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High Energy Wide Area Blunt Impact Damage to Internal Structural Components
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Since 2009, research focused on damage formation of composite aircraft fuselage
by High Energy Wide Area Blunt Impact (HEWABI) has been conducted at UCSD. As a
major damage source to composite aircraft fuselage structures, HEWABI, caused by
accidental contact by heavy ground service equipment (GSE), potentially leaves
significant internal damage in multiple structural components with barely visible damage

signs on the outside skin surface. Accounting for key structural components existing in
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real fuselage structures, specifically floor structures and continuous shear tie, a series of
new 2" generation large scale specimens were designed, fabricated, and tested. The
objectives of the research described herein are to: (1) use of large-scale experiments to
understand damage formation from HEWABI events near the floor structure location
using the 2" generation composite fuselage panel; of interest is examining how damage
development is affected by the major changes from the 1% to 2" generation panel design
and boundary conditions, (2) investigation of C-frame failure both experimentally and
analytically, and (3) evaluation of current FE modeling capability correlated with the 2"

generation HEWABI test results.
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1 INTRODUCTION

Over several decades, composite material usage has been increased in modern
commercial aircraft structures (wing, fuselage) because of high stiffness and strength to
ratios, etc. Its application in the airframe and primary structures was 50% or more by
weight e.g., the Boeing 787 Dreamliner and Airbus A350XWB as shown in Figure 1.1
[1-5]. However, there are lots of challenges in its application in terms of design,
fabrication, and damage detection due to material complexity based on its heterogeneous
nature. These include complicated fabrication process, different damage response from
metals when barely visible damage is present, various complicated failure criteria needed
for analysis, high cost, and weakness to transverse impact. Specifically focusing on
transverse blunt impact, research to investigate the damage mechanisms in composite
fuselage structures has been conducted at UCSD under funding from the Federal Aviation
Administration (FAA) to provide guidance on topics related to airworthiness certification

and damage tolerance [6-11].
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3 -5
@ Steel (primarily landing gear) \\ ) ’

Titanium
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Advanced Composites

Figure 1.1: Composite usage in B787 (boeing.com/commercial/aero) [2], and B787
composite fuselage section (aviationpros.com) [4].

1.1 JUSTIFICATION FOR CURRENT RESEARCH

The FAA defines damage categories corresponding to the subsequent residual
load capability required of the damaged structure. Five categories of damage are defined
in Figure 1.2 demonstrating the relationship between design load levels and damage
severity [6-8]. For Category 1, the structure must sustain ultimate load capability for
entire service life of the aircraft with barely visible impact damage (BVID), which is
small manufacturing damage. For Category 2 and 3, the structure must sustain limit load
capability for visible impact damage (VID) per normal inspection process and obvious

damage detected within a few flights. GSE impact damage often leaves damage in



Category 2 and 3 [8, 11]. However, with severe internal damage, GSE impact damage is
classified as Category 5. For safety and identifying the need to repair requirement,
damage detectability is very important. However, HEWABI leaves low external damage
sign on composite fuselage structures due to the broad area contact loading through the
rubber (elastomer) bumpers (typical example in Figure 1.3). Thus, it is important to
understand composite structure’s response to HEWABI through the experiments, and
predict failure initiation, propagation, and its extent by developing finite element (FE)
modeling methodology validated by experiments to provide reliable recommendations for

safety and inspection techniques [8, 16, 18].

Category | Damage:
BVID, Allowed Mfg. damage

Category 2 Damage:

VID, damage requiring repair per
Ultimate / normal mspection process ‘
Design ' {

Category 3 Damage:
1.5 Factor \ ceory EE

Load | Obvious damage requiring repair
Level of Safety ‘ after it is found within a few
Limit | flights of occurrence
~ Maximum load | @ ategory 4 Damage:
per lifetime _~ o —— Discrete source damage.

obvious to flight crew.

‘ Cofnh;ui? requiring repair after flight
safe flig
~ [ > - -
v Y Y
Allowable Critical Damage
Damage Limit Threshold Category 5 Damage:
(ADL) (CDT) Anomalous damage not covered in
2 A design but known to operations,
Increasing Damage Seve”ty > requiring immediate repair

Figure 1.2: Damage category defined by the FAA [7].



1.2 OVERVIEW AND PAST RESEARCH

Since 2009, research about damage formation on composite aircraft fuselage by
High Energy Wide Area Blunt Impact (HEWABI) has been conducted at UCSD in the
joint programs, the Federal Aviation Administration Joint Advanced Materials and

Structures Center of Excellence (FAA JAMS CoE).

As a major damage source to composite aircraft fuselage structures, HEWABI,
caused as a result of accidental contact by ground service equipment (GSE), potentially
leaves significant internal damage with barely visible damage signs on the outside skin
surface [8-11]. 50% of major damage was caused by contact with heavy GSE such as
cargo loaders, catering trucks, other equipment that interface with the aircraft. GSE can
have high mass up to 15000 kg with low operation velocity up to 1 m/s [10] resulting in
very high impact energy levels to 7500 J. Furthermore, due to the soft rubber bumper
typically placed where accidental contact could occur (see Figure 1.3), the local contact
area develops over a wide area which can allow high forces to be developed, potentially
causing damage of multiple internal structural components, but leaving little or no
external damage to the high-strength composite outer skin as shown in Figure 1.4 and

Figure 1.5 [8, 10, 11].



Figure 1.3: GSE approaching to the aircraft fuselage; note rubber bumper at interface
between GSE and aircraft [8].

Figure 1.4: Severe internal damage by HEWABI (shear tie and C-frame fracture) [8].



Figure 1.5: External skin after sustaining internal damage at levels shown in Figure 1.4 [11].

The previous HEWABI research at UCSD for the 1% generation fuselage panel
was conducted by DeFrancisci [8] and Chen [11]. For the impact location at the acreage
area which is the compliant (bending-dominated) region as shown in Figure 1.6. The 1%
generation composite fuselage panel (overall size with 1,829 mm x 2,438 mm) was
composed of the skin-stringer outer panel, discrete shear ties, and C-frames as shown in

Figure 1.7.



. Region 1 Compliant (bending dominated) region
between floor joints; the condition of the 15! generation
frame panel tests.

/ Region 3
. Region 2 More Stiff (shear dominated) region within Passenger floor beam

proximity to the floor joint.

. Region 3 Most stiff region directly parallel to the floor
joint.

[ @]

Cargo floor beam

Region 2

Figure 1.6: Impact to aircraft fuselage; “Region 1” — acreage area for the 1% generation
HEWABI experiments.
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Hoop Stiffeners

Skin

Stringers or
Longitudinal
Stiffeners

Figure 1.7: 1%t generation HEWABI fuselage panel [8].



As named “inverted pyramid approach” by Chen [11], the research road map is
shown in Figure 1.8. It was planned by transforming the “building block™ approach often
employed in aerospace industry for composite structure development. It has two separate
pyramids: one for experiments and the other for FE simulation predicting damage
phenomena observed in the large-scale experiments. For the experiment pyramid, through
large-scale blunt impact experiments (an example is shown in Figure 1.9), the critical
phenomena and damage mechanism was investigated. In particular, the structural
response, key failure modes and their initiation, progression, and damage location and
extent was examined. The example of key damage modes observed in the large-scale

tests are shown in Figure 1.4 and Figure 1.10.

Simulation Experiment
Refine . Identify
i Improve Design of i
Modeling Structures Failure
Methodology Modes

e

4

Large-Scale
Simulation

Large-Scale
Experiments

2

Element-Scale
Experiments

3

Element-Scale FE
Development

Isolated Failure Mode Analysis

Figure 1.8: Road map for approaching experiments and numerical simulation of High
Energy Wide Area Blunt Impact [11].
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Figure 1.9: Experimental setup for structural-level Frame03 and 04 dynamic experiments
[11].

Per the experiment pyramid in Figure 1.8, follow-on successive experiments were
element-scale, designed to induce the key failure modes, observed in large-scale
experiments, to each relevant structural component. The examples of element-level tests
are shown in Figure 1.10. Each relevant structural element specimen was designed to be
more simple than the full-scale actual structure, while maintaining similar boundary and
loading conditions. Thus, the small-scale experimental results were representative of the
failure modes observed in the large fuselage panels. Through these failure-mode targeted
element-level experiments, test data quantifying the specific failure phenomena were
recorded and used for developing and refining finite element model definitions (FE

simulation validation).
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Figure 1.10: Analysis of the key failure modes in the fuselage panel through element-level
experiments [11].

For the simulation pyramid in Figure 1.8 FE modeling methodology developed
based on element-level test data and observations was developed first. Examples of sub-
scale FE simulation are shown in Figure 1.11. A key step in the FE methodology is
validation with the aforementioned element-level tests to establish confidence that a
physics-based model has been established. Then, the modeling information developed in

each small-scale FE model was transferred to the large-scale FE model to enable
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prediction of damage beyond the damage initiation in the structure during the HEWABI

event as shown in Figure 1.11.

Figure 1.11: Modeling definition for element-level studies exported into the large-scale FE
model [11].

1.3 CURRENT RESEARCH ScOPE AND OBJECTIVES

After the previous HEWABI research for the 1% generation fuselage panel, more
study was required to examine influence of the impact location near the floor structures.
In Figure 1.12, the corresponding impact location of interest in this current phase of
research is denoted as “Region 2”. It is more stiff and shear dominated relative the
previous research investigation at "Region 1" due to frame to floor beam interaction.

Different damage modes were anticipated than the observed damage modes in the 1%

11



generation panel tests. The two key structural components existing in real fuselage
structures, shown in Figure 1.13, specifically floor structures and continuous shear tie
(web connecting fuselage frames to outer skin), were reflected in the design of new
fuselage specimen for impact location near the floor joint. These new specimens

described in this current research are referred to as 2" generation" specimens.

Region 1 Compliant (bending dominated) region
between floor joints; the condition of the 15t generation
frame panel tests.

Region 2 More Stiff (shear dominated) region within @ I
proximity to the floor joint.

Region 3 Most stiff region directly parallel to the floor Region2
joint.

Region 3
/ Passenger floor beam

Cargo floor beam

Figure 1.12: Impact to aircraft fuselage; “Region 2”and frame to floor structure interaction.
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Figure 1.13: Boeing 787 fuselage with the continuous shear tie and floor structure; Picture
from Boeing Future of Flight Museum (Left) and The Birth of the 787 Dreamliner (Right)
[19].

With the two major design changes representing more realistic design of current
in-service composite fuselage structures, the 2" generation HEWABI panels were
fabricated, tested, and investigated at UCSD. The 2" generation HEWABI panel test

configuration is shown in Figure 1.14.
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Figure 1.14: 2" generation HEWABI panel test.

As shown in Figure 1.15, the 2" generation fuselage panel is composed of the co-
cured skin-stringer outer panel (overall size with 559 mm x 1,233 mm), one continuous

shear tie, and one C-frame.
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Skin-Stringer Panel

C-Frame and Shear Tie

ww 657

1,233 mm

Figure 1.15: 2" generation HEWABI fuselage panel and its components.

The first objective of this research is the use of large-scale experiments to
understand the damage formation from HEWABI events near the floor structure location
using the 2" generation fuselage panel design. Of interest is examining how damage
development is affected according to the major changes in the 2" generation large-scale
test specimen. Damage formation from HEWABI events near the floor structure location
was evaluated. More specifically, damage initiation, location and key damage modes,
sequence, extent, and external damage detectability were assessed with major outcomes
being understanding damage mechanisms and creating datasets that can be used for

subsequent modeling validation.

The second objective of this research is study for C-frame failure. As main load-

bearing component to the transvers load from HEWABI, the C-frame resists transverse

15



load by reinforcing the skin-stringer outer panel. Its failure means overall fuselage
structural failure as skin-stringer outer panel cannot resist the transverse load anymore.
Thus, investigation of C-frame failure is important for aircraft safety. Using the 1%
generation HEWABI research Phase 2 large panel test (Frame03 and Frame04-2) data, C-
frame key failure modes were examined, C-frame element tests were conducted, and
numerical investigation was followed. Lastly, C-frame modeling capability for failure

prediction was evaluated.

The third objective of this research is evaluation as well as improvement plan of
current FE model capability correlated with the 2" generation Loc4 test results. From the
preliminary FE modeling used during the specimen in design stage to refinements made
after testing was completed, modeling definitions will be provided in detail. Prediction
capability and limitation of current FE modeling technology will be discussed. The future

work recommendations for improving FE capability will be stated.

About the 2" generation HEWABI research, the following Chapter 3 and Chapter
5 include joint research work conducted with Chaiane Wiggers de Souza. Through the
collaboration, the results of the 2" generation HEWABI research have “equal attribution”

to both Moonhee Nam and Chaiane Wiggers de Souza.
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2 LITERATURE REVIEW

Experimental and numerical investigations on the large-scale impact behavior of
composite aircraft fuselage structures are barely documented in the open literature [11,
18]. This chapter reviews the experimental investigation including test methodology used
in large-scale impact experiments on complex fuselage structures composed of structural
elements. Also of interest are subsequent element-level experiments designed to excite
key failure mode observed in the large-scale impact experiments, as well as numerical
investigation on defining accurate FE modeling methodology relevant to HEWABI of

large-scale structures.

2.1 1sT GENERATION HEWABI RESEARCH

The 1% generation HEWABI research, conducted at UC San Diego by
DeFrancisci and Chen [8, 11], is summarized here. The large-scale test definition of the
1%t generation HEWABI research started by first identifying the Ground Service
Equipment (GSE) collision threat and its characterization. Through meetings with
industry partners (Boeing, Airbus, Bombardier, United Airlines, Delta Airlines, Cytec,
EASA, and the FAA), GSE was identified as a key threat to aircraft safety. GSE activity
was observed at LAX and photographic and video data acquired were used to quantify
blunt impact events by GSE. Specifically, typical impact mass, velocity of GSE near

aircraft and bluntness as well as likely impact locations upon the various aircraft size.
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The typical mass of GSE ranges from 3000 kg to over 15000 kg, and its velocity ranges
0.5 m/s to 1 m/s [8, 11]. The high mass and low velocity combine to pose an impact
threat having kinetic energy ranging from 375 J to over 7500 J. For example, a 15000 kg
cargo loader traveling at 1 m/s has a kinetic energy of 7500 J. The generated energy level
by GSE is significantly higher than the impact energy ranges from 10 J up to 100 J by
typical pendulum impact and drop tests typically used in lab-scale experiments to

evaluate Foreign Object Damage (FOD).

Based on the LAX observations and meetings with industry partners, excluding
the specific reinforcement near the door, floor joint, and wing box, the general test panel
geometry and layup were designed and reviewed. By focusing on impact to the acreage
area, a general understanding of the damage formation and key failure mechanisms
between the structural components would be achieved. The impact location and the
stringer and frame stiffened panel design are shown in Figure 2.1 [8, 11]. Two phases of

specimens were defined in these 1st generation tests, as shown in the figure.
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Phase 1 Frame Panel, Quasi-Static Tests Phase 2 Frame Panel, Dynamic Tests
(Frame01, Frame02) (Frame03, Frame04)

/
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Composite
Skin &

Stringers

Blunt Impact Shear Ties:
Composite LoadingZone —on  Composite Frames - Composite
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C-Shape - "
Skin Directly Onto [ J RéAl 7075 Al Alloy o

Composite Frames Shear Ties Specim.: Frame04- H/":(ri_

(C-3hpe) 77075 shear Ties Opstie”

Figure 2.1: 1%t generation HEWABI fuselage panel [8, 11].

The low-velocity impacts caused by large masses can be treated as a quasi-static
indentation problem [8, 13, 17]. That is because the impact duration is sufficiently longer
than the time for the deformation wave to propagate from the impact site to the boundary
conditions. Indeed, experimental results correlate well with this assumption for low and
medium impact energies for lab-scale FOD tests [12]. As shown in Figure 2.1,
displacement controlled quasi-static tests (at 3.0 mm/min) were conducted for careful
investigation for the phase 1 panels and dynamic tests were conducted representing the

actual impact rate (at 0.5 m/s) for the phase 2 panels [8, 11].

In the low-velocity impact event, the impacted structure boundary conditions as
well as the mass, shape, and material properties of the impactor crucially affect the
structural response because the deformation mode shape is governed by the first mode of
vibration. Proper boundary fixtures were designed through iterative Finite Element
Analyses to verify equivalent response between the full barrel model and sub-scale panel

model shown in Figure 2.2 [8].
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Figure 2.2: Determination of the frame panel boundary conditions [8].

The rubber bumper located between the GSE and aircraft generally creates a large
contact area inducing more global response to the specimen, producing wide-spread
damages but reducing damage detectability externally under impact events. For the C-
frame stiffened panel tests, the long cylindrical bumper (outer diameter of 178 mm, wall
thickness 25 mm, and overall length of 572 mm and 1.0 m for the phase 1 and phase 2
panel test respectively), as shown Figure 2.3, was installed on the impactor tip to produce
wide area blunt impact. As shown the right photo in Figure 2.3, the hollow cylindrical
bumper eventually flattens before significant loading develops, and can be represented by

a flat rubber pad.
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Figure 2.3: Impactor tip with the rubber bumper [8, 11].

Figure 2.4 shows internal damage after the FrameO1 test which quasi-statically
applied load directly onto two shear ties. The damage initiated at the shear tie curved
corner, more specifically, shear tie corner delamination due to the composite material’s
low interlaminar tension strength (opening moment loading in curves sections induces
radial tension stress). With more loading, the shear tie was fractured as shown in Figure
2.4 by the direct compressive load from the bumper. The following failure events were
contact between the C-frame and the stringers, and local twisting of the C-frame due to
absence of the stabilizing component (the fractured shear tie). The key failure last event
was contact induced failures between C-frames and the stringers in the impact zone. As
shown in Figure 2.4, the stringer was severed as the frame impinged into it. Through
thickness frame cracks occurred. Delamination between the stringer flanges and the skin

was also found due to the severed stringer crack reaching the stringer-to-skin interface.
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Phase 1 — Frame01 Panel

Fractured Shear Tie
(Liberated Fragment
Not Shown)

Through-Thickness Crack in
C-Frame Web by Contact with
'~ Stringer

Figure 2.4: Internal damages of Frame01 panel loaded onto shear ties [8, 11].

