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ABSTRACT OF THE DISSERTATION

Impact of Low-Resolution Quantization in Oversampled Massive MIMO Receivers

By

Shilpa Rao

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2021

Professor A. Lee Swindlehurst, Chair

Massive multiple-input multiple-output (MIMO) technology employs arrays with a large

number of antennas, of the order of 100 or more, at the base station (BS) to meet the

data rate and user demands of next generation wireless systems. To cope with the power

consumption problem due to an increased number of receive antennas, the idea of equipping

one-bit analog-to-digital converters (ADCs) at the base station has been proposed. This

thesis will focus on the topic of channel estimation which is key to exploiting the potential

gains of massive MIMO.

In this first part of the thesis, performance bounds on the channel estimation of one-bit

millimeter-wave (mmWave) massive MIMO receivers for different types of channel models

are established. The Cramér-Rao bound (CRB), which sets a benchmark for the design

of channel estimators, is considered for both a structured channel model for a single user

where the channel is composed of a superposition of multipaths characterized by path delays

and directions-of-arrival (DOAs), and an unstructured channel model where the channel is

a generic FIR filter. The Bayesian CRB when the array response is imperfectly known and

is affected by perturbations in the sensor pattern or position is also derived. The CRBs are

evaluated numerically and the effects of various system parameters on the CRB are studied.

The results show that increasing the bandwidth or the oversampling factor decreases the

xiii



estimation error variance due to improved temporal resolution.

Spatial oversampling could also be used, instead of, or in addition to temporal oversampling.

In the second part of this dissertation, spatial Sigma-Delta (Σ∆) architectures, to shape

the quantization noise away from users in some angular sector, are considered. A linear

minimum mean squared error (LMMSE) channel estimator based on the so-called Bussgang

decomposition is developed and the uplink achievable rate with linear receivers is analyzed.

Finally, the problem of direction finding when the BS is equipped with a rectangular antenna

array and spatial Σ∆ ADCs is considered. The impact of array response and noise modeling

errors on the estimation errors of Bartlett beamformers and the multiple signal classification

(MUSIC) algorithm is studied.
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Chapter 1

Introduction

A world without mobile connectivity has become unimaginable. Over the last several years,

there has been an extreme densification of nodes per unit area and an exponential growth

in mobile traffic. Over 60% of the global population is connected to the internet with ap-

proximately half of the website traffic arising from mobile users. This proliferation of mobile

devices has enabled us to usher in a new era of remote work with millions of us teleworking

and participating in online classes. The large-scale use of data intensive and low latency

applications like video and cloud computing has solidified the need for reliable and effi-

cient techniques of mobile communications to improve the capacity. Nevertheless, the rapid

growth of products and services could not have occurred without significant developments

in the fields of estimation and detection theory, information theory and digital communica-

tions. The aim of this dissertation is to give a better understanding of massive multiple-input

multiple-output (MIMO) systems- a key technology that meets the traffic demands of next

generation wireless systems. In this dissertation, the practical implementations of massive

MIMO and their effect on parameter estimation, a problem that is at the heart of many

signal processing applications, will be discussed.
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1.1 Background and Prior Work

MIMO technology, emerged from research in the 1990s [1] and uses multiple transmitting

and receiving antennas to exploit multipath propagation. It has become an essential element

of modern wireless standards including WiFi and Long Term Evolution (LTE). Multiple

antennas allow for multiple spatial dimensions to become available and the entries of the

channel matrix exhibit enough statistical independence to increase the spectral efficiency [2,

3]. In multi-user version of MIMO (MU-MIMO), each base station (BS) can communicate

with several users concurrently. However, the initial implementations of MU-MIMO had BSs

equipped with a relatively small number of antennas (less than 10) and so, the extent to

which MIMO could be leveraged was limited.

In order to further improve the gains in spectral efficiency, the concept of massive MIMO was

proposed in [4]. Massive MIMO refers to a system in which the BS is equipped with a large

number of antennas, 100 or more, much larger than the number of users/terminals active

at any point. Without requiring additional bandwidth, massive MIMO has the potential to

increase the data rate by orders of magnitude while simultaneously requiring lesser power [5,

6]. The main advantages are:

• Spectral efficiency: Enormous improvements in spectral efficiency due to spatial mul-

tiplexing.

• Energy efficiency: Ability to generate narrow focused beams towards users, therefore

improving the energy efficiency.

• Effects of small-scale fading: Small-scale randomness is averaged out due to the law of

large numbers, brought about by the vast spatial diversity. The asymptotics of random

matrix theory smooth out the channel responses and thus, the effects of uncorrelated

noise are virtually eliminated.

2



• Simple signal processing: Since the number of active users compared to the number of

antennas at the BS is small, their channels are quasi-orthogonal and even simple linear

receivers like maximum ratio combining (MRC) and zero-forcing (ZF) receivers have

near-optimal performance.

Other technologies have also been considered to increase the data throughput and coverage.

For instance, cell shrinking allows for the reuse of spectrum across a geographical area since

the number of users vying for BS resources decreases. In cell-free massive MIMO [7, 8], the

antennas are distributed over an area. These systems have a greater probability of coverage

since they are able to exploit their diversity against shadow fading.

Going to millimeter-wave (mmWave) frequencies is another way to achieve dramatic gains

in data rate and capacity [9]. The main reason is that vast amounts of unused spectrum

are available at frequencies in the range 30-300 GHz that can be used to support high data-

rate transmissions [10]. However, mmWave signals suffer from rather hostile propagation

effects and the severe signal attenuation encountered at these frequencies reduce the effective

communication distance, making them more suitable for covering small cells that span a

few hundred meters. The strong path loss, atmospheric absorption, the low penetration in

concrete, and diffraction around objects make mmWave communication unsuitable for non-

light-of-sight (NLOS) scenarios. Specular propagation means that mmWave channels are

characterized by the directions-of-arrival (DOA) of the prominent line-of-sight (LOS) paths.

The combination of mmWave and massive MIMO technologies can have a symbiotic ef-

fect [11]. Since the antenna array size is proportional to the wavelength, communication

at mmWave frequencies implies that a large number of antennas can be accommodated in

a limited physical space. Furthermore, the ability to generate highly focused beams with

massive MIMO can help in overcoming the mmWave path loss. Both indoor and outdoor

implementations of mmWave [12, 13] and of massive MIMO [14, 15] are promising.

3
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Although physically feasible, the notion of massive MIMO poses some difficulties, particularly

in terms of communication hardware aspects. Consider for example, the massive MIMO

uplink system model in Fig. 1.1 and Fig. 1.2. In the uplink, the receiver chain consists of an

RF combiner in mmWave applications, an RF chain equipped with band pass filters (BPFs)

and low pass filters (LPF), low-noise amplifiers (LNAs), demodulator, and analog-to-digital

converters (ADCs) before the digital baseband signal processing. The mapping of analog

to digital data (or vice versa) is performed by the ADC (or digital-to-analog convertor

DAC). The circuit is composed of a sample-and-hold device for time-domain conversion

and a quantizer for amplitude conversion. An ADC with a sampling frequency of, say,

fs Hz and resolution of b bits has 2bfs conversion steps per second and 2b quantization

levels. The exorbitant power consumption of the ADCs/DACs for sampling rates higher

than 100 MHz poses a crucial problem for mmWave systems and is a bottleneck in RF

chains [16]. Although deployment of a large number of antennas is required to overcome

the path loss issue, equipping each antenna with expensive fully digital beamformers is

unfeasible and conventional analog phase shifters [17, 18, 19] or hybrid structures [20, 21,

22, 23] where groups of antennas share an ADC/DAC are better suited. However, the

implementation for wideband systems is complex since phase shifters have to be designed

for each frequency band. An alternative to analog or hybrid architectures is to use low-

resolution ADCs/DACs that maintain an acceptable power budget. In the extreme case,

one-bit ADCs/DACs (zero-threshold comparators) may be used since they are simple to

implement [24]. One-bit converters have negligible power consumption compared to other

components in the front-end- for instance, a one-bit ADC operating at sampling frequency

240GS/s consumes around 10mW [25]. An additional benefit is that the hardware complexity

is simplified since an automatic gain control (AGC) is not needed. The low SNR capacity gap

between one-bit and infinite resolution ADC is only 1.96dB [26] and an inevitable error floor

at high SNRs [27] because the quantization error does not reduce with the SNR. However,

the performance loss from coarse one-bit quantization can be compensated for by increasing
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the number of antennas [28, 29, 30].

The notion of one-bit quantization has challenged the way we think about communications.

There has been a surge of research into one-bit converters in recent years with focus on

the impact of nonlinearity on the performance of communication systems. For instance, the

optimal symbol constellation is discrete- 2-PAM is capacity achieving for single-input single-

output (SISO) real-valued Gaussian channel whereas QPSK is optimal for complex valued

Gaussian channels [16]. Capacity bounds are derived in [31] for channel state information

(CSI) available at both the transmitter and receiver, the uplink throughput when the BS is

equipped with one-bit ADCs is analyzed in [32], a near maximum-likelihood (ML) detector

is devised in [33], linear detectors in [29, 32], precoding [34, 35, 36] and the use of dithered

signals [37, 38]. The impact on spectral and energy efficiency of massive MIMO systems

equipped with one-bit converters have been analyzed in [27, 39, 40, 41, 42, 43, 44, 45, 46].

The combination of low and high resolution ADCs has been studied and shown to have a

performance similar to that of unquantized systems [47, 48].

The focus of this dissertation is to study the problem of estimation using low-resolution quan-

tizers. The inference of information from a given set of data is the main objective in many

signal processing systems. Channel estimation is an important topic in wireless communi-

cations and refers to estimating the propagation path values that represent the combined

effects of scattering, fading and path loss. Massive MIMO based channel estimation using

one-bit ADCs have been studied in [33] using ML, in [27, 38, 49] for frequency-flat channels,

for frequency-selective channels in [27, 50], and for wideband systems in [48, 51]. Some recent

works [52, 53, 54, 55] study non-linear and learning-based detection methods foregoing the

channel estimation stage. Since the scattering environment at mmWave frequencies is not

dense but rather sparse with LOS and a few reflected propagation paths contributing to the

effective channel, much of the work is focused on direction-of-arrival (DOA) based channel

estimation. Whereas mmWave channel estimation methods that exploit the sparsity in the
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delay/angle domain have been studied in [20, 56, 57, 58, 59, 60, 61], mmWave estimation

aided with one-bit ADCs have been proposed in [62, 63, 64, 65]. More recent works study

the problem of DOA estimation with one-bit ADCs [66, 67, 68, 69, 70, 71].

Despite the development of several robust estimators, several questions come to mind. How

close are the estimated parameters to the true values? What is the minimum variance

that an estimator can attain? The formal theory of statistical inference attempts to answer

such questions, and was developed by Fisher who introduced the theory of ML [72]. The

main reason for the popularity of ML is its “asymptotic efficiency” i.e. its error variance

decreases to a minimum value as the signal-to-noise (SNR) or the number of observations

goes to infinity. The concept of “efficient” estimators, though, is related to the presence of

some performance bounds that determine how good an estimator can be. If an algorithm can

achieve a certain performance bound, then no other estimator can do better and the existence

of such a bound indicates the impossibility of achieving a lower error than the one predicted

by the bound itself. It also reveals the complex inter-dependencies of the parameters at

hand and can help us design estimators that can attain the approximate bound in some

sense. Several such bounds exist, one of which is the Cramér-Rao bound (CRB) [73, 74].

In [75], a lower bound on the Fisher information matrix (FIM) for the exponential family

of distributions is derived and the ML estimator based on the “pessimistic” CRB for the

DOA parameter is derived in [76]. In [77] and [78], the CRB for the channel parameterized

by DOAs and path gains is derived when the channel and the array responses are frequency

flat. However, in the above-mentioned DOA-based channel models, it is assumed that the

inter-element time delay between antennas in the array is small compared to the inverse

signal bandwidth. For mmWave massive MIMO systems, this assumption will typically

not be true. This effect, sometimes referred to as (beam) “squint”, has been observed

to cause a serious mismatch in the array response, and if ignored can significantly degrade

performance [79, 80, 81, 82]. The above works do not consider oversampling and the modeling

errors that are inevitable in any estimation process are ignored. This will be the focus of
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the first part of this dissertation.

The research into one-bit ADCs has revealed an important message- that temporal oversam-

pling, or sampling the converter at a frequency higher than the Nyquist rate, can alleviate

some of the loss due to coarse quantization. In fact, Nyquist-rate sampling is not necessarily

optimal and higher capacity rates can be achieved by oversampling [35, 36, 83, 84, 85, 86,

87, 88, 89, 90]. A well-known technique that combines one-bit quantization and oversam-

pling is the Σ∆ ADC, which to date has primarily found application in ultrasound imaging,

automotive radar and pulse-coded modulation for audio encoding. It consists of an over-

sampled modulator, responsible for digitization of the analog signal, followed by a negative

feedback loop that shapes the quantization noise with a simple high-pass filter. The quanti-

zation noise can then be removed in favor of the desired signal using a digital lowpass filter

and decimation. The temporal Σ∆ architecture has been extensively studied [91, 92, 93],

and higher-order implementations exist that can provide additional frequency-selective noise

shaping. The use of Σ∆ ADCs in parallel architectures for MIMO systems has been stud-

ied in [94, 95]. The Bussgang theorem [96] is used to analyze the noise shaping effect of

temporal Σ∆ modulators, and Price’s theorem [97] is used in [98] to predict the noise floor.

Higher-resolution ADCs and temporal oversampling can improve performance with only a

moderate increase in power consumption, but they significantly increase the required fron-

thaul throughput compared with one-bit quantization.

While temporal Σ∆ systems have been studied for decades, there is relatively little work

on corresponding spatial implementations. This will be the focus of the second part of this

dissertation. Only recently has the noise shaping characteristics of first and second-order

spatial and cascaded space-time Σ∆ architectures been studied for a few array processing

applications. In particular, applications have been considered for massive MIMO [99, 100,

101, 102, 103], phased arrays [104, 105], interference cancellation [95], and spatio-temporal

Σ∆ circuit implementations [106, 107]. Only [108] has studied channel estimation for spatial
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Σ∆ massive MIMO systems, and the approach of [108, 109] was limited to estimating the

angles of arrival and departure for a rank-one line-of-sight channel.

1.2 Summary of Contributions

As mentioned earlier, although CRBs for channel estimation with one-bit ADCs were con-

sidered in [75, 76, 77, 78], these works ignore oversampling and modeling errors, and the

squint effect. The main contributions on this topic are summarized below:

• Channel models that are either “structured” (DOA-based, arbitrary delays) or “un-

structured” (FIR, uniformly-spaced delays) are considered, and the resulting CRBs for

the channel estimates are compared. Under the structured channel model, it is as-

sumed that the channel is parameterized by the multipath fading coefficient, the DOA,

and the delay associated with each of the paths.

• Perturbations to the array response when the array response does not exactly match

the assumed array model will be taken into account, similar to the array perturbation

studies of [110, 111, 112]. In particular, the level of array calibration accuracy needed

for DOA-based methods to maintain their advantage compared with less parsimonious

unstructured models is of interest.

• Under the unstructured model, the channel is modeled as having a finite duration

impulse response composed of a discrete number of arbitrary delays. The squint effect,

where for wideband signals the time delay from one end of the array to the other cannot

simply be represented as a phase shift, is also taken into account. Incorporating these

temporal shifts is important because the end-to-end delay for the antenna array is of

the same order as the symbol duration.
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• A dictionary-based channel model used in the compressive sensing literature [20, 57, 63]

is also considered. The dictionary is based on a discrete set of DOAs and path delays

obtained from a grid, where the grid size is greater than the number of antennas.

This formulation is commonly used in mmWave channel estimation since compressive

sensing based algorithms which exploit the underlying sparse multipath structure can

be used. A “dictionary mismatched” channel model is considered, where the multipath

DOAs and delays are matched to the nearest grid point and the difference between the

dictionary and the true source parameters, or the grid mismatch, are parameters to be

estimated.

• A number of numerical experiments are performed to evaluate the CRBs, and a com-

parison of the structured, unstructured and dictionary-based channels as a function

of the SNR is performed. The effects of perturbation, bandwidth, the channel delay-

tap length, and the number of receive antennas on the CRBs of the one-bit quantized

system are also studied. Comparisons with the CRB obtained when there is no quanti-

zation error are included. The numerical results provide insight into the relative impact

of the various factors that influence of the channel estimate, including the precision of

the array calibration, the model parsimony, the one-bit quantization, size of the array,

SNR, bandwidth, etc.

The second part of this dissertation is the analysis of massive MIMO systems with first-

order one-bit or two-bit spatial Σ∆ ADCs. The initial results on the channel estimation

problem were derived using a vector-wise Bussgang decomposition similar to the analysis for

standard one-bit quantization in [27]. However, as shown in Chapter 4, this approach leads

to a mathematical model in which the quantization error vector is defined to be uncorrelated

with the input vector to the Σ∆ quantizer, which is not consistent with the traditional

definition of quantization noise. A more meaningful definition of the quantization noise is

to use an element-wise implementation of the Bussgang decomposition as defined in [103]
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in order to find an equivalent linear signal-plus-quantization-noise model. This approach

explicitly takes into account the spatial correlation between the quantized outputs of the

Σ∆ ADC array.

• An optimal linear minimum mean squared error (LMMSE) channel estimator is devel-

oped. The channel model also includes the impact of mutual coupling, including also

the fact that the noise becomes spatially correlated when the receiver antennas are

closely spaced.

• The structure of the Σ∆ array is exploited to find a recursive solution for the covariance

matrices required to compute the LMMSE channel estimate, and a practical algorithm

is derived for doing so.

• The analytical expressions for the resulting covariance matrix of the channel estimation

error is derived. The analysis can be extended for a Σ∆ array implemented with two-

bit quantization, and similar extensions are possible for higher resolution ADCs. The

resulting estimators have low complexity and the simulated estimation error closely

matches the derived analytical expressions.

• The spectral efficiency of one-bit Σ∆ arrays was recently analyzed in [103, 113] with

and without mutual coupling, respectively, but only for the case where the channel is

perfectly known. The analysis of [103, 113] is extended to derive a lower bound on the

uplink achievable rate using the maximal ratio combining (MRC), zero-forcing (ZF)

and LMMSE receivers when implemented with imperfect channel state information

(CSI) obtained using the LMMSE channel estimate.

Finally, the problem of direction finding with Σ∆ ADCs is studied. More specifically, the

estimation of elevation and azimuth angles when the BS is equipped with a rectangular

array is considered. DOA estimation using one-bit ADCs and conventional beamforming
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has been studied in [66], using sparse linear arrays [67, 68] and using compressed sensing

measurements [69, 70]. In [71], the authors propose a DOA estimation method based on

multiple signal classification (MUSIC) [114] by reconstructing the input covariance matrix

from the covariance matrix of the one-bit quantized output. Most of the prior literature on

mmWave channel estimation and DOA estimation with one-bit or few-bit ADCs focus on one-

dimensional angle estimation using linear arrays [62, 67, 68, 71]. Although mmWave MIMO

channel model based DOA estimation with these estimators were considered in [108, 109], the

authors did not consider a planar BS array as in this case, their model ignored the presence

of mutual coupling, and an analysis of the asymptotic estimation error was not carried out.

The extension to the two-dimensional angular estimation is not straightforward for various

wireless scenarios. For instance, antenna arrays are mounted on top of a tower in a typical

sectorized cellular case and while the desired field of view is wide in the azimuth domain,

it is relatively narrow in the elevation domain since most users are on the ground. Even

in indoor settings, antenna arrays are mounted on a wall and most users are concentrated

around a small angular sector in the elevation domain. Thus, a 2-D array architecture in

which the spatial Σ∆ processing occurs only along the vertical dimension of the array is

proposed. While the initial results on this problem were presented in [115], the system

model did not include the effects of array response and additive noise perturbations. The

main contributions are as follows:

• The signal model incorporates the fact that, in addition to having only a finite amount

of noisy data available, there are often other sources of estimation error. For instance,

the array response and the mutual coupling matrix (MCM) may be imprecisely known

and the noise modeling may be inaccurate. Similar to the perturbation studies in [116,

117], the second-order statistics of the estimation error is dependent on the aggregate

of these modeling errors.

• The covariance matrix of the estimation error of two well-known DOA estimation
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methods, the conventional Bartlett beamformer and the MUSIC algorithm is derived.

The closed-form expression for the covariance matrix of the estimation error is based

on a first-order Taylor expansion of the objective function, assuming that the various

sources of errors are uncorrelated.

• The simulation results show that the analysis is accurate and that the estimators

based on the output of Σ∆ ADCs outperform those based on standard low resolution

(1-2 bits) ADCs. The covariance matrix is simplified for the special case when array

perturbations are the dominant sources of error and it is shown that for higher levels

of array perturbation, the estimation error achieved with both one and two-bit Σ∆

ADCs is identical to that achieved with ideal ADCs.

• The analysis is simplified for the estimation of elevation angles only with uniform linear

arrays (ULAs). The high-SNR error floor is shown to be significantly lower than that

achieved with conventional 1-2 bits ADCs.

1.3 Outline of Dissertation

This dissertation is divided in two parts. In the first part, standard quantization is considered

and performance bounds for channel estimation with one-bit ADCs are derived. In Chapter

2, the statistical theory of quantization and one-bit ADCs is described and the Cramér- Rao

bound is introduced. Equivalent linear models to describe the one-bit operation. Narrow-

band and wideband channel models used in this dissertation are also listed.

In Chapter 3, CRB performance bounds on the channel estimation of one-bit mmWave

massive MIMO receivers for different types of channel models, namely, the structured, un-

structured, and dictionary-mismatched channels, are established. Numerical evaluations of

the CRBs are performed and the different CRBs are compared.
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In the second part of this dissertation, spatial implementations of the Σ∆ modulator are

considered. In Chapter 4, the working of the well-known temporal Σ∆ modulator as well as

its spatial analog are described. The extension of the Bussgang decomposition to spatial Σ∆

arrays is explained, along with the necessity for an element-wise Bussgang decomposition

for a better modeling of the cross-correlation between the ADC input and the quantization

noise. A description of the mutual coupling model used in Chapters 5 and 6 is provided.

In Chapter 5, the equivalent linear models developed in Chapter 4 are used to derive an

LMMSE channel estimator. Linear receivers based on the LMMSE channel estimate are

derived and expressions for the achievable spectral efficiency are derived. The performance

of the low-resolution Σ∆ ADC array is evaluated and compared against that of standard

low-resolution ADCs and infinite precision ADCs.

The problem of direction finding with a rectangular array employing spatial Σ∆ modulation

is considered in Chapter 6. The asymptotic covariance matrix of the estimation error of both

the elevation and azimuth angles of arrival estimated with two well-known algorithms- the

Bartlett beamformer and the MUSIC algorithm, is derived. The system model also takes

into account array perturbations and errors in modeling the spatial covariance matrix of the

additive receiver noise.

Chapter 7 concludes the dissertation with a summary of chief findings and ideas for future

expansion of this work are suggested.
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Part I
Standard quantization: background and the Cramér-Rao bound
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Chapter 2

Preliminaries and Analog-to-Digital

Conversion

In this chapter, some concepts that will be used in the remainder of this dissertation will be

reviewed. In particular, the commonly used notation will be listed followed by a discussion

on the statistical theory of quantization and one-bit ADCs, the Cramér- Rao bound (CRB),

and channel models that will be used throughout this dissertation.

2.1 Notation

The mathematical notation used frequently are listed here. Boldface lowercase x denotes

a vector and boldface uppercase X denotes a matrix. XT , XH and X∗ are the transpose,

Hermitian transpose, and conjugate of X, respectively. Tr (X) is the trace of the matrix X

and X† denotes pseudo-inverse of X. The matrix IM denotes a M ×M identity matrix. The

ith element of x and the (i, j)th entry of X are represented by xi and [X]ij respectively. The

Hadamard (element-wise) product is represented by �, the Kronecker product by ⊗ and the
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convolution operation by ~. The operation vec(·) denotes the vectorization operation, i.e.

the stacking of the columns of a matrix one below the other. Real and imaginary parts are

given by Re(·) and Im(·) respectively. E[·] is the expectation operator. The ith row and

jth column of the matrix X are given by X(i,) and X(,j) respectively. X � Y and X � Y

mean that X − Y is positive semidefinite and positive definite respectively. The function

modM(·) represents the modulo-M operator, and bzc is the largest integer smaller than z.

A circularly symmetric complex Gaussian vector with mean a and covariance matrix B is

denoted by x ∼ CN (a,B). The cumulative distribution function (cdf) and the standard

normal density are given by Ψ(x) and Ψ′(x), respectively, and p(x) denotes the probability

density function (pdf) of x. Ci(x) = η + log(x) +
∫ x

0
cost−1

t
dt and Si(x) =

∫ x
0

sint
t
dt are the

cosine and sine integral functions, respectively, where η is the Euler–Mascheroni constant.

