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ARTICLE

A metabolome atlas of the aging mouse brain
Jun Ding1,2, Jian Ji3, Zachary Rabow 1, Tong Shen1, Jacob Folz1, Christopher R. Brydges 1, Sili Fan1,

Xinchen Lu1, Sajjan Mehta 1, Megan R. Showalter1, Ying Zhang 1, Renee Araiza4, Lynette R. Bower4,

K. C. Kent Lloyd 4 & Oliver Fiehn 1✉

The mammalian brain relies on neurochemistry to fulfill its functions. Yet, the complexity of

the brain metabolome and its changes during diseases or aging remain poorly understood.

Here, we generate a metabolome atlas of the aging wildtype mouse brain from 10 anatomical

regions spanning from adolescence to old age. We combine data from three assays and

structurally annotate 1,547 metabolites. Almost all metabolites significantly differ between

brain regions or age groups, but not by sex. A shift in sphingolipid patterns during aging

related to myelin remodeling is accompanied by large changes in other metabolic pathways.

Functionally related brain regions (brain stem, cerebrum and cerebellum) are also metabo-

lically similar. In cerebrum, metabolic correlations markedly weaken between adolescence

and adulthood, whereas at old age, cross-region correlation patterns reflect decreased brain

segregation. We show that metabolic changes can be mapped to existing gene and protein

brain atlases. The brain metabolome atlas is publicly available (https://

mouse.atlas.metabolomics.us/) and serves as a foundation dataset for future metabolomic

studies.
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The brain is one of the most structurally and functionally
complex organs in mammals1–4. It is characterized by a
unique morphology of anatomical regions, intricate brain

network connectivity, an enormous variety of cell types, and a
highly integrated molecular program during brain development
and aging. Brain functions require a unique set of small molecule
biochemicals, ranging from neurotransmitters to specific sets of
complex lipids that are often enriched in highly unsaturated fatty
acids (FAs). The brain has been mapped on the molecular level
for gene transcript and protein expressions. In principle, meta-
bolites represent the ultimate outcome of molecular biology.
However, metabolite profiles cannot be simply predicted by
genomic5–10 or proteomic signatures11 due to the multitude of
feedback mechanisms and regulatory circuits. Surprisingly, the
brain metabolome has been studied inadequately, either focusing
on a few metabolites12,13 or restricting study designs and data
acquisition to incomplete coverage of neurochemistry and brain
anatomical regions14–17. Today, the spatiotemporal metabolome
of the mammalian brain remains incompletely understood.

We have started generating metabolome atlases of normal healthy
populations to serve as a reference database for future studies. We
here present the atlas of the aging mouse brain with an emphasis on
the anatomical resolution of 10 brain regions and temporal coverage
over the life period from adolescence (AD) to old age (OA). We
identified 1,547 unique metabolites that cover many metabolic
modules from nucleosides, lipids, and primary metabolites, such as
glycolysis intermediates to neurochemicals such as acetylcholine,
dopamine, and GABA. In addition, we created a freely accessible web
tool to allow interactive exploration of the brain metabolome atlas at
https://mouse.atlas.metabolomics.us/.

Results
Aging mouse brain metabolome atlas. In collaboration with the
UC Davis Mouse Biology Program, we have studied groups of 8
male and 8 female wildtype mice at AD (3 weeks), early adult-
hood (EA, 16 weeks), middle-age (MA, 59 weeks) and OA
(92 weeks). Immediately after euthanasia, brains were harvested
and then dissected into the following 10 anatomically defined
regions: cerebral cortex (CT), olfactory bulb (OB), hippocampus
(HC), hypothalamus (HT), basal ganglia (BG), thalamus (TL),
midbrain (MB), pons (PO), medulla (MD), and cerebellum (CB).
In total, these 640 brain samples were analyzed by combining
data from three untargeted metabolomic platforms: primary
metabolism by gas chromatography-time of flight mass spectro-
metry (GC-TOF MS) and two assays using orbital ion trap high-
resolution mass spectrometry (Q-Exactive HF MS/MS) by
separating biogenic amines using hydrophilic interaction chro-
matography (HILIC) and separating complex lipids by charged
surface hybrid (CSH) reversed phase (RP) liquid chromatography
(LC). Figure 1a illustrates this study design, with additional
information given in Supplementary Data 1.