Figure 2.5 shows the internal damage sequence of the Frame03 panel during

dynamic impact applied on the skin side at the location loading directly onto three shear
ties. The damage initiated at the impacted shear tie curved corners, more specifically,
delamination and fiber crushing damage. These failure modes are generated due to the
local bending and shear stresses created by the direct compression from the bumper. With
more loading, the three impact-loaded shear ties were completely fractured as shown in
Figure 2.5. The following failure events were contact between the C-frame and stringers,

as well as twisting of the C-frame due to of the stabilizing component (the now fractured
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shear tie). Unlike in the quasi-static experiments, contact between C-frame and stringer
did not prevent further C-frame twisting, thereby leading to wide-spread shear tie and C-
frame failures away from the direct impact zone. The C-frame developed fracture near

the boundary supports as shown in Figure 2.5.

In the FrameO3 test, initial failure occurred at the shear tie corners with
delamination and crushing failure modes. Based in interaction with industry engineers,
the composite shear ties were replaced with strong shear ties (aluminum 7075) in the
Frame04-2 panel to investigate how shear tie strength affects resulting failure modes (see
Figure 2.6). The strong shear ties did not fail (unlike the composite shear ties), leading to
local direct shear fracture of all three C-frames at the impact location as shown in Figure

2.6.

Although severe and wide-spread internal damage modes were generated by
HEWABI in the structural-level frame panel tests. There were no clear, externally visible
indications of damage being present, despite the degree of major internal damage as

shown in Figure 2.4 to Figure 2.6.
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Phase 2 — Frame03 Panel
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Figure 2.5: Internal damage sequence of Frame03 panel loaded onto shear ties [8, 11].

Phase 2 — Frame04-2 Panel with Strong Shear Ties

i

Complete Failure in Frames

Figure 2.6: Direct shear failue of C-frames in Frame04-2 panel loaded onto strong shear ties
[8, 11].
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In Phase 1 (FrameOl1 and Frame02 tests) and Phase 2-Frame03 tests with
composite shear ties, initial failure occurred in the shear ties. Specifically, shear tie
curved corner radius delamination develops first, then fiber crushing and complete
fracture due to direct compressive load from the bumper. The major difference in failure
mechanisms is the C-frame’s behavior after contact with the stringer. In the quasi-static
tests, the C-frame was locked by the stringer (friction) contact after the shear tie
fractured. This resulted in local crack formation in the C-frame by stringer-to-frame
contact stress within the vicinity of impact zone. On the other hand, dynamic test results
show the C-frame’s large deformation after shear ties fractured under a combined
bending-twisting state. This eventually led to fracture near the C-frames’ boundary
conditions which are away from the impact-contact zone. This suggests the loading rate
(quasi-static loading vs. dynamic loading) can strongly affect the subsequent series of
failure events and final failure mode(s). Stringer-frame contact played a key role in

damage evolution affecting the subsequent failure modes.

When investigating Frame04-2 (strong shear ties) failure mechanism, Frame04-
2’s strong shear ties were not the first component to fail and were able to carry the impact
load with minimal deformation of the shear ties. These directly transfer load to the C-
frames, thereby resulting in localized shear fracture of the C-frames. Therefore, the shear
ties played a key role in damage initiation and evolution affecting subsequent failure

modes.

From the Phase 2 structural-level Frame03 experiment, key damage modes were

identified. These are: delamination and crushing of the shear tie corner, skin-stringer
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disbond, and skin cracking as shown in Figure 1.10. Each failure mode altered the local

stiffness of the panel and re-directed the load path in the large-scale specimens.

In order to better understand these key failure modes observed in the large-scale
tests, the fuselage structure was broken down into smaller elements to examine the
individual key failure mechanism as well as to refine finite element (FE) model
definitions. Through focused element-level tests, less overall complexity allowed for
development of accurate FE model that are validated by these tests. The modeling
definitions were then transferred to the full-scale structural-level FE model as shown in

Figure 1.11.

The shear tie coupon experiments and FE modeling methods are described briefly
in this section. In the blunt impact testing early shear tie damage influenced the
subsequent structural behavior, especially as the fractured shear tie could no longer
stabilize the C-frame against rotation. In the large-scale FrameOl1 and Frame03 tests, the
damage initiated at the shear tie curved corner, as shown in Figure 2.7. The successive
shear tie element experiment was conducted to excite key damage modes at the shear tie
curved corner: delamination, fiber crushing as well as buckling/fracturing due to

compression loading.
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Bolted at the bottom

Figure 2.7: Sher tie element test for shear tie raidial delam/crushing due to compression
loading [11].

The shear tie compression test was simulated in Abaqus/Explicit correlated with
the element test as shown in Figure 2.9. As described in Figure 2.8, to simulate inter-
laminar failure (delamination) at the curved corner, cohesive surface interaction was used
to connect surface pairs between sub-laminate (ply group) layers. Due to through-
thickness laminar failure (crushing and fracture damage), 3D intra-laminar failure
criterion (Hill-Tsai criterion) was used with 8-node solid elements (C3D8R) and
enhanced hourglass and distortion controls to prevent spurious deformation modes and

excessive element distortion.
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Figure 2.8: Sher tie element FE modeling methodology [11].

14

12

c.
i —

_10

o 8 A

= a "
< M A ,“_\.b o !'.# ——sTC02
S 1 218 Vo ] :
8 AVt (- === 12 Layers Solid FEM
§ " /k b

-y
-
o
2
i S

2

/ '
0
0 2 4 6 8 10 12 14 16
Crosshead Displacement (mm)

ke,

Figure 2.9: Shear tie element FE simulation correlated with the element test — Compression
and Buckling [11].
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In previous HEWABI research, the experimental and numerical investigations
were performed by DeFrancisci and Chen [8, 11]. In the current research's 2" generation
panel testing and FE modeling, the methodology defined by these previous researchers
was used as a basis for design, fabrication, testing, and analyzing the new composite test

specimens.

2.2 CODAMEIN — CompoSITE DAMAGE METRICS AND INSPECTION (HIGH

ENERGY BLUNT IMPACT THREAT) RESEARCH

A series of research named Composite Damage Metrics and Inspection
(CODAMEIN - phase 1, 2, 3) was conducted in Europe sponsored by European Aviation
Safety Agency (EASA) [14-18]. The experimental and numerical investigations were
performed on hybrid composite-metallic aircraft structures representing CS-25 (large
aircraft) fuselages by benchmarking UCSD HEWABI study. Based on the results of the
research, recommendations for amending airworthiness certification specifications were
made to EASA CS-25 [14]. This section summarizes the key features of that body of

research, mainly focused on CODAMEIN 1.

Through the review of actual in-service incident data and previous test results
including input from UCSD, reasonable energy boundaries for a GSE blunt impact were

estimated in a range between 1000 J to 3000 J [14].

The hybrid fuselage specimen (overall dimension with 1930 mm x 1830 mm) was

composed of co-cured composite skin-stringer, discrete shear ties and aluminum Z-
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frames as shown in Figure 2.10. As a generic specimen design, it was based on the UCSD
Phase 2 panels with similar material, layup sequence, component design and structural
geometry except usage of metal circumferential Z-frame with its boundary condition.
With permission from UCSD, new version of the UCSD panel were fabricated by a local

San Diego company and sent to the CODAMEIN research team in Europe.
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Figure 2.10: CODAMEIN panel details: stringer, shear tie and frame [18].

With the test setup shown in Figure 2.11, quasi-static loading tests were
conducted. Damage formation, damage mechanisms, and major key internal damage

modes were investigated [17, 18].
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Figure 2.11: CODAMEIN test setup details [17, 18].

Initially, elastic buckling of the shear tie was detected from cracking noise and
sudden reversed change of stiffness in strain gauge measurements (see Figure 2.12).
Delamination in the shear tie radii was the first point of damage onset and center shear tie
crack was observed clearly (see Figure 2.13). It was assumed that the shear tie radius
crack led to contact between stringers and frames and it was decided to continue loading
up to shear tie failure, accepting stringer-frame contact. After final loading with
withdrawal of the impactor, the panel relaxed fully except for one small crack on outer
skin surface, but internally, cracks along the radius of most of shear ties were observed to
exist close to the impact area due to opening moment as well as plastic deformation of the
aluminum Z-frame outer flange. This resulted in bending and shear load being transferred

to the shear ties which caused tilting of the web.
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For FEA, the impactor loading rate was 1 m/s while the tests were performed
under quasi-static loading conditions. Determination of the impact velocity was based on
evaluation of dynamic effects and computational cost. The influence of low velocity
impact loading was previously determined to be acceptably low [17]. Abaqus/Explicit
solver was used with Hashin failure criterion to predict intra-laminar damage and failed
material stiffness degradation. As the most critical structural component, the shear ties
were modeled with a finer mesh (8 mm x 15 mm) especially at the radius corner as this is
the key region of initial damage formation. Two layers of continuum shell elements with
a cohesive zone interface between the sub-laminate layers was used to predict
delamination damage. As shown in Figure 2.14, the fasteners attaching the shear tie to the
skin were replaced by local tie constraints to reduce the tendency of elements within the
shear tie feet to undergo hourglass modes that caused delamination. Weak layers were
inserted in the shear tie feet to represent the weak fastener, while the fasteners that
attached the shear ties to the frames were modeled using connector elements. For the
representation of the fasteners, translational elasticity as well as axial and shear strengths

were defined.
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Figure 2.14: FE modeling scheme for shear tie and fastener connection [18].

The FEA predictions correlated well with the test results, especially the predicted

shear tie failure initiation displacement within 6.8% discrepancy.

In CODAMEIN research, the experimental and numerical investigations were
performed on the large-scale impact behaviors of composite aircraft fuselage panels [14-
18]. For the future work of the 2" generation HEWABI research, FE modeling
methodology defining shear tie radius corner with sub-laminate layers and shear tie

fastener connection to C-frame can be referenced.

2.3 CRASHWORTHINESS — FRAME FAILURE

In the past decade, crashworthiness research has been conducted for civil
composite aircraft fuselage employing the building block approach through typical

fuselage section drop tests and element-level tests as well as through large- and small-
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scale FE modeling/simulation [20-22]. The frame element is the major contributor to
crash energy absorption. In this section, the element level frame failure tests and FE

modeling methodologies, for structural level FE model validation, are introduced [21].

Fuselage crash simulation and critical failure modes are described in Figure 2.15.

As shown, frame failure in a primarily bending state is the most dominant failure mode.

frame breaking  skin bending fastener failure

Figure 2.15: Fuselage section crash simulation model with critical area highlighted [21].

To excite key failure modes in a C-frame under pure bending state, 4 point
bending test was prepared with load introduction devices which were attached by epoxy

adhesive to C-frame then inserted into both end caps as shown in Figure 2.16.
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Figure 2.16: Aluminum load introduction devices (a) and 4 point bending test setup (b) [21].

By approaching 4-point bending tests with straight C-frame, the key failure mode
was identified which is compression flange bucking and fracturing as shown in Figure

2.17.

maximum buckling (c) SUEADS Mg o
- -— g
I 3

Figure 2.17: 4 point bending test of composite frame and key failure modes [21].

FE simulation of frame bending tests were aimed at validating the stiffness and
strength as well as investigating the failure mechanism and energy absorption of the

failing frame.
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As shown in Figure 2.18, to allow for correct load introduction, the whole test
setup was modeled. For the C-frame, conventional shell elements were applied with
Hashin failure criterion. To bring the simulation load-displacement curve close to the
experiment results, cured epoxy adhesive was modelled with solid elements to represent
its compliance under load, and a contact formulation with friction coefficient of 0.5 was
applied at the interface between the adhesive and the metal surface in the end caps. The

FE simulation predicts the key mode observed in tests as shown.

Figure 2.18: Final FE model (Left) and predicted key modes observed in tests [21].

This paper was referenced for C-frame bending and bending-twisting tests
inducing key failure mode observed in the 1% generation Phase 2 HEWABI Frame03 test

especially for element level test methodology.
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2.4 LITERATURE REVIEW CONCLUSION

Previous HEWABI, CODAMEIN, crashworthiness research is directly related to
current HEWABI research. In large-scale and sub-scale impact testing as well as FE
modeling, the methodology defined in the referenced research were used as a basis for

design, fabrication, testing, and analyzing the new composite specimen tests.

In the previous HEWABI and CODAMEIN research, first, impact characteristics
were investigated. As a major damage threat to composite aircraft fuselage, significant
high impact energy is generated by GSE accidental contact. The bluntness of the typically
used rubber bumper causes the wide internal damage extent and reduces external damage
detectability. It was confirmed that a flattened hollow rubber bumper can be replaced
with flat rubber pad in test and FE simulation as a cost reducing and computational
stability improving measure. Second, due to equivalence between low-velocity impact
event and quasi-static indentation, new HEWABI tests can be conducted quasi-statically
allowing more detailed observation of damage evolution. However, from the different C-
frame failure modes between the 1st generation Phasel (quasi-static) and Phase2
(dynamic) tests, the loading rate effect needs be examined with actual impact velocity.
Thirdly, the importance of boundary condition in low velocity impact experiments was
confirmed. The methodology of choosing proper boundary fixture can be applicable to
new HEWABI test design. Through iterative FEA approach, equivalent response between

full- and sub-scale structures can be verified.

Previous HEWABI and CODAMEIN research focused on the impact location at

the acreage area which is the most compliant (bending dominant) region. The current
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(newly reported herein) 2" generation HEWABI research focuses on examining
influence of the impact location near the floor structures. With floor structure and thicker
continuous shear tie, more realistic component design and more likely location of GSE
impact are reflected. The influence of loading location in the shear dominant region,
interaction between new components, and accompanied failure mode and sequence will

be examined.

Investigation of C-frame failure is important for aircraft safety. In previous
HEWABI and crashworthiness research, the methodology of element level test and FE
modeling was introduced. It will be referenced in C-frame element test and FE modeling.
Different C-frame failure modes between previous and current HEWABI tests will be
investigated and compared. The main factor influencing the C-frame failure modes will

be examined in detail.
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3 LARGE SCALE EXPERIMENTS (2ND GENERATION PANELS)

This chapter describes research investigations that required large, complex built-
up composite structures to be designed, manufactured, and configured for testing. As
each of these aspects are individually major undertakings for a single graduate student,
the successful summed outcome reported herein required a close-working team effort.
Thus, results reported here are equally attributed to myself and fellow graduate student
Chaiane Wiggers de Souza. Specifically Sections 3.1 to 3.4, 3.6 to 3.9, and 3.11, are
joint-effort products of this collaboration for which equal attribution is due. Sections 3.9
and 3.11 describe test setups for the two major loading configurations investigated, with
my individual explanation and interpretation of these test results presented in Sections

3.10 and 3.12.

3.1 BENCHMARKING EXISTING COMMERCIAL COMPOSITE FUSELAGE

As the second generation HEWABI specimen, the specimen configuration
represents more realistic composite aircraft fuselage than the first generation HEWABI
specimen [8] as some features i.e., continuous shear tie and floor structure are added. As
shown in Figure 3.1, the Boeing 787 fuselage configuration was benchmarked in the
design of the second generation HEWABI specimen. From these sources, information
about dimensions and spacing of stringer stiffeners, configuration of shear ties, and their

connection to the skins were used in the new specimen design layout.
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Figure 3.1: Boeing 787 Fuselage Configuration; Picture from Boing Future of Flight
Museum (Left) and from The Birth of the 787 Dreamliner by Edgar Turner (Right) [19].

3.2 SPECIMEN DESCRIPTION

Through the discussion with the engineers of industry partners and FAA, the
initial design of the second generation HEWABI specimen was revised and, via Finite
Element Analysis (FEA) approach, the equivalency between the full quarter barrel and
simplified truncated model, was verified as shown in Figure 3.2. This figure also shows
the overall description of the 2" generation HEWABI specimen composed of the co-

cured skin-stringer outer panel (overall size with 559 mm x 1,233 mm), one continuous
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shear tie, and one C-frame. As shown in Figure 3.2 to Figure 3.6, the key features,
different from the first generation HEWABI specimen, are thicker and continuous shear
tie (discrete shear ties were used in the first generation HEWABI specimen), closer
spaced and smaller sized stringers, and the floor structure which creates increased
stiffness at floor joint. In Figure 3.2, the loading locations were planned as Location 3
and 4 (Loc 3 and Loc 4) below but close to the floor structure which is expected to result
in different damage mode and extent relative to the damage outcomes in the first
generation HEWABI tests. Loc 1 and Loc 2 are the loading location at the centerline of
the floor joint, and at the center of the first stringer below the floor joint, respectively
(above Loc 3 and Loc 4 in Figure 3.2). Loc 1 and Loc 2 were not considered (per
guidance of industry engineers) due to the lack of specific reinforcements at floor joint

(Loc 1) in design of the second generation HEWABI specimen.
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Figure 3.2: 2" generation HEWABI specimen.
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44



Previous Design

- 184.2 -

R2791.0

New Design

THK =3.5 mm

R2635.3

R2698.8

I~ R2788.4

= 1200 = - 826 -

1241.0 Dimensicns in mm

Figure 3.5: Panel comparison — shear tie [8, 11].

Previous Design
h 381 —|
T )
2.9
108 25 —==—
|
|| A=4.78 cm?
l,=82.27 cm?
R10.2

New Design

h 38.1

A =530 cm?
Iy =93.29 cm?

Dimensions in mm
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3.3 LAY-UP AND THICKNESS OF THE FUSELAGE COMPONENTS

The layup and thickness of each component is shown in Table 3.1. The layup
design is closed to quasi-isotropic and aims to match the thickness of each component in
real structures. The target thickness of each component referred to the typical thickness
values in the area away from doors shown in Table 3.2 from the feedback of aircraft
industry engineers. The specific reinforcements near the floor joint and around doors was
not considered in the 2" generation HEWABI specimen. That is because damage
detectability was anticipated to be very low by the heavy reinforcement near the floor
joint and doors. In Table 3.1, 0-degree direction of skin and stringer is along the axis of
the stringers, and O- degree of shear tie and C-frame is along the primary axis of the
components (see Figure 3.3). The skin and stringers are mostly composed with
unidirectional T800/3900-2 plies except outmost woven plies. The shear tie and C-frame

are composed with all T800/3900-2 plain weave plies.
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Table 3.1: Component layups.

