAP1 was similarly identified as well as a transcriptional program involving EMT, 

suggesting that cancer cells co-opt transcriptional programs that involve phenotypically 

switching to a mesenchymal state as a common acquired resistance mechanism to 

oncogenic KRAS loss (Shao et al. 2014). Together, these studies raise the intriguing 

possibility that other transcriptional regulators may be responsible in promoting 

phenotypic switching as a survival mechanism in response to oncogene inhibition in PDA 

and in other tumor types.  

 

THE ROLE OF HEDGEHOG SIGNALING IN PANCREATIC CANCER 

 

The Hedgehog (Hh) pathway is activated in PDA and has been found to play 

important and complex roles in PDA pathogenesis (Figure 1.4) (Morris et al. 2010). 

Whereas the developing and normal adult pancreas lack expression of Hh pathway 

ligands, the Sonic Hedgehog (SHH) and Indian Hedgehog (IHH) ligands are prominently 

induced in the pancreatic epithelium upon injury and throughout PDA development, from 

early precursor PanIN to invasive disease (Berman et al. 2003; Thayer et al. 2003; Prasad 

et al. 2005; Nolan-Stevaux et al. 2009) (Figure 1.4 A). The neoplastic cells and stromal 

fibroblasts also express the Hh receptor Smoothened (SMO) and the Glioma associated 

oncogene homology (GLI) transcription factors – GLI1 and GLI2, which mediate Hh 

signaling downstream of SMO, and GLI3 which functions as a transcriptional repressor 

(Hui and Angers 2011; Robbins et al. 2012). While SMO deletion in the pancreatic 

epithelium has no effect on mutant KRAS-driven PDA in GEM models, studies from our 
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group and others reveal a surprising role for SHH in restraining cancer growth (Lee et al. 

2014; Mathew et al. 2014; Rhim et al. 2014; Liu et al. 2016) (Figure 1.4 B,C). By contrast, 

several lines of evidence indicate that activation of GLI transcription factors in the 

pancreatic epithelium is required for oncogenesis in PDA (Dennler et al. 2007; Ji et al. 

2007; Nolan-Stevaux et al. 2009; Rajurkar et al. 2012; Xu et al. 2012). First, pancreas-

specific transgenic over-expression of the Gli3 repressor attenuates PDA progression 

(Rajurkar et al. 2012). Second, forced Gli2 over-expression cooperates with oncogenic 

Kras to promote aggressive poorly differentiated tumors (Pasca di Magliano et al. 2006). 

While much emphasis has been placed on ligand-mediated activation of Hh signaling in 

stromal cells within PDA, the tumor cell-autonomous roles of GLI proteins have remained 

unclear (Figure 1.4 C). In other cancer settings GLI proteins have been implicated in cell 

cycle progression, activation of pro-survival programs and a cancer-associated EMT 

(Yoon et al. 2002; Alexaki et al. 2010; Das et al. 2013; Han et al. 2015; Neelakantan et 

al. 2017). Therefore, we explored a novel role for GLI transcription factors in regulating 

cell state and plasticity in PDA. Given the incomplete understanding of the specific 

contributions of Hedgehog signaling components, we reasoned that there may be 

context-specific roles for Hh ligands and GLI transcription factors in PDA pathogenesis. 

Specifically, we hypothesize that GLI proteins function to promote aggressive tumorigenic 

behavior and poorly-differentiated disease through the regulation of basal-like subtype 

identity, while Hh ligand acts to restrain aggressive PDA growth and instead promotes a 

well-differentiated classical subtype state. In Chapter 2, I present work that demonstrates 

a crucial role for GLI2 in functioning as a master regulator of the basal-like subtype of 

PDA and determine a mechanism for how this process occurs. We uncover a novel 
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signaling axis that encompasses GLI2-dependent secretion of pro-inflammatory ligand 

Osteopontin (OPN), which further acts to establish a basal-like identity. Moreover, we 

hypothesize that GLI2 can functionally substitute for oncogenic KRAS signaling in PDA 

and show that a GLI2-mediated phenotypic switch to a basal-like state contributes to 

acquired resistance to KRAS ablation. Overall, these data identify GLI2 as a Hh-

independent, cell autonomous driver of an aggressive variant of PDA and illuminate the 

complex role of tumor heterogeneity, plasticity and differential regulation of Hh pathway 

components in PDA tumorigenesis.   
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Figure 1.4  
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Figure 1.4. Hedgehog signaling in PDA  
(A) Hedgehog signaling is absent in the developing (left - blue) and normal adult pancreas 
(right - blue). Upon transformation to PanIN, SHH ligand is induced and is secreted by 
neoplastic cells. (B) Diagram illustrating the canonical Hedgehog signaling pathway 
where SHH ligand binds to transmembrane receptor PTCH, alleviating SMO and leading 
to stabilization and nuclear translocation of the GLI family of transcription factors. (C) 
Schematic summarizing the more complicated roles of Hh signaling components in PDA. 
Tumor cells retain the ability to express GLI transcription factors independent of upstream 
SHH ligand binding. SHH secreted by tumor cells acts in a paracrine manner on Hh-
responsive stromal cells, which act to restrain tumor growth through mechanisms that are 
incompletely understood.   
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GLI2-OPN mediated subtype switching enables adaptation  

to oncogene ablation in pancreatic cancer 

  



 34 
 

Results: 

 

Expression of Hh ligands and GLI transcription factors are anti-correlated and 

predict survival outcomes in PDA.  

To explore the relationship between the Hh pathway components in PDA we first 

determined the expression levels of SHH and GLI family transcription factors (GLI1, GLI2, 

GLI3) in a panel of 14 human PDA cell lines using validated antibodies (Figure 2.2 A,B). 

We found that all PDA cell lines expressed Hh pathway proteins to varying degrees. GLI1 

and GLI3 expression were restricted to two and one cell line respectively, while GLI2 was 

readily detectable in 10/14 lines. Moreover, high levels of SHH were observed in 7/14 cell 

lines, while the remainder showed low or undetectable levels of expression (Figure 2.1 

A). No significant differences in the level of the SMO receptor were observed across the 

panel. Notably, cell lines expressing the highest levels of GLI2 (KP4, MiaPaca and 

Panc0327 cells) displayed the lowest levels of SHH expression (Figure 2.1 A; asterisk). 

Conversely, GLI expression was uniformly low in lines with high levels of SHH. 

Accordingly, GLI responsive luciferase reporter assay (Sasaki et al. 1997) demonstrated 

that GLI transcriptional activity was inversely correlated with SHH expression and 

positively correlated with GLI expression (Figure 2.1 B,C), such that  all SHHhi cell lines 

lacked basal reporter activity (Figures 2.1 B), whereas the GLIhi KP4, MiaPaca and 

Panc0327 lines exhibited the highest levels of activity (Figure 2.1 B,C). Luciferase activity 

was specific to GLI proteins as shRNA mediated knockdown of GLI2 or treating cells with 

GANT61 inhibitor, which blocks GLI binding to DNA (Lauth et al. 2007), suppressed GLI-

driven luciferase activity (Figure 2.2 C,D).  
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Figure 1. Expression and activity of GLI proteins is anti-correlated with Hh ligand levels in PDA. (A) Immunoblots showing expression of the indicated

proteins in 14 human PDA cell lines. Cell lines denoted with an asterisk represent GLIhi/Hhlo lines. (B) The indicated cell lines were transfected with the

8 ! 3’Gli-binding site luciferase plasmid and luciferase activity was measured 48 hr post-transfection. For each box-and-whisker plot, center asterisk

indicates the mean of n = 3 experiments with a total of 10 independently transfected cultures for each cell line. (C) GLI activity as measured by GLI

luciferase assay (B) is anti-correlated with SHH protein levels (A). Linear regression line is shown in red along with corresponding statistics. (D,E) High
expression of GLI2 predicts shorter overall (D: left; GLI2 high n = 147, GLI2 low n = 38) and disease-free (D: right; GLI2 high n = 114, GLI2 low n = 27)

survival while high SHH expression predicts extended disease-free survival (E: SHH high n = 11, SHH low n = 130) for patients with PDA from The

Cancer Genome Atlas (TCGA). Data from 185 patients. p-Value calculated by Log-rank test.

DOI: https://doi.org/10.7554/eLife.45313.002

The following source data and figure supplements are available for figure 1:

Source data 1. GLI proteins are expressed in basal-like PDA.

DOI: https://doi.org/10.7554/eLife.45313.005

Figure supplement 1. GLI proteins are expressed in basal-like PDA.

DOI: https://doi.org/10.7554/eLife.45313.003

Figure supplement 2. Cox proportional hazards regression models for predictors of overall survival and progression-free survival.

DOI: https://doi.org/10.7554/eLife.45313.004

Adams et al. eLife 2019;8:e45313. DOI: https://doi.org/10.7554/eLife.45313 3 of 25

Research article Cancer Biology Cell Biology
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Figure 2.1. Expression and activity of GLI proteins is anti-correlated with Hh ligand 
levels in PDA 
(A) Immunoblots showing expression of the indicated proteins in 14 human PDA cell lines. 
Cell lines denoted with an asterisk represent GLIhi/Hhlo lines. (B) The indicated cell lines 
were transfected with the 8 x 3’Gli-binding site luciferase plasmid and luciferase activity 
was measured 48hrs post transfection. For each box-and-whisker plot, center asterisk 
indicates the mean of n = 3 experiments with a total of 10 independently transfected 
cultures for each cell line. (C) GLI activity as measured by GLI luciferase assay (B) is 
anti-correlated with SHH protein levels (A). Linear regression line is shown in red along 
with corresponding statistics. (D) High expression of GLI2 predicts shorter overall (left; 
GLI2 high n = 147, GLI2 low n = 38) and disease-free (right; GLI2 high n = 114, GLI2 low 
n = 27) survival while high SHH expression predicts extended disease-free survival (SHH 
high n = 11, SHH low n = 130) for patients with PDA from The Cancer Genome Atlas 
(TCGA). Data from 186 patients. P value calculated by Log-rank test.  
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The anti-correlation between GLI2 and SHH was further corroborated by analyzing 

RNA-sequencing (RNA-seq) data of resected PDA specimens from The Cancer Genome 

Atlas (TCGA) study (Cancer Genome Atlas Research 2017). Samples were binned into 

two groups based on whether GLI2 expression levels were higher or lower than the mean 

mRNA expression within the sample set (see Methods for details). Consistent with the 

cell line data, tumors expressing high levels of GLI2 mRNA had significantly lower 

expression of SHH and IHH (Figure 2.2 E). Importantly, given that stromal cells also 

express GLI2, we confirmed that high GLI2 status was independent of stromal cell 

content. Of the 51 PDA tumors characterized as GLI2 high, a relatively even distribution 

between high purity (>33% tumor/stromal cell content; n = 23) and low purity (<33% 

tumor/stromal cell content; n = 27) samples was observed (see Methods for details), 

indicating that GLI2 expression in stromal cells is an unlikely confounding factor in 

determining tumor cell GLI2 status in this patient cohort. These findings indicate that PDA 

cell lines and tumors segregate into GLIhi/Hhlo and GLIlo/Hhhi subgroups, independent of 

tumor cell purity, further supporting an inverse relationship between expression of Hh 

ligands and GLI transcription factors in PDA. Notably, high expression levels of GLI2 in 

primary PDA tumors correlated with shortened overall and disease-free survival (Figure 

2.1 D). In contrast, high SHH expression levels were associated with longer disease-free 

survival (Figure 2.1 E). GLI2 or SHH high versus low expression level was not correlated 

with clinical variables such as age, sex, T stage, N stage, or M stage, although as 

expected from our data there was a correlation between high SHH and low GLI2 

expression and vice-versa (Figure 2.2 F,G).  A multivariate analysis of the hazard 

attributable to SHH or GLI2 status demonstrated that no other variables explained the 
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relationship between SHH or GLI2 and overall or progression free survival (Figure 2.3). 