For obtaining a solid coverage of the brain metabolome, an
untargeted LC–MS/MS assay used an iterative precursor mass
exclusion18. LC–MS/MS raw data were processed by MS-DIAL19,
while GC-TOF MS data were processed by BinBase20. Using
retention times and mass spectral information from the
MassBank.us and NIST17 libraries, all mass spectra were
manually investigated, yielding a total of 1,547 distinct annotated
metabolites (Supplementary Data 2). In addition, concentrations
for 853 metabolites were estimated based on internal standards,
external calibrations and literature reports, summarized in
Supplementary Data 3. This atlas represents the most compre-
hensive brain metabolome published so far, including MSI-
compliant confidence levels21,22. We defined metabolites into
eight chemical superclasses using the ClassyFire classification

system23 (Fig. 1b). As expected, complex lipids accounted for the
largest proportion of the brain metabolome due to the high
endogenous contents of brain lipids ranging from phosphatidyl-
cholines (PC), phosphatidylethanolamines (PEs), triacylglycerol
(TGs), FAs, phosphatidylserines (PS), phosphatidylinositols (PIs),
sphingomyelins (SM), ceramides (Cers) to diacylglycerols (DGs)
and others. Organic acids including amino acids, modified amino
acids, peptides and hydroxyl acids constitute 14% of the
metabolome, while the remaining 15% was classified into organic
oxygen compounds, organoheterocyclic compounds, benzenoids,
organic nitrogen compounds, nucleosides, nucleotides and others.
The vast majority of all brain metabolites were ubiquitously
distributed across all ten brain regions to maintain essential brain
functions (Fig. 1c). Complex lipids are hardly represented in
standard biochemical pathway databases24,25. We therefore
explored the pathway coverage of the annotated brain metabo-
lome by querying HILIC and GC-resolved metabolites in
Consensus PathDB (http://cpdb.molgen.mpg.de/)26,27, compris-
ing 118 pathway-based metabolite sets (Supplementary Data 4).
The top-10 most important pathways are illustrated in Fig. 1d,
indicating a sufficient breadth of pathway modules to interpret
metabolic changes in brain regions during aging. Lipids were
categorized into subclasses that reflect their chemical structure
and function as given in the outer circle of Fig. 1b. The full
dataset of the atlas can be downloaded as Supplementary Data 2.

Quality assessment of the metabolome. To assess the precision
of the overall analytical method, a quality control reference pool
sample (QC) was constructed from all brain extracts to reflect an
aggregated brain metabolite composition. This pool QC was ali-
quoted and repeatedly injected between each set of 10 mouse
brain samples. Data were utilized by the machine-learning-based
SERRF software (https://slfan2013.github.io/SERRF-online/#)28

to normalize metabolite intensities and correct for potential drift-
or batch effects. Overall precision was then evaluated by analysis
of the total variance using principal component analysis (PCA).

The PCA score plot in Fig. 2a showed that the QC samples were
aggregated into a tight cluster near the origin of the plot, indicating
minimal residual technical errors. Conversely, metabolic data of the
different brain samples were scattered, explaining more than 43% of
the total biological variance in the first two principal components.
Using univariate analysis of all metabolites in the pool QC samples
showed that nearly 60% of all annotated metabolites had excellent
reproducibility with relative standard deviations (RSD) < 5%. A total
of 91.3% of all metabolites were detected at RSD < 20%, highlighting
a high quality of the data (Supplementary Fig. 1). Next, we
investigated the reproducibility of metabolites of biological replicates
of the different brain regions. We found strong Spearman-rank
correlations within biological replicates of the same brain regions
(rxy 0.46–0.90) and substantially lower correlations across different
brain regions (rxy −0.63 to 0.63) (Fig. 2b). This finding indicated a
good biological reproducibility of the dataset and distinct metabolic
phenotypes of the different brain regions, captured by specific
metabolite/metabolite correlation patterns29,30.

Regional metabolome architecture of the mouse brain. When
coloring the PCA sample plots by the different study parameters,
i.e. brain regions, age, and sex, clear biological differences became
apparent. Figure 2a showed that Principal Component 2 sepa-
rated samples based on biological age with 12% of the total
metabolic variance of the dataset, showing a clear difference
between adolescent mice, early adult, and middle-aged mice, but
also a significant difference between middle-aged and old mice.
Importantly, we found only very minor differences in the brain
metabolome between the sexes (Supplementary Fig. 2a)
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suggesting that brain chemistry is mostly spatially and temporally
regulated but not by sex hormones. Figure 3a was colored indi-
cating the metabolic phenotypes of different brain regions, with
PC1 explaining 31% of the total variance, separating the CT
(gray) versus brainstem tissues (blue colors) with the HC (red)
and MB tissues (dark blue) in between. A clearer distinction of

metabolic phenotypes was obtained when only tissues from the
early adult group were analyzed (Fig. 3b, other age groups see
Supplementary Fig. 2b–d). Here, diverging sample clusters were
obtained with cerebrum tissues mapped adjacent to each other
(CT, OB, HC, HT, BG) and clearly separated from brainstem
tissues (MB, PO, and MD) by Principal Component 1. CB was
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separated by PC2, discovering a similar biochemical distinction as
observed in a previous brain proteome study11. Hence, metabolic
phenotypes follow the major structural divisions of classic brain
anatomy. TL samples were located between cerebrum and brain
stem clusters, reflecting the TL function to be highly inter-
connected with both cerebrum and brainstem tissues to relay
incoming information to nearby brain regions31. Similar

molecular differentiation of brain regions has been observed in
brain genomic maps7,9,10, suggesting a consistency of genomic,
transcriptomic, and metabolomic patterns in brain regionaliza-
tion and development.

