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chemistry: controlling organic photophysical processes with strong light-matter
coupling”, Proceedings Volume 11464, Physical Chemistry of Semiconductor Ma-
terials and Interfaces XIX. vol. 11464, 31-42, 2020.
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ABSTRACT OF THE DISSERTATION

Unveiling the photochemistry and photophysics of organic molecules

in optical cavities

by

Juan Bernardo Pérez Sánchez

Doctor of Philosophy in Chemistry

University of California San Diego 2024

Professor Joel Yuen-Zhou, Chair

Molecular polaritons offer a promising avenue for manipulating light and

matter properties through both single-molecule and collective strong light-matter

coupling within optical cavities. Over the past decade, numerous theoretical and

experimental studies have reported changes in optical and chemical properties as

a result of this strong interaction. However, the field is fraught with inconsistent

findings. Some experimental results cannot be reproduced or are later given non-

polaritonic explanations, while theoretical models often fail to account for observed

changes and make correct predictions. This disconnect between theory and exper-

iment arises from the use of overly simplistic models to explain the highly complex

nature of polaritonic systems in general, and organic molecules in particular.

In the field of polariton chemistry, which aims to exploit collective strong

coupling to modify chemical reactivity, there has been a tendency to interpret ex-

periments conducted in the collective regime using single-molecule strong coupling

models. In such models, the excited states of individual molecules hybridize with

cavity modes to create vibronic-polariton states, altering the energy levels of the

molecules and hence reactivity. In contrast, in the collective regime, polaritons are

excitations delocalized over the entire ensemble of molecules, and it is unclear how

x



they influence the local vibronic dynamics of individual molecules.

This thesis presents our efforts to unveil the novel photochemical and pho-

tophysical phenomena in organic exciton polaritons. Our findings can be sum-

marized as follows: while collective strong light-matter coupling can significantly

alter optical properties, such as the photonic density of states, it has negligible

direct effects on the internal degrees of freedom involved in chemical reactivity of

individual molecules. Nevertheless, we conclude that polaritonic modifications to

optical properties can influence molecular processes in a weak coupling manner,

leading to long-range resonance energy transfer, and changes in absorption, emis-

sion, and Raman scattering rates that are enhanced inside the cavity. Further

advancements require identifying the missing elements in our theories. Effects

such as temperature and the multimode nature of optical microcavities may be

crucial for understanding the experimental observations that remain unexplained

to this day, and for definitively determining novel applications of collective strong

light-matter coupling with organic molecules.
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Chapter 1

Introduction

Controlling chemical dynamics using coherent optical sources has been a

long-standing goal since the invention of the laser. One of the pioneering ap-

proaches in this field is mode-selective chemistry, where lasers are used to selec-

tively excite specific vibrational or rotational modes of molecules, thereby directing

the course of chemical reactions with unprecedented specificity [1]. However, en-

ergy deposited into a specific mode rapidly redistributes among other modes within

the molecule, drastically reducing the effectiveness of this approach. To deal with

this fundamental problem, Brumer and Shapiro described a scheme that exploits

the relative phase of two lasers as a control knob to induce destructive and con-

structive interferences between the two different reaction pathways [2]. Similarly,

Tannor and Rice [3] exploit the delay time between two ultrashort lasers as a

control knob to deexcite the molecules once it has reached the desired nuclear con-

figuration. Subsequently, multi-parameters control schemes assisted by learning

algorithms were proposed to optimize the laser pulses based on on-site experimen-

tal feedback [4]. Ultimately, control schemes make use of highly intense lasers to

induce several multiphotonic processes in a timescale faster than the motion. This

highly nonlinear regime is more easily understood with the concept of light-induced

potentials (LIPs), which gave rise to the idea of “shaping” the potential energy

surface (PES) using tailored laser fields [5] or using highly intense periodic fields

(Floquet engineering) [6]. Besides control of reactivity, complementary techniques

have been designed to probe wavepacket dynamics in femtosecond timescales based

1



on the same general principles [7].

Photonic devices such as optical microcavities [8] or plasmonic nanocavities

[9] can support highly confined electromagnetic fields. Light-matter interaction in

these infrastructures is comparable with molecular and cavity linewidths, so that

light must be considered beyond a perturbative treatment [10–21]. In this SC

regime, new hybrid light-matter states called polaritons emerge. Contrary to the

aforementioned laser control strategies, this regime does not necessarily require

high intensity lasers, but occur despite the cavity modes being in their vacua or

low-lying excitations.

While single molecules can strongly couple to confined fields of plasmonic

nanocavities [22], a more common scenario requires an ensemble of matter exci-

tations collectively coupled to optical modes in microcavities. In this collective

regime, polariton states are accompanied by a dense manifold of so-called dark

states. Organic exciton polaritons are particularly interesting systems since SC

between electronic and vibrational degrees of freedom (DoF) gives rise to intri-

cate relaxation processes that allow for population transfer between dark and

polariton states, a feature that plays a central role in modification of chemical

reactivity [16, 23–42], polariton-assisted remote energy transfer [43–45], polariton

transport [46–52], and polariton condensation [53–61].

Despite recent advancements, the field features contradictory findings: some

studies report no changes due to formation of polaritons, or provide alternative,

non-polaritonic explanations for the observed modifications. A crucial step towards

solving these inconsistencies is to have a tractable theoretical and computational

framework that can describe the myriads of molecules in the ensemble, and the

complex internal vibrational structure of each molecule. Indeed, theoretical meth-

ods that can incorporate effects of intermolecular interactions [62–64], multiple op-

tical cavity modes [65–67], complex vibrational and electronic structure [42,68–75],

and molecular disorder [67,76–85], while considering a large number of molecules,

are in much need to explain experimental observations.

This thesis is structured as a series of papers, each representing a step to-

wards understanding how strong light-matter interaction with organic molecules

2



can affect their local excited state dynamics. In the second chapter, we demon-

strate that nonlinear optical phenomena can arise under single-molecule strong

coupling, which can be exploited to achieve photon downconversion [86]. How-

ever, we show that this phenomenon vanishes quickly when the strong coupling is

achieved with more than one molecule. This highlights the need for a formalism in

the collective regime, which is the focus of the following chapters. In the third chap-

ter, we develop a numerically exact formalism for the collective regime exploiting

a permutationally symmetric representation of the many-body wavefunction [87].

We call this method Collective dynamics Using Truncated Equations (CUT-E),

and it is based on a separation of the light-matter interaction into its collective

and single-molecule components. CUT-E expresses the system’s equations of mo-

tion as a 1/N expansion, which makess the system easily solvable in the N → ∞

limit. This formalism is intuitive, reproduces well known results of polariton relax-

ation rates, and explains mechanisms for donor-acceptor energy transfer assisted

by polaritons. In the fourth chapter, we generalize our formalism to incorporate

molecular disorder and large number of excitations [88]. We reveal that changes

in excited state dynamics are only possible while molecules retain inter-exciton co-

herence, which vanishes in femtosecond timescales (specially in highly disordered

ensembles). This implies that modifications of Potential Energy Surfaces (PES)

under collective light-matter coupling are unfeasible, and polaritons only assist in

the creation of initial states that evolve under the bare molecular Hamiltonian.

This challenged the prevailing paradigm of the field. In the fifth chapter, we

use our method to numerically confirm that, in the N → ∞ limit, initial state

preparation assisted by polaritons can be done using a laser operating in the weak

coupling regime [89]. In other words, polaritons merely act as optical filters, and

non-trivial polaritonic effects rely on single-molecule light-matter coupling terms

(1/N effects). In chapter 6, we focus on the best known 1/N effects in molec-

ular polaritonics: relaxation from dark to polariton states. To do so, we derive

a bosonic picture of molecular polaritons that generalizes our CUT-E formalism

to account for an arbitrary number of excitations [90]. This second quantization

picture enforces permutational symmetries directly on the Hamiltonian. We use

3



our method to rigorously derive the vibrational relaxation and radiative pumping

relaxation mechanisms, calculate the corresponding relaxation rates, and relate

them to photophysical processes such as fluorescence, photon recycling, and Ra-

man scattering. Finally, in chapter seven we summarize our findings and provide

future directions.
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Chapter 2

Polariton assisted

down-conversion of photons via

nonadiabatic molecular dynamics

Quantum dynamics of the photoisomerization of a single 3,3’-diethyl-2,2’-

thiacynine iodide molecule embedded in an optical microcavity was theoretically

studied. The molecular model consisting of two electronic states and the reaction

coordinate was coupled to a single cavity mode via the quantum Rabi Hamiltonian,

and the corresponding time-dependent Schrödinger equation starting with a purely

molecular excitation was solved using the Multiconfigurational Time-Dependent

Hartree Method (MCTDH). We show that, for single-molecule SC with the pho-

ton mode, nonadiabatic molecular dynamics produces mixing of polariton man-

ifolds with differing number of excitations, without the need of counter-rotating

light-matter coupling terms. Therefore, an electronic excitation of the molecule

at cis configuration is followed by the generation of two photons in the trans con-

figuration upon isomerization. Conditions for this phenomenon to be operating

in the collective strong light-matter coupling regime are discussed and found to

be unfeasible for the present system, based on simulations of two molecules in-

side the microcavity. Yet, our finding suggests a new mechanism that, without

ultrastrong coupling (USC), achieves photon down-conversion by exploiting the

emergent molecular dynamics arising in polaritonic architectures.
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2.1 Introduction

Single molecules strongly interacting with confined electromagnetic fields

are commonly described by the Rabi model [12, 22, 91] where the matter part

is taken to be a two-level system with no internal structure. This description

is insufficient to study molecular processes where nuclear dynamics plays a ma-

jor role [92]. Theories that take into account the correlated nuclear-electronic-

photonic dynamics have been recently developed to account for the rovibrational

structure of molecules [93–95]. In these new frameworks, molecular-photonic dy-

namics are described in dressed or polaritonic potential energy surfaces (PESs),

and are governed by novel features such as light-induced avoided crossings (LIACs)

and light-induced conical intersections (LICIs) [40,96–98].

Most recent works focus on using strong light-matter coupling to change

molecular processes such as photodissociation [99–101], photoisomerization [33,94,

102–105], and charge and energy transfer [104, 106]. In this chapter we focus on

a less addressed complementary question: can the emergent molecular dynamics

under SC be harnessed for photonic applications? Previous studies on atomic

systems have shown that nonlinear optical effects can arise from the interplay

of translational or vibrational motion and the coupling to a confined radiation

field [107, 108]; however, as far as we are aware, no molecular analogues of these

phenomena have been previously reported. By theoretically studying the photoi-

somerization of a single 3,3’-diethyl-2,2’-thiacynine iodide molecule that strongly

interacts with a cavity, we find that for specific cavity frequencies and sufficiently

strong couplings, molecular photoexcitation into an electronic excited state can

be followed by the spontaneous emission of two photons of a lower frequency via

the cavity after isomerization, thus offering a new mechanism for photonic down-

conversion using molecular polaritons. This phenomenon provides a molecular

version of the dynamical Casimir (DC) effect, where photon pair creation arises

from nonadiabatic modulation of the electromagnetic vacuum. As we shall show,

molecular nonadiabatic effects mix states with different excitation numbers, with-

out the need of the usually invoked counter-rotating light-matter coupling terms

which are relevant in the standard realizations of the DC effect, which operate

6
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Figure 2.1: Potential energy surfaces Va(ϕ) and Vb(ϕ), diabatic coupling Vab(ϕ), and
transition dipole moment µab(ϕ) for 3,3’-diethyl-2,2’-thiacynine iodide; parameters
from ref. [111]. cis and trans configurations are located around ϕ = ±π and ϕ = 0
respectively. Diabatic coupling Vab(ϕ) generates molecular avoided crossings near
ϕ = ±1.63 rad.

under USC conditions [12,109,110].

2.2 Model

To begin with, the bare molecular Hamiltonian is given by (ℏ = 1) Ĥmol =

T̂N + Ĥel(ϕ), where T̂N = − 1
2m

∂2

∂ϕ2 ,

Ĥel(ϕ) =

Va(ϕ) Vab(ϕ)

Vab(ϕ) Vb(ϕ)

 , (2.1)

ϕ is the torsional angle of the molecule (reaction coordinate), Va(ϕ) and Vb(ϕ)

are diabatic PESs, and Vab(ϕ) is the diabatic coupling, responsible to produce

transitions between the electronic states |a⟩ and |b⟩. Diagonalization of Ĥel as a

function of ϕ produces adiabatic states of low energy |g⟩ and high energy |e⟩. These

purely molecular quantities can be determined by quantum chemistry calculations

and spectroscopic measurements. In this chapter, we take these properties from a

previous model parametrized by Hoki and Brumer (see Figure 2.1) [111].

On the other hand, the Hamiltonian of the cavity mode is given by

Ĥcav = ωc(â
†â+ 1/2), (2.2)

where ωc is the cavity frequency, and â is the photon annihilation operator. The

7



Hamiltonian of the cavity-molecule system is the sum of those corresponding to

the molecule, the cavity mode, and the interaction between them:

Ĥ = Ĥmol + Ĥcav + ĤI . (2.3)

In this chapter, the cavity-molecule coupling is modeled as described in

ref. [40], where the photon is coupled to the electronic transition through the

molecular transition dipole moment µab(ϕ) (see Figure 2.1). Equation 2.3 can

then be re-expressed as Ĥ = T̂N + Ĥe−p(ϕ), with the adiabatic polaritonic BO

Hamiltonian given by

Ĥe−p(ϕ) = Ĥel + ωc(â
†â+ 1/2) + g(ϕ)(â† + â)σ̂x. (2.4)

Here, g(ϕ) = ϵωcµab(ϕ) and ϵ = 1/
√
2V ωcϵ0.

By conveniently using the Fock state basis for the cavity mode, Ĥe−p can

be diagonalized to obtain adiabatic polaritonic PESs. These are shown in Figure

2.2 for specific values of cavity frequency and light-matter coupling. To establish

a reference, the electronic energy gap at the cis configuration of the molecule is

labeled as ωab ≡ Va(ϕ = −π)−Vb(ϕ = −π) = 2.70 eV. An experimental realization

of single-molecule SC was recently carried out by Chikkaraddy and collaborators

using a plasmonic nanocavity (V < 40 nm3) and an electronic transition of the

methyl blue molecule [22]. The coupling strength at the single molecule level

was g ≈ 0.09 eV with the transition dipole moment of the molecule being 3.8

D. For the present model, the transition dipole moment is 10 D, so we believe

it is reasonable to consider g = 0.21 eV as the highest single-molecule coupling

strength. Following that restriction, we varied ωc from 25% to 100% of ωab, as well

as the light-matter scaling parameter ϵ from 0.01 au to 0.04 au. This corresponds

to a light-matter coupling ranging from 4% to 16% of ωc. As an illustration, a

coupling constant g = 0.21 eV in our model corresponds to a single-photon electric

field amplitude inside the optical microcavity of 1 × 109 V
m
, corresponding to the

free space electric field amplitude of a wave laser at the same frequency, but with

an intensity I = 1.4× 1011 W
cm2 .
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Figure 2.2: Polaritonic PESs for ωc = 0.5ωab. a) Ignoring both light-matter and
diabatic couplings. b) Turning on diabatic coupling, generating adiabatic states
|g⟩ and |e⟩. c) Turning on both light-matter and diabatic couplings (ϵ = 0.04 au
→ g ≈ 0.21 eV). d) Mechanism of photon down-conversion is shown as a sequence
of five steps. Light red: one photon |g, 1⟩. Dark red: two photons |g, 2⟩. Light blue:
one exciton |e, 0⟩. Dark blue: one exciton with one photon |e, 1⟩. d) Diagrammatic
representation of mechanism in c).

Notice that polaritonic PESs (Figure 2.2c) at the cis and trans configura-

tions resemble their counterparts in the absence of light-matter coupling (Figure

2.2b); this effect is a consequence of the cavity and the molecule being highly off-

resonance at those configurations. However, as the torsional angle ϕ changes, so

does the electronic energy gap, leading to resonances at ϕ = ±1.16,±2.14 rad.

Light-matter coupling about these resonances generates LIACs. In this adiabatic

polaritonic basis, the kinetic energy operator is not longer diagonal, and it gen-

erates nonadiabatic couplings among different polaritonic PES. By analogy with

atomic systems or synthetic qubit systems, where different polariton manifolds

can be couple through counter-rotating terms [12, 109, 110, 112], coexistence of

nonadiabatic and light-matter couplings is enough to mix polaritons with different

9



number of excitations, with the difference that parity in excitation number need

not be conserved. Figures 2.2c and 2.2d summarize our proposal to achieve photon

down-conversion using molecular polaritons:

1. Resonant optical excitation of the molecule from state |g, 0⟩ to state |e, 0⟩.

This transition occurs via direct interaction between the molecular dipole

and a high frequency photon that is transparent (non-resonant) with respect

to the cavity.

2. Adiabatic dynamics across a LIAC converts electronic excitation into a cavity

photon (|e, 0⟩ → |g, 1⟩).

3. Nonadiabatic wavepacket dynamics across a molecular avoided crossing con-

verts vibrational energy into electronic energy (|g, 1⟩ → |e, 1⟩).

4. Adiabatic dynamics across a second LIAC converts electronic excitation into

a second cavity photon (|e, 1⟩ → |g, 2⟩).

5. Photons are spontaneously emitted into the electromagnetic bath through

the cavity (|g, 2⟩ → |g, 0⟩).

We emphasize that steps 2 and 4 are possible only if light-matter coupling

is strong enough to create a sizable LIAC that favors adiabatic nuclear dynamics.

In other words, energy exchange between cavity photon and molecule must be

fast compared to the instantaneous nuclear motion at the vicinity of the LIAC.

Interestingly, steps 3 and 4 resemble a mechanism previously studied by Dobrovsky

and Levine, who explored the possibility of light emission starting with a high-

energy collision and subsequent nonadiabatic molecular dynamics [113]. Notice

that our mechanism does no rely on counter-rotating light-matter coupling terms

in any of its steps. Even though we gained much conceptual insight by appealing

to a Fock basis for the cavity mode, we will numerically deal with the latter in

quadrature coordinates [114],

â =

√
ωc

2

(
x̂+

i

ω
p̂

)
, (2.5)
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where p̂ = −i ∂
∂x
. With these identifications, Eq. 2 can be rewritten as

Ĥ = T̂N +
p̂2

2
+

Va(ϕ) + 1
2
ω2
cx

2 Vab(ϕ) + g(ϕ)x

Vab(ϕ) + g(ϕ)x Vb(ϕ) +
1
2
ω2
cx

2

 , (2.6)

where the cavity mode appears as an additional “vibrational” coordinate, whose

numerical implementation is straightforward [40]. The wave function is expanded

as a linear combination of diabatic electronic states |k⟩:

⟨x, ϕ|Ψ(t)⟩ =
∑
k

ψk(x, ϕ, t)|k⟩, for k = a, b, (2.7)

and the initial state is chosen to represent an impulsive Franck-Condon excitation

of the molecule (directly via a high-energy photon that is transparent to the cav-

ity), namely, a product state of the molecular ground state on top of the excited

electronic state |a⟩ at the cis configuration φb(ϕ), accompanied by the vacuum

state of the cavity mode χ(x):

⟨x, ϕ|Ψ(0)⟩ = φb(ϕ)χ(x)|a⟩. (2.8)

To analyze the computational results, we calculate adiabatic populations of

electronic and photonic states as a function of time:

Pκ,n(t) = ⟨Ψ(t)|κ, n⟩⟨κ, n|Ψ(t)⟩, for κ = g, e, and n = 0, 1, 2, .... (2.9)

In this expression, the torsional degree of freedom ϕ is traced out.

2.3 Results

2.3.1 Computational Details and Convergence Analysis

For the numerical integration of the TDSE, we employ the Multi-configurational

Time Dependent Hartree (MCTDH) algorithm implemented in the Heidelberg

package [115, 116]. In the multi-set formulation, The wavefunction is expanded

in a set of electronic states (k = a, b):
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⟨x, ϕ|Ψ(t)⟩ =
b∑

(k=a)

ψ(k)(x, ϕ, t)|k⟩, (2.10)

where the wavefunction ψ(k)(x, ϕ, t) is represented as a linear combination of Hartree

products, each one of them consisting of a product of so-called single-particle func-

tions (SPFs), namely

ψ(k)(x, ϕ, t) =
nx∑

jx=1

nϕ∑
jϕ=1

A
(k)
jxjϕ

(t)φ
(k)
jx
(x, t)× φ

(k)
jϕ
(ϕ, t), (2.11)

where nx and nϕ are the number of SPFs for the cavity and nuclear degrees of

freedom respectively. For each SPF, in turn, a discrete variable representation

(DVR) is used.