The unit step function is denoted by u(·), the Dirac-delta function is denoted by δ(·) and

the Kronecker-delta function is denoted by δ[·].

2.2 Theory of quantization

Sampling and quantization are operations applied to analog signals in order to convert them

into digital signals. A typical sampling and quantization system is shown in Fig. 2.1 and

consists of a sample and hold circuit that operates with a sampling frequency fs and converts

the continuous time signal x(t) to its discrete-time version x[n] whereas the analog-to-digital

(A/D) converter performs a discretization in amplitude. The digital-to-analog converter

(DAC) performs the reverse operation: it converts the input digital signal to the analog

domain. If the sampling theorem is satisfied i.e., the sampling frequency fs is at least

twice the highest bandwidth present in the signal x(t) and if the number of quantization

levels is large enough, the signal y[n] is a good approximation of x(t) as in Fig. 2.2 and the

error introduced from quantization can be neglected. For coarse quantization, however, the
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Figure 2.1: Sampling and quantization.
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Figure 2.2: Example of an analog signal x(t) and its digital version y[n] shown in blue. The
various quantization levels are illustrated with dotted lines.

effects of quantization are relevant and should be taken into consideration while designing

communication systems. Practical ADCs present several undesired effects such as imperfect

filtering and noise that can cause distortion and jitter. In this dissertation, only on the

non-linear effects of quantization are studied and the filtering effects are taken to be part of

the linear channel.

The quantization operation is represented by the function Q(·). Fig. 2.3 shows two examples

of regular quantizers- a uniform quantizer where the thresholds are uniformly spaced and

a non-uniform regular quantizer where the threshold spacings are variable. A more gen-

eral form not illustrated here is the non-regular quantizer that implements a many-to-one

mapping and a quantization level may be assigned to several disjoint input-level intervals.

However, this form is rarely preferred in practice since they are harder to implement. A

regular quantizer is characterized by its resolution b bits, the 2b quantization levels are rep-

resented by νi, i ∈ {1, 2, . . . , 2b} and the corresponding quantization intervals are
(
ν lo
i , ν

hi
i

)
.
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Figure 2.3: Uniform and non-uniform quantizers.
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Figure 2.4: Quantization levels and regions.

The intervals satisfy ν lo
i = νhi

i−1, ν lo
1 = −∞ and νhi

2b
= ∞. Fig. 2.4 shows the example of a

three-bit eight-level quantizer. Then, the general form of Q(x) is given by

Q(x) =
2b∑
i=1

νi
(
u(x− νhi

i )− u(x− ν lo
i )
)
, (2.1)

where u(·) is the unit-step function.

A commonly used approach to select the quantization levels and thresholds is to minimize

the mean-squared error (MSE) or distortion between the input and the output of the quan-

tizer given a number of quantization levels and was studied by Lloyd [118] and Max [119].

Mathematically, the MSE is given by

E
[
(Q(x)− x)2] =

∫ ∞
−∞

(Q(x)− x)2 p(x)dx =
2b∑
i=1

∫ νhii

νloi

(νi − x)2 p(x)dx, (2.2)

where p(x) is the pdf of x. Minimizing the above MSE with respect to νi and ν lo
i , ν

hi
i leads

19



to the so-called Lloyd-Max conditions:

1. The boundaries of the quantization regions are given by the midpoints of the quanti-

zation levels.

ν lo
i = νhi

i−1 =
νi + νi−1

2
.

2. The quantization levels are the centroid points between two successive quantization

decision thresholds

νi =

∫ νhii
νloi

xp(x)dx∫ νhii
νloi

p(x)dx
.

For a Gaussian random variable variable with variance σ2
x, the above condition can be

simplified to

νi =
σx√
2π

exp(− (νloi )2

2σ2
x

)− exp(− (νhii )2

2σ2
x

)

Ψ(
νloi
σx

)−Ψ(
νhii
σx

)
.

The above procedure results in a non-uniform quantization levels in general. Since the above

non-linear equations have to be solved simultaneously, they are usually solved by an iterative

Newton-type method with an arbitrary initialization of quantization levels. Table 2.1 shows

the optimal quantization levels and thresholds obtained from the Lloyd-Max algorithm.

Furthermore, the above equations also show that the output levels of the quantizer should

vary as per the variations in the input, given by the standard deviation σx. That is, the

quantizer should be designed such that it is responsive to a set of possible inputs rather

than for a single set of input values, otherwise some of the input samples may get clipped.

This is achieved with the help of an automatic gain control (AGC) which consists of a

regulating circuit to maintain a suitable level of the output despite variations in the input

level. It is assumed that the system is equipped with an instantaneous AGC and the topic
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Gaussian R.V. Laplacian R.V.
# bits Q. levels Thresholds Q. levels Thresholds

1 [-0.79,0.79] [0] [-0.70,0.70] [0]

2
[-1.51,-0.45,
0.45,1.51]

[-0.98,0,0.98]
[-1.83,-0.42,
0.42,1.83]

[-1.12,0,1.12]

3

[-2.15,-1.34,
-0.76,-0.24,
0.24,0.76,
1.34,2.15]

[-2.03,-1.18,-0.56,0,
0.56,1.18,2.03]

[-3.09,-1.67,
-0.83,-0.23,
0.23,0.83,
1.67,3.09]

[-2.38,-1.25,-0.53,0,
0.53,1.125,2.38]

Table 2.1: Optimal Lloyd-Max quantization levels and thresholds for zero mean and unit
variance Gaussian and Laplacian random variables.

of AGC calibration is ignored in this dissertation. Lloyd-max quantization is optimal for a

fixed rate of encoding. For some applications like speech coding, it is more appropriate to

minimize the mean squared error for a given level of entropy rather than for a given number

of representation points, since the expected number of bits per symbol are governed by the

entropy of the quantizer output [120]. This topic will not be covered in this dissertation.

A simple model for the quantizer is the additive noise model for which the output of the

quantizer is defined as the input plus the quantization error. If a uniform quantizer is used

and if the number of bits b is sufficiently high, the quantization error/noise q[n] = y[n]−x[n]

is assumed to be uniformly distributed in the range [−∆/2,∆/2] and has a variance equal

to σ2
q = ∆2

12
[121]. The statistical representation of quantization error under such a model is

based on the assumptions that

• the quantization has a large number of levels and the step width is relatively small

• the quantizer rarely overloads

• the input pdf is smooth.

These assumptions are often not justified in practice. For instance, the quantizer may

have only a few levels and the step width is typically not small, and the input may be

21



drawn from a discrete alphabet. Using the wrong quantization noise model can lead to poor

characterization of the system. Thus, more accurate models are needed.

The Bussgang decomposition and Bussgang’s theorem [96] are useful tools to analyze the

non-linearity introduced by coarsely quantized ADCs like one-bit ADCs. The theorem es-

sentially states that the cross-correlation between the input and output of a nonlinear device

affected by Gaussian noise can be computed in terms of the input autocorrelation function.

Bussgang’s result holds for Gaussian signals and for any nonlinear function. The main result

is summarized by Theorem 1.

Theorem 1 (Bussgang theorem): Let x = f(t1) and z = g(t2) be zero-mean complex

Gaussian random variables and let y = U(x) be a nonlinear function of x. The cross-

correlation between y and z, Cyz is given in terms of the cross-correlation between x and z,

Cxz as

Cyz = E[U(x)z∗] =
E[U(x)x∗]

E[|x|2]︸ ︷︷ ︸
γ

Cxz,

where γ is known as the Bussgang gain. Thus, the cross-correlation between two signals,

when one of which has undergone a transformation, has the same form as the original cross-

correlation.

A consequence of the above theorem is that for z = x, the output y can be decomposed as

y = γx+ q

where q is a noise term that is uncorrelated to with both y and x. This is known as

the Bussgang decomposition [27]. It should be pointed out that the Bussgang theorem

is distinguished from the Bussgang decomposition, which is used equivalently as a linear

decomposition even when the input is not necessarily Gaussian. For the one-bit quantizer
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(comparator), the output is y = Q(x) = sign(Re(x)) + jsign(Im(x)), and the Bussgang gain

is given by

γ =
E[Q(x)x∗]

E[|x|2]
=

E[|Re(x)|]
E[|Re(x)|2]

=
2√
πσx

.

The autocorrelation of y, Ry(τ) can be expressed in terms of the autocorrelation function of

x, Rx(τ), using Price’s theorem [97]

Ry(τ) =
2

π
sin−1[Rx(τ)].

Bussgang’s results have been extended to MIMO systems in recent years. In particular, for

an M -element multi-antenna system with input x ∈ CM×1 ∼ CN (0,Cx) and ADC output

y = Q(x) ∈ CM×1, the Bussgang decomposition can be written in matrix-vector form as [27]

y = Γx + q,

where Γ is a matrix chosen to make q uncorrelated with y and x. This choice is equivalent

to selecting a Γ that minimizes the mean-squared error between x and y, i.e.

Γ = CyxC
−1
x ,

and Γx is the linear MMSE estimate of y given x. For one-bit quantization, Cyx is given by

Cyx =
√

2
π
CxΣ

− 1
2

x and, therefore we have, Γ =
√

2
π
Σ
− 1

2
x , where Σx = diag(Cx). Invoking

Price’s theorem as before, the autocorrelation matrix of y, Cy

Cy =
2

π

[
sin−1

(
Σ
− 1

2
x Re(Cx)Σ

− 1
2

x

)
+ jsin−1

(
Σ
− 1

2
x Im(Cx)Σ

− 1
2

x

)]
.

Note that even though Γ was a diagonal matrix in the above example, this is not necessarily
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the case in case of non-Gaussian signals.

In this dissertation, the above decomposition is referred to as the vector-wise Bussgang de-

composition to distinguish it from the element-wise Bussgang decomposition outlined below.

The motivation for considering an element-wise decomposition is that the condition that q

and x are uncorrelated may be too stringent and may not always be valid in practice as we

will see in Chapter 4. In the element-wise version, Γ is considered to be a diagonal matrix

given by Γ = diag(γ1, γ2, . . . , γM). At the mth antenna element, we have

ym = γmxm + qm

γm =
E[Qm(xm)x∗m]

E[|xm|2]
=

E[|Re(x)|]
E[|Re(x)|2]

.

The element-wise decomposition will be elaborated on in Chapter 4.

2.3 Cramér-Rao bound (CRB)

In parameter estimation, it is often useful to quantify a benchmark against which we can

compare the performance of an unbiased estimator. Performance bounds are useful in de-

signing systems and in analyzing the effect of different parameters that affect the system

performance. The concept of efficient estimators is also related to the existence of such a

lower bound. The celebrated Cramér-Rao bound (CRB) is a lower bound on the MSE of

unbiased estimators and it is closely related to the theory of maximum likelihood (ML).

ML estimators are known to be asymptotically efficient and achieve the CRB. Estimation

theory in general consists of two frameworks- deterministic and Bayesian approaches. In the

deterministic approach, the parameters to be estimated are modeled as deterministic but

unknown, whereas in the Bayesian approach, the parameters are modeled as random vari-

ables with known a priori pdfs and the goal is to estimate their realizations. Similarly, the
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performance bounds can also be classified as deterministic or Bayesian. The most general

deterministic bound is the Barankin bound [122], which is not straightforward to obtain in

closed-form. The CRB is the most widely used deterministic local bound since it is relatively

easy to compute for many practical problems. The Bhattacharya bound [123] is another lo-

cal bound which is a generalized version of the CRB. The Bayesian class of bounds consists

of the Ziv-Zakäı family [124], which relates the MSE to the probability of error in a binary

hypothesis testing problem, and the Weiss-Weinstein family [125], to which the Bayesian

CRB belongs.

Let ln p(x;θ) be the log-likelihood function parameterized by the deterministic vector θ that

is of interest to be estimated. The CRB theorem is stated in Theorem 2.

Theorem 2 (CRB theorem [126]): Assuming that p(x;θ) satisfies the regularity condition

E [∇θln p(x;θ)] = 0, for all θ,

the variance of an unbiased estimator of θ, θ̂, satisfies

var(θ̂i) ≥
[
J−1
D

]
ii

where JD is the Fisher information matrix (FIM) given by

[JD]ij = −E
[
∂2ln p(x;θ)

∂θi ∂θj

]
.

An unbiased estimator that attains the bound exists if and only if the gradient ∇θ ln p(x;θ)

can be written as

∇θ ln p(x;θ) = JD (g(θ)− θ) ,
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and g(θ) is the estimator that attains the bound.

The Bayesian version of the CRB can be derived when θ is a random variable with the a

priori pdf p(θ). The overall FIM in this case is the sum of two information matrices

J = JD + JP , [JD]ij = −E
[
∂2ln p(x|θ)

∂θi ∂θj

]
[JP ]ij = −E

[
∂2ln p(θ)

∂θi ∂θj

]
.

In the case of Gaussian observations for which x ∼ N (µ(θ),C(θ)), the CRB is given by the

compact expression [126]

[JD]ij =

[
∂µ(θ)

∂θi

]T
C−1(θ)

[
∂µ(θ)

∂θj

]
+

1

2
Tr

(
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

)
.

In Chapter 3, the CRB is used to evaluate the performance of several channel parameter

models in massive MIMO systems when the base station (BS) is equipped with one-bit

resolution ADCs.

2.4 Channel models

The MIMO channel models considered in this dissertation are discrete-multipath channel

models. The signal at the receiver is the sum of a finite number of copies of the transmitted

signal as in Fig. 2.5 where each path responsible for reflection, scattering or diffraction of

the transmitted signal is characterized by its own path loss, delay and a possible Doppler.

The illustrated channel response shows three such multipaths with delays τ1, τ2 and τ3. The

channel impulse response, represented by h(t, τ) is the low-pass response of the channel at

time t to an impulse at time t−τ and a general model for such a channel is given by [127, 128]
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h(t, τ)

τ

τ1 τ2 τ3

Figure 2.5: Multipath fading and the channel impulse response.

h(t, τ) =
L∑
l=1

αle
jωc(t−τl)δ(τ − τl), (2.3)

where τl and αl are the delay and path loss/shadowing coefficient associated with the lth

multipath, and ωc is the carrier frequency.

For a narrowband channel for which the delay spread is small relative to the inverse signal

bandwidth, if L is large enough, the central limit theorem can be invoked to approximate

αl and τl as stationary and the real and imaginary parts of the channel are jointly Gaussian
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processes. A general model for a narrowband MIMO channel is given by

h =
L∑
l=1

αlal, (2.4)

where a is a vector of length equal to the number of receive antennas, M , and contains the

array response for the signal arriving in path l.

In a structured channel model, the array responses al are known functions of the direction-of-

arrival (DOA) associated with the multipaths. In the nominal case, the arrays are precisely

calibrated assuming that the array configurations are known. The model may be modified

to factor in situations where there is some uncertainty in the array responses. Imperfect

calibration, presence of mutual coupling between antenna elements, can be factored into the

overall response by adding a small perturbation term to the nominal response: al + ∆al.

In an unstructured channel model, the specific functions that generate al are not defined.

The purpose of considering such a model is to approximate a structured channel model when

there are severe calibration errors and to simplify the channel estimation process.

The specifics of the structured and unstructured channel models and the associated pertur-

bation models are discussed in more detail in Chapter 3. Slightly different variations of the

channel model are used throughout the dissertation depending on the application and the

scenario under consideration.
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Chapter 3

Channel Estimation Performance

Bounds in One-Bit Millimeter-Wave

Massive MIMO Systems

In this chapter, CRB performance bounds for mmWave massive MIMO, where the BS is

equipped with one-bit ADCs, are considered.

Traditional channel models that assume Rayleigh fading are not suitable for mmWave sys-

tems because the scattering environment of mmWave channels is not dense, but rather sparse

with line-of-sight (LOS) and a few reflected propagation paths contributing to the effective

channel. The analysis focuses on a one-bit mmWave single-input-multiple-output (SIMO)

pilot-based single-carrier transmission system where a single transmitter is equipped with one

antenna and the base station employs an antenna array. To simplify the analysis, Doppler

spread is not assumed to be present, so the angle and delay parameters are assumed to be

time-invariant over the channel estimation period. A structured channel model for a single

user where the channel is composed of a superposition of multipaths characterized by path
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delays and DOAs, an unstructured channel model where the channel is a generic FIR filter,

and a dictionary-based channel model, where the path delays and DOAs are selected from

small perturbations on a discrete grid and a sparsity constraint applies to the vector of path

loss components, are considered. The Bayesian CRB when the array response is imperfectly

known and is affected by perturbations in the sensor pattern or position is also derived. The

CRBs are evaluated numerically and the effects of various system parameters on the CRB

are studied.

3.1 MmWave Channel Model

Transmit
Filter

+

Receive
Filter

g′(t) g′′(t) ym[n+ p

P
]

1-bitChannel

h′

m(t)
s(t)

w′

m(t)

x′

m(t) xm

[

n+ p

P

]

hm

[

k + p

P

]

Quantizer

{s[k]}

Sampling

Figure 3.1: System block diagram. © IEEE.

An uplink mmWave MIMO system with a single-antenna user terminal and M receive an-

tennas at the base station is considered. It is assumed that the wireless communication

channel is linear and its properties change slowly with respect to the signal duration. The

communication system block diagram is illustrated in Fig. 3.1. The received baseband signal

at the mth antenna is given by

x′m(t) =
√
Pt

∫ ∞
−∞

h′m(t′)s(t− t′)dt′ + w′m(t), (3.1)

where Pt is the transmit signal power, h′m(t) is the impulse response of the channel from the

transmitter to antenna m at time t and w′m(t) is the corresponding noise.
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The source signal is assumed to be band-limited to [−B/2, B/2], and w′m(t) is a complex

circularly symmetric and temporally white Gaussian process with power spectral density N0.

The source signal s(t) is encoded as a digital signal with a common pulse period Ts, where

the complex valued symbols {s[k]} are modulated by a pulse shape function g′(t) as

s(t) =
∞∑

k=−∞

s[k]g′(t− kTs).

The received signal in (3.1) is assumed to be fractionally sampled by the filter g′′(t) by a

factor of P , and can be equivalently represented in sampled time as

xm

[
n+

p

P

]
=
√
Pt

∞∑
l=−∞

hm

[
l +

p

P

]
s[n− l] + wm

[
n+

p

P

]
, (3.2)

where p = 0, 1, . . . , P −1, hm
[
l + p

P

]
is the equivalent discrete-time channel and wm

[
n+ p

P

]
is the discrete-time noise, given by

hm

[
l +

p

P

]
=

∫ ∞
−∞

∫ ∞
−∞

g′′
((
l +

p

P

)
Ts − t′′

)
h′m(t′′ − t′)g′(t′)dt′dt′′

wm

[
n+

p

P

]
=

∫ ∞
−∞

g′′(t′′)w′m

((
n+

p

P

)
Ts − t′′

)
dt′′.

The effects of the transmit and receive filters, g′(t) and g′′(t), are absorbed into g(t) = g′′(t)~

g′(t). The convolutive channel is assumed to be frequency selective with maximum delay

length of L symbol periods, so that the FIR assumption means that at most L consecutive

symbols play a role in the received signal, i.e. hm
[
l + p

P

]
is zero outside the interval [0, L−1].

Generally, oversampling w.r.t. the Nyquist rate results in noise correlation [129]. However,

if the receive filter g′′(t) is chosen to be a root-Nyquist pulse, the discrete-time noise wm[n] is

white [130]. Consequently, the root-raised-cosine filter is chosen for the transmit and receive

filters in our analysis, so that

g(t) =
sin πt/Ts
πt/Ts

cos παt/Ts
1− 4α2t2/T 2

s

,
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where α is the roll-off factor and the noise wm[n] ∼ CN (0, σ2), σ2 = N0B. In the analysis,

it is assumed that the noise variance σ2 is known, since the channel gains and σ2 are not

separately identifiable when one-bit quantization is used, which leads to a singular FIM [77,

78].

3.1.1 Unstructured Channel Model

In the unstructured case, the channel is modeled as a uniformly sampled FIR filter charac-

terized by the complex gains of each path to the receiver. Let βr,m be the complex path gain

of the rth path to the mth antenna so that the channel between the source and antenna m

is

h′m(t) =
R∑
r=1

βr,mδ(t− (τ0 + (r − 1)∆′)),

where τ0 corresponds to the delay of the first multipath arrival, and the value of ∆′ is

determined by the minimum resolvable time difference between different paths. Under this

FIR model, the discrete channel can be expressed as h[k] = [h1[k], h2[k], . . . , hM [k]]T , where

k = l + p
P

, and

h[k] =



β1,1 . . . βR,1

β1,2 . . . βR,2
... . . .

...

β1,M . . . βR,M


︸ ︷︷ ︸

β̃∈CM×R



g(kTs − τ0)

g(kTs − (τ0 + ∆′))

...

g(kTs − (τ0 + (R− 1)∆′))


. (3.3)

The parameters of the unstructured model are comprised by β, the vector of all complex

path gains, i.e. β = vec(β̃), and βRe = Re (β) ∈ RMR×1 and βIm = Im (β) ∈ RMR×1.
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3.1.2 Structured Channel Model

The structured channel model is a geometric channel parameterized by path loss components,

path delays and DOAs. The response of the antenna array to a waveform arriving from

direction θ is denoted by a(θ,ρ) ∈ CM×1. The vector ρ represents parameters on which

the array response depends (e.g., antenna positions, gain and phase response, etc.). These

parameters are assumed to be a priori known to be Gaussian with some nominal mean value

ρ0 and covariance Ω. Let the DOA of the rth multipath, measured clockwise with respect

to the y-axis, be θr, r = 1, 2, . . . , R, and assume that the antenna elements are close enough

together so that they share a common complex path gain γr for the rth path. The path gain

γr is an aggregate of the large-scale fading, namely the path loss and shadowing, as well as

the small scale fading. More specifically,

βr,m = γrqm(θr,ρ)exp(−jωcτr,m), (3.4)

where ωc is the carrier frequency and qm(θr,ρ) is the sensor pattern of the mth sensor in the

direction θr. The channel between the source and the mth antenna is

h′m(t) =
R∑
r=1

γrqm(θr,ρ)exp(−jωcτr,m)δ(t− τr,m).

Incorporating the transmit and receive pulse shaping, the discrete-time equivalent channel

becomes hm[k] =
∑R

r=1 γrqm(θr,ρ)g(kTs− τr,m)exp(−jωcτr,m) and stacking the discrete-time

channels from all M antennas, we get

h[k] =
R∑
r=1

γr



g(kTs − τr,1)

g (kTs − τr,2)

...

g (kTs − τr,M)


� a(θr,ρ), (3.5)
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where � is the Hadamard (element-wise) product and the term exp(−jωcτr,m) in (3.4) was

absorbed into the expression for the array response a(θr,ρ) by writing it in terms of the

array sensor coordinates. Note that (3.5) uses time delays rather than phase shifts in the

pulse shaping functions because the inverse bandwidth of the signals at mmWave frequencies

may approach the inter-element delay between antennas in the array.

As an example of the array perturbation parameter ρ, consider the case of sensor position

and pattern perturbation. The array response vector a(θr,ρ) can be written as

a(θr,ρ) =


q1(θr,ρ)exp (−j2π(b1(ρ) sin θr + c1(ρ) cos θr)/λ)

...

qM(θr,ρ)exp (−j2π(bM(ρ) sin θr + cM(ρ) cos θr)/λ)

 ,

where (bm(ρ), cm(ρ)) are the coordinates of the mth sensor. In the presence of an antenna

pattern perturbation only [112], we have qm(θr,ρ) = qm,0(θr) + ρm, where qm,0(θr) is the

nominal pattern, ρm is the complex perturbation and ρ stacks both the real and imaginary

parts of the complex perturbation for all antennas, so that ρ ∈ R2M×1. For sensor position

perturbations only, the sensor coordinates can be modeled in a recursive manner as in [110].

The following piecewise linear model applies to flexible array structures: (bm(ρ), cm(ρ)) =

(bm−1 +δ sinφm(ρ), cm−1 +δ cosφm(ρ)), where φm(ρ) = φm−1 +ρm−1, with initial conditions

φ1 = π/2, b1 = c1 = 0, and δ is the spacing between antenna elements. Thus, ρm is the

incremental angular perturbation of the mth sensor and ρ ∈ RM−1×1.