Next, we exploited the correlative nature of brain metabolites
to investigate specific metabolic differences across brain regions.
A detailed analysis of the Spearman-rank correlation matrix

a 

c d 

e 

f 

Brainstem 

Cerebellum 

Cerebrum 

b 

Drd1 

Drd2 

Pcp2 

Guanine Adenosine 2’-deoxyadenosine  

Adora2a PDE10 

g 

Dopamine 3-Methoxytyramine  

3,4-dihydroxyphenylacetic acid  Homovanillic acid  

COMT 

COMT 

MAO MAO 

Metabolite 
intensity in 

region 

Highest 

Lowest 

Median 

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26310-y

4 NATURE COMMUNICATIONS |         (2021) 12:6021 | https://doi.org/10.1038/s41467-021-26310-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(Fig. 3c) across all 10 brain regions revealed highly positive
metabolic correlations of the metabolome within each brain
architectural division, but negative correlations across the
divisions of cerebrum, brainstem, and CB tissues5. Specifically,
the negative correlations between the cerebrum and brainstem
metabolome mirrored regionally distinct functions, possibly
because the cerebrum have the most complex neuronal network
to direct higher cognitive functions, whereas the evolutionary
oldest brainstem regulates autonomous activities. Hence, the
major brain divisions were functionally separated by metabolome
phenotypes. An overview of regionally differentiated metabolites
at minimum 2-fold changes and FDR p < 0.05 is displayed in the
heatmap Fig. 3d. Metabolite changes were found distributed
across all brain regions and were not dominated by any single
specific region. Interestingly, distinct metabolic heterogeneities
became visible. Lipid profiles in the brainstem PO and MD were
distinctly upregulated in comprison to all other regions, while in
the cerebrum, CT and OB displayed many lipids at overall
decreased levels. We associated brain regions with specific
metabolites using 5-fold differences in abundance and FDR
significance p < 0.05 compared to the average of all other regions
(Supplementary Data 5). For example, PO and MD were uniquely
enriched in SM and Cers, while the OB showed cholesterol esters
to be manifold-more abundant than other regions. BG were
uniquely enriched in aromatics.

We provide an interactive web tool https://mouse.atlas.
metabolomics.us/ to investigate specific metabolites in the mouse
brain atlas. These metabolome maps enable users to visualize levels
of metabolites-of-interest across 10 anatomical regions, four life
periods, and both sexes. In this way, users can generate or verify
hypotheses regarding brain metabolism, for example, by comparison
to other imaging resources. In Supplementary Fig. 2e this possibility
is shown for the neurotransmitter acetylcholine that exerts clear
regional enrichment in BG. This regiospecificity can be readily
associated with the endogenous brain enzymes responsible for
acetylcholine synthesis and degradation. Acetylcholine is formed by
esterification of acetic acid and choline catalyzed by Choline
Acetyltransferase (Chat) which is highly expressed in BG2.
Acetylcholine is then transported via vesicular transport of
cholinergic neurons to CT, MB, and HC (Supplementary Fig. 2e)
as well as to smaller regions like the BG, TL, and HT. Acetylcholine
transport is further assisted by Chat expression in BG, MB, and TL,
validating our metabolic brain map by in situ hybridization maps4.
Cholinergic neurons in the basal forebrain are densest in the cortex
area32, which is supported by the medium acetylcholine levels
throughout this brain region. Acetylcholine is degraded by
Acetylcholinesterase (AChe) enzymes and has a half-life of 1–2ms
in the brain33. In situ hybridization of AChe shows its enrichment in
MD, PO, MB, and depletion of the enzyme in OB and CB4.
Accordingly, our brain map shows the lowest acetylcholine

abundances in the brainstem regions (MD and PO), and CB has
the lowest levels of acetylcholine in the brain. This finding is
validated by the low density of cholinergic markers in the CB in
multiple animal species, including neurons, AChe, and Chat
enzymes34. Similarly, the brain metabolome atlas shows high
enrichment of the neurotransmitter dopamine and its metabolites
in BG. This finding is consistent with in situ hybridization results for
the dopamine receptors Drd1 and Drd2 in the Allen Brain Atlas
project (http://mouse.brain-map.org)5 (Fig. 3e). Likewise, adenosine
and its analog are highly abundant in BG and in full accordance to
in situ hybridization images of the adenosine A2a Receptor
(Adora2a) and phosphodiesterase 10 (PED10, a cAMP hydrolase)5

(Fig. 3f). Crucially, matching highly abundant metabolites and gene
expression can contribute to the verification of gene functions. We
here show that guanine is highly expressed in the CB and is exactly
co-localized with the Purkinje cell protein 2 (Pcp2) (Fig. 3g)5. This
co-localization in two different mouse brain maps gives extra-
ordinary evidence for the proposed function of Pcp2 as guanine
nucleotide dissociation inhibitor5,35,36. Apart from in situ hybridiza-
tion, other brain maps can be used such as functional magnetic
resonance imaging (fMRI), genomics5–7, transcriptomics8–10,
proteomics11 or synaptomics4, offering a practical resource to
integrate brain metabolism into systems biology.