Part Layup — T800/3900-2 Thickness
Skin
. . [Ow/0/45/90/-45/0/90]s 2.79 mm
(Inner Plies Uni, 0° dir. along stringer direction (0.110in)
Outer Plies Woven) ' '
stringer [OW/0/45/90/-45/0/90]; 2.79 mm
(Inner I_:’Iles Uni, 0° dir. along stringer primary axis (0.110in)
Outer Plies Woven) ' '
Shear Tie [45/0/-45/0/45/0/-45/0]s 3.53 mm
(All Woven) 0° dir. along shear tie primary axis (0.139in)
[45/0/-45/45/0/-45] (Web) (% 61%21{:)
C-Frame '
(All Woven) [45/0/0/-45/45/0/0/-45]s (Flange)
0° dir. along frame primary axis 3.53 mm
' (0.139in)

Table 3.2: Typical thickness values in areas outside doors.

Typical Thickness Values Outside Doors

Part -
and Floor Location
Skin 2.79 mm to 2.87 mm
(0.110into 0.113in)
. 3.43mm to 3.53 mm
Shear Tie (0.135 in t0 0.139 in)
C-Frame 3.30 mm to 3.81 mm
(0.130in to 0.150 in)

3.4 FLOOR BEAM AND JOINT DESCRIPTION

With the design guidance from industry engineers, the initial floor I-beam depth

was increased and out of plane stiffeners (L angles and C-channel) were added at the
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floor joint shown in Figure 3.7. The material of floor structure components is aluminum

6061-T6. The design change is for very stiff in-plane and out-of-plane floor structures not

s
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allowing out-of-plane buckling at the joint.

Figure 3.7: Passenger floor I-beam and floor joint assembly.
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3.5 CoOMPOSITE MATERIAL PROPERTIES

The composite materials used for the 2" generation HEWABI specimen were UD
T800S-24K/3900-2, and PW T800H-6K/3900-2. These are aerospace-grade carbon fiber
pre-impregnated with epoxy materials used to make existing composite aircraft fuselage
structures. In design stage, material properties are shown in Table 3.3. These material
properties were from Toray (the material manufacturer) data sheet [26], existing literature

by Tong (2003) [27], and property data in similar prepreg (Cytec X840/Z60) [11].
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Table 3.3: T800/3900-2 properties used in the design stage.

Unidirectional | 6K Plain Weave

Lamina Thickness and Density

Ply Thickness (mm) 0.195 0.220
Density, p (g/cm?) 2.67 1.61

Lamina Elastic Properties

Longitudinal Young’s Modulus, E; (GPa) 159.96 80.00
Transverse Young’s Modulus, E; (GPa) 8.96 80.00
In-Plane Poisson’s Ration, vi» 0.28 0.06
In-Plane Shear Modulus, G2 (GPa) 6.21 6.48
Transverse Shear Modulus, Gi3 (GPa) 6.21 5.10
Transverse Shear Modulus, G; (GPa) 3.45 4.07

Lamina In-Plane Strength

Longitudinal Tension Strength, Fi:(MPa) 2799 993
Longitudinal Compression Strength, Fic (MPa) 1620 772
Transverse Tension Strength, Fz (MPa) 55.16 855
Transverse Compression Strength, Fc (MPa) 227.53 896
In-Plane Shear Strength, F1» (MPa) 75.84 68.95

Lamina In-Plane Fracture Energy

Longitudinal Tensile Fracture Energy, Gi (kJ/m?) 91.60 45.80
Longitudinal Compressive Fracture Energy, Gic (kJ/m?) 79.90 39.90
Transverse Tensile Fracture Energy, Gz (kJ/m?) 0.20 45.80
Transverse Compressive Fracture Energy, Gz (kJ/m?) 0.20 39.90

3.6 DESIGN METHODOLOGY WITH FEA APPROACH

Via Finite Element Analysis (FEA) approach, the single-frame test specimen was

designed and evaluated such that it represented the response of a full quarter barrel
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fuselage structure. In Figure 3.8, as the original fuselage structure, the left is full quarter
barrel model having passenger and cargo floor beams and two C-frames by the symmetry
boundary condition along the skin edge. The loading is applied uniformly across the
specimen width. For the impact at loading location, Loc3 and Loc4, the full quarter barrel
model showed localized damage around loading locations near the upper floor beam, and
lower structure remained elastic. Thus, a simplified truncated model was built which
showed equivalent response with the full quarter barrel model by applying proper
boundary conditions. The extensive Finite Element Analysis was conducted to verify the
equivalency between full model and truncated model. In Figure 3.8, the truncated model
has key boundary conditions shown. The first one is the aluminum (6061-T6) C-channel
lower beam having similar bending, torsional, shear stiffness with the lower structure of
the full quarter barrel model. 914 mm (36 in) long C-channel was used with the section
(stock) dimension, 101.6 mm x 57.15 mm x 4.83 mm (4 in x 2.25 in x 0.19 in). Another
major boundary condition is zero z-displacement along the skin edge preventing lateral
displacement with one C-frame. As the last major boundary condition, in design stage,
the rectangular flat bumper size was 254 mm x 558.8 mm (10 in x 22 in) with 50.8 mm (2
in) thickness. The bumper width has same dimension with skin width, 558.8 mm (22 in).
Later, the rubber bumper size changed during the test setup (Section 3.8.2). In the design
approach using FEA, the pre-existing modeling definitions developed by DeFrancisci and

Chen [8, 11] were employed.
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Figure 3.8: Full quarter barrel vs. truncated model.

3.6.1 FINITE ELEMENT MODEL INFORMATION

Abaqus/Explicit solver was used in FEA for the general elastic response as well
as nonlinear behavior with the progressive failure analysis implementing the Hashin-
Rotem failure criterion to all composite components. The Hashin-Rotem failure criterion
is used to examine only in-plane ply failure modes (intra-laminar failure modes), but
delamination failure mode (inter-laminar failure) is not represented. The Hashin-Rotem
damage variables are fiber tension, fiber compression, matrix tension and matrix
compression (four damage modes). Figure 3.9 shows the damage initiation criterion for
fiber-reinforced composites and elastic-brittle bilinear damage evolution law. In Figure

3.9, from point “A”, failure initiates, and the stiffness degrades accordingly. More
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detailed information of Hashin-Rotem failure criterion can be found in the journal paper

of Hashin and Rotem [23, 24], Abaqus Analysis User’s Manual, Section 24.3 [25], and

DeFrancisci’s Ph.D. thesis [8].

« Hashin — Rotem failure

» In-plane ply failure modes only; no 3D
stress failure modes

» Four modes of elastic - brittle failure:
« Fiber tension (5,, 20):
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Figure 3.9: Hashin-Rotem failure criterion — damage evolution bilinear law [8, 25].

In Table 3.4, information of the element type and mesh seed size for each

component is described. For the global mesh of 19 mm, the section of the mesh

sensitivity study in DeFrancisci’s Ph.D. thesis [8] was referred to for guidance. For the

locally refined mesh of 6 mm at critical locations where the load is highly concentrated,

the section of the modeling of the Frame03 experiment in Chen’s Ph.D. thesis [11] was

referred to for guidance.
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Table 3.4: Element type and mesh size used in FE model.

Part Element Type Mesh Seed Size
Floor Beam Solid (C3D8R) 19.05 mm (0.75 in)

Rubber Bumper Solid (C3D8lI) 19.05 mm (0.75 in)
Composite Components Continuum Shell Shear tie: 6.35 mm (0.25 in)

P P (SC8R) Other Components: 10.16 mm (0.4 in)
Floor Connection Plate . .

and Stiffeners Solid (C3D8R) 6.35 mm (0.25 in)
Lower Boundary Beam Conventional Shell

6.35 mm (0.25 in)

(for Truncated Model) (S4R)

8 node reduced integration solid (C3D8R) elements were applied to the metal
floor beam and joint parts with enhanced hourglass and distortion control, which is to
prevent spurious deformation modes and excessive element distortion under explicit

FEA.

A flat rectangular soft rubber pad was modeled as a collapsed rubber bumper,
which matches the deformed shape of the physical bumper. This is to decrease the
settlement mainly caused when the cylindrical or D-shape bumper is fully compressed. 8
node solid (C3D8I) elements with incompatible modes were used to model the rubber
bumper to accommodate the hyperelastic material model large-strain behavior. The
enhanced distortion and hourglass control were applied as well. As shown in Figure 3.10,
based on Chen’s Ph.D. thesis [11], to present the rubber’s compression response, the
Ogden material model [11] was applied. These inputs enable modeling of the large

deformation of the rubber pad without excessive element distortion.
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Figure 3.10: Bumper compression test and FE modeling [11].

The “hard’ penalty contact interaction was applied to contact between the skin

and the rubber bumper. Later, a friction coefficient of 0.3 was assigned to the contact.

For all composite components, 8 node reduced integration continuum shell
elements (SC8R), with hourglass control, was applied. The composite layup was defined
in the through-thickness direction in a single layer of continuum shell elements. As
shown in Figure 3.11, a continuum shell element has 3-dimensional body with only
displacement degrees of freedom. Continuum shell elements look like 3-dimensional

continuum solid elements, but their kinematic and constitutive behavior is like
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conventional shell elements. Continuum shell elements are more useful than conventional
shell element when modeling complex multi-component assembled geometries due to its

3D body.

4 node reduced integration conventional shell (S4R) elements were used to model

the metal lower boundary beam.

SO0 T 2

If |~ displacement and rotation

| . degrees of freedom
Conventional shell model -

geometry is specified at the reference surface;

thickness is defined by section property.

Finite Element Model Element

structural body

r-’/ - - T
. T \
being modeled L ié( ae
T displacement

- P degrees of freedom only
— & Continuum shell modsl -
full 3D geometry is specified;
element thickness is defined by nodal geometry.

Figure 3.11: Conventional vs. continuum shell element defined in Abaqus 6-13 analysis user
manual, section 29.6.1 [25].

In Figure 3.12, the left side shows the meshed truncated model. In the right side,
the fasteners were modeled as strips with tie constraints to contacting surfaces between
members connected each other instead of modeling each individual fastener in
connection. The 17.78 mm (0.7 in) width of fastener line partition is based on the

approach described in DeFrancisci’s and Chen’s Ph.D. theses [8, 11].
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Figure 3.12: Mesh and effective fastener modeling.

3.6.2 RESULTS OF FE MODEL

The results of the FEA in design stage are shown in Figure 3.13 and Figure 3.14
for loading location, Loc3 and Loc4, respectively. The general elastic analysis as well as
the progressive damage analysis implementing the Hashin-Rotem failure criterion were
performed using Abaqus/Explicit solver. The response results show good agreement

between the full model and the truncated model in both Figure 3.13 and Figure 3.14.

Furthermore, at the load of 22.24 kN (5 kips), in the outmost layer of the shear tie

and the skin component, the maximum stress (S11, the stress in fiber direction) values
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and its (critical) location were checked in the full model and the truncated model. These

results also compare closely between the models as shown in Figure 3.15 and Table 3.5.

Thus, the two models are equivalent each other.
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Figure 3.13: Comparison of full vs. truncated model for Loc3 loading on skin bay.
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Figure 3.14: Comparison of full vs. truncated model for Loc4 loading on stringer.
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Loc4 Full Model — S11 (psi)

Loc4 Truncated Model — S11 (psi)
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Figure 3.15: Maximum S11 comparison examples in the top layer at the load of 22.24 kN (5
kips).
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Part

Shear
Tie

Skin

Table 3.5: Maximum S11 comparison in outmost layers of shear tie and skin.

o 4 o 4 o 4 o H

Top
Top
Bottom
Bottom
Top
Top
Bottom

Bottom

Truncated —
Loc3 (ksi)

57.3
58.4
26.9
53.5
124
20.6
43.7
6.7

Full -
Loc3 (ksi)

57.4
63.8
27.3
56.9
11.3
19.4
43.5
6.2

Difference
(%)

0
8
1

10

Truncated —
Loc4 (ksi)

80.1
88.6
52.6
83.5
9.1
9.9
37.1

6.4

Full -
Loc4 (ksi)

74.1
88.5
52.5
87.6
9.0
9.2
37.4
4.6

Difference
(%)

8
0
0
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Further study was performed about relaxing the zero x-direction (Ul = 0)

boundary condition along the skin side edge in the truncated model and applying friction

as well as overhanging rubber pad along the stringer direction to prevent the specimen

movement in the x-direction as shown in Figure 3.16. This is to reflect the realistic

boundary conditions in the laboratory environment due to the difficulty to replicate the

boundary conditions along the skin side edge. Thus, in FEA, the friction contact with a

friction coefficient of 0.3 was assigned to the contact between the rubber bumper and the

skin. With these changes, there was no effect on the FEA results. Therefore, the

experimental boundary conditions were finalized. Test boundary conditions are described

in detail including the bolted connection in Sections 3.8.2 to 3.8.3.
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Figure 3.16: Realistic boundary conditions in test environment — friction contact between
the rubber bumper and the skin.

3.7 MANUFACTURING

The test panels were fabricated with T800/3900-2 aerospace-grade prepreg
carbon/epoxy material from Toray. All manufacturing works were done at UCSD except
the autoclave cure of all composite components which was done at San Diego

Composites.
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Based on the test plan with finalized geometry and layup design, the material
quantity estimation and tooling design were conducted as well as the prepreg cutting
plan, layup instruction, and layup check list were made. More detailed information of the
mold dimension and layup instruction can be found in Appendix A and B — Mold

Drawings and Layup Instruction.

As shown in Figure 3.17, new tools were manufactured to fabricate each
structural component. The stingers were co-cured with the skin. Thus, the layup for the
stringers and the skin was conducted separately then assembled using the 5-piece stringer
tools in Figure 3.17 and the curved skin tool shown in Figure 3.18. After the 350 degree F
autoclave cure, the 5-piece stringer tool was removed (starting with the inner rectangular

parts to the outer triangular parts) shown in Figure 3.19.

C-frame Tool

Figure 3.17: Tools for specimen fabrication
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2794 mm Radius

il dAMNIDS D
Aluminum 6061 T6 Support 9.5 mm Thick Rolled
Structure Bolted to Rolled Aluminum 6061 T6 Sheet
Sheet

Figure 3.18: Skin outer mold line tool [8].

Inner part removement after autoclave cure

Assembled 5-piece stringer tool

Mylar film helping remove tool parts (applied at interfaces between parts) -

Figure 3.19: Assembled stringer tool and tool part removement after autoclave cure.

As shown in Figure 3.20 to Figure 3.22, ply cutting and layup for all parts was
done by hand and then transported to San Diego Composites for autoclave cure at 350°F

for 2 hour soak and under 90 psi pressure.
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Figure 3.21: Vacuum bagging for all parts.
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Figure 3.22: 1.8 m diameter autoclave in San Diego Composites (left) and autoclave cure
cycle (right) [26].
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The final cured part thickness was measured and compared with anticipated
theoretical thickness as a simple assessment of whether final resin-content was attained.

Summarized in Table 3.6, the actual part thicknesses were within 6.2% of anticipated.

Table 3.6: Cured parts actual measured thickness compared to theoretical thickness.

Part Measured Average Thk (mm) | Theoretical Thk (mm) | Difference (%6)
Skin 2.785 2.779 0.2
Skin + Stringer 5.398 5.568 -3.1
C-Frame Web 2.783 2.639 55
C-Frame Flange 3.619 3.519 2.8
Shear Tie Web 3.737 3.519 6.2
Shear Tie Flange 3.638 3.519 3.4

After autoclave cure, all parts were trimmed by diamond saws. Due to the
complex geometry, continuous shear ties were machined (trimmed and drilled) using the

carbide cutting tool on the CNC router machine as shown in Figure 3.23.
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Machining the shear tie by CNC

Trimming the co-cured skin-stringer part

Figure 3.23: Trimming parts using diamond saws and machining shear ties by CNC.

The resulting stringer geometry produced consistent corner detail, as shown in
Figure 3.24, where the stringer walls meet the skin and transition into flanges. This
location is critical because delamination can be initiated here during the impact. To
control this corner detail, a rolled strip of 0° unidirectional ply was inserted as shown, to

achieve a more gradual radius geometry on stringer corners.

Folded 0° Ply Strip Applied
on Bottom Corners of
Stringer

Mold

Folded 0°
Ply Strip

2.0mm

4.4 mm

Fabric Ply

Figure 3.24: Stringer corner detail.
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Parts were then assembled and aligned, and match-drilled to achieve final
assembly with 6.35 mm (0.25 in.) Hi-Lok fasteners as shown in Figure 3.25. Hi-Lok
HL19-PB-8-6 countersunk head fasteners and HL70-8 collars were used for the skin to
shear tie connections, while Hi-Lok HL18-PB-8-5 protruding head fasteners and HL70-8

collars were used for the shear tie to frame assembly.

Figure 3.25: Match drilling using jigs and panel assembly using Hi-Lok fasteners

When conducting the layup and autoclave cure, some coupon plates were also
fabricated to obtain T800/3900-2 material properties which were not available in the data
sheets provided by Toray (the material manufacturer). The coupon tests were planned
with the ASTM and SACMA standards as shown in Table 3.7. Firstly, the tensile,
compression, and shear tests were planned to obtain the in-plane tensile, compressive,
and shear strength. Secondly, the short beam shear (SBS) tests were planned to obtain the

inter-laminar shear strength. Lastly, the double cantilever beam (DCB) and the end
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notched flexure (ENF) tests were planned to obtain the mode 1 and mode 2 interlaminar

fracture toughness.

Table 3.7: Coupon testing plan for T800/3900-2.

Material Test Type Standard Layup
PW DCB (Mode I Fracture) ASTM D5528 [0]14
PW ENF (Mode Il Fracture) ASTM D7905 [0]14
PW SBS (Interlaminar Shear) ASTM D2344 [0]:s

[45/0/-45/0]4s
PW Tensile (1-Dir.) ASTM D3039 [0]s
PW Tensile (2-Dir.) ASTM D3039 [90]s
PW Compressive (1-Dir.) SACMA SRM 1R-94 [0]14
PW In-Plane Shear ASTM D3518 [45/-45] s
uD DCB (Mode | Fracture) ASTM D5528 [0]14
ub ENF (Mode Il Fracture) ASTM D7905 [0]14
ub Compressive (1-Dir.) ASTM D3410 [O]s

3.8 EXPERIMENTAL SETUP

The 2" generation HEWABI specimens were tested in the South Powell
Laboratory at UCSD. The specimen was mounted to strong wall as shown in Figure 3.26
by boundary fixtures via bolted connections. The floor joint provides the most stiff load

path zone by the interaction with the floor beam, and the aluminum lower beam provides
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the representative torsional and bending stiffness. The specimens were quasi-statically
and slow-dynamically loaded by the flat rubber bumper loading head, which is fixed on
the vertical loading frame, under a displacement controlled shaking table stroke as
illustrated in Figure 3.26. The reason of selecting the quasi-static and slow-dynamic
loading test is that during the table system dynamic tests, the un-controllable dynamic
overshoot and vibrations occurred at the hold period due to the high inertia of the vertical

loading frame.