A special case of the above modeling is a uniform linear array operating with a nominal

omnidirectional sensor pattern, qm(θr) = 1 and ρ = 0. The path delay to the mth sen-

sor is given by τr,m = τr + (m − 1) δ
c
sinθr, where c is the speed of light and τr = τr,1 is

the time delay of the rth propagation path to the first antenna element. Let gk(τr, θr) =[
g(kTs − τr), . . . , g

(
kTs − τr − (M−1)δsinθr

c

)]T
, a(θr) =

[
1, e−j

2πδ
λ

sinθr , . . . , e−j
2πδ
λ

(M−1)sinθr
]T

where λ is the wavelength, and γ = [γ1, γ2, . . . , γR]T . The lth delay-tap of the channel
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can then be written as

h[k] = [gk(τ1, θ1),gk(τ2, θ2), . . . ,gk(τR, θR)]︸ ︷︷ ︸
Gk ∈RM×R

� [a(θ1) a(θ2) . . . a(θR)]︸ ︷︷ ︸
A∈CM×R

γ. (3.6)

In the derivation of the CRB, the following notation is used: γRe = Re (γ) and γIm = Im (γ).

Note: Although the path delays, τr,m, are functions of ρ (in the case of position perturbation,

for example), this effect is not considered in the derivation of the FIM since the derivative

of τ with respect to ρ is negligible.

3.1.3 Dictionary Based Channel Model

In mmWave transmission, the propagation channel is often described using a sparse scatter-

ing model. The underlying channel is still parameterized by DOAs, path delays and complex

path gains as in the structured model, but the DOAs and delays are assumed to lie on a fixed

grid, and the channel estimation is formulated as a sparse recovery problem. This approach

leverages tools available in compressive sensing to design efficient algorithms for determining

the channel. A grid mismatch occurs if a particular DOA is not present in the possible DOA

set. In our analysis, the true DOA is modeled as a perturbation to the nearest DOA in the

grid. Let the uniform grid of DOAs consist of Na points with Na ≥ M , so that the DOA

dictionary is the set θ′ ∈ {0, 2π/Na, . . . , 2π(Na − 1)/Na}. Then, a Taylor interpolation of

a(θ,ρ) around the nearest DOA in the grid, θ′, yields

a(θ′ + θ,ρ) = a(θ′,ρ) + θ
∂a(θ,ρ)

∂θ

∣∣∣∣
θ=θ′

. (3.7)

Here, θ is used to denote the grid mismatch between the nearest DOA grid point and the

DOA of the corresponding multipath, rather than the multipath DOA as in the structured

channel.
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Similarly, the uniform delay grid is the set τ ′ ∈
{

0, (L−1)Ts
Nd

, . . . , (L−1)(Nd−1)Ts
Nd

}
and a Taylor

interpolation similar to (3.7) can be performed to obtain

g(kTs − τ ′ − τ) = g(kTs − τ ′) + τ
∂g(kTs − τ)

∂τ

∣∣∣∣
τ=τ ′

. (3.8)

Here, τ is used to denote the grid mismatch between the nearest delay grid point and the

delay of the corresponding multipath. Having taken into account the dictionary errors, the

discrete-time channel h[k] for the dictionary-based channel model is given by

h[k] = (GD(kTs, τ )⊗AD(θ,ρ))γ, (3.9)

where AD(θ,ρ) ∈ CM×Na and GD(kTs, τ ) ∈ RP×Nd are the angular and delay domain per-

turbed dictionary matrices, respectively, and θ and τ are the vectors of grid mismatch errors

to be estimated. The columns of GD(kTs, τ ) are of the form [g(kTs − τ ′ − τ), . . . , g((k +

P−1
P

)Ts − τ ′ − τ)]T , and the columns of AD(θ,ρ) are of the form a(θ′ + θ,ρ). The complex

unknown vector γ is a sparse NaNd × 1 vector that carries the path gains from the corre-

sponding DOAs and delays in the dictionary. The sparse formulation implies that γ only

has R � NaNd non-zero elements. In the analysis of the CRB for this model, and unlike

the structured and unstructured models described above, it is assumed that the locations of

the non-zero elements in γ, and therefore the nearest angle and delay grid points are known

a priori. The benefit of this a priori information will depend on the resolution of the grid,

and the ability of dictionary-based methods to correctly identify the correct grid points. The

assumption should be a reasonable one for dictionaries whose grids are not too finely spaced.
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3.1.4 System Model

Gathering the received signals at the M antennas from (3.2) in x and the noise in w,

x
[
n+

p

P

]
=
√
Pt

L−1∑
l=0

h
[
l +

p

P

]
s[n− l] + w

[
n+

p

P

]
,

where h
[
l + p

P

]
corresponds to (3.6) for the structured channel, (3.3) for the unstructured

channel and (3.9) for the dictionary based channel model. The samples from N source symbol

periods, where the coherence time of the channel is greater than NTs are collected, and the

received signal at each antenna are sampled at P times the symbol rate. The MP × N

spatial and temporal samples of the received signal are collected in the matrix X to get

X =



x[0] x[1] . . . x[N − 1]

x[ 1
P

] x[1 + 1
P

] . . . x[N − 1 + 1
P

]

...
...

...
...

x[P−1
P

] x[1 + P−1
P

] . . . x[N − 1 + P−1
P

]



=
√
Pt



h[0] h[1] . . . h[L− 1]

h[ 1
P

] h[1 + 1
P

] . . . h[L− 1 + 1
P

]

...
...

...
...

h[P−1
P

] h[1 + P−1
P

] . . . h[L− 1 + P−1
P

]


︸ ︷︷ ︸

H∈CMP×L



s[0] s[1] . . . s[N − 1]

s[−1] s[0] . . . s[N − 2]

...
...

...
...

s[−L+ 1] s[−L+ 2] . . . s[N − L]


︸ ︷︷ ︸

S̃∈CL×N

+W.

(3.10)

Vectorizing (3.10) and taking the real and imaginary parts separately, we have

x =

 Re (vec(X))

Im (vec(X))

 = Sh + w, (3.11)
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where,

S =

 Re
(
S̃T ⊗

√
PtIMP

)
−Im

(
S̃T ⊗

√
PtIMP

)
Im
(
S̃T ⊗

√
PtIMP

)
Re
(
S̃T ⊗

√
PtIMP

)
 ∈ R2MNP×2LMP ,

h =

 Re (vec(H))

Im (vec(H))

 ∈ R2LMP×1,

w =

 Re (vec(W))

Im (vec(W))

 ∈ R2MNP×1,

Note that w ∼ N (0, σ
2

2
I). The per-antenna SNR at the receiver is defined as

SNR =
Pt
σ2

L−1∑
l=0

P−1∑
p=0

E
[
|hm[l + p/P ]|2

]
.

As in [27],the quantization operation is defined as Q(·) = 1√
2
(sign(·))), where the sign op-

eration is performed separately for the real and imaginary parts, so the quantized output x

is

y = Q(x) = Q(Sh + w).

A distinction between the unstructured, structured and dictionary based models is that in

the structured model and the dictionary based model, the channel parameters are estimated,

whereas in the unstructured model, the channel h is estimated.

3.2 Cramér-Rao Bound

In this section, the CRB is derived for parameters of the spatially structured and unstruc-

tured channel models. For the spatially structured channel model, the parameter vector
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consists of both deterministic and stochastic components. The deterministic components

are, namely, the DOAs, path delays and complex path gains. When considering sensor po-

sition perturbations only, we have ρ ∈ RM−1×1, and for pattern perturbations only, we have

ρ =

[
Re(ρ1),Re(ρ2), . . . ,Re(ρM), Im(ρ1), Im(ρ2), . . . , Im(ρM)

]
∈ R2M×1. The full list of

parameters is Θ =
[
θ, τ ,γRe,γIm,ρ

]
under the structured and dictionary-based channel

models, and Θ =
[
βRe,βIm

]
for the unstructured model. Assuming independent observa-

tions, the log-likelihood for the spatially structured and unstructured models, l(y; Θ), can

be obtained as

l(y; Θ) =
2MNP∑
k=1

ln Ψ

(
2

σ
ykuk

)
,

where yk is the kth element of y, uk =
(
s(k,)

)T
h, s(k,) is the kth row of S, and Ψ(x) is the

cumulative distribution function of the standard normal distribution. Assuming that the

regularity condition of the log-likelihood holds, the FIM has the following form [131]:

J =JD + JP ,

where JD and JP are the information matrices obtained from the data and the a priori

information, respectively. The (i, j)th elements of JD and JP are given by

[JD]i,j =− Ey,ρ

[
∂2

∂Θi∂Θj

l(y; Θ)

]
[JP ]i,j =Eρ

[
∂2

∂Θi∂Θj

(ρ− ρ0)TΩ−1(ρ− ρ0)

]
,

where Ω is the covariance matrix of ρ. Since only ρ is random, the matrix JP is given by

JP = blkdiag{diag(0D),Ω−1},
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where blkdiag{·} is a block-diagonal matrix where the arguments form the diagonal blocks,

and D = 4R, D = 2MR and D = 4R, for the structured, unstructured and dictionary based

channel models respectively.

The expectation with respect to the joint distribution of y and ρ in JD is difficult to compute.

Instead, the approach in [110, 112] is followed. If the perturbations are small, JD can be

approximated to order O(1) around ρ0, in which case

[JD]i,j ≈ −Ey

[
∂2

∂Θi∂Θj

l(y; Θ)

] ∣∣∣∣
ρ=ρ0

. (3.12)

Then, the CRB for the ith parameter of an unbiased estimator with E
[
Θ̂
]

= Θ is given by

the (i, i) element of the inverse of the FIM, where the FIM is computed at the “true” values

of Θ and ρ. That is,

var(Θ̂i) ≥
[
J−1(Θ)

]
i,i
.

The approximation in (3.12) is sufficiently accurate for values of ρ commonly encountered

in real calibrated systems (see [112] for more details).

3.2.1 Unstructured Channel

For the unstructured channel model, the FIM is given by

J =

 JβRe JβReβIm

JT
βReβIm JβIm

 ∈ R2MR×2MR, (3.13)
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with

JβRe =E
[
∇βRel(y; Θ)(∇βRel(y; Θ))T

]
∈ RMR×MR,

JβIm =E
[
∇βIml(y; Θ)(∇βIml(y; Θ))T

]
∈ RMR×MR,

JβReβIm =E
[
∇βRel(y; Θ)(∇βIml(y; Θ))T

]
∈ RMR×MR.

(3.14)

The expressions for the Jacobians are as follows:

DβRe =

[
∂h

∂βRe
1,1

,
∂h

∂βRe
1,2

, . . . ,
∂h

∂βRe
R,M

]
,

∂h[k]

∂βRe
r,m

= g(kTs − (τ0 + (r − 1)∆′)),

DβIm = jDβRe ,

where em is the unit vector with a 1 at the mth index.

3.2.2 Structured and Dictionary Based Channels

The regularity condition for the pdf of y can be easily verified. For the structured and the

grid mismatched dictionary based channel models, JD is block-partitioned and symmetric

and is given by

JD =



Jθ Jθτ JθγRe JθγIm Jθρ

JTθτ Jτ JτγRe JτγIm Jτρ

JTθγRe JTτγRe JγRe JγReγIm JγReρ

JTθγIm JTτγIm JTγReγIm JγIm JγImρ

JTθρ JTτρ JTγReρ JTγImρ Jρ


, (3.15)

where the expression for each matrix block is provided in Appendix A. Let uk =
(
s(k)
)T

h,
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(·)(i,) be the ith row of the argument and (·)(,i) be the ith column of the argument. Denoting

the Jacobian of h with respect to θ by Dθ, it is shown in Appendix A that Jθ can be written

as

[Jθ]i,j =E
[
∂l(y; Θ)

∂θi

∂l(y; Θ)

∂θj

]
=
(
D

(,i)
θ

)T
ST ΨD S D

(,j)
θ , (3.16)

where ΨD is a diagonal matrix with [ΨD]k,k = 2
σ2

(
Ψ′

(√
2
σ
uk

))2

Ψ
(√

2
σ
uk

)(
1−Ψ

(√
2
σ
uk

)) . In a similar manner,

expressions for the other sub-matrices of (3.15) in terms of Dθ, Dτ , DγRe and DγIm can be

derived. For instance, the sub-matrix Jθτ is given by

Jθτ = (Dθ)T ST ΨD S Dτ .

The expressions for the Jacobian matrices are derived in Appendix B, and are evaluated at

the nominal perturbation value ρ0.

3.3 Simulation Results

A ULA with half-wavelength spacing between antenna elements, i.e. δ = 0.5λ, λ = c/fc with

the carrier frequency fc = 60GHz is considered. The source signal s[n], n = −L+1, . . . , N−1,

is taken to be a randomly generated quadrature phase shift keying (QPSK) sequence. The

parameter r is chosen to be the raised cosine filter with roll-off factor α = 0.8. For wideband

systems, the channel bandwidths can be as high as 1GHz [132]. For this reason, in the

simulations the null-to-null bandwidth is set to 1GHz, the symbol duration Ts = 1ns, and the

received signal is oversampled at the sampling frequency fs = P×null− to− null bandwidth.

The oversampling factor is P = 3 in all plots except Fig. 3.7.

A comparison of the CRBs of the different channel models is accomplished by translating the
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CRB of the parameters Θ into the CRB of the channel by the following transformation [126]

CRB(h) � ∇Θh J−1 ∇T
Θh,

where ∇Θ(·) is the Jacobian with respect to Θ. The parameters for the structured channel

model are selected as follows. The angles of arrival of the multipaths are assumed to be

distributed independently and uniformly in [0, 2π). The R complex gains of the multipaths

γr are assumed to be generated from a complex normal distribution. The path delays τr, r =

1, 2, . . . , R, are chosen to be integer multiples of the sampling interval 1/fs. For the first

few simulations, the effect of array perturbations is ignored. Similarly, for the unstructured

channel, the elements of the spatial signatures βm,r,m = 1, 2, . . . ,M, r = 1, 2, . . . , R, are also

assumed to be generated independently and identically from a complex normal distribution

with unit variance, and ∆′ = 1/fs.

Finally, for the dictionary matrix in (3.9), Na = 2M and Nd = 2L−1. The angular and delay

domain mismatch errors, θ and τ , are generated independently and uniformly in [− π
2Na

, π
2Na

]

and [− (L−1)Ts
2Nd

, (L−1)Ts
2Nd

], respectively. The square root of the trace of the CRB matrix for each

of the parameters is computed and averaged over 50 realizations of the channel.

3.3.1 Performance vs. SNR

Fig. 3.2 (a) shows the square root of the trace of the channel estimate CRB as a function

of the SNR for a single line-of-sight path (R = 1) to the receiver and a single tap channel

(L = 1) with M = 32 receive antennas and pilot length N = 20. This is the frequency-flat

fading case with the unstructured model corresponding to the Rayleigh fading case.

The increase in the bound at high SNR in Fig. 2 (a) is commonly observed in one-bit sam-

pled systems, and is due to the loss of information in the channel gain as the amplitude of
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Figure 3.2: CRB(h), CRB(θ) and CRB(γ) with M = 32 and single LOS path for different
values of the channel delay-tap length. © IEEE.
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the received signal grows, and the FIM becomes rank deficient. This illustrates the benefit

behind dithering (stochastic resonance), where adding noise (lowering the SNR) can improve

estimation performance with coarsely sampled data. It is also observed that at low-moderate

SNRs, which is common in mmWave, the gap due to the quantization error between the un-

quantized and one-bit bounds is about 1.96dB as expected [133]. At higher SNRs, however,

the gap is much higher since the FIM becomes increasingly ill-conditioned due to reduced

identifiability of the channel gains. The CRBs for the unstructured one-bit and unquantized

channels are higher than the other CRBs since they reflect the estimation error for a total

of 64 real-valued parameters compared to only 3 structured and dictionary based channel

parameters (2 real-valued path gains and one DOA). Furthermore, the dictionary based CRB

is lower than the unstructured and structured counterparts. This is because approximate

knowledge of the DOAs and delays is available and the CRB reflects the estimation error for

the grid mismatch. Fig. 3.2 (a) provides a very interesting observation concerning the struc-

tured vs. unstructured models and one-bit quantization. Note that the channel estimation

lower bound for the structured model under one-bit quantization is significantly lower than

the bound for the unstructured model without quantization (perfect resolution), provided

that the SNR is below 10dB, which would be the typical case for mmWave systems. Thus,

the gain in parsimony provided by the structured model more than compensates for the

loss due to the coarse quantization, and this provides a strong argument for the use of the

structured model when the propagation environment is relatively simple.

When the channel is strongly frequency selective (large delay spread L), the received signal

power is spread evenly over time, the quantization noise becomes circularly symmetric, and

the resulting amplitude distortion caused by the quantization is reduced (see [39] for details).

This is evident in the CRB results shown in Figs. 2 (b) and (c). Fig. 3.2 (b) illustrates the

CRBs of γ and θ for different channel lengths L = 10, L = 30 and L = 60. The number of

pilots is set at N = 80 in all cases. It is seen that as the number of channel taps increases,

the degradation in performance due to quantization at higher SNRs also decreases. For
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Figure 3.3: CRB(h) of structured and unstructured channels, and CRB(θ) of structured
channels as a function of the number of receive antennas. © IEEE.

the same number of pilots, no effect on the CRB is observed at low-to-moderate SNRs.

The performance of the ideal system is insensitive to L, and therefore, the dashed curves

corresponding to the ideal system overlap. A similar effect is seen Fig. 3.2 (c) where the

CRB of the unstructured channel is plotted as a function of the SNR for different values of

L. Here, a single multipath is considered with the number of pilots fixed to N = 80. Since

the size of the β grows linearly with R and L, the CRB is normalized by MR. Thus, the

effect of quantization error from one-bit ADCs in longer frequency-selective channels is less

severe at high SNRs.
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3.3.2 Performance vs Number of Antennas

The effect of increasing the number of antennas on the CRB is studied next. In Fig. 3.3

(a), the CRB normalized by the number of receive antennas (
√

Tr(CRB(h))/M) is plotted

for the structured channel case, for varying values of M at different SNRs and delay tap

lengths. For the case with L = 45, the SNR is 5dB, and for the N = 100 case- L = 15 and

SNR = 5dB. For the other plots, L = 15. The number of pilots is fixed to N = 60 and the

number of multipaths is R = 4. As expected, increasing the number of antennas reduces the

average estimation error in each channel coefficient. In [39], it was found that, for a given

SNR, the number of antennas in one-bit systems with an unstructured channel model should

increase by approximately 2.5 times to meet the achievable rate of an otherwise equivalent

ideal unquantized system. At SNR = −5dB, fewer than twice the number of antennas are

required for the one-bit system to achieve the same channel estimation performance as the

unquantized system. For example, the one-bit CRB at M = 80 is equal to the unquantized

CRB at M = 50. At 5dB SNR, it is seen that the number of antennas should be increased by

slightly more than a factor of two; the one-bit CRB at M = 110 is equal to the unquantized

CRB at M = 50. At 5dB SNR, even the highly frequency-selective channel (L = 45)

has the same CRB as a channel with L = 15 as seen by the overlapping blue and black

curves. At higher SNRs, it can be expected that one-bit systems are advantageous for highly

frequency-selective channels.

The CRB is plotted as a function of M for unstructured channels in Fig. 3.3 (b). Since

the number of parameters for the unstructured channel scales with M (more specifically,

the number of parameters is 2MR), the CRB is normalized by MR, and N = 80. As

expected, increasing the number of antennas reduces the average estimation error in each

channel coefficient. At low SNRs, the number of antennas needed by one-bit systems has to

again increase by almost two times to cope with the loss due to quantization distortion. For

instance, at SNR = 0dB, the one-bit system with M = 100 achieves the same CRB as the
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unquantized system with M = 50. As the SNR is increased, it is found that the number of

antennas should be increased even more to meet the CRB of the unquantized system.

Fig. 3.3 (c) shows the CRB for θ as a function of the number of antennas with the case for

N = 100 corresponding to L = 15 and SNR = 5dB. The constrained CRB is also illustrated

for SNR = 5dB and L = 15. The dotted line indicates the scaled angular resolution of the

dictionary based channel model. The figure also shows the grid spacing of the dictionary

based channel model scaled appropriately. At SNR = −5dB, the number of antennas should

be increased by less than 1.5 times to achieve the unquantized CRB, significantly less than for

the channel itself in Fig. 3.3 (a). The one-bit CRB at M = 110 is equal to the unquantized

CRB at M = 90. At 5dB, the factor increases to 1.5, still fewer than for the channel.

It can be seen that the Jacobian scales linearly with M , and thus, the CRB reduces with

a factor of M2. Comparing Figs. 3.3 (a) and (c) with (b), it is seen that, to match the

CRB of the unquantized systems, the unstructured models require almost 2.5 − 3 times

the number of antennas, whereas the structured models typically require much less than

twice the number of antennas. Thus, this example illustrates another advantage of using the

structured model together with one-bit quantization: fewer additional antennas are needed

to achieve the same performance as an ideal unquantized system than in the case of an

unstructured channel model. Note that in this example, the structured model provides DOA

estimates that are well beyond the resolution of the grid used in the dictionary-based model,

especially for larger array sizes.

3.3.3 Effect of Array Calibration Errors

The effect of array perturbations on the CRB is now considered. First, a gain pattern

perturbation only with Ω = σ2
ρ IM is assumed. Here, M = 64, the number of pilots is

N = 50, the channel length L = 5 and the number of multipaths R = 5. Fig. 3.4 shows
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Figure 3.4: CRB(h) as a function of the SNR for varying standard deviations (SDs) of the
pattern perturbation. © IEEE.

the CRB of the structured channel for a standard deviation of ρ, σρ = 0.1. At σρ = 0.1,

the structured model is an appropriate model to assess the channel performance at lower

SNRs but the CRB degrades faster. On the other hand, the unstructured channel is a

more suitable model when the perturbations are large and unknown. Fig. 3.4 amplifies the

result of Fig. 3.2 (a), showing that the structured model with one-bit quantization achieves

better channel estimation performance than the ideal unstructured model up to about 10dB

SNR even when there are array perturbations at the level of σρ = 0.1. Thus, for low-to-

moderate SNRs where mmWave systems operate, structured models that have even imprecise

calibration and use only one-bit quantization perform better than using unstructured models

with perfect quantization.

The effect of position perturbation on the CRB is also studied. The CRBs of γ and θ as

a function of the standard deviation, σρ, are plotted in Fig. 3.5 (a) and (b), respectively,

for two different values of the SNR, 5dB and 10dB. It is seen in Fig. 3.5 (a) that for small

values of σρ, increasing the SNR is advantageous since the CRB is lower at SNR = 10dB

than at SNR = 5dB. However, more interestingly, increasing the perturbation causes the

CRB to degrade rapidly at SNR = 10dB due to the near-singularity of the FIM. The same

effect was observed in Fig. 3.4. Similarly, the CRB of θ also degrades for SNR = 10dB with
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Figure 3.5: (a) CRB(γ) as a function of the SD of ρ. (b) CRB(θ) antennas as a function of
the SD of ρ. © IEEE.

an increasing perturbation in Fig. 3.5 (b). The gap between the one-bit and unquantized

CRBs is greater for SNR = 10dB and it becomes more pronounced upon increasing the

perturbation.

3.3.4 Effect of bandwidth and oversampling

Fig. 3.6 (a) and (b) show the CRBs of γ and θ, and τ respectively, as a function of the

signal bandwidth for M = 32 and M = 64 in the structured channel model. The delay

spread is fixed to 0.2µs and the SNR is 0dB. The number of pilots is N = 60 and it is

assumed that R = 4 multipaths are present. The null-to-null bandwidth is varied from

1MHz to 1GHz and the oversampling factor is kept at P = 3. Since the delay spread is

kept constant, the channel length increases with the bandwidth, making the channel more

frequency-selective. For both γ and θ, increasing the BW from 1MHz to 1GHz decreases

the CRB by almost an order of magnitude. Therefore, for a given number of estimation

parameters, a broadband system exhibits a lower estimation error for structured channel

parameters than a narrowband system. Similarly, increasing the bandwidth also provides

better resolution for the estimation of the delay parameters τ as seen in Fig. 3.6(b).
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Figure 3.6: (a) CRB(γ) and CRB(θ) of the structured channels as a function of the system
bandwidth for a fixed delay spread. (b) CRB(τ ) as a function of the system bandwidth. ©
IEEE.

The effect of oversampling on the CRB is shown in Fig. 3.7. The plots with the 5 and ∗

markers represent parameters τ and γ, respectively. The plots for θ are unmarked. For

SNR = −20dB, χ for all parameters are equal. Here, the gap between the one-bit CRB and

the unquantized CRB is plotted as a function of the oversampling factor. More specifically,

Tr[CRB1−bit(·)]/Tr[CRB∞(·)] for τ ,γ and θ is plotted. The number of antennas is kept fixed

at 32 and the oversampling factor above the Nyquist rate is varied from 1 to 5. It is seen

that performance loss from quantization is the least at SNR = −20dB and increases upon

increasing the SNR. However, the effect of oversampling is to reduce the loss beyond the

2/π limit. At low SNRs, for example at −20dB, increasing the oversampling factor does not

have any effect and the plots for all parameters coincide. However, improvements would still

be possible at low SNRs if the analog filter prior to sampling is optimized [134].