Collectively, our data point to an unexpected dichotomy among PDA tumors and cell lines 

with respect to Hh pathway circuitry, with high GLI transcriptional activity dissociated from 

canonical ligand-dependent signaling and associated with worse patient outcomes.  

Given these findings we sought to determine the functions of GLI2 – the main 

transcriptional activator amongst the GLI family of proteins (Hui and Angers 2011), - in 

PDA and examine how its increased activity may promote a more aggressive tumor 

phenotype.  
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Figure 2.2 
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Figure 2.2. GLI proteins are expressed in basal-like PDA 
(A) Lysates from 293T cells transiently transfected with Flag tagged GLI constructs were 
probed with GLI specific antibodies as indicated. (B) Immunoblot showing loss of the GLI2 
specific band following knockdown of GLI2 with two distinct shRNA constructs in KP4 
cells. (C,D) GLI luciferase activity in Panc0327 cells following shRNA mediated 
knockdown of GLI2 (C) and in MiaPaca and KP4 cells following treatment with 5μM 
GANT61 for 3 days (D). P values were calculated by two-tailed unpaired t test. *P < 0.05; 
**P < 0.01; ***P < 0.001. (E) Comparison of SHH (left) and IHH (right) mRNA expression 
in RNA-seq data from TCGA PDA tumors binned into GLI2 high (n = 51) and GLI2 low (n 
= 41) groups. (F,G) Demographic and clinical information stratified by GLI2 (high: z > -1) 
(F), and stratified by SHH (high: z > 2) (G). (H) mRNA expression of epithelial to 
mesenchymal transition (EMT) markers as indicated.  
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Figure 2.3 
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Figure 2.3. Cox proportional hazards regression models for predictors of overall 
survival and progression-free survival 
(A) Cox regression model for overall survival stratified by GLI2 and SHH expression 
reveals age at diagnosis as a significant predictor of overall survival in GLI2 high samples 
while no covariates are significant predictors of overall survival in SHH high samples (B) 
Cox regression model for progression free survival stratified by GLI2 high and SHH high 
reveals no covariates as significant predictors. Differences in sample sizes (n) attributed 
to missing clinical data. 
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GLI expression and activity correlates with a mesenchymal cell state and the basal-

like subtype of PDA.  

We sought to determine the relationship between GLI expression and EMT in PDA, 

given the role of this program in cancer aggressiveness. Reexamination of our panel of 

14 PDA cell lines by immunoblot (Figure 2.4 A) and qRT-PCR (Figure 2.2 H) for 

mesenchymal markers - ZEB1, ZEB2, Vimentin (VIM), SNAI1, SNAI2, N-Cadherin 

(CDH2) - and epithelial markers – E-Cadherin (CDH1), Epithelial splicing regulatory 

protein 1 and 2 (ESRP1, ESRP2) – enabled classification into EMT low and EMT high 

groups. Notably, whereas none of the GLIlo/Hhhi cell lines showed an EMT signature, most 

of the GLIhi/Hhlo cell lines were in the EMT high group, with the exceptions, HupT3 and 

Panc0327, displaying an intermediate phenotype (Figure 2.4 A; Figure 2.1 B,C). To 

assess whether GLI activity correlates with EMT status more broadly, we used a 

published EMT score generated from a meta-analysis of 18 independent gene expression 

studies of EMT (Groger et al. 2012). This signature assigned 38 human PDA cell lines as 

EMT high or low (Groger et al. 2012; Viswanathan et al. 2017), and we found that GLI 

activity (see Figure 2.1 B) correlated positively with EMT in our PDA cell line panel 

(Figure 2.4 B), while SHH expression correlated negatively (Figure 2.4 C). Intermediate 

cell lines, Panc0327 and HupT3 clustered together with the mesenchymal and epithelial-

like cohort, respectively (Figure 2.4 B). Together these findings indicate that GLIhi status 

correlates with a mesenchymal cell state in PDA. 

EMT and poorly differentiated histopathology are features of basal-like PDA, 

prompting us to examine the relationship between GLI/Hh and subtype identity. To assay 

classical and basal-like status in PDA cell lines, we used concordant gene signatures 
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based on the Collisson, Moffitt and Bailey studies (Collisson et al. 2011; Moffitt et al. 2015; 

Bailey et al. 2016b; Cancer Genome Atlas Research 2017) (See Methods and Table 2.2). 

As expected, PDA cell lines with elevated levels of epithelial marker expression 

(GLIlo/Hhhi lines) closely correlated with enrichment of the classical gene program 

(Collisson et al. 2011; Aung et al. 2018) (Figure 2.4 A,D). We next analyzed GLI status 

in 149 TCGA PDA samples pre-classified as classical or basal-like using the Collisson, 

Moffitt and Bailey signatures (Cancer Genome Atlas Research 2017). Strikingly, GLI2 

mRNA expression was enriched in the basal-like tumors, (Figure 2.4 E left), whereas 

high SHH and IHH expression correlated with the classical subtype (Figure 2.4 E middle, 

right). Collectively these data demonstrate that GLI-high status is a hallmark of the basal-

like, EMT-high state that portends poor patient prognosis (Figure 2.4 F).     
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Figure 2.4 
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Figure 2.4. GLI expression and activity correlates with EMT and the basal-like 
subtype of PDA 
(A) Human PDA cell lines segregate into two groups based on protein expression of EMT 
associated markers as indicated. Mesenchymal markers (ZEB1, VIM, N-Cadherin), 
epithelial markers (E-Cadherin, ESRP1). (B,C) GLI activity (B) as measured by GLI 
luciferase assay and SHH protein levels (see Fig. 1) (C) correlated to EMT score. Linear 
regression line is shown in red along with corresponding statistics. Epithelial cell lines are 
indicated in blue, and mesenchymal cell lines are indicated in red. Intermediate lines are 
indicated in grey. (D) mRNA expression of the classical subtype gene set (see methods) 
across 14 human PDA cell lines. Epithelial cell lines (blue) express higher levels of the 
classical gene program. (E) Expression of Hh pathway components correlates with PDA 
subtypes. GLI2 mRNA expression is higher in TCGA PDA samples (n = 149) classified 
as basal-like (n = 65), while SHH and IHH expression is higher in samples classified as 
classical (n = 84). Bar represents average normalized z-score. (F) Table outlining the 
relationship between GLI and Hh expression to PDA subtypes in PDA human cell lines. 
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GLI2 is required for maintenance of the basal-like state  

 To test whether GLI function is necessary  to sustain the basal-like phenotype, we 

suppressed GLI2 levels via siRNA or shRNA mediated knockdown or CRISPR-Cas9 

mediated knockout in basal-like cell lines, KP4 and Panc0327. Loss of GLI2 led to a 

decrease in basal-like markers (KRT5, KRT14) and SOX2 and induction of epithelial 

markers (Figure 2.5 A; Figure 2.6 A). Accordingly, expression of the basal-like signature 

and EMT associated genes were also significantly reduced following GLI2 knockdown 

(KP4) (Figure 2.5 B,C) or knockout (Panc0327) (Figure 2.6 B,C).   

Similarly, GLI2 knockout in KP4 and Panc0327 cells (GLI2KO) resulted in a clear 

switch towards a more epithelial like morphology in 2D monolayer culture (Figure 2.5 D) 

and 3D matrigel growth (KP4; Figure 2.6 D). Moreover, immunofluorescence staining of 

GLI2 knockdown and GLI2KO in KP4 and Panc0327 cells, respectively, showed a 

prominent nuclear relocalization of ESRP1 relative to Cas9 control cells, where ESRP1 

was predominantly cytoplasmic (Figure 2.5 E; Figure 2.6 E). We next determined 

whether loss of the basal-like state compromises tumor growth. KP4 GLI2KO cells showed 

a modest difference in in vitro growth rate (Figure 2.5 F) however GLI2KO tumor 

xenografts displayed significantly reduced in vivo growth relative to Cas9 control tumors 

(Figure 2.5 G). Importantly, slow growing KP4 GLI2KO tumors displayed reduced 

expression of the basal-like marker S100A2 (Figure 2.5 H, top row) and increased 

expression of the classical marker GATA6 (Figure 2.5 H, bottom row), suggesting that 

GLI2-dependent maintenance of a basal-like state is important for facilitating rapid in vivo 

tumor growth.  
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Collectively these data indicate that GLI2 is required to drive a common program 

that couples EMT and the basal-like subtype of PDA and that a significant level of cellular 

plasticity exists within PDA molecular subtypes. 
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Figure 2.5 
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Figure 2.5. GLI2 is required to maintain the basal-like state in PDA 
(A,B) Graph shows the effect of siRNA mediated GLI2 and GLI1 combined knockdown 
on EMT associated gene expression (A) and basal-like subtype gene expression (B) 
determined by qRT-PCR, displayed as fold change normalized to a scrambled siRNA 
control in KP4 cells (n = 2). (C) Brightfield images of Panc0327 and KP4 cells grown in 
2D monolayer show loss of a mesenchymal phenotype upon GLI2 knockout (GLI2 KO) 
compared to Cas9 control cells (CTRL). Scale bar, 100μm. (D) Immunoblot shows the 
effect of shRNA mediated GLI2 and GLI1 combined knockdown on expression of the 
indicated proteins in KP4 cells. (E) Immunofluorescence staining (left) and quantification 
(right) of percentage ESRP1 nuclear localization in KP4 control (shGFP) and shRNA 
mediated GLI2 knockdown cells. Data represent 10 fields from 2 independent 
experiments. Solid arrowheads indicate absence of nuclear ESRP1; open arrowheads 
indicate nuclear ESRP1. Scale bar, 50μm. (F) Quantification of in vitro growth rate of KP4 
Cas9 CTRL and GLI2 KO cells. (G) Quantification of in vivo growth of KP4 CTRL and 
GLI2 KO subcutaneous xenografts. Error bars represent s.e.m. (H) 
Immunohistochemistry of KP4 xenografts show downregulation of basal-like marker 
S100A2 (top) and upregulation of GATA6 (bottom) in GLI2 KO cells compared to CTRL, 
consistent with loss of the basal-like state. Scale bars, 200μm. P values were calculated 
by two-tailed unpaired t test. n.s. = not significant; *P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure 2.6  
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Figure 2.6. GLI2 knockout results in loss of basal-like identity in PDA 
(A) Immunoblot shows the effect of GLI2 knockout (KO) in Panc0327 cells on protein 
expression of the indicated markers. (B,C) Graph shows the effect of CRISPR-Cas9 
mediated GLI2 knockout (GLI2 KO) in Panc0327 cells on mRNA expression of the basal-
like subtype genes (B) and EMT markers (C) determined by qRT-PCR, displayed as fold 
change normalized to Cas9 control (CTRL) cells. (D) Images show the effect of GLI2 KO 
in KP4 cells grown in 3D matrigel culture. Note the change from a mesenchymal to an 
epithelial phenotype. (E) Immunofluorescence staining (left) and quantification (right) of 
percentage ESRP1 nuclear localization in Panc0327 Cas9 control (CTRL) and GLI2 KO 
cells. Data represent 10 fields from 2 independent experiments. Solid arrowheads 
indicate absence of nuclear ESRP1; open arrowheads indicate nuclear ESRP1. Scale 
bar, 50μm. P values were calculated by two-tailed unpaired t test. *P < 0.05; **P < 0.01; 
***P < 0.001. 
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GLI2 induction is sufficient to drive a classical to basal-like subtype switch in PDA 

cells.  