For an accurate representation of the wavefunction, convergence of the dy-

namics with respect to the number of SPFs and number of DVR points for each

degree of freedom must be ensured. We used nx = nϕ = 4, and 199 and 150 grid

points for the nuclear and photonic degrees of freedom respectively.

n=2

time (fs)
0 20 40 80 10060

n=1

n=3
n=4
n=8

(65,50)

time (fs)
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p
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p
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ti
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n
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0.2

0.0

(49,50)

(79,50)
(99,100)
(199,150)

a) b)

Figure 2.3: Convergence of simulations for 2-photon population for ωc/ωab = 0.5
and ϵ = 0.04. a) With respect to the number of grid points. b) With respect to
the number of Single Particle Functions (SPFs).

In general, the dipole self-energy term g(ϕ)2

ωc
should be included in the Hamil-

tonian (Eq. 4) in order to ensure a bounded ground state of the polaritonic

system [117]. In Figure S2, we compare the results of the quantum dynamics

simulations with and without such term in the Hamiltonian.

It is evident that such term has almost no influence in the dynamics. This

is because our model has no permanent dipole, light-matter coupling is not large
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Figure 2.4: 2-photon population for ωc/ωab = 0.5 and ϵ = 0.04 with (green) and
without (black) the correction dipole self-energy term.

enough, and the transition dipole moment is constant for most values of ϕ (see

Figure 1).

2.3.2 Quantum Dynamics and Polaritonic Potential En-

ergy Surfaces

In Figure 2.5a we present the adiabatic populations as a function of time.

At short time, we can observe low amplitude and fast oscillations corresponding

to off-resonance population transfer between |e, 0⟩ and |g, 1⟩ due to light-matter

coupling. However, as the dynamics proceeds, those two states become resonant,

and there is a fast decay of the initial state |e, 0⟩ first into |g, 1⟩, then into |e, 1⟩,

and finally into |g, 0⟩ and |g, 2⟩ by the end of the isomerization. The population

of |g, 2⟩ at 30 fs evidences the photon pair generation. In Figure 2.5b we see that

if ωc is too low or too large compared to ωab, the state with two photons is not

significantly populated. In the first case, the LIAC lies near the region in which the

transition dipole moment is drastically reduced, suppressing light-matter coupling.

In addition, the polaritonic PES near the LIAC is too steep, implying nuclear

dynamics that are too fast to be affected by the electronic-photonic coupling.

In the second case, although light-matter coupling is not suppressed, the initial

energy is not high enough to produce a nonadiabatic transition that would generate

the second photon (see supporting information of Fig. [86], Figure S3). Those
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Figure 2.5: a) Time-dependent adiabatic populations of photonic - electronic states
for ϵ = 0.04 au (g = 0.21 eV) and ωc/ωab = 0.5. b) Time average of two-

photon population Pg,2 =
1
T

∫ T

0
Pg,2(t)dt (T = 50 fs) for different values of coupling

strength ϵ and cavity frequency ωc.

inconveniences are overcome if ωc is near half of ωab and the light-matter coupling

is sufficiently strong so that a large population of the state |g, 2⟩ is produced. It

should also be noticed that the cavity frequency does not have to be exactly half of

the exciton frequency, as vibrations can account for the remaining energy to form

the two photons. For a better understanding of the mechanism, we calculate the

time dependent probability density for each adiabatic state:

ρκ(x, ϕ, t) = ⟨Ψ(t)|x, ϕ, κ⟩⟨x, ϕ, κ|Ψ(t)⟩, κ = g, e. (2.12)

Numerical simulations shown in Figure 2.6 support the mechanism pro-

posed: at 0 fs the wavepacket corresponds to the Franck-Condon excitation of

the cis molecular configuration with the cavity in the vacuum state |e, 0⟩. At

10 fs there is population of the state |g, 1⟩ due to strong light-matter coupling.

Subsequently, population at the state |e, 1⟩ is created at 20 fs, indicating that

nonadiabatic molecular dynamics has occurred. Finally, at 30 fs we clearly notice

formation of a wavepacket in the lower adiabatic state with two photons |g, 2⟩,
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degrees of freedom for adiabatic electronic states |g⟩ (left) and |e⟩ (right). The
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along x coordinate.

in the trans configuration. Consistently, 30 fs is the time when the population of

the |g, 2⟩ state reaches its maximum value (see Figure 2.5a). Other mechanisms

that can be observed proceed as |e, 0⟩ → |g, 1⟩ → |e, 0⟩ (purely adiabatic dynamics

and no photon down-conversion), |e, 0⟩ → |g, 1⟩ (adiabatic dynamics across one

LIAC and no photon down-conversion), and |e, 0⟩ → |g, 0⟩ (purely nonadiabatic

dynamics and no photon down-conversion). It is also worth noticing that states

with more than two excitations (e.g. |e, 2⟩, |g, 3⟩) are not appreciably populated

during the dynamics at any time, confirming that counter-rotating terms do not

play a significant role in this phenomenon.

We shall briefly discuss the effects of various types of dissipation in our

down-conversion mechanism. It is clear that any dissipative effect that operates
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within the time scale of the photon down-conversion mechanism above (∼ 30 fs)

would be detrimental. In particular, one may think that cavity leakage could play

a significant constraint in the realization of our mechanism: single-molecule strong

light-matter coupling utilizes plasmonic nanocavities with a very low quality fac-

tor (Q ≈ 12) [22], leading to photon leakage times less than 10 fs. However, we

believe this time scale should not limit our mechanism, as it relies on the upper

polariton being mostly molecular due to the large detuning between the cavity

and the molecular transition at the Franck-Condon region. Hence, the dominant

dissipative effects must be molecular, and they operate within a time scale of 40

fs, according to the study in ref. [111]. Importantly, this molecular dissipation

timescale is chemical specific, and we suspect that some molecules will suffer im-

portant sources of down-conversion efficiency reduction due to nonadiabatic effects

(e.g., nonradiative decay through conical intersections [118]) from additional in-

tramolecular vibrational modes that require explicit description. A more detailed

account of such processes is beyond the scope of our work, but should be an im-

portant direction in future studies.

A complementary interpretation of the down-conversion mechanism can be

provided from a time-independent perspective: for the molecule at the cis con-

figuration, the upper polariton is mostly excitonic and accessible by means of a

high-frequency photon. However, due to nonadiabatic couplings, the upper po-

lariton is mixed with the lower polariton of the second excitation manifold at the

trans configuration, which is accompanied by two photons.

2.3.3 Photon Downconversion in the Collective Regime

Experiments involving a single emitter strongly coupled to a confined elec-

tromagnetic field have been recently carried out by placing molecules on plasmonic

nanocavities [22,91,119–122] and Fabry-Pérot microcavities [123]. However, one of

the most common setups to achieve SC involves the use of a macroscopic amount of

molecules. The electromagnetic field interacts with an ensemble of N molecules to

form 2 (upper and lower) polariton states, andN−1 mostly molecular (dark) states

that mix weakly with light either due to disorder or vibrational motion [27, 94].
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Under these conditions, collective light-matter coupling scales as ∼
√
Nϵ, where

ϵ is the individual light-matter coupling and N is the number of particles in the

microcavity.

To investigate the feasibility of achieving down-conversion using collective

light-matter coupling, we performed calculations of two molecules embedded in an

optical microcavity. We assume that molecules interact identically with the cavity

mode and have no direct electrostatic interaction between them. The Hamiltonian

is a generalization of the Dicke model [124] that includes the nuclear degrees of

freedom:

Ĥ =
N∑
i=1

(
T̂N,i + Ĥel,i

)
+ ωc(â

†â+ 1/2) +
N∑
i=1

g(ϕi)(â
† + â)σ̂x,i. (2.13)

We study the two-photon generation at constant collective light-matter coupling

for N = 1, 2 molecules (thus setting the individual light-matter coupling in each

case at ϵ = 0.04/
√
N au). We first assume that only molecule 1 is initially excited,

and calculate electronic state populations of each molecule at the cis (|gC⟩, |eC⟩)

and trans (|gT ⟩, |eT ⟩) configurations using the projection operators

P̂ i
κ,C =

∫
dϕi|[Θ(ϕi − 1.63) + Θ(−ϕi − 1.63)]|κi, ϕi⟩⟨κi, ϕi| (2.14)

and

P̂ i
κi,T

= 1− P̂ i
κi,C

, (2.15)

where P̂ i
κi,C

is the projector of the i-th molecule over the cis configuration and

electronic state κi, and Θ(ϕ) is the Heaviside step function. For instance, the

probability of both molecules to be at the cis configuration in the ground state,

i.e. state |gCgC⟩ , is given by ⟨P̂ 1
g,CP̂

2
g,C⟩. Furthermore, we calculate the population

of two photon states as the expectation value of the projection operator |2⟩⟨2|.

Finally, we repeat the same analysis for an initial electronic state given by 1√
2
(|ge⟩+

|eg⟩).

As can be observed in Figure 2.7a, most dynamics during the first 100

fs involves the isomerization of the initially excited molecule, while the second

molecule remains at the cis configuration in the ground state. This path resembles

that of the single-molecule scenario, in which the excited molecule isomerizes in
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Figure 2.7: Population dynamics for ωc/ωab = 0.5 and ϵ = 0.03 au, if only molecule
1 is initially excited. a) States with significant population during the first 100 fs. b)
Population of states in which molecule 2 undergoes isomerization reaction. Notice
the difference in vertical scale. c) Comparison between populations of two-photon
states for one and two molecules with the same collective light-matter coupling
(blue vs red and green), and for two and one molecules with the same individual
light-matter coupling (red and green vs dashed black).

around 30 fs, ending at the trans configuration in both the molecular ground and

the excited state (see Figure 2.6). After 40 fs, the second molecule gets excited

and also undergoes isomerization. However, this process seems to occur only if the

first molecule is in its ground state at the cis configuration (Figure 2.7b). This can

be understood by noticing that the molecules at the cis configuration are closer to

resonance with the cavity mode. The individual coupling of each molecule with the

cavity mode produces an effective coupling between them, causing the excitation

of one molecule to be transferred to the other one (i.e |eCgC⟩ → |gCeC⟩), as has

been reported in previous works [102,125]. Evidently, this process is not very likely

in our setup, and should not be observed in the limit where the single-molecule

coupling is weak.
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The mechanism involving two molecules can thus be summarized as follows:

1. Optical excitation of the first molecule (|gC , gC⟩ → |eC , gC⟩).

2. Isomerization of the first molecule. (|eC , gC⟩ → |eT , gC⟩ and |eC , gC⟩ →

|gT , gC⟩). As in the single molecule scenario, this can produce zero, one or

two photons.

3. Cavity-mediated energy transfer from the first to the second molecule at the

cis configuration (|eCgC⟩ → |gCeC⟩).

4. Isomerization of the second molecule (|gC , eC⟩ → |gC , eT ⟩ and |gC , eC⟩ →

|gC , gT ⟩), producing zero, one, or two photons.

As one would expect based on the mechanism above, Figure 2.7c shows that

having two molecules instead of one does not increase the likelihood of generation of

two photons (see blue and red curves), so long as the collective light-matter coupling
√
Nϵ = 0.04 au remains the same. To reinforce the observation that the observed

effect is essentially a single-molecule one, we notice that for fixed individual light-

matter coupling ϵ = 0.028 au, the two-photon state populations for two and one

molecules (see red and black dashed curves) is very similar at short times. The

reason we do not observe significant collective effects is that the molecules at the

initial configuration are not in resonance with the cavity, but become resonant as

the isomerization proceeds. As a consequence, initial excitation of one molecule

can lead to efficient energy exchange with the cavity only after sufficient nuclear

dynamics ensues, while the other molecule remains off resonant. This was observed

to be true even if the initial excitation is shared by all molecules in superposition.

In other words, the Rabi splittings for the relevant LIACs relevant for this process

mainly depend on the single-molecule coupling even if many molecules are present.

We believe that the fact that the cavity and the molecule are off-resonance

at the initial configuration is not a vital characteristic of the down-conversion

mechanism proposed here. If the molecules are resonant with the cavity at the

Franck-Condon region, an excitation of the upper-polariton can still produce a

molecular nonadiabatic transition that would generate a second excitation, which
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can afterward become a second photon. The Rabi splitting in that case would be of

a collective nature, and the two-photon generation would be possible if the isomer-

ization is faster than the decay from the upper-polariton to the dark states [118].

However, deleterious effects arising solely from collective coupling [126] may also

complicate the down-conversion mechanism. The nonadiabatic molecular dynam-

ics associated with molecules which are resonant at the Franck-Condon configura-

tion could not be observed for the molecule studied here. Hence, the effectiveness

of our down-conversion scheme in the collective regime is molecule-specific and will

require additional investigations.

2.4 Summary

We have shown that strong light-matter coupling in conjunction with nona-

diabatic molecular dynamics can lead to emerging nonlinear optical phenomena

such as photon down-conversion. While much attention has been recently placed

into the study novel chemical dynamics afforded by molecular polaritons, we wish

to emphasize a complementary aspect of the problem that is equally rich and rel-

evant: the use of molecular dynamics to generate new photonic phenomena. The

elucidated effect operates at the single molecule SC regime, but we have provided

plausible arguments that would allow to extend it to the collective regime, where

many experiments are being currently performed.
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Chapter 3

Simulating molecular polaritons

in the collective regime using

few-molecule models

The study of molecular polaritons beyond simple quantum emitter ensem-

ble models (e.g., Tavis-Cummings) is challenging due to the large dimensionality

of these systems and the complex interplay of molecular electronic and nuclear de-

grees of freedom. This complexity constrains existing models to either coarse-grain

the rich physics and chemistry of the molecular degrees of freedom or artificially

limit the description to a small number of molecules. In this chapter we exploit

permutational symmetries to drastically reduce the computational cost of ab-initio

quantum dynamics simulations for large N . Furthermore, we discover an emergent

hierarchy of timescales present in these systems, that justifies the use of an effec-

tive single molecule to approximately capture the dynamics of the entire ensemble,

an approximation that becomes exact as N → ∞. We also systematically derive

finite N corrections to the dynamics, and show that addition of k extra effec-

tive molecules is enough to account for phenomena whose rates scale as O(N−k).

Based on this result, we discuss how to seamlessly modify existing single-molecule

SC models to describe the dynamics of the corresponding ensemble. We call this

approach Collective dynamics Using Truncated Equations (CUT-E), benchmark it

against well-known results of polariton relaxation rates, and apply it to describe a
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universal cavity-assisted energy funneling mechanism between different molecular

species. Beyond being a computationally efficient tool, this formalism provides an

intuitive picture for understanding the role of bright and dark states in chemical

reactivity, necessary to generate robust strategies for polariton chemistry.

3.1 Introduction

Theoretical work aimed at explaining experimental results or predicting new

phenomena emerging in polaritonic architectures face the formidable challenge of

properly modeling the molecular (local) degrees of freedom of each molecule while

describing the super-radiant interaction of the molecular ensemble with the field

(collective). The dynamics arising from the complex interplay of vibrational and

electronic degrees of freedom in molecules renders simple quantum optics models

(such as the original Tavis-Cummings Hamiltonian [127]), limited in their appli-

cability to molecular polaritons. Thus, molecular polaritons face unique chal-

lenges and opportunities that are not encountered in more traditional polariton

systems [128], such as atomic or artificial qubit ensembles [129], or cryogenic inor-

ganic semiconductors [130]. Most of the reported simulations of molecular polari-

tons can only deal with one of two aforementioned challenges at a time. On the one

hand, theoretical studies that acknowledge the collective nature of the light-matter

coupling are typically limited to a few dozen molecules at a time and involve so-

phisticated numerical treatments [131], simplifications such as single vibrational

mode descriptions [132], or semiclassical trajectories [42,133]. On the other hand,

models that implement ab initio treatments are often restricted to a single or few

molecules in a cavity [73, 134, 135]. Regardless, from a computational standpoint,

it seems suspicious that it is necessary to explicitly simulate the dynamics of N

molecules, especially if they are identical to each other. Indeed, there are numerous

symmetries in the system that should significantly reduce the computational cost

of these simulations [62,63,136–144].

In this chapter, we outline a wavefunction-based formalism that makes use

of such symmetries to significantly reduce the complexity of quantum dynamics
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simulations of the single-excitation manifold of molecular polaritons. Moreover,

this formalism naturally provides a hierarchy of approximations to further simplify

the problem in a way that, in the N → ∞ limit, polaritonic properties can be

calculated using a modified effective single molecule coupled to a cavity with the

collective coupling. This provides grounds for some single-molecule SC phenomena

to appear in the collective regime, consistent with previous work where linear

optical properties can be calculated from effective single-molecule models in the

thermodynamic limit [145,146]. Moreover, we show that a system of two effective

molecules can describe all the effects with rates that scale as 1/N . In general, we

show that processes with O(N−k) rates are described by k + 1 effective molecules

strongly coupled to the cavity. This implies that, for a large ensemble of molecules,

it is enough to consider only a few effective molecules to solve for the dynamics

of the original polariton system (see Figure 3.1). The model can be applied to

study disordered ensembles (e.g., a mixture with two chemical species) without a

significant increase in the computational cost.

The article is organized as follows: in Section 3.2 we present the Hamilto-

nian and the multiconfigurational representation of the total wavefunction of the

system, in which permutational symmetries become evident. Then, we uncover a

convenient mathematical structure of the Equations of Motion (EoM) where ap-

proximate symmetries emerge, and which become useful for large N , while keeping

the collective light-matter coupling
√
Ng finite, with g being the single-molecule

coupling (this is the physical condition of interest in experiments, and which con-

cerns us hereafter). This structure allows us to derive the simple effective Hamil-

tonians involving only a few molecules, that solve for the dynamics of the entire

ensemble. In Section 3.3.5 we make use of the effective single-molecule model to

demonstrate how both optical and material properties in the original system can

be computed using the effective single-molecule simulation. In Section 3.3.6 we

benchmark our formalism against a well known result: the non-radiative relax-

ation of polariton and dark states. In Section 3.3.8 we present a pedagogical and

intriguing application that reveals the power of our formalism, describing how to

exploit polariton dynamics to obtain nonstatistical outcomes in photoproducts.
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Finally we summarize the work in Section 3.4.

3.2 Model

Consider a system of N molecules collectively coupled to a single cavity

mode. The Tavis-Cummings Hamiltonian, extended to include vibrational degrees

of freedom missing from original models, can be written as (hereafter ℏ = 1)

Ĥ =
N∑
i

(
Ĥ(i)

m + Ĥ
(i)
I

)
+ Ĥcav, (3.1)

where

Ĥ(i)
m = − 1

2µ

∂2

∂q2i
+ Vg(qi)|gi⟩⟨gi|+ Ve(qi)|ei⟩⟨ei|,

Ĥcav = ωcâ
†â, Ĥ

(i)
I = g

(
|ei⟩⟨gi|â+ |gi⟩⟨ei|â†

)
,

are the Hamiltonians for the ith molecule, the cavity mode, and the interaction

between them. Here, µ is the reduced mass of the nuclei, |gi⟩ and |ei⟩ are the

molecular ground and excited electronic states, Vg/e(qi) are the ground and excited

Potential Energy Surfaces (PES), â is the photon annihilation operator, and qi is

the vector of all molecular vibrations of molecule i (see Figure 3.1). When the PESs

are harmonic, the model above reduces to the Holstein-Tavis Cummings model,

which has been subject of recent studies [132,145]. For the time being, we assume

there is no disorder, neglect intermolecular interactions, and use the rotating wave

approximation by considering the single-molecule coupling strength g to be much

smaller than the bare photon frequency ωc. Finally, we also ignore (non-radiative)

couplings between the molecular ground and excited states whose PESs can form

conical intersections [147–149]. Under these hypotheses, the excitation number

[sum of electronic excitations (Frenkel excitons) and photon number] is conserved.

