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a b s t r a c t

Population models often pose density-dependent rates as relations between current population size

on a habitat patch, n, and some threshold size defined by limiting resources, r. In fourteen recent

modeling studies incorporating density-dependent dispersal, formulations of the density-dependent

rate (or probability) fall into two distinct groups, expressing the rate as a function of n–r or n/r. These

two depictions of the same process differ fundamentally: they can cause strikingly different dynamics

in otherwise identical systems and they have different scaling properties in heterogeneous landscapes.

Here I consider the implications of the two formulations under two broad ecological scenarios:

scramble competition for an equally divided resource (e.g. food) and contest competition for an

unequally divided resource (e.g. nest sites). In both cases, simple arguments show that the n/r form is

preferable when density dependence is driven by individual access to resources. Other circumstances

may require different formulations, but modelers must ensure that these have appropriate scaling and

non-equilibrium behavior.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Density dependence has an important influence on fecundity,
survival, dispersal, and many other population processes. At the
scale of a habitat patch, the effect of population density is
typically felt relative to the supply of some limiting resource(s),
such as food, space or nesting sites. As ecologists focus increas-
ingly on the importance of landscape heterogeneity, it is essential
that density-dependent rates are formulated such that they scale
properly between habitat patches with different resource levels. I
discuss this problem for the case study of dispersal rates, but the
conclusions apply to other processes influenced by resource-
driven density dependence.

While many factors can influence dispersal (Stenseth and
Lidicker, 1992; Bullock et al., 2001; Clobert et al., 2001; Bowler
and Benton, 2005), this paper addresses only the density-
dependent component of the behavior. Per capita dispersal rates
exhibit positive density dependence (i.e. higher density leads to
increased dispersal) in mammals, birds, and insects (Denno and
Peterson, 1995; Lambin et al., 2001; Sutherland et al., 2001;
Rhainds et al., 2002; Matthysen, 2005), often due to insufficient
resources in the local environment (Denno and Peterson, 1995;
French and Travis, 2001; Lambin et al., 2001; Rhainds et al., 2002;

Bowler and Benton, 2005). Theoretical models have shown that
evolutionarily stable strategies for dispersal should be density-
dependent under almost all conditions, if local population
densities are resource-limited (Travis et al., 1999; Poethke and
Hovestadt, 2002).

Based on this evidence, many ecologists are incorporating
density-dependent dispersal into mathematical models. At least
fourteen recent studies present density-dependent dispersal as a
relation between population size and resource level—but these
models are not formulated consistently. To generalize notation
across studies, let ni be the population of the ith habitat patch,
and ri be its resource level (measured in the same units as ni);
ri is often called the carrying capacity. Note that ni is a dynamic
variable, but ri is assumed constant in these models. The fourteen
papers then divide between formulating per capita rates or
probabilities of density-dependent dispersal as functions of
the difference ni–ri or of the ratio ni/ri (Table 1). These two
formulations differ fundamentally. Certainly a function f(ni�ri)
can be cast as f(ni/ri�1) by simply dividing the argument by ri, but
the slope or shape parameter (b or g in Table 1) must be rescaled
by a factor of ri to compensate. In heterogeneous landscapes, ri

varies among patches so no single rescaling can be applied.
Here I address this inconsistency in model formulation,

focusing on the different scaling properties of the two formula-
tions in heterogeneous landscapes. I begin by demonstrating the
potential impact of model formulation on dynamics and then
consider the plausibility of the two formulations as depictions of
resource-driven density dependence.
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1.1. Framing the discussion: definitions and assumptions

This paper uses a broad definition of dispersal as any move-
ment between patches (Bowler and Benton, 2005), and addresses
‘‘when to leave’’ rather than ‘‘where to settle’’ (van Baalen
and Hochberg, 2001). The resource level of a patch, ri, sets
the threshold population size against which density dependence
is measured. Some authors define ri phenomenologically via
its effect on dispersal (e.g. as the inflection point for sigmoidal
functions), while others use the steady state population size.

Note the assumptions implicit in models of this type. A single
per capita rate is used for each patch, implying either that all
inhabitants are identical and receive equal amounts of resource,
or that heterogeneity in resource acquisition is implicitly
averaged over the population. Most of these are single-species
models, so impacts of predation, disease, or interspecific competi-
tion are not included; where other species are modeled, the
interspecific interactions are decoupled from dispersal. Social
behavior such as group cohesion or interference is not considered,
nor are influences of relatedness and inclusive fitness. The
landscape is assumed to be heterogeneous in space, but not
in time.