To determine whether GLI proteins have functional roles in driving subtype 

specification, we engineered classical subtype PDA cell lines (YAPC, HPAFII) to stably 

overexpress GLI2 (Figure 2.7 A; Figure 2.8 A). Luciferase assays revealed that ectopic 

GLI2 expression in YAPC cells resulted in comparable GLI transcriptional activity to what 

is observed in the basal-like cell lines (Figure 2.8 B vs Figure 2.1 B). Strikingly, GLI2 

overexpression strongly induced the mesenchymal markers ZEB1, VIM and basal-like 

marker KRT14 in YAPC cells and led to downregulation of epithelial markers E-Cadherin 

and ESRP1, and the transcription factor GATA6 - a putative regulator of the classical 

subtype of PDA (Collisson et al. 2011; Martinelli et al. 2017) and SHH in YAPC and 

HPAFII cells (Figure 2.7 A; Figure 2.8 A). Consistent with a switch towards a 

mesenchymal-like cell state, YAPC- and HPAFII-GLI2 cells showed a significant change 

in cell morphology compared to control cells expressing empty vector (EV) (Figure 2.7 B 

and Figure 2.8 C), characterized by a more elongated, less compact morphology when 

grown as monolayer cultures or as 3D matrigel cultures (Figure 2.7 B). Together, these 

data indicate that GLI2 can promote an EMT-like switch in classical PDA cells.  

We next engineered YAPC and HPAFII cells to express GLI2 in a doxycycline 

(Dox)-inducible manner (iGLI2 cells), to study the downstream gene programs controlled 

by GLI2 with further resolution (Figure 2.7 C). We performed RNA-seq analysis of YAPC-

iGLI2 cells compared to EV control cells (YAPC-iEV) following 6 days of Dox treatment. 

Gene set enrichment analysis (GSEA) using the Cancer Hallmarks database indicated 

that “Epithelial_Mesenchymal_Transition” was the most statistically significant program 
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activated by GLI2 (Figure 2.7 D). We further validated that Dox inducible activation of 

GLI2 in YAPC cells led to an increase in EMT markers, consistent with our results with 

stable GLI2 over-expression (Figure 2.8 D). In keeping with the relationship between 

EMT and the basal-like subtype, qPCR analysis indicated that Dox treatment of iGLI2 

cells for 3 days resulted in a significant increase in basal-like subtype genes and a 

corresponding decrease in a subset of classical genes in both YAPC- and HPAFII-iGLI2 

cells (Figure 2.7 E). In addition, the expression levels of stemness associated markers 

SOX2 and CD44 increased (Figure 2.7 F), while SHH and GATA6 showed a significant 

decrease upon GLI2 induction and basal-like subtype switching in YAPC cells (Figure 

2.7 G). Similarly, forced expression of a constitutively active GLI2 lacking the N-terminal 

repressor domain (Pasca di Magliano et al. 2006) (DN-GLI2) also lead to a decrease in 

SHH and GATA6 levels in YAPC cells (Figure 2.8 E). Thus, GLI2-mediated conversion 

from a classical to a basal-like state also incorporates loss of SHH, which is in support of 

our observed inverse correlation between GLI proteins and Hh ligand expression in cell 

lines and patient tumors.  
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Figure 2.7 
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Figure 2.7 GLI2 is sufficient to drive basal-like subtype switching 
(A) Immunoblot shows expression of the indicated proteins in YAPC cells stably 
expressing empty vector (EV) or Flag tagged GLI2 (GLI2). (B) Images show the effect of 
stable expression of Flag tagged GLI2 in YAPC cells on morphology when grown in 2D 
(left) and as 3D spheroids (right). Note the switch to a mesenchymal phenotype in the 
GLI2 expressing cells. Scale bars, 100μm. (C) Immunoblot shows GLI2 induction in 
HPAFII- and YAPC-iGLI2 cells following treatment with Dox. (D) Gene set enrichment 
analysis (GSEA) of RNA-sequencing data shows significant enrichment of the 
“Hallmarks_Epithelial_Mesenchymal_Transition” gene set in YAPC-iGLI2 cells treated 
with 1μg/ml Dox for 6 days to induce expression of GLI2, compared to identically treated 
YAPC-iEV control cells, (n = 3). (E) Heatmap shows expression of basal-like (red) and 
classical (blue) subtype associated genes determined by qRT-PCR following 1μg/ml Dox 
treatment of replicate HPAFII-iGLI2 (top) and YAPC-iGLI2 (bottom) cells for 3 days. 
Values from n = 5 replicates per cell are normalized to gene expression in identically 
treated iEV control cells and log10 transformed. (F,G) Graph shows the effect of GLI2 
induction in YAPC-iGLI2 cells treated with 1μg/mL Dox for 3 days on SOX2 and CD44 (F) 
and SHH and GATA6 (G) mRNA expression, displayed as fold change normalized to 
identically treated iEV control cells, (data represent n = 3 experiments). P values were 
calculated by two-tailed unpaired t test. *P < 0.05; **P < 0.01; ***P < 0.001.  
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Figure 2.8 

 
  



 58 
 

Figure 2.8. GLI proteins promote the basal-like phenotype 
(A) Immunoblot of HPAFII cells stably expressing empty vector (EV) or Flag tagged GLI2 
(+GLI2). (B) Luciferase assay measuring GLI activity in YAPC cells ectopically expressing 
EV or Flag tagged GLI2 (GLI2). (C) Effect of ectopic GLI2 expression on morphology of 
HPAFII cells relative to EV control cells. (D) Graph shows mRNA levels of the indicated 
genes following Dox induced expression of GLI2 in YAPC-iGLI2 cells after 3 days. Values 
represent fold change normalized to identically treated iEV control cells, (n = 3). (E) Effect 
of stable over-expression of DN-GLI2 in YAPC cells on GLI2, SHH and GATA6 mRNA 
levels, displayed as fold change normalized to EV control cells. P values were calculated 
by two-tailed unpaired t test. * P < 0.05, ** P < 0.01, *** P < 0.001. 
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GLI2 mediates basal-like subtype switching in response to oncogenic KRASG12D 

ablation. 

Recent studies have shown that PDA tumor cells can survive in the absence of 

oncogenic KRAS (referred to hereafter as KRAS*) signaling by activating alternative 

mechanisms that maintain their growth (Singh et al. 2009; Kapoor et al. 2014; Kemper et 

al. 2014; Shao et al. 2014).  These circuits often restore critical functions of KRAS*, such 

as tumor cell proliferation and evasion of apoptosis, thereby enabling cancer cells to 

escape KRAS* withdrawal. Moreover, basal-like PDA cell lines have been shown to 

harbor reduced dependency on KRAS* for growth (Singh et al. 2009). Therefore, we 

hypothesized that GLI2-mediated basal-like subtype switching of classical PDA cells 

could likewise obviate KRAS*-dependency. First, we measured GLI1 and GLI2 

expression levels in response to oncogenic Kras* extinction in cells derived from a murine 

PDA model driven by a Dox-inducible Kras* allele [termed the iKRAS model (Ying et al. 

2012)]. In this system, removal of Dox from the culture media led to a 50% reduction in 

Kras mRNA expression within 24 hrs and complete extinction by 72 hours (Figure 2.10 

A,B). Interestingly, a reciprocal increase in Gli2 and Gli1 expression was evident within 

24 hrs of Dox removal and persisted for at least 5 days (Figure 2.9 A-C; Figure 2.10 A). 

Moreover, there was a corresponding up-regulation of Zeb1 and Vim mRNA and of basal-

like subtype genes, consistent with induction of EMT and basal-like features (Figure 2.10 

C,D). Similarly, shRNA-mediated knockdown of KRAS in the human PDA cell lines YAPC 

and HPAFII led to a concomitant increase in GLI expression, EMT markers (Figure 2.9 

D; Figure 2.10 E) and basal-like subtype genes (Figure 2.9 E). Importantly, expression 

of the basal-like program was dependent on GLI2, as treatment of iKRAS4 cells with the 
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GLI inhibitor, GANT61 (5µM), suppressed basal-like gene induction in response to KRAS* 

ablation (Figure 2.9 F). Thus, upon KRAS* suppression, upregulation of GLI expression 

is responsible for induction of the basal-like gene program.   

 

Acquired resistance and tumor relapse following KRAS* ablation is mediated by 

GLI2. 

To test whether GLI2 induction is required to sustain growth of tumor cells following 

suppression of KRAS*, we stably overexpressed Flag-tagged mouse GLI2 in iKRAS cell 

lines (iKRAS-GLI2) prior to Dox withdrawal (Figure 2.11 A). Consistent with our findings 

in human PDA cell lines following ectopic expression of GLI2, murine iKRAS-GLI2 cells 

similarly displayed an increase in expression of basal (KRT5, KRT14) and EMT markers 

and SOX2 (Figure 2.11 B). In the presence of Dox (KRAS* on), iKRAS-GLI2 cells had a 

growth advantage over control cells (Figure 2.9 G, quantified in graph; ‘+ Dox’). Upon 

Dox withdrawal (KRAS* off), control cells (iKRAS-EV) failed to form colonies after 6 days 

while iKRAS-GLI2 cells were able to form colonies within the same time frame (Figure 

2.9 G, quantified in graph; ‘- Dox’; Figure 2.11 C). This phenotype was recapitulated in 

3D spheroid culture, where ectopic GLI2 expression rescued growth of iKRAS cells by 

2.5 fold following Dox withdrawal (Figure 2.11 D). Similarly, human YAPC-GLI2 PDA cells 

were capable of sustained growth as 3D spheroids following shRNA-mediated 

knockdown of KRAS* relative to YAPC-EV cells (Figure 2.9 H,I; Figure 2.11 E). Thus, 

activation of GLI2 in PDA cells accelerates the emergence of clones that grow in the 

absence of KRAS*. 
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Sustained KRAS* pathway suppression in the iKRAS model was shown to induce 

significant tumor regression, however this was often followed by rapid tumor re-growth 

(Kapoor et al. 2014; Shao et al. 2014). Relapsed tumors retain KRAS* pathway 

suppression (Figure 2.9 J) and a subset harbor genomic amplification of the Hippo 

pathway transcriptional coactivator, YAP1 (Kapoor et al. 2014), which we have confirmed 

in 3 of 7 “Escaper” tumor cells lines (Figure 2.9 J; cell lines denoted as EY1-3). 

Interestingly, several Escaper cell lines do not harbor YAP1 amplification, suggesting that 

additional mechanisms may exist which mediate bypass of KRAS* extinction. Strikingly, 

we find that GLI2 is upregulated in 6/7 Escaper cell lines, including 4/7 lacking YAP1 

induction. These results suggest that PDA cells co-opt several bypass mechanisms to 

circumvent KRAS* inactivation, including YAP1 and GLI2 upregulation, which may 

functionally compensate for KRAS* loss.  