In this article we shall focus on the so-called first-excitation manifold, which

describes processes in which the cavity triggers excited state dynamics of one
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Figure 3.1: a) Molecular polaritons in the collective strong-coupling regime.
Molecules are not well described by structureless two-level systems, and the in-
terplay between their internal (e.g., vibrational) degrees of freedom and the collec-
tive interaction of their optical (e.g., electronic) transitions with the optical mode
cannot be described using simple models such as the standard Tavis-Cummings
Hamiltonian. b) Pictorial representation of the Collective dynamics Using Trun-
cated Equations (CUT-E) method. Processes with O(N−k) rates can be described
by a model of k + 1 effective molecules coupled to a cavity mode.

molecule at a time. The position-representation ansatz takes the form

|Ψ(t)⟩ = ψ(0)(q⃗, t)|1⟩+
N∑
i

ψ(i)(q⃗, t)|ei⟩, (3.2)

with the states |ei⟩ = |g1, g2, ..., ei, ..., gN , 0ph⟩ and |1⟩ = |g1, g2, ..., gN , 1ph⟩, and the

vibrational wavefunctions

ψ(0)(q⃗, t) =
m∑
j1

m∑
j2

· · ·
m∑
jN

A
(0)
j1j2...jN

(t)
N∏
k=1

φjk(qk),

ψ(i)(q⃗, t) =
m∑
j1

m∑
j2

· · ·
m∑
jN

A
(i)
j1j2...jN

(t)ϕji(qi)
N∏
k ̸=i

φjk(qk). (3.3)

In this expansion, multiconfigurational vibrational wavefunctions ψ are built with

sets ofm single particle orthonormal functions φji(qi) and ϕji(qi), respectively, that

are equal for identical molecules. We choose such functions to be the eigenstates of

the molecular Hamiltonian Ĥ
(i)
m . The total wavefunction becomes exact asm→ ∞.
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3.3 Results

3.3.1 Exploiting Permutational Symmetries

Since the Hamiltonian is invariant under the permutation of any pair of

molecules α and κ, having an initial state such that Pακ|Ψ(0)⟩ = |Ψ(0)⟩, implies

permutation relations between the coefficients of the wavefunction. For the pho-

tonic and excitonic wavefunctions ψ(0) and ψ(i) we have,

A
(0)
j1j2...jκ...jν ...jN

(t) = A
(0)
j1j2...jν ...jκ...jN

(t),

A
(i)
j1j2...jκ...ji...jν ...jN

(t) = A
(i)
j1j2...jν ...ji...jκ...jN

(t). (3.4)

Additionally, there are permutations between coefficients of different excitons,

given the interaction of the molecules with the cavity is assumed identical,

A
(i)
j1j2...ji...ji′ ...jN

(t) = A
(i′)
j1j2...ji′ ...ji...jN

(t). (3.5)

This means that every coefficient of the electronic state i′ can be obtained directly

from those in the electronic state i. In other words, Eqs. 3.4 and 3.5 yield the

crucial observation that it is enough to calculate the dynamics of a single excitonic

state to know the evolution of all of them. Moreover, the vibrational states of the

ensemble of molecules can be completely characterized by specifying the number

of molecules in each vibrational state; therefore the number of vibrational degrees

of freedom also reduces drastically. The ground and excited state coefficients can

be written in terms of permutationally-symmetric states,

A
(0)
j1j2j3···jN → A

(0)
N1N2···Nm

A
(i)
j1j2j3···jN → A

(1)
j1N1N2···Nm

, (3.6)

where Nk is the number of ground state molecules in the vibrational state k. This

new notation removes the information about the state of each specific molecule

(A
(1)
j1N1N2···Nm

represents a state where one molecule is in the electronic excited

state in the vibrational state j1, while the other N − 1 molecules are distributed

among all the vibrational states via {Nk},
∑

kNk = N−1). For the photonic coef-

ficients A
(0)
N1N2···Nm

, the restriction is
∑

kNk = N . For the vibrational wavefunction
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ψ(0) not all mN configurations are unique but only
(
N+m−1

N

)
. Using similar analysis

we conclude a reduction of the total wavefunction in Eq. 3.2 from (N + 1)mN to(
N+m−1

N

)
+m

(
N+m−2
N−1

)
configurations. This corresponds to reducing the complexity

from an exponential scaling to a polynomic one, as has been shown in previous

work that also exploit permutational symmetries for studying ensembles of iden-

tical systems [144, 150]. We will make use of these simplifications to redefine the

EoM and subsequently the Hamiltonians. Such analysis is general and can also be

done for higher excitation manifolds. In that case, the number of coefficients in-

creases with the number of excitations due to permutations between electronically

excited molecules; however after the number of excitations is half of the number

of molecules this trend reverses. The EoM for the coefficients can be obtained

by using the Dirac-Frenkel variational principle, or simply by inserting the ansatz

wavefuntion into the Time-Dependent Schrödinger Equation.

Writing the ansatz as |Ψ(t)⟩ =
∑mN

J A
(0)
J (t)Φ

(0)
J |1⟩+

∑
i

∑mN

J A
(i)
J (t)Φ

(i)
J |ei⟩,

the EoM become [115]

iȦ
(i)
J (t) =

∑
i′

∑
L

⟨ei,Φ(i)
J |Ĥ|Φ(i′)

L , ei′⟩A(i′)
L (t). (3.7)

Since Eq. 3.1 ignores couplings between the molecules in the absence of the photon

mode, ⟨Φ(i)
J |ĤI |Φ(i′)

L ⟩ = 0 for i, i′ ̸= 0. Furthermore,

⟨ei,Φ(i)
J |ĤI |Φ(0)

L , 1⟩ = g⟨ϕji |φli⟩
N∏
k ̸=i

δjklk . (3.8)

With these considerations, Eq. 3.7 becomes,

iȦ
(i)
j1j2...ji...jN

(t) =

(
N∑
i′ ̸=i

Eg,ji′
+ Ee,ji

)
A

(i)
j1j2...ji...jN

(t)

+ g
∑
li

⟨ϕji |φli⟩A
(0)
j1j2...li...jN

(t)

iȦ
(0)
j1j2...jN

(t) =

(
N∑
i′

Eg,ji′
+ ωc

)
A

(0)
j1j2...jN

(t)

+ g
N∑
i=1

∑
li

⟨φji |ϕli⟩A
(i)
j1j2...li...jN

(t). (3.9)

27



The last equation can be simplified using Eqs. 3.6 to write the dynamics in terms

of permutationally-symmetric states:

iȦ
(1)
lN1N2···Nm

(t) =

(
m∑
k=1

NkEg,k + Ee,l

)
A

(1)
lN1N2···Nm

(t)

+ g
∑
k

⟨ϕl|φk⟩A(0)
N1N2···Nk+1···Nm

(t)

iȦ
(0)
N1N2···Nm

(t) =

(
m∑
k=1

NkEg,k + ωc

)
A

(0)
N1N2···Nm

(t)

+
m∑
k=1

Nkg
m∑
l=1

⟨φk|ϕl⟩A(1)
lN1···Nk−1···Nm

(t). (3.10)

The first equation represents the absorption of the photon that takes a molecule

from the state φk|g⟩ into the state ϕl|e⟩. The second equation describes the con-

jugate process.

3.3.2 Structure of the Wavefunction

Even though Eqs. 3.10 are exact and represent a significant improvement

over Eqs. 3.9, they also allow us to systematically introduce approximations by

virtue of the factors Nk, which represent the number of ground state molecules

in the vibrational state k. For initial states in which one of the values Nk is

exceptionally large, the dynamics is such that Nk is almost conserved, as discussed

below. As an example, assume we start with all the molecules in their ground

vibrational state and 1 photon in the cavity mode, i.e., A
(0)
N00···0(0) = 1. Thus,

we can simplify even more our notation by only reporting the number of such

vibrational excitations. By renormalizing the coefficients withN -dependent factors

that indicate the number of states that correspond to the same amplitude, we can

recover the basis originally introduced by Spano for harmonic modes [63], but

which we now use for arbitrary PESs:
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Ã
(0)
0 (t) = A

(0)
N00···0(t),

Ã
(1)
l0 (t) =

√
NA

(1)
l(N−1)0···0(t),

Ã
(0)
k (t) =

√
NA

(0)
(N−1)···1k···0(t),

Ã
(1)
lk (t) =

√
N(N − 1)A

(1)
l(N−2)···1k···0(t),

Ã
(0)
k ̸=k′(t) =

√
N(N − 1)A

(0)
(N−2)···1k···1k′ ···0

(t),

Ã
(0)
kk (t) =

√
N(N − 1)

2
A

(0)
(N−2)···2k···0(t), (3.11)

With this final notation, the EoM are written in Eq. 3.12, where we have removed

a constant NEg,1 and defined ωeg,l = Ee,l−Eg,1 and ωg,k = Eg,k−Eg,1. In Figure 3.2

we provide a pictorial representation of the states associated with these coefficients.

i ˙̃A
(0)
0 (t) = ωcÃ

(0)
0 (t) + g

√
N

m∑
l=1

⟨φ1|ϕl⟩Ã(1)
l0 (t)

i ˙̃A
(1)
l0 (t) = ωeg,lÃ

(1)
l0 (t) + g

√
N⟨ϕl|φ1⟩Ã(0)

0 (t) + g
m∑
k=2

⟨ϕl|φk⟩Ã(0)
k (t)

i ˙̃A
(0)
k (t) = (ωg,k + ωc) Ã

(0)
k (t) + g

√
N − 1

m∑
l=1

⟨φ1|ϕl⟩Ã(1)
lk (t) + g

m∑
l=1

⟨φk|ϕl⟩Ã(1)
l0 (t)

i ˙̃A
(1)
lk (t) = (ωeg,l + ωg,k) Ã

(1)
lk (t) + g

√
N − 1⟨ϕl|φ1⟩A(0)

k (t) + g
∑
k′ ̸=k

⟨ϕl|φk′⟩Ã(0)
kk′(t)

+
√
2g⟨ϕl|φk⟩Ã(0)

kk (t)

... (3.12)

The first line of Eq. 3.12 reveals that the initial photonic state Ã
(0)
0 (t) is

strongly coupled to states in which one molecule is electronically excited while

the rest remain in their ground electronic and vibrational states Ã
(1)
l0 (t). However,

the second equation reveals that such excited state can either emit back into the

initial state (with no phonons), or can create states in which there is a vibrational

excitation in one of the ground state molecules Ã
(0)
k (t) upon emission. The first of

these two processes depends on the collective light-matter coupling
√
Ng, while the
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Figure 3.2: Permutationally symmetric basis in the first excitation manifold, orig-
inally introduced by Spano [63]. Ã

(0)
0 : a photon in the cavity and N molecules

in the global ground state. Ã
(1)
l0 : 1 exciton in the vibrational state l and N − 1

molecules are in the global ground state. Ã
(0)
k : a photon in the cavity, a ground

state molecule in the vibrational state k, and N−1 molecules in the global ground
state. Ã

(1)
lk : 1 exciton in the vibrational state l, 1 ground state molecule in the

vibrational state k, and N − 2 molecules in the global ground state.

second one depends on the single-molecule light-matter coupling g. This structure

is repeated throughout the system of equations: coupling between states conserving

the number of molecules with phonons is collective, while processes that increase

the number of such molecules are proportional to the single-molecule coupling.

It is interesting to note that this phenomenon is well-known in the literature of

molecular aggregates. In particular, for J-aggregates, Spano and Yamagata [137]

have noted that the ratio of the photoluminescence into the electronic ground state

with no phonons versus that into the electronic ground state with one phonon is

proportional to the coherence length N of the aggregate. While this phenomenon

is routinely used as a spectroscopic probe for N , we use it in our case to drastically

simplify the simulations of molecular polaritons, as explained below.
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Assuming we have a large number of molecules we can treat the mixing

of states with differing number of ground state molecules with phonons perturba-

tively, with the single-molecule light-matter coupling g as the perturbation. This

is schematically represented in Figure 3.3.

Figure 3.3: Hierarchical structure of the Equations of Motion (EoM) that gives
rise to the Collective dynamics Using Truncated Equations (CUT-E) method. No-
tice that fast dynamics in each order of approximation conserves the number of
electronic ground state molecules with phonons (due to collective

√
Ng couplings).

These fast dynamics are linked by bottlenecks (due to single-molecule g couplings)
which slowly change the number of molecules featuring such ground-state phonons.
Zeroth-order approximation in g corresponds to restricting the dynamics to states
with a fixed number of ground state molecules with phonons, while adding the first-
order correction allows the dynamics to create (or annihilate) phonons in (from) 1
additional molecule.

In the limit where g → 0 or N → ∞ (while keeping
√
Ng constant), which

is the regime that interests us, the number of ground state molecules that support

vibrational excitations is conserved during the dynamics. For our initial state, the

zeroth-order approximation implies that the wavefunction is described only by the

basis states of the left most block of Figure 3.3. Adding the first-order correction

allows states in the immediate next block (featuring only one ground state molecule

with phonons) to contribute to the wavefunction. The timescale at which the first-

order terms contribute is much longer than the ultrafast vibrational dynamics on

each excited molecule. The exact wavefunction is recovered as one spans the entire

Hilbert space from left to right in Figure 3.3, but as can be appreciated, there are

only a few molecules with phonons in the electronic ground state for large N , even
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for long times of interest, justifying the convenience of the shorthand notation in

Eq. 3.11.

Although the fact that there is only one molecular specie in the system is

central for the permutational symmetries of Eqs. 3.4 and 3.5 to hold, addition of

different molecular species can be done without dramatically increasing the compu-

tational cost since permutational symmetries still apply for each type. The renor-

malization of the coefficients associated to each species as in Eq. 3.11 will depend

on their concentration. Similarly, disorder due to inhomogeneous broadening or

spacial variation of the coupling to the photon mode in multimode cavities, which

has been shown to play a central role in molecular polaritonics systems [77,80,151],

can be included by adding new molecular species for each value that is sampled

according to the corresponding distribution of excitonic frequencies or interaction

strength. The number of molecular species (disorder bins Nbins) required to simu-

late a disordered ensemble with frequency width W can be roughly estimated as

Nbins ≈ W/(2π/T ), where T is the total simulation time that allows to capture the

physical phenomena of interest. We believe that this estimate is an upper-bound,

as it does not take into account efficient ways to simulate disorder (see for instance,

Ref. [78]), but future work will aim to study these subtleties.

3.3.3 Zeroth-Order Approximation

Let us assume that temperature T = 0, meaning our initial state in the

original notation is given by A
(0)
111...1(0) = 1. The time-dependent wavefunction (see

Eq. 3.2) at the zeroth-order approximation is given by the following vibrational

wavefunctions

ψ(0)(q⃗, t) = A
(0)
11···1(t)

N∏
k

φ1(qk) and

ψ(i)(q⃗, t) =
m∑
ji

A
(1)
ji1···1(t)ϕji(qi)

N∏
k ̸=i

φ1(qk). (3.13)

By using the renormalized permutationally-symmetric coefficients, the EoM in Eq.
3.12 transform into those of an effective single molecule strongly coupled to the
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cavity mode (see Eq. 3.14).

i



˙̃A
(0)
0 (t)

˙̃A
(1)
10 (t)

˙̃A
(1)
20 (t)

...

˙̃A
(1)
m0(t)


=



ωc g
√
N⟨φ1|ϕ1⟩ g

√
N⟨φ1|ϕ2⟩ · · · g

√
N⟨φ1|ϕm⟩

g
√
N⟨ϕ1|φ1⟩ ωeg,1 0 · · · 0

g
√
N⟨ϕ2|φ1⟩ 0 ωeg,2 · · · 0

...
...

...
. . .

...

g
√
N⟨ϕm|φ1⟩ 0 0 · · · ωeg,m





Ã
(0)
0 (t)

Ã
(1)
10 (t)

Ã
(1)
20 (t)

...

Ã
(1)
m0(t)


(3.14)

Eq. 3.14 is consistent with previous results where an impurity (in this case the

optical mode) coupled to a large environment can be simplified into an impurity in-

teracting with an effective harmonic bath that includes the relevant frequencies of

the environment [152]; in this case the optical transitions of an individual molecule.

Alternatively, it is also consistent with the classical optics treatments of polaritons

arising as the result of a photonic oscillator coupling to a set of effective oscillators

representing the molecular transitions (e.g., transfer matrix methods) [153, 154].

This has also been justified by Keeling and co-workers within a quantum mechan-

ical framework [145, 146]. We can rewrite Eq. 3.14 in a form that is better suited

for implementation in quantum dynamics packages such as the Multiconfiguration

Time-Dependent Hartree (MCTDH) method [115,155,156],

i

 ψ̇ph(q, t)

ψ̇exc(q, t)

 =

PĤgP+ ωc g
√
N

g
√
N Ĥe

ψph(q, t)

ψexc(q, t)

 , (3.15)

with the projector over the ground vibrational state P = |φ1⟩⟨φ1| and the photonic

and excitonic wavefunctions

ψph(q, t) = Ã
(0)
0 (t)φ1(q), ψexc(q, t) =

m∑
j

Ã
(1)
j0 (t)ϕj(q). (3.16)

Here, we readily identify the zeroth-order Hamiltonian in Eq. 3.15 as

ˆ̃H(0) =
(
PĤgP+ ωc

)
|1⟩⟨1|+ Ĥe|e⟩⟨e|

+ g
√
N (|e⟩⟨1|+ |1⟩⟨e|) , (3.17)
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with Ĥg/e = 1
2µ
p̂2 + Vg/e(q̂). Eq. 3.15 can be used to recover the original time-

dependent many-body wavefunctions in Eq. 3.13,

ψ(0)(q⃗, t) = ψph(q1, t)
N∏
k=2

φ1(qk),

ψ(i)(q⃗, t) =
1√
N
ψexc(qi, t)

N∏
k ̸=i

φ1(qk). (3.18)

As far as we are aware, the separation between collective and single-molecule

emission processes was first pointed out by Spano when calculating vibrationally-

dressed lower polariton states [62], although crucial ideas were introduced by the

same author much earlier [137], as we shall discuss later. In a more recently article,

the same author combined such ideas with the permutationally symmetric basis to

compute photoluminescent spectra starting from approximated vibro-polaritonic

eigenstates [63]. Our work formalizes Spano’s observations into the hierarchy sum-

marized in Figure 3.3, and capitalizes it to compute dynamics in complex molecular

polaritonic systems featuring arbitrary PESs.

Three important comments are in order concerning Eq. 3.17. First, the

artificial effective molecule in the ground state is only allowed to be in its ground

vibrational state (no phonons). The physical intuition for this is simple: imagine

the molecules have been collectively excited at their Franck-Condon (FC) config-

urations by the cavity field; each of them can in principle re-emit such energy into

the cavity creating any vibrational state of their ground electronic state. However,

only when they go back to their vibrational ground state, the number of ground

state molecules with phonons is conserved and the process becomes collective. This

seemingly unremarkable observation has an important implication: it states that

single-molecule polariton simulations are not applicable to the collective regime

unless the light-matter coupling is restricted to the FC region, where the vibra-

tional ground state φ1(q) has significant amplitude (see Figure 3.4). However, as

Eq. 3.15 reveals, such simulations can be simply adjusted for the collective regime

by the appropriate inclusion of the projector P. This projector can be readily im-

plemented in various ways (e.g., by restricting the vibrational basis in the ground

state to |φ1⟩ or by projecting the light-matter coupling, among several options).
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Notice that Eq. 3.17 does not formally lead to the definition of polaritonic PESs

that govern the nuclear dynamics in the presence of polaritons as in Ref. [33]. How-

ever, the key message in the latter work is still consistent with ours: nuclei feel

different forces due to collective effects only near the Franck-Condon configuration.

Second, since our formalism explicitly considers the vibrational degrees of freedom,

the simplification to a single effective molecule does not imply the elimination of

the dark state manifold from the Hilbert space, as we will explain in detail in

Section 2B.1. Third, the results of this section are exact in the thermodynamic

(N → ∞) limit because they imply g → 0. We next add the first-order correction,

where the wavefunction now has states with amplitude of the order of g.

3.3.4 First-Order Correction and Beyond

Proceeding analogously, the EoM up to first order are given by 3.19, where

we considered the case m = 1 for illustration purposes.

i


˙̃A
(0)
0 (t)

˙̃A
(1)
10 (t)

˙̃A
(0)
10 (t)

˙̃A
(1)
11 (t)

 =


ωc g

√
N⟨φ1|ϕ1⟩ 0 0

g
√
N⟨ϕ1|φ1⟩ ωeg,1 g⟨ϕ1|φ2⟩ 0

0 g⟨φ2|ϕ1⟩ ωg,2 + ωc g
√
N − 1⟨φ1|ϕ1⟩

0 0 g
√
N − 1⟨ϕ1|φ1⟩ ωg,2 + ωeg,1




Ã

(0)
0 (t)

Ã
(1)
10 (t)

Ã
(0)
10 (t)

Ã
(1)
11 (t)

 (3.19)

The general case can be written in a compact form using projection opera-

tors, where Qi = 1vib,i−Pi (see Eq. 3.20). The first 2×2 block corresponds to the

zeroth-order approximation and describes the aforementioned effective molecule

(say, molecule 1) coupled to the cavity with amplitude
√
Ng. The second 2 × 2

block corresponds to the states where molecule 1 has phonons while another one

(say, molecule 2) interacts with the cavity with a slightly weaker coupling strength
√
N − 1g. This effective light-matter interaction nonlinearity, which conditions

the light-matter interaction of the second molecule on the presence of phonons in

the first one, might look odd at first sight, but must be endorsed as the emergent

physics resulting from the hierarchy. Eq. 3.20 is in a suitable form for implemen-
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tation in wavepacket dynamics methods.

i


ψ̇

(0)
ph (q1, q2)

ψ̇
(0)
exc(q1, q2)

ψ̇
(1)
ph (q1, q2)

ψ̇
(1)
exc(q1, q2)

 = Ĥ(1)


ψ

(0)
ph (q1, q2)

ψ
(0)
exc(q1, q2)

ψ
(1)
ph (q1, q2)

ψ
(1)
exc(q1, q2)

 (3.20)

Ĥ(1) =
P1Ĥg,1P1 + P2Ĥg,2P2 + ωc g

√
N 0 0

g
√
N Ĥe,1 + P2Ĥg,2P2 g 0

0 g Q1Ĥg,1Q1 + P2Ĥg,2P2 + ωc g
√
N − 1

0 0 g
√
N − 1 Q1Ĥg,1Q1 + Ĥe,2

 .