3.3.5 Effect of path separation and number of multipaths

A disadvantage of the structured channel model is that the FIM becomes ill-conditioned

when two multipaths arrive with similar DOAs and path delays. Fig. 3.8 illustrates the
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Figure 3.8: The CRB of the channel as a function of the fractional separation between path
delays. The SNR is 0dB, M = 64, N = 40 and L = 10. © IEEE.

CRB as a function of the fractional path delay difference. In this setup, R = 2 and the

two paths have different path gains but are configured to have the same DOA under the

structured model. It is seen that as the path delays become closer, the structured model is

not accurate and the unstructured model is better suited for resolving the two paths. When

the paths are well separated in time, the structured channel model yields better results. For

the given example, it is seen that the structured model only begins to break down when the

difference in path delays is on the order of 3− 4% of the symbol period, but this illustrates

the necessity of choosing the proper model order for the structured case, which is the key

drawback of this method.
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Figure 3.9: (a) CRB(γ) and CRB(θ) as a function of the number of multipaths. For the
M = 128 plots, the SNR = 5dB. (b) CRB(h) of unstructured channels as a function of the
number of multipaths. © IEEE.

Fig. 3.9 (a) and (b) show the normalized CRB (
√

Tr(CRB(h))/R) as a function of the

number of multipaths for M = 64, N = 80 and L = 25. It is seen that the CRB increases

almost linearly on the log scale as the number of parameters also increases linearly with R.

3.4 Conclusion

In this chapter, performance bounds for channel estimation in one-bit mmWave massive

MIMO systems were considered. A comparison in the CRBs of the structured, unstructured

and dictionary-based channels as a function of the SNR indicated that the structured CRB

is lower than that of the unstructured channel since fewer parameters contribute to the

expression of the CRB. The effects of perturbation, bandwidth, the channel length, and

the number of receive antennas on the CRBs of the one-bit quantized system were also

considered. It was found that pertubation caused the CRB to degrade and approach that

of an unstructured model at high SNRs. However, at low-to-moderate per-antenna SNRs,

which is common in mmWave, the structured one-bit channel models have better channel

estimation performance than the unquantized unstructured models. Furthermore, increasing
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the bandwidth and the oversampling factor caused the estimation error variance to decrease

due to improved temporal resolution. It is also seen that to achieve the same error variance as

an unquantized system, the one-bit structured system required significantly less than twice

the number of antennas.

One of the principal observations of the results is that a significantly lower channel estimation

error can be achieved by using a structured rather than an unstructured channel model, even

when the underlying array calibration is not precisely known. Thus, the extra computational

cost required for the resulting non-linear optimization is often well worth the effort. The

study of dependencies between the various system parameters can be useful in the design of

channel estimation for mmWave massive MIMO with one-bit quantizers at the receiver.
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Part II
Spatial Sigma-Delta modulation
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Chapter 4

Sigma-Delta Modulation

Preliminaries

In this chapter, some concepts on Σ∆ modulation, beginning with its temporal implementa-

tion, will be reviewed. The extension of Σ∆ modulation to the spatial domain, or spatial Σ∆

modulation, will be examined and an equivalent linear model for the output of the modulator

will be developed.

ADC

Oversampling factor P

x(t) LPF P

ωc = π/P

y[n]
yd[n]

Figure 4.1: Oversampled direct quantizer followed by an LPF and a decimation stage.
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4.1 Temporal Sigma-Delta Modulation

In the previous chapter, it was shown that oversampling can recuperate some of the loss

in the signal-to-quantization-noise ratio (SQNR). Consider an oversampled ADC, operating

with an oversampling factor P , with direct quantization followed by a low pass filter (LPF)

and a decimator as in Fig. 4.1. It is usually assumed that x(t) is bandlimited to frequency ω

Hz, and the sampling frequency is fs = ωP/π Hz. With an additive signal-plus-quantization

noise model such as

y[n] = x[n] + q[n],

it can be shown that the signal power remains unaltered as it traverses the system but the

same is not true for the noise component generated by quantization [121]. The quantization

noise is usually modeled as a wide-sense stationary white-noise process with zero-mean and

variance σ2
q . The variance and power spectral density (PSD) of q[n], φq(Ω), are given by

σ2
q = ∆2/12

φq(Ω) = σ2
q , |Ω| < π.

The PSD of the signal and the PSD of the quantization noise before and after the decimation

stage are illustrated in Fig. 4.2. Although neither the signal nor the quantization noise

power in (a) depend on P , the overlap between the two PSDs decreases as P increases.

The combination of oversampling and sampling-rate reduction improves the SQNR. More

specifically, the LPF removes the quantization noise in the band π/P < Ω ≤ π while leaving

the signal component unaltered. It is easy to show that the noise power at the output of

the LPF is equal to σ2
q/P [121]. Downsampling changes the PSD of both the signal and

quantization noise component as seen in Fig. 4.2(b). The noise power at the decimated

output is obtained by finding the area under the power density spectrum, and is the same
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Figure 4.2: Direct quantization: (a) PSD before decimation. (b) PSD after decimation.

as that at the output of the LPF equal to σ2
q/P = ∆2/(12P ). Therefore, the process of

filtering and downsampling has reduced the quantization noise power by a factor of P , while

retaining the signal power.

Alternatively, if the A/D conversion is modified such that the power spectrum of the quanti-

zation noise is no longer uniform but concentrated outside the frequency band of the desired

signal, the SQNR could be improved even more. These higher gains can be obtained if

oversampling is combined with noise spectrum shaping via feedback. The well-known Σ∆

modulator achieves this noise-shaping and is illustrated in Fig. 4.3 (a). It consists of an

oversampled ADC, which is usually a low-resolution quantizer, and a DAC which converts

the digital output back to the analog domain and subtracts it from the input signal. This

causes the noise to be shaped such that it is concentrated at higher frequencies and can be

subsequently removed with the help of an LPF and decimator. The equivalent discrete-time
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system for Fig. 4.3(a) is shown in Fig. 4.3(b).

In the negative feedback loop, the difference between the output and input of the quantizer

is subtracted from the input x[n] after a one-sample delay. The operation of the quantizer

is defined using the following equivalent linear model with gain γ > 0, even though γ is

usually taken to be 1. For the spatial Σ∆ application, we will see that γ plays a crucial role

in the stability of the feedback system. In commercial quantizers, however, selection of the

parameter γ is usually achieved with the help of an AGC (see Fig. 1.2). The output of the

ADC can be expressed as [103]

y[n] = Q (r[n]) = γr[n] + q[n]

= γ(x[n] + r[n− 1]− y[n− 1]) + q[n]

= γ(x[n] +
y[n− 1]− q[n− 1]

γ
− y[n− 1]) + q[n].

In transfer function notation, this relationship can be expressed as

Y (z) =
γ

1− (γ − 1)z−1
X(z) +

(1− z−1)

1− (γ − 1)z−1
Q(z)

= Ax(z)X(z) + Aq(z)Q(z) ,

where {Y (z), X(z), Q(z)} respectively represent the z-transforms of {y[n], x[n], q[n]}. When

γ = 1, we have that Ax(z) = 1 is an all-pass filter and that Aq(z) = 1− z−1 is a first-order

high-pass filter, which is the standard result, indicating the quantization noise is shaped to

higher frequencies. Given that x[n] is oversampled and is concentrated at lower frequencies,

the effect of the quantization noise can be substantially reduced by passing the output of the

Σ∆ modulator through a low-pass filter. The all-pass plus high-pass structure still remains

true as long as γ ≈ 1, but the Σ∆ modulator clearly approaches instability as γ → 2.
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Oversampling factor P
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(a)

(b)

Figure 4.3: (a) Temporal Σ∆ modulator. (b) Equivalent block diagram
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q

P
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Figure 4.4: Temporal Σ∆: (a) PSD before decimation (b) PSD after decimation.
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z
−1

x[n] y[n]

z
−1

2

Figure 4.5: Second-order temporal Σ∆ modulator.

Like in the oversampled direct quantization case, the noise shaping effect is also evident

when the PSDs before and after decimation, shown in Fig. 4.4, are inspected. The power

density spectrum before decimation can be shown to be [121]

φq(Ω) = 4σ2
qsin

2(Ω/2),

where the quantization noise is shaped in such a manner that most of the noise power is

concentrated outside the frequency band of the desired signal. The quantization noise power

in the filtered and decimated output is even lower as seen in Fig. 4.4.

The noise shaping effect can be extended by using a second stage of integration as in Fig. 4.5.

The noise transfer function for the second-order Σ∆ modulator is

Aq(z) = (1− z−1)4.

Although even more error accumulation stages can be used to achieve greater noise reduction,

there is also an increased potential for instability and oscillations. This applies to the spatial

implementation of Σ∆ modulation as well and therefore, the discussion on spatial Σ∆ ADCs

will be restricted to first-order architectures.
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4.2 Spatial Sigma-Delta Modulation

In temporal Σ∆ modulation, the temporal correlation between adjacent samples of the in-

put signals was exploited through oversampling. An analogous effect could be achieved in

the spatial domain by placing the antennas closer than half the wavelength. This approach

exploits oversampling in space, which arises when large arrays are deployed with a limited

aperture, or when the uplink signals are confined to some angular sector, due to cell sectoriza-

tion or certain small-cell geometries (narrow conference halls, city streets, etc.). The spatial

Σ∆ architecture is depicted in Fig. 4.6, and shows that the quantization error from one

antenna is phase-shifted by −ψ prior to being added to the input of the adjacent antenna,

rather than to the input of the same antenna. This architecture shapes the quantization

noise away from the angle of arrival (AoA) associated with the phase shift ψ, and thus users

in an angular sector surrounding this AoA experience a significantly higher SQNR. If the

feedback is not phase-shifted, this has the effect of shaping the quantization noise to high

spatial frequencies, in favor of signals with low spatial frequencies (e.g., angles closer to

the broadside of a uniform linear array). The size of the high-SQNR angular sector can be

increased by placing the antennas closer together than λ/2, corresponding to spatial over-

sampling, although in practice mutual coupling and the physical dimensions of the antennas

place a limit on how much spatial oversampling can be achieved. For this reason, the Σ∆

array is best suited for situations where both factors are present: the array has some spatial

oversampling and the users of interest are confined to some angular sector. Note that the

sector need not be near the array broadside since the region of low quantization noise can

be steered to arbitrary directions.

To generate a mathematical model for the Σ∆ array, define the M × 1 vectors r and y

corresponding respectively to the quantizer inputs and the array outputs that result from

the M × 1 received signal vector x. In other words, the mth elements {xm, rm, ym} of the

vectors {x, r,y} respectively represent the signal received by the mth antenna, the input to
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Figure 4.6: First-order spatial Σ∆ ADC array.

the quantizer at the mth antenna, and the Σ∆ output of the mth antenna. The output ym

can be written as

ym = Qm (Re(rm)) + jQm (Im(rm)) , (4.1)

where Qm represents the quantization operation for the mth antenna. The input to the mth

ADC rm can be expressed in terms of the quantization noise qm−1 from the previous stage

as

rm = xm + e−jψqm−1

= xm + e−jψ (rm−1 − ym−1)

= xm + e−jψ (xm−1 + rm−2 − ym−2 − ym−1) .

(4.2)
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In vector notation, the output of the Σ∆ array can be conveniently written as

y = Q(r) (4.3)

= [Q1(r1), . . . ,QM(rM)]T ,

where

r = Udx−Vdy

Vd =



0 0 . . . 0 0

e−jψ 0 . . . 0 0

e−j2ψ e−jψ . . . 0 0

...

e−j(M−1)ψ e−j(M−2)ψ . . . e−jψ 0


Ud = IM + Vd. (4.4)

An equivalent linear signal-plus-quantization-noise model will be used to represent the output

y in terms of the ADC input r. Mathematically, the linear model is given by

y = Γr + q, (4.5)

where q is the equivalent quantization noise vector. There is an infinite number of design

choices for the matrix Γ with each selection leading to a different linear model. However,

two models based on the Bussgang decomposition will be considered below.
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4.2.1 Vector-wise Bussgang decomposition

One method to select Γ is to use a vector-wise Bussgang decomposition as described in

Section 2.2. According to this model, Γ is a matrix chosen to make q uncorrelated with

r, i.e., Γ = CH
ryC

−1
r , where Cry is the cross-correlation matrix between r and y and Cr

is the auto-correlation matrix of r. For a Σ∆ ADC array equipped with one-bit ADCs,

these matrices can be expressed in closed-form by extending the Bussgang decomposition

proposed in [27]. Assuming that the elements of r are jointly Gaussian and defining Cy to

be the auto-correlation matrix of y, the following relations can be obtained

Γ =

√
2

π
diag (Cr)

−0.5 ,

Cy =
2

π

[
arcsin

(π
2

ΓRe(Cr)Γ
H
)

+ jarcsin
(π

2
ΓIm(Cr)Γ

H
)]
,

Cr = UdCxU
H
d + VdCyV

H
d −UdCxyΓ

H −VdC
H
xyU

H
d ,

(4.6)

where Cxy is

Cxy = (CxU
H
d ΓH + U−1

d VdCq)(I + VH
d ΓH)−1. (4.7)

We note here that there is a complicated inter-relationship between Cy and Cz for the Σ∆

array that is the primary difficulty for calculating the matrix Γ. We show below that, while

it is not possible to obtain closed form expressions for Cy and Cz, their elements can be

computed recursively. In [101], the derivation based on this recursion was shown for the

problem of channel estimation using orthogonal pilots. This derivation will not be shown

here, but it is necessary to make an important observation regarding this kind of decompo-

sition. The vector-wise Bussgang decomposition shown above is based on the observation

that q is uncorrelated with r, which is not consistent with the traditional definition of quan-

tization noise. From (4.2), this definition for the quantization noise does not have a physical

interpretation in the context of Fig. 4.6. This is better illustrated with the help of the ex-
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Figure 4.7: Cross-correlation between r and q with vector-wise Bussgang decomposition.

ample in Fig. 4.7, where values from a particular row of cross-correlation between r and q

are plotted. More specifically, the correlation between rm and q for m = 40 is plotted and it

is seen that r40 is highly correlated with q39 and less correlated with the quantization noise

from other antenna indices. Thus, the assumption that r and q are uncorrelated is clearly

invalid.

4.2.2 Element-wise Bussgang decomposition

There is a need to incorporate a more meaningful definition of the quantization noise and

it can be performed using an element-wise implementation of the Bussgang decomposition

as defined in [103] and described in this section. This approach explicitly takes into account

the spatial correlation between the quantized outputs of the Σ∆ ADC array. In order to do
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this, the quantization operation will be defined as:

ym = αmQm (Re(rm)) + jαmQm (Im(rm)) , (4.8)

where αm is the output level of the quantizer. Note that αm is allowed to be different for

each antenna, unlike conventional one-bit quantization where they are the same.

The Bussgang decomposition can be applied element-wise such that E [rmq
∗
m] = 0. With this

definition, Γ becomes a diagonal matrix whose mth diagonal element, γm, is given by

γm =
E [rmy

∗
m]

E [|rm|2]
. (4.9)

Plugging r = Udx−Vdy into (4.5), we get

y = (I + ΓVd)
−1 ΓUdx + (I + ΓVd)

−1 q. (4.10)

The specific numerical value for γm will depend on the output level αm. An αm will be

chosen such that γm = 1, or equivalently such that Γ = IM , and (4.10) can be simplified to

y = x + U−1
d q . (4.11)

This is a convenient choice since the model is now the exact spatial analog of the temporal

Σ∆ architecture, and is equivalent to passing x through a (spatial) all-pass filter and q

through a filter that shapes the quantization noise away from the AoA corresponding to ψ.

While this choice for αm is an elegant one and provides good performance in our simulation

results, there is no proof of its optimality. Such a proof appears to be difficult to obtain,

so it is left for future work. Nevertheless, a choice of γ different from 1 seems difficult to

justify since it would imply that the signal x is spatially filtered by the ADC architecture

in some unclear way. As shown in the following sections for one- and two-bit quantization,
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the value of αm depends in general on the statistics of the signal rm, which would have to

remain time-invariant for the quantizer gains to be fixed. This can be achieved in practice

using an AGC at the input to the ADC.

One-Bit Spatial Σ∆ ADCs

When the Σ∆ array is implemented with one-bit ADCs, the output is given by

ym = αm (sign(Re(rm)) + jsign(Im(rm))) , (4.12)

and (4.9) can be simplified to

γm = αm
E [|Re(rm)|+ |Im(rm)|]

E [|rm|2]

= αm
E [|Re(rm)|]
E [|Re(rm)|2]

(4.13)

for circularly symmetric rm. Since the power of the pilot symbols is time-invariant, the

statistics of rm are identical to those of rm. Consequently, we can set γm = 1, which leads

to

αm =
E [|Re(rm)|2]

E [|Re(rm)|]
. (4.14)

If rm were Gaussian, (4.14) could be simplified to

αm =

√
πE [|rm|2]

2
. (4.15)

This was the value for αm used in [103], and it provides sufficiently accurate estimates of

the spectral efficiency for the case where the CSI is already known. However, the deviation

of rm from Gaussianity, while not large, is sufficient to render (4.15) unsuitable for channel
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estimation. The derivation of (4.15) relies on the fact that

√
E [|Re(rm)|2]

E [|Re(rm)|]
=

√
π

2
(4.16)

for Gaussian random variables. However, due to the non-linear feedback of the Σ∆ array,

the tails of the distribution of rm are slightly heavier than a Gaussian, so the ratio on the

left hand side of (4.16) is slightly greater than
√
π/2.

Whether Eq. (4.14) or (4.15) is used to calculate αm, in a practical implementation some

empirical measurement of the mean power and absolute value of rm in the Σ∆ architecture

would be necessary, and could be facilitated by the use of an automatic gain control. Rather

than implementing the computation of αm according to (4.14), in our simulations of the

one-bit case presented later, αm is simply computed as

α∗m = β

√
πE [|rm|2]

2
, (4.17)

with a value of β > 1. There is a very small range of values near one that are appropriate

for β. To see this, let σ2
rm , E [|rm|2]. Using similar definitions for σ2

ym and σ2
qm , and the fact

that rm and qm are uncorrelated, we obtain the following relationship between the powers of

the input and output of the array:

σ2
ym =

π

2
β2σ2

rm , σ2
qm = σ2

ym − σ
2
rm . (4.18)

From (4.18), we can see that in order to prevent the quantization noise power from becoming

greater than the input power σ2
rm , we must ensure that

(
π
2
β2 − 1

)
< 1, and hence that

1 ≤ β < 2/
√
π ≈ 1.1284. Otherwise, the input power to each ADC grows monotonically

with the antenna index.

The modeling described above does not rely on the assumption that r and q are uncorrelated,
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just that rm and qm are uncorrelated. The cross-correlation matrix, Crq is obtained by first

assuming that E[qmqm±1] ≈ 0 (this will be explained in Chapter 5). Then, using E[xqH ] ≈ 0

(see Appendix C for proof), (4.5) and (4.11), it is straightforward to show that

Crq = E[rqH ] = −VdU
−1
d Cq, (4.19)

where Cq = diag(σ2
q1
, . . . , σ2

qM
) and VdU

−1
d has the special structure

VdU
−1
d = IN ⊗ e−jψ



0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...

0 0 . . . 1 0


. (4.20)

The analytical values of this cross-correlation is plotted in Fig. 4.8 for the 40th row of Crq.

The simulated and analytical values of the cross-correlation are closely matched, indicating

that the element-wise Bussgang decomposition describes the Σ∆ operation better than the

vector-wise decomposition.

Two-bit Spatial Σ∆ ADCs

In this section, we extend the above analysis to the case where the quantizers in the Σ∆

array employ two-bits of resolution, implying four quantization levels. Unlike the one-bit

case, with two bits the Gaussian approximation for rm is quite accurate. We use the well-

known Lloyd-max condition to determine the optimum quantization levels that minimize the

distortion [118, 119]. We will denote the quantization levels and the associated intervals that

minimize the distortion for unit variance Gaussian inputs by νi and
(
ν lo
i , ν

hi
i

)
, i = 1, . . . , 4,
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Figure 4.8: Cross-correlation between r and q with element-wise Bussgang decomposition
for 1-bit ADCs.

respectively, and define

Qm
(
rRe
m

)
= νi, if rRe

m ∈
(
σrm√

2
ν lo
i ,
σrm√

2
νhi
i

]
, (4.21)

where rRe
m , Re(rm). The above quantization levels satisfy νhi

i = ν lo
i+1, ν lo

1 = −∞, and

νhi
4 =∞, and the quantization bins have been adjusted to span the range of the input levels

by modeling rm as a circularly symmetric Gaussian random variable with variance σ2
rm . Note

that, while the convention is to also scale the output quantization level according to standard

deviation of the input, we perform this scaling with the factor αm as was performed for the

one-bit case using (4.12).

Assuming a linear model as before and using an element-wise Bussgang decomposition, (4.9)
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Figure 4.9: Input power to the mth ADC (m = 40) for different values of β- Σ∆ 1-bit.
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Figure 4.10: Input power to the mth ADC (m = 40) for different values of β- Σ∆ 2-bit.
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Figure 4.11: Output and quantization noise powers (a) 1-bit (b) 2-bits.

can be written as

γm =
E
[
rRe
m y

Re
m

]
E [rRe

m ]2
(4.22)

due to the circular symmetry of the data, where yRe
m , Re (ym). The numerator of (4.22)

can be obtained from Bussgang’s theorem [96]:

E
[
rRe
m y

Re
m

]
= αmE

[
rRe
m Qm′

(
rRe
m

)]
= αm

∫ ∞
−∞

1√
2π

∂Qm′
(
rRe
m

)
∂rRe

m

exp

(
−
(
rRe
m

)2

σ2
rm

)
drRe

m .
(4.23)

The derivative ∂Qm′
(
rRe
m

)
/∂rRe

m can be computed as

∂Qm
(
rRe
m

)
∂rRe

m

=
4∑
i=2

(νi − νi−1) δ

(
rRe
m −

σrm√
2
ν lo
i

)
, (4.24)

using the Dirac delta function δ(·) to represent the derivative at the quantizer steps. Sub-
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stituting the above equation in (4.23) and evaluating the integral, we get

E
[
rRe
m y

Re
m

]
= αm

4∑
i=2

(νi − νi−1)√
2π

exp

(
−
(
ν lo
i

)2

2

)
. (4.25)

Then, the value of αm that yields γm = 1 is given by

αm′ =
βσrm

√
π/2∑4

i=2 (νi − νi−1) exp

(
−(νloi )

2

2

) .
(4.26)

Thus, αm is determined by the standard deviation of the ADC input, the quantization

intervals and the corresponding output levels. Finally, computing the expectation E [|ym|2],

the output and quantization noise powers are, respectively, given by

σ2
ym = α2

m

∑
i

∣∣Qm (rRe
m

)∣∣2 Pr

(
σrm√

2
ν lo
i < rRe

m ≤
σrm√

2
νhi
i

)

= 2α2
m

4∑
i=1

ν2
i

(
Ψ

(
σrm√

2
νhi
i

)
−Ψ

(
σrm√

2
ν lo
i

))
,

σ2
qm = σ2

ym − σ
2
rm .

(4.27)

The effect of β on the input power to the ADC for the m = 40th antenna index is illustrated

in Fig. 4.9 and Fig. 4.10 for one-bit and two-bits, respectively. The input power in the one-bit

ADC case is stable as the antenna index is varied for β = 1 and 1.06, but increases rapidly

when β is as high as 1.13. The Σ∆ two-bit case, however, is less sensitive to the particular

choice of β. Similar observations can be made from Fig. 4.11 where the quantization noise

powers and output powers are plotted as a function of β.

Finally, Fig. 4.12 shows that quantization noise power in dB as a function of the angle when

there is a single user present at 25◦ and ψ is chosen to steer the ADC array to 25◦, and

when the inter-element antenna spacing is λ/6. The Σ∆ array, whether it is equipped with

one or two-bit ADCs, has a superior noise shaping effect compared to regular ADCs. The
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Figure 4.12: Quantization noise power as a function of the angle, d/λ = 1/6.

quantization noise power is significantly lower in the narrow sector around 25◦ but a higher

quantization noise than regular ADCs outside of this sector. A similar noise shaping effect

is also achieved when the signal of interest has a DOA −25◦. When the spacing is λ/2,

the width of the sector in which Σ∆ ADCs have a higher SQNR than standard quantizers

is narrower. Fig. 4.14 shows the SQNR as a function of the angle when the user signal is

originating from −25◦ and ψ is chosen to steer the array to this angle. Σ∆ ADCs have a

higher SQNR in the narrow sector around −25◦ but a lower SQNR in the region outside of

the steered sector.

4.3 Mutual Coupling

While spatial oversampling, i.e., antennas spaced less than one-half wavelength apart, can

produce the required low spatial frequencies, there is a limit to how close the antennas can
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Figure 4.13: Quantization noise power as a function of the angle, d/λ = 1/2.