All arguments presented below pertain to the behavior of
individual animals and how it scales across heterogeneous
landscapes. This reasoning is unaffected by shifting from
continuous to discrete time, and conclusions regarding formula-
tion apply equally to per capita rates and probabilities.

2. Dynamic consequences of different formulations

While apparently a minor distinction, use of the difference vs
ratio formulation of density-dependent dispersal can significantly
alter the overall dynamics produced by a population model. I
demonstrate this using a simple multi-patch model that closely
follows several studies cited in Table 1 (Ives and Settle, 1997;
Palmqvist et al., 2000; Ylikarjula et al., 2000).

Consider a system of N patches in discrete time, where, in each
time step, population growth occurs first, followed by dispersal.
Population growth on each patch follows the classic Ricker model

(May and Oster, 1976):

n0iðtÞ ¼ niðtÞexp l 1�
niðtÞ

ri

� �� �
, i¼ 1, . . . ,N ð1Þ

where ni(t) and n0iðtÞ are, respectively, the populations of the ith
patch before and after demographic processes act, ri is its resource
level, and l the intrinsic growth rate of the population. The per
capita probability of dispersal from each patch, f(ni,ri), is
calculated from the sigmoidal forms in Table 1, using either the
difference or ratio formulation. To compare the formulations, it is
necessary to address the challenge noted in the Introduction
section that they scale differently across heterogeneous patches. I
address this by scaling the shape parameter grat such that the
‘‘average’’ sensitivity of the two forms is comparable; two such
scalings are employed, based on the mean resource levels
calculated per patch and per individual (details in Fig. 1
caption). Dispersing individuals immigrate into all patches with
equal probability—this is the ‘‘global dispersal’’ of Ives and Settle
(1997). The population dynamics of the ith patch is given by

niðtþ1Þ ¼ n0iðtÞ�f ðn0iðtÞ,riÞn
0
iðtÞþð1=NÞ

XN

j ¼ 1

f ðn0jðtÞ,rjÞ n
0
jðtÞ ð2Þ

where the three terms represent local reproduction, emigration,
and immigration, respectively.

Sharply different dynamics can arise from the two model
formulations (Fig. 1a, b), including some parameter ranges where
the difference-formulated model predicts chaos while the ratio-
formulated model (with per-patch scaling) predicts a stable
equilibrium (e.g. around l¼1.3) or a two-point cycle (e.g.
lo0.4). When grat is scaled by the per-individual mean resource
level instead of the lower per-patch mean (Fig. 1c), the contrast
between difference and ratio formulations is less dramatic but
still distinct. The overall dispersal rate (averaged over 500 time
steps) was similar across all formulations.

Results in Fig. 1 were selected to illustrate the disparities that
can arise between the difference and ratio formulations, but
similar qualitative distinctions are obtained for a wide range of
parameter values, system structures, and functional forms for

Table 1
Per capita dispersal rates under the difference (ni�ri) or ratio (ni/ri) formulations, and studies that have used these forms.

Per capita dispersal rate References

Difference formulation
Linear aþbdiff ðni�riÞ Doebeli (1995), Saether et al. (1999)a,b

Sigmoidal d
1þexp½�gdiff ðni�ri Þ�

Ives and Settle (1997)a, Palmqvist et al. (2000), Ylikarjula et al. (2000),

Kun and Scheuring (2006)a

Ratio formulation
Linear aþbratððni=riÞ�1Þ Veit and Lewis (1996), Travis et al. (1999), French and Travis (2001)a

Sigmoidal d
1þexp½�grat ððni=ri Þ�1Þ�

–

Other Power function Amarasekare (1998, 2004)b, Best et al. (2007)

Exponential Johst and Brandl (1997)

Hill function Silva et al. (2001)a

Note: the population size and resource level of the ith patch are ni and ri, respectively; a and d are constants scaling the dispersal rate in the linear and sigmoidal forms; and

b and g are slope and shape parameters for the linear and sigmoidal forms. All rate expressions are restricted to non-negative values. Functional forms may have been

rearranged to bring ni and ri together, but are formally equivalent to the original expressions, and ri was substituted for carrying capacity or other measures of threshold

population size. Some density dependence expressions were originally posed as probabilities or in terms of population density, but as discussed in the text these cases are

also addressed by the arguments in this paper.