(3.21)

Notice that ignoring the matrix elements proportional to g (boxed) amounts to

block-diagonalizing the Hamiltonian according to the number of electronic ground

state molecules with phonons, reiterating the approximate symmetry featured in

Figure 3.3. Eq. 3.20 can be interpreted as two effective molecules coupled to the

cavity. Finally, the original many-body wavefunction in Eq. 3.3 can be rewritten

in terms of the 2-molecule wavepackets as

ψ(0)(q⃗, t) = ψ
(0)
ph (q1, q2, t)

N∏
k=3

φ1(qk) +
N∑
i

ψ
(1)
ph (qi, qi′ ̸=i, t)√

N

N∏
k ̸=i,i′

φ1(qk),

ψ(i)(q⃗, t) =
ψ

(0)
exc(qi, qi′ ̸=i, t)√

N

N∏
k ̸=i,i′

φ1(qk) +
N∑
j ̸=i

ψ
(1)
exc(qj ̸=i, qi, t)√
N(N − 1)

N∏
k ̸=i,j

φ1(qk), (3.22)

with i′ is an arbitrary molecule of the ensemble and

ψ
(0)
ph (q1, q2, t) = Ã

(0)
0 (t)φ1(q1)φ1(q2),

ψ
(1)
ph (q1, q2, t) =

m∑
k>1

Ã
(0)
k (t)φk(q1)φ1(q2),

ψ(0)
exc(q1, q2, t) =

m∑
l

Ã
(1)
l0 (t)ϕl(q1)φ1(q2),

ψ(1)
exc(q1, q2, t) =

m∑
l,k>1

Ã
(1)
lk (t)ϕl(q2)φk(q1). (3.23)

We make use of this Hamiltonian in Section 3.3.6 and show that adding the first-

order correction describes collective processes, in addition to those whose rates
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scale as 1/N . Similarly, corrections of kth order require using a Hamiltonian of k+1

effective molecules interacting with a cavity mode, and would include information

about phenomena with rates that scale up to 1/Nk. Such decomposition of the

many-molecules problem into a few-molecules problem is what we call Collective

dynamics Using Truncated Equations (CUT-E) method.

Let us summarize the central results of the article. Application of the per-

mutational symmetries in Eqs. 3.4 and 3.5 to the Time-Dependent Schrödinger

Equation for N identical molecules in a cavity gives rise to the EoM in Eq. 3.12.

These EoM are endowed with a convenient hierarchy of timescale separations,

schematically illustrated by the scissors in Figure 3.3. For a fixed collective cou-

pling
√
Ng, processes with N -independent (O(N−1)) rates are captured by a single

(two) effective molecule(s) in a cavity, according to Eq. 3.15 (Eq. 3.20). This is

schematically represented in Figure 3.1b. Although high order corrections might

become relevant when a small number of molecules is considered, here we are in-

terested in the case where a large number of molecules is used to reach collective

strong light-matter coupling. Thus, we will defer the exploration of corrections

beyond first order for future works.

3.3.5 Observables in the zeroth-order approximation

Observables of the real system must be calculated using the many-body

wavefunction |Ψ(t)⟩ and not directly using the effective single-molecule wavefunc-

tion |Ψ̃(t)⟩. However, there are particular observables for which both wavefunc-

tions provide the same answer. This will depend on whether the observable is local

or collective. For pedagogical purposes, throughout this section, we assume the

zeroth-order approximation.

Local Properties

Hereafter, we define local properties to be quantities that only depend on

one single molecule (e.g. a chemical reaction) or the photon field alone.

Chemical Properties: Consider a local observable Ω̂(i) that depends only

on degrees of freedom of molecule i. As an example, assume we are interested in
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the nuclear dynamics in the excited state Ω̂(i) = q̂i|ei⟩⟨ei|. Using the zeroth-order

wavefunction in Eq. 3.13 we obtain

⟨Ψ(t)|q̂i|ei⟩⟨ei|Ψ(t)⟩ = 1

N
⟨Ψ̃(t)|q̂|e⟩⟨e|Ψ̃(t)⟩. (3.24)

This is a remarkable result because it demonstrates that the excited-state dynam-

ics of N molecules collectively coupled to a cavity mode (described by |Ψ(t)⟩) is

identical to the dynamics of an effective single molecule strongly coupled to a cav-

ity (described by |Ψ̃(t)⟩), except for a constant 1/N dilution factor. This factor is

just a consequence of using a single photon to alter the excited-state dynamics of

N molecules. The probability of any molecule being at the configuration q is the

same as that of the single effective molecule strongly coupled to the cavity. How-

ever, we emphasize that the effective molecule is not allowed to have phonons while

it is in the ground state, a restriction which can introduce significant differences

compared to standard single-molecule calculations.

An important corollary of the above analysis is that effects predicted using

single-molecule models might actually occur in the collective regime if they rely on

changes in the excited PES at the FC region, but not the ones relying on changes

beyond. This was first pointed out by Galego and coworkers [33] by analyzing

polaritonic PESs for an ensemble of molecules interacting with a cavity mode.

This is also consistent with a recent work by Cui and Nitzan [157], who concluded

that excited-state dynamics in polaritonic systems is dominated by states that are

reachable from the ground electronic state. Yet, we propose that modifications of

chemical dynamics that occur on a timescale longer than the decay of the initially

prepared excitations can occur in an N -independent manner if they dramatically

depend on the ultrafast polariton-modified dynamics at the FC region. In Section

3.3.8 we present such an example.

Optical properties: Another set of properties that are equivalent in the

single molecule and N → ∞ cases are those that can be extracted only from

the dynamics of the field. For example, the linear transmission, absorption and

reflection spectra can be calculated from the photon autocorrelation function c(t).

In the zeroth-order approximation, it can be shown that c(t) = ⟨Ψ(0)|Ψ(t)⟩ =
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⟨Ψ̃(0)|Ψ̃(t)⟩, where |Ψ̃(0)⟩ = φ0(q)|1⟩ is the photonic state. This is consistent with

previous work by the Keeling group [145,146].

Non-Local Properties

Another set of observables consists of operators that are delocalized across

several molecules or depend on both molecular and optical degrees of freedom.

Some of the most common observables of this kind are the populations of the

polariton and dark-states. Such observables can be obtained with the effective

single-molecule model but not from its reduced electronic-photonic density matrix,

as we will show next.

Polariton and Dark-States Populations: Let us write the expectation

value of an arbitrary electronic-photonic operator ⟨Ω̂⟩ = Tr
[
ρ̂Ω̂
]
in terms of the

reduced density matrix of the effective single-molecule system ˆ̃ρ,

⟨Ω̂⟩ = Tr
[
ρ̂Ω̂
]
=
∑
ij

ρijΩji = ρ̃11Ω11 + ρ̃1e

N∑
i=1

1√
N
Ω1ei

+ ρ̃e1

N∑
i=1

1√
N
Ωei1 + ρ̃ee

1

N

N∑
i=1

Ωeiei

+
1

N
⟨Ψ̃(t)|Ψ̃FC⟩⟨Ψ̃FC |Ψ̃(t)⟩

(∑
i,i′ ̸=i

Ωeiei′

)
, (3.25)

where we have identified |Ψ̃FC⟩ = φ1(q)|e⟩ as the FC wavepacket. The above

equation implies that the reduced density matrix ρ̃ of the effective single molecule

is, in general, not enough to calculate any delocalized molecular observables since

the last term of Eq. 3.25 refers to the projection of the wavefunction onto the FC

wavepacket, which corresponds to the inter-exciton coherences:

⟨ei|ρ̂(t)|ei′⟩ =
1

N
⟨Ψ̃(t)|Ψ̃FC⟩⟨Ψ̃FC |Ψ̃(t)⟩. (3.26)

An example, let Ω̂ = |P ⟩⟨P |, with |P ⟩ = c0|1⟩+ c1|B⟩ (where |B⟩ = 1√
N

∑N
i=1 |ei⟩

is the totally-symmetric excitonic state) being one of the polariton states. Using

Eq. 3.25, population of this state is calculated to be

⟨Ψ(t)|P ⟩⟨P |Ψ(t)⟩ ≈ |c0|2ρ̃11(t) + c∗0c1ρ̃1e + c∗1c0ρ̃e1

+ |c1|2⟨Ψ̃(t)|Ψ̃FC⟩⟨Ψ̃FC |Ψ̃(t)⟩. (3.27)
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Similarly, dark states can be written as |D⟩ =
∑

i ci|ei⟩, with |c1| = |c2| = · · · =

|cN | = 1/
√
N ,
∑N

i=1 ci = 0, and Ωeiej = ⟨ei|D⟩⟨D|ej⟩ = cic
∗
j (i.e., they are chosen

orthogonal to the |P ⟩ states, so here we take them to be the Fourier combinations

of excitons that are orthogonal to |B⟩; see for instance [27]). This leads to

⟨Ψ(t)|D⟩⟨D|Ψ(t)⟩ = 1

N
⟨Ψ̃(t)|e⟩Q⟨e|Ψ̃(t)⟩. (3.28)

Notice that this calculation is identical for every dark state in the chosen basis,

therefore the population in the dark-state manifold yields

N−1∑
k

⟨|D⟩⟨D|⟩ ≈ 1− ⟨Ψ̃(t)|1⟩⟨1|Ψ̃(t)⟩

− ⟨Ψ̃(t)|Ψ̃FC⟩⟨Ψ̃FC |Ψ̃(t)⟩, (3.29)

where we have made N−1
N

≈ 1 since the zeroth-order approximation becomes exact

for N → ∞. From this result, we can extract the intuitive interpretation that

the bright state |B⟩ in the N -molecule system corresponds to a FC wavepacket in

the excited state of the effective single molecule, while the dark states correspond

to the rest of the wavefunction whose nuclear configurations lie outside of the FC

region (See Figure 3.4).

Figure 3.4: (a) For a cavity containing a single molecule, light-matter coupling
(denoted in yellow) has the ability to modify nuclear dynamics throughout all
configurations q. (b) This situation contrasts with a cavity containing an infinite
number of molecules (zeroth-order approximation), where collective light-matter
coupling is localized at the Franck Condon (FC) region. Nuclear displacement
away from this region is equivalent to decay of polaritons into dark states.
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For cases where the chemically relevant excited-state dynamics involves fast

changes of the nuclear configurations away from the FC point, excited state re-

activity is essentially relaxation to dark-states. The question is whether the re-

laxation occurs along the reactive coordinate of interest (e.g., particular reactive

dark-modes), or whether it occurs along orthogonal modes to it. Thus, we have

derived a powerful design principle for polariton chemistry which has so far un-

justifiably gathered little attention: the strategy is not to avoid decay into dark

states, which seems inexorable in most cases, but to use SC to control which dark

states to target. In fact, using the zeroth-order approximation, we will illustrate

some mechanisms to manipulate ratios for these relaxation pathways in Section

3.3.8.

3.3.6 Polariton Vibrational Relaxation

Previous work by del Pino and coworkers [158] addressed the relaxation

dynamics of molecular polaritons using the Hamiltonian in Eq. 3.1 for a vibrational

harmonic bath and linear vibronic coupling,

Ĥ(i)
m =

∑
k

ων,kb̂
(i)†
k b̂

(i)
k

+

[
ωeg,1 +

∑
k

ων,k

√
sk(b̂

(i)†
k + b̂

(i)
k )

]
|ei⟩⟨ei|. (3.30)

This model of relaxation is the single-photon mode simplification of a previous

model by Litinskaya and Agranovich [159]. In the limit where vibronic coupling

is much smaller than the collective light-matter coupling and there is an energy-

dense set of vibrational modes k, we can use our formalism to analytically derive

relaxation rates by including a collection of local vibrational modes and using

Fermi’s Golden Rule with the vibronic couplings as the perturbation. Although

such a result is already well known, it serves as a benchmark and illustration for our

formalism. To unclutter the calculations we consider the case where the excitons

and the cavity are in resonance (ωc = ωeg,1 = ω).

Zeroth-Order Approximation: N-Independent Effects: Using Eqs.

3.17 and 3.30, the model of relaxation in the zeroth-order approximation is given
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by the unperturbed and vibronic coupling Hamiltonians

ˆ̃H(0) = ˆ̃H
(0)
0 + ˆ̃H

(0)
I ,

ˆ̃H
(0)
0 = ω|1, 0⟩⟨1, 0|+

(
ω +

∑
k

ων,kb̂
†
kb̂k

)
|e⟩⟨e|

+
√
Ng (|e, 0⟩⟨1, 0|+ |1, 0⟩⟨e, 0|) ,

ˆ̃H
(0)
1 =

∑
k

ων,k

√
sk

(
b̂†k + b̂k

)
|e⟩⟨e|, (3.31)

where we have used the Fock basis for the vibrational bath (the second index “0”

means all vibrational modes k are empty). The eigenstates of ˆ̃H
(0)
0 are trivial,

|±, 0⟩ = 1√
2
(|e, 0⟩ ± |1, 0⟩)

|D,m⟩ = |e,m > 0⟩, (3.32)

where m > 0 denotes that at least one mode of the vibrational bath is not in the

vacuum state. The eigenvalues are given by ω±,0 = ω±g and ωD,m = ω+
∑

k ων,kmk

respectively. Using Fermi’s Golden Rule we can obtain the following relaxation

rates:

ΓD←+ = 2π
∑
m

|⟨D,m| ˆ̃H(0)
1 |+, 0⟩|2δ(ωD,m − ω+,0)

=
2π

2

∑
k

ω2
ν,kskδ(g − ων,k), (3.33)

Γ−←+ = 2π|⟨−, 0| ˆ̃H(1)|+, 0⟩|2δ(2g) = 0, (3.34)

Γ−←D = 2π|⟨−, 0| ˆ̃H(1)|e,m⟩|2δ(2g −
∑
k

ων,kmk) = 0, (3.35)

where the last two rates are equal to 0 because the resonance condition is not

fulfilled. A schematic representation of the relaxation dynamics is shown in Figure

3.5.

First-Order Correction: 1/N Effects: By analogy with the previous

section, we describe the vibrations using the eigenbasis of the electronic ground-

state vibrational Hamiltonians for the two molecules. Here we first rewrite Eq.

3.19 in terms of projection operators. The second label corresponds to the number

of ground state molecules with phonons.
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Figure 3.5: Relaxation from the upper polariton to the dark states as described
by the zeroth-order approximation (blue: lower polariton, red: upper polariton,
black: dark states). States |+, 0⟩ and |D,m = 1⟩ are resonantly coupled through
vibronic coupling. m = 1 means there is 1 phonon in one of the bath modes of the
excited effective molecule.

ˆ̃H(1) =
(
P1Ĥg,1P1 + P2Ĥg,2P2 + ωc

)
|1, 0⟩⟨1, 0|+

(
Ĥe,1 + P2Ĥg,2P2

)
|e, 0⟩⟨e, 0|

+
(
Q1Ĥg,1Q1 + P2Ĥg,2P2 + ωc

)
|1, 1⟩⟨1, 1|+

(
Q1Ĥg,1Q1 + Ĥe,2

)
|e, 1⟩⟨e, 1|

+ g
√
N (|e, 0⟩⟨1, 0|+ |1, 0⟩⟨e, 0|) + g

√
N − 1 (|e, 1⟩⟨1, 1|+ |1, 1⟩⟨e, 1|)

+ g (|e, 0⟩⟨1, 1|+ |1, 1⟩⟨e, 0|) . (3.36)

Using Eqs. 3.36, the relaxation model is described by the Hamiltonians in

Eqs. 3.37.

43



ˆ̃H(1) = ˆ̃H
(1)
0 + ˆ̃H

(1)
1 ,

ˆ̃H
(1)
0 = ω|1, 0, 0, 0⟩⟨1, 0, 0, 0|+

∑
m

(
ω +

∑
k

ων,kmk

)
|e, 0,m, 0⟩⟨e, 0,m, 0|

+
∑
m>0

(
ω +

∑
k

ων,kmk

)
|1, 1,m, 0⟩⟨1, 1,m, 0|

+
∑

m>0,n

(
ω +

∑
k

ων,kmk +
∑
k

ων,knk

)
|e, 1,m, n⟩⟨e, 1,m, n|

+ g
√
N (|1, 0, 0, 0⟩⟨e, 0, 0, 0|+ |e, 0, 0, 0⟩⟨1, 0, 0, 0|)

+ g
√
N − 1

∑
m>0

(|1, 1,m, 0⟩⟨e, 1,m, 0|+ |e, 1,m, 0⟩⟨1, 1,m, 0|)

+ g
∑
m>0

(|e, 0,m, 0⟩⟨1, 1,m, 0|+ |1, 1,m, 0⟩⟨e, 0,m, 0|) ,

ˆ̃H
(1)
1 =

∑
k

ων,k

√
sk

(
b̂†1,k + b̂1,k

)
|e, 0⟩⟨e, 0|+

∑
k

ων,k

√
sk

(
b̂†2,k + b̂2,k

)
|e, 1⟩⟨e, 1|.

(3.37)

The last two labels represent the vibrational states of molecules 1 and 2 in the Fock

basis, b̂i,k is the annihilation operator for the vibrational excitations of molecule

i, and m > 0 means mk > 0 for at least one mode k. The eigenstates of ˆ̃H
(1)
0 are

given by

|±, 0, 0⟩ = 1√
2
(|1, 0, 0, 0⟩ ± |e, 0, 0, 0⟩) ,

|±,m > 0, 0⟩ = 1√
2
|1, 1,m > 0, 0⟩

± 1√
2

(√
N − 1

N
|e, 1,m > 0, 0⟩+ 1√

N
|e, 0,m > 0, 0⟩

)
,

|D,m > 0, 0⟩ = 1√
N

|e, 1,m > 0, 0⟩+
√

N − 1

N
|e, 0,m > 0, 0⟩,

|D,m > 0, n⟩ = |e, 1,m > 0, n > 0⟩,

with eigenvalues ω±,0,0 = ω± g
√
N , ω±,m,0 = ω+

∑
k ων,knk ± g

√
N , and ωD,m,n =

ω +
∑

k ων,kmk +
∑

k ων,knk respectively. We can use these states to calculate the

rate from the upper polariton to the lower polariton using Fermi’s Golden Rule to

get
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Γ−←+ = 2π
∑
m

|⟨−, 0, 0| ˆ̃H(1)
1 |+, 0, 0⟩|2δ (ω−,0,0 − ω+,0,0)

=
2π

4N

∑
k

ω2
ν,kskδ(2

√
Ng − ων,k). (3.38)

Similarly, we can recalculate the decay rate from the upper polariton into the dark

states,

ΓD←+ = 2π
∑
m

|⟨D,m, 0| ˆ̃H(1)
1 |+, 0, 0⟩|2δ(ω+,0,0 − ωD,m,0)

=

(
N − 1

N

)
π
∑
k

ω2
ν,kskδ(

√
Ng − ων,k). (3.39)

where we have recovered the N−1
N

factor missing from Eq. 3.33 in the zero-order

approximation. The final state in the previous calculation can be used as initial

state to describe the subsequent relaxation from the dark-states into the lower

polariton,

Γ−←D = 2π
∑
m′

|⟨−,m′, 0| ˆ̃H(1)
1 |−, 0, 0⟩|2δ(ω−,0,0 − ωD,m=1,0)

=

(
N − 1

N2

)
π
∑
k

ω2
ν,kskδ(

√
Ng − ων,k). (3.40)

The schematic representation of relaxation mechanisms is shown in Figs. 3.6 and

3.7.

The results of vibrational relaxation rates are summarized in Table 3.1.