Loc3-1 Loc3  First significant damage mode
Loc3-2 Loc3 Major damage - frame
Loc4-1 Loc4  First significant damage mode
Loc4-2 Loc4 Major damage - frame

Loading Head w/ Adjustable Angle

Figure 3.26: Test configuration.
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The numbering definition for the loading location is related to geometric order of
stringer, shear tie flange in the fuselage panel as illustrated in Figure 3.27; Locl is at the
floor joint, Loc2 is at the stringer just below the floor joint, etc. At loading locations
further down, away from the floor beam, more bending response is induced in the
composite frame and shear tie. Only Loc3 and Loc4 were tested, per advice and guidance

from aircraft industry research partners.

Figure 3.27: Numbering definition of the loading location.

3.8.1 LOADING CASES

Loading cases were defined to capture key phenomena and events predicted in the

preliminary finite element analyses using Abaqus/explicit solver. For the first set of the
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test panels, which are Loc4-1 and Loc3-1, the load level was limited to the development
of first significant damage modes, mainly in the shear-tie and stringer, with a few load
cycles. The loading rate was 3.0 mm/min (0.002 in/sec) representing quasi-static loading.
For the second set of test panels, which are Loc4-2 and Loc3-2, the target end goal was to
produce significant C-frame (and/or shear tie) damage during one load cycle. The loading
rate was 61 mm/min (0.04 in/sec) and 30.5 mm/min (0.02 in/sec) for Loc4-2 and Loc3-2
respectively, representing the semi-dynamic or slow dynamic loading, and the data
collecting frequency was 20Hz. The detailed loading protocol will be described in the

experimental result section.

3.8.2 SOFT CONTACT LOADING HEAD — FLAT RUBBER BUMPER

The flat soft rubber bumper contact in the 2" generation panel tests reflected the
blunt impact against the fuselage portion which is close to the passenger floor beam and
near-door of the aircraft fuselage. The flat soft rubber pad was used to decrease the
uncertainties related to large deformation when using a hollow cylindrical or D-shape
bumper as it is fully compressed. These issues were noted in the past 1% generation panel
tests conducted by DeFrancisci and Chen [8, 11] and studies from those works have
shown that the flattening of the hollow cylindrical rubber bumper does not contribute
significantly to the specimen structural response. The flat rubber bumper section,
representing the compressed cylindrical bumper, also has advantages in hyper-elastic FE

simulation by avoiding convergence issues when fine mesh used [14].

72



During the specimen design stage, the initial size of rectangular flat bumper was
modeled as 254 x 558.8 mm (10 x 22 in) with 50.8 mm (2.0 in) thickness. Later, to reflect
the actual boundary conditions used in the laboratory tests, the bumper length was
increased to have overhanging rubber pad sections along the stringer direction, which

also served to prevent the specimen movement in the x-direction as shown in Figure 3.16.

During the test setup, to fit the rubber bumper to the existing loading head
components, the bumper size was modified once more as shown in Figure 3.28. The
152.4 x 609.6 mm (6 x 24 in) and 25.4 mm (1.0 in) thickness Styrene Butadiene Rubber
(SBR) sheet was bonded to the aluminum bumper plate, newly added to the loading head
AL box beam, using the LORD 320/322 epoxy adhesive. The newly added bumper
plate’s angle is adjustable along the skin curvature by the hinge and heavy stop-screws as

shown.

Hinge to

AdjustAngle mAELS

RubberBumper}
. b

Loading Head AL. Box Beam
w/ Flat Rubber Bumper

Loading Head Assembly

Figure 3.28: Soft contact loading head.
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To prevent the skin-side displacement during the tests, the 50.8 mm (2 in) wider
rubber bumper than the skin width was adopted to overhang the skin edges when the
rubber pad is compressed. Also, to maximize friction between the contact surfaces (skin
and rubber surfaces), the as-manufactured lubricant-like (mold release) coating layer of
the rubber pad surface was removed by the acetone, and then, before the test, the rubber
and skin surfaces were cleaned with the isopropyl alcohol. In the finite element analyses,
the hyper-elastic properties verified by Chen [11] was implemented. For the improvement
of rubber pad compression finite element model, additional rubber pad compression tests
are needed to validate material properties updating the rubber pad modeling
methodology. Also, for the friction contact definition in the finite element models, the
actual friction coefficient value (0.3 was assumed in the FEA) needs to be studied further
through rubber pad friction tests against the skin; The initial FEA results show good
agreement between two key conditions: one model with the skin side displacement

constraint and the other one with the friction contact definition.

3.8.3 UPPER AND LOWER FIXTURES

The mounted fixtures are shown in Figure 3.29. As described in Section 3.4, the
floor beam should be very stiff and particularly not exhibit lateral or vertical
deformations, thus the diagonal braces were applied, as shown. To represent target
flexural stiffness interaction between the floor beam and specimen C-frame (acts as a
torsional-rotational boundary condition for the C-frame), the connecting bracket plate

was stiffened with L-angle and C-channel aluminum members as shown.
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Avoidance of local failure at the bolted joints was ensured for the bearing and net-
section failure by applying the maximum impact load (obtained via design-supporting
FEA) directly at the floor joint. More detailed information of the floor structure and its

connection can be found in Appendix C — Specimen and Fixture Drawings.

Floor [-Beam and Joint

Loading Head
AL. Box Beam

i 50kip (222kN)
Load Cells (x2)

Specimen

Lower Stiffness Beam

Figure 3.29: Fixtures mounted for specimen testing.

In Figure 3.30, the aluminum lower beam and its connections are illustrated. The
AL 6061-T6 C-channel serving as the lower stiffness beam was connected by the bolted
joint to provide the equivalent stiffness in the lower portion of the full barrel fuselage FE
model. Bolted connections were designed based on the maximum section force from the
FEA at the joint area. At the joint, the load carrying capacity of each connected member

(the web and flange area of the composite C-frame and aluminum C-channel) was
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ensured for the bearing, shear-out, and net-section failure. The same design approach was
applied for the fixed-end connection between the A36 steel L-angle and AL 6061-T6 C-
channel. 114.30 cm (45 in) long AL C-channel was used with the section (stock)
dimension, 101.6 x 57.2 mm with wall thickness 4.8 mm (4 x 2.25 in with wall thickness

0.19in). 6.35 mm (0.25 in) diameter bolts were used to join the connecting plates.

\\

N, Web
N

A/t \\‘\ Connecting

N A \ Plate
- N 4 .’ ‘;‘\ ;
e : \Xk
D A \ \\r

Flange ' Y
Connecting A\
Plate \

L A\

r 4 A
» 45
B\

AL. C-Channel
Fixed-End

Figure 3.30: Aluminum C-channel lower beam and its connection.
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3.8.4 STRAIN GAUGES ON FLOOR I-BEAM

The I-beam was instrumented with back-to-back strain gauges on its web (Figure

3.31) to determine amount of load that follows the floor joint reaction load path.

SGO01, on the back side
SGO02 was installed.

(back-to-back strain gauges)

Figure 3.31: Strain gauges on I-beam.

3.8.5 TERMINOLOGY OF LOCAL AREA

For the accurate description of the specific local region of each component as well
as the component itself, the terminology of the local area is defined and illustrated in
Figure 3.32. This terminology helps to describe the accurate critical location such as the

name of strain gauge locations.
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Figure 3.32: Terminology of local areas.

3.9 SPECIFIC SETUP FOR Loc4 TESTS

To measure the values of the displacement, load level, and strains as well as to
monitor the shear tie-stringer contact occurrence, linear potentiometers (LPs), load cells
(LCs), strain gauges (SGs), and contact sensors (CSs) were installed. The linear
potentiometer installment example is illustrated in Figure 3.33. Three LPs, measuring the
skin displacement, were attached on the stringer hat in the center, east and west edge of
the specimen at Loc4. Two LPs, measuring the external displacement, were attached on
the vertical loading frame at the loading position. Two load cells (called west and east
LC) were assembled as part of the loading head block shown in Figure 3.28. The contact

sensor was installed using thin copper tape positioned between shear tie and stringer as
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shown in Figure 3.34 to indicate when the stringer makes physical contact with the shear

tie during loading.

Linear '
Potentiometers (x2)
| for External

Displacement

Linear
W Potentiometers
(x3) for Skin
Displacement

Figure 3.33: Linear potentiometers (LPs) for the skin displacement (Left) and the external
displacement (Right).

Shear Tie-Stringer
Contact Sensor

Figure 3.34: Contact sensor (CS) installed at Loc4.
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In Loc4 specimens, the strain was monitored by 22 strain gauges (SGs) — 20
linear strain gauges and 2 rosettes (0°, 45° and 90°). By the section force and stress
analyses from the preliminary finite element models, strain gauge locations were
determined based on the critical spots of high strain and to capture key events, such as
shear tie radius delamination and web crack, stringer hat damage, and C-frame cracking.

All SG locations are shown in Figure 3.35 to Figure 3.38.

Based on the maximum section force locations in FEA and to measure the
bending and shear stress level, the C-frame gauges were applied as shown in Figure 3.35.
SG19-20, and SG21-22 were installed on the flange (only on the inner surface of the C-
section) at Loc2 and Loc6, respectively. RS1 and RS2 were installed on the web at Loc2
and Loc6, respectively. SG-FN and SG-FS was additionally installed at Loc4 on the

Loc4-2 test specimen.
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LOCATION 4 STRAIN GAUGES

C-FRAME | -
! M 1 [Zoom on rosettes: |
_ll=—
Loc1 :
-] RS1-90
Loc2
Loc3 .
: RS1-45
Loc4 =
Loch

~} =
LULCo

Dimensions in mm

Figure 3.35: C-frame strain gauges for Loc4 specimens.

For the shear tie gauges in Figure 3.36, back-to-back gauges were installed near
the shear tie radius region (SG10-11, SG12-13, SG15-16, and SG17-18) to investigate
local bending behavior. Among the back-to-back gauges, SG12-13 and SG15-16 are in
most critical radius region directly adjacent to the loading location. SG14 is for

monitoring shear tie-stringer hat contact failure.
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LOCATION 4 STRAIN GAUGES
SHEAR-TIE

B

SG10 is on East, at same
focationassé1s. | [# TTmrreresemee- Loc1
Same for SG12 and
SG13, SG15 and SG16,
SG17 and SG18.
---------------- Loc2
--------------- Loc3
I
e Locd

Dimensions in mm

Figure 3.36: Shear tie strain gauges for Loc4 specimens.

For the stringer gauges in Figure 3.37, SG06, 07, 08 are for monitoring shear tie-

stringer hat contact failure.
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LOCATION 4 STRAIN GAUGES ALL FLA GAUGES

STRINGERS
Stringer & Stringer 5 Stringer 4 Stringer 3 Stringer 2 Stringer 1
Side gauges:
Draw line 28.6mm from bolt hole,
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I i I~ > | A
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I \
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Draw line 28.6mm from bolfs on side
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M Ja s ‘ \ /1)
4 %4
6.4 ™ Dimensions in mm
SCALE 1:8
SGO7
1
! Path Length 55.5
222
!

STRINGER 3
SCALE 1:1 Dimensions in mm

Figure 3.37: Stringer strain gauges for Loc4 specimens.

For the skin gauges in Figure 3.38, strain gauges are located at the maximum

bending location of the skin.
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Figure 3.38: Skin strain gauges for Loc4 specimens.

To record the structural behavior and internal damage initiation, and progression,
four video cameras were used. Two cameras were located behind and on the east side of
the specimens for the internal close-up view at Loc4, and the other two cameras were
located at each side (the east side and west side) of the specimens for the overall side

view.

3.10 EXPERIMENTAL RESULTS — Loc4

Figure 3.39 shows the east side pictures of Loc4-1 and Loc4-2 test setup in the

South Powell Laboratory at UCSD. Based on the results from Loc4-1 test, in Loc4-2 test,
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shear tie was painted more broadly to cover the failure area in the shear tie, thereby

aiding observation of damage.

Figure 3.39: Loc4-1 (Left) and Loc4-2 (Right) test setup in South Powell Laboratory.

For Loc4 tests, the loading definition with six different loading levels is

summarized in Table 3.8.

85



Table 3.8: Loading protocol for Loc4 specimens.

Specimen ID = Load Level Manual Load Stop Definition
Pre-test 1/4 load of expected shear tie radius delamination force by FEA
L1 Shear tie radius delamination
L2 Initial to moderate damage on shear tie radius region
Loc4-1
L3 Shear tie web - Stringer hat contact
L4 Moderate damage on Stringer hat
L5 Shear tie fracture
Pre-test 1/4 load of shear tie radius delamination force in Loc4-1 tests
Loc4-2
L6 C-frame fracture

Before the main tests, the pre-test was conducted to check that all sensors were
active, and data recorded correctly. For the first specimen Loc4-1, loading protocol was
planned with a few load cycles, L1 to L5, correlated with the predicted key event
sequence as described in Table 3.8. Loc4-1 specimen was quasi-statically loaded to
observe the sequence of key event occurrence at each load level. For the second test
specimen Loc4-2, the loading protocol was planned with semi-dynamic one load cycle,

L6, to produce significant C-frame damage with fracture.

For each load cycle, the test was manually paused at the key events within the
limit of pre-decided expected load-level and displacement. When the loading was paused,
thorough visual inspection was conducted. After finishing all the tests, the major physical
events are carefully assessed through the load-displacement curve, strain data, and video

gxamination.
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The original loading protocol for Loc4-1 specimen was revised in the Powell
laboratory for the safety in observing internal damage events. L1 damage event is the first
major cracking sound hypothetically indicating delamination initiation by the low
interlaminar tensile strength of carbon/epoxy composite laminates. L1 test was stopped
several times at each successive cracking sound for visual inspection at Loc4 radius
section. Thus, a series of four L1 load cycles (L1-1 to L1-4) were applied. Later, major
cracking sound initiation point was assessed through the visual inspection, correlated
strain gauge data (strain softening) and video examination. L2 damage event is visually
confirmed crack initiation and propagation at the shear tie radius region from the Loc4
mouse hole to Loc3 (upward) and Loc5 (downward) respectively. L2 event observation
only relied on the video examination for safety, but L3 event is shear tie-stringer contact
directly captured by the contact sensor. Thus, combined loading protocol that was
actually applied is called L2L3. L4 damage event is moderate damage on the stringer hat
at Loc4 which is assessed only by the correlated strain gauge data showing a large strain
change. L5 damage is the visually confirmed significant shear tie damage with fracture.

Thus, combined loading protocol that was applied is called L4L5.

In Loc4-2_L6 test, the west load cell value showed the big discrepancy with the
west load cell values in the previous Loc4-1 tests as shown in Figure 3.40. Since the East
load cell was consistent with the prior Loc4-1 tests, an error in the West load cell was

suspected.

87
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Figure 3.40: Discrepancy of west load cell value between Loc4-1 and Loc4-2 tests.

In Figure 3.40, as the skin displacement, LP_Center was measured by the linear
potentiometer at the skin center shown in Figure 3.33. To verify the error in west load
cell in Loc4-2_L6 test, the strain data was checked in SG01 and SGO02, which were the
gages attached to the floor beam web as shown in Figure 3.31 and Figure 3.41. As shown
in the plot in Figure 3.41, the average value of SG01 and SG02 between Loc4-1 and
Loc4-2 tests shows very good agreement, further confirming the existence of error in the
West load cell measurement. Thus, using the strain gauge data, the scale factor of the
west load cell value in Loc4-2_L6 test was estimated as described in Figure 3.42. As
dividing the slope (0.148) of the linear fit of L1-1 strain-west load cell values by the

slope (0.062) of the linear fit of L6 strain-west load cell values, the scale factor was
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estimated as 2.408. This scale factor was applied to revise the load data in test Loc4-
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Figure 3.41: Strain gauge data check on I-beam.
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Figure 3.42: Scale factor for west load cell value of Loc4-2_L6 test.

During Loc4-2_L6 test, the heat-shrink connection of the linear potentiometers
(LPs) was kinking shown in Figure 3.43. In the right figure, as measuring the degree
between the red line aligned with the LP rod and the white line aligned with the kink line
by two yellow and green dots, the max kinking degree of LP_Center is estimated as 7.24°
at the C-frame failure event with maximum stroke. The value of cosine 7.24° is 0.992.
Thus, the kinking phenomenon causes maximum 0.8% error in the displacement data

which is small enough to be negligible.
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Loc4-2 L6

Figure 3.43: LP connection kinking of Loc4-2_L6 test at C-frame failure.

3.10.1 LoAD-SKIN DisPLACEMENT CURVE AND KEY EVENT SUMMARY

The load-skin displacement curves for both Loc4-1 and 4-2 specimens are shown
in Figure 3.44 with main events associated with key failure modes noted. For the 1% panel
(Loc4-1), under successive increasing loading, the initial stiffness in each load cycle is
observed to soften, a indicated by the decreasing initial slope. L6 loading was applied for
the 2" panel (Loc4-2) in one single load cycle up to the development of significant C-
frame damage with fracture. The 2" panel’s key event sequence was assessed mainly by

the video and strain data examination. In both tests, stiffness is observed to decrease at
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each key damage event. Shear tie and C-frame fracture causes a big load drop and is the

final failure mode.
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Figure 3.44: Load vs center skin displacement for all Loc4 tests.

The key physical event information is summarized in Table 3.9. The identical key

events and event sequence are observed in both Loc4-1 and Loc4-2 tests. Comparison of

the load level at each key event, between Loc4-1 and Loc4-2 tests, shows 7% to 20 %

difference. The maximum difference (16% to 20%) is shown between events in Loc4-

1 L2L3 and Loc4-2_L6. Considering repeated loading and unloading from L1 to L5,

especially of L1-4, in Loc4-1 tests inducing accumulated damages in Loc4-1 specimen,
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the load level between Loc4-1 and Loc4-2 tests is quite close overall. Therefore, these

tests are roughly equivalent to each other.