a These studies did not consider heterogeneous landscapes or compare runs with different patch resource levels, so their findings are not influenced by their

formulation of between-patch scaling. Kun and Scheuring (2006) consider ri that vary by individual genotype but not by patch.
b These studies analyzed only continuous-time models, so the qualitative dynamics of their models are not influenced strongly by their choice of formulation. All other

studies used discrete-time models, so qualitative effects on dynamics are possible.
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density-dependent dispersal. The divergence between predictions
of the difference and ratio forms is driven by landscape
heterogeneity—discrepancies increase when resource levels
of the patches are more diverse and diminish when the ri are
similar (Fig. 2). Discrepancies decrease for large values of the
shape parameters, as the sigmoidal curves approach step

functions and dynamics become unstable for both formulations.
Both formulations generate similar chaotic dynamics for
l42.6924, where the single-population Ricker model is known
to exhibit chaos (May and Oster, 1976). Likewise, both forms
yielded similar asymptotic approaches to equilibrium in a
continuous-time analogue of the model presented above.

Fig. 1. Bifurcation diagrams for a 6-patch model using (a) difference and (b, c) ratio formulations of density-dependent dispersal. The shape parameter, grat, of the

sigmoidal density dependence function must be scaled such that the ‘‘average’’ sensitivity of the two formulations is comparable; results are shown for two scalings of the

ratio formulation, where grat is scaled based on the mean resource levels calculated (b) as a per-patch average (as grat ¼ gdiff

PN
i ¼ 1

ri=N) or (c) as a per-individual average (as

grat ¼ gdiff

PN
i ¼ 1

ðriÞ
2=
PN

i ¼ 1

ri). The population of the largest patch is shown as a function of the intrinsic growth rate, l, of the Ricker logistic growth model governing patch

demographics. Each patch began at t¼0 with population equal to half its resource level, and the growth rate l was identical on all patches. Bifurcation diagrams were

constructed by iterating the system for 1000 time steps to allow transient dynamics to die out, then collecting and plotting population values for the next 500 time steps;

this procedure was repeated for a range of values of l. Parameter values were d¼0.8, gdiff¼0.5, and ri¼{100,30,30,10,10,10}; using these ri the values of grat were 31.7gdiff

and 63.7gdiff in panels (b) and (c), respectively. Populations of the smaller patches displayed similar dynamics.
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Fig. 2. Discrepancies between population dynamics predicted by the difference and ratio formulations of density-dependent dispersal. Plots show the difference in

(a) mean and (b) variance of the population of the largest patch, for simulations conducted using the difference and ratio formulations of sigmoidal density dependent

dispersal (i.e. the models used for Fig. 1a and b), as a function of landscape heterogeneity. For each value of l, simulations were run for 100 randomly generated

heterogeneous landscapes, each of which had six patches with random values of ri such that
P

i

ri ¼ 190 as in the scenario studied in Fig. 1. For each simulation, the system

dynamics were iterated for 1000 time steps to allow transient dynamics to die out; then the population of the largest patch was collected for the next 500 time steps. The

mean and variance of these population series were calculated, and absolute difference between the two model formulations was plotted as a function of the coefficient of

variation (CV) of patch size (i.e. standard deviation of ri/mean of ri). Inset in (a) is a box plot showing the interquartile range and median of CV values reported for patch

sizes in 30 insect, mammal, and bird metapopulations (median CV¼1.29, IQR [0.93, 2.03]; Connor et al., 2000), and the CV of the patch size values used to generate Fig. 1 is

marked with an arrow.
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3. Resource-driven density dependence

Given the potential influence on dynamics, care is warranted in
choosing which model formulation better represents the desired
biological mechanisms. I consider density dependence of per capita
dispersal rates that is driven primarily by individual access to
limiting resources. This accords with theoretical traditions of
several fields related to dispersal—namely foraging behavior
(Charnov, 1976; Koops and Abrahams, 2003), habitat selection
(Fretwell and Lucas, 1970; Morris, 2003), and population ecology
(Lomnicki, 1988; Slobodkin, 1992; Sutherland, 1996)—in which
individual decisions are determined by individual experience.