Table 3.1: Polariton relaxation rates in the zeroth-order approximation and adding
the first-order correction

zeroth-order approximation with first-order correction

Γ−←+ 0
(

1
4N

)
2π
∑

k ω
2
ν,kskδ(2

√
Ng − ων,k)

ΓD←+ π
∑

k ω
2
ν,kskδ(

√
Ng − ων,k)

(
N−1
N

)
π
∑

k ω
2
ν,kskδ(

√
Ng − ων,k)

Γ−←D 0
(
N−1
N2

)
π
∑

k ω
2
ν,kskδ(

√
Ng − ων,k)

Apart from missing a factor of N−1
N

in ΓD←+, the zeroth-order approxi-

mation correctly predicts the relaxation rate from upper polariton to dark states

(which in this weak-vibronic coupling model in the effective single-molecule calcu-

lation, corresponds to the bare molecular exciton with a single phonon |e, 1⟩), but
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Figure 3.6: Relaxation from the upper polariton to the lower polariton passing
through the dark states, as described by inclusion of the first-order correction
(blue: lower polariton, red: upper polariton, black: dark states). States |+, 0, 0⟩,
|D,m = 1, 0⟩, and |−,m = 2, 0⟩ are resonantly coupled through vibronic coupling.
m = 2 means there are 2 phonons of frequency ων =

√
Ng in the bath modes of

the effective molecule 1. In the derivation, we have assumed the second phonon is
emitted into a different bath mode than the first one.

disregards both the upper to lower polariton, and dark state to lower polariton

rates [158]. This makes sense since the latter two are known to be proportional

to 1/N , and the zeroth-order approximation is exact for N → ∞. Thus, for this

simple model, the only relaxation process of relevance at ultrafast timescales is the

downhill one into dark states. Addition of the first-order correction recovers the

decay rates Γ−←− and Γ−←D, as well as the
N−1
N

factor missing from ΓD←+ in the

zero-order approximation. We suspect the factor N−1
N2 in Γ−←D will become exactly

1/N if the second-order correction is considered. It is unlikely that we would need

to go to higher-order corrections for microcavity polaritons, or even for polaritons

arising in plasmonic antennas, where N = 100− 1000 [160], although if SC can be

demonstrated with smaller N values, those corrections could start mattering. On

the other hand, it would be of interest to compare the performance of our method

with the standard one of explicitly simulating several molecules using an optimized

algorithm such as multilayer MCTDH [68], and characterize the values of N after

which our method can outcompete the latter.

3.3.7 Finite Temperature effects

In the previous sections we have only dealt with transitions from higher to

lower lying polaritonic or dark states. To calculate rates such as ΓD←− we need
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Figure 3.7: Direct relaxation from the upper polariton to the lower polariton as
described until the first-order correction (blue: lower polariton, red: upper polari-
ton, black: dark states). States |+, 0, 0⟩ and |−,m = 1, 0⟩ are resonantly coupled
through vibronic coupling to modes of frequency ων = 2

√
Ng.

to consider all possible initial states allowed by thermal fluctuations. In general,

such states involve breaking of the symmetry that is essential for the reduction of

the dimensionality in Eqs. 3.10. Therefore, at the current stage, this formalism

cannot be easily generalized to finite temperatures. Future works will focus on

developing a density matrix approach in which permutational symmetries can be

smoothly applied.

3.3.8 Non-statistical Excited-State Dynamics

In this section, we look at the mechanism whereby, given two molecular

species strongly coupled to a cavity, excitation energy can be selectively funneled

to one of the species. We will show that statistical yield estimates based on linear

optical spectroscopy seem to be misleading at predicting these outcomes accurately.

For a system with NA molecules of species A and NB molecules of species

B inside a cavity, The Hamiltonian in the zeroth-order approximation can be

readily generalized from Eq. 3.14 to include two types of molecules A and B (see

Supplementary Information in Ref. [87] for the Hamiltonian and parameters of the

PESs of each molecule).

Example 1.- The excited PES of species A is a displaced harmonic oscillator
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and that of species B is a dissociative potential. While the latter is mostly relevant

for gas phase reactions, a completely analogous photochemical phenomenon in the

condensed phases could be obtained with diabatically coupled harmonic surfaces.

The cavity frequency is resonant with the FC transitions of both A and B (see

Figure 3.8,1a).
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Figure 3.8: Summary of molecular features used in Section 3.3.8, Examples 1 and
2. The relevant Potential Energy Surfaces (PESs) (1a,2a); horizontal axis should
read q = qi, depending on whether the PES refers to i = A or B. Linear absorption
spectra outside (blue, S(ω)) and inside (red, σ(ω)) of cavity, corresponding to a
(1b,2b) pure A, (1c,2c) pure B, and (1d,2d) A/B mixture at 1 : 1 ratio. In both
examples, A has a bound excited PES, while B has a dissociative one. This has
an obvious effect in the outside-of-cavity absorption for Example 1 (1b,1c) but
not for Example 2 (2b,2c). The underlying reason for this discrepancy is that the
dissociative character of B is manifestly at the FC region in Example 1 (1a), while
it is “hidden” from the FC region in Example 2 (2a).

Given the one-dimensional nature of the PESs, it is straightforward to ex-

plicitly construct the eigenstates and eigenenergies of the vibrational Hamiltonians

and perform the short-time unitary dynamics; we use the standard Discrete Vari-

able Representation method by Colbert and Miller [161]. This calculation was then

used to compute spectra of the molecules outside and in the cavity using the for-

malism illustrated in [136, 145]. The parameters for calculation of the spectra are

chosen such that the frequency resolution and total simulation time satisfy Fourier

transform relations. The total simulation time of 2.5 ps determines the molecular

and cavity linewidths as 0.002 eV (see Figure 3.8, 1b,c,d). The absorption spectra
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of the bare molecules reveal the energy level structure accessed at the respective

FC regions [162]. For molecules A, we see the strongest peak corresponding to the

FC transition accompanied by the other peaks of the vibronic progression. On the

other hand, for molecules B, we see a single broad feature due to the dissociative

potential. When strongly coupled to a cavity, these peaks form a rich pattern

of peak splittings which can be intuitively understood upon diagonalization of

Eq. 3.14 (for instance, for molecule A, six sharp resonances become seven due to

coupling to the cavity).

We build time-dependent wavefunctions by constructing the correspond-

ing linear combinations of numerically computed eigenstates of the zeroth-order

Hamiltonian. This procedure would obviously be impractical for realistic molecu-

lar species with many vibrational modes, in which case, an explicit time-dependent

approach such as MCTDH would be preferred. This simulation illustrates a phe-

nomenon where the energy initially given to the cavity is eventually channeled

preferentially to one of the two molecules. The results of this simulation are

consistent with the phenomenology originally theoretically proposed by Groen-

hof and Toppari, based on computational simulations with at most 1000 molecules

of one of the species [163], and demonstrate the latter remains valid in the ther-

modynamic limit. For our simulation, we start with an excitation in the cavity,

|Ψ(0)⟩ = φ1(qA)φ1(qB)|1⟩, and calculate excited state populations for each of the

effective molecules, which provides the excited state reactivity of a single molecule

of type A/B in the entire molecular ensemble (because we are working in the first

excitation manifold). At short times the cavity evenly distributes the energy into

both types of molecules, exciting them at their respective FC regions. We monitor

the excited-state populations as a function of time (see Figure 3.9a). We observe

that at short times, the population is transferred equally to both species. However,

as time progresses, the excitation is funneled selectively to species B via the cavity.

The mechanism of the phenomenon is the following: at short times of the order

of the Rabi oscillations, the cavity excites the bright modes of both species with

equal populations at the respective FC regions due to the chosen equal collective

light-matter couplings. However, as time progresses, excitations in species B decay
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irreversibly into their dark states upon evolution away from the FC region (see Eq.

3.29) due to the dissociative character of Ve0,B(qB). Molecular species A does not

undergo this fast dephasing due to the bound nature of Ve0,A(qA) and is the one

that predominantly remains at its FC region and emits a photon to the cavity at

the end of the Rabi cycle. The mechanism restarts with the re-excitation of both

molecules by the photon. What results from this simulation is a net energy flow

from molecular species A to species B mediated by the cavity, and which cannot

be explained by the contribution of each molecule to the polariton states defined

at the FC region. Notice that if the cavity decay is faster than the molecular

dephasing, the excitation can leak out before energy transfer from A to B ensues.

This issue can be overcome by having the cavity mode under continuous pumping.
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Figure 3.9: Excited state populations of molecular species A and B as a function
of time for (a) Example 1 and (b) Example 2. Dotted (dashed) horizontal lines
show the estimated populations psA , psB (psA(FC),psB(FC)) from the eigenstates
(“short-time eigenstates” defined at the FC point). Energy funneling from species
A into species B is observed in both cases, indicating that this phenomenon is not
easily predicted from linear optical spectra alone, since at least for Example 2,
the absorption spectra of bare molecules A and B are pretty much identical (see
Figure 3.8, 2b,c).

Next, we compare the computed long-time populations accumulated in the

excited states of molecules A and B to the infinite-time probabilities of molecules

of the cavity exciting the different species (psj for j ∈ {A,B}),

psj =
∑
n

|⟨n|ej⟩|2|⟨n|1⟩|2. (3.41)

Here, {|n⟩} represent the eigenstates of ˆ̃H(0). Eq. 3.41 computes the composi-

tion of probabilities of an eigenstate simultaneously having photonic and molecule
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A(B) contribution. However, the entire set of eigenstates is not obtainable using

linear absorption spectroscopy alone, given that the latter is a limited projection

of information at the FC region [162]. As an extreme example, we consider “short-

time-resolution eigenstates” consisting of the upper, middle, and lower polaritons

computed at the FC region, and compute the analogous estimates psA(FC) and

psB(FC). The infinite and short-time estimates are presented in Figure 3.9a. As

expected, the plot suggests that the statistical estimate obtained from the full set

of eigenvectors gives the right prediction of the yields at long times, while the FC

estimate predicts the incorrect outcome of equal populations of A and B.

Example 2.- Example 1 highlights the danger of inferring excited-state dy-

namics relying solely on information obtained from linear optical spectroscopy.

This issue becomes even more pertinent owing to some observations of Xiang et

al. [28], where the authors observe selective cavity-mediated energy transfer into

one of two molecules, despite the bare linear absorption spectral lineshapes being

very similar outside the cavity. To highlight some of the described subtleties, we

explore a second example where we consider a slightly different shape of the excited

state PES for species B such that it resembles that of molecular species A in the

FC region, while still being dissociative.

The computed spectra for the bare species and their corresponding spectra

under SC to the cavity mode are shown in Figure 3.8, 2b,c,d. The resemblance

of the excited state PESs at the FC region translates into very similar spectral

lineshapes despite the dissociative vs bound nature away from the FC region.

Regardless of the similarities in the absorption spectra, starting the dynamics with

an excitation in the cavity mode still gives rise to the effective energy transfer from

species A to B. Accordingly, the statistical ratio computed from the eigenstates

at the FC point predicts equal populations of molecular species, while the full set

of vibro-polaritonic eigenstates of the system (psA and psB in Figure3.9b) predicts

the correct yields. Since such states are not easily accessible from linear absorption

spectroscopy, we consider those measurements insufficient to predict the outcome

of these photoproducts.

It is important to note that by virtue of our reliance on the zeroth-order
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approximation, the cavity-mediated energy transfer mechanism studied in this sec-

tion is N -independent, and thus differs from that put forward in Refs. [164, 165].

The latter relies on a bottleneck transfer of population from dark to polariton

modes, whose rate scales as 1/N .

In the future, it will be of great interest to ascertain whether the O(N0)

rate mechanism studied in the present work (originally put forward in [163]), or

the mentioned O(N−1) rate mechanism is in order in the various experiments of

cavity-mediated energy transfer [28,43,166,167]. At least, for the last reference, it

is clear that the latter mechanism cannot be operative, for it would yield rates of

energy transfer that are much slower than those observed in the experiment.

Finally, we speculate that the mechanism highlighted in this section, where

the cavity mediates energy transfer into the fastest dephasing molecular species,

should be quite a generic phenomenon, and might be at play in the recent study

in [168], which shows polariton enhanced photoconductivity of an organic film.

However, a further consideration of this problem merit a careful inclusion of dis-

order and temperature effects, which will be the focus of future works.

3.4 Summary

The method of Collective dynamics Using Truncated Equations (CUT-E)

exploits permutational symmetries of an ensemble of identical molecules and an

emergent hierarchy of timescales, to elucidate the excited-state dynamics under

collective strong light-matter interaction. Although previous works have used per-

mutational symmetry arguments and have arrived at conclusions that are consis-

tent with ours [63,135,136,145,157], elements of the present work uniquely provide

opportunities for a systematic and intuitive treatment of molecular polariton dy-

namics.

It is important to note that, via quite a different formalism, another method

that maps the dynamics of molecular polaritons to a single effective molecule in

a cavity has already recently been reported before our work [136]. This method,

based on density matrices, does not provide O(1/
√
N) corrections to dynamics,
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and considers a coherent state of the photon at all times, instead of the single-

excitation manifold dynamics we have presented. We believe this method is quite

complementary in its scope to ours. However, given the different formalisms, it is

at present hard to assess the deeper conceptual connections between the methods;

this will be subject of future work.

Let us conclude by highlighting some of the features of our approach. First,

it allows for the systematic introduction of corrections to the thermodynamic limit.

Second, our time-dependent approach generalizes some of the results found in pre-

vious work that also exploit permutational symmetries to compute optical proper-

ties [62,63,136,137,141,145]; here we have generalized these concepts to chemical

dynamics. Moreover, our work naturally provides an alternative interpretation of

bright and dark-states based on permutationally-symmetric states, that is different

from the one inherited from restrictive quantum optics models. These observations

provide much needed physical intuition to design principles of polariton chemistry

control, where rather than avoiding the decay into dark states, one embraces such

phenomenon at one’s advantage, such as with the examples provided in Section

3.3.8. Finally, the method enjoys numerical simplicity and is written in a language

that makes it straightforward to modify existing codes for single-molecule strong

light-matter calculations, and more generally, convenient for implementation in ex-

isting quantum molecular dynamics algorithms. At present, it is unclear whether

the strategies here presented can be generalized to multimode cavities and finite

temperature scenarios. These issues are the subject of present investigations.
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Chapter 4

Collective polaritonic effects on

chemical dynamics suppressed by

disorder

We present a powerful formalism, disordered collective dynamics using trun-

cated equations (d-CUT-E), to simulate the ultrafast quantum dynamics of molec-

ular polaritons in the collective SC regime, where a disordered ensemble ofN ≫ 106

molecules couples to a cavity mode. Notably, we can capture this dynamics with

a cavity hosting a single effective molecule with ∼ Nbins electronic states, where

Nbins ≪ N is the number of bins discretizing the disorder distribution. Using

d-CUT-E we conclude that SC, as evaluated from linear optical spectra, can be a

poor proxy for polariton chemistry. For highly disordered ensembles, total reaction

yield upon broadband excitation is identical to that outside of the cavity, while

narrowband excitation produces distinct reaction yields solely due to differences

in the initial states prepared prior to the reaction.

4.1 Introduction

Disorder is an unavoidable feature that can impact polariton transport

[50, 169–171], vibrational dynamics [77], superradiance [172], and polaron photo-

conductivity [168]. In this chapter, we generalize our recently developed Collective
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dynamics Using Truncated Equations (CUT-E) method [87], that allows the effi-

cient modeling of the quantum molecular dynamics of an arbitrarily large number

of identical molecules, to study disordered ensembles. At the core of CUT-E lies

the exploitation of permutational symmetries [63, 87, 141, 145, 157, 172–174], that

scale the problem from an ensemble of N → ∞ identical molecules down to a

single effective molecule strongly interacting with the cavity mode. This effective

molecule differs from an actual single-molecule in that its SC to the cavity oc-

curs solely at the Franck-Condon (FC) region. We lift the constraint of identical

molecules, coarse-grain the disorder distributions, and apply permutational sym-

metries among molecules that belong to the same disorder “bin”. This approach

is numerically exact for sufficiently short propagation times, where the number

of disorder bins required to reach convergence (denoted as Nbins) is much smaller

than N . This seemingly simple strategy has powerful consequences: the result-

ing d-CUT-E method maps a disordered molecular ensemble into a single effective

molecule, with amplified number of electronic degrees of freedom (DoF) by Nbins.

This is both conceptually insightful and computationally efficient compared to

conventional methods that include every molecule of the ensemble explicitly. Al-

though our method is general and can be applied to arbitrary disorder distributions

of the parameters that shape the Potential Energy Surfaces (PESs), here we focus

on Gaussian exciton-frequency disorder and study its impact on various ultrafast

molecular and optical polaritonic properties.

Our study shows that: (a) broadband excitation can modify the reaction

yield of the ensemble; however, in the large disorder regime, such changes can be

explained just by changes in cavity leakage, despite the presence of the polariton

bands in the absorption spectrum. (b) Narrowband excitation can modify the

reaction yield even in the large disorder regime. In this case, external narrow-

band laser and strong light-matter coupling allows the selective excitation of high

frequency vibrational states near the UP band, which are more reactive than the

corresponding excitations of the LP band. Since the polariton processes involved in

the preparation of these states vanish before the reaction ensues, this phenomenon

should be interpreted as an optical effect and not as a chemical one.
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4.2 Model

To illustrate the method, we assume a single-cavity mode, neglect inter-

molecular interactions, and restrict ourselves to the first excitation manifold. Our

molecular model consists of a ground electronic state and two diabatically cou-

pled excited electronic states, where only one of them can couple to the cavity

mode. The molecular model is intentionally simplified to uncover the universal

photochemical and photophysical behavior of molecular polaritons. In the CUT-E

formalism, each disorder bin is represented by a single effective molecule with a

collective coupling g
√
N
√
Pi, with Pi being the fraction of molecules in the i-th

bin. Assuming that the molecules are initially in the global ground state, the CUT-

E effective Hamiltonian in the large N limit is given by (see the Supplementary

Information of Ref. [88] for details)

Ĥ ′eff = ωc|1⟩⟨1|+
Nbins∑

i

(
−1

2

∂2

∂q2i
+ Ve1,i(qi)

)
|e1,i⟩⟨e1,i|

+

Nbins∑
i

(
−1

2

∂2

∂q2i
+ Ve2,i(qi)

)
|e2,i⟩⟨e2,i|

+ g
√
N

Nbins∑
i

√
Pi (|e1,i⟩⟨1|+ |1⟩⟨e1,i|)Pi + v12,i|e1,i⟩⟨e2,i|+H.c.. (4.1)

Here, qi is the vector of mass-weighted coordinates of all vibrational degrees of

freedom of molecule i; |gi⟩, |e1,i⟩, and |e2,i⟩ are the ground and excited electronic

states; Vg/e1/e2(q) are the PESs; v12,i is the diabatic coupling; ωc is the cavity fre-

quency; â is the photon annihilation operator; and Pi = |φ0,i⟩⟨φ0,i| is the projector

onto the FC state of the i-th effective molecule. Notice that the cavity mode only

couples to the transition to the |e1⟩ electronic state of the molecules. This Hamil-

tonian incorporates the collective interaction between the molecules and the cavity

mode, neglects all single-molecule coupling effects (which is valid for ultrafast pro-

cesses if single-molecule coupling strength is sufficiently weak), and neglect finite

temperature effects [87].
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4.3 Results

4.3.1 Generalization of CUT-E for disordered ensembles

Although the CUT-E Hamiltonian is much simpler than conventional Hamil-

tonians granted Nbins ≪ N , it still involves the vibrational and electronic degrees

of freedom of all bins. Notably, Ĥ ′eff can be simplified even more by mapping it to

another Hamiltonian Ĥeff [Eq. (4.2)] whose Hilbert space increases linearly with

Nbins (see the Supplementary Information of Ref. [88]). This linear scaling is a

consequence of the following considerations: first, restriction to the first excitation

manifold implies that only one of the molecules is electronically excited at a time.

Second, molecules in the ground electronic state do not exhibit vibrational dy-

namics, since the only mechanism by which they can acquire phonons is emission

away from the FC region, which can be neglected in ultrafast dynamics according

to CUT-E [87, 145]. These two features imply that the exact wavefunction of the

system is a superposition of states in which only one effective molecule showcases

vibrational dynamics, while the other Nbins − 1 are frozen.

We assume disorder only affects the excited state PESs Ve,1(q) and Ve,2(q).

In this way, disorder bins only appear as additional “electronic” states. This

dramatic reduction of the original system into a single effective molecule showcasing

2Nbins excited electronic states is the main computational contribution of this

chapter. Its linear scaling with disorder represents a considerable improvement over

methods that add an increasing number of molecules with parameters sampled from

a disorder distribution, a computationally costly exercise that scales exponentially

with N . A schematic representation of d-CUT-E is shown in Figure 4.1 using two

disorder bins as an example, and the mathematical procedure is explained in detail

in the Supplementary Information of Ref. [88].
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Figure 4.1: Linear scaling of the dynamics with the number of disorder bins.
The first two panels depict cuts of the PESs along the reaction coordinate of
two different bins, q1 and q2. d-CUT-E projects the two-dimensional vibrational
dynamics of the two bins onto a single nuclear degree of freedom q (third panel).