-100 -50 0 50 100

Angle (degrees)

15

20

25

30

35

40

45

50

S
Q

N
R

 (
d

B
)

- 1-bit
Reg. 1-bit

- 2-bit
Reg. 2-bit

Figure 4.14: SQNR as a function of the angle.
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be placed together before mutual coupling and the physical size of the antennas come into

play. Mutual coupling is a phenomenon in which the electrical field of one antenna influences

the current distribution of other antennas in close proximity. The effect of mutual coupling

becomes prominent as the inter-element spacing is decreased below one-half wavelength,

and can degrade the capacity [135]. The impact of mutual coupling is important because

spatial Σ∆ arrays whose elements may be spaced closer than one-half wavelength apart are

considered. In modeling the mutual coupling, the antenna array is treated as a bilateral

network and the relationship between element output voltages and open circuit voltages is

derived from multiport circuit theory. The analytical formulas involved in the expression for

the so-called mutual coupling matrix (MCM), denoted by T, are detailed in [113, 136, 137]

and summarized below. The MCM T is given by

T =

(
I +

1

R
Z

)−1

, (4.28)

where R is the input impedance of the low-noise amplifier (LNA). The impedance matrix of

the antenna elements, Z, is described by

Zij = 30 (2Ci(2πdij)− Ci(ξij + π)− Ci(ξij − π)

−j (2Si(2πdij)− Si(ξij + π)− Si(ξij − π))) , i 6= j

Zii = 30 (η + log(2π)− Ci(2π) + jSi(2π)) , (4.29)

for i, j = 1, · · · ,M , where ξij = π
√

1 + 4d2
ij.

Furthermore, due to the presence of mutual coupling, the noise at the receiver is spatially
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correlated and its covariance matrix is given by

CN = TΥTH , (4.30)

Υ = σ2
i

(
ZZH − 2RNRe(%∗nZ) +R2

NI
)

+ 4kBTABRe(Z) , (4.31)

where σ2
i = E[iN iHN ], σ2

v = E[vNvHN ], iN and vN are the complex current and voltage of the

noise source, RN = σv/σi is the noise resistance, %n = E[iNvHN ]/(σiσv) is the so-called noise

correlation coefficient, kB is the Boltzmann constant, TA is the ambient temperature, and

B is the bandwidth. In Chapters 5 and 6, the channel model will incorporate the effect of

mutual coupling whenever oversampled arrays are considered.
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Chapter 5

Channel Estimation Using

Low-Resolution Spatial Sigma-Delta

ADCs

In this chapter, the element-wise Bussgang decomposition will be used for linear minimum

mean squared error (LMMSE) channel estimation for massive MIMO systems where the

BS is equipped with low resolution (1-2 bits) spatial Σ∆ ADCs. A recursive solution to

compute the covariance matrices required for the LMMSE channel estimate is found and a

practical algorithm is found for doing so. The resulting estimators have low complexity and

analytical expressions for the resulting covariance matrix of the channel estimation error are

derived. A lower bound on the uplink achievable rate using the maximal ratio combining

(MRC), zero-forcing (ZF) and LMMSE receivers when implemented with imperfect channel

state information (CSI) obtained using the LMMSE channel estimate, assuming the detailed

model for mutual coupling outlined in Chapter 4.
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5.1 System Model

An uplink massive MIMO system with K single-antenna user terminals, and a base station

(BS) equipped with a uniform linear array (ULA) of M antennas and a first-order spatial

Σ∆ array is considered. During the training period, all K users simultaneously transmit

their pilot sequences of length N . The received signal, X ∈ CM×N , at the BS is

X = [x1 · · · xN ] =
√
ρG Φt + N, (5.1)

where xk is the array output for training sample k, G ∈ CM×K is the channel matrix, and

Φt ∈ CK×N is the pilot matrix. The matrix N = [n1,n2, . . . ,nN ] contains noise from both

intrinsic (low-noise amplifiers and other circuitry) and extrinsic (received by the antennas)

sources and consists of zero mean spatially correlated additive noise Gaussian elements that

satisfy

E
[
nin

H
i

]
= CN ,

E
[
nin

H
j

]
= 0, i 6= j,

(5.2)

where CN is the spatial correlation matrix of the receiver noise as described in Chapter 4.

It is assumed that power control is employed to counteract non-uniform path loss so that

all the user signals are received with the same power; thus the factor ρ determines the SNR.

A spatially correlated channel model for G is assumed. In particular, the kth column of G,

which represents the channel gk for the kth user, is assumed to be given by

gk = C
1
2
gkhk , (5.3)
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where the elements of hk ∈ CLk×1 are independently and identically distributed (i.i.d.) as

CN (0, 1) random variables, and Cgk ∈ CM×Lk is the channel covariance matrix. In this

application, the spatial correlation will arise from two factors: signal arrivals that come from

a certain sector of possible angles of arrival (AoAs), and mutual coupling between the BS

antennas:

C
1
2
gk =

1√
Lk

TAk , (5.4)

where T is the M×M matrix that accounts for the mutual coupling as described in Chapter

4, Ak ∈ CM×Lk is a matrix whose lth column is the steering vector of a linear array

al =
[
1 e−j2πd12sin(θl) · · · e−j2πd1M sin(θl)

]T
, (5.5)

θl is the AoA, and dij is the distance between the antenna elements i and j. It will be

assumed that the AoAs for all users lie in a certain known angular region θl ∈ Sθ. Here,

Lk represents the number of propagation paths over which user k’s signal is received. The

restriction θl ∈ Sθ is a common situation in many practical settings due to cell sectoring;

e.g., a given BS array will only serve users from some fraction of all available azimuth or

elevation angles. Besides this region Sθ, prior to channel estimation the BS is only aware of

the channel covariance matrix Cgk for each user, and not the components (mutual coupling,

AoAs) of its decomposition in (5.4).

Vectorizing (5.1), we get

x = vec (X) = Φg + n, (5.6)
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where

Φ =
√
ρ
(
ΦT
t ⊗ IM

)

g =



g1

g2

...

gK


= vec (G) , n =



n1

n2

...

nN


= vec (N) .

(5.7)

The covariance matrix of x can be expressed as

Cx = ΦCgΦ
H + Cn, (5.8)

where the block-diagonal matrices Cg = blkdiag{Cg1 , . . . ,CgK} and Cn = IN ⊗ CN have

been defined. The average per-user per-antenna SNR is defined as

SNR =
ρ

NK

Tr
(
E
[
GΦtΦ

H
t GH

])
Tr (CN)

. (5.9)

When the pilot sequences are row-wise orthogonal and the minimum number of pilots, N =

K, is used, then ΦtΦ
H
t = KIK and

SNR =
ρ

K

Tr (Cg)

Tr (CN)
. (5.10)

In the derivations below, it will be assumed that the power of the pilot signals is time-

invariant, which implies that the diagonal elements of ΦH
t Φt are identical. The goal is to

derive an algorithm to estimate the channel g from the output of the Σ∆ array. Defining

m′ = modM(m), the output of the Σ∆ ADC array is defined similar to Ch. 4.2

ym = αm′Qm′ (Re(rm)) + jαm′Qm′ (Im(rm)) , (5.11)
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where Qm′ represents the quantization operation for antenna m′, and αm′ is the output level

of the quantizer. In vector form, the output of the Σ∆ array can be written as

y = Q(r) (5.12)

= [Q1(r1), . . . ,QM(rM),Q1(rM+1), . . . ,QM(rMN)]T ,

where

r = Ux−Vy

V = IN ⊗Vd

U = IN ⊗Ud.

(5.13)

The matrices Vd and Ud were defined in Ch. 4.2. The element-wise Bussgang decomposition

described in 4.2.2 has to be slightly modified for the MN × 1 vectors r and y defined above.

For the one-bit Σ∆ case,

α∗m′ = β

√
πE [|rm|2]

2
, (5.14)

with a value of β > 1. The reader is referred to Ch. 4.2.2 for a discussion on the necessity

and on the method of selection of the correction factor β. For the two-bit case,

αm′ =
σrm
√
π/2∑4

i=2 (νi − νi−1) exp

(
−(νloi )

2

2

) .
(5.15)

5.2 Channel Estimation with spatial Sigma-Delta ADCs

The LMMSE channel estimate is derived based on the one-bit or two-bit outputs y of the

Σ∆ ADC array.
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5.2.1 LMMSE Channel Estimation

The LMMSE channel estimate is defined by

ĝ = E
[
gyH

] (
E
[
yyH

])−1
y

= CgyC
−1
y y .

(5.16)

Using the equivalent linear model in (4.11), we can obtain the covariance matrix of y:

Cy = Cx + U−1CqU
−H , (5.17)

where Cq is the covariance matrix of q. The expression in (5.17) relies on the assumption

that E
[
xqH

]
= 0, which is shown in Appendix C to be true if rm is Gaussian. This does not

imply that E
[
rqH

]
= 0, as r and q are clearly correlated. Although rm is strictly speaking

not Gaussian, the assumption is sufficiently accurate here, and it will be seen in Section 5.4

that it yields a channel estimator with good performance. Similarly, since Γ = I has been

chosen in (4.5), it is easy to show that

r = x−VU−1q (5.18)

and hence that

Cr = Cx + VU−1CqU
−HVH . (5.19)

From (5.17), it is seen that Cy is determined by Cq, whereas (4.18) and (4.27) show that the

quantization noise power is dependent on σ2
ym . Due to this inter-relationship between Cy

and Cq, these matrices cannot be computed in closed form. However, they can be computed

in a recursive manner.
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Using E
[
xqH

]
≈ 0 and the fact that E [rmq

∗
m] = 0, it can be shown that E

[
qmq

∗
m±1

]
≈ 0.

As a result, Cq is approximately diagonal with elements given by σ2
qm . Furthermore, noting

that VU−1 has the structure

VU−1 = IN ⊗ e−jψ



0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...

0 0 . . . 1 0


, (5.20)

the following recursion for σ2
rm , σ2

ym and σ2
qm using (5.17) and (5.19) can be generated:

σ2
rm =


σ2
xm , m = kM + 1, k = 0, 1, . . . , N − 1,

σ2
xm + σ2

qm−1
, otherwise.

σ2
ym =



π
2
β2σ2

rm , for 1-bit ADCs

α2σ2
rm

2

∑4
i=1 ν

2
i

(
Ψ
(
σrm√

2
νhi
i

)
−Ψ

(
σrm√

2
ν lo
i

))
,

for 2-bit ADCs

σ2
qm = σ2

ym − σ
2
rm .

(5.21)

In the above equations, σ2
xm is the mth diagonal element of Cx. Thus, the power of the mth

quantizer input, σ2
rm , depends on the quantization noise powers computed up to index m−1.

Then, the mth output power, σ2
ym , is given by (4.18) for one-bit ADCs and by (4.27) for

two-bit ADCs. This allows us to compute σ2
qm , and from there σ2

rm+1
, and so on. Following
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this process for indices m = 1 to MN allows us to compute Cq, and finally the complete Cy

is obtained from (5.17).

Thus, the LMMSE estimate of the channel, ĝ, can be obtained from (5.16) where

Cgy = E
[
gyH

]
= E

[
g
(
Φg + n + U−1q

)H]
= CgΦ

H + E
[
gqH

]
U−H

≈ CgΦ
H .

(5.22)

The final approximation results because E
[
gqH

]
= Φ†E

[
xqH

]
− Φ†E

[
nqH

]
≈ 0, since

E
[
xqH

]
≈ 0 and it can be shown that E

[
nqH

]
= 0 using an argument identical to that

in Appendix C for Gaussian noise n. The resulting algorithm for computing the LMMSE

channel estimate for the Σ∆ array has low complexity and is summarized in Algorithm 1.

Algorithm 1: Channel estimation using Σ∆ array

1. Set β = 1.05 for one-bit operation. For m = 1 to MN , repeat:

(i) Update the diagonal elements of Cr, σ
2
rm , using (5.21). Update σ2

ym using (4.18) for
one-bit ADCs and (4.27) for two-bit ADCs.

(ii) The elements of Cq, σ
2
qm , are updated using σ2

qm = σ2
ym − σ

2
rm .

(iii) Update αm′ =

{
From (5.14) for one-bit Σ∆ ADCs,

From (5.15) for two-bit Σ∆ ADCs.
.

2. Obtain the complete matrix Cy using (5.17).

3. Compute the output of the Σ∆ array as follows:

(i) rm = xm, for m = kM + 1, k = 0, . . . , N − 1.
rm = xm + e−jψ (rm−1 − ym−1), otherwise.

(ii) ym = αm′ (Qm (Re(rm)) + jQm (Im(rm))).

4. Estimate the channel, ĝ, from (5.16).
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5.2.2 Channel Estimation Error

As the Σ∆ channel estimation error will be compared with standard one-bit sampling, which

is unable to identify the channel gain, normalized error (or cosine distance) that is indepen-

dent of any scaling factor affecting either the real channel or its estimate will be used:

NE = min
ζ

E [‖g − ζĝ‖2
2]

E [‖g‖2
2]

= 1−
E
[
|ĝHg|2

]
E [‖ĝ‖2

2]E [‖g‖2
2]
.

(5.23)

This expression for the NE, which satisfies 0 ≤ NE ≤ 1, is valid for any estimator. For the

particular case of LMMSE estimators, which necessarily satisfy E
[
gĝH

]
= Cĝ, (5.23) can

be expressed as

NE =
E [‖g‖2

2]− E [‖ĝ‖2
2]

E [‖g‖2
2]

=
Tr (Cg −Cĝ)

Tr (Cg)
, (5.24)

where Cĝ is given by

Cĝ = E
[
ĝĝH

]
= CgΦ

HC−1
y ΦCg

= CgΦ
(
Cx + U−1CqU

−H)−1
ΦHCg.

(5.25)

Finally, the estimation error covariance matrix is given by

Cε = Cg −CgΦ
(
Cx + U−1CqU

−H)−1
ΦHCg. (5.26)

When the pilots are orthogonal and N = K, the matrices Cx, Cy and Cq are block-diagonal

with identical blocks. As a result, Cĝ is also block-diagonal and the kth M × M block

corresponds to the covariance matrix of the estimated channel of the kth user.

Remark : It should be noted here that a candidate for comparison with the above estimator
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is an LMMSE channel estimator based on the output of a massive MIMO system with

conventional two-bit quantizers. Although, a channel estimator based on the Bussgang

decomposition for one-bit ADCs has been derived in [27], no explicit analysis exists for two-

bit ADCs. To facilitate such a comparison, in Appendix D the LMMSE channel estimator

based on standard two-bit quantization of the array output is derived.

5.3 Uplink Achievable Rate Analysis

In this section, the uplink achievable rate for MRC and ZF receivers is derived. In the

uplink data transmission stage, the K users transmit their data represented by the K × 1

vector s. Using a Bussgang decomposition as described previously on the Σ∆-quantized

received signal, yd, we get

yd =Q (rd) =
√
ρdGs + nd + U−1

d qd, (5.27)

where rd = Ud

(√
ρdGs + nd

)
−Vdyd, ρd is the data transmission power, nd ∼ CN (0,CN)

and qd are the additive and quantization noise in the data phase, respectively. The matrices

Ud and Vd are defined by taking N = 1 in Eq. (5.13). For this analysis, it is assumed that

the user symbols sk are i.i.d with E [|sk|2] = 1 and that the channel covariance matrices of

the different users are equal and denoted by CG = Cg1 = · · · = CgK .

The analysis of the achievable rate relies on the covariance matrix of qd, Cqd , which is dif-

ferent from the quantization noise covariance matrix during the training phase. For the

data transmission stage, this matrix has to be derived in a manner similar to Section 5.2.

Inspecting the recursion equations developed in the previous section, it is seen that initial-

ization of the recursion will be performed with Cxd , where Cxd = ρdGGH +CN . To simplify

the subsequent analysis, as in [27, 39] we can approximate GGH by KCG, which becomes
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increasingly accurate as K grows. It will be seen in the simulations that excellent agreement

between the theoretical and simulated spectral efficiency is obtained even for values as low

as K = 10. Thus

Cxd ≈ KρdCG + CN . (5.28)

The procedure to obtain Cqd is outlined as follows. Let σ2
rdm

, σ2
ydm

and σ2
qdm

denote the

powers of the mth components of rd, yd and qd, respectively. Then, (5.21) is modified for

the data transmission stage as

σ2
rdm

=


σ2
xdm

, m = 0, 1, . . . ,M,

σ2
xdm

+ σ2
qdm−1

, otherwise.

σ2
ydm

=



π
2
β2σ2

rdm
, for 1-bit ADCs

α2σ2
rdm

2

∑4
i=1 ν

2
i

(
Ψ
(
σrdm√

2
νhi
i

)
−Ψ

(
σrdm√

2
ν lo
i

))
,

for 2-bit ADCs

σ2
qdm

= σ2
ydm
− σ2

rdm
,

(5.29)

where σ2
xdm

is the mth diagonal element of Cxd . The diagonal matrix Cqd is completed with

σ2
qdm

as its diagonal elements.

The BS uses a linear receiver for symbol detection that depends on the LMMSE channel

estimate. Denoting the linear receiver by W, the detected symbol vector is obtained by
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multiplying the conjugate transpose of W with the received signal vector as

ŝ = WHyd =
√
ρdW

HGs + WHnd + WHU−1
d qd. (5.30)

From (5.30), the various components contributing to the kth detected symbol can be re-

written as

ŝk =
√
ρdE

[
wH
k gk

]
sk +

√
ρd
(
wH
k gk − E

[
wH
k gk

])
sk+

√
ρdw

H
k

∑
i 6=k

gisi + wH
k nd + wH

k U−1
d qd,

(5.31)

where wk is the kth column of W. The terms in the above equation correspond to the

desired signal, the receiver uncertainty, the inter-user interference, the additive noise and

the quantization noise, respectively.

An approach similar to [39] and [138] will be followed and the classical worst-case uncorre-

lated Gaussian assumption on the terms in (5.31) will be used to obtain a lower bound on

the achievable rate. Treating the final four terms as “effective noise”, the achievable rate

of the kth user is given by (5.33) at the top of the next page, based on the widely used

approximation for massive MIMO systems [138]

E
[
log2

(
1 +

X

Y

)]
≈ log2

(
1 +

E[X]

E[Y ]

)
, (5.32)

where X and Y are sums of non-negative random variables. The above approximation

becomes increasingly accurate for a large number of antennas since, according to the law

of large numbers, the variances of both X and Y become small due to channel hardening

effect. Whereas the achievable rate bounds derived in [103] assume perfect knowledge of

the CSI, our result takes into account the channel estimation error. In the derivation of the

worst-case bound, it is assumed that the channel estimate ĝ is Gaussian with covariance

matrix Cĝ given by (5.25). Similarly, qd is also assumed to be Gaussian and its covariance
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matrix is obtained as described earlier in this section. In the following, the performance for

the specific cases of the MRC, ZF and LMMSE receivers is considered. In the derivation of

the achievable rate using these receivers, it will be assumed that during the training phase,

the pilots are orthogonal and that N = K. Consequently, the matrices Cx, Cy and Cĝ will

be block-diagonal.

Rk = log2

1 +
ρd
∣∣E [wH

k gk
]∣∣2

ρdvar (wH
k gk) + ρd

∑
i 6=k E [|wH

k gi|2] + E
[
|wH

k nd|
2
]

+ E
[∣∣wH

k U−1
d qd

∣∣2]


(5.33)

5.3.1 MRC receiver

To simplify the analysis, an MRC receiver without pre-whitening is considered, as follows:

WMRC = Ĝ, (5.34)

where Ĝ is the M × K matrix formed from ĝ using the inverse of the vec operation. The

achievable rate of the kth user is given by (5.35). To show this, the individual terms in the

RMRC
k = log2

(
1 +

ρdTr (Cĝ) /K

ρdK Tr (CG) + Tr (CN) + Tr
(
U−1
d CqdU

−H
d

)) (5.35)

achievable rate expression of (5.33) are computed below.

E
[
ĝHk gk

]
=E

[
ĝHk (ĝk + εk)

]
=E

[
‖ĝk‖2

]
+ E

[
ĝHk εk

]
=E

[
‖ĝk‖2

]
= Tr (Cĝk) =

Tr (Cĝ)

K
,
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where the fact that the LMMSE channel estimate is uncorrelated with the channel estimation

error and that the covariance matrices of the estimated channels for each of the users are

equal is used. Further,

var
(
ĝHk gk

)
=E

[∣∣ĝHk gk
∣∣2]− (E [ĝHk gk

])2

=E
[∣∣‖ĝk‖2 + ĝHk εk

∣∣2]− (E [ĝHk gk
])2

=E
[
‖ĝk‖4

]
+ E

[
‖ĝk‖2ĝHk εk

]
+ E

[
‖ĝk‖2εHk ĝk

]
+

E
[
‖ĝHk εk‖2

]
−
(
E
[
ĝHk gk

])2

=2
(
E
[
‖ĝk‖2

])2
+ E

[
‖ĝk‖2

]
E
[
‖εk‖2

]
−
(
E
[
ĝHk gk

])2

= (Tr (Cĝk))
2 + Tr (Cĝk) [Tr (CG)− Tr (Cĝk)]

=Tr (Cĝk) Tr (CG) =
Tr (Cĝ) Tr (CG)

K
,

and, for i 6= k,

E
[∣∣ĝHk gi

∣∣2] =
∣∣E [ĝHk gi

]∣∣2 + E
[
‖ĝk‖2

]
E
[
‖gi‖2

]
,

E
[
ĝHk gi

]
= E

[(
PkΦg + Pkn + PkU

−1q
)H

gi

]
,

where Pk = Cg(k−1)M :kM,:
ΦC−1

y and Cg(k−1)M :kM,:
refers to the kth block of rows of Cg, and

where the expression for ĝk is substituted for in the above equation. Then, using the fact

that gi is uncorrelated with the quantization noise and the additive noise, we get

E
[∣∣ĝHk gi

∣∣2] =
Tr (Cĝ) Tr (CG)

K
.

We can solve for the final term in the denominator in a similar manner to get:

E
[∣∣ĝHk U−1

d q
∣∣2] =

Tr (Cĝ) Tr
(
U−1
d CqdU

−H
d

)
K

.
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Note that when there is perfect knowledge of the CSI, i.e. wk = gk, (5.35) reduces to the

expression derived in [103]. The ratio inside the logarithm of (5.35) shows the impact of

the various system parameters on the SNR for each of the users. The three terms in the

denominator show the contribution of the multi-user interference (MUI), the receiver noise,

and the quantization noise, respectively.

5.3.2 ZF receiver

The composite noise at the output of the Σ∆ array is spatially correlated and its covariance

matrix is given by Cñ =
(
CN + U−1

d CqdU
−H
d

)
. Thus, the ZF equalizer becomes

WZF = C−1
ñ Ĝ

(
ĜHC−1

ñ Ĝ
)−1

. (5.36)

The expectations required to compute (5.36) are significantly more complicated than for the

case of MRC, and are intractable to evaluate in closed-form. The achievable rate of the kth

user can be expressed as in (5.38), where the term E
[(

ĜHC−1
ñ Ĝ

)
kk

]
is computed empiri-

cally. The remaining terms in the expression can be found as follows. For the numerator,

E
[
wH
k gk

]
= E

[
wH
k (ĝk + εk)

]
= 1 + E

[
wH
k εk

]
= 1 . (5.37)

Further,

var
(
wH
k gk

)
= E

[∥∥wH
k εk

∥∥2
]

=
E
[(

ĜHC−1
ñ Ĝ

)
kk

]
Tr (Cε)

K
.

For i 6= k, we have

E
[∣∣wH

k gi
∣∣2] = E

[∣∣wH
k εi
∣∣2] =

E
[(

ĜHC−1
ñ Ĝ

)
kk

]
Tr (Cε)

K
.
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Similarly, we obtain

E
[∣∣wH

k nd
∣∣2] = E

[(
ĜHC−1

ñ Ĝ
)−1

kk

]
Tr (CN) ,

E
[∣∣wH

k U−1
d q
∣∣2] = E

[(
ĜHC−1

ñ Ĝ
)−1

kk

]
Tr
(
U−1
d CqdU

−H
d

)
.

RZF
k = log2

1 +
ρd

ρdE
[(

ĜHC−1
ñ Ĝ

)−1

kk

]
Tr (Cε) + E

[(
ĜHC−1

ñ Ĝ
)−1

kk

]
Tr (Cñ)

 (5.38)

5.3.3 LMMSE receiver

The LMMSE receiver minimizes the mean squared error in estimating sk and can be ex-

pressed as [139, 140]

WMMSE =
(
ρdĜĜH + ρdCε̃ + Cñ

)−1

Ĝ, (5.39)

where Cε̃ is one of the sub-blocks along the block diagonal of Cε in (5.26). As in the case

of ZF, the form of the LMMSE receiver does not lend itself to calculation of closed-form

expressions for the expectations required to evaluate (5.33), and hence in the next section

the lower bound on the achievable rate for this approach is numerically evaluated.