Aging impact on the mouse brain metabolome. During aging,
the brain undergoes a series of changes in structure and function.
The underlying molecular program has recently been detailed by
genome-37 and transcriptome-9,10 based maps. However, it
remains incompletely understood how aging impacts the brain
metabolome. The PCA plot in Fig. 4b indicated substantial dif-
ferences in metabolome architecture between different ages. To
visualize the corresponding difference in metabolic regulations,
we plotted the correlation matrices of brain regions at each age
(Fig. 4a). In the transition from adolescent to early adult mice, a
large shift from highly positive to highly negative correlations is
observed for brainstem versus cerebrum. Simultaneously, internal
correlations within the different cerebrum regions (TL BG, HT,
HC, OB, CT) weaken significantly. Interestingly, similar patterns
have been reported in fMRI studies in the cortical-subcortical
(limbic) and between-subcortical functional connections38–40.
This differentiation was interpreted as an intrinsic feature of the
maturation of the adolescent to allow for functional specializa-
tion, reducing interregional interference and facilitating cognitive
performance in the coming adulthood41. The age-dependent
metabolome dynamics provide molecular support for this inter-
pretation. In the aging process from EA to middle age, even the
strong negative correlations between brainstem and cerebrum
regions are severely diminished. At OA, almost all negative cor-
relations have disappeared (Fig. 4a), possibly due to increased
lateral diffusion and enlargement of brain ventricles, and lesser

Fig. 3 Regional biochemical differences of the mouse brain. a Principal component analysis (PCA) of all mouse brain metabolome samples. PCA vector
1 separates samples into different brain regions. Samples are colored by brain regions. b Principal component analysis (PCA) focused on early adult mice
for all 10 brain regions. PCA vector 1 scparates cerebrum and brainstem, vector 2 distinguishes the cerebellum from cerebrum and brainstem samples.
Samples are colored by brain regions. c Heatmap matrix of pairwise Spearman correlations between brain regions in early adults. Strong correlations are
given in red, strong negative correlations in blue. Overall correlation structures distinguish the three main brain divisions cerebrum, brainstem, and
cerebellum. d Heatmap of metabolites differentially expressed across the different brain regions, constrained to metabolites with >2-fold changes.
Metabolites are categorized by ClassyFire. From left to right: Benzenoids: red, Lipids: orange, Nucleosides: light green, Acids: dark blue, Nitrogen organics:
purple, Oxygen organics: dark green, Heterocyclics: light blue, Others: dark gray. e Co-localization maps of dopamine metabolites and in situ hybridization
of dopamine receptors. Drd1 and Drd2 in situ hybridization images are taken from the 2004 Allen Institute for Brain Science (http://mouse.brain-map.org).
Image credit: Allen Institute. f Co-localization maps of adenosine metabolites and in situ hybridization of adenosine receptors Adora2a and cAMP
hydrolase PED10. The Adora2a and PED10 in situ hybridization images are taken from the 2004 Allen Institute for Brain Science (http://mouse.brain-
map.org). Image credit: Allen Institute. g Co-localization maps of guanine and in situ hybridization of the guanine nucleotide dissociation inhibitor Pcp2.
The Pcp2 in situ hybridization image is taken from the 2004 Allen Institute for Brain Science (http://mouse.brain-map.org). Image credit: Allen Institute.
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rejuvenation of neuronal cells in rodents42. This decrease in
regional segregation and modularity of the brain may be asso-
ciated with a decline in cognitive functions at very OA43. Com-
bined, these processes suggest an increase in specificity of brain
functions during the maturation age, and a de-differentiation
during aging. Similar trajectories have been observed in the brain
transcriptome map10, the synapse atlas4, and brain functional
connectivity43.

Previous studies showed that brain development and aging
occur asynchronously in a region-specific manner instead of
uniformly throughout all regions42,43. We find similar aging
trends in the metabolome correlation heatmaps for each region
(Fig. 4c). For example, the correlation matrices for OB, PO, and
MD metabolomes remain robust across all studied ages.