The d-CUT-E Hamiltonian reads

Ĥeff = ωc|1⟩⟨1|+
Nbins∑

i

(
−1

2

∂2

∂q2
+ Ve1,i(q)

)
|e1,i⟩⟨e1,i|

+

Nbins∑
i

(
−1

2

∂2

∂q2
+ Ve2,i(q)

)
|e2,i⟩⟨e2,i|

+ g
√
N

Nbins∑
i

√
Pi (|e1,i⟩⟨1|+ |1⟩⟨e1,i|)P

+

Nbins∑
i

v12,i|e1,i⟩⟨e2,i|+H.c. (4.2)

Here, P = |φ0⟩⟨φ0|. The values for Pi and the parameters that define the PESs

can be obtained from a disorder distribution ρ(ω).

As a proof of principle, and since we are interested in short-time processes

that can be modified by strong-light matter interaction, we assume that short-

time vibrational dynamics occurs only along the reaction coordinate and ignore

vibrational degrees of freedom orthogonal to it [175, 176]. Hence, we use a single

vibrational coordinate per molecule (see Figure 4.2).

The final Hamiltonian yields

Ĥeff = (ωc − iκ/2) |1⟩⟨1|+
Nbins∑

i

(
ω0,i + ων,iD̂(s1,i)b̂

†b̂D̂†(s1,i)
)
⊗ |e1,i⟩⟨e1,i|

+

Nbins∑
i

(
ω0,i + ων,iD̂(s2,i)b̂

†b̂D̂†(s2,i)
)
⊗ |e2,i⟩⟨e2,i|

+ g
√
N

Nbins∑
i

√
Pi (|e1,i⟩⟨1|+ |1⟩⟨e1,i|)P+

Nbins∑
i

v12,i|e1,i⟩⟨e2,i|+H.c., (4.3)

59



Figure 4.2: Potential energy curves for the molecular system. Each molecule in
our model consists of two diabatically-coupled excited electronic states and one
vibrational degree of freedom.

where D̂(s1,i) = e(b̂
†−b̂)s1,i is the displacement operator, and ω0,i, ων,i, and s1,i

are the exciton frequency, vibrational frequency, and Huang–Rhys factor for the

|e1,i⟩ electronic state respectively. We incorporate cavity leakage by adding the

imaginary term iκ/2 to the photon frequency, and the amount of energy that

escapes the cavity by this mechanism can be quantified by calculating the norm

of the wave function ⟨Ψ(t)|Ψ(t)⟩. For the rest of this work we will consider only

exciton-frequency disorder. Here, disorder affects both |e1⟩ and |e2⟩ equivalently,

thus the height of the barrier is the same for all bins.

4.3.2 Optical and Chemical Polariton Properties

To study optical effects, we calculate the linear absorption spectrum [145,

146,177,178],

A(ω) = κRe
[
C̃(ω)

]
− 1

2
κ2|C̃(ω)|2, (4.4)

with C̃(ω) =
∫ Tf

0
dteiωt⟨Ψ(0)|Ψ(t)⟩ and |Ψ(0)⟩ = |φ0⟩ ⊗ |1⟩. To study chemical

effects, we calculate populations of the electronic states |e1⟩ and |e2⟩, which can

be thought of as the “reactant” and “product” states of a photochemical reaction,

respectively. The reaction proceeds via tunneling of the vibrational wave packet

from the |e1⟩ state. We calculate populations for each bin, and add them up to
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obtain the total excited state population of reactant and product in the ensemble,

Pe1(t) =

Nbins∑
i

Pe1,i(t) =

Nbins∑
i

⟨Ψ(t)|e1,i⟩⟨e1,i|Ψ(t)⟩,

Pe2(t) =

Nbins∑
i

Pe2,i(t) =

Nbins∑
i

⟨Ψ(t)|e2,i⟩⟨e2,i|Ψ(t)⟩. (4.5)

To capture the competition between cavity leakage and excited-state reactivity, we

do not divide the expectation values by the norm.

Both optical and molecular properties are calculated for various values of

exciton-frequency disorder σ and collective light-matter coupling g
√
N . We use the

Gaussian exciton-frequency distribution ρ(ω) = 1
σ
√
2π
e−

1
2(

ω−ω0
σ )

2

, with the cavity

frequency being resonant with the ν = 0 → ν ′ = 1 transition ωc = ω0 + ων . We

discretize ρ(ω) by restricting its domain to ω0 − 3σ < ω < ω0 + 3σ, and calculate

the values of Pi and ω0,i as

Pi =

∫ ωi,max

ωi,min

dωρ(ω) ω0,i =

∫ ωi,max

ωi,min

dωωρ(ω), (4.6)

with ωi,min = ω0 − 3σ + (i − 1)(6σ/Nbins) and ωi,max = ω0 − 3σ + i(6σ/Nbins).

Ignoring the tails of the distribution is justified since molecules that fall at the

ends of the energy distribution are off-resonant with the cavity mode and the

polariton windows (see Figure 4.3).

4.3.3 Convergence analysis

In Figure 4.4 we analyze the convergence in cavity leakage Γ(t) = 1 −

⟨Ψ(t)|Ψ(t)⟩, photon population |C(t)|2, linear absorption spectrum A(ω), and elec-

tronic populations Pe1(t) and Pe2(t), as a function of Nbins. We propagate the

initially photonic wavepacket |Ψ(0)⟩ = |φ0⟩ ⊗ |1⟩ for Tf = 40 fs.

We find that the width of the bins δω required to reach convergence in

optical and chemical observables obey a simple relation δω ∼ 2π/Tf , where Tf

is the final propagation time. This is not surprising since a finite propagation

time implies a finite energy resolution. Thus, the number of bins required for

convergence obeys Nbins = 6σTf/2π (see the Supplementary Information of Ref.

[88] for convergence analysis). Hence, the computational cost of disorder does not

scale with N , and scales linearly with Nbins ∝ Tf .
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Figure 4.3: Discretization of exciton frequency disorder. The frequencies follow
a Gaussian distribution and the number of bins required to reach convergence is
proportional to the total disorder and final propagation time.

4.3.4 Broadband Excitation

Figure 4.5 shows optical and chemical effects of disorder for Tf = 30 fs,

Nbins = 40, and an initially photonic wavepacket |Ψ(0)⟩ = |φ0⟩ ⊗ |1⟩ (mimicking

broadband excitation, Tpulse ≪ TRabi). Final propagation time was chosen to avoid

barrier recrossing due to the single-mode nature of our model.

Our calculations show that features that would be resolved at long timescales,

such as vibronic progressions (small red peaks), vanish as disorder grows compara-

ble to the collective light-matter coupling [Figure 4.5(1a)]. This is a consequence of

damping of the coherent return of population between the bright state to the cavity

mode [see Figure 4.5(1b)]. However, contrary to what intuition suggests, even if

such dampening is significant within the timescale of the Rabi period TRabi ∼ 2.5

fs, it does not imply that the UP and LP bands disappear. This is because only a

small amplitude needs to return to the cavity (during the second half of the Rabi

cycle) to create such an optical feature [162,179]. The reduction in TRabi that fol-
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Figure 4.4: Convergence of the dynamics with the number of bins Nbins. (a) Linear
absorption spectrum A(ω). (b) Cavity leakage Γ(t), (c) Ratio of electronic excited
state populations Pe2(t)/Pe1(t). We find that the number of bins Nbins needed to
reach convergence obeys Nbins = 6σ · Tf/2π. Parameters: ω0 = 0.11 au, σ = 0.02
au, ων = 0.01 au, g

√
N = 0.03 au, κ = 0.006 au, v12 = 0.0025 au, s1 = −1, and

s2 = −4.

lows from the dampening of Rabi oscillations also leads to an increase in the Rabi

splitting [80, 180]. Thus, for highly disordered polaritons, collective light-matter

coupling strengths cannot be directly extracted from polariton Rabi splitting.

Figure 4.5(1c) shows changes in Pe2(Tf ) that correspond to two regimes

of disorder. The low disorder regime 2σ < g
√
N , characterized by a strong de-

pendence of the reaction yield with σ, and the large disorder regime 2σ > g
√
N ,

where the reaction yield reaches a constant value. For low σ and low g
√
N (red,

green and blue lines), disorder leads to higher total reaction yields, but this effect

vanishes for large g
√
N (light blue and black lines) where “polaron decoupling”

takes over [33,181]. This behavior of the reaction yield in the low disorder regime

arises as a consequence of interferences between the vibrational wavepackets of the

electronic states for each bin |e1,i⟩, due to their common interaction with the pho-

ton state |1⟩. These Rabi oscillations are significantly reduced at large disorder,

causing the total reactivity of the ensemble to be independent of disorder. In this

regime, changes of the total reaction yield upon broadband excitation for different

collective coupling strengths can be explained by differences in cavity leakage (see

normalized product populations in the Supplementary Information of Ref. [88]).

Figure 4.5(2a) shows that wave packet interferences in the large-disorder

regime still cause differing reactivities on individual bins, despite them having the

same PESs. By comparing the total excited state population Pe1(t) + Pe2(t) with

the product population Pe2(t), we conclude that this difference in product yields of
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individual bins cannot be attributed to differences in their respective absorption.

Additional calculations show that high-frequency bins become more reactive than

those at low frequency as a consequence of vibronic coupling of the |e1⟩ electronic

state (here, s1 = −1), and that this effect is suppressed if s1 = 0 (see the Sup-

plementary Information of Ref. [88]). We will elaborate on the consequences of

this effect when we consider narrowband excitation. Figure 4.5(2b) shows time-

dependent total population dynamics for zero, intermediate, and large disorder. In

the absence of disorder, strong light-matter coupling gives rise to large amplitude

Rabi oscillations for Pe1(t) that last even after the reaction occurs, producing a

low reaction yield. This polaritonic-induced reduction of reactivity (polaron de-

coupling) has been explained in previous theoretical works as a change in the PESs

that prevents the nuclei from moving away from the FC region [33, 157, 181, 182].

However, for intermediate and large disorder, Rabi oscillations are damped before

the reaction ensues, polaron decoupling disappears, and the reactivity reaches a

constant value. This constant value corresponds to the reaction yield outside of

the cavity, as shown in Figure 4.5(2c), where we have initiated the system in the

bright state |Ψ(0)⟩ =
∑Nbins

i

√
Pi|φ0⟩ ⊗ |ei⟩, for g

√
N = 0. From this we conclude

that changes in the reaction yield upon broadband excitation are not possible if

reactivity occurs on a timescale longer than that of Rabi oscillations, even if the

linear absorption spectrum showcases two clear polariton bands [see Figure 4.5(a)].

Next, we systematically study how the large-disorder regime approaches the

off-cavity limit by initiating the dynamics in the bright state, and calculating the

total excited states populations for g
√
N = 0.03 au, increasing the disorder. This

allows us to directly compare the ensuing dynamics with that outside of the cavity

(g
√
N = 0). Importantly, the out-of-cavity population dynamics is independent of

disorder for these initial conditions.

We find that broadband excitation in the large-disorder regime does not

result in different photochemistry than outside of the cavity, although the linear

absorption spectrum misleadingly suggests otherwise. As we discussed before,

this occurs because, even for large disorder, the Rabi splitting in the absorption

spectrum is a feature defined at short times (T ∼ 2.5 fs), for which disorder has a
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very minor effect. On the contrary, at the longer timescales of chemical reactivity,

disorder has already caused decoherence of wavefunction in individual disorder

bins. We also modified the PES of |e2⟩ so that it lies at higher energies with

respect to |e1⟩. Contrary to the previous scenario, for low disorder, we observe

a polariton-mediated increase in the total reaction yield if the target state |e2⟩ is

0.02 au blue detuned with respect to |e1⟩, thanks to the UP having high enough

energy to allow the barrier crossing. Moreover, we observe that the behavior is

not monotonic and population transfer is enhanced for low values of disorder, but

eventually converges to the dynamics outside of the cavity [see Figure 4.6(c)].

4.3.5 Narrowband Excitation

We next examine selective excitation of either one of the polariton bands

(narrowband excitation, Tpulse > TRabi). To this end, we initiate the dynamics

in the states |Ψ±(0)⟩ = 1√
2
|φ0⟩ ⊗

(
|1⟩ ±

∑Nbins

i

√
Pi|ei⟩

)
, which allocate the same

vibrational energy to all bins, and their average energy is that of the polaritons.

Figure 4.7 shows that selective pumping of polariton bands yields different

excited-state reaction yields. As we might expect from Figure 4.5(2a), excitation

of the UP results in a high reaction yield due to selective excitation of the bins

with a higher reactivity, while excitation of the LP results in a low reaction yield.

This can be explained as a cavity-assisted mixing of high-lying vibronic states

of the low-energy bins with low-lying vibronic states of the high-frequency bins

through Rabi oscillations, resulting in excitation of molecules near the UP with

more vibrational energy, and molecules near the LP with lower vibrational energy.

A scheme of this mechanism is shown in Figure 4.8, and numerical evidence is

provided in the Supplementary Information of Ref. [88]. Notice that this mecha-

nism is a consequence of the definition of the initial excited state. Since the laser

pulse must be longer than the Rabi period to selectively excite a single polariton

band, both the external laser and polariton dynamics simultaneously participate

in the creation of the initial states with differing reactivities. Crucially, there is no

reason to believe that these highly reactive states cannot be created without the

cavity’s presence using a different narrowband linear external laser that efficiently
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targets high-energy vibronic progressions through the UP (LP) band. In fact,

both strategies rely on non zero vibronic coupling to produce frequency-dependent

photoreactivity. Therefore, whether collective SC in the large N limit provides

any advantage to control chemical reactivity compared to conventional linear op-

tical sources is not readily apparent, especially in light of recent experiments that

suggest there are no polaritonic effects on chemical dynamics [183,184].

4.4 Summary

We have successfully introduced the d-CUT-E method to efficiently simulate

the ultrafast dynamics of disordered molecular ensembles under collective SC. Our

findings challenge the notion that a Rabi splitting in the linear absorption spectrum

inevitably implies changes in chemical reactivity. This is due to the disparity in

timescales governing optical and chemical properties. Optical properties primarily

manifest at short timescales when disorder has minimal impact, while chemical

properties emerge at longer timescales. In the common scenario that disorder is

comparable with the light-matter coupling strength, SC induces modifications in

the reactivity of individual disorder bins, which can be selectively targeted by

narrowband pulses. This phenomenon should be interpreted as a cavity-mediated

initial state preparation effect.
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Figure 4.5: Effects of exciton-frequency disorder on optical and chemical properties
of molecular polaritons. Parameters: ω0 = 0.10 au, ωc = 0.11 au, ων = 0.01 au,
κ = 0.006 au, v12 = 0.0025 au, s1 = −1, and s2 = −4. (1a) Linear absorption
spectrum for different values of disorder. Disorder suppresses vibronic features and
increases the polariton Rabi splitting. (1b) Time-dependent interpretation of Rabi
splitting increase caused by disorder. (1c) Final population of the electronic state
|e2⟩ [Pe2(Tf ), Tf = 30 fs] for different values of disorder and collective light-matter
coupling strength. Vertical lines on the disorder axis correspond to 2σ = g

√
N . As

expected, polaritonic effects become immune to disorder for large g
√
N . (2a) Final

excited-state populations of each disorder bin show their reaction yield (red) is
different even at large disorder, and not just due to polariton modified absorption
(blue). Bins are ordered from low to high exciton frequency. (2b) Population
dynamics of excited electronic states Pe1(t) (dashed) and Pe2(t) (solid) for 2σ = 0
(gray), 2σ < g

√
N (blue), and 2σ > g

√
N (black). (2c) Population dynamics of

excited electronic states Pe1(t) (dashed) and Pe2(t) (solid) outside of the cavity. The
step-like behavior in Pe2(t) is attributed to the reaction proceeding via tunneling of
the oscillating vibrational wavepacket from the |e1⟩ state. Notice the resemblance
between the dynamics in (2c) and (2b) for 2σ/g

√
N = 2/3, 4/3, indicating no

polaritonic changes in the PESs in the presence of disorder.
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Figure 4.6: Reaction yield in the strong-coupling regime as a function of disor-
der upon broadband excitation (bright initial state). (a) Reaction is suppressed
with SC; however, as disorder becomes comparable to the Rabi splitting, Pe2(t)
resembles the behavior outside of the cavity. (b) Absorption spectrum A(ω) for
the dynamics in (a): SC low disorder (green), SC-large disorder (black), and out-
side of the cavity (dashed). Notably, despite well-defined polariton bands for large
disorder, the corresponding reactivity in (a) is similar to the off-cavity case. (c)
Same as (a) but shifting the PES of |e2⟩ upwards by two vibrational quanta. In
this case, SC enhances the reaction for weak disorder.

Figure 4.7: Reaction yield upon narrowband excitation in the strong-coupling
and large-disorder regime (parameters: g

√
N = 0.03 au and 2σ = 0.04 au). (a)

Total product state population after pumping the UP (solid) and the LP (dashed).
(b and c) Excited-state populations of each disorder bin showing their reaction
yield (red) and absorption (blue), after LP pumping and UP pumping. Larger
ratios Pe2,i(Tf )/[Pe1,i(Tf ) + Pe2,i(Tf )] imply higher reactivity. (b) and (c) indicate
that the higher reactivity of the UP bins cannot be explained simply by polariton
absorption, which slightly favors the LP bins.
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Figure 4.8: Mechanism of frequency-dependent photoreactivity in disordered
molecular polaritons. Interplay of narrowband excitation and cavity-mediated in-
teractions between disorder bins results in the preparation of states with different
reactivities after damping of Rabi oscillations and before the chemical reaction.
These highly (slightly) reactive bins can be excited at the UP (LP) frequency, lead-
ing to an increase (decrease) of the total reactivity upon narrowband excitation.
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Chapter 5

Optical filtering effect in

molecular polaritons and the

N → ∞ limit

5.1 Introduction

In the previous chapter we have concluded that, in the N → ∞, changes in

the excited state molecular dynamics under strong light-matter coupling must be

understood as an optical effect rather than a chemical one: polaritons allows for the

preparation of excited states that have more or less access to desired final states. A

natural question that emerges from that is whether the initial states created with

strong light-matter coupling offer any advantage when compared to more conven-

tional excited state preparation effects outside of the cavity using pulse-shaped

lasers. Using a theory of polaritonic linear response [145, 178, 185], Schwennicke

and coworkers [89] demonstrated that, in the N → ∞, the linear polariton absorp-

tion is proportional to the product of the bare molecular absorption Im[χ(1)(ω)]

and the polariton transmission spectrum T (ω) (here we assumed κR = κL = κ/2),

A(ω) = 2QIm[χ(1)(ω)]T (ω), (5.1)

where Q = ωc

κ
is the cavity-quality factor that accounts for an cavity-enhancement

of the absorption.
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Besides cavity-enhancement of the field, Eq. 5.1 suggests that polaritons act

merely as “optical filters” that allow frequencies near the polariton transmission

peaks to pass through, and interact weakly with the molecules inside the cavity.

Therefore, the same polariton-modified chemical reactivity could be obtained by

shining with a laser whose frequency profile looks like the polariton transmission

spectrum. In this chapter we numerically show this to be the case, and explain

this phenomenon based on our CUT-E formalism. Interestingly, this result holds

even in the absence of disorder.

5.2 Model

In the previous chapter, we compared the excited state molecular dynam-

ics inside and outside of the cavity under the same excitation conditions (broad-

band and narrowband excitations). However, Eq. 5.1 suggests that a more ap-

propriate comparison involves pumping outside of the cavity with a weak laser

whose intensity profile has been “shaped” to mimic the polariton transmission

spectrum. Here, we consider explicitly the “filtered” pulse acting on the bare

molecules E(t) = E0C(t), where C(t) = ⟨Ψ(0)|Ψ(t)⟩, |Ψ(0)⟩ = φ0(q)|1⟩, is the

photon-photon correlation function, and E0 is a constant amplitude which is small

enough to ensure we remain in the linear regime. We re-run the simulations for

the system described in the previous chapter using the aforementioned laser pulses

and the d-CUT-E method.

5.3 Results

5.3.1 Numerical evidence of linear optics

Our results in Figure 5.1 confirm that the photoreactivity of the bare

molecules triggered by E(t) is, up to a constant, identical to that observed in-

side the cavity.
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Figure 5.1: Coherent dynamics in the large-N limit.– Population dynamics of the
first, Pe1(t), and second, Pe2(t), excited state populations inside the cavity ver-
sus when the system outside of the cavity is driven with a time-dependent pulse
E(t) = E0C(t). Since the polariton transmission spectrum T (ω) is proportional to
|C̃(ω)|2 [173, 178, 185], this pulse is guaranteed to have the same intensity profile
as the polariton transmission spectrum [note that the populations are normalized
to the maximum value of Pe1(t)]. The dynamics are identical up to a constant,
particularly in the Rabi oscillations observed under SC.