To further test the role of GLI2 in tumor relapse following KRAS* suppression, we 

grew independently derived iKRAS cell lines (iKRAS1 and iKRAS4) in the presence or 

absence of Dox for 15-18 days following shRNA mediated knockdown of Gli2 (Figure 

2.11 F). In the presence of Dox, loss of GLI2 did not have a significant effect on spheroid 

growth compared to shGFP control cells (Figure 2.9 K top row, L; Figure 2.11 G top row, 

H). However, the eventual emergence of resistant colonies in the absence of Dox was 

suppressed in shGLI2 cells compared with shGFP control (Figure 2.9 K bottom row, M 

arrowheads; Figure 2.11 G, bottom row, arrowheads and I). Thus, GLI2-mediated basal-

like subtype switching can rescue viability upon KRAS* suppression, whereas its loss 

exacerbates the growth deficits caused by KRAS* loss.  
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Figure 2.9  
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Figure 2.9. GLI2-mediated basal-like subtype switching rescues viability of PDA 
cells following KRASG12D ablation 
(A,B) Effect of Dox depletion for 3 days on levels of Gli2 (A) and Gli1 (B) mRNA as 
measured by qRT-PCR in the indicated iKRAS cell lines, (n = 3). (C) Immunoblot shows 
expression of GLI2 and KRAS in iKRAS2 cells + Dox and – Dox for 3 and 5 days. (D,E) 
Effect of shRNA mediated knockdown of KRAS on GLI2, GLI1, ZEB1 mRNA levels (D) 
and basal-like gene expression (E) as measured by qRT-PCR in YAPC cells. (n = 3). (F) 
Fold change in the basal-like gene signature in iKRAS4 cells following Dox removal (red 
plot) for 3 days or Dox removal in conjunction with 5μM GANT61 treatment (grey plot). 
qRT-PCR measurement of the indicated genes in both conditions are normalized to the 
+ Dox control condition (black plot) (n = 3). (G) Colony forming ability of iKRAS4 cells 
stably expressing empty vector (EV) or Flag tagged mGLI2 (GLI2) grown in the presence 
(top) or absence (bottom) of Dox for 6 days, followed by staining with crystal violet. Graph 
shows the fold change in growth relative to the EV + Dox setting. Results shown are 
representative of n = 3 experiments. (H,I) Images (H) show the effect of stable expression 
of EV (top) or Flag tagged GLI2 (bottom) on YAPC sphere formation 5 days post shRNA-
mediated knockdown of KRAS compared to control cells (shGFP). Quantification of 
sphere area for each condition is shown (I). Number of spheres measured per condition 
is indicated in parenthesis. Scale bar, 200μm. (J) Immunoblots show expression of the 
indicated proteins in iKRAS (black) and Escaper (red) cell lines. Numerical values indicate 
levels of GLI2 and YAP1 normalized to Tubulin. Escaper cell lines denoted with ‘Y’ harbor 
genomic amplification of Yap1. (K-M) Images (K) show the effect of shRNA-mediated 
knockdown of Gli2 using two separate hairpins on iKRAS1 sphere formation when grown 
in the presence (top) or absence (bottom) of Dox for 18 days. Quantification of sphere 
area in the presence (L) and absence (M) of Dox is shown. Number of spheres measured 
per condition is indicated in parenthesis. Arrowheads indicate growth of KRASG12D 
independent spheroids. Scale bar, 100μm. P values were calculated by two-tailed 
unpaired t test.  n.s. = not significant, *P < 0.05; **P < 0.01; ***P < 0.001.  
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Figure 2.10
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Figure 2.10. GLI2 is upregulated in response to KRASG12D ablation 
(A) Graph shows effect of Dox withdrawal for 1, 3 and 5 days on Kras and Gli2 mRNA 
expression in iKRAS2 cells as measured by qRT-PCR. Results are representative of n = 
3 experiments. (B) Graph shows the effect of Dox depletion for 3 days on mRNA 
expression of Kras in iKRAS cell lines as measured by qRT-PCR.  (C) Graph shows the 
effect of Dox depletion for 5 days on Vim and Zeb1 mRNA expression in iKRAS2 cells as 
measured by qRT-PCR. Results are representative of n = 3 experiments. (D) Effect of 
Dox depletion for 3 days on mRNA expression of basal-like genes in the indicated iKRAS 
cell lines as measured by qRT-PCR. Results are shown as fold change relative to the 
+Dox condition. Significantly upregulated genes are indicated for each iKRAS cell line. 
(E) Effect of shRNA mediated knockdown of KRAS on the indicated genes as measured 
by qRT-PCR in HPAFII cells. P values were calculated by two-tailed unpaired t test. *P < 
0.05; **P < 0.01; ***P < 0.001; # P < 0.001. 
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Figure 2.11  
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Figure 2.11. GLI2 is necessary and sufficient to promote bypass of KRASG12D-
mediated oncogene addiction 
(A) Immunoblot shows expression of Flag in iKRAS cells stably expressing empty vector 
or Flag tagged mouse GLI2 (mGLI2-FLAG). (B) Immunoblot shows the effect of 
ectopically expressing empty vector (EV) or Flag tagged mGli2 (+Gli2) in iKRAS4 cells on 
indicated EMT markers. (C) Colony forming ability of iKRAS1 and iKRAS2 cells stably 
expressing EV or mGLI2-FLAG (+GLI2) grown in the presence (top) or absence (bottom) 
of Dox for 6 days, followed by staining with crystal violet. (D) Images (top) show the effect 
of stable expression of EV or mGLI2-FLAG on iKRAS4 sphere formation when grown in 
the presence (left) or absence (right) of Dox for 5 days. Quantification of sphere area for 
each condition is shown (below). Number of spheres measured per condition is indicated 
in parenthesis. Scale bars, 200μm. (E) Immunoblot shows shRNA mediated knockdown 
efficiency of KRAS in YAPC-EV and YAPC-GLI2 cells. (F) qRT-PCR measuring Gli2 
transcript in iKRAS1 (left) and iKRAS4 (right) cells following infection with shRNA 
targeting mouse Gli2. (G) Images show the effect of shRNA-mediated knockdown of Gli2 
on iKRAS4 sphere formation in the presence (top) or absence (bottom) of 1μg/ml Dox for 
15 days. Arrowheads indicate growth of KRASG12D independent spheroids. Scale bars, 
250μm. (H, I) Quantification of sphere area shown in ‘G’. Area of spheres grown in the 
presence (H) or absence (I) of Dox following infection with shGFP control hairpin or shGli2 
in iKRAS4 cells. Number of spheres measured is indicated in parenthesis. P values were 
calculated by two-tailed unpaired t test. n.s. = not significant, *P < 0.05; **P < 0.01; *** P  
< 0.001; **** P < 0.0001.   
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The secreted ligand Osteopontin (OPN) promotes basal-like subtype conversion 

downstream of GLI2.  

We next interrogated candidate downstream GLI2 targets that may drive subtype 

interconversion. Among the most upregulated transcripts expressed in YAPC-iGLI2 cells 

following GLI2 induction were genes encoding secreted factors including Secreted 

Phosphoprotein 1 (SPP1) encoding Osteopontin (OPN), fibroblast growth factor 19 

(FGF19) and SPOCK2 [SPARC (Osteonectin)] and the basal-like gene S100A2 (Figure 

2.12 A). OPN is a secreted glycosylated phosphoprotein classified as a member of the 

‘small integrin-binding ligand N-linked glycoproteins’ (SIBLINGs) and has been 

associated with tumorigenesis and metastasis of several tumor types (Yoon et al. 2002; 

Rangaswami et al. 2006; Das et al. 2009; Pietras et al. 2014; Ahmed et al. 2016; Zhao et 

al. 2018). We confirmed upregulation of secreted OPN in YAPC-iGLI2 (Figure 2.13 A) 

and in a second cell line, HPAFII-iGLI2 (Figure 2.12 B,C) 3 days post induction of GLI2. 

Similarly, ectopic expression of DN-GLI2 in YAPC cells also led to an increase in SPP1 

expression (Figure 2.13 B). Consistent with direct regulation of SPP1 transcription, 

chromatin immuno-precipitation of GLI2 showed binding to a GLI consensus element 

found upstream of the human SPP1 transcriptional start site (Figure 2.12 D) (Kijewska et 

al. 2017).  

Expression of SPP1 is significantly increased in YAPC cells during basal-like 

subtype switching in response to KRAS* suppression (Figure 2.12 E), suggesting that 

OPN induction is a hallmark of the basal-like cell state in PDA. Accordingly, we found that 

GLI2-high basal-like cell lines expressed the highest levels of SPP1 mRNA (Figure 2.13 

C) and OPN protein levels in addition to higher levels of OPN receptors, CD44 and 
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integrin beta 3, as well as integrin alpha 5 (Figure 2.12 F) (Weber et al. 1996; 

Rangaswami et al. 2006; Zhao et al. 2018), compared to classical subtype cells. 

Moreover, knockdown of GLI2 alone or in combination with GLI1 led to a significant 

decrease in SPP1 transcript (Figure 2.12 G,H; Figure 2.13 D) and secreted protein 

(Figure 2.13 E), establishing GLI transcription factors as endogenous regulators of SPP1 

expression. 

We next tested whether treatment of classical subtype PDA cells with exogenous 

OPN is sufficient to induce a basal-like subtype switch. Exposure of Capan2 cells to 

recombinant OPN led to a significant increase in expression of basal-like genes, and a 

decrease in a subset of classical genes (Figure 2.12 I). A similar induction of basal-like 

genes was also observed in YAPC cells treated with exogenous OPN (Figure 2.13 F). 

To assess whether OPN promotes a basal-like program downstream of GLI2, we 

determined the ability of exogenous OPN to rescue basal gene expression upon GLI2 

knockdown in basal-like cells. shRNA mediated GLI2 knockdown in Panc0327 cells led 

to a decrease in 13 basal-like genes, of which 12 were significantly rescued following co-

treatment with recombinant OPN (Figure 2.12 J).   

 

Loss of OPN in basal-like cells suppresses in vivo tumor growth. 

To test the role of the GLI-OPN axis in tumorigenesis, we first generated an OPN-

deleted KP4 line via CRISPR-mediated gene editing (Figure 2.14 A). OPN-deleted KP4 

cells displayed a decrease in basal-like markers KRT14 (Figure 2.14 B) and a 

concomitant increase in classical-associated markers, E-cadherin and GATA6 (Figure 
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2.14 B, C), along with a switch towards a more epithelial like morphology on monolayer 

culture (Figure 2.14 D).   

Similar to GLI2KO cells, SPP1KO cells did not show a significant growth defect in 

vitro relative to Cas9 controls cells (Figure 2.14 E). However SPP1KO cells displayed a 

dramatic defect in growth as tumor xenografts in mice (Figure 2.14 F,G). Similarly, 

SPP1KO cells were significantly impaired in their ability to form metastatic tumors in the 

lungs of recipient mice following tail vein injection, whereas Cas9 control cells gave rise 

to widespread metastatic disease (Figure 2.14 H,I). Accordingly, the reduced overall 

tumor burden of mice injected with SPP1KO cells led to their prolonged survival relative to 

the control cohort (Figure 2.14 J). These data indicate that OPN, downstream of GLI2, is 

a major growth regulator of basal-like tumors. Consistent with this notion, high expression 

levels of SPP1 mRNA in basal-like tumors correlated with shortened overall survival of 

PDA patients (Figure 2.14 K).  