Table 3.9: Loc4 key phenomena.

Loc4-1 Loc4-2
Load LP_C Load | Load LP_C Load Key Event
Cycle  (mm) (kN) | Cycle | (mm) | (kN)
i Not clearly Initial major cracking sound
L1-4 captured 3.92 | 1736 (Shear tie radius delamination)
5.88 | 21.62 7.22 | 27.29 | Crack growth init on shear tie radius region
L2L3
8.22 | 27.27 10.12 | 32.47 | Shear tie web - Stringer hat contact
12,17 1 38.10| L6 | 13.91 | 43.38 | Stringer hat damage initiation
L4L5 | 25.33 | 62.81 26.68 | 67.61 | Shear tie web fracture
26.52 | 50.47 27.89 | 57.14 | C-frame damage initiation
- - - 31.99 61.97 | C-frame fracture

3.10.2 CRACKING INITIATION — SHEAR TIE RADIUS DELAMINATION

The first major cracking sound was assumed delamination initiation due to the
low interlaminar tensile strength of 42.29 MPa to 51.82 MPa for carbon/epoxy composite
materials [11]. During the series of L1 loading, delamination of the shear tie radius region
at the lower and upper side of Loc4 mouse hole was assessed by the combination of
audible cracking sound, visual inspection, and strain data from back-to-back strain
gauges (SG12-13 and SG15-16) near the radius region. The location of the gauges is

shown in Figure 3.36 and Figure 3.45.
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For Loc4-1 tests, the paint chipping point from the radius region was not clearly
captured by the video record, but after Loc4-1 L1-4 test, through the visual inspection,
the paint chipping was observed at the radius region of the lower and upper side of Loc4
mouse hole as shown in Figure 3.45. For the Loc4-2_L6 test, this initial damage mode
was assessed with the video record, capturing the paint chipping at Loc4 upper mouse
hole section. Figure 3.45 shows additional close-up view after Loc4-1_L4L5 test
capturing shear tie radius delamination and fiber crushing damage by the direct

compressive load from the bumper.

N\

$G12
(SG13 on
Back Side)

Paint Chipped at |
Shear Tie

Radius Region
after L1-4 Test

SG15
(SG16 on
Back Side)

Figure 3.45: Paint chipping and delamination at shear tie radius region at upper (Left) and
lower (Right) side of Loc4 mouse hole after Loc4-1_ L1-4 with close-up view after Loc4-
1 _LALS.
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All strain data were examined in this stage. The strain data from the back-to-back
strain gauges, SG12-13, and SG15-16, showed the highest strain level among all strain
gauges. As shown in Figure 3.46 and Figure 3.47, the linear slope of strain curve starts to
be softened with successive cracking sound events. The cracking sound events are
highlighted with orange-colored circles in both Loc4-1 and Loc4-2 tests. For the Loc4-
2_L6 test, initial cracking sound events are highlighted with orange-colored circles, then
the first major cracking sound is highlighted with a yellow triangle based on the video
record examination. After the final mark of the cracking sound including the major tick
sound marks in the plots, cracking sound keeps occurring up to the moment of final
catastrophic damage. In the strain plots, the bending behavior of the region is also
captured showing the negative strain from SG12, SG15 and the positive strain from

SG13, SG16.
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Figure 3.46: Strain curves from SG12-13 back-to-back gauges near shear tie radius region
at upper side of Loc4 mouse hole.
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Figure 3.47: Strain curves from SG15-16 back-to-back gauges near shear tie radius region
at lower side of Loc4 mouse hole.

3.10.3 CRACK GROWTH ALONG THE SHEAR TIE RADIUS AND SHEAR TIE WEB-

STRINGER HAT CONTACT

In Figure 3.48, after Loc4-1_L2L.3 and L4L5 tests, based on visual inspection, the
shear tie radius delamination and fiber crushing damage are captured along the shear tie
radius region showing crack growth due to the increasing direct compressive load from

the bumper at Loc4.
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Figure 3.48: Shear tie radius delamination and fiber crushing damage with crack growth
after Loc4-1_L2L3 (Left) and L4L5 (Right) test.

In Figure 3.49, the shear tie radius crushing was capture at the maximum load in
Loc4-1_LA4L5, and after Loc4-2_L6 test as well. During Loc4-1 L2L.3 and Loc4-2_L6
loading, the crack growth initiated from Loc4 shear tie radius section and grew upward

and downward along the shear tie radius region, as observed by the video examination.
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Figure 3.49: Shear tie radius delamination and fiber crushing damage with crack growth at
maximum load of Loc4-1_LALS5 (Left) and after Loc4-2_L6 (Right) test.

All strain data out to the final failure event were examined in this stage. The strain
data from the back-to-back strain gauges, SG12-13, and SG15-16, showed the highest
strain level. The strain curves in Figure 3.50 and Figure 3.51, show the crack growth
initiation point, marked with a green circle, which is near the maximum strain value in

the curves. Also, the contact between shear tie web and stringer hat at Loc4 was detected
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by the contact sensor in L2L3 and L6 loading notified with a red diamond in Figure 3.50

and Figure 3.51.
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Figure 3.50: Strain curves from SG12-13 back-to-back gauges near shear tie radius region
at upper side of Loc4 mouse hole.
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Figure 3.51: Strain curves from SG15-16 back-to-back gauges near shear tie radius region
at lower side of Loc4 mouse hole.

The locations of SG06, SG08, SGO7, and SG14 are on the stringer upper and
lower sides, stringer hat, and shear tie web near the mouse hole section, respectively, at

Loc4 as shown in Figure 3.32, Figure 3.37, and Figure 3.52.
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Figure 3.52: Strain gauge location (SG06, SG07, SG08, and SG14) at Loc4.

The shear tie radius crack growth occurred upward and downward from Loc4 is
also captured in SG06 and SGO07 data. In Figure 3.53 and Figure 3.54, at the shear tie
radius crack initiation points, highlighted with a green circle. The large strain drop
abruptly occurs as the stress was released at the locations on stringer while shear tie

radius crack grows accompanying with the shear tie radius crushing damage.

102



SGO6 vs LP_Center
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Figure 3.53: Strain curves from SGO06 installed on stringer upper side at Loc4.
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Figure 3.54: Strain curves from SGO7 installed on stringer hat at Loc4.

The nearest strain gauges from the contact sensor at Loc4 are SG07 and SG14.
The locations of SG07, and SG14 are on the stringer hat, and shear tie web near the
mouse hole section, respectively, at Loc4 as shown in Figure 3.52. The contact between
shear tie web and stringer hat (indicated by contact sensor) is highlighted in the SG07 and
SG14 strain curves. As shown in Figure 3.54 and Figure 3.55, from the contact point,
marked with a red diamond, the strain starts to increase stiffly due to the local high

contact stress.
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Figure 3.55: Strain curves from SG14 installed on shear tie web near mouse hole section at
Loc4.

3.10.4 STRINGER HAT DAMAGE INITIATION AT Loc4 BY CONTACT

During L4L5 loading, due to the shear tie-stringer hat contact, stringer damage
occurred with fiber failure. Figure 3.56 shows the cut stringer hat after Loc4-1 L4L5 test.
The stringer hat damage initiation was estimated in the strain data on stringer hat, and
stringer side region (SGO07, and SG06-08) shown in Figure 3.57 and Figure 3.58 marked

with a brown square.
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~ Cut Stringer
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Figure 3.56: Stringer cut by the shear tie web contact after Loc4-1_LA4LS5.

The locations of SG07, and SGO08 are on the stringer hat and lower side,
respectively, at Loc4 as shown in Figure 3.52. In Figure 3.57 (SGO07 installed on Stringer
hat at Loc4), the stringer hat damage initiation, marked with a brown square, shows a
drop in strain as the local stress is released due to cutting of the stringer hat by shear tie

web penetration.
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SGO7 vs LP_Center
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Figure 3.57: Strain curves from SGO07 installed on Str. hat at Loc4.

Figure 3.58 shows damage accumulation in Loc4-1 tests and subsequent L1 to L5
tests are passing through where last one left off. In Figure 3.58 (SGO8 installed on
Stringer lower side at Loc4), at the stringer hat damage initiation, marked with a brown
square, the strain slope starts to be softened as the local stress is released due to cutting of

the stringer hat by shear tie web penetration.
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SGO8 vs LP_Center
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Figure 3.58: Strain curves from SGO08 installed on Str. lower side at Loc4.

3.10.5 CATASTROPHIC FAILURE ON SHEAR TIE AND C-FRAME

Figure 3.59 shows the extensive internal damage of the Loc4-2 specimen after L6
test. In the last stage of loading, key failure occurred in shear tie and C-frame with abrupt

fracture (fiber failures and large size crack formation) as shown.
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Figure 3.59: Extensive shear tie, stringer, and C-frame damage after Loc4-2_L6 test.

After the stringer hat damage and at the maximum load of L4L5 and L6 loading,
the shear tie web fracture occurred with the extensive shear tie web cracks propagating
diagonally from the two round corners of Loc2 mouse hole to Loc3 and to the floor joint

respectively shown in Figure 3.60.
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Figure 3.60: Extensive shear tie damage at maximum load in Loc4-1_L4L5 test (Left) and in
Loc4-2L6 test (Right).

The abrupt shear tie web fracture was also captured from the strain curves from
SG10-11 and SG14. The locations of SG10-11 and SG14 are shown in Figure 3.36 and
Figure 3.60. The abrupt and large strain change is indicated by a yellow square mark in
Figure 3.61 to Figure 3.63. The back-to-back SG10-11 is the nearest strain gauges from
the shear tie web crack. In Figure 3.61 and Figure 3.62, catastrophic shear tie web
fracture accompanies with abrupt change of the bending strain reversely at the back-to-

back strain gauge.
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Figure 3.61: Strain curves from SG10 near shear tie radius region at lower side of Loc2

mouse hole.
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Figure 3.62: Strain curves from SG11 near shear tie radius region at lower side of Loc2

mouse hole.

The SG14 is located at Loc4 shear tie mouse hole web, the nearest location from

stringer contact point. In Figure 3.63, after shear tie-stringer contact, due to the

interaction between shear tie web and stringer hat, the curved shape at SG14 along the

shear tie primary axis is converted reversely to its original curved shape showing

compressive strain in SG14. At shear tie web fracture, the compressive strain is released

abruptly, and abrupt increasing tension strain is shown. It is caused

between stringer and C-frame outer flange. The stringer behavior pus

by direct contact

hing the C-frame

outer flange and interaction between the components at Loc4 mouse hole will be

introduced in next description about C-frame failure (pg. 115-116).
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Figure 3.63: Strain curves from SG14 installed on ST. web near mouse hole section at Loc4.

After the shear tie web fracture, the C-frame fracture was followed with abrupt
cracking starting at a Hi-Lok bolt on the web of the loading location (Loc4) and at the
floor joint through the lower bolt line shown in Figure 3.64. Through the video
examination, when the shear tie web was fractured, the stringer (at Loc4) started to
contact and push the C-frame outer flange causing the C-frame local web twisting and
buckling (initiated at Hi-Lok bolts) as shown in Figure 3.65. Then, abrupt C-frame
cracking occurred starting at the Hi-Lok bolt on the C-frame web of Loc4 by stress
concentration under combined shear and bolt pulling as well as through the lower bolt
line of the floor joint under shear in the shear dominated boundaries as shown in Figure

3.64 and Figure 3.65.
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Figure 3.64: C-frame fracture at Loc4 and floor joint at maximum stroke in Loc4-2_L6.
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Figure 3.65: C-frame damage initiation at the Hi-Lok fastener on the web at Loc4 right
after shear tie web fracture in Loc4-1 LA4LS5.

All C-frame strain data was examined from gauges applied on C-frame. The SG
locations are shown in Figure 3.35 and Figure 3.64. All linear gauges were installed on
the inner surface of flanges at Loc2 and Loc6. The additional linear gauges at Loc4, SG-
FN and SG-SN, were installed in Loc4-2 test. The rosette gauges, RS1 and RS2 were

installed on the web at Loc2 and Loc6, respectively.

In Loc4-2_L6 test, the stringer contact and push phenomenon at the loading
location (Loc4), was captured in the strain curve from SG-FN as shown in Figure 3.66. In
early stage, the curvature of C-frame outer flange at Loc4 becomes flattened and reversal
to its original curved shape. After shear tie-stringer contact, due to the interaction

between shear tie web and stringer hat, which is shear tie web penetration to stringer hat,
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the curvature at SG-FN is recovered to its original curve shape. Right after shear tie web

fracture (highlighted with yellow square), the curvature of C-frame outer flange started to

be flattened and going to reversal again to its original curved shape because the stringer

kept pushing the outer flange at Loc4 until C-frame fracture.
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Figure 3.66: Bending strain curves from SG-FN on inner surface of outer flange at Loc4.

The highest strain is the in-plane shear strain from RS-01 at Loc2 (4 to 7.5 times

higher than the strain from the other gauges), and the second highest strain is the in-plane

shear strain from RS-02 at Loc6. The shear strain curves are shown in Figure 3.67.
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Figure 3.67: Shear strain curves from RS01 and RS02 at Loc2 and Loc6 respectively.

Also, as shown in Figure 3.68 and Figure 3.69, the bending strain level is lower at
Loc2 than at Loc6 overall. It means the region between Loc2 and Loc4 is more shear
dominated than the region between Loc4 and Loc6, as more shear load flowed above the

loading location (Loc4) to the floor joint as this is the stiffer load path.

From the strain plots in Figure 3.68 and Figure 3.69, the curvature of C-frame
flanges, at Loc2, was decreasing overall until C-frame fracture, and, the curvature of C-

frame flanges, at Loc6, was increasing overall until C-frame fracture.
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Figure 3.68: Bending strain curves from SG19 and SG20 at Loc2.
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Figure 3.69: Bending strain curves from SG21 and SG22 at Locé.

Through the video and strain examination, it turned out that the C-frame was
fractured by the stringer contact showing combined shear and bolt pulling (by local

twisting) failure modes.

3.10.6 EXTERNAL DAMAGE DETECTABILITY

As shown in Figure 3.70, after Loc4-2 test, there is no obvious external damage
sign on outer skin surface observable by the visual inspection except the rubber bumper

mark and paint chipping on bolts at the loading location.
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The second panel skin after test L6

Loc&=)
Lé

Figure 3.70: No obvious external damage sign on skin (red hatched areas are pre-existing
shim-to-skin disbanding from non-destructive testing).

In Figure 3.71, after Loc4-1 tests, barely visible skin crack was observed on outer
skin surface at Loc4. In Loc4-1 tests, there were successive loading and unloading

causing accumulated damages in the specimen. It may cause the skin crack.
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Figure 3.71: Barely visible skin crack observed at Loc4 in the first panel.

3.10.7 EXPERIMENTAL CONCLUSION — Loc4

The damage initiated at the loading location (Loc4) in the shear tie radius region
showing delamination and fiber crushing mode. As load increased, the crack grew
gradually along the shear tie radius from Loc4 upward and downward. Shear tie web-
stringer hat contact occurred (see Figure 3.72) which led to cutting of the stringer hat due
to the shear tie web penetration. The penetration of the shear tie into the stringer hat
caused locking of the shear tie and connected C-frame, thereby preventing rotation and
lateral movement. With further loading, the extensive shear tie web diagonal cracks

occurred abruptly between the loading location and the floor joint. Lastly, the abrupt C-

121



frame fracture was followed due to the stringer contact at Loc4 with cracks beginning at a
Hi-Lok bolt on the web as well as along the lower bolt line of the floor joint in the shear
dominated zone between the loading point and the upper floor beam boundary (through

stiffest load path).

Shear Tie

Contact & Lock

Stringer

Figure 3.72: Stringer-shear tie contact, shear tie penetration, and locking C-frame.

Energy absorption comparison is possible from the load vs displacement curves.
For the combined load history for the 1% generation Frame04-1 and Frame03
experiments, the energy required to produce the final state of damage (C-frame failure)
was 1811 J per frame as shown in Figure 3.73 [8]. The energy was determined by

calculating the area under the load-displacement curve as shown.
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Figure 3.73: Frame03 and Frame04-1 combined loading and energy per frame [8].

As shown in Figure 3.74, the Loc4-2 loading curve and energy is plotted, and, in
Table 3.10, the energy required at each key event is summarized. For the final state of

damage (extensive C-frame and shear tie fracture), the required energy is 1389 J.
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Figure 3.74: Loc4-2 loading curve and energy.
Table 3.10: Energy required at each key event.
Skin disp. Load Energy
Key Event
Y (mm) (kN) )
Major Cracking Sound Init (ST Radius Delam) 3.9 17.36 34.4
ST Radius Crack Grw Initi 7.2 27.29 110
ST-Str Contact 10.1 32.47 196
Str Hat Dmg Initi 13.9 43.38 342
ST Web Fracture 26.7 67.61 1066
C-frame Dmg Initi 27.9 57.14 1141
C-frame Fracture 32.0 61.97 1389
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The typical mass of GSE ranges from 3000 kg (belt loader) to over 15000 kg
(cargo loader), and its velocity ranges 0.5 m/s to 1 m/s [8]. When the high mass and low
velocity (specifically at 0.5 m/s) impact is applied to aircraft, the kinetic energy ranges
from 375 J to over 1875 J. The reasonable energy boundaries for a GSE blunt impact
were estimated in a range between 1000 J to 3000 J [14]. Therefore, the blunt impact by

the accidental contact of a heavy cargo loader leads to the significant internal damage.

3.11 SPECIFIC SETUP FOR LOC3 TESTS

Like Loc4 test-set, to measure the values of the displacement, load level, and
strains as well as to monitor the shear tie-stringer contact occurrence, linear
potentiometers (LPs), load cells (LCs), strain gauges (SGs), and contact sensors (CSs)
were installed. The linear potentiometer installed on the inner surface of skin at Loc3, but
during the Loc3-2 test, the target parts were disbanded from the skin. Therefore, the
linear potentiometers installed on the vertical loading frame at the loading position
(Figure 3.75) were used to measure displacement as named external displacement. The
contact sensors (CSs) were installed using thin copper tape positioned between shear tie
and stringer at Loc2 and Loc4 to indicate when the stringer makes physical contact with

the shear tie during loading.
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Figure 3.75: Linear potentiometers (LPs) for the external displacement.