5.3.2 Understanding the N → ∞ limit

We now try to understand why the N → ∞ implies that the molecular

dynamics can be reproduced in linear regime. We can do so using out CUT-E

method given that it is exact, systematic, and incorporates the N → ∞ limit

as a special limit [87] (we know what we ignore when we take such limit). The

most important conclusion from CUT-E is that the collective light-matter cou-

pling operates for optical transitions that do not create phonons in the ground

state, while the single-molecule coupling operates for processes that do. There-

fore, Rabi oscillations are dominated by Rayleigh-like molecular processes, while

Raman and fluorescence rates (all processes that create phonons in the ground

electronic state, see Fig. 5.2) are of O(1/N). In CUT-E we Keep the collective

coupling g
√
N constant and finite (since it is an experimental observable), and take

the limit N → ∞. This is equivalent to taking g → 0, which leads to the dismissal

of the aforementioned O(1/N) non-linearities. Even though several instances of

Rayleigh scattering can take place due to collective SC, only the molecular lin-

ear susceptibility χ(1)(ω) contributes to the polaritonic response. In other words,

non-trivial polaritonic effects (beyond optical filtering) rely on the single-molecule

light-matter coupling terms g.

72



Figure 5.2: Collective vs single-molecule coupling effects. (a) Light-matter coupling
is collectively enhanced with the Franck-Condon (FC) region for optical transitions
that do not create phonons in the ground state, i.e., inter-exciton coherence is pre-
served. This implies that only Rayleigh-like processes are relevant in the large-N
limit. On the other hand, light-matter coupling is single-molecule-like for processes
that create phonons in the ground state, e.g., Raman and fluorescence. (b) Collec-
tive coupling creates upper and lower polaritons. Decay from polaritons to dark
states is described by absorption through the polariton windows. Decay from dark
states back to polariton states relies on single-molecule light-matter coupling g,
hence O(1/N). These processes are enhanced by the cavity-quality factor Q. (c)
Listed are examples of processes that are interpretable as optical filtering versus
examples of non-trivial polaritonic effects.

5.3.3 Connection with one-photon phase control

It is commonly believed that time-domain Rabi oscillations, which give rise

to the frequency-domain Rabi splitting in the linear polaritonic response, imply

the existence of nonlinear optical processes. Here, we show that these oscillations

can be reproduced in the linear regime simply via constructive and destructive

interference between the excited state amplitudes promoted by the two main fre-

quencies of the filtered pulse at different times. This phenomenon is well-known in

the field of ultrafast spectroscopy as linear wavepacket interferometry [179,186]; in

fact, nonlinear wavepacket interferometry has been suggested as an alternative to

provide real “pump-dump” control and detection of molecular dynamics beyond

the FC region [2,3]. Our results are consistent with those found by Groenhof and

coworkers using ab-initio quantum dynamics simulations [184]. Further analysis

shows that this simple optical filtering description explains several theoretical and

experimental works on molecular polaritons in the collective regime [89]. It is im-

portant to clarify that using an optically filtered linear source to excite the bare

73



molecules will not reproduce the ultrafast polariton dynamics unless the resulting

light is coherent and has the same frequency-dependent phase asD(R)(ω) [187,188].

If the control pulse is defined so that only its frequency intensity profile |E(ω)|2

agrees with transmission spectrum T (ω), the ultrafast dynamics for both free-space

and intracavity molecules can be different to that under strong coupling before the

steady-state is reached (one-photon phase control experiments) [187–189]. More-

over, if the steady-state is not reached before 1/N corrections start to matter (e.g.,

decay from dark states back to polaritons), the strong coupling dynamics and the

dynamics with the pulse may never be the same (see Figure 5.2).

5.4 Summary

We showed that, in the N → ∞ limit, excited state molecular dynamics

under strong light-matter coupling can be reproduced using a weak laser pulse

acting on the bare molecules. Since 1/N effects are crucial to obtain non-trivial

polaritonic effects in the collective regime, it is clear that we must go beyond zeroth-

order CUT-E. Although higher-order approximations are possible within CUT-E, it

is still constraint to the first-excitation manifold. In the next chapter we develop

a bosonic formalism that generalizes CUT-E to include an arbitrary number of

excitations. We use this bosonic mapping to study the two most important 1/N

mechanisms in the molecular polaritons field: vibrational relaxation and radiative

pumping.
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Chapter 6

Radiative pumping vs vibrational

relaxation of molecular polaritons:

a bosonic mapping approach

We present a formalism to study molecular polaritons based on the bosoniza-

tion of molecular vibronic states. This formalism accommodates an arbitrary num-

ber of molecules N , excitations and internal vibronic structures, making it ideal

for investigating molecular polariton processes accounting for finite N effects. We

employ this formalism to rigorously derive radiative pumping and vibrational re-

laxation rates. We show that radiative pumping is the emission from incoherent

excitons and divide its rate into transmitted and re-absorbed components. On the

other hand, the vibrational relaxation rate in the weak linear vibronic coupling

regime is composed of a O(1/N) contribution already accounted for by radiative

pumping, and a O(1/N2) contribution from a second-order process in the sin-

gle-molecule light-matter coupling that we identify as a polariton-assisted Raman

scattering. This scattering is enhanced when the energy difference between the

emission and the lower polariton transition corresponds to the vibrational excita-

tions created in the Raman process.

76



6.1 Introduction

Molecular exciton polaritons are hybrid light-matter quasiparticles that

emerge when the interaction strength between electronic matter excitations and

confined electromagnetic fields is large enough to make Rabi oscillations faster

than the molecular and cavity losses. A large variety of polaritonic architec-

tures have been developed to reach this strong coupling regime over the last three

decades, and several modifications of optical and molecular behavior have been

reported [10, 11, 13–21]. While single molecules can strongly couple to confined

fields of plasmonic nanocavities, a more common scenario requires an ensemble

of matter excitations collectively coupled to optical modes in microcavities, lead-

ing to the emergence of polariton states and a dense manifold of so-called dark

states [27]. Organic exciton polaritons are particularly interesting systems since

strong coupling between electronic and vibrational degrees of freedom (DoF) gives

rise to intricate relaxation processes that allow for population transfer between

dark and polariton states, a feature which plays a central role in polariton-assisted

remote energy transfer [43–45], polariton transport [46–49, 51, 52], and polariton

condensation [53–61].

Seminal works contributed to the phenomenological understanding of relax-

ation processes by establishing semiclassical relaxation rates valid when molecules

can be treated as two-level systems weakly coupled to a vibrational bath [190–192].

Based on these works, two different mechanisms have been proposed: radiative

pumping, consisting of emission from incoherent excitations directly into a polari-

ton mode, and vibrational relaxation, where the transfer into the polariton mode

is accompanied by the release of a high-frequency phonon. Despite the formal

derivation of vibrational relaxation from a weak vibronic coupling model [190] and

the development of theories that numerically reproduce radiative pumping [193], a

rigorous derivation of vibrational relaxation and an analytical derivation of radia-

tive pumping for molecules with complex vibrational structures within a unified

framework are missing until now.

First-principle Hamiltonians that go beyond the Holstein-Tavis-Cummings

(HTC) model have been put forward with the aim of understanding polariton
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modified chemical reactivity [194,195], and recent theoretical works suggests that

relaxation from polaritons to dark states in the N → ∞ limit can be understood

simply as an optical filtering effect: polaritons act as windows through which

vibronic states can be optically excited [196]. The converse, dark state to polariton

relaxation processes vanish when N → ∞ (K. Schwennicke et al., in preparation).

This striking finding has made understanding molecular polariton dynamics in the

finite N limit more crucial than ever for achieving non-trivial polaritonic effects in

the collective strong coupling regime, particularly the relaxation from dark states

back to polariton states.

The aim of this work is twofold: first, we develop an exact bosonic picture

of organic molecular polaritons from first principles to study molecular dynamics

under collective light-matter coupling for arbitrary number of molecules N , exci-

tations Nexc, and internal vibrational structure of the molecules. This mapping is

ideal for numerical simulations using Meyer-Miller mappings [197–200], Quantum

Cumulant Expansions [201], quantum computing with bosonic devices [202], and

other quantum mechanical methods suited for bosonic systems [203]. Second, we

focus on the large (yet finite) N case and the first excitation manifold to rigorously

derive radiative pumping and vibrational relaxation rates. We achieve this by par-

titioning the bosonic Hamiltonian into “fast” and “slow” components, treating the

slow components perturbatively. This allows us to identify two regimes, arising

from the competition between weak vibronic couplings (W ) and single-molecule

light-matter coupling (g). Next, we unambiguously establish the fundamental dif-

ferences between the polariton relaxation mechanisms. Radiative pumping is the

emission from incoherent excitons that populate the polaritons, which can either

leak out of the cavity or be reabsorbed by the material (polariton-assisted pho-

ton recycling). On the contrary, vibrational relaxation includes radiative pumping

and higher-order processes in g such as polariton-assisted Raman scattering. We

provide a simple analytical formula for radiative pumping based on simple spec-

troscopic observables, and lay out efficient numerical tools to calculate Raman

scattering rates. In Figure 6.1 we provide an intuitive picture of the molecular

polariton photophysics discussed in this chapter.
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Figure 6.1: Schematic representation of the relaxation mechanisms classified in this
work. Radiative pumping is the emission from dark states through the polaritons,
while vibrational relaxation also includes higher-order processes such as Raman
scattering. Polariton-assisted Raman scattering occurs when light emitted by dark
states scatters off the vibrations of a second molecule. We also identify Polariton-
assisted photon recycling as the re-absorption of the dark-state emission, which
can be subsequently re-emitted.

6.2 Model

Consider a system of N non-interacting molecules collectively coupled to a

single cavity mode. The generalized Tavis-Cummings Hamiltonian, extended to

include internal vibrational degrees of freedom missing from original models, can

be written as (hereafter ℏ = 1)

Ĥ =
N∑
i

(
Ĥ(i)

m + Ĥ
(i)
I

)
+ Ĥcav, (6.1)

where

Ĥ
(i)
mol =

(
T̂ + Vg(qi)

)
|gi⟩⟨gi|+

(
T̂ + Ve(qi)

)
|ei⟩⟨ei|,

Ĥcav = ωcâ
†â, Ĥ

(i)
I = g

(
|ei⟩⟨gi|â+ |gi⟩⟨ei|â†

)
, (6.2)

are the Hamiltonians for the ith molecule, the cavity mode, and the interaction

between them, respectively. Here, T̂ is the kinetic energy operator, |gi⟩ and |ei⟩

are the molecular ground and excited electronic states, Vg/e(qi) are the ground and

excited Potential Energy Surfaces (PES), â is the photon annihilation operator,

and qi is the vector of all vibrational degrees of freedom of molecule i. Here we

consider only two electronic states per molecule and use the rotating wave, the

Born-Oppenheimer, and the Condon approximations for convenience.
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6.3 Bosonic mapping

In our previous work we have derived Collective Dynamics Using Truncated-

Equations (CUT-E), a formalism that, by exploiting the permutational symmetries

of the exact time-dependent many-body (many-molecule and cavity) wavefunction,

yields a hierarchy of timescales that renders the simulation efficient for large N [87].

Here, we recognize that this formalism can be easily derived using second quantiza-

tion. Starting from a permutationally symmetric wavefunction at an initial time,

Eq. 6.1 preserves this symmetry for all times, thus allowing us to focus only on the

bosonic (permutationally symmetric) subspace. The bosonic mapping of identical-

noninteracting particles is well known [197, 198, 204], and it has been applied to

ensembles of d-level systems strongly interacting with light [141,205–208] (also see

Ref. 174 for a fermionic mapping). We carry out this mapping by transforming

all single-molecule operators, say Ω̂, according to the standard recipe,

Ω̂ →
∑
i,j

⟨i|Ω̂|j⟩B̂†i B̂j, (6.3)

where B̂i are bosonic operators that annihilate a molecule (not an exciton) in a

vibronic state |i⟩. For convenience, we use the vibrational eigenstates of the ground

electronic state, |φ(g)
i ⟩, as a basis for the excited electronic state. This yields (see

Supplementary Information in Ref. 90 Section 1 for a step-by-step derivation of

the bosonic Hamiltonian)

Ĥ =ωcâ
†â+

m∑
i

ωg,ib̂
†
i b̂i +

m∑
i

ωe,iB̂
†
i B̂i +

m∑
i ̸=j

⟨φ(g)
i |V̂eg|φ(g)

j ⟩B̂†i B̂j

+ g
m∑
i

(
B̂†i b̂iâ+ B̂ib̂

†
i â
†
)
, (6.4)

where â, b̂i, and B̂i annihilate a photon, a molecule in the vibronic state |g, φ(g)
i ⟩,

and a molecule in the vibronic state |e, φ(g)
i ⟩, respectively. Moreover, V̂eg = V̂e− V̂g,

ωe,i = ⟨φ(g)
i |T̂ + V̂e(qi)|φ(g)

i ⟩, and m is the size of the vibrational basis. The corre-

sponding many-body basis states, |n1n2 · · ·nm, n
′
1n
′
2 · · ·n′m, Nph⟩, are eigenstates of

the non-interacting Hamiltonian (i.e., when Veg,ij = 0 and g = 0), with
∑m

i ni = Ng

and
∑m

i n
′
i = Ne, and with Ng and Ne being the number of ground and excited

molecules, respectively.
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In this framework, absorption is seen as the destruction of a photon and a

molecule in the initial vibronic state, to create a molecule in an excited vibronic

state; each vibronic state corresponds to a harmonic oscillator “bucket” carrying

a number of excitations equal to the number of molecules in such state (see Figure

6.2). This bosonization is exact for any values of N and Nexc, and can be easily

applied beyond the approximations to the molecular Hamiltonian mentioned above.

Finally, it is easy to check that the number of excitations and the number of

molecules are conserved, since
[
N̂exc, Ĥ

]
=
[
N̂ , Ĥ

]
= 0, for N̂exc = â†â+

∑m
i B̂

†
i B̂i

and N̂ =
∑m

i b̂
†
i b̂i +

∑m
i B̂

†
i B̂i.

Figure 6.2: Bosonic mapping of molecular polaritons. A permutationally symmet-
ric wavefunction (first-quantization) of the entire molecular ensemble and cavity
remains in the permutationally symmetric subspace throughout its evolution gen-
erated by Ĥ. Hence, a dramatic simplification of the simulation can be afforded
by working in the bosonic subspace of second quantization, simply by tracking the
number of molecules that occupy each of the vibronic states. We use the vibronic
states |g, φ(g)

i ⟩ and |e, φ(g)
i ⟩ as the basis, with |φ(g)

i ⟩ being the ith eigenstate of the
electronic ground state molecular Hamiltonian T̂ + V̂g.

6.4 Partitioning the molecular polariton Hamil-

tonian

We start by partitioning the total bosonic Hamiltonian of Eq. 6.4 in terms

of a zeroth-order Hamiltonian (Ĥ0), a weak vibronic coupling Hamiltonian (Ĥvc),
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and a single-molecule light-matter coupling Hamiltonian (Ĥsm):

Ĥ = Ĥ0 + Ĥvc + Ĥsm

Ĥ0 = ωcâ
†â+

m∑
i=1

ωg,ib̂
†
i b̂i +

m∑
i=1

ωe,iB̂
†
i B̂i +

m′∑
i,j=1

Veg,ijB̂
†
i B̂j + g

(
B̂†1b̂1â+ B̂1b̂

†
1â
†
)

Ĥvc =
m′∑
i=1

m∑
j>m′

(
Veg,ijB̂

†
i B̂j + V ∗eg,jiB̂iB̂

†
j

)
+

m∑
i,j>m′

Veg,ijB̂
†
i B̂j

Ĥsm = g
m∑
i>1

(
B̂†i b̂iâ+ B̂ib̂

†
i â
†
)
. (6.5)

This partitioning is based on an important observation: at zero-temperature,

all ground-state molecules are in the b̂1 mode, and light-matter coupling is collec-

tively enhanced at the FC configuration via bosonic stimulation. Therefore, the

term g(B̂†1b̂1â+ B̂1b̂
†
1â
†) must be included in Ĥ0, while single-molecule light-matter

coupling terms (⟨Ĥsm⟩ ∼ g) can be considered perturbatively (see Supplementary

Information in Ref. 90 Section 2 for details). Similarly, vibronic coupling terms

that can lead to vibronic features in the linear response are included in Ĥ0, while

weak vibronic couplings away from the FC region (⟨Ĥvc⟩ ∼ W ) can be treated per-

turbatively. This can be done formally using effective-mode theory [143, 209, 210]

or chain mappings [211,212]. The partitioning of the excited vibronic modes given

by m′ is to some degree arbitrary and dependent on the spectral (time) resolution

that one wants to account for. In quantum optics models, the absorption spectrum

showcases two clear polariton peaks, hence all vibronic couplings are considered

small (m′ = 1). However, if the polariton absorption spectrum showcases vibronic

peaks [54], vibronic states strongly coupled to the FC state must be included in

Ĥ0, and m
′ > 1.

Similar works that rely on a partitioning of the Hamiltonian into fast and

slow components include the study of polariton-assisted triplet harvesting using

the variational polaron transformation [213], and the study of spontaneous emis-

sion of atoms near hybrid metal-dielectric nanostructures [214]. Moreover, our use

of permutationally-symmetric vibro-polaritonic wavefunctions instead of the eigen-

states of the TC model shares deep connections with previous works by Herrera and

Spano [215,216]. For example, their work considers so-called one- and two-particle

82



states (exciton and exciton+phonon states, respectively) that are either permuta-

tionally or non-permutationally symmetric. Our formalism generalizes this picture

by including states with arbitrary number of electronic and vibrational excita-

tions, but leaves out non-permutationally symmetric states (see Supplementary

Information in Ref. 90 Section 8 for details). We argue that those states cannot

be populated if the interaction with the external laser that initially pumps the

system is permutationally symmetric. Inclusion of intermolecular interactions and

other couplings to the total Hamiltonian in Eq. 6.1 may break this symmetry.

In the rest of the chapter we restrict ourselves to the first excitation man-

ifold, i.e., Nph +
∑m

i n
′
i = 1. We also simplify the notation of the many-body

states so that they showcase only essential information. This is done by using the

multi-particle states introduced by Philpott [217], which has been applied to the

polariton system by Herrera and Spano [193], and in our CUT-E formalism [87]:

|1⟩ = |N00 · · · 0, 00 · · · 0, 1⟩

|ek⟩ = |(N − 1)00 · · · 0, · · · 1k · · · , 0⟩

|gk1⟩ = |(N − 1) · · · 1k · · · , 00 · · · 0, 1⟩

|gkek′⟩ = |(N − 2) · · · 1k · · · , · · · 1k′ · · · , 0⟩

|gkgk′1⟩ = |(N − 2) · · · 1k · · · 1k′ · · · , 00 · · · 0, 1⟩

|gkgk′e1⟩ = |(N − 2) · · · 1k · · · 1k′ · · · , 10 · · · 0, 0⟩. (6.6)

We show that the competition between W and g gives rise to two regimes

described by vibrational relaxation (W ≪ g) and radiative pumping (W ≫ g).

We interpret each of these relaxation mechanisms into well-known photophysical

processes using perturbation theory. The cavity leakage is assumed to be much

faster than each of the aforementioned relaxation rates.

6.5 Radiative pumping

Consider the case where the slowest timescale of the system is the single-

molecule light-matter coupling (W ≫ g). We can derive the radiative pumping
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rate by applying Fermi’s Golden Rule (FGR) with V̂rp = Ĥsm being a perturbation

that couples the eigenstates of the unperturbed Hamiltonian Ĥ
(0)
rp = Ĥ0+Ĥvc. This

treatment includes all-order processes in W and first-order processes in g.

6.5.1 Radiative pumping rate

We can write the eigenstates of Ĥ
(0)
rp in the first excitation manifold as (see

Supplementary Information in Ref. 90 Section 3)

|ξ, {nj}⟩ = a
(ξ)
{nj}|n1n2 · · ·nm, 00 · · · 0, 1⟩+

m∑
i

b
(ξ,i)
{nj}|(n1 − 1)n2 · · ·nm, · · · 1i · · · , 0⟩,

Ĥ(0)
rp |ξ, {nj}⟩ = ωξ,{nj}|ξ, {nj}⟩ (6.7)

where |ξ⟩ are polaritons and dark vibronic states, {nj} are the number of electronic

ground-state molecules on each vibrational state, a
(ξ)
{nj} are photonic Hopfield co-

efficients, and b
(ξ,i)
{nj} are the matter Hopfield coefficients.

Although these eigenstates are dressed by all vibronic processes (including

the slow ones given by W ), we can define an initial dark state that corresponds to

one excited molecule in a fully Stokes-shifted configuration with negligible overlap

with the FC state (the lowest vibrational state of the molecular excited PES),

|ss⟩ =
m∑
i>1

c(i)exc|ei⟩, Ĥ(0)
rp |ss⟩ ≈ ωss|ss⟩. (6.8)

This dark state is an incoherent exciton that can couple to the cavity mode

via single-molecule light-matter coupling Ĥsm (despite the oxymoron of an “emis-

sive dark state”, we will continue using this terminology since it is widespread in

the molecular polaritonics literature), and therefore differs from the dark states of

the TC model whose couplings to the cavity mode vanish exactly [154,159,218,219]

(see Supplementary Information in Ref. 90 Section 4 for a detailed comparison).