Collectively, our findings support a key role for a GLI-OPN axis in promoting and 

maintaining a basal-like phenotype that is key for PDA tumorigenesis, and highlight the 

importance of GLI2-dependent, dynamic inter-conversion between subtypes in enabling 

adaptation to cellular stress, such as following loss of oncogenic KRAS (Figure 2.14 L).  
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Figure 2.12  
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Figure 2.12. OPN is a downstream effector of GLI2 that promotes a basal-like 
subtype switch 
(A) Top altered genes identified via RNA-sequencing analysis of YAPC-iGLI2 cells + Dox 
relative to YAPC-iEV + Dox, (n = 3). (B,C) Graph shows the relative fold change in human 
SPP1 mRNA (B) and secreted protein (OPN) in the conditioned media as measured by 
ELISA (C) of HPAFII-iGLI2 cells treated with 1μg/mL Dox for 3 days normalized to 
identically treated HPAFII-iEV. (D) Chromatin immunoprecipitation of Flag-tagged GLI2 
in 293T cells shows enrichment of binding to the BCL2 and SPP1 promoter relative to WT 
control cells (n=3). Error bars indicate s.e.m. (E) Effect of siRNA mediated knockdown of 
KRAS in YAPC cells on SPP1 mRNA expression as measured by qRT-PCR. (F) Western 
blot of OPN receptors, CD44, integrin alpha 5 and integrin beta 3 in basal-like (red) and 
classical (blue) PDA cell lines. (G,H) Effect of GLI2 knockdown in KP4 (G) and MiaPaca 
(H) cells, on mRNA expression of the indicated genes. (I) Heatmap shows the effect of 
treating Capan2 cells with 1μg/mL recombinant human OPN for 3 days on expression of 
the basal-like and classical subtype genes as measured by qRT-PCR (n = 4). Values are 
normalized to no treatment and log2 transformed. (J) Effect of shRNA mediated 
knockdown of GLI2 alone (red) or in conjunction with 1μg/mL OPN treatment (black) on 
expression of basal genes in Panc0327 cells. Values are normalized to no treatment and 
log10 transformed. P values were calculated by two-tailed unpaired t test. *P < 0.05; **P 
< 0.01; ***P < 0.001.  
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Figure 2.13  
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Figure 2.13. Secreted OPN promotes the basal-like subtype of PDA downstream of 
GLI2 
(A) Graph shows the relative fold change in human OPN in the conditioned media of 
YAPC-iEV and -iGLI2 cells treated with 1μg/mL Dox for 3 days as measured by ELISA. 
All values are normalized to OPN levels in YAPC-iEV grown in the absence of Dox. (B) 
Graph shows relative fold change in SPP1 mRNA levels following transient expression of 
DN-GLI2 (DN) in YAPC cells. (C) Graph represents mRNA levels of SPP1 and CD44 in 
the indicated human PDA cell lines as measured by qRT-PCR. (D,E) Effect of shRNA 
mediated knockdown of GLI2 with two distinct hairpins on the mRNA expression of the 
indicated genes (D) and secreted OPN as measured by ELISA (E) in Panc0327 cells. (F) 
Expression of basal-like and classical subtype genes as measured by qRT-PCR following 
treatment of YAPC cells with 1μg/mL recombinant human OPN for 3 days. Values are 
normalized to no treatment and log10 transformed. Error bars are plotted as s.e.m. P 
values were calculated by two-tailed unpaired t test. *P < 0.05; **P < 0.01; ***P < 0.001.  
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Figure 2.14  

 
  



 76 
 

Figure 2.14. OPN loss impairs growth of basal-like PDA 
(A) CRISPR-Cas9 mediated knockout of SPP1 in KP4 cells leads to a decrease in mRNA 
expression and secreted Osteopontin in two independent clones. (B,C) Immunoblot of 
KRT14 and E-cadherin (B) and GATA6 (C) levels following KO of SPP1 in KP4 cells. (D) 
Brightfield images of KP4 cell morphology when grown in 2D monolayer following KO of 
SPP1. Note the switch to a more epithelial phenotype in the KO cells. Scale bars, 100μm. 
(E) In vitro growth rate of KP4 control versus SPP1 KO cell lines. Error bars represent 
s.e.m. (F) Growth rate of control and SPP1 KO KP4 cells following subcutaneous injection 
into the flank of NOD/SCID mice. Error bars represent s.e.m. (G) Relative size of control 
and SPP1 KO KP4 xenografts resected at day 25 (left) and comparative tumor weight 
(graph at right). (H) Representative H&E stained sections of lungs at endpoint following 
tail vein injection (TVI) of 2 x 106 KP4 control cells (WT; top) or SPP1 KO (bottom) into 
NOD/SCID mice. Scale bars, 400μm. (I) Quantification of metastatic tumor burden in the 
lungs as a percentage of total lung area per mouse (n=5 CTRL; n=10 SPP1 KO). (J) 
Kaplan-Meier graph depicting survival of NOD/SCID mice following TVI of KP4 WT (black) 
or SPP1 KO cells (red). (K) High expression of SPP1 in basal-like PDA patient tumors 
from The Cancer Genome Atlas (TCGA) predicts shorter overall survival (SPP1 high n = 
17, SPP1 low n = 48). Data from 65 patients. (L) Model depicting a classical to basal-like 
switch mediated by a GLI2-OPN signaling axis in response to KRASG12D ablation. The 
classical and basal-like subtypes are marked by GLIlo/Hhhi and GLIhi/Hhlo expression, 
respectively. P value calculated by Log-rank test and by two-tailed unpaired t test. *P < 
0.05; **P < 0.01; ***P < 0.001.  
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Table 2.1 Human and mouse primer sequences used in this study 

Human 
Primers 

  

Gene FWD (5' to 3') REV (5' to 3') 
18S GCTTGCGTTGATTAAGTCCC GCCTCACTAAACCATCCAATC 
GLI2 TCAAGGAAGATCTGGACAGG TGTGCTCGTTGTTGATGTG 
GLI1 AGCGTGAGCCTGAATCTGTG CAGCATGTACTGGGCTTTGAA 
SHH CTACGAGTCCAAGGCACATATC CAGGTCCTTCACCAGCTTG 
SPP1 CTCCATTGACTCGAACGACTC CAGGTCTGCGAAACTTCTTAGAT 
CD44 CTGCCGCTTTGCAGGTGTA CATTGTGGGCAAGGTGCTATT 
VIM AGTCCACTGAGTACCGGAGAC CATTTCACGCATCTGGCGTTC 

ZEB1 GATGATGAATGCGAGTCAGATGC ACAGCAGTGTCTTGTTGTTGT 
ZEB2 ATGACCTGCCACCTGGAACTC GCGGTACTTGATGTGCTCCTTC 
SNAI1 TCGGAAGCCTAACTACAGCGA AGATGAGCATTGGCAGCGAG 
CDH2 TCAGGCGTCTGTAGAGGCTT ATGCACATCCTTCGATAAGACTG 
CDH1 ATTTTTCCCTCGACACCCGAT TCCCAGGCGTAGACCAAGA 
ESRP1 ACTAAAATAGACGTCGAAAGCC GCCCATCAGTACAGAGACAG 
ESRP2 ATGCAGCATCCAAGCACCT CTGTCTCCAGTCCTAAACCCT 
SOX2 GCCGAGTGGAAACTTTTGTCG GGCAGCGTGTACTTATCCTTCT 
CD24 CGCGGTCGCACTGGAAT AAAGAAAAGTCCGCGCCTC 
KRAS ACAGAGAGTGGAGGATGCTTT TTTCACACAGCCAGGAGTCTT 

WNT7A CTGTGGCTGCGACAAAGAGAA GCCGTGGCACTTACATTCC 
GATA6 CTCAGTTCCTACGCTTCGCAT GTCGAGGTCAGTGAACAGCA 

   
Classical genes:   

ATP10B AAGAGCAGACCTATGTGCAGA GCATATCCCATTGGGGTCAGAG 
ST6GALNAC1 AGAAAGGTCTCTACAGTCCCTG TGTGTGTTGAGGGCATTGTTC 

CAPN8 CTCAAGGCATCATCTGGAAGC ACCCTGACAAATGTCTGTGCG 
CEACAM6 TCAATGGGACGTTCCAGCAAT CACTCCAATCGTGATGCCGA 
CEACAM5 AAGAAATGACGCAAGAGCCTATG CCCGAAAGGTAAGACGAGTCTG 

TFF1 CCCCGTGAAAGACAGAATTGT GGTGTCGTCGAAACAGCAG 
AGR2 GTCAGCATTCTTGCTCCTTGT GGGTCGAGAGTCCTTTGTGTC 
S100P AAGGATGCCGTGGATAAATTGC ACACGATGAACTCACTGAAGTC 

SDR16C5 TATACCTGCGATTGCAGCCAA CGATTCCGGCATTGTTGATTAGG 
GPX2 GAATGGGCAGAACGAGCATC CCGGCCCTATGAGGAACTTC 
ELF3 GGCCGATGACTTGGTACTGAC GCTTGCGTCGTACTTGTTCTTC 

ERBB3 GACCCAGGTCTACGATGGGAA GTGAGCTGAGTCAAGCGGAG 
TMEM45B GCTTCCAGGGAGTTTCTTCCT CTTCCGCGTGTGGCTAAAGTA 

TOX3 ATTCCACCAATCACGCCTCC GGATCGCTGAGGGCTTGAAA 
TSPAN8  ACTTCTTGTTCTGGCTATGTGG CACAGCAACGTAGGAGCTAGA 
FXYD3 GGCTTAAGAGGCCCGAGTTT TGCATTTTGCACTCATGACGA 
FOXQ1 CACGCAGCAAGCCATATACG CGTTGAGCGAAAGGTTGTGG 
LGALS4 CGACGCTGCCTTACTACCAG CCAACCACAAAGTTCACGAAGA 

PLS1 ACAAGAGGGAAGGGATTACTGC AGATGCTTACAGTCAGGGTCATT 
   

Basal-like 
genes:   
LY6D CCAGCAACTGCAAGCATTC CACAGTCCTTCTTCACCAGATT 
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Gene FWD (5' to 3') REV (5' to 3') 
LEMD1 ATTGCAGAACCAACTTGAGAAGC CGCGCAGTAGTCTCTCTCTT 
KRT15 TCTGCTAGGTTTGTCTCTTCAGG CCAGGGCACGTACCTTGTC 
CTSL2  CGTGACGCCAGTGAAGAATCA CGCTCAGTGAGACAAGTTTCC 
DHRS9 CTGTGGACTCGTAAAGGAAAACT GCAGCGATTACATGAAATCCCT 
AREG GAGCCGACTATGACTACTCAGA TCACTTTCCGTCTTGTTTTGGG 
CST6 TACTTCCTGACGATGGAGATGG GAGTTCTGCCAGGGAACCAC 

SERPINB4 CTGGGTGGAAAGTCAAACGAA TGTCGTATCATTGCCAATAGTCC 
SERPINB3 CGCGGTCTCGTGCTATCTG ATCCGAATCCTACTACAGCGG 

S100A2 ATGAGTGGGAATGGCAAGAG CTCCCAGGGTGAGGATTTATATG 
FGFBP1 GGAAACAAGTTGCCCGGAATC AATAGAGTGGAGCTGACTAGCTT 
SPRR3 CCAGCAGAAGCAGACCTTTAC TCCTTGGTTGTGGGAACAAATA 

SPRR1B TCCCCTATCCCATTCTGCGT AGCAGCTGAAAACTAGCTCTGG 
UCA1 GCCAGCCTCAGCTTAATCCA CCCTGTTGCTAAGCCGATGA 
KRT14 GTGGGTGGAGATGTCAATGT CATCCTTGCGGTTCTTCTCT 
KRT6A TCTCACTGTTGGTAAAGCCCAG CTGGCTGAGTTGGCACTGAA 
KRT6C GGGTTTCAGTGCCAACTCAG CCAGGCCATATAAGCTGCGG 
PAPPA ACAAAGACCCACGCTACTTTTT CATGAACTGCCCATCATAGGTG 
HMMR AGAACCAACTCAAGCAACAGG AGGAGACGCCACTTGTTAATTTC 
CKS2  TTCGACGAACACTACGAGTACC GGACACCAAGTCTCCTCCAC 