Conversely, metabolic regulations are drastically changing in
the transition from adolescent to early adults in CT, HC, HT,
BG, TL, MB, and CB regions, remain stable during adulthood,
and keep changing at OA. These findings verify distinct
programs of brain development on the metabolome level. A
possible reason could be that metabolic needs of OB, PO, and
MD regions are required to be kept at steady levels to execute
normal neurophysiological activities for basic and vital functions
such as respiration, movement, smell, and senses44. Other
regions are responsible for higher cognitive and social abilities,
such as executive, emotional, and decision-making functions.
Changes in the cerebral and CB metabolome are required to cope
with these substantial changes in life during brain development
and aging45.
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Fig. 4 Impact of aging on the mouse brain metabolome. a Correlation matrices for brain regions of 16 mice from adolescent (AD), early adult (EA),
middle-age (MA) to old age (OA) groups across brain divisions (brainstem, cerebrum, cerebellum) and 10 brain regions. Positive correlations, red, negative
correlations, blue. b Multivariate analysis of mouse brain metabolomes by principal component analysis. PCA vector 2 separates samples into different
ages. Samples are colored by age groups. c Correlation heatmaps for individual brain regions reveal different developmental patterns during aging. d
Heatmap of metabolites with >2-fold changes between age groups. Metabolites are categorized by ClassyFire. From left to right: Benzenoids: red, Lipids:
orange, Nucleosides: light green, Acids: dark blue, Nitrogen organics: purple, Oxygen organics: dark green, Heterocyclics: light blue, Others: dark gray. e
Visualization of brain maps and bar plots across age groups when querying three selected metabolites at mouse.atlas.metabolomics.us. n= 16 biologically
independent samples. Data are presented as mean values ± SEM.
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These differences in metabolic regulations are also visible by
changes in individual metabolite levels. In the transition from
adolescent to early adults, 37.1% of all metabolite levels
significantly change, only 10.0% of all metabolites show such
changes between EA and middle age. Strikingly, 61.5% of all
metabolites are altered from middle age to OA (Fig. 4d). The
shift patterns of metabolites during aging were illustrated by
both metabolite classes and unsupervised hierarchical cluster-
ing (Fig. 4d and Supplementary Fig. 3). Complex lipids and
nucleosides metabolism are continuously affected at all ages,
possibly caused by the ongoing synaptic pruning and myelina-
tion remodeling throughout life4,46. At OA, very pronounced
effects were found on neutral lipids. A higher degradation of
TGs to DGs was found concomitant with an increase in
monounsaturated FAs, likely due to increased activity of
lipases. On the other hand, acylcarnitines increased along with
a decrease in free saturated FAs, possibly due to lower
mitochondrial oxidation at OA. Similarly, mitochondrial
alpha-ketoglutarate dehydrogenase showed lower activity caus-
ing decreased succinate levels with increased alpha-
ketoglutarate levels. This lower activity in mitochondria at
OA may also be reflected by the observed increases of sugars,
sugar phosphate, and pyruvate as the end product of glycolysis.
This metabolic shift at OA was not due to differences in vitamin
levels such as pantothenate or thiamine. Interestingly, no
changes in epimetabolites were observed either, such as
methylated-, acetylated- or oxidized metabolites. Structural
degradation of brain matter was more pronounced at OA with
increased protein breakdown associated with increased levels in
amino acids and di- and tripeptides. On the contrary, old mice
showed lower levels of neurotransmitters such as acetylcholine
and dopamine, along with metabolites with neuronal signaling
functions such as adenosine and indoxyl sulfate. All these
metabolic changes may result in cognitive decline and increased
vulnerability to neurodegenerative diseases. A considerable
number of metabolites are co-upregulated or downregulated
across different brain regions in a synchronous manner,
consistent with brain transcriptional dynamics over aging10.
For example, phosphatidylmethanols first decrease, then
increase, and decrease again over aging, and these changes
are synchronous across all 10 brain regions. Short-chain PIs
(C28–C34) persistently decrease in almost all regions from AD
to middle age and then increase at OA. Conversely, adenosine
and its related metabolites increased from AD to EA in most
regions but kept declining afterward. Such aging-induced
patterns of many metabolite classes have not been reported
before. The aging profile for each metabolite is readily
visualized in our web tool, with corresponding bar graphs
giving both peak intensities and statistical significances between
age groups and brain regions. For example, we herein show the
aging difference of dopamine, adenosine, and guanine across
brain regions in Fig. 4e.

Sphingolipid dynamics indicates myelin remodeling in the
adult brain. Next, we studied if the mouse brain metabolome
atlas yields insights into biological processes. We found an
interesting age-dependent alternation pattern of three sphingoli-
pid species, including SMs, hexosylceramides (HexCers), and
their sulfatides (sHexCers). Heatmaps of SMs, HexCers, and
sHexCers show large increases from adolescent to early adults
and substantial decreases from middle age to OA (Fig. 5a), spe-
cifically for HexCers and sHexCers with C20–26 fatty acyl groups.
This finding is consistent with the up-regulation of ceramide
synthase 2 (CerS2) (Fig. 5b) in 3-week-old mouse brains whereas
a down-regulation in 60-week-old brain47,48, an enzyme