5.4 Simulation Results

In this section, the NE and sum spectral efficiency achieved with the Σ∆ massive MIMO

system using one or two-bit outputs are numerically evaluated. The inter-element spacing
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Figure 5.1: NE of channel estimates for different angular spreads of user AoAs and inter-
element antenna spacings.
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Figure 5.2: NE of channel estimate, M = 128, N = K = 10.

is defined by δ, and unless otherwise indicated, the simulations will employ a uniform linear

array (ULA) equipped with 128 antennas. The number of pilot symbols and number of users

are both 10 (N = K = 10), and orthogonal pilot sequences are used based on the N × N

DFT matrix. It is further assumed that the downlink transmission power is equal to the

pilot transmission power, i.e. ρd = ρ.

The users are assumed to be located within a sector centered on the broadside of the antenna
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array, so the steering angle of the Σ∆ array is set to ψ = 0◦, and Sθ = [−Θ
2
, Θ

2
]. It is assumed

the spatial covariance matrix is the same for all users, and defined by L = 50 uniformly

spaced signal arrivals θl in the interval defined by Sθ. The parameters used in modeling the

mutual coupling of the array are: R = 50 Ω, TA = 290 K, %n = 0, B = 20 MHz, RN = R,

σ2
i = 2kBTAB/R, and σ2

v = 2kBTABR. The simulations performed in the absence of mutual

coupling assume that Z = RI and T = 0.5I [113].

The NE of the channel estimate is evaluated over 500 independent realizations of the channel.

For two-bit ADCs, the optimum levels {ν1, ν2, ν3, ν4} as per [119] are chosen. The sum

spectral efficiency as a performance measure defined as

SE =
T −N
T

K∑
i=1

Rk, (5.40)

is used, where T is length of the coherence interval during which the channel remains con-

stant. It is assumed that T = 200 symbols.

The performance of the Σ∆ LMMSE channel estimator derived above is compared with the

one-bit Bussgang LMMSE (BLMMSE) channel estimator of [27] and the LMMSE channel

estimate for standard two-bit quantization. The LMMSE algorithm for the two-bit case can

be derived by combining the analysis of [27] with that in Sections 4.2.2 and 5.2 by replacing

rm with xm. The NE of an LMMSE channel estimator using unquantized measurements is

also evaluated. Fig. 5.1 shows the estimation performance as a function of the angular spread

Θ of the user AoAs for four different antenna spacings. Dotted lines indicate the NE of the

channel estimate when there is no mutual coupling, circles indicate analytical values and

lines indicate simulated results. As expected, the performance of the spatial Σ∆ approach

improves as either the antenna spacing δ or the size of the users’ angular spread Θ decreases.

Without oversampling, i.e., when δ = λ/2, the Σ∆ array offers no benefit over regular one-

and two-bit quantization, except for a very narrow region near broadside, since the signals

96



at adjacent antennas are less correlated. For δ ≤ λ/4, however, there is a significant gain for

angular sectors up to 90◦ and beyond. The dotted lines in the plots show the performance of

the Σ∆ channel estimator if the effect of mutual coupling is removed. While mutual coupling

increasingly degrades the channel estimation performance as the antenna spacing decreases,

the overall effect is not large. For the remaining numerical examples, we will set Θ = 60◦

and δ = λ/6.

Fig. 5.2 shows the NE of the channel estimates as a function of SNR with M = 128 anten-

nas. The solid lines show the NE predicted by (5.24), the symbols indicate the simulation

results, and the dotted lines show the performance without the effect of mutual coupling

(this convention will be followed in all subsequent plots). It is seen that there is excellent

agreement between our theoretical expression and the simulations. At low-to-medium SNRs,

the performance of the Σ∆ channel estimates is very close to that of the unquantized MMSE

channel estimate. The NE with two-bit Σ∆ ADCs is also lower than that achieved by one-bit

Σ∆ ADCs beyond an SNR of −5dB. The gap between the two widens as the SNR increases

and the error floor is about −15dB with one-bit Σ∆ ADCs and −18dB with two-bit Σ∆

ADCs. It is seen that LMMSE channel estimation with the Σ∆ array offers a significant

advantage over the conventional one-bit and two-bit quantized arrays. The error floor of the

Σ∆ channel estimators is around 8-9dB lower than their counterparts employing standard

quantization. The advantage of the spatial Σ∆ approach is further seen in Fig. 5.3 where

performance is plotted as a function of M for a fixed SNR of 0dB. These results indicate

that the loss due to mutual coupling diminishes as the size of the array grows.

In Fig. 5.4, the theoretical and simulated sum spectral efficiency (SE) achieved by the MRC,

ZF and LMMSE receivers using the LMMSE channel estimate are plotted. Fig. 5.4(a) shows

that the SE of the Σ∆ architectures is close to that of an unquantized system and a bit

higher than that of the one-bit massive MIMO system, although for MRC the difference in

SE is not so large since multi-user interference is more of a limiting factor. There is excellent
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Figure 5.3: NE of channel estimate as a function of the number of antennas, SNR = 0dB.

agreement between the simulations and our analytical expression in (5.35). More impressive

results are obtained for the case of a ZF receiver, as shown in Fig. 5.4(b). At high SNRs, the

throughput achieved with two-bit Σ∆ ADCs is around 60 bits/s/Hz, almost 2.5 times that

achieved with regular two-bit ADCs. With one-bit Σ∆ ADCs, the maximum throughput is

around 50 bits/s/Hz, also around 2.5 times that achieved with regular one-bit ADCs. Of

course, there is also a much bigger gap between the spectral efficiencies achievable by the

Σ∆ and unquantized systems as well, especially at high SNR. From Fig. 5.4 (c), it is seen

that the performance of the LMMSE receiver is nearly identical to that of the ZF receiver

since the number of users is fairly small (K = 10).

Finally, Fig. 5.5 shows a plot of the average per-user achievable rate for the MRC (dotted

lines), ZF (dash-dotted lines) and LMMSE (dashed lines) receivers versus the total number

of users. For MRC, the per-user rate achieved with both the one-bit and two-bit Σ∆ ADC

arrays is essentially identical to that achieved without quantization. The numerator term

of the logarithm in (5.35) decreases with K while the inter-user interference term in the

denominator increases with K. The net effect is that, as the number of uplink users increases,

the effective SNR per user for MRC decreases as O(K2). When K is not too large, the per-
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Figure 5.4: Sum spectral efficiency (SE) with (a) MRC (b) ZF (c) LMMSE receivers (M =
128, K = 10).
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M = 128.

user rate for ZF is significantly higher than for MRC, with the Σ∆ architecture falling in

between the standard one-bit and unquantized systems. For an average per-user rate of 2

bits/s/Hz, MRC can support 7-8 users almost independently of the quantization level, while

for ZF/LMMSE the number of users increases to 10 for standard two-bit quantization, and

16-24 for the Σ∆ array. As the number of users increases, the channel matrix becomes

ill-conditioned and the sum rate achieved with the ZF receiver tends towards zero. This is

primarily due to the fact that the users’ signals are confined to arrive from a 60◦ angular

sector. However, the LMMSE receiver is more robust and continues to provide a positive,

albeit decreasing, average rate for the users even as K is increasing.

5.5 Conclusion

In this chapter, channel estimation in massive MIMO systems employing spatial Σ∆ modu-

lation with one- or two-bit ADCs was considered. The LMMSE channel estimator takes into

account the effect of the correlation between the quantizer outputs. The uplink rate that

is achievable for MRC, ZF and LMMSE receivers implemented with the LMMSE channel
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estimate was analyzed and the simulation results show that, in situations where the users

are confined to a certain angular sector or the array elements are more closely spaced than

one-half wavelength, the spatial Σ∆ approach is able to achieve significantly better channel

estimates and spectral efficiency than systems employing direct quantization using one- and

two-bit ADCs. At low-to-medium SNR values, the performance gap between the Σ∆ array

and a system with infinite-resolution ADCs is negligible.
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Chapter 6

Two-Dimensional Direction Finding

with Low-Resolution Sigma-Delta

ADCs

In this chapter, the problem of estimating the azimuth and elevation angles with spatial Σ∆

ADCs is considered. A scenario typical to sectorized cells where the antennas are mounted

on top the tower is considered where the desired field of view is wide in the azimuth domain

and relatively narrow in the elevation domain since most users are on the ground. Even

in indoor settings, antenna arrays are mounted on a wall and most users are concentrated

around a small angular sector in the elevation domain. Thus, a rectangular array architecture

in which the spatial Σ∆ processing occurs only along the vertical dimension of the array is

considered, as shown in Fig. 6.1.
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Figure 6.1: Rectangular antenna array in the yz plane.

6.1 System Model

6.1.1 Nominal System Model

The RA consists of M antennas separated by dy in each row and N antennas separated by

dz in each column. It is assumed that K signals impinge on the array and the direction

associated with each signal is dependent on its azimuth and elevation angles, φk and θk,

respectively.

It is assumed that the elevation angles of the incoming signals from the users lie in a known

narrow angular region θk ∈ Sθ, while the azimuth angles are distributed over a wider range.

This scenario is common to many practical situations where the elevation angles of various

users are nearly the same or limited to a small range around the array broadside. It has been

demonstrated that Σ∆ arrays exhibit superior performance compared to standard quanti-

zation arrays [101, 103] when the DOAs are confined to a narrow range in addition to, or

in lieu of, the BS array being oversampled in space. Additionally, space constraints restrict
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the number of antennas that can be placed in a fixed physical space, as well as how small

the spacing between adjacent antennas can be. There is a limit on how close the antennas

can be placed together before the loss due to mutual coupling becomes substantial. Drawing

from these ideas, an RA configuration for which each column consists of a first-order spatial

Σ∆ ADC array with spacing dz ≤ λ/2, is considered and therefore, the impact of mutual

antenna coupling between elements of each column is significant. Since the azimuth range

is much wider, the horizontal spacing is set to dy = λ/2, and hence, it is assumed that the

mutual coupling between elements across each row is negligible. The received signal from

each column of the RA is collected and stacked on top of each other at time t and is given

by

x (t) = G (θ,φ) s (t) + n (t) , (6.1)

where G (θ,φ) ∈ CMN×K is the array manifold over the unknown user elevation and azimuth

angles, θ = [θ1, θ2, . . . , θK ]T and φ = [φ1, φ2, . . . , φK ]T , respectively, the K signals at time

t are stacked in s(t) ∈ CK×1, and n(t) ∈ CMN×1 is the additive noise. It is assumed that

the noise is temporally white but not necessarily spatially white. While the various sources

of noise, such as thermal noise or the noise from the front-end amplifiers, are independent,

mutual coupling between antennas produces colored noise at the output of the receiver.

Therefore, the noise is assumed to be a zero-mean Gaussian random process with a known

covariance matrix, Cn, i.e.,

E
[
n(t1)nH(t2)

]
= Cn δt1t2

E
[
n(t1)nT (t2)

]
= 0.

(6.2)

The array manifold G (θ,φ) incorporates the mutual coupling between elements represented
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by the mutual coupling matrix (MCM), T, and is given by

G (θ,φ) = TA (θ,φ) , (6.3)

where the columns of theMN×K matrix A (θ,φ) are the array steering vectors a(θk, φk), k =

1, . . . , K. It is assumed that the functional form of nominal array response, a(θ, φ), is known

and that the sensors are omnidirectional so that ‖a(θ, φ)‖2 =
√
MN . Slightly different no-

tations for the mutual coupling matrix T and the spatial noise covariane matrix Cn will be

used as

T =IM ⊗
(

IN +
1

R
Z

)−1

,

Cn =TΥTH ,

(6.4)

where R is the input impedance of the LNA, and Z and Υ are specified by Eqs. (4.29)

and (4.31), respectively.

Let g (θ, φ) = T a (θ, φ). The following standard assumptions are made on the signal model:

1. The source DOAs are distinct, i.e. g (θk, φk) = g (θj, φj), iff θj = θk and φj = φk.

2. The additive noise is uncorrelated with the source signals.

3. The source signals follow the unconditional model [141], and are circularly symmetric

Gaussian distributed with covariance matrix Cs.

4. The array response vectors corresponding to distinct set of DOAs are orthogonal for
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large M and N , i.e.

1

MN
aH(θk, φk)a(θj, φj) =


1, iff θj = θk,

φj = φk

0, otherwise.

Defining S = [s(t1) . . . s(tT )] and collecting the received signal over T time instants in X, we

have

X = G (θ,φ) S + N, (6.5)

where N = [n(t1) . . .n(tT )] and the output of the Σ∆ array is given by

Y =QΣ∆ (X) = Q (R)

R =UX−VY,

(6.6)

where U and V are MN×MN matrices defined in Eq. (5.13). Using (6.6) and the equivalent

linear model in (4.11) and rearranging the terms, we get

Y = X + U−1Q, (6.7)

where Q is the quantization noise matrix defined similar to X. The output covariance matrix,

upon which the MUSIC algorithm depends, can be derived using the above equivalent linear

model. The nominal covariance matrix of X and Y are respectively given by

Cx = G (θ,φ) CsG
H (θ,φ) + Cn

Cy = G (θ,φ) CsG
H (θ,φ) + Cn + U−1CqU

−H ,

(6.8)

where Cq = diag{σ2
q11
, . . . , σ2

qNM
}. The equivalent additive plus quantization noise at the
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output of the Σ∆ array, denoted by W, is given by

W = Cn + U−1CqU
−H . (6.9)

6.1.2 Perturbed System Model

In any practical situation, a number of error sources are present simultaneously and affect

the DOA estimation performance. In particular, model similar to those in [116, 142] is used

and it is assumed that the most significant factors contributing to error are:

• Finite sample effects,

• A perturbed array manifold,

• Inaccurate noise covariance matrix.

Given enough samples T and a sufficiently high SNR, the finite sample effects can be ne-

glected and the dominant sources of error are the imperfect assumptions on the array man-

ifold and the noise covariance.

The perturbations in the array manifold are a result of the fact that the array response

may not be known at all times. The array response at the time of measurement may be

different from that noted during the time of calibration due to changes in the surrounding

environment. The output of the Σ∆ array is assumed to be actually generated from the

model:

Y = T
(√

1− ε2A (θ,φ) + εÃ
)

S + U−1Q + N, (6.10)

where ε is the standard deviation of perturbation and Ã is the perturbation matrix. The

perturbations may be due to imprecisely known sensor locations, gain errors, phase errors,

107



mutual coupling modeling errors, etc. Since a combination of these factors is likely to be

present simultaneously, it is reasonable to model the aggregate array response as a random

quantity whose mean is the nominal array response A (θ,φ). The elements of the array

perturbation Ã, ãij, are assumed to be drawn from the distribution ãij ∼ CN (0, 1).

The assumptions on the noise covariance may also not always be valid. The noise field is often

unknown and may vary with time, there may be undesirable cross-talk and interference, and

the modeling of the quantization noise statistics may be inaccurate. The noise perturbation

represents deviations in the statistics of both the additive noise as well as the quantization

noise. As with the array perturbation, the perturbation to the noise covariance is modeled as

a random variable with known moments. Letting q(t) be the quantization noise at time t, the

“effective” noise at time t, ñ(t) = U−1q(t) + n(t), is zero-mean with conditional covariance:

E
[
ñ(t1)ñH(t2)|W̃

]
=
(
W + W̃

)
δt1t2 ,

E
[
ñ(t1)ñT (t2)|W̃

]
= 0,

(6.11)

where W̃ ∈ CMN×MN , the perturbation to the noise covariance matrix, is a Hermitian

matrix. Like in [116], W̃ is treated as a random matrix with zero mean and whose elements,

w̃ij, are independent and have variance µ2, i.e.,

E [w̃ijw̃kl] = µ2δikδjl. (6.12)

From (6.11), it can be seen that the total covariance matrix of the noise is identical to the

nominal covariance W. However, the estimation of [θ,φ] is affected by the higher order

moments of the noise and therefore by the perturbation model. For Σ∆ and standard coarse

quantization, the presence of quantization noise at high SNRs results in a biased estimate.

The perturbations introduce an additional bias in the estimates and, as a consequence,
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the estimation error does not reduce to zero despite increasing the SNR or the number of

snapshots T even when the ADCs have ideal resolution. However, in order to develop a

mathematically consistent analysis where the covariance of the estimation error depends on

both the finite-sample and model errors, we will follow an approach as in [116] to keep their

relative magnitudes comparable. This is performed by using the following limiting definitions

of perturbation variances:

µ2 = µ̃2/T

ε2 = ε̃2/T

(6.13)

where µ̃ and ε̃ are independent of T . Then, when the asymptotic performance analysis is

carried out assuming that T →∞, it is ensured that the contribution from modeling errors

is commensurate with that from finite-sample effects and neither source of error dominates

the other.

6.1.3 Estimation Methods

Various approaches to DOA estimation using one-bit measurements have been considered,

for instance, subspace based approaches on ULAs are used in [66, 68, 71, 143], compressed

sensing based methods are used in [69, 70, 144] and sparse array estimation is considered

in [67, 68, 145]. In [108, 109], the AoAs and AoDs that characterize a sparse mmWave

channel are estimated with Σ∆ quantized measurements using MUSIC and beamforming,

respectively. However, an analysis of the asymptotic estimation error was not performed. In

this section, a closed-form expression for the covariance matrix of the asymptotic estimation

error will be derived when the output of the Σ∆ is generated from the perturbed system

model in (6.10).
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The estimation of θ and φ depends on the sample covariance matrix, Ĉy,

Ĉy =
1

T
YYH (6.14)

and since the effective noise is spatially correlated, the estimation is based on the prewhitened

sample covariance matrix, W− 1
2 ĈyW

− 1
2 , which takes the form

W− 1
2 ĈyW

− 1
2 =

(√
1− ε2Ḡ + εW− 1

2 TÃ
)

Ĉs

(√
1− ε2Ḡ + εW− 1

2 TÃ
)H

+
(√

1− ε2Ḡ + εW− 1
2 TÃ

)
Csn + CH

sn

(√
1− ε2Ḡ + εW− 1

2 TÃ
)H

+ Wn.

(6.15)

Here,

Ḡ ,W− 1
2 G (θ,φ)

Ĉs =
1

T
SSH

Csn =
1

T
SÑHW− 1

2

Wn =
1

T
W− 1

2 ÑÑHW− 1
2 ,

(6.16)

and Ñ is the effective quantization plus additive noise. The nominal prewhitened covariance

matrix and its eigendecomposition are given by

W− 1
2 CyW

− 1
2 = ḠCsḠ

H + IMN = EsΛsE
H
s + EnE

H
n , (6.17)

where the columns of Es ∈ CMN×K are the eigenvectors of W− 1
2 CyW

− 1
2 corresponding to the

signal subspace and the elements of the diagonal matrix Λs are the respective eigenvalues, and

the columns of En ∈ CMN×MN−K are the eigenvectors corresponding to the noise subspace.

In MUSIC, the orthogonality between the signal and noise subspaces is leveraged to find K

110



distinct minima of the function

fMU (θ, φ) = Tr
(
PḡÊnÊ

H
n

)
, (6.18)

where Ên is an estimate of En and, denoting the functional form of a column of Ḡ by ḡ (θ, φ),

Pḡ is the projection matrix

Pḡ =
ḡ (θ, φ) ḡH (θ, φ)

ḡH (θ, φ) ḡ (θ, φ)
=

W− 1
2 g (θ, φ) gH (θ, φ) W− 1

2

gH (θ, φ) W−1g (θ, φ)
.

The computational complexity of the associated singular value decomposition (SVD) on the

MN ×MN matrix prewhitened covariance matrix is relatively high especially for large MN

and to overcome this difficulty, an alternative is to use the traditional beamforming criterion.

The beamforming algorithm finds the K distinct minima of the criterion

fBF (θ, φ) = −Tr
(
PḡW− 1

2 ĈyW
− 1

2

)
. (6.19)

6.2 Performance analysis

It was shown in [116, 142] that given enough number of samples, expressions for the estima-

tion error can be obtained following a first-order analysis. In this section, we follow similar

ideas to derive error expressions for the beamforming and MUSIC algorithms. We derive

the asymptotic estimation error covariance matrix under the assumption that the individual

sources of error are uncorrelated, that the modeling errors are “small” enough and that T is
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“large” enough. For ease of notation, we will define the following matrices

Dθ ,

[
∂a (θ, φ1)

∂θ

∣∣∣∣
θ=θ1

, . . . ,
∂a (θ, φK)

∂θ

∣∣∣∣
θ=θK

]
,

Dφ ,

[
∂a (θ1, φ)

∂φ

∣∣∣∣
φ=φ1

, . . . ,
∂a (θK , φ)

∂φ

∣∣∣∣
φ=φK

]
,

D̄θ ,W− 1
2 TDθ, D̄φ ,W− 1

2 TDφ.

(6.20)

In addition to assumption (4) in section 6.1.1 which says that A is an orthogonal matrix, a

standard assumption that is made is that the matrices

AHDθ AHDφ DH
θ Dθ DH

φ Dφ

are all diagonal for large MN [146]. Although multiplication by the prewhitening matrix

and the mutual coupling matrices compromises orthogonality since they are not unitary

matrices in general, the orthogonality assumption is still valid for matrices Ḡ, D̄θ and D̄φ

when K �MN . In other words,

ḠHḠ ḠHD̄θ ḠHD̄φ D̄H
θ D̄θ D̄H

φ D̄φ

are also all diagonal for large M , N .

Let f(·) be an estimator that takes the form of (6.18) for the MUSIC criterion and of (6.19)

for the beamforming criterion and let f(θ̂k, φ̂k) be the function evaluated at the estimated

angles of the kth user, [θ̂k, φ̂k]. Using a first-order expansion of the gradient of f(θ̂k, φ̂k)

about the true value [θk, φk], we have

∇f(θk, φk) +∇2f(θk, φk)

 θ̂k − θk

φ̂k − φk

 ' 0 (6.21)
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where ∇f(θk, φk) and ∇2f(θk, φk) are, respectively, the gradient and Hessian of f(θ, φ) eval-

uated at [θk, φk]. The estimation error is given by

 θ̂k − θk

φ̂k − φk

 = −
[
∇2f(θk, φk)

]−1∇f(θk, φk). (6.22)

The asymptotic second-order statistics of the DOA estimation error is given by

E


 θ̂k − θk

φ̂k − φk


 θ̂k − θk

φ̂k − φk


T =

1

T

[
∇2f(θk, φk)

]−1
Qk

[
∇2f(θk, φk)

]−1
, (6.23)

where Qk is the limiting covariance matrix of the gradient and is given by

Qk = lim
T→∞

TE
[
∇f(θk, φk)∇f(θk, φk)

T
]
. (6.24)

Neglecting second-order error terms, the Hessian is shown to be dependent on only finite-

sample covariance in [116] and is given by

∇2fMU(θk, φk) =
2

‖ḡk‖2
Re




d̄HθkP
⊥
Ḡ

d̄θk d̄HθkP
⊥
Ḡ

d̄φk

d̄HθkP
⊥
Ḡ

d̄φk d̄HφkP
⊥
Ḡ

d̄φk


 (6.25)

for the MUSIC criterion and by

∇2fBF(θk, φk) = 2pkRe




d̄HθkP
⊥
ḡk

d̄θk d̄HθkP
⊥
ḡk

d̄φk

d̄HθkP
⊥
ḡk

d̄φk d̄HφkP
⊥
ḡk

d̄φk


 (6.26)

for the beamforming criterion. Here, pk is the transmit power of the kth user, d̄θk and d̄φk
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are the kth columns of D̄θ and D̄φ, respectively, and P⊥ḡk and P⊥
Ḡ

are projection matrices

orthogonal to ḡ (θk, φk) and Ḡ given by

P⊥ḡk = IMN −
ḡ (θk, φk) ḡH (θk, φk)

ḡH (θk, φk) ḡ (θk, φk)

P⊥Ḡ = IMN − Ḡ
(
ḠHḠ

)−1
ḠH .

The matrix Qk is dependent on the gradient of each criterion and in what follows, an ex-

pression for Qk and the covariance matrix of the estimation error will be derived.

6.2.1 Beamforming

Using the first-order analysis outlined in (6.21)-(6.23) above, we are able to derive a closed-

form expression for the estimation error by computing the expression for Qk.

Theorem 1: Let θ̂BF
k and φ̂BF

k be the k-th user DOAs estimated from (6.19). Assuming that

the users are uncorrelated and that the assumptions in section 6.1.1 hold, the asymptotic

second-order statistics of the estimation errors is given by (6.27) at the top of the next page.

Proof: See Appendix E. �

From (6.27), it can be seen that the first term of QBF
k represents the finite sample effects, and

the remaining two terms represent the effects of noise modeling errors and array perturbation,

respectively.