FERMT1 GGTGAGGTTGCGAGTCAGC CCAGACGGCTTTAACAAGGAA 
TWIST1  GTCCGCAGTCTTACGAGGAG GCTTGAGGGTCTGAATCTTGCT 
FAM83A GGAGATGTGTGACAAAGTCCAG CCAGCGAATTTCCTGCCTG 
KRT17 GCCGCATCCTCAACGAGAT CGCGGTTCAGTTCCTCTGTC 
SCEL TCGGTACAGTTCTGATGACACT AACATGGACATGCTCCTATTGG 
KRT7 CATGCAGGATGTGGTGGAGG CCGTCTCATTGAGGGTCCTG 

GPR87 GCCAGGAAAGAACACCACCC GATCCACACTGCTAAACCATTCA 
SLC2A1 ATTGGCTCCGGTATCGTCAAC GCTCAGATAGGACATCCAGGGTA 

ANXA8L2 AAAGCCATGAAGGGGATCGG GTTACAGCACAAGTGACCCTG 
TNS4 AGCCAGGGGCTTTTGTCATAA AGACGACTCGATGAGGAAGTG 
VGLL1 TCAGAGTGAAGGTGTGATGCT GCACGGTTTGTGACAGGTACT 

   
Mouse primers   

18S GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 
Gli2 CAACGCCTACTCTCCCAGAC GAGCCTTGATGTACTGTACCAC 
Gli1 CTACTCGGGGTTCAATGATGC TGTGGAGTTGGGGCTAGACAT 
Vim CGTCCACACGCACCTACAG GGGGGATGAGGAATAGAGGCT 
Zeb1 ACCGCCGTCATTTATCCTGAG CATCTGGTGTTCCGTTTTCATCA 
Kras CAAGAGCGCCTTGACGATACA CCAAGAGACAGGTTTCTCCATC 

   
Basal-like 

genes:   
Ly6d GCCTGGGCACTTCGATGTC TGAGTTTGCACACTCTTTCCTC 

Lemd1 GACTATGAGTTGCACAAGCATCT TCTTCTCGTAGGTCTTTCTGGTG 
Dhrs9 ATGCTGTTTTGGTTGTTGGCT GTTCTGGCTGCTAAGTTTCCA 
Cst6 GAACTTGTCACCCACCGACC TTTGGTGTCTCGGAAGTAGTAGA 

S100a2 ACGCCAGTCAAGAGGACGA CCCCACATAGCTCAGCAGC 
Fgfbp1 TGGCTACTCAGGCGTTCTCA CGTCAGAGATTTAGATGTCCTGC 
Sprr3 GAACAGCATCAAGTGAAGCAAC CTGGAATCTTGGTGTTTCCTGG 
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Gene FWD (5' to 3') REV (5' to 3') 
Krt14 AGCGGCAAGAGTGAGATTTCT CCTCCAGGTTATTCTCCAGGG 
Pappa GGATGGGTCATGGGCATTCA GAAAAAGTAGCGTGGATCTCTGT 
Cks2 TCGATGAGCACTACGAGTACC CCATCCTAGACTCTGTTGGACAC 

Twist1 GGACAAGCTGAGCAAGATTCA CGGAGAAGGCGTAGCTGAG 
Fam83a ATGAGTCGGTCAAGGCATGTG TGAGGACAGGAAGTCTACCTCT 

Scel GACAACAGGGTTTTCAGGACG TACCGGCTAATTGTGGCTTTT 
Vgll1 TGTCTGGATACCTGAAAGCAGT GGCCTCTTGAGGTTACGCA 

Gpm6b CAGGCACCGTGGCAATTCT GTTGGATCACTTCACTCAGCAA 
Slc16a1 GAGGTGGAGCTGACGAGGT CATGGACACGAAGAGCACCC 

Aim2 GTCACCAGTTCCTCAGTTGTG CACCTCCATTGTCCCTGTTTTAT 
   

shRNA 
sequences:   

HUMAN:   
KRAS TRCN0000010369 CAGTTGAGACCTTCTAATTGG 
KRAS TRCN0000033263 GACGAATATGATCCAACAATA 
GLI2 TRCN0000033329 CCGCTTCAGATGACAGATGTT 
GLI2 TRCN0000033332 GCTCTACTACTACGGCCAGAT 

   
   

MOUSE:   
Gli2 TRCN0000226034 TCGACCTACAACGCATGATTCC 
Gli2 TRCN0000226035 TGTGGAGGACTGCCTACATAT 
Gli2 TRCN0000219066 TATGTTTACCCGCTCCTATTT 
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Table 2.2 Classical and basal-like gene signatures 
List of genes associated with the classical and basal-like gene signatures and their 
expression in the corresponding Moffitt, Collisson, and Bailey signatures 
 
Classical signature 
genes    

Gene Moffitt Collisson Bailey 
ATP10B  X X 
ST6GALNAC1 X X X 
CAPN8  X X 
CEACAM6 X X X 
CEACAM5  X  
TFF1 X X X 
AGR2 X X X 
S100P  X  
SDR16C5  X  
GPX2  X X 
ELF3  X  
ERBB3  X X 
TMEM45B  X  
TOX3  X X 
TSPAN8  X X X 
FXYD3  X  
FOXQ1  X  
LGALS4 X X X 
PLS1  X X 
    
Basal-like 
signature genes    

Gene Moffitt Collisson Bailey 
LY6D X  X 
LEMD1 X   
KRT15 X   
CTSL2  X   
DHRS9 X   
AREG X   
CST6 X  X 
SERPINB4 X   
SERPINB3 X   
S100A2 X X X 
FGFBP1 X   
SPRR3 X  X 
SPRR1B X  X 

Gene Moffitt Collisson Bailey 
UCA1 X   
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KRT14  X X 
KRT6A X  X 
KRT6C X  X 
PAPPA  X  
HMMR  X  
CKS2   X  
FERMT1  X  
TWIST1   X X 
FAM83A X  X 
KRT17 X  X 
SCEL X   
KRT7 X   
GPR87 X  X 
SLC2A1 X   
ANXA8L2 X   
TNS4 X  X 
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Methods: 

 

Antibodies and reagents 

Antibodies against GLI2 H-300 (sc-28674) and GAPDH (sc-32233) were purchased from 

Santa Cruz Biotechnology; GLI3 (AF3690) from R&D Systems; SHH (ab53281), SMO 

(ab38686) and S100A2 (ab109494) from Abcam; GLI2 (18989-1-AP), KRAS (12063-1-

AP), Tubulin (66031-1-Ig), E-Cadherin (20874-1-AP), and ESRP1 (21045-1-AP) from 

Proteintech; GLI1 (2534), FLAG (2368), ZEB1 (3396), Vimentin (5741), YAP1 (4912), N-

Cadherin (4061), GATA6 (5851) from Cell Signaling Technology; Keratin 14 (905304) and 

Keratin 5 (905504) from BioLegend; Peroxidase goat anti-rabbit (PI-1000), horse anti-

goat (PI-9500), and horse anti-mouse IgG (PI-2000) antibodies from Vector Labs. 

Keratinocyte SFM and supplements, RPM1, DMEM, DMEM F12 (1:1), fetal bovine serum 

(FBS) were purchased from Corning; tet system approved FBS from Clontech. Silencer 

select siRNA sequences against human GLI2, GLI1 and KRAS were purchased from 

Ambion. 

 

Cell culture 

Cell lines were obtained from the American Type Culture Collection (ATCC). Mouse PDA 

Dox-inducible iKRAS lines were gifts from Haoqiang Ying and Alec Kimmelman. Human 

PDA cell lines and HPDE cells were cultured as previously described (Perera et al. 2015) 

and iKRAS mouse cell lines were cultured as previously described (Kapoor et al. 2014). 

All cell lines were confirmed negative for mycoplasma contamination on a routine basis 

using MycoAlert Detection Kit (LT07-418) from Lonza. Colony formation was assessed 
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following plating of 3,000 cells per well, which were fixed with 4% paraformaldehyde and 

stained with 0.1% crystal violet after six days of growth. Cells grown in 3-dimensiaonal 

culture were plated at 10,000-30,000 cells per well in 24-well plates onto Matrigel 

(354234; Corning) as previously described (Lee et al. 2007) and imaged using a Zeiss 

Axio Vert.A1 inverted confocal microscope after nine days. Alternatively, cells were plated 

at 20,000 cells per well in 24-well on ultra-low-attachment plates (Corning) in DMEM F12 

supplemented with 1X B27 (17504044; Life Technologies), 20ng/mL EGF (GF144; EMD 

Millipore) and 20ng/mL bFGF (13256029; Life Technologies) and imaged after 5-18 days 

with 200μL fresh media added every five days.  

 

Constructs 

cDNA encoding C-terminal 3xFlag tagged human GLI1, GLI2, GLI3 and GLI2 ΔN were 

purchased from Addgene (#84922, 84920, 84921, 17649 respectively) and cloned into 

pMSCV retroviral vector or pRetroX-Tight-Pur doxycycline-inducible vector (generously 

provided by Dr. Nabeel Bardeesy; Massachusetts General Hospital). Mouse Gli2 was 

generously provided by Dr. Ryan Corcoran (Massachusetts General Hospital). Gli-

luciferase and Renilla reporters were gifts from Dr. Jeremy Reiter (UCSF). 

 

Lentiviral-mediated knockdown  

All shRNA were obtained from Sigma Aldrich in the pLKO vector and sequences are listed 

in Supplemental table S2. HEK293T cells were transfected with lentiviral or retroviral 

plasmids and packaging constructs using X-tremeGENE transfection (6365787001; 

Sigma Aldrich) reagent according to the manufacturer’s instructions and as previously 
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described (Perera et al. 2015). Cells were infected with virus-containing media using 

Polybrene reagent (TR-1003-G; EMD Millipore) according to the manufacturer’s 

instructions, and selected for 48 hrs in 2μg/mL of puromycin or blasticidin.  

 

Luciferase reporter assay 

Cells were plated at 100,000 cells per well in 12-well or 24-well plates and co-transfected 

with Gli-luciferase and Renilla luciferase plasmids using Lipofectamine 2000 (11668019; 

Life Technologies) according to the manufacturer’s instructions. Cells were lysed and 

assayed for activity using the Dual-Luciferase Assay kit (E1960; Promega) 48hrs post 

transfection.  

 

ELISA and exogenous ligand treatments 

Secreted OPN in the supernatant of cultured cells was measured using the Human 

Osteopontin Quantikine ELISA kit (DOST00; R&D systems) according to manufacturers 

protocol. For experiments where exogenous ligand was added, recombinant human OPN 

(1433-OP-050/CF; R&D Systems) was added at 1μg/mL and cells assayed 2-3 days later.  

 

Drug treatment 

Cells were treated with 5μM of GANT61 (3191/10; R&D Systems) for 3-5 days prior to 

collection of RNA or protein lysates. Alternatively, iKRAS cells were plated at 150,000 

cells with or without Dox (1μg/mL) in the presence of absence of 5μM GANT61 and RNA 

was collected 72hrs post plating.  
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Immunoblotting 

Cells were lysed in ice-cold lysis buffer (150 mM NaCl, 20 mM Tris [pH 7.5], 1mM EDTA, 

1mM EGTA, 1% Triton X-100, 2.5 mM sodium pryophosphate, 1mM β-glycerophosphate, 

1 mM sodium vanadate, and one tablet of Pierce Protease Inhibitor Tablets, EDTA Free 

[Fisher Scientific-A32965] per 10 mL). Samples were clarified by sonication and 

centrifugation. Protein content was measured using Pierce™ BCA Protein Assay Kit (Life 

Technologies-23227), and 15-50μg protein was resolved on 8%-15% protein gels using 

SDS-PAGE and transferred onto PVDF membranes (EMD MIllipore-IPVH00010). 