3.1. Equal division of resources and scramble competition

The simplest assumption, seemingly implicit in models that
assign a single rate to each patch, is that available resources are
shared equally by all inhabitants of a patch. Such an assumption
requires that all individuals have equal competitive ability, and
that order of arrival in the patch is unimportant. It also requires
that the limiting resource is freely divisible (e.g. food or space, but

not nest sites) and distributed evenly relative to the movement
and perceptual abilities of foragers. The assumption of equal
resource partitioning corresponds to scramble competition,
because some resources are consumed by individuals who then
disperse from the patch (cf. the original definition of scramble
competition, with some resources ‘‘dissipated by individuals
which obtain insufficient for survival’’; Nicholson, 1954).

Interpreting the difference and ratio formulations for this scenario
is straightforward. When resources are shared equally, the individual
experience of resource acquisition is the per capita resource supply,
ri/ni. The difference formulation is posed in terms of the absolute
difference—totaled over the entire patch—between current popula-
tion size and the threshold size set by resource availability, a quantity
without a clear relationship to the per capita resource supply. In
contrast, the ratio formulation captures the individual experience
directly, as it poses density dependence in terms of the reciprocal of
the per capita resource (i.e. ni/ri, corresponding to the number of
foragers competing for each unit of resource).

Now consider the scaling behavior predicted by the two
formulations on patches with different resource levels. The
difference formulation (Fig. 3a) yields curves of equal steepness
on all patches—an individual’s sensitivity to increased population
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Fig. 3. Between-patch scaling of per capita rates vs (a, b) population size or (c, d) per capita resource supply under the (a, c) difference and (b, d) ratio formulations. Curves

were calculated using the sigmoidal expressions in Table 1 with d¼1, gdiff¼0.5, and grat¼5. (grat has been scaled such that the ratio formulation ri¼10 curve is identical to

that for the difference formulation. This has no effect on the arguments at hand, which pertain to the relative slopes of lines within each subplot.)
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size (i.e. the change in per capita dispersal rate) is independent of
the amount of resource being shared among the population. The
ratio formulation (Fig. 3b) predicts that the sensitivity of dispersal
rates to population size depends on resource level—individuals on
resource-rich patches react less sharply to changes in ni than
individuals on resource-poor patches. Thus the ratio formulation
captures the buffering effect of higher resource levels on per capita
resource acquisition, while the difference formulation does not.

To further elucidate the different biological assumptions
implied by the two formulations, consider their dependence on
the per capita resource supply, ri/ni. The ratio formulation predicts
that response to individual resource supply will be identical on all
patches (Fig. 3d). This is logical for the simple (resource-driven,
equal-competitor) models considered here, in which the per
capita dispersal rate depends entirely on individual foraging
success. In contrast, under the difference formulation, individuals
on richer patches react more sharply to changes in ri/ni than those
on poorer patches (Fig. 3c). This prediction is doubly implausi-
ble—not only are individuals predicted to respond differently to
the same individual experience, but also foragers on the richest
patches are inexplicably hyper-sensitive to increasing competi-
tion. Again we find that the ratio formulation yields more
biologically reasonable predictions for how per capita rates—as
motivated by individual experience—scale between patches in
heterogeneous landscapes.

3.2. Unequal division of resources and contest competition

A more complex situation arises when the resource pool is
divided unequally between individuals in a patch. This may occur
for divisible resources such as food, when unequal competitors
control different shares (Lomnicki, 1988; Koops and Abrahams,
2003), or for non-divisible resources such as nesting sites, where
access is controlled pre-emptively by higher-ranking individuals
(i.e. better competitors). These phenomena correspond to contest
competition, because addition of lower-ranking individuals does
not affect the resource supply of higher-ranking individuals
(Lomnicki, 1988).

In the extreme case of unequally divided resources, all high-
ranking individuals obtain sufficient quality or quantity of
resources, but individuals beyond a certain population size
receive no resources at all. This scenario corresponds to ‘‘satura-
tion dispersal’’, in which all individuals up to a threshold number
remain on a patch, while any further individuals—which fail to
obtain resources—will disperse (Lidicker, 1975; Ruxton and
Rohani, 1998; Poethke and Hovestadt, 2002; Bowler and Benton,
2005). Because ni�ri individuals disperse in a given season,
saturation dispersal at first resembles the difference formulation;
however the experiences of all individuals must be averaged to
calculate the per capita probability of dispersal. When nirri, no
individuals disperse and the dispersal probability is zero. When
ni4ri, ni�ri out of ni individuals will disperse, yielding an average
per capita probability of (ni�ri)/ni¼1�(ni/ri)

�1. Therefore satura-
tion dispersal is modeled by a ratio formulation. Less extreme
instances of unequal resource partitioning, analyzed within a
framework where rank determines resource access (Lomnicki,
1988), which in turn determines dispersal rate, also lead to ratio
formulations (see Appendix).