predominantly expressed in oligodendrocytes to produce C20–26
Cers. Several HexCers continued to increase in metabolite levels
from early adult to middle age and decrease afterward. These
characteristic changes were structurally confined to C22–24
monounsaturated fatty acyl groups. For sHexCers, the highest
levels were maintained at the middle-age stage, specifically for
odd-chain C23–C25 monounsaturated fatty acyl groups. After-
ward, several components, especially the C24 saturated species,
began to decrease. Interestingly, this finding is supported by a
CerS2 knock-out study that revealed unstable and non-compact
myelin in late adult knock-out mice49. Similarly, both aging
brains and brains with Alzheimer’s disease undergo loss of CerS2
activity accompanied by myelin degeneration48, confirming the
importance of very long acyl chain species for the maintenance of
myelin function and integrity in the brain. Only four SMs showed
significant large fold changes between middle age and OA with
large differences between regions, during aging, and between the
sexes via web-based visualization. Other sphingolipids showed
decreases during aging, for example, short-chain fatty acyl deri-
vatives, specifically for HexCer and sHexCer. A consistent
increase of all HexCer species was witnessed only in CT at OA.
SM and sHexCer were most abundant in brainstem regions (MB,
PO, and MD) and showed fewer drastically altered metabolites
between adults and OAs. This result is in accordance with a
previous study that showed characteristic spatiotemporal myeli-
nation patterns50.

HexCers, sHexCers, and SMs are highly enriched in oligoden-
drocytes or myelin51. Myelins are an indispensable structure in the
central nervous system to insulate neuronal axons for the acceleration
of neuronal transmission and maintenance of neuronal function.
HexCers are formed via glycosylation of Cers and can be further
sulfated (Fig. 5b), while SMs are generated via hydrolysis of Cers or
by synthesis using phosphatidycholine. The structural diversity of
these sphingolipids is regulated by the expression of different
ceramide synthases via the incorporation of FAs with different acyl
chain lengths. The concentration of HexCers, sHexCers, and SMs in
the brain is proportional to the amount of myelin present during
brain development52. Short-chain and long-chain sHexCers have
been found to be representative of different developmental stages of
oligodendrocytes53. Brains of newborns are virtually unmyelinated,
and the oligodendrocyte population expands dramatically to form
myelin after birth to the first few years of childhood54, while less is
known about myelination after brain maturation or aging. Recent
fluorescence optical studies suggest that myelin may be remodeled to
support the circuit plasticity of the brain after AD55–57, specifically in
the cortex and subcortex. In aged brains, abnormality and loss of
myelin have been identified to result in cognitive decline and a higher
risk of neurodegenerative diseases58. The mouse brain metabolome
atlas adds molecular details to such overall processes.

We here show how the myelinating process is evolving from AD
to OA. Very specific acyl-chain lengths are specifically affected for
HexCer, sHexCer, and SM, with distinct patterns for acyl-groups
longer than 18 carbons (and long-chain SMs) (Fig. 5c), usually in a
monounsaturated form. Such structures may support myelin
plasticity in the adult or aging brain57. Cell–cell adhesion in myelin
is partially due to sphingolipid carbohydrate–carbohydrate inter-
actions across opposed membranes59. We hypothesize that during
the transition from AD to adulthood, shifts in levels of very-long
acyl chain sphingolipids lead to increases in sphingolipid
hydrophobic properties to further strengthen the stability of
myelin structures. In contrast, at OA the decrease of very-long acyl
chains in sphingolipids lowers the hydrophobicity of myelin,
resulting in myelin degeneration and cognitive decline at OA.
Similar shifts were reported for 12 sHexCers by matrix-assisted
laser Ionization mass spectrometry that focused on cell-cultured
oligodendrocyte development53.
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Fig. 5 Dynamics of sphingolipids in the aging mouse brain. a Heatmaps with fold-changes for HexCer, sHexCer, and SM sphingolipids in brain regions
between early adult versus adolescent, middle-age versus early adult, and old age versus middle age. b Pathways of HexCer, sHexCer, and SM
biosynthesis. HexCer, sHexCer, and SM are highly enriched in oligodendrocyte or myelin. c Simplified scheme summarizing myelin sphingolipid changes
during brain aging. Very-long-chain sphingolipids increasing from adolescent to middle-aged brains with a subsequent decrease from towards old age.
Long-chain sphingolipids almost keep constant levels across all age groups.
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Discussion
Understanding brain function must start with an in-depth map-
ping of the brain’s structural and molecular organization. With
1,547 annotated metabolites across 10 brain regions, we here
present a large-scale comprehensive metabolome atlas of the aging
mouse brain that can inform previously established genomic,
transcriptomic and proteomic atlases5–11. Data analysis revealed
that metabolic differences were almost entirely found between
brain regions and along the axis of brain maturation and aging,
but not due to sex differences. Hence, these metabolomic differ-
ences were in great concordance with functional and molecular
phenotypes published before1,2 that highlighted large differences
during brain aging and between brain regions, validated also by
concordance between metabolite abundances and enzyme imaging
techniques4. This atlas can therefore serve as an important repo-
sitory for the health status of different mouse brain regions against
which diseased states or the impact of mutations can be compared
in future studies, and for research use into dementia and other
brain dysfunctions associated with very OA.