Membranes were blocked in 5% non-fat dry milk (VWR-89406056) made up in Tris-

buffered saline with 0.2% Tween 20 (TBS-T) prior to incubation with primary antibody 

overnight at 4°C in either 5% non-fat dry milk or 5% bovine serum albumin (BSA, Sigma 

Aldrich-A4503). Membranes were washed in TBS-T and developed after 45-minute 

incubation in species-specific horseradish peroxidase-conjugated secondary antibody 

and visualized using supersignal west pico chemiluminescent substrate (Fisher Scientific-

34080), and imaged using the ChemiDoc™ XRS+ System (Biorad).  

 

Immunofluorescence 

Cells were plated on fibronectin-coated glass cover- slips at 100,000–300,000 cells per 

coverslip. Twelve-to-sixteen hours later, the slides were rinsed with PBS once and fixed 

for 15 min with 4% paraformaldehyde at room temperature prior to permeabilization with 

0.1% Saponin for 5 min. Slides were incubated with primary antibody in 5% normal goat 

serum overnight at 4 degC, rinsed four times with PBS, and incubated with secondary 

antibodies produced in goat (diluted 1:400 in 5% normal goat serum) for 45min at room 
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temperature in the dark. Slides were mounted on glass slides using Vectashield (Vector 

Laboratories) and imaged on a Zeiss Laser Scanning Microscope (LSM) 710. Images 

were processed using ImageJ.  

 

RNA isolation and quantitative RT-PCR 

Total cellular RNA was extracted using the PureLinkTM RNA Mini Kit (12183025; Thermo 

Fisher). Reverse transcription was performed using the iScriptTM Reverse Transcription 

Supermix (1708841; Bio-Rad) followed by quantitative RT–PCR with iTaqTM Universal 

SYBR Green Supermix (1725122; Bio-Rad) using the CFX384 TouchTM Real Time PCR 

Detection System (BioRad). Results are presented as the mean of at least 3 technical 

replicates and are representative of at least n = 3 biological replicates. Primer sequences 

are listed in Supplemental table S2.  

 

Generation of GLI2 and SPP1 knockout cell lines using CRISPR/Cas9 

GLI2 and SPP1 knockouts in KP4 cells were generated using the RNP-electroporation 

method as previously described (Liang et al. 2015). One million KP4 cells were used per 

electroporation using the Amaxa 4D Nucleofector kit (V4XC-9064, Lonza). Guide RNA 

and Cas9 complexes were formed using 160μM crRNA annealed to 160μM tracrRNA 

(Dharmacon) and incubated with 40μM Cas9 protein (purchased from University of 

California, Berkeley). Cutting efficiency was assessed 48 hours post electroporation using 

PCR and sanger sequencing. GLI2 and SPP1 knockout was confirmed using quantitative 

RT-PCR, immunoblotting and ELISA after clonal expansion of single cells. 

Guide RNA sequences 5’-3’: 
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GLI2 exon 2 – TTTGGCTTCTTGCTTCTCGG 

SPP1 exon 2 – GTATGGCACAGGTGATGCCT 

PCR primer sequences 5’-3’: 

GLI2 exon 2 FW – GTGAAGGAGTGAGCGAACATGC 

GLI2 exon 2 RV – TCTTCGCCCTCCATAAACCCAG 

SPP1 exon 2 FW – GCAAAATTTCCCTTTCCCTTGCC 

SPP1 exon 2 RV – ACTGTGCTTGGTACTGGCCTAG  

 

Chromatin Immunoprecipitation 

293T cells were transiently transfected with GLI2-Flag and fixed with 1% formaldehyde 

for 15 minutes and quenched with 125mM glycine for 5 minutes. Cells were washed with 

cold PBS and collected as 107 cell pellets. Cells were resuspended in 500 μL cold L1 

buffer (50mM Tris pH 8.0, 2mM EDTA, 0.1% NP-40, 10% glycerol, 1mM PMSF, 1x Pierce 

Protease Inhibitor) on ice for 5 min, centrifuged and resuspended in 450 μL cold SDS 

buffer (50mM Tris pH 8.0, 10mM EDTA, 1% SDS, 1mM PMSF, 1x Pierce Protease 

Inhibitor). Chromatin was sheared for 10 cycles using the Bioruptor Pico to obtain 

fragments of 200-500 base pairs, and diluted 1:10 in cold ChIP buffer (0.5% NP-40, 5mM 

EDTA, 200mM NaCl, 50 μM Tris pH 8.0, 1mM PMSF). Diluted chromatin was pre-cleared 

with 100 μL washed Protein A Dynabeads (Invitrogen) at 4°C for 1 hr then 

immunoprecipitated with Flag antibody (CST, 14793) or negative control Rabbit IgG 

(CST, 2729) at  4°C overnight. Immunocomplexes were recovered using 50 μL washed 

Protein A Dynabeads at 4°C for 2 hr. Beads were washed two times in following buffers: 

800 μL Wash buffer (0.1% SDS, 1% NP-40, 2mM EDTA, 500mM NaCl, 20mM Tris pH 
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8.0, 1mM PMSF), LiCl buffer (0.1% SDS, 1% NP-40, 2mM EDTA, 0.5M LiCl, 20mM Tris 

pH 8.0, 1mM PMSF) then TE buffer (1mM EDTA, 10mM Tris pH 8.0) for 5 min each all 

on ice. Complexes were eluted by resuspending beads in 100 μL 2% SDS in TE buffer 

then de-crosslinked overnight with 5 μL NaCl at 65°C. Recovered DNA was PCR purified 

and analyzed using qPCR. Primers were used to amplify a region that contains a GLI 

binding site in the SPP1 promoter (-2324 to -2316) as reported in Kijewska et al. 2017. 

Primers targeting the ACTB promoter served as a negative control while primers targeting 

a known GLI binding site in the BCL2 promoter (-957 to -949) served as a positive control 

(Regl et al. 2004).  

ChIP qPCR primer sequences 5’-3’: 

ACTB promoter FW – ATGCAGCGATCAGTGGCGT 

ACTB promoter RV – TCCAGCTTCTTGTCACCACCTC 

BCL2 promoter FW – CCGGACGCGCCCTCCC  

BCL2 promoter RV – GGTGCCTGTCCTCTTACTTCATTCTC 

SPP1 promoter FW – CTGACAGAAAATCCTACTCAGAAAA 

SPP1 promoter RV – AAAGTAGGAAATGGATGCTGCG 

 

Subcutaneous and tail vein injections 

For xenograft experiments, 4 million KP4 Cas9 control, GLI2KO, or SPP1KO cells were 

injected into the flank of NOD.SCID-II2rg-/- (NSG) immunodeficient mice, and tumor 

volumes were measured using a caliper and calculated as tumor volume = ½ (length x 

width2). For tail vein injections, 2 million cells were injected into the tail vein of NSG mice. 

End point criteria included poor body condition and weight loss. Sample sizes for in vivo 
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experiments were calculated using an online tool 

(http://www.bu.edu/orccommittees/iacuc/policies-and-guidelines/sample-size-

calculations/), taking into account variability of the assays and inter-individual differences 

within groups. In summary, we will use 8-10 mice per cohort (male and female) which 

provides statistical power of >0.8 (α=0.05) to detect differences of approximately 50%, 

assuming a normal distribution.  

 

Histology and immunostaining 

Tissue samples were fixed overnight in 10% formalin, and then embedded in paraffin and 

sectioned (5 mm thickness) by the UCSF mouse histopathology core. Haematoxylin and 

eosin staining was performed using standard methods. Slides were baked at 60°C for an 

hour, deparaffinized in xylenes (three treatments, 5 min each), rehydrated sequentially in 

ethanol (5 min in 100%, 5 min in 90%, 5 min in 70%, 5 min in 50%, and 5 min in 30%), 

and washed for 5 min in water twice. For antigen unmasking, specimens were cooked in 

a 10 mM sodium citrate buffer (pH 6.0) for 10 min at 95°C using conventional pressure 

cooker, rinsed three times with PBS, incubated for 1 hr with 1% H2O2 at room temperature 

to block endogenous peroxidase activity, washed three times with PBS, and blocked with 

2.5% goat serum in PBS for 1 hr. Primary antibodies were diluted in blocking solution as 

follows: anti-S100A2 (abcam, ab109494) 1:200; anti-GATA6 (CST, 5851) 1:500 and 

incubated with the tissue sections at 4°C overnight. Specimens were then washed three 

times for 5 min each in PBS and incubated with secondary anti-mouse/rabbit IgG (Vector 

Laboratories, MP-7500) for 1 hr at room temperature. Following 3 washes in PBS, slides 

were stained for peroxidase for 3 min with the DAB (di-aminebenzidine) substrate kit (SK-
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4100, Vector Laboratories), washed with water and counterstained with hematoxylin. 

Stained slides were photographed with a KEYENCE BZ-X710 microscope. 

 

RNAseq and GSEA 

RNA sequencing data containing gene expression values from pancreatic ductal 

adenocarcinoma samples sequenced as part of the TCGA project was downloaded from 

the cBioPortal (http://www.cbioportal.org/index.do). The data are represented as z scores 

where zero represents the mean value of normalized and log transformed gene 

expression for samples diploid at that locus in the sample set, and a z score of one 

corresponding to expression one standard deviation above the mean. A subset of tumors 

corresponding to those with levels of GLI2 expression that were high (z score > 0.5; n = 

51) or low (z score < -0.5; n = 41) were then analyzed for their corresponding gene 

expression values of the ligands IHH or SHH (Figure 2.2 E). Assignment of PDA TCGA 

samples as classical or basal-like and extent of tumor cellularity was based on an 

independently published study (Cancer Genome Atlas Research 2017). Overall survival 

(OS) was defined as the time of surgery to the date of death from any cause. Disease-

free survival (DFS) was defined as the date of surgery to the date of tumor recurrence at 

any site or to the date of last follow-up. Parameters for determining OS and DFS were 

defined as z score > -1 for GLI2 high status, z score > 2 for SHH high status (Figure 2.1 

D,E) and z score > 0.5 for SPP1 high status (Figure 2.14 K). OS and DFS were analyzed 

using Kaplan–Meier and log-rank tests. Significance was determined as a P value < 0.05.  

Data for the YAPC-iEV and YAPC-iGLI2 cells in Figure 2.5 D was processed using 

a standard RNA-seq pipeline that used Trimmomatic to clip and trim the reads, tophat2 
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to align the reads to hg19, and cuffdiff to calculate differential expression. GSEA 

(http://www.broadinstitute.org/gsea/index.jsp) of the expression data was used to assess 

enrichment of the epithelial-to-mesenchymal gene signature. The Moffitt (Moffitt et al. 

2015) basal-like gene signature was used to assign basal-like status. For the classical 

signature a combination of genes from the Collisson classical (Collisson et al. 2011), 

Moffitt classical (Moffitt et al. 2015) and Bailey progenitor (Bailey et al. 2016b) signatures 

were used (See Table 2.2). 

 

Image and statistical analysis   

Image analysis, including densitometry and spheroid quantification was conducted using 

Image J software (NIH). Statistical analyses of results are expressed as mean +/- 

standard deviation unless otherwise indicated. For each box-and-whisker plot, center line 

is the median and whiskers represent the minimum and maximum values. Significance 

was analyzed using two-tailed Student’s t-test and Log-rank (Mantel-Cox) test for survival 

data. A P value of less than 0.05 was considered statistically significant. Graphing and 

statistical analyses were performed with GraphPad Prism 7 software.  All experiments 

were performed at least 3 times or in at least 2 separate cell lines. Data is displayed as 

either representative or the average of 2-4 independent biological replicates with at least 

3 technical replicates per experiment.  