4. Discussion

For two broad classes of intra-specific competition, I have
argued that ratio formulations provide a better depiction of
density dependence driven by individual access to resources than
do difference formulations. Further issues remain, however. The

choice of formulation is not dichotomous, as one could use a
combination of the difference and ratio forms, or any other
function of ni and ri. The functional form of the density-dependent
rate expression (whatever function argument is used) is obviously
important; linear and sigmoidal functions are used most com-
monly, but other options have been proposed (Table 1). The
relative influence on dispersal of density-dependent and density-
independent factors must be established. Ultimately, systematic
analysis of the empirical relationship between population size,
resource level, and dispersal is needed to conclusively resolve
these issues of model formulation. In an encouraging first step, a
recent study surveyed all available data and reported a near-
universal pattern of nonlinearity in the density dependence of
dispersal rates, though assessing the evidence for particular
formulations is hampered by the lack of systematic reporting of
resource levels (Kun and Scheuring, 2006).

A particular challenge is to understand density dependence in
dispersal across different spatial scales. The mechanisms linking
movement to resource availability are relatively clear at smaller
scales, where foraging drives the process. Much less is understood
about dispersal at larger scales. One recent review concluded that
data are ‘‘simply insufficient’’ to properly assess landscape-level
dispersal (South et al., 2001); another points out that causes of
dispersal may vary with scale (Bowler and Benton, 2005). In density-
dependent habitat selection, work on the role of dispersal costs and
habitat use found opposite conclusions at small (‘‘foraging’’) and
large (‘‘dispersal’’) scales (Morris, 1992). More empirical research on
landscape-scale dispersal is clearly needed.

The two formulations discussed here can be distinguished
further based on the capability of individual foragers to sense
relevant quantities. Under the difference formulation, per capita
dispersal rates are driven by the absolute difference, summed
over the entire patch, between current population size and
resource level. For the difference formulation to be realistic,
individual foragers must be able to sense these conditions over
the whole patch. The scale of information-gathering capabilities
of the species in question, compared to the scale of landscape
heterogeneity that drives patch size, will determine whether this
is possible (vanBaalen and Hochberg, 2001). In contrast, the ratio
formulation poses density dependence in terms of the number of
foragers competing for each unit of resource (or equivalently in
terms of the per capita resource supply), a quantity that can be
sensed locally by individual animals. Arguments in favor of the
ratio formulation thus align with the broader case made by
Slobodkin (1992) that ecological models and theories should be
posed in terms of intensive variables—those that do not depend
on the extent of the system—because these variables reflect the
local experience of individual animals.

An illustrative model demonstrated that the choice of
difference vs ratio formulation of density-dependent dispersal
has the potential to alter system dynamics dramatically
(Figs. 1 and 2). Such qualitative distinctions in dynamics could
distort the outcome of a modeling study, even a broader project in
which density-dependent dispersal is a background component
(Bowler and Benton, 2005). The present mixed use of the
two formulations also introduces a confusing wildcard into on-
going explorations of the effect of dispersal on metapopulation
dynamics (Doebeli, 1995; Rohani et al., 1996; Amarasekare, 1998;
Ruxton and Rohani, 1998; Ylikarjula et al., 2000; Silva et al., 2001;
Doebeli and Killingback, 2003; Amarasekare, 2004; Ims and
Andreassen, 2005), the evolution of dispersal (Hamilton and
May, 1977; Holt and McPeek, 1996; Travis et al., 1999; Poethke
and Hovestadt, 2002; Kun and Scheuring, 2006), and the impact of
climate change on species survival and range shifts (Best et al.,
2007). The tendency toward unstable dynamics under the
difference formulation appears to arise from highly variable
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dispersal fluxes generated by abrupt density dependence (i.e.
steep curves near ni¼ri) on large patches. In contrast, under the
ratio formulation, density dependence sets in more gradually on
larger patches so dispersal fluxes are more consistent.