Theorems 1 shows that in the limiting case T →∞ the covariance matrix of the estimation

error is given by (6.27). However, for finite T , we can substitute ε̃2 = Tε2 and µ̃2 = Tµ2

and use (6.23) to predict the variance of the estimation error. When the effects of array

perturbation and noise covariance modeling errors are negligible and the limiting source of
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E

[(
θ̂k − θk
φ̂k − φk

)(
θ̂k − θk
φ̂k − φk

)T]

=
1

2Tp2
k

Re

 d̄HθkP
⊥
ḡk

d̄θk d̄HθkP
⊥
ḡk

d̄φk

d̄HθkP
⊥
ḡk

d̄φk d̄HφkP
⊥
ḡk

d̄φk

−1

QBF
k Re

 d̄HθkP
⊥
ḡk

d̄θk d̄HθkP
⊥
ḡk

d̄φk

d̄HθkP
⊥
ḡk

d̄φk d̄HφkP
⊥
ḡk

d̄φk

−1

,

[
QBF
k

]
11

=
(
pk + εg − 2ε2pk

)
Re
(
d̄HθkP

⊥
ḡk

d̄θk

)
+ µ̃2εgRe

(
d̄HθkP

⊥
ḡk

d̄θk

)
+ p2

kε
2
(
1− ε2

)
Re
(
d̄HθkP

⊥
ḡk

W− 1
2 TTHW− 1

2 P⊥ḡk d̄θk

)
[
QBF
k

]
12

=
(
pk + εg − 2ε2pk

)
Re
(
d̄HφkP

⊥
ḡk

d̄θk

)
+ µ̃2εgRe

(
d̄HφkP

⊥
ḡk

d̄θk

)
+ p2

kε
2
(
1− ε2

)
Re
(
d̄HθkP

⊥
ḡk

W− 1
2 TTHW− 1

2 P⊥ḡk d̄φk

)
[
QBF
k

]
22

=
(
pk + εg − 2ε2pk

)
Re
(
d̄HφkP

⊥
ḡk

d̄φk

)
+ µ̃2εgRe

(
d̄HφkP

⊥
ḡk

d̄φk

)
+ p2

kε
2
(
1− ε2

)
Re
(
d̄HφkP

⊥
ḡk

W− 1
2 TTHW− 1

2 P⊥ḡk d̄φk

)
εg = 1/

(
ḡHk ḡk

)
(6.27)

error is the finite sample effect, (6.27) can be simplified by taking the limit µ̃→ 0 and ε̃→ 0.

In this case, the estimation errors reduce to the well-known expressions [146]

E
[
(θ̂k − θk)2

]
=

1/ (2Tpk)

d̄HθkP
⊥
ḡk d̄θk −

(
Re
(
d̄HθkP

⊥
ḡkd̄φk

))2
/
(
d̄HφkP

⊥
ḡkd̄φk

)
E
[
(φ̂k − φk)2

]
=

1/(2Tpk)

d̄HφkP
⊥
ḡkd̄φk −

(
Re
(
d̄HθkP

⊥
ḡkd̄φk

))2
/
(
d̄HθkP

⊥
ḡkd̄θk

) . (6.28)

6.2.2 MUSIC Estimation

In order to perform a similar expression for the estimation error for the MUSIC algorithm,

we make use of the relationship between Es and Ḡ. There exists a full rank matrix B such

that

B = Ḡ†Es.

115



E

[(
θ̂k − θk
φ̂k − φk

)(
θ̂k − θk
φ̂k − φk

)T]

=
1

2T
Re

 d̄HθkP
⊥
Ḡ

d̄θk d̄HθkP
⊥
Ḡ

d̄φk

d̄HθkP
⊥
Ḡ

d̄φk d̄HφkP
⊥
Ḡ

d̄φk

−1

QMU
k Re

 d̄HθkP
⊥
Ḡ

d̄θk d̄HθkP
⊥
Ḡ

d̄φk

d̄HθkP
⊥
Ḡ

d̄φk d̄HφkP
⊥
Ḡ

d̄φk

−1

[
QMU
k

]
11

= (1− ε2)Re
(
d̄HθkP

⊥
ḡk

d̄θkb
H
k Λ̃
−1

ΛsΛ̃
−1

bk

)
+ µ̃2Re

(
d̄HθkP

⊥
ḡk

d̄θkb
H
k Λ̃
−2

bk

)
+ ε2

(
1− ε2

)
Re
(
d̄HθkP

⊥
ḡk

W− 1
2 TTHW− 1

2 P⊥ḡk d̄θkb
H
k Λ̃
−1

ΛsB
HBΛsΛ̃

−1
bk

)
[
QMU
k

]
12

= (1− ε2)Re
(
d̄HθkP

⊥
ḡk

d̄φkb
H
k Λ̃
−1

ΛsΛ̃
−1

bk

)
+ µ̃2Re

(
d̄HθkP

⊥
ḡk

d̄φkb
H
k Λ̃
−2

bk

)
+ ε2

(
1− ε2

)
Re
(
d̄HθkP

⊥
ḡk

W− 1
2 TTHW− 1

2 P⊥ḡk d̄φkb
H
k Λ̃
−1

ΛsB
HBΛsΛ̃

−1
bk

)
[
QMU
k

]
22

= (1− ε2)Re
(
d̄HφkP

⊥
ḡk

d̄φkb
H
k Λ̃
−1

ΛsΛ̃
−1

bk

)
+ µ̃2Re

(
d̄HφkP

⊥
ḡk

d̄φkb
H
k Λ̃
−2

bk

)
+ ε2

(
1− ε2

)
Re
(
d̄HφkP

⊥
ḡk

W− 1
2 TTHW− 1

2 P⊥ḡk d̄φkb
H
k Λ̃
−1

ΛsB
HBΛsΛ̃

−1
bk

)

(6.30)

Defining Λ̃ to be the diagonal matrix given by

Λ̃ = Λs − IMN ,

we also have [117]

Cs = Ḡ†EsΛ̃EH
s

(
Ḡ†
)H

= BΛ̃BH . (6.29)

Theorem 2: Let θ̂MU
k and φ̂MU

k be the k-th user DOAs estimated from (6.18). Assuming

that the assumptions in section 6.1.1 hold, the asymptotic second-order statistics of the

estimation errors is given by (6.30) at the top of the next page.

Proof: See Appendix F. �

Again, when the array perturbation and noise modeling errors are small, we can take the
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limit µ̃→ 0 and ε̃→ 0 in (6.30) to get

E
[
(θ̂k − θk)2

]
=

(
[Cs]

−1
kk + [Cs]

−2
kk /(ḡ

H
k ḡk)

)
/ (2T )

d̄HθkP
⊥
Ḡ

d̄θk −
(
Re
(
d̄HθkP

⊥
Ḡ

d̄φk
))2

/
(
d̄HφkP

⊥
Ḡ

d̄φk
)

E
[
(φ̂k − φk)2

]
=

(
[Cs]

−1
kk + [Cs]

−2
kk /(ḡ

H
k ḡk)

)
/ (2T )

d̄HφkP
⊥
Ḡ

d̄φk −
(
Re
(
d̄HθkP

⊥
Ḡ

d̄φk
))2

/
(
d̄HθkP

⊥
Ḡ

d̄θk
) . (6.31)

Comparing (6.31) and (6.28), we see that the estimation errors of the beamformer and

MUSIC estimators coincide when the array is large and the source covariance matrix is

diagonal. However, by considering suitable weighted versions of the algorithm, MUSIC has

been shown to have a lower variance when the array errors are non-uniform from antenna to

antenna [116, 117].

6.2.3 Impact of Array Perturbations

With the substitution ε̃2 = Tε2 and µ̃2 = Tµ2, the estimation error does not go to zero even

when T → ∞ and the covariance matrix converges to an expression for model errors only.

We will additionally set µ = 0 and K = 1, and consider an SNR sufficiently high enough

to study only the impact of array perturbations on the estimation performance for a single

user. Under these assumptions, we have that

Λ̃ ≈ Λs

bk = B =
1

‖ḡ‖2
,

(6.32)
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and the MUSIC estimation error covariance matrix in (6.30) can be simplified to

E


 θ̂ − θ

φ̂− φ


 θ̂ − θ

φ̂− φ


T =

ε2 (1− ε2)

2T
Re




d̄HθkP
⊥
Ḡ

d̄θk d̄HθkP
⊥
Ḡ

d̄φk

d̄HθkP
⊥
Ḡ

d̄φk d̄HφkP
⊥
Ḡ

d̄φk



−1



‖THW− 1
2 P⊥ḡkd̄θk‖

2 Re

 d̄HθkP
⊥
ḡk

W− 1
2 T

THW− 1
2 P⊥ḡk d̄φk



Re

 d̄HθkP
⊥
ḡk

W− 1
2 T

THW− 1
2 P⊥ḡkd̄φk

 ‖THW− 1
2 P⊥ḡkd̄φk‖

2


Re




d̄HθkP
⊥
Ḡ

d̄θk d̄HθkP
⊥
Ḡ

d̄φk

d̄HθkP
⊥
Ḡ

d̄φk d̄HφkP
⊥
Ḡ

d̄φk



−1

.

(6.33)

Note that even though it was assumed in Sec. 6.1.2 that the covariance matrix of Ã is a scaled

identity matrix, the effective covariance matrix of array perturbations at the prewhitened

output is W− 1
2 TTHW− 1

2 . The expressions in (6.33) are particularly difficult to compute

analytically due to the presence of the MCM T and the prewhitening matrix W− 1
2 . Hence, we

will consider the impact of severe array calibrations in the Sec. 6.3 where (6.33) is computed

empirically.

6.2.4 Asymptotic Analysis - ULAs

The estimation of either the elevation or the azimuth angles using a one-dimensional array

can be treated as a special case of the two-dimensional DOA estimation and the variance

of the 1D beamformer can be derived in a straightforward manner from (6.27). Due to

the interdependence of the parameters θk and φk in the expressions for the estimation error

variances, it is difficult to characterize the behavior of the estimator and study the effect of
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system parameters on the performance. The analysis is further complicated by the presence

of mutual coupling and modeling errors. In this section, we consider an N -element ULA

equipped with Σ∆ ADCs and derive an expression for the estimation error of θk. For

simplicity, we will assume that the mutual coupling between antennas is insignificant, K = 1,

and that there are no modeling errors.

We begin by using the result from [103] that in the limit of a large number of antennas, the

quantization noise power converges to a constant value given by

σ2
q = σ2

x

k′ − 2

4− k′

k′ =


πβ2, b = 1

α2
∑4

i=1 ν
2
i

(
Ψ
(
σr√

2
νhi
i

)
−Ψ

(
σr√

2
ν lo
i

))
, b = 2.

(6.34)

We will assume that the Σ∆ ADC array is steered to the broadside direction (ψ = 0),

although the extension to an arbitray ψ is straightforward. Thus, T = IN , Cn = I and

W = I + σ2
qU
−1U−H . Then, (6.28) reduces to

E
[
θ̂ − θ

]2

=
1/ρ

2T
(
d̄Hθ P⊥ḡ d̄θ

) , (6.35)

where ρ is the transmit power of the user. In a similar manner, it can be shown that (6.31)

also converges to the expression in (6.35). Then, observing that W is a symmteric tridiago-

nal Topelitz matrix, we compute the inverse of this matrix. While the inverse of a symmetric

Toeplitz matrix can be evaluated in closed-form, is not Toeplitz in general (it is centrosym-

metric). However, the differences between the elements along any of the diagonals are small

enough to be ignored and the inverse can be approximated by a Toeplitz matrix. The inverse

of the tridiagonal matrix is obtained by following the method in [147] and is given by

[
W−1

]
nm

=
1

λ2
q(1 + 2σ2

q )
l|m−n|q (6.36)

119



where

lq =
σ2
q

(1 + 2σ2
q )

λq =
(

1 +
√

1 + 4σ2
q/(1 + 2σ2

q )
)
/2.

(6.37)

The variance of the estimator can be computed by evaluating the individual terms in (6.35)

and is given by

E
[
θ̂ − θ

]2

=
λ2
q(1 + 2σ2

q )
(
1− 2lqcos

(
2πdsinθ

λ

)
+ l2q

)
ρN

3T
6

(
2π d

λ
cosθ

)2 (
1− l2q

) .. (6.38)

The derivation of the above expression is shown in Appendix G. A similar analysis is per-

formed for standard low resolution quantization and ideal resolution ADCs in Appendix H

and the resulting variance of the beamformer estimator applied to these ADC arrays is given

by Eqs. (H.3) and (H.4), respectively. Inspection of Eqs. (6.38), (H.3) and (H.4) reveals that

in each case, the estimation error decreases inversely with N3 and inversely with the square

of the cosine of the true DOA. In both of the low resolution schemes, the estimation error is

affected by the particular value of the quantization noise power. We can make an additional

observation regarding the numerator term in (6.38). Increasing θ causes cos (2πdsinθ/λ)

to decrease and the numerator to increase overall. The net effect of increasing θ is that

the numerator increases while the denominator decreases simultaneously, and the estimator

variance increases at a higher rate compared to standard quantization schemes.

The high SNR estimation error floor can be computed from (6.38) by setting σ2
x = ρ and

taking the limit ρ→∞. Let k′′ = k′−2
4−k′ . Then, from (6.34), σ2

q = ρk′′ and the limiting values

of λq and lq are both computed to be equal to 1/2. Then, the estimation error in the high
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SNR limit is

lim
ρ→∞

E
[
θ̂ − θ

]2

=
k′′(5

4
− cos

(
2πdsinθ

λ

)
)

T
(
πdcosθ
λ

)2
N3

(
1 +

2
3
k′′(5

4
− cos

(
2πdsinθ

λ

)
)

N

)
. (6.39)

Similarly, the estimation error for standard quantization with ρ → ∞ is computed in Ap-

pendix H. Following a similar reasoning as above, it can be shown that the error floor is

lower than that obtained with standard low resolution ADCs when θ → 0◦ and higher when

θ → 90◦.

6.3 Simulation Results

In this section, we evaluate the RMSE performance of the DOA estimators with the Σ∆

quantized output and compare it with that of an ADC array of infinite resolution. The

effect of array and noise covariance perturbation on the RMS performance is evaluated and

the sample RMSE of the estimates is compared to the corresponding theoretical expressions.

The parameters used in modeling the MCM are selected as follows: R = 50Ω, TA = 290K,

%n = −0.35 + j0.7, B = 20MHz, RN = R, and σ2
i = 2kBTAB/R. For the simulations

performed in the absence of mutual coupling, we assume that Z = RI and T = 0.5I [113].

In computing the quantization noise matrix for prewhitening, the value of β selected for

one-bit Σ∆ quantization is 1.05, and unless otherwise specified, the parameter ψ is selected

to steer the array to the mean of the elevation angular sector spanned by the users. For

two-bit ADCs, the optimum levels {ν1, ν2, ν3, ν4} are chosen as per [119]. The simulations are

conducted for a 30× 30 planar array with K = 7 users. The elevation angles are uniformly

distributed in the range [−10◦, 10◦] and the azimuth angles are uniformly distributed in the

range [−45◦, 45◦]. The inter-element spacings of the rectangular array along the z- and y−
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axes are λ/6 and λ/2, respectively.

We use an iterative Newton method for optimizing the different criteria. Since we are

interested in the asymptotic estimation error, the algorithms are initialized at the true values

of θ and φ. The source symbols are drawn randomly from a circularly symmetric Gaussian

random process with Cs = ρIK . Then, the average SNR per-user is defined as

SNR =
ρTr

(
TA (θ,φ) AH (θ,φ) TH

)
Tr (Cn)

. (6.40)

We also compare with the RMSE obtained with standard low-resolution ADC arrays. For

the standard one-bit ADC array, the vector-wise Bussgang decomposition in [27] is used

to obtain the quantization noise covariance matrix, while for the two-bit case, an element-

wise Bussgang decomposition is used in a manner similar to that described in [148]. We

note that an asymptotic analysis of neither the MUSIC algorithm nor the conventional

beamformer with regular ADCs exists in prior literature and although a direct application

of equations (6.27) and (6.30) is possible, they do not yield accurate analytical results for

the rectangular array. For this reason, we exclude theoretical results for standard one and

two-bit ADC arrays.

In all simulations, solid lines and /, respectively, indicate the simulation error and theoretical

values predicted by (6.27) obtained with the MUSIC algorithm, while dash-dotted lines and

circles, respectively, indicate the simulation error and theoretical values predicted by (6.30)

with the Bartlett beamformer.

In Fig. 6.2, we plot the RMSE of the estimated DOAs as a function of the SNR with the

perturbation variances ε = 0.01 and µ = 10−4. It can be seen that there is good agreement

between the simulated and analytical RMSE values. in the estimation of both θ and φ,

the RMSEs achieved with the estimators based on Σ∆ ADC outputs are nearly identical

122



-5 0 5 10 15

10
-2

10
-1

Reg. 1-b

Reg. 2-b

 1-b

 2-b

Unq.

-5 0 5 10 15

10
-2

Figure 6.2: RMSE as a function of the SNR for a 30 × 30 planar array with ε = 0.01 and
µ = 10−4.
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Figure 6.3: RMSE as a function of N for ε = 0.1 and ε = 0.01.
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Figure 6.4: RMSE as a function of perturbation variance ε2 for an SNR of 0dB.

to that obtained from infinite (ideal) resolution ADC outputs at low to moderate SNRs.

At high SNRs, the gap between the RMSEs of Σ∆ and ideal ADCs is quite small- of the

order of 0.01◦ or less in case of the estimation of θ and of the order of 0.001◦ or less in case

of the estimation of φ. On the other hand, the gap between the RMSEs of standard and

ideal ADCs is slightly higher- around 0.02◦ or less in case of the estimation of θ and of the

order of 0.01◦ or less in case of the estimation of φ. The analytical values predicted for the

MUSIC algorithm and the beamformer are identical. Although there is a mismatch between

the simulated and theoretical RMSEs achieved with the beamformer, the gap between them

is around a hundredths of a degree.

In Fig. 6.3, the impact of array calibration error is studied by plotting the elevation and

azimuth estimation errors predicted by (6.33) for two levels of array calibration errors: ε = 0.1

and ε = 0.01. A single user is assumed to be located at [10◦, 25◦] and ψ = 10◦, the SNR is

10dB, M = 10 antennas and N is varied from 10 to 100, although similar results are obtained

when N is fixed and M is varied. For ε = 0.01, it is seen that the performance of estimation
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Figure 6.5: RMSE of DOA estimation for a ULA with 100 antennas.

errors achieved with Σ∆ ADCs is close to that achieved with ideal resolution ADCs whereas

the regular quantizer arrays have a visibly worse performance. For ε = 0.1, however, both

Σ∆ and standard ADCs have a lower estimation error compared to ideal ADCs for small

values of N . This is similar to the observation by the authors in [149] where it was noted

that one-bit quantizers are less affected by antenna gain sensors than ideal ADCs.

In Fig. 6.4, we ignore the effect of noise modeling errors and illustrate the RMSE for an

SNR of 0dB as a function of the array modeling error variance ε alone. As ε is increased,

the estimation performance for all methods progressively worsen. Somewhat surprisingly, at

high values of ε, estimators employing any of the low-resolution quantizers perform better

than one employing ideal resolution ADCs. This is also validated by analytical RMSE values.

Thus at high levels of perturbation variance when the array steering vectors are imperfectly

known, low-resolution ADCs are preferable to the use of expensive high-precision ADCs.

In the rest of the simulations, we perform experiments on ULAs with the interelement spacing

equal to 1/6. The 5 users are uniformly distributed between [−10◦, 10◦]. In Fig. (6.5), we

plot the RMSE on a 100-element ULA when the array perturbation variance ε is equal

to 0.03 and assume that there are no noise modeling errors. As before, the experimental
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Figure 6.6: RMSE for a ULA with 1000 antennas.
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Figure 6.7: RMSE as a function of the DOA for different inter-element antenna spacings.

RMSEs agree with the analytical values. DOA estimators employing Σ∆ ADCs perform

significantly better than those employing standard low-resolution ADCs. At high SNRs, the

Σ∆ array equipped with two-bit ADCs has a performance nearly identical to that achieved

with infinite precision ADCs. The worse performance of the Bartlett beamformer can be
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attributed to the inherent problem of the beamformer with the resolution of closely spaced

sources. However, this difference can be considerably alleviated by increasing the number

of antennas as shown in Fig. 6.6. In Fig. 6.6, we plot the RMSE for a 1000-element ULA

and assume that the array modeling errors are also negligible. The asymptotic equivalence

of MUSIC and the beamformer is evident and the difference between the two estimators is

small, less than 1/1000th of a degree.

Finally, in Fig. 6.7, we study the RMSE performance for various interelement spacings as

a function of the DOA, θ, in the absence of mutual coupling and modeling errors. For the

Σ∆ plots, inverted triangles indicate values predicted by (6.38). The analytical value is

evaluated directly from (6.35) in addition to the approximation from (6.38) for the Σ∆ case.

It is seen that for closer antenna spacings, the Σ∆ ADC array with both one and two-bit

resolutions have a lower estimation error than their corresponding standard quantization

counterparts. However, the range of angles over which Σ∆ ADC arrays have an advantage

decreases upon increasing the antenna spacing. For instance, for d/λ = 1/2, DOA estimation

with Σ∆ ADCs has a better performance than that with standard ADCs over the angular

sectors [−18◦, 18◦] and [−20◦, 20◦] for b = 1 and b = 2 respectively. On the other hand,

for d/λ = 1/6, the widths of these sectors are more than 60◦. Additionally, there is good

agreement between the theoretical prediction obtained from our analysis given by (6.38)

and that obtained from (6.35). The noise shaping effect of Σ∆ ADCs also means that the

estimation of user DOAs lying outside of the sector centered at the array broadside suffers

due to lower SQNR in these regions. This can be alleviated by a judicious choice of ψ but

this would require prior knowledge of the sectors in which the users are located. One solution

is to use adaptive beamformers as in [109], although this would entail a delay in estimation

and an increase in estimation complexity.
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Chapter 7

Concluding Remarks

In this dissertation, the performance of massive MIMO systems equipped with oversampled

low-resolution ADCs was considered. In this chapter, the salient findings are summarized

and directions for future work are provided.

7.1 Conclusion

The first part considered mmWave massive MIMO systems equipped with one-bit ADCs that

are temporally oversampled. In Chapter 3, CRB performance bounds for channel estimation

were derived for three different channel models: a structured mmWave channel characterized

by path loss coefficients and DOAs of the sparse channel, an unstructured channel appro-

priate when the number of paths is large, and a dictionary based channel where this are

grid errors. A system model with array calibration errors was also considered. The results

showed that even when the precise array calibration is unknown, using a structured channel

model can result in a lower channel estimation error. Increasing the bandwidth and the

oversampling factor can reduce the estimation error variance. Temporal oversampling ex-
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ploits the correlation between adjacent samples of the input and reduce the loss beyond the

2/π limit. However, temporal oversampling exacerbates the data rate requirements on the

remote radio head (RRH).

Alternatively, spatial oversampling could be used. In Chapters 4-6, the effect of one- and two-

bit spatial Σ∆ ADCs on the system performance was analyzed. Equivalent linear models

were used to develop a channel estimator in Chapter 4 and the resulting impact on the

spectral efficiency efficiency was studied. In Chapter 5, spatial Σ∆ modulation was used

to estimate the azimuth and elevation angles of signals impinging on a rectangular array.

Closed form analytical results were derived for the channel estimation error and the DOA

estimation error. In both cases, the simulation results show superior performance of Σ∆

ADCs compared to conventional ADCs when the desired signals arrive from a sector narrow

relative to the array broadside, or equivalently, from low spatial frequencies. Estimation

errors close to that achieved with ideal precision ADCs can be achieved with a nominal

increase in hardware complexity and cost compared to conventional ADCs.

7.2 Suggestions for Future Work

The research for this dissertation has generated a number of possible areas for future work.

Some possible directions for extending the solutions presented in this dissertation are listed

below.

In Chapter 3, the CRB, a measure that is relatively easy to compute for most problems,

was used to analyze the performance of mmWave channel estimation. Deriving a dedicated

channel estimator for each channel model considered was beyond the scope of this disserta-

tion. Nevertheless, it will be interesting to see how close the performance of these estimators

is to the CRB. Any unbiased channel estimator designed would only be able to approach the
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CRB but not achieve it due the nonlinearity of the quantization operation and the nonlinear

functions of the parameters to be estimated. Versions of the CRB and other tighter bounds

that can be applied to biased estimators exist when the bias function can be determined.

Since the CRB is closely related to the MSE that could be achieved, an additional direction

that can be explored is in characterizing an upper bound on the capacity of the massive

MIMO system with imperfect CSI without a particular channel estimator being specified.