The differentiation–dedifferentiation trajectory of brain devel-
opment indicates specific aging programs for each region4,43. We
found this trajectory to be reflected by decreasing metabolite
correlations across brain regions when comparing adolescent to
aged mouse brains. We exemplified the use of the brain meta-
bolome atlas by highlighting novel metabolic patterns of HexCers,
sHexCers, and SMs during brain development and aging. Here,
we contribute previously unknown details on the exact molecular
speciation of sphingolipids localized in oligodendrocytes and
myelin remodeling during adulthood and OA47,48.

In general, we did not find a large variance in metabolic levels for
the eight samples per sex and brain region for each age group. In
addition, few differences in brain metabolism were observed
between the sexes. Hence, overall the study appeared to be not
biased by the number of samples. Yet, this brain metabolome atlas
will be further extended in the future. For example, changes during
the prenatal and postnatal periods might be highly interesting but
would require even more advanced techniques for microdissection
and metabolome analysis. Changes in blood and fecal metabolomes
during the aging process may also provide an auxiliary impact on
changes in brain function. Furthermore, the spatial organization of
brain functions clearly continues from brain regions to the cellular
and subcellular levels. Here, other techniques such as laser-based
mass spectrometry imaging are useful60, especially once these
methods extend from lipids to polar metabolites. However, what is
gained by such techniques in spatial resolution is often lost with
respect to molecular speciation and statistical power for finding
subtle differences. Our methods also yielded several thousands of
structurally yet unidentified compounds. We anticipate that
extended mass spectral libraries61,62 and improved retention time
predictions63,64 as well as novel separation techniques such as ion
mobility65 will increase the number of identified compounds in the
future. We will then update the brain metabolome atlas accordingly.
Last, all biochemical findings are based on mouse brains. Under-
lying molecular mechanisms remain inadequately understood, and
we should be very careful when extrapolating findings from rodent
animal models to humans.

Methods
Tissue collection. Mice were cohoused by gender groups of 4–5 in individually
ventilated cages (Optimice IVC, Animal Care Systems, Centennial, CO) on a 12:12-h
(6:00/18:00) light:dark cycle at 68–79 °F with 40–60% humidity and provided water
and standard rodent chow (Rodent chow, Harlan 2918) ad libitum. Brain tissue
samples were collected from 3, 16, 59, and 92 weeks old male and female wild-type
mice on a C57BL/6N background. All procedures were approved by the IACUC of
the University of California, Davis, which is an AAALAC-accredited institution.
Animal housing and euthanasia were performed in accordance with the recom-
mendations of the Guide for the Care and Use of Laboratory Animals. Briefly, mice

were anesthetized with 4% Isoflurane in 100% oxygen at a flow rate of 3 L/h to a
surgical plane. Blood was then collected by a retro-orbital bleed into an EDTA tube
and centrifuged at 2000 × g for 15min to separate and remove plasma. While under
anesthesia mice were perfused for ~10 min with phosphate-buffered saline (PBS) pH
7.4 at room temperature. Following perfusion, the brain was removed and placed in
a Petri dish containing PBS at 4 °C for dissection of individual brain regions. A
dissection microscope, fine tip (#5) forceps, and razor blade were used to isolate and
separate brain regions (OB, HC, HT, TL, MB, CB, PO, MD, CT, and BG collected as
caudate-putamen and basal forebrain) in induvial mice while being careful to avoid
contamination from neighboring regions. Briefly, after separating the OBs, the left
and right cerebral cortices were then removed while taking care not to disrupt the
regions underneath. This enabled access to and removal of the left and right HC.
After cutting along the TL, the left and right caudate putamen was separated and
removed from the basal forebrain. Subsequently, the CB and MB were isolated and
removed, followed by separation and removal of the TL and the HT from the PO
and MD. The PO was then separated from the MD. Any spinal cord remaining on
the MD was removed. Each region was immediately placed in a cryovial and flash-
frozen liquid nitrogen for analysis.

A full necropsy, including brain dissection and isolation and removal of tissues,
took ~25 min on each mouse. Retro-orbital bleed and perfusion were completed in
the first 15 min, and the brain dissection was finished in the remaining 10 min.

Sample preparation. During the sample preparation, lipids and polar metabolites
were separated prior to analyses through solvent extraction/fractionation. Hence,
potential problems in ion suppression or the ability of compounds to be ionized
were limited due to the use of Lipidomic LC–MS/MS, HILIC-MS/MS (including
positive and negative electrospray), and the complementary use of GC-electron
ionization-MS.