The FGR rate from |ss⟩ to all possible eigenstates |ξ, {nj}⟩ yields (see

Supplementary Information in Ref. 90 Section 5 for details)

Γrp = 2πg2
∑
ξ

m∑
j>1

|a(ξ)1j
|2|c(j)exc|2

γξ/π

(ωξ − (ωss − ωg,j))2 + γ2ξ
, (6.9)

where we have used ωξ,{1j} = ωξ+ωg,j, with ωg,j being the frequency of the phonon

created during the emission. In the derivation we have also summed over all final
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eigenstates of Ĥ
(0)
rp , which have a finite resolution γξ due to finite cavity lifetime

κ (molecular dissipation is not needed because every molecular interaction is in

principle accounted for by Eq. 6.1). Finally, the coefficients |c(j)exc|2 are FC factors

associated with the bare molecular emission profile [179]

σ(out)
em (ω) =

m∑
j>1

|c(j)exc|2δ(ω − (ωss − ωg,j)), (6.10)

which assumes that the same Stokes-shifted state is reached inside and outside the

cavity [154, 159, 218, 219]. This is a good approximation given the separation of

timescales between processes generated by Ĥ
(0)
rp and those generated by V̂rp.

From this analysis, it is clear that the radiative pumping rate in Eq. 6.9 is

proportional to the fluorescence of a bare molecule at frequencies ωss − ωg,j into

all final states |ξ⟩ weighted by their Hopfield coefficient, as expected according

to phenomenological and experimental works [43, 159, 190, 191, 220]. Although we

cannot explicitly show it here due to the single-mode description of the cavity, ra-

diative pumping can pump any polariton mode that is resonant with the molecular

emission in multimode cavities.

6.5.2 Radiative pumping as an overlap between spectro-

scopic observables

A more intuitive understanding of Γrp is obtained by writing Eq. 6.9 in

terms of the polaritonic linear spectroscopic observables in Refs. 145,178,185 (see

Supplementary Information in Ref. 90 Section 3.1):

Γrp =

∫
dωΓrp(ω) =

2g2

κ

∫
dωσem(ω) [A(ω) + 2T (ω)] , (6.11)

with A(ω), and T (ω) being the polariton absorption and transmission spectra in

the N → ∞ limit (in the absence of single-molecule coupling effects), and the

prefactor g2/κ ∝ Q/Vc encodes cavity-enhancement of the molecular emission,

where Q is the cavity-quality factor and Vc is the cavity mode volume. This

linear optics description provides the rate of radiative decay of |ss⟩ into all |ξ⟩

states regardless of their photonic character, and divides it into transmitted and

re-absorbed components. In other words, it accounts for the rate from |ss⟩ to
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polariton states and also the subsequent rates from polaritons back to dark states

or out of the cavity.

6.5.3 Radiative pumping: numerical simulations

We consider a chromophore described by a two-mode linear vibronic cou-

pling Hamiltonian [221],

Ĥm =
2∑

i=1

ων,iβ̂
†
i β̂i +

2∑
i=1

[
ω0 + ων,i

√
si

(
β̂†i + β̂i

)]
|e⟩⟨e|, (6.12)

where β̂i annihilates a phonon in the vibrational mode ith, with frequency ων,i, and

vibronic coupling determined by the Huang-Rhys (HR) factor si. These operators

must not be confused with the operators b̂i and B̂i used in Section 6.3, which

annihilate molecules instead of excitations (see Supplementary Information in Ref.

90 Section 6 for PESs).

We choose the molecule to have strong vibronic coupling to a high and a

low frequency modes with parameters ων,1 = 12.5ων,2 = 0.01 a.u. In Figure 6.3

we calculate the radiative pumping rate for
√
s1 = 1, ωc = ω0 + ων,1s1 + ων,2s2

(cavity resonant with the molecular vertical transition), g
√
N = 0.04 a.u., N = 105

molecules, γξ = γ = 0.0015 a.u., and different values of
√
s2. Notice that the

computational cost of our calculations does not scale with the number of molecules.

We show how radiative pumping increases when Stokes shift causes a significant

overlap between the bare molecular emission and the lower polariton band.

Due to the large Stokes shift s2, the lower polariton branch does not sig-

nificantly overlap with the bare molecular absorption. As we show in the next

section, this implies that most of the light emitted from dark states is transmitted

out of the cavity, and Γrp(ω) essentially yields the polariton photoluminescence

spectrum.

6.5.4 Polariton-assisted photon recycling

Using Equation 34 from Ref. 178 relating the linear spectroscopy of polari-

tons to the molecular susceptibilities, we can obtain an expression for the ratio of
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Figure 6.3: Radiative pumping for different values of Stokes shift (∝ s2). a,b)
Polariton bands from the polariton absorption and transmission spectra A(ω) +
2T (ω), bare molecular absorption profile σabs(ω), and bare molecular emission
profile σem(ω), for

√
s2 = 3.5 (a) and

√
s2 = 5.0 (b). c) The frequency-resolved

radiative pumping Γrp(ω) is proportional to the overlap between the polariton
bands and the bare molecular emission. The total radiative pumping rate Γrp is
the integral of Γrp(ω).

the light emitted by dark states that is re-absorbed and transmitted [89],

A(ω)

2T (ω)
= QIm

[
χ(1)(ω)

]
, (6.13)

where χ(1)(ω) is the bare absorption spectrum of the ensemble (∝ Ng2). This

demonstrates that the light emitted by incoherent excitons can be re-absorbed by

other molecules inside the cavity, a phenomenon which is enhanced by the collective

coupling and the cavity-quality factor. This process has recently been character-

ized as polariton-assisted photon recycling [222], and has also been discussed in

several previous works [43–45,223]. It can significantly impact photoluminescence

of polaritonic systems due to re-emission of the absorbed light (see Figure 6.4).

6.6 Vibrational relaxation

We obtain the vibrational relaxation rate by considering V̂vr = Ĥvc as a

perturbation that causes transitions between eigenstates of Ĥ
(0)
vr = Ĥ0+Ĥsm. This

treatment includes first-order processes inW and all-order processes in g. This is a

natural description when collective light-matter coupling is reached with a few tens

of molecules or less, or when the molecular process of interest is much slower than

radiative decay (e.g., reverse intersystem crossing in organic molecules [213,224]).

We show that this strategy generalizes the vibrational relaxation rate in the linear
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Figure 6.4: Radiative pumping and polariton-assisted photon recycling mecha-
nisms. a) Radiative pumping: emission from a Stokes-shifted molecule |ss⟩ through
a polariton state |ξ⟩ (typically the LP). b) polariton-assisted photon recycling:
light emitted from dark states is re-absorbed before it leaks out of the cavity via
collective strong light-matter coupling (g

√
N > κ). This excitation creates a new

Stokes-shifted molecule |ss′⟩ that can subsequently re-emit. This occurs if the bare
emission and absorption spectra of the material overlap.

vibronic coupling limit originally studied by Litinskaia et al. [159], and compare it

with the radiative pumping rate derived in the last section.

6.6.1 Vibrational relaxation in the weak vibronic coupling

limit

The Hamiltonian Ĥ
(0)
vr can be diagonalized exactly to obtain polaritons and

dark states (see Supplementary Information in Ref. 90 Section 5). We calculate

the FGR rate from a dark initial eigenstate with a single phonon in the vibrational

state k

|Dk⟩ =
√
N − 1

N
|ek⟩ −

√
1

N
|gke1⟩. (6.14)

Notice that this dark state differs from the incoherent excitons considered by Litin-

skaia and coworkers (see Eq. 6.8) [159], mainly in the 1/
√
N correction that arises

due to the single-molecule coupling g. We will show that this 1/
√
N correction is

crucial since it gives rise to a non-trivial Raman scattering process (A. Koner et

al., in preparation) that contributes to the vibrational relaxation rate, and is not

88



taken into account in previous works [158,159].

Assuming no detuning between cavity and exciton frequencies, the vibra-

tional relaxation rate yields

Γξ±←Dk
= 2π

(
N − 1

2N2

) m∑
i>1 ̸=k

|Veg,ik|2
γξ±/π

(ωg,i − ωg,k ± g
√
N)2 + γ2ξ±

+ 2π

(
1

2N2

) m∑
i>1̸=k

|Veg,i1|2
γξ±/π

(ωg,i − ωg,1 ± g
√
N)2 + γ2ξ±

. (6.15)

Here, we have ignored terms that correspond to couplings from Stokes-shifted con-

figurations directly into the FC region (excited state vibrational recurrences, which

are unlikely after Stokes shift has ensued given that they involve the recoherence

of a large number of vibrational modes back into the FC region), and processes

in which a phonon is produced in the same vibrational mode k as the initial dark

state. This is a good approximation in the vibrational bath limit (see Supplemen-

tary Information in Ref. 90 Section 5). Equation 6.15 is a generalization to the

well-known vibrational relaxation rate by Litinskaia [158,159,190], and essentially

reduces to it upon consideration of four additional assumptions. Two of them are:

(a) removal of the second term (not really justified) and (b) in the linear vibronic

coupling limit. This can be easily seen by noticing that the sum over vibronic

states i > 1 can be changed for a sum over vibrational modes, given that each

mode of the vibrational bath will contribute with a single state:

Γξ±←Dk
≈ 2π

(
N − 1

2N2

)∑
i

ω2
ν,isi

γξ±/π

(ων,i ± g
√
N)2 + γ2ξ±

. (6.16)

The other two additional assumptions are: (c) (N − 1)/N2 ≈ 1/N when

N ≫ 1, (d) there are many photon modes in the cavity (given the single-mode

assumption throughout this chapter, we do not attempt further comparison). Re-

gardless, the main physics we are interested in is the second term in Eq. 6.15 which

has been missing in the literature throughout.

6.6.2 Vibrational relaxation vs radiative pumping

We now interpret the mechanisms involved in the vibrational relaxation

rate. We do so by looking at the initial and final states in the FGR rate that
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generate each of the two terms in Eq. 6.15 (see Supplementary Information in Ref.

90 Section 7 for a more detailed analysis). We find that the first term (∝ N−1
N2 ) is

a first-order process in g, and can be interpreted as single phonon emission from

an incoherent exciton followed by emission, i.e., the tails of the emission spectra:

|ek⟩
W−→ |ei⟩

g−→ |gi1⟩. On the other hand, the second term (∝ 1
N2 ) is a second-

order process in g that consists of the virtual emission from an incoherent exciton,

followed by polariton-assisted Raman scattering into a lower energy polariton (see

Figure 6.5): |ek⟩
g−→ |gk1⟩

g
√
N−1−−−−→ |gke1⟩

W−→ |gkei⟩
g−→ |gkgi1⟩; the frequency of the

actual photon emission (via the polariton) is equal to the emission frequency of

the first molecule minus the energy of the phonons created in the second molecule.

Notice that this is just the coherent version of polariton-assisted photon recycling.

From this we conclude that the first term in Eq. 6.15 is already contained in the

radiative pumping rate. A more interesting scenario arises when strong vibronic

coupling is present, since it is the more realistic scenario with most molecular

systems, and it allows vibrational relaxation to include third and higher order

processes in g (see Supplementary Information in Ref. 90 Section 8). However,

based on the analysis detailed in the Supplementary Information of Ref. 90 Section

8 and in Chapter 3, each of these scattering processes would be penalized by a 1/N

factor in the rate, rendering those processes relevant only for small N , long-time

dynamics, or large number of excitations.

Based on the analysis above, we can characterize each mechanism that

contributes to the vibrational relaxation rate by taking the single-molecule coupling

g as a perturbation (see Sec. 6.5), granted that all orders of perturbation theory

are considered (fluorescence, Raman, and hyper-Raman processes [225]). In the

next section we study the polariton-assisted scattering mechanism of Figure 6.5 in

the strong vibronic coupling regime using the aforementioned approach.

6.6.3 Polariton-assisted Raman scattering

To calculate the polariton-assisted Raman scattering rate in the strong vi-

bronic coupling regime, we partition the Hamiltonian as Ĥ = Ĥ
(0)
rp + V̂rp. As

in Section 6.5, the Stokes-shifted state |ss⟩ is chosen as the initial dark state.
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Figure 6.5: Polariton-assisted Raman scattering mechanism. Second-order process
in the single-molecule light-matter coupling g that results in the creation of a
polariton |ξ′⟩ and vibrational excitations ωνi and ωνj in two different molecules. It
is fundamentally different to radiative pumping and can be regarded as a coherent
version of the polariton-assisted photon recycling mechanism in Figure 6.4b.

Second-order perturbation theory on V̂rp = Ĥsm yields the polariton-assisted Ra-

man scattering rate when summing over all final states that have two additional

ground-state molecules with phonons (the first molecule acquires phonons via vir-

tual emission and the second molecule acquires phonons via Raman scattering),

Γscatt = 2π
∑

ξ′,{n′
j}

|Aξ′,{n′
j}←ss|2

γξ′/π

(ωξ′,{n′
j} − ωss)2 + γ2ξ′

Aξ′,{n′
j}←ss =

∑
ξ,{nj}

⟨ξ′, {n′j}|Ĥsm|ξ, {nj}⟩⟨ξ, {nj}|Ĥsm|ss⟩
ωξ,{nj} − ωss + iγξ

. (6.17)

Here, |ξ, {nj}⟩ are the eigenstates of Ĥ
(0)
rp . The scattering rate is fairly easy to

calculate in the large N (yet finite) limit, even in the presence of strong vibronic

coupling (see details in the Appendix I).

We compute Γscatt for the model system introduced in Section 6.5, with

parameters ων,1 = 10ων,2 = 0.01 a.u.,
√
s1 = 0.3, ωc = ω0 + ων,1s1 + ων,2s2,

g
√
N = 0.035 a.u., N = 105 molecules, γξ = γ = 0.0015 a.u., and different values

of
√
s2.

Besides the phonons released during the virtual emission ων,i from the inco-

herent dark state |ss⟩, the scattering mechanism also creates phonons via Raman

scattering on a second molecule ων,j. As a consequence, the scattering relaxation

rate does not rely on the overlap between the bare emission and the lower polari-
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Figure 6.6: Polariton Raman-scattering rate for different values of Stokes shift
(∝ s2). a,b) Polariton bands from the polariton transmission spectra T (ω), bare
molecular absorption profile σabs(ω), and bare molecular emission profile σem(ω),
for

√
s2 = 2.5 (a) and

√
s2 = 4.0 (b). c) decay rate from dark to lower polariton via

Raman scattering Γscatt. The rate increases when the energy difference between the
emission and the lower polariton corresponds to the vibrational excitation created
in the Raman process, e.g., ων,1. Yet, Γscatt is quite low since the broadening γ is
quite large, there are no polaritons to resonantly scatter from due to the single-
mode nature of the model, and we do not include non-Condon effects.

ton band. Instead, it requires that the difference between the emission and the

lower polariton is compensated by the vibrational excitation created in the Raman

process, i.e., ωξ′ +ωνj − (ωss −ωνi) (note that i is a vibrational state that can rep-

resent single or multiple phonons). We illustrate this phenomenon by shifting the

lower polariton by ων,1 in Figure 6.6b (blue-dashed band), although all vibrational

states coupled to the FC region (including those with more than one phonon) con-

tribute to the rate. Importantly, ωνi also produces vibronic progressions in the

bare molecular emission spectrum. This means that resonant conditions for ra-

diative pumping and Raman scattering always coexist, making it challenging to

identify which relaxation mechanism is in play. This explains why Tichauer and

coworkers found that vibrational relaxation and radiative pumping are driven by

similar vibrational modes [226].

Finally, we believe the scattering mechanism here shown corresponds to the

vibrationally-assisted scattering (VAS) mechanism [226–230]. Yet, our calculations

in Figure 6.6c show that Γscatt is quite weak due to its 1/N2 dependence. It may

be the case that the low values we obtain are a consequence of considering only

off-resonant Raman scattering (see Figure 6.6a), and ignoring non-Condon effects.

We expect the rate to increase for multimode cavities since resonant scattering

can be mediated by the entire lower polariton branch. Our future works will focus
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on generalizing our formalism to account for the multi-mode nature of the optical

cavity.

6.7 Summary

We have used an exact bosonic mapping of the generalized Holstein-Tavis-

Cummings Hamiltonian based on its projection to a subspace of permutationally

symmetric vibronic states. The resulting bosonic Hamiltonian describes molecular

polaritons for arbitrary internal vibrational structure, number of molecules, and

number of excitations [141,205–208]. Here we show that this formalism is ideal to

study molecular polaritons beyond the N → ∞ limit numerically and analytically.

In particular, we use it to the study vibrational relaxation and radiative pumping

mechanisms. We find that the relaxation mechanism in play is determined by the

competition between single-molecule light-matter coupling and weak vibronic cou-

plings, and characterize each mechanism based on their underlying photophysical

processes.

We show that radiative pumping is the emission from Stokes-shifted molecules

into the polaritons, and can be divided into transmitted and re-absorbed compo-

nents. The latter leads to a polariton-assisted photon recycling mechanism. On

the other hand, we show that vibrational relaxation includes radiative pumping as

well as higher-order processes in the single-molecule light-matter coupling g; up

to second-order processes in the weak linear vibronic coupling regime. We find

that each order in g is penalized by a 1/N factor in the rate, suggesting that the

main contribution to the vibrational relaxation rate comes from radiative pumping.

Finally, we classify the second-order processes in g as either polariton-assisted pho-

ton recycling or polariton-assisted Raman scattering. The latter occurs when the

frequency difference between the bare emission and the polariton state coincides

with the vibrational excitation created in the Raman process.

Our work constitutes a rigorous derivation and comparison between these

polariton relaxation rates, offering a path forward to study molecular polaritons

beyond the N → ∞ limit. Finally, since the bosonic formalism already allows
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arbitrary number of excitations, we believe it is ideal to study processes such as

exciton-polariton condensation.
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Chapter 7

Conclusions and outlook

We have conducted a series of works addressing some of the most impor-

tant challenges and making significant contributions to the field of organic exciton

polaritons. Our research demonstrates how single molecules under strong coupling

can exhibit non-trivial chemical and optical properties. However, we show that

these effects may disappear when strong coupling occurs in the collective regime,

where the light-matter coupling per molecule can be treated perturbatively. This

underscores the importance of considering the large number of molecules partici-

pating in the coupling.

To understand when non-trivial polaritonic effects can arise in the collec-

tive regime, we developed a formalism called Collective dynamics using Truncated

Equations (CUT-E), which accounts for an arbitrary number of molecules and the

internal vibrational degrees of freedom of each molecule. We have systematically

improved our theory to incorporate realistic features such as inhomogeneous broad-

ening and a large number of excitations. The picture that arises from our formalism

is that of an ensemble of excitons that can collectively couple to the cavity mode

only while they retain inter-exciton coherence (bright state). Conversely, excitons

can only couple through single-molecule interactions upon excited state vibrational

dynamics and decoherence (dark states). This implies that chemical applications

depend on the dynamics of these dark states, while polaritons primarily assist in

creating initial conditions that influence the reaction yield.

Although our theories align with several experimental and theoretical works,
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they challenge the notion that collective strong coupling leads to non-trivial effects

capable of modifying chemical reactivity. In the limit where the collective light-

matter interaction is strong but the single-molecule contributions are negligible,

the initial state preparation assisted by polaritons can be understood simply as an

optical filtering effect. Consequently, chemical dynamics can be reproduced using

weak-tailored laser pulses acting on the bare molecules. To achieve nonlinear po-

laritonic effects, the single-molecule coupling must be considered. Although this

coupling is weaker than the collective one, it can be enhanced by increasing the

cavity-Q factor, decreasing the volume of confinement, and appropriately modify-

ing the photonic density of states via the collective component of the light-matter

coupling. We demonstrate that well-known relaxation mechanisms in organic exci-

ton polaritons, such as radiative pumping and vibrational relaxation, are examples

of these non-trivial effects. They play a crucial role in most polaritonic applica-

tions, such as polariton transport and polariton condensation. We reinterpret

these mechanisms from a molecular spectroscopy perspective: they correspond

to photophysical processes like fluorescence, polariton-assisted Raman scattering,

polariton-assisted photon recycling, and higher-order processes from incoherent

excitons. These processes enable applications like long-range resonance energy

transfer and modifications of matter processes occurring beyond photolumines-

cence timescales.

To date, several experimental observations remain unexplained by our theo-

ries. To continue progress in the field, it is crucial to identify the missing elements

that could change the paradigm established in our works. These elements include

multiple cavity modes and finite temperature effects. It is paramount to deter-

mine what polaritons can achieve and their advantages compared to analogous

phenomena in the weak coupling regime.
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