Extending the CRB analysis for a system equipped with Σ∆ arrays considered in the second

part of this dissertation does not appear to be straightforward. Computation of the FIM

requires complete knowledge of the analytical form of the underlying distribution and its

exact dependence on the parameters. For the Σ∆ output, the characterization of its pdf

is particularly difficult and hence, the computation of the FIM is complicated. However,

there are alternatives when the statistical model is unknown. One approach is to estimate

the underlying pdf along with its gradient or Hessian. There are methods to estimate the

non-parametric density by performing controlled experiments to generate data with tunable

parameters. The FIM could then be computed by averaging the numerical gradients of the

log-densities estimated from each of the perturbed experiments [150]. Alternatively, the

FIM could be computed by generating an estimate of a divergence measure directly from the

data [151]. This approach has been used for dimensionality reduction and characterization

of the criticality behavior in neural networks [152, 153].

It is well-known that with conventional ADCs of resolution 4 bits or higher, a nearly ideal

performance could be achieved. Chapters 5 and 6 have shown that an almost ideal per-

formance could also be achieved with low-resolution Σ∆ ADCs. The additional hardware

complexity of Σ∆ ADCs appears to be minimal, but the additional power consumption in

the RF chain of each antenna is undeniable. A natural research problem would be a compar-

ison of the associated trade-offs between the hardware complexity and power consumption

for each class of ADC architecture. Future studies could accurately quantify the gains in
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energy efficiency as well.

In the research on channel estimation and direction finding using spatial Σ∆ ADCs, the

simulations were set up for scenarios where the users were constrained to relatively narrow

angular sectors. If the users were to be distributed over a wider angular sector, for instance,

the methods proposed in this dissertation would reasonably lead to higher estimation errors

than conventional ADCs. However, with the handle provided by the steering angle could

be used to divide the wider angular sector into several narrower angular sectors and an

adaptive beamformer that sequentially scans these sectors could be designed. The resulting

estimation error can be expected to be significantly lower than an approach that uses a

fixed value of the steering angle since the Σ∆ array would outperform conventional ADCs in

each of these narrower sectors. However, this beam-scanning approach would entail a larger

processing delay since multiple measurements would have to be recorded for each of the

scanned sectors. A more detailed study into the acceptable delays and algorithm complexity

for different applications is necessary.

While the delay in the Σ∆ array for narrowband systems could be compensated for by

choosing appropriate phase shifts between stages, care should be taken for the extension to

the wideband/mmWave scenario due to the “beam squint” problem. In a mmWave system,

the delay in Σ∆ processing is of the same order as the symbol duration and would have to be

accounted for in a different manner. An additional interesting problem is to exploit temporal

correlation by temporal oversampling in addition to spatial oversampling to further improve

the SQNR. This approach would alleviate the need for a high spatial oversampling factor

and reduce the performance degradation caused due to mutual coupling.

Overall, there are several opportunities to study the performance of low-resolutions quantiz-

ers in next generation wireless systems. Σ∆ ADCs, in particular, have the potential to open

new areas of research in the broad field of signal processing.
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Appendix A

Fisher Information

[Jθ]i,j = E
[
∂l(x; Θ)

∂θi

∂l(x; Θ)

∂θj

]
= E

[
2MN∑
k=1

2MN∑
l=1

4

σ2

Ψ′
(

2
σ
xkuk

)
Ψ′
(

2
σ
xlul

)
Ψ
(

2
σ
xkuk

)
Ψ
(

2
σ
xlul

) xkxl (D
(,i)
θ

)T
s(k,)

(
s(l,)
)T

D
(,j)
θ

]

= E

2MN∑
k=1

(
2xk
σ

Ψ′
(

2
σ
xkuk

)
Ψ
(

2
σ
xkuk

) )2 (
D

(,i)
θ

)T
s(k,)

(
s(k,)

)T
D

(,j)
θ

+
2MN∑
k=1

∑
l 6=k

4

σ2

Ψ′
(

2
σ
xkuk

)
Ψ′
(

2
σ
xlul

)
Ψ
(

2
σ
xkuk

)
Ψ
(

2
σ
xlul

) xkxl (D
(,i)
θ

)T
s(k,)

(
s(l,)
)T

D
(,j)
θ

]

=
2MN∑
k=1

2

σ2

(
Ψ′
(√

2
σ
uk

))2

Ψ
(√

2
σ
uk

)(
1−Ψ

(√
2
σ
uk

)) (D
(,i)
θ

)T
s(k,)

(
s(k,)

)T
D

(,j)
θ

=
(
D

(,i)
θ

)T
ST ΨD S D

(,j)
θ .

Other sub-matrices can be derived in a similar manner.
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Appendix B

Jacobians

The Jacobian matrices are computed below.
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It is sufficient to compute one of the blocks since the other blocks can be computed in a

recursive manner:

145



∂h[k]

∂θr
=γr



∂g(kTs−τr,1)

∂θr

∂g(kTs−τr,2)

∂θr

...

∂g(kTs−τr,M)
∂θr


� a(θr,ρ) + γr



g(kTs− τr,1)

g (kTs − τr,2)

...

g (kTs − τr,M)


� ∂a(θr,ρ)

∂θr
.

If we further assume a uniform linear array, the algebra is straightforward and, at the nominal

array perturbation, we get
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with respect to θr is shown in (B.1) at the top of

the next page. The derivatives of the array steering vector can also be computed in a

similar manner. For the above uniform linear array, under nominal perturbation values

(qm,0 = 1, ρm = 0 for the pattern pertubation when the perturbation is not a function of the

DOA, and ρm = 0 for the sensor position perturbation case), we have
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c

)
∂θr

=

cos πα(kTs − τr − δ sin θr
c

)/Ts

1− 4α2(kTs − τr − δ sin θr
c

)2/T 2
s

(
−δ cos θr

c

) (cos
π(kTs−τr− δ sin θrc

)

Ts
− sinc

(kTs−τr− δ sin θrc
)

Ts

)
(
π(kTs − τr − δ sin θr

c
)/Ts

) +

sinc
(kTs − τr − δ sin θr

c
)

Ts

δ

c
cos θr

[
(1− 4α2(kTs − τr − δ sin θr

c
)2/T 2

s )πα
Ts

sinπα(kTs − τr − δ sin θr
c

)/Ts

(1− 4α2(kTs − τr − δ sin θr
c

)2/T 2
s )2

−
8α2(kTs − τr − δ sin θr

c
)/T 2

s cos πα(kTs − τr − δ sin θr
c

)/Ts

(1− 4α2(kTs − τr − δ sin θr
c

)2/T 2
s )2

]
(B.1)

∂g(kTs − τr,m)

∂τr,m
=

cos πα(kTs−τr)
Ts

1− 4α2(kTs−τr)2
T 2
s

(
−π
Ts

) (cos π(kTs−τr,m)

Ts
− sinc (kTs−τr,m)

Ts

)
π(kTs − τr,m)/Ts

+

sinc
(kTs − τr,m)

Ts

[(
1− 4α2(kTs−τr,m)

T 2
s

)
sin πα(kTs−τr,m)

Ts
− 8α2(kTs−τr,m)

T 2
s

cos πα(kTs−τr,m)

Ts

]
(1− 4α2(kTs−τr,m)2

T 2
s

)2

Dτ =

[
∂h

∂τ1,1

,
∂h

∂τ1,2

, . . . ,
∂h

∂τR,M−1

,
∂h

∂τR,M

]
,

∂h

∂τr,m
=

 Re
(

vec
(

∂H
∂τr,m

))
Im
(

vec
(

∂H
∂τr,m

))
 ,

∂h[k]

∂τr,m
= γr

[
0 . . . ∂g(kTs−τr,m)

∂τr,m
. . . 0

]T
� a(θr,ρ).

The derivative of g (kTs − τr,m) with respect to τr,m is shown in (B.1) at the top of the next

page. For a ULA, τ = [τ1, . . . , τR]T , τr,m = τr + δ(m − 1) sin θr/c and the Jacobian can be

derived in a straightforward manner. We can derive DγRe , DγIm and Dρ from the following
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expressions,

∂h[k]

∂γRe
r

=



g(kTs− τr,1)

g (kTs − τr,2)

...

g (kTs − τr,M)


� a(θr,ρ),

∂h[k]

∂γIm
r

= j
∂h[k]

∂γRe
r

,

∂h[k]

∂ρd
=

R∑
r=1

γr



g(kTs− τr,1)

g (kTs − τr,2)

...

g (kTs − τr,M)


� ∂a(θr,ρ)

∂ρd
.

Let em ∈ RM×1 be the unit vector with a 1 at the mth index. There are 2MR perturbation

parameters in the case of pattern perturbation and M − 1 parameters in the case of position

perturbation. If we consider the pattern only perturbations with the pattern perturbation

independent of the DOA, ρ = [Re(ρ1), . . . ,Re(ρM), Im(ρ1), . . . , Im(ρM)]T and

∂h[k]

∂Re(ρm)

∣∣∣∣
ρ=0

=
R∑
r=1

γr



g(kTs− τr,1)

g (kTs − τr,2)

...

g (kTs − τr,M)


� exp(−j2π(bm sin θr + cm cos θr)/λ)em,

∂h[k]

∂Im(ρm)

∣∣∣∣
ρ=0

= j
∂h[k]

∂Re(ρm)

∣∣∣∣
ρ=0

.

Similarly, for nominal uniform linear arrays with position perturbation only we have [110]

∂h[k]

∂ρm

∣∣∣∣
ρ=0

=
R∑
r=1

γr



g(kTs− τr,1)

g (kTs − τr,2)

...

g (kTs − τr,M)


� (j2πδ cos θr/λ)diag(a(θr,0))

(
M−m∑
k=1

kek+m

)
.
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(B.2)

For arrays which are not uniform linear arrays, expressions for the derivatives can be derived

in a manner similar to (B.2).
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Appendix C

Proof of cross-correlation

We will prove that E [xmq
∗
n] ≈ 0, ∀m,n following an approach similar to that in Appendix

A of [27]. We can express E [xmq
∗
n] as

E [xmq
∗
n] = Ern [E [xmq

∗
n|rn]] = Ern [E [xm|rn] q∗n] , (C.1)

where the last equality follows from the fact that qn = yn−rn is fixed for a given rn. E [xm|rn]

is the MMSE estimate of xm given rn. Since we assume that rn is approximately a Gaussian

random variable, the MMSE estimate of the Gaussian variable xm will be approximately

equivalent to the LMMSE estimate given by

E [xm|rn] ≈ E [xmr
∗
n]

σ2
rn

rn. (C.2)

Using (C.2) and the fact that rn is uncorrelated with qn, we have

E [xmq
∗
n] ≈ E [xmr

∗
n]

σ2
rn

Ern [rnq
∗
n] = 0. (C.3)

Therefore, E [xmq
∗
n] ≈ 0, ∀m,n and hence E

[
xqH

]
≈ 0.
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Appendix D

Linear model for two-bit regular

ADCs

A fundamental difference between the standard and Σ∆ ADCs studied here is in selecting

the output level αm′ . For the case of Σ∆ ADCs, choosing an appropriate value for αm′

enabled us to control the amplitude of the input to the adjacent array element and is a

crucial element in preventing the system from becoming unstable. However, in a standard

ADC implementation, the output of the mth ADC is simply

ystd
m = Qm′ (Re (xm)) + jQm′ (Im (xm)) , (D.1)

where

Qm′ (Re (xm)) =
σxm√

2
νi, if xm ∈

(
σxm√

2
ν lo
i ,
σxm√

2
νhi
i

]
. (D.2)

As in the Σ∆ case, an element-wise Bussgang decomposition will be used and a linear model
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for the output will be developed. More specifically,

ystd
m = γmxm + qstd

m , (D.3)

where previous definitions hold for γm and qstd
m , and the coefficients γm are not constrained

to be 1. We can solve for γm to get

γm =
E
[
xm
(
ystd
m

)∗]
E [|xm|2]

=
4∑
i=2

(νi − νi−1)√
2π

exp

(
−
(
ν lo
i

)2

2

)
. (D.4)

The resulting expression for γm is independent of m, so we define γ , γm. Finally, the

output power and quantization noise powers are, respectively,

σ2
ystdm

=
σ2
xm

2

4∑
i=1

ν2
i

(
Ψ

(
σxm√

2
νhi
i

)
−Ψ

(
σxm√

2
ν lo
i

))
,

σ2
qstdm

= σ2
ystdm
− γ2σ2

xm .

(D.5)

Let the ADC outputs be stacked in ystd. Then, defining Cqstd as a diagonal matrix with σ2
qstdm

as its elements, the complete auto-correlation matrix of ystd is given by

Cystd = γCx + Cqstd . (D.6)

The LMMSE channel estimate is then obtained by

ĝstd = CgΦ
HC−1

ystd
ystd. (D.7)
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Appendix E

Estimation error- Bartlett

beamformer

The derivative of fBF (θ, φ) evaluated at [θk, φk] is given by

∂fBF (θ, φ)

∂θ

∣∣∣∣
θ=θk

= −2Re
(
ḡ†kW

− 1
2 ĈyW

− 1
2 P⊥ḡk d̄θk

)
. (E.1)

Using (6.15) in the above equation and using the fact that ḠHP⊥ḡkd̄θk = 0 due to the

orthogonality assumption, we have

∂f (θ, φ)

∂θ

∣∣∣∣
θ=θk

= −2Re
(
ε
√

1− ε2 eTkCsÃ
HTHW− 1

2 P⊥ḡk d̄θk

)
− 2Re

(√
1− ε2 eTkCsnP

⊥
ḡk

d̄θk

)
− 2Re

(
ḡ†kWnP

⊥
ḡk

d̄θk

) (E.2)
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where we have ignored second-order error terms and ek = [0, . . . , 1, . . . , 0]T is a unit vector

of length K with a 1 at the kth location. Then, let us define V θ
1k, V

θ
2k and V θ

3k as

V θ
1k = −2Re

(
ε
√

1− ε2 eTkCsÃ
HTHW− 1

2 P⊥ḡkd̄θk

)
V θ

2k = −2Re
(√

1− ε2 eTkCsnP
⊥
ḡk

d̄θk

)
V θ

3k = −2Re
(
ḡ†kWnP

⊥
ḡk

d̄θk

)
.

(E.3)

Further, we note that the expectation of each of the cross-terms in (E.2) is zero and make

use of the following identities for arbitrary deterministic vectors x1, x2, x3 and x4 and for

arbitrary scalars a and b [116]:

2Re(a)Re(b) = Re (a∗b+ ab)

E
[
xH1 Ãx2x

H
3 Ãx4

]
= 0

E
[
xH1 ÃHx2x

H
3 Ãx4

]
= xH1 x4x

H
3 x2

E
[
xH1 C̃snx2x

H
3 C̃snx4

]
= 0

E
[
xH1 C̃H

snx2x
H
3 C̃snx4

]
=

1

T
xH1 x4x

H
3 Ĉsx2

E
[
xH1 W̃nx2x

H
3 W̃nx4

]
=

(
1 +

µ2

T

)
xH1 x2x

H
3 x4 +

(
1

T
+ µ2

)
xH3 x2x

H
1 x4.

(E.4)

Then, E
[
V θ

1kV
θ

1k

]
, E
[
V θ

2kV
θ

2k

]
and E

[
V θ

3kV
θ

3k

]
can be evaluated to be

E
[
V θ

1kV
θ

1k

]
=

2ε2
(
1− ε2

)
Re
(
eTkCsCsekd̄

H
θk

P⊥ḡkW
− 1

2 TTHW− 1
2 P⊥ḡkd̄θk

)
E
[
V θ

2kV
θ

2k

]
=

2

T

(
1− ε2

)
Re
(
d̄HθkP

⊥
ḡk

d̄θke
T
kCsek

)
E
[
V θ

3kV
θ

3k

]
= 2

(
1

T
+ µ2

)
Re

(
d̄HθkP

⊥
ḡk

d̄θk
ḡHk ḡk

)
.

(E.5)
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Computing the off-diagonal terms of E
[
∇f(θk, φk)∇f(θk, φk)

T
]

in a similar manner and

taking the limit T →∞, we obtain Qk. For instance, the element [Qk]11 is given by

[Qk]11 = 2

(
pk +

1

ḡHk ḡk

)
Re
(
d̄HθkP

⊥
ḡk

d̄θk
)
− 2ε2pkRe

(
d̄HθkP

⊥
ḡk

d̄θk
)

+ 2
µ2

ḡHk ḡk
Re
(
d̄HθkP

⊥
ḡk

d̄θk
)

+ 2ε2
(
1− ε2

)
Re
(
eTkCsCsekd̄

H
θk

P⊥ḡkW
− 1

2 TTHW− 1
2 P⊥ḡkd̄θk

)
.

(E.6)
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Appendix F

Estimation error- MUSIC

The derivative of fMU (θ, φ) evaluated at [θk, φk] is given by

∂fMU (θ, φ)

∂θ

∣∣∣∣
θ=θk

= 2Re

(
d̄HθkP

⊥
ḡk

ÊnÊ
H
n

(
ḡ†k

)H)
. (F.1)

Since ÊnÊ
H
n = IMN − ÊsÊ

H
s and P⊥ḡkEs = 0, we have P⊥ḡkÊs = O(1/

√
MN) and

∂fMU (θ, φ)

∂θ

∣∣∣∣
θ=θk

= −2Re

(
d̄HθkP

⊥
ḡk

ÊsE
H
s

(
ḡ†k

)H)
. (F.2)

Using the first-order relationship between Es and W
− 1

2
n CyW

− 1
2

n [117]

P⊥ḡkÊs ≈ P⊥ḡkW
− 1

2
n ĈyW

− 1
2

n EsΛ̃
−1

we get

∂fMU (θ, φ)

∂θ

∣∣∣∣
θ=θk

= −2Re

(
d̄HθkP

⊥
ḡk

W
− 1

2
n ĈyW

− 1
2

n EsΛ̃
−1

EH
s

(
ḡ†k

)H)
. (F.3)
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As in the beamforming case, we can plug in the expression for W
− 1

2
n ĈyW

− 1
2

n and ignore

second-order terms to get

∂fMU (θ, φ)

∂θ

∣∣∣∣
θ=θk

= −2Re

(
d̄HθkP

⊥
ḡk

W
− 1

2
n ĈyW

− 1
2

n EsΛ̃
−1

EH
s

(
ḡ†k

)H)
= −2Re

(
d̄HθkP

⊥
ḡk

[
ε
√

1− ε2W− 1
2

n TÃCsḠ
H +
√

1− ε2 CH
snḠ

H + Wn

]
EsΛ̃

−1
EH
s

(
ḡ†k

)H)
.

(F.4)

Again, defining V θ
1k, V

θ
2k and V θ

3k as

V θ
1k = −2Re

(
ε
√

1− ε2d̄HθkP
⊥
ḡk

W
− 1

2
n TÃCsḠ

HEsΛ̃
−1

EH
s

(
ḡ†k

)H)
V θ

2k = −2Re

(
d̄HθkP

⊥
ḡk

WnEsΛ̃
−1

EH
s

(
ḡ†k

)H)
,

V θ
3k = −2Re

(√
1− ε2d̄HθkP

⊥
ḡk

CH
snḠ

HEsΛ̃
−1

EH
s

(
ḡ†k

)H) (F.5)

we can compute E
[
V θ

1kV
θ

1k

]
, E
[
V θ

2kV
θ

2k

]
and E

[
V θ

3kV
θ

3k

]
in a manner similar to (E.4) - (E.5)

by using (6.29)

E
[
V θ

1kV
θ

1k

]
= 2ε2

(
1− ε2

)
Re
(
d̄HθkP

⊥
ḡk

W− 1
2 TTHW− 1

2 P⊥ḡkd̄θkb
H
k Λ̃

−1
ΛsB

HBΛsΛ̃
−1

bk

)
E
[
V θ

2kV
θ

2k

]
= µ̃2Re

(
d̄HθkP

⊥
ḡk

d̄θkb
H
k Λ̃

−2
bk

)
E
[
V θ

3kV
θ

3k

]
= 2(1− ε2)Re

(
d̄HθkP

⊥
ḡk

d̄θkb
H
k Λ̃

−1
ΛsΛ̃

−1
bk

)
,

(F.6)

where bk is the kth column of B.
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Appendix G

Estimation error- ULAs

We use the following well-known sums of finite power series:

n∑
k=1

kak =
1− (n+ 1)an + nan+1

(1− a)2

n∑
k=1

k2ak =
a+ a2 − (n+ 1)2an+1 + (2n2 + 2n− 1)an+2 − n2an+3

(1− a)3
.

(G.1)

For the sake of convenience, we will also define ω = exp (j2πdsin(θ)/λ). Subsequently, the

term ḡH ḡ = aH (θ) W−1
n a (θ) can be represented by the sum

aH (θ) W−1
n a (θ)

=
1

λ2
q(1 + 2σ2

q )

(
N∑
m=1

(
m−1∑
k=1

lkq ω
−k +

N−m∑
k=1

lkq ω
k

)
+N

)

=
1

λ2
q(1 + 2σ2

q )

(
N +

N∑
m=1

(
lqω
−1 − lmq ω−m

1− lqω−1
+
lqω − lN−m+1

q ωN−m+1

1− lqω

))

≈ N

λ2
q(1 + 2σ2

q )

(
1 +

2lqcos (2πdsinθ/λ)− 2l2q
1− 2lqcos (2πdsinθ/λ) + l2q

)
,

(G.2)
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where we ignore the higher powers of lq since |lq| < 1. We evaluate the remaining terms in

a similar manner.

dH (θ) W−1
n a (θ)

=
j2πd cosθ/λ

λ2
q(1 + 2σ2

q )

(
N(N − 1)

2
+

N∑
m=1

(
(m− 1)

m−1∑
k=1

lkqω
−k + (m− 1)

N−m∑
k=1

lkqω
k −

m−1∑
k=1

klkqω
−k +

N−m∑
k=1

klkqω
k

))
,

where

N∑
m=1

(m− 1)

m−1∑
k=1

lkqω
−k ≈ N(N − 1)

2

lqω
−1

1− lqω−1
,

N∑
m=1

(m− 1)

N−m∑
k=1

lkqω
k ≈ N(N − 1)

2

lqω

1− lqω
,

N∑
m=1

m−1∑
k=1

klkqω
−k ≈ Nlqω

−1

(1− lqω−1)2

N∑
m=1

N−m∑
k=1

klkqω
k ≈ N lqω

(1− lqω)2

Lastly, following an approach similar to the above, we evaluate dH (θ) W−1
n d (θ) to get

dH (θ) W−1
n d (θ) ≈ (2πd cosθ/λ)2

λ2
q(1 + 2σ2

q )

N(N − 1)(2N − 1)

6

(
lqω
−1

(1− lqω−1)
+

lqω

(1− lqω)
+ 1

)
. (G.3)

Finally, using the equations (G.2)-(G.3) in (6.35), we obtain the result for the estimation

error in (6.38).
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Appendix H

Estimation error- Reg. ADCs

In this section, we derive the variance of the beamformer applied to the output of regular

ADC quantizers. The element-wise Bussgang decomposition [103, 148] is applied in a similar

manner to standard one- and two-bit ADCs. Then, denoting the output power and the

quantization noise power of the regular quantized array by σ2
y,r and σ2

q,r, respectively, we

have

σ2
y,r =



π
2
σ2
x, b = 1,

σ2
x

∑4
i=1 ν

2
i

(
Ψ
(
σx√

2
νhi
i

)
−Ψ

(
σx√

2
ν lo
i

))
, b = 2

σ2
q,r = (k′r − 1)σ2

x

k′r =


π/2, b = 1∑4

i=1 ν
2
i

(
Ψ
(
σx√

2
νhi
i

)
−Ψ

(
σx√

2
ν lo
i

))
, b = 2.

(H.1)
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Consequently, the equivalent additive plus quantization noise covariance matrix in the pres-

ence of mutual coupling is given by

Wn,r = Cn + (k′r − 1)σ2
xIN . (H.2)

The variance of the estimator is then given by (6.35) by plugging in Wn,r in place of Wn.

However, we will carry out the analysis similar to that in Appendix G for the simple case of

negligible mutual coupling. For large N , (6.35) then becomes

E
[
θ̂ − θ

]2

=
(1 + (k′r − 1)σ2

x)

2Tρ
(
dH(θ)d(θ)− |dH(θ)a(θ)|2

N

) ≈ (1 + (k′r − 1)σ2
x)

ρT
(

2πdcosθ
λ

)2 N3

6

(H.3)

Finally, the variance of the beamformer for the unquantized case is given by [142, 154]

E
[
θ̂ − θ

]2

≈ 1

ρT
(

2πdcosθ
λ

)2 N3

6

. (H.4)

The error floor in each case can be computed by setting σ2
x = ρ and taking the limit ρ→∞.

For standard quantization, the estimation error floor can be computed from (H.3) to get

lim
ρ→∞

E
[
θ̂ − θ

]2

=
(k′r − 1)

T
(

2πdcosθ
λ

)2 N3

6

. (H.5)

For ideal resolution, limρ→∞ E
[
θ̂ − θ

]2

= 0.
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