In Loc3 specimens, the strain was monitored by 22 linear strain gauges (SGs) and
2 rosettes (0°, 45° and 90°). By the section force and stress analyses from the preliminary
finite element models, strain gauge locations were determined based on the critical spots.

All SG locations are shown in Figure 3.76 to Figure 3.79.
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LOCATION 3 STRAIN GAUGES
C-FRAME

Dimensions in mm

Figure 3.76: C-frame strain gauges for Loc3 specimens.
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Figure 3.77: Shear tie strain gauges for Loc3 specimens.
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Figure 3.78: Stringer strain gauges for Loc3 specimens.
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Figure 3.79: Skin strain gauges for Loc3 specimens.

3.12 EXPERIMENTAL RESULTS — Loc3

The experimental data for Loc3 were post-processed and interpreted by Wiggers
for the final report to the FAA. Based on her analysis, summarized here, the key physical
phenomena and damage mechanism are introduced while modifying some observation
such as shear tie radius delamination occurrence which is hard to detect in extensive and

abrupt radial crushing, and C-frame failure mechanism.

Most of all, from the early stage of the Loc3-2 test, complex delamination failure
occurred between the stringer flange (at lower Loc2 as well as upper Loc4) and skin in

the co-cured outer panel as shown in Figure 3.80 and Figure 3.81.
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Figure 3.80: A-scan results after Loc3-2 test.

Stringerat Loc4 Stringerat Loc2

Figure 3.81: Visible skin-stringer disbond after Loc3-2 test.
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From ultrasonic A-scan results (Figure 3.80), the skin-stringer disbond initiated
both at the panel's center and at the side ends (stringer free edges), and it may likely not
occur in case of a wide panel along stringer direction with multiple shear ties and C-
frames. Moreover, this disbond did not occur in Loc3-1 test. It accompanied the crack at
stringer heel in the very early stage of the loading influencing the structural response.
Due to this, the event of shear tie-stringer contact occurred earlier with less shear tie

damage in Loc3-2 test by comparison with the Loc3-1 test results.

It was difficult to precisely quantify the damage progression and extent of skin-
stringer disbond and correlating with strain data. Moreover, this failure influenced other
components’ failure by changing the load path in the complicated structure. Nevertheless,
these parts are not described further in this thesis to be more focused on other key

damage on shear tie, stringer hat, and C-frame.

For Loc3 tests, the loading definition with six different loading levels is

summarized in Table 3.11.
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Table 3.11: Loading protocol for Loc3 specimens.

Specimen o
D Load Level Manual Load Stop Definition
Pre-test 1/5 load of expected shear tie corner crack
L1 Damage at shear tie corner near Loc2 stringer (Delamination)
Loc3-1
L2 Entire shear tie radius damage (crack all through ST radius at Loc3)
L3 Stringer hat damage (past contact between stringers and shear tie)
Pre-test 1/3 load of the pre-test in Loc3-1 tests
Loc3-2

L4 C-frame fracture

Before the main tests, the pre-test was conducted to check that all sensors were
active, and data recorded correctly. For the first specimen Loc3-1, loading protocol was
planned with a few load cycles, L1 to L3, correlated with the predicted key event
sequence as described in Table 3.11. L1 damage event is the first major cracking sound
hypothetically indicating delamination initiation by the low interlaminar tensile strength.
L2 damage event is visually confirmed shear tie corner crack all through the entire shear
tie radius region. L3 damage events are a second crack on the shear tie web above the
radius region, and the stringer hat damage by contact stress between stringers and shear
tie. Loc3-1 specimen was quasi-statically loaded to observe the sequence of key event
occurrence at each load level. For the second test specimen, Loc3-2, the loading protocol
was planned with one semi-dynamic load cycle, L4, to produce significant C-frame

damage with fracture.

For each load cycle, the test was manually paused at the key events within the

limit of pre-decided expected load-level and displacement. When the loading was paused,
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thorough visual inspection was conducted. After finishing all the tests, the major physical
events are carefully assessed through the load-displacement curve, strain data, and video

examination.

3.12.1 Loc3-1 DAMAGE SEQUENCE

The load-displacement curves for Loc3-1 tests are shown in Figure 3.82 with the

main event notification.

Shear tie crack nearradius | Shear tie fracture near C-frame

= = Pridiction
=Loc3-1 L3
407 Lock1_L2
—Loc3-1_L1
% Contact at Loc2
* Contact at Locd
&  Cracking sounds
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®  Loud sounds ¢ ~ o' W
Othar evints - Soo ety

20

Force [kN]

Shear tie — stringers contact
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1] 2 4 [} a 10 12 14 16 18 20
ExtDisp [mm]

Figure 3.82: Force vs external displacement for Loc3-1 tests.

After Loc3-1 L1, there was some paint chipping as shown in Figure 3.83, but it

was hard to detect the obvious signs of shear tie delamination through visual inspection.
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By monitoring the load-displacement curve and strain curves, the softening was
confirmed especially the strain curves from (back-to-back) SG16-17 as shown Figure

3.84.

SG16
(SG17 on
Back Side)

Figure 3.83: Paint chipping observed on Loc3 shear tie radius after Loc3-1_L1.
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Figure 3.84: No evidence of radius delamination in strain curves during Loc3-1_L1.

The first load drop occurred in Loc3-1_L2, because of a shear tie crack on entire
radius region abruptly as shown in Figure 3.85. This is due to fiber crushing by the direct
compressive loading to the shear tie, and the development of radius crushing involves
delamination (it is found the previous large-scale and small-scale tests [8,11]). This crack
did not penetrate through the entire thickness, as shown in the west side picture of Figure

3.85.
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Shear tie crack as seen from East side No crack as seen from West side

Figure 3.85: Shear tie crack observed in Loc3-1_L2.

The locations of back-to-back strain gauges near shear tie radius are shown in
Figure 3.85. The back-to-back strain gauges showed abrupt strain change as the crack

propagates along the corner as shown in Figure 3.86.
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Figure 3.86: Shear tie strain vs load for Loc3-1_L 2.

During Loc3-1_ L3 testing, the second crack occurred on the shear tie web below

the outer flange of C-frame (Figure 3.87). It was due to shear tie web buckling by the

eccentric (effect of the eccentric shear center of open C section) compressive loading. By

this damage, stringers 2 and 3 (at Loc2 and Loc4, respectively) contacted shear tie, as

indicated by the contact sensors. As load increased further, stringer hat was cut by shear

tie web penetration (Figure 3.88). As stringer hat damage progressed, the damage

initiated in lower Locl and upper Loc5 shear tie radius (Figure 3.89).
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Figure 3.88: Stringer hat damage after Loc3-1 L3.
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Upper Loc5 Lower Loc1

Figure 3.89: Shear tie radius damage at lower Locl and upper Loc5 after Loc3-1_L3.

After Loc3-1 tests, there was no obvious external damage sign on outer skin

surface by the visual inspection except rubber bumper mark and paint chipping on bolts.

3.12.2 Loc3-2 DAMAGE SEQUENCE

The load-displacement curve for Loc3-2 test is shown in Figure 3.90 with the

main event notification.
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Figure 3.90: Force vs external displacement for Loc3-2 test.

During Loc3-2_Pre-test, due to a shake table controller mishap, the load level

achieved was somewhat equivalent to Loc3-1_L2. This resulted in shear tie crack along

radius region as shown in Figure 3.91. In close-up view of Figure 3.91, delamination was

captured in shear tie radius region as shown.
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Sheartie corner detail

Figure 3.91: Loc3-2_Preload damage — radius delamination detected.

Because of the mishap resulting in scarcity of data points, the test results of Loc3-
1 specimen were substituted for the preload results of Loc3-2 test. The key results are

described here after the event of shear tie-stringer contact as notified in Figure 3.90.

The pre-existing crack on shear tie radius region (from Loc3-2_Preload)
continued to increase, until complete fracture along the radius region as shown in Figure
3.92. This was captured on shear tie strain curves from back-to-back SG14-15 and SG16-
17 (Figure 3.92 and Figure 3.93) showing abrupt strain change. Simultaneous to this
catastrophic failure, a crack initiated on shear tie lower corner at Locl and upper shear tie

corner at Loc5, as observable on Figure 3.92.
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Figure 3.92: Complete fracture along the shear tie radius during Loc3-2_L4 test.
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Figure 3.93: Back-to-back SG14-15 and SG16-17.

Due to the skin-stringer disbond from the early stage of loading, with clear

evidence, the stringer hat damage occurred by the contact with shear tie, right after shear

tie radius fracture. This event occurred after the second crack on shear tie web in Loc3-1

tests.

As shown in Figure 3.94, stringer hat was cut by shear tie web penetration, and it

is captured in the strain curves from SG11 and SG12. Here, the strain curve from SG11 is

provided in Figure 3.95. The stringer hat damage initiation shows a drop in strain.
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Stringer hat crack propagating to
stringer 3 lower side

Figure 3.94: Stringer hat cut at Loc4 by shear tie penetration.
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Figure 3.95: Strain curve from SG11 installed on Str. hat at Loc4.

As load increased, the second crack occurred on the shear tie web below the outer
flange of C-frame (Figure 3.96). It was due to shear tie web buckling by the eccentric
(effect of the eccentric shear center of open C section) compressive loading. This was
captured on shear tie strain curves from back-to-back gauges, SG14-15 and SG16-17

(Figure 3.93) showing abrupt strain change.
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Figure 3.96: Second fracture on shear tie web due to buckling by eccentric compressive load
during Loc3-2_L 4 test.

With the second shear tie web fracture at Loc3 and increasing load, shear tie kept
penetrating stringers at Loc2 and Loc4 causing severe damages on both components until
C-frame failure. Figure 3.97 shows the damage mechanism leaving severe damage on

both components crushing each other.
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Figure 3.97: Shear tie crack propagation and stringer cut at Loc4 mouse hole.

When shear tie web was fractured secondly at Loc3, stringer at Loc4 contacted
and started to push the C-frame outer flange causing the C-frame local web twisting and
buckling initiated at a Hi-Lok bolt on the C-frame web at Loc4. Then, abrupt diagonal
web cracking occurred starting at the Hi-Lok bolt by stress concentration under combined
shear and bolt pulling (Figure 3.98). This mechanism was confirmed through video

examination, and it showed the exact same failure mechanism observed in Loc4 tests.

148



C-frame
crack

Figure 3.98: C-frame crack at Loc4 under combined shear and bolt pulling state.

The stringer-C-frame contact at Loc4 and Loc2 is confirmed the strain curves
from SG21 and SG19, respectively (Figure 3.99 and Figure 3.100). The location of SG19
and SG21 is shown in Figure 3.76 and Figure 3.98, and all linear gauges were installed
on the inner surface of flanges. After stringer contact, the curvature of C-frame outer
flanges at Loc4 and Loc2 started to be decreasing because the stringer kept pushing the

outer flanges.
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Figure 3.99: Bending strain curves from linear gauges at Loc4 flanges.
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Figure 3.100: Bending strain curves from linear gauges at Loc2 flanges.
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C-frame in-plane shear stress level needs to be checked from rosette RS1 and RS2

at Loc2 and Loc4, respectively.

After Loc3-2 test, through visual inspection, barely visible skin crack was
observed on outer skin surface at Loc3 skin bolt with rubber bumper mark and paint

chipping on bolts as shown in Figure 3.101.

e @] ©

Fiber damage

Figure 3.101: Barely visible skin crack at skin bolt after Loc3-2 test.

3.12.3 EXPERIMENTAL CONCLUSION — Loc3

Damage initiated at the loading location (Loc3) in the shear tie radius region
showing fiber crushing failure mode which involves delamination. As load increased, the

radius region was fractured abruptly in entire radius at Loc3, and then shear tie web
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fracture was followed due to buckling by eccentric compressive loading. This damage led
to cutting of the stringer hat as well as additional shear tie cracking at mouse hole due to
the contact and penetration between the components at Loc2 and Loc4. With further
loading, the increasing damage level at contact locations led to direct stringer contact
with the outer flanges of the C-frame. Lastly, the abrupt C-frame fracture was contact
induced failure due to direct stringer push to C-frame flange at Loc4 showing diagonal

cracking starting at the Hi-Lok bolt on the C-frame web.

3.13 EXPERIMENTAL CONCLUSIONS

To understand the damage formation and mechanism to more realistic composite
fuselage structures during HEWABI events near the floor joint, a series of large-scale
specimens were built, and blunt loading tests was conducted. The damage phenomena
were assessed including damage initiation, location, modes, sequence, extent, and
external damage detectability through the examination of video record, visual inspection,

A-scan, and strain data.

Damage initiated at the shear tie radius closest to the loading location, showing
combined delamination and fiber crushing failure modes. With further loading, shear tie-
stringer contact occurred. This contact leads to cutting of the stringer hat due to the shear
tie contact and penetration into the stringer hats, which subsequently prevents the C-
frame and shear tie assembly from deforming laterally. With further loading, extensive

shear tie and stringer hat damage occurred, leading to stringer-C-frame contact. Lastly,
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the C-frame was fractured by the stringer contact showing combined shear and bolt

pulling (by local twisting) failure modes.

The loading locations explored were quite stiff due to the floor structure
interaction. Shear dominated failure with significant internal damage in the shear tie,
stringer, and C-frame developed. However, the damage extent is more localized in
comparison with the 1% generation Frame03 (dynamic) test’s broad damage extent in
which large rotation of the C-frame resulted in damage near the far-away boundary
conditions fixtures [8, 11]. In the 2" generation test panels, the C-frame was stiffened
with continuous and thicker shear ties (2.5 mm thickness in the 1% generation vs. 3.5 mm
thickness in the 2" generation). Thus, the C-frame’s lateral movement and rotation was
minimized. In comparison with the 1% generation Frame01 and Frame02 (quasi-static)
tests, the same C-frame failure mechanism was observed without large rotation of C-
frame in these 2nd generation tests. That is because severe damage to the shear tie led to
contact between the stringer and C-frame and ultimately resulting in C-frame failure.
However, as shown in Figure 3.102, in the 2" generation specimen, the geometry of
component assembly at the mouse hole led to delay of stringer-C-frame contact as shear
tie contacted the stringer first and failure progressed for a while by the geometry

interaction.
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Shear Tie

Contact First

Stringer

Figure 3.102: Geometry interaction at mouse hole.

As studied through the large-scale experiments, the shear tie is the key component
governing damage extent influencing other components’ failure mode and the overall
structural behavior. Understanding the role of the shear tie, how design choices affect
subsequent damage modes under HEWABI events, allows for improved damage-resistant
designs, informed definition of damage extent for use in damage tolerance studies, and

knowledge about where inspection and repair focus must be applied.

For future work, the loading rate effect should be examined conducting true
dynamic tests for the 2" generation large-scale experiments. For skin-stringer disbond
observed in Loc3-2 test, multiple circumferential components with wider skin may be

considered.
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Chapter 3, in part is currently being prepared for submission for publication of the
material. Nam, Moonhee; Wiggers de Souza, Chaiane and Kim, Hyonny. Nam, Moonhee

was the primary investigator and author of this material.
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4 EXPERIMENT AND FE MODELING OF C-FRAME FAILURE

In the fuselage structure, the C-frame is a main load-bearing component
maintaining the cross-section geometry during operational loading and reacts against the
transverse load from HEWABI events. It resists the transverse load by reinforcing the
skin outer panel. If it is severely damaged, overall structural system is compromised
leading to possible failure during flight operation. Therefore, the investigation of C-frame
failure is of high importance, and it was not deeply studied (particularly, the analysis of)

as part of the 1% generation HEWABI research [8, 11].

From the results of large-scale experiments, several key failure modes were
observed in the C-frames shown in Figure 2.4, Figure 2.5, Figure 2.6, Figure 3.64, Figure
3.65, and Figure 3.98. In the 1%t generation Phase 1 panel tests and in the 2" generation
panel tests, after shear tie fracture, the C-frame failed by stringer contact, causing both
local cracking at these locations of high contact stress. In the 1% generation Phase 2
Frame03 test, after shear tie fracture, the C-frame failed by large rotation losing stability.
The faraway failure occurred near the boundaries along the load paths. In the 1%
generation Phase 2 Frame04-2 test, the C-frame failed by direct shear from the strong

shear ties [8, 11].

Through the observations across all large-scale tests conducted, the C-frame
failure can be classified with the presence of large rotation of the C-frame by the
influence of shear tie (the shear tie transfers the transverse load to C-frame as well as

stabilizes C-frame laterally) and interaction with stringer. In the 2" generation large-size
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test specimens, the large deformation (particularly rotation) of the C-frame did not occur
because of the usage of continuous and thicker shear tie reflecting the realistic design
found in some composite aircraft fuselage structures in current service. These stiffer
shear ties in the 2nd generation specimen also interacted with the C-frame in an
interlocking manner, due to shear tie edge to stringer hat penetration (see Figure 3.72),
such that global rotation of the C-frame was constrained. Shear tie stiffness can also
result in dramatically different failure modes, for example, in the 1% generation Frame04-
2 test, the strong discrete 7075 aluminum shear ties did not allow C-frame’s large
deformation. Those C-frames showed local failure initiated quite early in the test, at or
near a local bolt. On the other hand, in the 1% generation Frame03 test which had softer
and relatively weaker composite shear ties, losing discrete shear ties during the early
stage of the test loading allowed the large rotation of C-frames, and consequently C-
frames failed near the boundary fixtures. In Figure 4.1, the flow chart is described about

how C-frame failure could develop and how it is affected by shear ties.
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Prospectively: Continuous composite shear ties with mouseholes that avoided sharp shear tie edge to stringer
contact, i.e., direct contact with C-frame rounded corners, could lead to large deformation and rotation at
lower peak forces.

These have important aspects with regards to energy absorption, failure modes, and locations of failure
where inspections need to be concentrated.

Figure 4.1: C-frames failure development by the influence of three types of shear ties.