Correlations between demographic and clinical factor variables and the genes of 

interest, GLI2 and SHH were performed. Correlations were stratified based on expression 

levels (previously defined with z score thresholds).  Significance was analyzed using a 

Chi squared test for categorical variables (sex, TNM staging), Fisher’s exact test for 
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dichotomous categorical variables (GLI2 and SHH expression), and a two-sample t-test 

for continuous variables (age and mutation count). A p-value < 0.05 was considered a 

statistically significant association. 

 Cox proportional hazards survival analysis regression models were used to identify 

demographic and clinical factors with significant predictive value for the outcomes of 

overall survival and progression free survival. Factors included in the analysis were age 

at diagnosis, sex, TNM staging, mutation count, and GLI2 and SHH expression levels 

previously defined based on z-scores. Unstratified models and models stratified based 

on GLI2 and SHH expression levels were performed. A p-value <.05 was considered a 

statistically significant association. Differences in sample sizes (n) attributed to missing 

clinical data. These analyses and figures were generated using R statistical software.   
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DISCUSSION 

 

While the clinical relevance of PDA subtypes is becoming increasingly 

appreciated, a mechanistic understanding of the molecular underpinnings of PDA subtype 

identity is lacking. Our findings establish a broad equivalence between basal-like and 

EMT-high, versus classical and EMT-low states of PDA. Moreover, we have identified a 

novel role for the GLI2 transcription factor as a central driver for promoting and 

maintaining the basal-like state in PDA. We found that high GLI2 status independently 

predicts shortened survival of PDA patients and correlates with the aggressive basal-like 

subtype of PDA.  In contrast, high levels of Hh ligands correlate with longer patient 

survival and are associated with the classical subtype of PDA. These findings highlight a 

remarkable rewiring of the Hh signaling pathway in PDA, whereby expression of Hh 

ligands and GLI proteins trend towards mutual exclusivity and instead correlate with 

classical and basal-like subtypes, respectively (Figure 2.14 L). 

Importantly, GLI2 is required for maintaining the basal-like state as GLI2 

knockdown in tumor derived human and mouse PDA cell lines suppresses the basal-like 

program in vitro, attenuating expression of mesenchymal and stem cell markers. 

Conversely, forced expression of GLI2 in classical subtype cells was sufficient to induce 

a switch to a basal-like phenotype. Thus, GLI2 has critical functions in promoting and 

maintaining the basal-like phenotype and conferring enhanced plasticity to PDA cells by 

enabling interconversion between subtype states. 

Mechanistically, our findings indicate that GLI2 induced a broad transcriptional 

program in PDA with a particular enrichment in EMT genes. Within this program we 
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identified several secreted proteins including OPN, which are induced following forced 

GLI2 expression in classical subtype cells. Accordingly, basal-like PDA cells express 

higher levels of OPN and several of its known receptors, including CD44 and integrin b3. 

Our studies also suggest that OPN, like GLI2, is a key determinant of cellular 

reprogramming. As with GLI2, CRIPSR mediated knockout of OPN in basal-like cells led 

to a failure to maintain the basal-like state and induced a classical subtype switch. 

Importantly, loss of OPN in basal-like PDA cells completely suppressed primary and 

metastatic tumor growth indicating that maintenance of the basal-like state is required for 

facilitating rapid in vivo tumor growth.  

Notably, OPN has been linked to aggressive disease features including increased 

stemness, migration, EMT and drug resistance in several other cancer settings 

(Rangaswami et al. 2006; Orian-Rousseau 2010; Das et al. 2013; Wang et al. 2015; Zhao 

et al. 2018). In the context of PDA, early studies showed that OPN was over-expressed 

in patient tumors and could promote the growth of PDA cells (Koopmann et al. 2004; Kolb 

et al. 2005). Subsequent studies measuring serum OPN have suggested that elevated 

levels can distinguish PDA from chronic pancreatitis and healthy control subjects 

(Koopmann et al. 2004; Poruk et al. 2013; Cao et al. 2018). Whether OPN can serve as 

a faithful diagnostic and/or prognostic biomarker of aggressive disease and more 

specifically, the basal-like subtype will be an important future direction. Our data also 

shows that exogenous OPN can drive a classical to basal-like subtype switch. This finding 

suggests the intriguing possibility that GLI2-dependent induction of secreted factors may 

serve as a juxtacrine or paracrine mechanism to instruct neighboring tumor cells to 

establish and/or sustain a basal-like cell state. Tumor associated stromal cells in PDA 
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such as activated macrophages (Koopmann et al. 2004) and pancreatic stellate cells (Cao 

et al. 2018) can also secrete OPN and therefore potentially promote a basal-like switch. 

Similarly, in other tumor models such as glioblastoma multiforme and bladder cancer, 

infiltrating macrophage-secreted OPN can promote and sustain tumor cell growth, 

invasion, and stimulate angiogenesis (Ahmed et al. 2016; Chen et al. 2019). Tumor-cell 

derived OPN has also been reported to act in a paracrine fashion on normal mammary 

fibroblasts to promote an activated CAF phenotype in breast tumors (Sharon et al. 2015).  

Thus, the ability to locally reprogram neighboring epithelial or stromal cells to a more 

aggressive cell state may contribute to disease progression. In contrast to OPN, tumor 

derived SHH is associated with the classical subtype of PDA and was shown to restrain 

tumor growth (Lee et al. 2014; Mathew et al. 2014; Rhim et al. 2014; Liu et al. 2016). 

Recent studies in bladder cancer suggest that secreted SHH functions to activate the 

release of stromal derived paracrine cues that promote epithelial differentiation of tumor 

cells (Shin et al. 2014). Consistent with this finding, our data in PDA show that high SHH 

levels correlate with the well-differentiated classical subtype of PDA and longer disease-

free survival of PDA patients. Taken together, these findings indicate opposite effects of 

OPN and SHH on PDA differentiation status and growth and suggest a potential hierarchy 

between secreted cues may help to establish subtype identity in PDA.  

Recent studies have established that PDA subtypes have distinct epigenetic 

landscapes that underlie their specific transcriptional signatures (Lomberk et al. 2016; 

Andricovich et al. 2018; Lomberk et al. 2018; Somerville et al. 2018). Of note, specific 

chromatin states were linked to pathways known to be dysregulated during pancreatic 

carcinogenesis, including the hedgehog pathway. Interestingly, SMO and PTCH1 



 97 
 

appeared strongly inhibited by the presence of repressive marks over their promoters and 

gene bodies, while SHH was identified as being significantly activated by epigenetic 

alterations in classical subtype samples, consistent with our analysis that GLI2 appears 

to be regulated independent of SMO activation and that SHH expression marks the 

classical subtype (Lomberk et al. 2018). Interestingly, this study showed the basal-like 

subtype to be associated with only a few super-enhancers (30) compared to those 

identified in the classical subtype (250), and no basal-like specific transcription factors 

were identified (Lomberk et al. 2018). However, MET, the hepatocyte growth factor 

receptor, was associated with the regulation of basal-like super-enhancers, while MYC, 

MYBL1, E2F1 and SNAI2, transcription factors involved in proliferation and EMT, were 

identified as acting downstream of MET (Lomberk et al. 2018). One explanation for the 

apparent absence of basal-like specific transcription factors could be the small sample 

size of 24 patient derived tumor xenografts (PDTX) used in this study, and of those only 

6 were identified as being basal-like. Therefore, a more extensive analysis is required to 

accurately parse out how epigenetic components define the basal-like subtype, and how 

GLI2 is integrated in these gene networks.  

Other studies have identified TP63 as an important mediator of enhancer 

reprogramming in a subset of basal-like/squamous PDA, consistent with this transcription 

factor functioning as a master regulator of squamous differentiation (Andricovich et al. 

2018; Somerville et al. 2018). These findings suggest the intriguing possibility that 

multiple molecular drivers exist to define the aggressive basal-like subtype, and that a 

subset driven by TP63 present with a particularly squamous-like phenotype. Indeed, 

Somerville et al. identified only two human PDA cell lines that expressed p63 isoforms, 
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where MiaPaca cells expressed the tumor-suppressive TAp63 variant while BXPC3 cells 

expressed the oncogenic ΔNp63 isoform. We verified that TAp63 is expressed in 

MiaPaca and additionally in Panc1 cells and found Panc0327 cells to be the only KRAS 

mutant cell line to express the pro-tumorigenic ΔNp63 (data not shown). Collectively, 

these findings suggest that TP63 may mediate squamous differentiation in a portion of 

basal-like PDA tumors. Whether GLI2 overlaps with TP63 function in basal-like/squamous 

samples remains unknown and highlights the possibility that multiple drivers may 

coordinately promote EMT and squamous differentiation to promote an aggressive basal-

like state. Future work is required to comprehensively identify all potential subsets of 

basal-like identity that are driven by particular epigenetic states or transcriptional drivers. 

Whether these subsets of basal-like tumors are differentially affected by various 

chemotherapeutic regimens or targeted therapies also remains to be investigated. 

Overall, the impact of GLI2 on chromatin states and the specific interplay between GLI2 

and other transcription factors and epigenetic regulators will be important to address in 

future studies to fully decipher the circuitry driving subtype switching in PDA. 

The ability of cancer cells to adaptively interconvert between states that rely on 

different molecular circuits to support growth and survival provides a potential mechanism 

for treatment failure and tumor relapse (Polyak and Weinberg 2009). Recently, GLI 

transcription factors were shown to directly promote SOX2 transcription in PDA cell lines, 

which promoted resistance to gemcitabine. Depletion of GLI-SOX2 signaling re-

sensitized resistant cells to gemcitabine treatment (Jia et al. 2019), providing further 

evidence that targeting GLI2-medaited signaling could be advantageous in aggressive 

PDA tumors. In addition to PDA, a prior study has linked elevated GLI expression to 
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resistance to therapy in patients with acute myeloid leukemia (AML) (Zahreddine et al. 

2014). Reciprocally, switching off GLI activity in basal cell carcinoma of the skin was 

associated with a cell identity switch involving induction of GATA6 (Biehs et al. 2018). 

Overall, these studies suggest that GLI2-driven subtype switching facilitates therapeutic 

resistance or bypass of oncogene addiction and may have additional relevance in other 

cancers. Our data indicates that activation of a GLI-OPN circuit is a novel mechanism of 

acquired resistance to KRAS* inhibition. Upon KRAS* loss, GLI2 is induced and 

substitutes for KRAS* suppression by promoting a basal-like switch. A prediction based 

on these observations is that cells with pre-existing high GLI activity would show intrinsic 

resistance to KRAS* inhibition and potentially other oncogenic drivers. As strategies to 

target oncogenic KRAS are currently in development, co-targeting of GLI – and/or OPN 

in PDA - may be necessary to achieve durable therapeutic responses. 

In conclusion, we have identified a high level of intrinsic plasticity between PDA 

subtypes mediated by GLI proteins and uncovered a surprising and unconventional role 

for these transcription factors in maintenance of the basal-like state. Blocking the ability 

of tumor cells to dynamically switch between cell states via inhibition of GLI proteins, OPN 

and other master regulators of cellular plasticity (Andricovich et al. 2018; Somerville et al. 

2018) will be an important future direction in combating intrinsic and acquired resistance 

to therapy in PDA and other cancers. Our work also raises the possibility of using the 

unique susceptibilities that may exist in PDA subtypes to treat patients with appropriate 

therapeutic regimens. The ability to effectively stratify patients based on subtype to 

uncover unique vulnerabilities to known drugs has not been performed and remains an 

exciting and critical next step in improving survival outcomes of PDA patients. 
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