Much of the present discussion generalizes to all population
processes for which density dependence is driven by competition
for limiting resources. Spatial heterogeneity continues to gain
recognition as a determinant of ecological processes, and
increasingly complex models are being used to synthesize field
results and generate hypotheses. In heterogeneous landscapes, it
is crucial that models be posed such that events and rates scale
among habitat patches in a biologically reasonable way—we have
seen that apparently benign differences in model formulation can
have dramatic implications for system dynamics. When building
density dependence into a model the full ramifications of
functional form should be considered, including scaling among
patches and behavior away from equilibrium (noting that the
difference and ratio formulations diverge only when niari).
Ideally, authors should explain why a particular formulation has
been chosen and what biological phenomena it is meant to
represent, to enable clear and consistent progress in the ecology
of heterogeneous landscapes.
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Appendix. Dispersal rates when the resource pool is unequally
divided

To discuss unequally divided resources, I introduce a more
explicit interpretation of the resource level ri. The resource
controlled by each individual is scored from 0 to 1, where a score
of 1 indicates fully satisfactory access to the resource (e.g. a high-

quality nest site, or satiating supply of food), while a score of 0
corresponds to no resource at all. The patch resource level, ri, is
then defined as the sum of all these resource-access scores
available on a patch. For example, if ri¼10, there could be 10 nest
sites of quality 1, or 4 sites of quality 1 and 12 sites of quality 0.5.

Now consider the general case of contest competition for an
unequally divided resource pool. Following the formalism of
Lomnicki (1988), each of the n individuals on a patch is assigned a
rank x (where x¼1 is the highest rank, x¼2 is the second highest,
etc.). The function y(x|r) describes how the individual resource-
access score varies with rank, on a patch with total resource
pool r. Another function, f(y), describes how the individual rate
(or probability) of dispersal varies with individual resource-access
score. For dispersal driven by competition for limiting resources,
as discussed in this paper, f(y) is a decreasing function. Note that
f(y) does not depend explicitly on x, n, or r; these variables
affect f only through their influence on the resource-access score
y(x|r). In the argument that follows, the discrete quantity x is
approximated as a continuous variable, because integration over x

yields cleaner closed-form results than discrete summation.
(Results obtained using discrete summation do not differ
qualitatively from results shown below.) This limits the argument
to a heuristic role, but allows it to be presented much more
transparently.

The resource-vs-rank curves y(x|r) obey three assumptions.
First, the value of y(x|r) is bounded on [0,1], where y(x|r)¼1
indicates access to a satiating quality or quantity of resource.
Second, the curve is normalized such that the total resource
available on the patch is r, i.e.

R1
0 yðxjrÞdx¼ r. Finally the curve is

non-increasing, because by definition higher-rank individuals
have better access to resources. Six resource-vs-rank functions
that obey these rules are shown in Fig. A1, with equations in
Table A1. In all six cases, note that the equations include x and r

only as a ratio, x/r. This was true for all functions y(x|r) that I
tested. Even deliberate attempts to choose functional forms for
y(x|r) that involve x�r (curves d–f in Fig. A1) led to functions of x|r

after normalization.
The overall goal of this exercise is to calculate the mean per

capita dispersal rate (f ) on each patch, under conditions of contest
competition for unequally divided resources. Individual dispersal
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rate may depend on resource access in a non-linear manner (i.e. f

may be a non-linear function of y), so the mean per capita rate is

f ¼ ð1=nÞ

Z n

0
f
�

yðxjrÞ
�

dx

If, as described above, the variables x and r appear in y(x|r) only
as x/r, a new variable u¼x/r can be introduced. Recalling that r is
constant on each patch, the mean per capita rate is then

f ¼ ðr=nÞ

Z n=r

0
f ðyðuÞÞdu

For any integrable function f(y(u)), the indefinite integral will
be some function of u. After evaluation at the limits u¼0 and
u¼n/r, f will be a function of n/r.

Therefore in the general case of contest competition for an
unequally divided resource pool, subject to the stated assump-
tions, the mean per capita rate expression is always formulated in
terms of the ratio n/r.
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Table A1
Equations for the resource-vs-rank curves shown in Fig. A1.

Curve y(x/r) for xrr y(x/r) for x4r

(a) 1 0

(b)a 1�x/2r 0

(c) exp(�x/r) exp(�x/r)

(d)b a a
�

1�ða=ð2ð1�aÞÞÞððx=rÞ�1Þ
�

(e)b 1�bx/r b
��

1�ðb=1�bÞ
��
ðx=rÞ�1

��
(f)b c c expð�ðc=1�cÞððx=rÞ�1ÞÞ

a The two columns correspond to xr2r and x42r for curve (b).
b The constants a, b, and c are bounded in the interval (0,1).
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