Here, research focused on C-frame failure will be described. Topics include (i)
combined bending-twisting failure observed in the 1st generation Phase 2 Frame03 test [8,
11] (ii) direct shear failure of the C-frame observed in Phase 2 Frame04-2 test [8, 11]. For
shear and bolt pulling loading states (by stringer contact and eccentric compression)
observed in the 2" generation Loc3 and Loc4 tests will be discussed at the end of Section

4.2 with the future work plan.
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4.1 BENDING AND TWISTING FAILURE OBSERVED IN FRAMEQO3 TEST

As shown in Figure 4.2, C-frames were fractured near boundary fixtures showing
large rotation in combined bending and twisting state by open C-section shear center
offset effect, after losing shear ties in the Fram03 test [8, 11]. This section is for
completing Frame03 FE simulation by updating frame element FE modeling definition
validated through element-level tests. Previous FE simulations included detailed study of
the shear tie progressive failure and how it affected global response of these HEWABI

test specimens [11], but did not include the final failure mode: frame failure.

Figure 4.2: Combined bending-twisting failure in C-frames [8,11].

4.1.1 C-FRAME ELEMENT-LEVEL TESTS

C-frame element testing is directly focused on inducing bending and combined
bending-twisting failure mode under simple geometry and loading conditions. Since the
C-frame members are difficult and costly to produce, a short section of C-frame beam
was inserted into an extension arm (aluminum box beam) and tested as a combined fixed-

end cantilever beam. The test setup is shown in Figure 4.3. For bending test, 2 point load
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was applied preventing twist. On the other hand, for combined bending-twisting test, one
point load was applied through a position away from the shear center, thereby inducing

twist.

Specimen

Closeup 2 ! Closeup [
Vi : ;

AL. Extension
Arm

AL. Extension
Arm

C-Frame
Element{
SpecimenSiime s

Figure 4.3: C-frame bending and combined bending-twisting tests.

Cytec X840/Z60 6k woven carbon/epoxy prepreg was used, and the C-frame’s

section geometry and layup stacking information is shown in Figure 4.4.
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Figure 4.4: C-frame section information (Dimensions in mm).

The specimen was cut to length and aluminum tabs were bonded to the outside of
the flanges (visible in Figure 4.5) with structural epoxy. These served to fill the gap
between the specimen and fixture, as well as provide a padded-up flange to avoid failure

due to the wedge-clamping stresses.
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Figure 4.5: Specimen preparation; wedge grip detail (Left) and specimen with end tabs
bonded to outer flange (Right).

Figure 4.6 shows the location of applied strain gauges. Seven linear strain gauges
and one rosette were applied on bending test specimen. Nine linear strain gauges and one
rosette were applied on combined bending-twisting test specimen. Back-to-back strain

gauge pair was applied to detect the bottom flange buckling mode.

[ 394mm | 40.6mm | : 40.6mm | 39.4mm
A | | === ===

Outside of Flange Only

Strain Gauge

1 Rosette B (OutsideOnly) |

Strain Gauges
(Back to Back)

Back-to-Back
Near Fixed Jt. Mid-Span®_,

Figure 4.6: Strain gauge location for bending test (Left) and for combined bending-twisting
test (Right).
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The overall specimen configuration and layout are shown in Figure 4.7. Load and
displacement data were collected from the load-cell and string pot (labeled as pot2) as

shown. In combined bending-twisting tests, the load point location is different between

A4 and D1. More torsion was applied in D1 test.

(Dimensions in mm) P (Collected by Load Cells)

850.90
H‘I 76.20 469.90—— =

[ 1L

L TestD1 Test A4
-—15850——' 508.00 P P

Deflection (Collected by Pot2)

P T
N M
+| + | )
| I # ‘——11.68mm
+| +

— Shear Center

L 1l
i _lé

——43,43mp —|

58.57mm
g ’_X—', y — 38.10mm

Pot2 Location for Bending Test A1, A2, A3 =

Pot2 Location for Bending-Twisting Test A4, D1 Point Load Location for Test A4, D1

Figure 4.7: Overall configuration and location of point load and string pot.

C-frame tests were conducted with quasi-static loading. As load increased,

buckling of the compression flange, and stretching of the tension flange were observed as

shown in Figure 4.8.
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Load
Direction

Buckling

Figure 4.8: Loaded specimen view; bottom flange buckling prior to failure.

As shown in Figure 4.9, at the end of tests, the abrupt compression flange fracture
with fiber failure occurred adjacent to the fixed-support end and the arm joint for bending

and combined bending-twisting test, respectively.
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Bending- Twisting Fail. Location:
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Figure 4.9: Compression flange fracture with fiber failure.

During tests, from the early stage to the end of each test, some amount of slip
occurred at the contact surfaces between specimen and aluminum rectangular tube at both
wedge grip joints (see Figure 4.10). It was the key challenge to overcome in the
interpretation of test data. Although C-clamp and shear keys were applied at these joints,
slip could not be completely stopped. It affected test results significantly and made hard

to compare test results with FEA results.
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Figure 4.10: Challenges to controlling slip and adhesive detachment at joints.

4.1.2 FE MODEL FOR C-FRAME BENDING AND TWISTING TEST

Abaqus/Explicit solver was used for the progressive failure analysis implementing
the Hashin-Rotem failure criterion to analyze the C-frame composite component. As
shown in Figure 4.11, 8 node reduced integration continuum shell (SC8R) elements, with
hourglass control, were applied to composite C-frame with 2.54 mm (0.1 in) mesh size. 8
node reduced integration solid (C3D8R) elements were applied to the metal parts with
enhanced hourglass and distortion control, which is to prevent spurious deformation

modes and excessive element distortion.
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Figure 4.11: Meshed FE model.

In Figure 4.12, applied boundary conditions are shown with tie-interaction at

interfaces.

A2 Case of Bending

At Load Tip :
U1 Displacement,
U2 Constraint

e R D1 Case of Bending-Twisting

. | At Load Tip :
' | U1 Displacement,
U2 Constraint

At Support :
All DOF Constrained

At Support :
All DOF Constrained

Tie Interaction

was applied
at interfaces.

Figure 4.12: Applied BCs and tie-interaction at interfaces.
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4.1.3 RESULT COMPARISON (TEST VERSUS FEA) AND CONCLUSION

The load-displacement curve comparison is shown in Figure 4.13 for bending and
combined bending-twisting case. The curves show the significant discrepancy in the
stiffness and ultimate strength between test and FEA results. It is mainly caused by the
unknown boundary condition related to the friction and slip at the connection joints as
mentioned previous section. In the plot, the hand-calculation prediction is from simple
elastic load-deflection formula for bending using the effective modulus, E1, under

assumption of homogeneous and isotropic material, and simplified C-section geometry. It

shows good agreement with FEA in the initial stiffness as shown.

Load vs. Displacement
T T T T T

Eracking sound

racking so
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2 4 6 8 10 12 14
DisplacementatPot2 (mm)

Figure 4.13: Load-displacement curves for bending and combined bending-twisting case.

As shown in Figure 4.14, the FE-predicted deformed shape plot shows the

buckling and stretching mode in compression and tension flange, respectively, which

16
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T
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matches the experimentally-observed deformation shape prior to failure.
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Figure 4.14: Buckling and stretching deformation shape in bending (Left) and combined
bending-twisting (Right).

From strain curves, the buckling mode as well as stretching mode were confirmed
in compression and tension flange, respectively, prior to failure. The strain gauge
locations are shown in Figure 4.6. In the left plot of Figure 4.15 and Figure 4.16, the
buckling mode in bottom flange was confirmed in both measured and computational
(back-to-back) strain curves showing diverging behavior. In the right plot of Figure 4.15
and Figure 4.16, the stretching mode in top flange was confirmed in both measured and
computational strain curves. The FE-predicted strain curves qualitatively agree with

measured strain curves in both buckling and stretching modes.
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Bending Test A2 - Back to Back Strain on Bottom Flange vs. Load

Bending Test A2 - Strain on Top Flange vs. Load
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Figure 4.15: Buckling in compression flange and stretching in tension flange of specimen Az2.

Bending-Twisting Test D1 - Back to Back Strain on Bottom Flange vs. Load

Bending-Twisting Test D1 - Strain on Top Flange vs. Load
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Figure 4.16: Buckling in compression flange and stretching in tension flange of specimen D1.

The FE model predicted the fiber failure and corresponding failure locations right

after the maximum reaction force in FE simulation. In the bending case, as shown in

Figure 4.17, the FE model predicted the fiber te

nsion failure in the tension flange at the

fixed support which is different from the results in bending tests. On the other hand, in

the combined bending-twisting case, as shown in Figure 4.18, the FE model predicted the
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fiber compression failure in the compression flange close to the arm joint showing

agreement with the test results.

Failure mode right after maximum reaction force:
* Almost all plies (12 layers out of 14) are fully damaged in  Fiber tension damage in 1 and 2 direction (Damage index:

the tension flange at fixed support. 0.95); The model did not predict the failure location in the
* No element deletion but sudden deformation at the test.
location

Failure Location
in Bending Test .
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Figure 4.17: Failure prediction in bending case.
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Failure mode right after maximum reaction force:

» Almost all plies (10 layers out of 14) are fully damaged in Fiber compression damage in 1 and 2 direction (Damage

the compression flange at arm joint. index: 0.95); No element deletion because not all plies are

* No element deletion but sudden bulge at the location fully damaged. The model predicts the failure location in the
test.
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Figure 4.18: Failure prediction in combined bending-twisting case.

In conclusion, although the FE model refinement was processed with
implementation of Hashin-Rotem failure criterion, the FE model results show significant
discrepancy between tests and FE results in the stiffness and ultimate strength. However,
buckling and stretching modes in the compression and tension flanges were captured in
FE simulation from the computational strain results (the computational strain curve
qualitatively agrees with the test results). The FE model predicts the failure location and
compression fiber failure mode for combined bending-twisting test but cannot predict the

correct failure location for bending test.

It is important to eliminate or minimize uncertainty at boundary fixtures. To
eliminate uncertainty in connections, Heimbs [21] modeled cured epoxy adhesive applied

at the interface between a specimen and fixture to cover its compliance under load, and a
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contact formulation with friction coefficient of 0.5 was applied at the interface between
the adhesive and the metal surface in the fixtures. To prove effect of the boundary
condition by including slip phenomenon observed in tests, hypothetical wedge pressure
and friction coefficient were applied at connection joints in bending failure FE

simulation. As shown in Figure 4.19, the FE model predicted the correct failure location.
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Figure 4.19: Effect of boundary condition including slip phenomenon.
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4.2 DIRECT SHEAR FAILURE OBSERVED IN FRAMEO4-2 TEST

4.2.1 C-FRAME FAILURE MECHANISM OBSERVED IN FRAMEQ4-2 TEST

As shown in Figure 4.20, abrupt fracture in C-frame by the direct shear from the

strong shear tie was observed in the previously conducted 1st generation Fram04-2 test

[8, 11].

Aluminum 7075 Shear Ties
254 mm

Complete Failure in Frames

Figure 4.20: Direct shear failure in C-frames [8,11].

The C-frame damage mechanism was summarized from the frame by frame
examination of the high speed video record as shown in Figure 4.21. As observed in
frame number 1, a very small crack was initiated at the C-frame upper radius corner near
the shear tie edge corner point. Then, in frame numbers 2 and 3, the crack can be
observed to grow through the first bolt and along the shear tie web edge (along the bolt

line) by web local buckling from the eccentric compressive load. The reason the crack
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initiated one side and propagated to the other side is likely due to different BC at C-frame
ends. In frame number 4, the crack propagated through the last bolt to the C-frame upper
radius corner. In frame number 5, contact between the C-frame and stringer led to vertical

web cracking visible in the image.

Very small crack was initiated at Crack grew through the first bolt and along the shear tie web
C-frame upper radius corner . . .

near shear tie edge corner point edge by web local buckling from eccentric compressive load
(opposite west side view with (open C-section shear center effect).

figure #5 is provided in the last).

5 East Cam 5 West Cam

Figure 4.21: C-frame failure mechanism in the 1% generation Frame04-2 [8, 11].
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4.2.2 FE MoDEL FOR C-FRAME FAILURE IN FRAMEO4-2 TEST

As it is difficult to conduct element-level tests with equivalent boundary
conditions as the C-frame of the fuselage structure, structural-level finite element analysis

(FEA) was conducted and compared to the structural-level test data.

Starting with the baseline model made by DeFrancisci [8], the composite shear
ties were switched to strong 7075 aluminum shear ties. Abaqus/Explicit solver was used
for the progressive failure analysis implementing the Hashin-Rotem failure criterion to C-
frame composite components. For all composite components, 8 node reduced integration
continuum shell (SC8R) elements, with hourglass control, were applied. The global mesh
size was 19 mm based on the mesh sensitivity study in previous research [8]. Importantly,
as shown in Figure 4.22 and Figure 4.23, the fasteners were modeled following the
effective fastener modeling scheme established by DeFrancisci [8] as strips with tie
constraints to contacting surfaces between C-frames and shear ties. This was done as a
low-cost alternative to modeling each individual fastener in all the connections between
the C-frames and shear ties. The 17.8 mm (0.7 in) width of each fastener strip partition
was applied, and a reduced strength partition was applied below the fastener strip

partition with 2.54 mm (0.1 in) mesh size as shown.

176



Reduced strength
properties by 1.87
on plies 1 and 12

Ply 12
Ply 11

Ply 2

Reduced strength Ply 1
properties by 1.435

on plies 2 and 11

Figure 4.22: Effective fastener model reduced strength at outer plies [8].
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Figure 4.23: C-frame effective fastener modeling.
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4.2.3 FEA RESULTS COMPARISON TO TESTS AND DISCUSSION

The load-displacement curve comparison between the experimental data and FEA
result is shown in Figure 4.24. The two curves show good agreement in the initial elastic
behavior, but the FEA result shows the earlier abrupt C-frame fracture with web severing
along the shear tie vertical edge as shown in Figure 4.25 and Figure 4.26. Although the
failure mode was different, key phenomena were captured in FEA related to the
development of failure at the bolted connections observed in the test. More specifically,
in Figure 4.26, the reduced strength outer plies for the effective fastener modeling are
totally damaged along the horizontal shear tie edge (bolted connection line). In Figure
4.25 and Figure 4.26, the C-frame shows web local twisting (leading to buckling) along
the shear tie horizontal bolted connection line by eccentric compressive load (open C-

section shear center effect) from shear tie.
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Figure 4.24: Load-displacement curves of Frame04-2.
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Figure 4.25: Center C-frame behavior and fiber failure just before fracture.
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Figure 4.26: Severed center C-frame and totally failed reduced strength plies.

In conclusion, the FE model is able to catch the initial crack location close to the
location observed in the test. However, in FEA, the C-frame fails 22% earlier showing
lower strength than the test. It is suspected that inadequate material properties were
applied in FE model. Especially in-plane shear strength response is difficult, as well as
the in-plane fracture energy parameters were estimated using other existing similar
materials. Also, in FEA, the C-frame shows different failure mode from the test. The
symmetric FE model represents the identical C-frame boundary condition at both ends,
but in actuality, a slightly different boundary condition was applied at each end of C-
frame in the test (mainly, one side was free to allow frame elongation, whereas the other
side was fully pinned, like classical simply-supported beam). It is suspected that this
aspect is influencing the variance between the FE model and test data, and would require
further investigation with a full model (no symmetry). C-frame failure progression in the
Frame04-2 test is: that (i) a crack was initiated at upper radius corner of C-frame near the
shear tie vertical edge corner, and (ii) the crack grew through the first bolt and along the

horizontal bolt line with local web twisting by the eccentric compressive load from the
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way the shear tie connects directly to the web offset from the shear center. These
phenomena influence the development of failure at the bolted connections. To better
understand and be able to simulate this phenomenon, a detailed experimental and
numerical investigation at smaller scale is required, exploring combined compression and

local twisting (bending) load transfer through bolted connections. This idea is

conceptually shown in Figure 4.27.

Combined
Compression and
Torsion Loading

Figure 4.27: Bolt failure test example under combined compression and local bending.

Similarly, this approach can be applicable for combined local buckling and shear
crack failure (by stringer contact causing eccentric compression) initiated at the Hi-Lok

bolts on the C-frame web at the loading location in the 2" generation Loc3 and Loc4.

181



4.3 CONCLUSION OF FRAME FAILURE STUDIES

From the key failure modes observed in large-scale experiments, C-frame failure
was classified with respect to the presence (or lack) of large rotation of the C-frame due
to the influence of shear tie. In the 1% generation Frame03 test, losing discrete composite
shear ties allowed the large rotation of C-frames, and consequently C-frames failed near
the boundary fixtures at locations relatively far from the location of load application. On
the other hand, in the 1% generation Frame04-2 test, the strong shear ties did not allow the
C-frame to undergo large deformation. Those C-frames showed local failure initiating at

or near bolted connections.

For the C-frame element test, with the short section of C-frame subjected to
combined loading (bending and combined bending-twisting loading), the aim was to
induce the same C-frame failure phenomena as was observed in the 1% generation
Frame03 specimen. During the tests, buckling and stretching modes on the compression
and tension flanges respectively was observed from the video record and measured strain
in the flanges. Unfortunately, significant slip of the C-frame from the boundary fixtures
kept occurring beyond initial settlement. This slippage results in added compliance which
is very difficult to account for in analysis. All tests had this slippage, despite several trials

at fixing it.

After C-frame element tests, the FE model refinement was processed with
implementation of Hashin-Rotem failure criterion. The FE model results show significant
discrepancy between tests and FE results in stiffness and ultimate strength. However,

buckling of the compression flange was captured in the simulation and from the
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computational strain results were found to agree qualitatively with the test results. The FE
model predicts the failure location and compression fiber failure mode only for the

combined bending-twisting loading case.

For C-frame bending and bending-twisting tests, the specimen’s span-to-depth
ratio was very low for bending failure. Re-design is required by increasing frame
specimen length with the shorter aluminum arm. The discrepancy between the FEA and
test result could be caused by the unknown boundary condition related to the friction and
slip which occur at the connection joints. The boundary condition effect was proved by
including slip phenomenon at connection joints as the updated FE simulation predicted
the correct failure location in bending test. In experiments, while rigid connections are
desired in order to eliminate uncertainty and achieve test results that better match FE
models, such truly rigid connections are often impossible to achieve in practice. Thus, an
aspect of this research focused on how to account for uncertainty more accurately from
test boundary conditions provides some more broadly applicable guidance in the conduct

of these types of studies and analysis correlation.

For the C-frame direct shear failure, it was difficult to conduct the element-level
test with the equivalent boundary condition on the C-frame of the fuselage structure due
to the complex geometry of the large-panel and the interaction between components. For
Frame04-2 test, the strong shear tie played the key role in the C-frame failure by directly
transferring the shear force to the C-frame. Thus, numerical investigation was conducted
with full-scale FE modeling incorporating progressive damage softening via the Hashin-
Rotem failure criterion. The C-frame modeling capability was not completely adequate.

Although the FE model shows the good agreement for the overall elastic response and
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predicts failure initiation of the C-frame at the correct location, the FE model of the C-
frame failed earlier showing lower strength than the test and showed different failure

mode from the test.

In the Frame04-2 test, C-frame crack was initiated at the connection with shear tie
and grew through the first bolt and along the horizontal bolt line with local web bending
by the eccentric compressive load. To better understand and be able to simulate this
phenomena, a detailed experimental and numerical investigation at smaller scale is
required, exploring combined compression and local twisting (bending) load transfer

through bolted connections.
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5 LARGE SCALE FE MODEL FOR FAILURE PREDICTION AND

CORRELATION WITH LARGE SCALE TESTS

After completion of the 2" generation HEWABI Loc4 tests, FE modeling
definitions as an improvement to the preliminary predictions were updated. As shown in
Figure 5.1, three main updates were: (i) change of bumper size to reflect actual test
geometry, (ii) more accurate values for the T800/3900-2 prepreg properties, and (iii)
application of node-to-node constraints between the shear tie and C-frame instead of
using surface tie constraint with 17.78 mm (0.7 in) width fastener strip partition. Other

modeling definitions are identical to the preliminary FE model described in Section 3.6.

Load vs LP_Center

70

Locd-1_L1-1
60

Loc4-1_L1-2

50 Loca-1_L1-3

Loc41 L1-4 Tests

40 Loc4-1_L213

Loc4-1_L4L5

Load [kN]

30

Loc4-2 L6

1. Preliminary Prediction

20
2. e Bumper Size & Woven Prop.
3. e Bumper Size & N-to-N Tie

10
4. = - = Updated Prediction

0
0 5 10 15 20 25 30 35

LP_Center [mm]

Figure 5.1: FE modeling definition update after Loc4 tests.
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With the main changes labeled with “2. Bumper Size & Woven Prop.” and “3.
Bumper Size & Node-to-Node Tie” in the Figure 5.1, the initial stiffness of updated FEA,
labeled with “4. Updated Prediction”, shows good agreement with the test results.
However, more modeling definition needs to be updated especially to accurately
represent failure of the shear tie as well as the stringer, and fastener modeling in C-frame

at loading location.

In this chapter, updated modeling information will be provided in detail, and the

current FE model capability will be evaluated based on Loc4 test results.

5.1 FE MoDEL UPDATE — BUMPER SIzE, COMPOSITE MATERIAL PROPERTY,

NODE-TO-NODE T1E CONSTRAINT

As mentioned in Section 3.8.2, during test setup, the flat rubber bumper size
changed from 254 mm x 558.8 mm x 50.8 mm (10 in x 22 in X 2 in) to 152.4 mm X 609.6
mm X 25.4 mm (6 in x 24 in x 1 in). The changed bumper size was updated in the revised
FE model. In the low-velocity impact test, the boundary condition strongly affects the

structural behavior. Thus, impactor size change is influential to the structural behavior.

Before and after conducting the 2" generation HEWABI Loc4-1 experiment,
material properties of the FE models kept being updated as improved values were
determined. Table 5.1 shows up to date T800/3900-2 carbon/epoxy composite material
properties. These properties were obtained from a combination of sources including

Toray (the material manufacturer) data sheet [26], existing literature by Khaled [28] and
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Zou [18], property data of similar prepreg (Cytec X840/Z60) [11], and the longitudinal

compressive strength of PW T800H-6K/3900-2 measured by compression coupon tests.

Table 5.1: Updated T800/3900-2 properties.

Updated Properties Unidirectional | 6K Plain Weave

Lamina Thickness and Density

Ply Thickness (mm) 0.195 0.220
Density, p (g/cmq) 1.60 1.50

Lamina Elastic Properties

Longitudinal Young’s Modulus, E; (GPa) 161.74 68.26
Transverse Young’s Modulus, E; (GPa) 7.35 66.19
In-Plane Poisson’s Ration, vi, 0.32 0.06
In-Plane Shear Modulus, G2 (GPa) 4.00 4.00
Transverse Shear Modulus, Gi3 (GPa) 2.40 2.90
Transverse Shear Modulus, Gs (GPa) 2.31 2.76

Lamina In-Plane Strength

Longitudinal Tension Strength, Fi:(MPa) 2519 883
Longitudinal Compression Strength, Fic (MPa) 727 648
Transverse Tension Strength, F2 (MPa) 44.83 883
Transverse Compression Strength, Fac (MPa) 175.91 600
In-Plane Shear Strength, F1, (MPa) 128.72 68.95

Lamina In-Plane Fracture Energy

Longitudinal Tensile Fracture Energy, Git (kd/m?) 91.60 45.80
Longitudinal Compressive Fracture Energy, Gic (kJ/m?) 79.90 39.90
Transverse Tensile Fracture Energy, Ga (kJ/m?) 0.20 45.80
0.20 39.90

Transverse Compressive Fracture Energy, Gz (kJ/m?)
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The main influence on structural behavior of the updated models was due to the
improvement of woven ply elastic moduli and in-plane strength because the
circumferential structural components, mainly resisting transverse loads, were fabricated

with woven plies.

As shown in Figure 5.2, the compression tests were conducted at UCSD to get the
longitudinal compressive strength of PW T800H-6K/3900-2 using SACMA compression
test method. The compression test results are shown in Figure 5.3 and Table 5.2. The test

average value of strength is 648 MPa.

Wyoming Test
Fixture Assembly

Test Specimen

Gage THK
is 3 mm

Gage Width
is 15 mm

Figure 5.2: Compression coupon test (SACMA method) and test specimen (0° - 14 PW plies)
after test.
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PW T800H /3900 Compression Tests

30

25
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g
?:g 15
10
5
0
0 0.2 0.4 0.6 0.8 1 12 14
Displacement (mm)
wcC1 WwC2 wC3 WC4 ——WC(C5 ——WC6
Figure 5.3: Compression coupon test results.
Table 5.2: PW T800H/3900-2 compressive strength.
0d-14p Displ. (mm) Max load (kN) Compressive strength (MPa)
WC1 1.13 29.07 660.02
wWC2 1.20 29.99 656.41
WC3 1.10 28.25 629.54
WC4 1.18 31.14 687.03
WC5 1.03 26.78 605.09
WC6 1.10 28.80 648.59

Avg. 647.78
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Lastly, fastener modeling method changed from 17.78 mm (0.7 in) width strip
surface tie connection to point-to-point tie constraints representing individual bolt
connections between the shear tie and C-frame as shown in Figure 5.4. It is more realistic
fastener modeling method resulting in more compliant connection between the shear tie
and C-frame versus the fastener strip surface constraint in FE model. It consequently

resulted in more compliant stiffness of the structure to transverse loading.

¢ T4 3an 21 4000 STRADE SOV § To0 40900,

Figure 5.4: Change of fastener modeling from strip surface tie to node-to-node tie between
shear tie and C-frame.

5.2 PREDICTED EVENTS AND CORRELATION WITH TEST RESULTS

With the updated modeling definition implemented, FEA results were compared

with the Loc4 test results and the predicted events were examined. As shown in Figure
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5.5, although the updated FE model shows good agreement relative to the test data, shear

tie fracture and following C-frame fracture occur much earlier in FEA.
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Figure 5.5: Correlation with experimental results.

The predicted events are numbered (1-7) in Figure 5.5. The detail description of

each event is compared with test results. Event numbers 1 to 7 are shown in subsequent

figures showing FEA-predicted failure events.

The current FE model does not simulate inter-laminar failure (delamination) due

to the absence of interfacial surface interaction definition, i.e., cohesive surface

interaction at contacting surface pairs between plies or sub-laminates. However, using the
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typical value of interlaminar tension strength (ILTS) for the toughened matrix material

[11, 29], delamination initiation onset was estimated in the FE simulation. In Figure 5.6,

interlaminar tension stress in a curved section is introduced [29]. From the equation

shown in Figure 5.6, the typical value of ILTS of 6 ksi (41.37 MPa) was substituted, and

the corresponding opening moment value was evaluated as 183.3 Ib-in/in (0.82 kN-

mm/mm).

200
T Initial Failure
160 f
Delamination Failure
g 120
o
ko]
(1]
9 80
40
Residual Load
L— —»x
Max Interlaminar Tensile 0
Stress (in Radial Direction) ! ! . J ' . )
. 0 0.2 0.4 0.6
I 3IM M = opening moment Crosshead Displacement, d (in.)
. T h = thickness
' 2hR _ .
ave R,,. = average radius

Figure 5.6: Interlaminar tension failure — curved beam tension specimen [29].

0.8

In Abaqus, the section moment SM2 is defined as bending moment force per unit

width about local 1-axis [25]. As shown in Figure 5.7, SM2 relates to as the opening (or

closing) moment at the shear tie radius corner. Delamination initiation was estimated
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when SM2 reached the value of 183.3 Ib-in/in (0.82 kN-mm/mm) opening moment. This

quantity is plotted in the contour plot as shown.

SM, SM2
(Avg: 75%)
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-1.952e+02

Max: +1.877e+02

Elem: SHEARTIE-1.776
Node: 1126

'1,877e+002

Figure 5.7: Delamination initiation estimated by critical opening moment.

After the initiation of shear tie radius delamination (per above-described
calculation), as shown in Figure 5.8, shear tie radius fiber damage initiation from the
upper side of Loc4 mouse hole is predicted. Shear tie-stringer contact and stringer hat

fiber damage initiation then follow (see Figure 5.9 and Figure 5.10, respectively).
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Figure 5.8: Shear tie radius damage initiation.
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Max: +9.500e-01
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Node: 2826

Max: +9.500e-001

Figure 5.9: Shear tie-stringer contact.

195



DAMAGEFC
SNEG, (fraction = -1.0), Layer = 1
SPOS, (fraction = 1.0), Layer = 14
(Avg: 75%)

B .5 500e-01
+8.708e-01
+7.917e-01
+7.125e-01
+6.333e-01
+5.542e-01

- +4.750e-01
+3.958e-01
+3.167e-01
+2.375e-01
+1.583e-01
+7.917e-02
+0.000e+00

Max: +9.500e-01
Elem: STRINGER2-1.699

Max: +9.500e-001
Node: 1467 ;.

Figure 5.10: Stringer hat damage initiation.

The major discrepancy between FE prediction and test results is shear tie failure
mode and location. As shown in Figure 5.11 and Figure 5.12, the subsequent key event in
FE simulation is abrupt entire shear tie radius fracture at Loc3, which did not occur in the
tests. In the tests, the radius crack grew gradually showing radius crushing and
delamination mode until abrupt significant web fracture occurred with a large diagonal
crack. In addition, shear tie web element deletion is predicted at Loc4. This did not occur

in the tests. Furthermore, in the tests, the stringer hat was cut by the shear tie web at
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Loc4. However, in FE simulation, there is not any element deletion from stringer hat
contact until the end of the simulation. The shear tie web element deletion and its local
deformation mode at Loc4 by crushing makes no direct contact between stringer and C-

frame as shown in Figure 5.12.
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Figure 5.11: Entire radius fractured at Loc3 in FE simulation.
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Figure 5.12: Shear tie fracture and component interaction.

As shown in Figure 5.13, the C-frame failure location agrees with test result, but
the contact and interaction with the stringer, as well as concentrated stress at the fastener,
observed in the experiment (see test photo in Figure 5.13), was not addressed and should

be included in future improvements.
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Figure 5.13: C-frame damage initiation (numbered 6) and crack (numbered 7) at Loc4.
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5.3 CONCLUSION AND FUTURE WORK

With three major aspects of model definition improvement, the FEA prediction
was shown to agree well with the initial response of the test results. However, a major
discrepancy is in shear tie damage which predicted a different fracture location than the
tests. FEA simulation showed much earlier shear tie fracture and subsequent C-frame
fracture. More improvements to the model definition are needed, especially for better
representing failure of the shear tie as well as the stringer. Fastener modeling should also
be improved in the C-frame at the loading location as cracks were observed to initiate

from a fastener hole.

As studied through the large-scale experiments, the shear tie is the key component
governing damage extent influencing the failure modes of other components and the
overall structural behavior. Chen [11] had previously modeled cohesive surface
interactions to simulate the delamination which was observed in shear tie radius in the 1%
generation HEWABI panel tests. As a key damage mode also observed in the current 2"
generation HEWABI panel tests, shear tie radius delamination should be included in the
modeling using interfacial surface interaction definition, i.e., cohesive surface interaction

at contacting surface pairs between plies or sub-laminates.

After shear tie-stringer contact, the stringer hat was observed during the tests to be
cut by direct shear tie web contact and penetration. This led to geometric interlocking,
constraining the lateral movement of circumferential C-frame component and eventually
stringer-C-frame contact as penetration increased. In the FE prediction, stringer hat

damage is predicted but there is no element deletion until the end of the analysis. In order
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to accurately predict this failure mode, a 3D failure criterion such as the Hill-Tsai
criterion used by Chen [11] can be considered. Accounting for this damage mode will
improve the prediction of the interaction between components at the mouse hole near the

loading location.

In the FE prediction, the C-frame failure location agrees with test results, but the
contact and interaction with the stringer, as well as concentrated stress at the fastener
needs to be more accurately accounted for. In CODAMEIN research [17, 18], shear ties
to frames interactions were modeled using connector elements. For the representation of
the fasteners, translational stiffness as well as axial and shear strengths were defined.
This approach is recommended first. As mentioned in Chapter 4, the smaller scale study
is recommended as well for the failure at fastener by concentrated stress under combined

local bending and compression load state.

Accurate material properties are required for improved FEA correlation. While
this sounds obvious, obtaining all the material model input properties necessary for 3D
modeling of composite materials is typically not easily achieved. Many properties,
especially in transverse direction, need to be assumed based on similar materials for
which material property data are available. As mentioned in Chapter 3, during the
manufacturing process, some T800/3900-2 coupon plates were fabricated to obtain
material properties which were not provided by the material manufacturer. Updated
material properties should be verified through coupon-level testing and additional review
of the literature. A Styrene Butadiene Rubber (SBR) pad was used for the loading head

contact face in the tests. For this material, rubber compression test is recommended to
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validate chosen material parameters in the hyper-elastic bumper FE model. Lastly, rubber

to skin surface friction test is recommended to achieve accurate friction coefficient.

Chapter 5 is coauthored with Wiggers de Souza, Chaiane. Nam, Moonhee was the

primary author of this chapter.
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6 CONCLUSIONS

For the 2" generation HEWABI experiments, via FEA approach, smaller and
simplified test panels with one circumferential component were designed successfully
with appropriate BCs representing full quarter barrel fuselage response. This sub-
structure definition methodology can be used in a wide range of applications when the
loading area is distant enough from the representative boundary condition elements,

which remains elastic.

In the 2" generation HEWABI experiment, the significant internal damage modes
to internal components (shear tie, stringer, and C-frame) were developed with very low
(basically no) externally visible damage. The lack of external damage visibility hinders
the damage detectability through visual inspection, but a quantitative understanding of
the damage mode and extent resulting from HEWABI near floor joint is important for
giving awareness of severe internal damage by HEWABI and for choosing inspection
area as well as establishing damage size criteria in the evaluation of a structure’s residual
strength and damage tolerance capability. The importance of the visual detectability of
the presence of severe internal damage is emphasized, as the current practice in aviation

safety relies on visual-based first detection.

In the 2" generation HEWABI current research, the aim is to evaluate how design
parameters and loading location affect damage formation and propagation. The floor
structure, continuous shear tie, and loading location lead to shear dominated failure

within the zone from the loading location to floor joint fixture, causing small deformation
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of the C-frame until failure develops. On the other hand, in Frame03 test of the 1%
generation HEWABI research, bending dominated failure occurred in C-frame showing
large deformation after losing stabilizing components, specifically the discrete shear ties.
As studied through the large-scale experiments, shear ties are the key component
governing damage extent influencing other components’ subsequent failure mode and the

overall structural behavior.

Through focused element-level C-frame bending failure study, the importance of
eliminating uncertainty at boundary fixtures is identified, while acknowledging that such
uncertainty of test-fixture boundary conditions is every present, especially in complex
larger sized test specimens. This element-level testing activity gives a key lesson how to
eliminate or minimize this uncertainty in FE modeling as well. The example of detailed
FE modeling for it is shown in research by Heimbs [21]. To eliminate uncertainty in
boundary condition connections, Heimbs modeled cured epoxy adhesive applied at the
interface between specimen and fixture to account for its compliance under load, and a
contact formulation with friction coefficient of 0.5 was applied at the interface between
the adhesive and the metal surface in the fixtures. Moreover, the specimen’s span-to-
depth ratio was very low for the bending failure mode. Re-design is required by

increasing frame specimen length with the shorter aluminum arm.

In the large scale FE simulation, simplifications were made to bolt connections to
reduce computational cost. The concentrated stress at fasteners or along fastener line
should be modeled for the C-frame web failure initiation and propagation. The small

scale study for failure at fastener by concentrated stress is recommended. The improved
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FE simulation will help predict the accurate damage location and extent after HEWABI

event.
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APPENDICES

A. MoLD DRAWINGS

This appendix includes detailed mold drawings:

1) Stringer inner mold

2) Shear tie outer mold

3) C-Frame outer mold
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B. LAYUP INSTRUCTION

This appendix includes prepreg cutting plan and layup instruction with check list:

1) Skin layup

2) Stringer layup

3) Shear tie layup

4) C-Frame layup
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Frame 11
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Frame 13
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Frame 15

Center at line 6
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Frame 16
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Frame 18
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Frame 19

Center at line 10
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Frame 21
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C. SPECIMEN AND FIXTURE DRAWINGS

This appendix includes test specimen and fixture detail drawings:

1) Specimen detail

2) Floor joint and beam detail

3) Low beam and joint detail
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1) Specimen detail
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HOLE SPACING
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2) Floor joint and beam detail
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3) Low beam and joint detail
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