Briefly, five milligrams of tissue from each brain region were homogenized in
225 µL of −20 °C cold, internal standard-containing methanol using a
GenoGrinder 2010 (SPEX SamplePrep) for 2 min at 1,350 rpm. The extraction
methanol contained the following internal standards for quality control and
retention time normalization: sphingosine (d17:1), LPE (17:1), LPC (17:0), MG
(17:0/0:0/0:0), DG (12:0/12:0/0:0), PC (12:0/13:0), cholesterol-d7, SM (18:1/17:1),
ceramide (d18:1/17:0), PE (17:0/17:0), TG (14:0/16:1/14:0)-d5, TG (17:0/17:1/17:0)-
d5, acylcarnitine (18:1)-d3, fatty acid (16:0)-d3, MAG (17:0/0:0/0:0), PI (15:0–18:1)-
d7, PG (17:0/17:0), PS (15:0-18:1)-d7, glucosylceramide(d18:1/17:0), mono-sulfo
galactosylceramide(d18:1/17:0), and 5-PAHSA-d9. The homogenate was vortexed
for 10 s. 750 µL of −20 °C cold, internal standard-containing methyl tertiary-butyl
ether (MTBE) was added, and the mixture was vortexed for 10 s and shaken at 4 °C
for 5 min with an Orbital Mixing Chilling/Heating Plate (Torrey Pines Scientific
Instruments). MTBE contained cholesteryl ester 22:1 as internal standard. Next,
188 µL room temperature water was added and vortexed for 20 s to induce phase
separation. After centrifugation for 2 min at 14,000×g, two 350 µL aliquots of the
upper non-polar phase and two 125 µL aliquots of the bottom polar phase were
collected and dried down. The remaining fractions were combined to form QC
pools and were injected after every set of 10 biological samples.

The non-polar phase employed for lipidomics was resuspended in a mixture of
methanol/toluene (60 µL, 9:1, v/v) containing an internal standard [12-
[(cyclohexylamine) carbonyl]amino]-dodecanoic acid (CUDA)] before injection.
Resuspension of dried polar phases for HILIC analysis was performed in a mixture
of acetonitrile/water (90 µL, 4:1, v/v) containing the following internal standards:
CUDA, caffeine-d9, acetylcholine-d4, TMAO-d9, 1-methylnicotinamide-d3, Val-
Tyr-Val, betaine-d9, acyl carnitine (2:0)-d3, N-methyl-histamine-d3, L-carnitine-d3,
butyrobetaine-d9, L-glutamine-d5, aspartic acid-d3, L-arginine-15N2, cystine-d4,
asparagine-d3, histidine-d5, isoleucine-d10, leucine-d10, methionine-d8, ornithine-
d2, phenylalanine-d8, proline-d7, threonine-d5, tryptohan-d8, tyrosine-d7, valine-d8,
spermine-d8, glucose-d7, fructose-6-phosphate-13C6, succinic acid-d4, taurocholic
acid-d4, adenosine 5′-monophosphate-15N5, uridine 5′-monophosphate-15N2,
dopamine-d4, taurine-d4, uracil-d2, biotin-d4, N-acetylalanine-d3, guanine-13C, and
adenosine-13C5. The second dried polar phase was reserved for GC analysis and a
following derivatization process was carried out before injection. First, carbonyl
groups were protected by methoximation with methoxyamine hydrochloride in
pyridine (40 mg/mL, 10 µL) was added to the dried samples. Then, the mixture was
incubated at 30 °C for 90 min followed by trimethylsilylation with N-methyl-N-
(trimethylsilyl) trifluoroacetamide (MSTFA, 90 μL) containing C8–C30 fatty acid
methyl esters (FAMEs) as internal standards by shaking at 37 °C for 30 min.

Lipidomic LC–MS/MS analysis. For lipidomics analysis, 3 μL of the resuspended
non-polar phase was injected into a Vanquish UHPLC system (Thermo Scientific,
Waltham, MA, USA) equipped with a Waters Acquity UPLC CSH C18
(100 mm × 2.1 mm i.d.; 1.7 μm) coupled with a Waters Acquity VanGuard CSH
C18 precolumn (5 mm × 2.1 mm i.d.; 1.7 μm). The oven temperature and flow rate
were set at 65 °C and 0.6 mL/min, respectively. In order to obtain a broad lipid
coverage, different mobile phases were employed for positive mode and negative
mode analysis, respectively. The positive mobile phase consists of acetonitrile/water
(60/40, v/v) with 0.1% formic acid and 10 mM ammonium formate as A and 2-
propanol/acetonitrile (90:10, v/v) with 0.1% formic acid and 10 mM ammonium
formate as B, while the negative mode mobile phase is made up of acetonitrile/
water (60/40, v/v) with 10 mM ammonium acetate as A and 2-propanol/
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acetonitrile (90/10, v/v) with 10 mM ammonium acetate as B. Both modes share
the same gradient: 0–2 min from 15% to 30% B, 2–2.5 min from 30% to 48% B,
2.5–11 min from 48% to 82% B, 11–11.5 min from 82% to 99% B, 11.5–12 min
maintain at 99% B, 12–12.1 min from 99% to 15% B, and 12.1–14.2 min re-
equilibrate at 15% B. A ThermoFisher Q-Exactive HF with a HESI-II ion source
(Thermo Scientific, Waltham, MA, USA) was used to collect spectra with a data-
dependent MS/MS spectra acquisition method. The ion source conditions were set
as follows: spray voltage, 3.6 kV; sheath gas flow rate, 60 arbitrary units; aux gas
flow rate, 25 arbitrary units; sweep gas flow rate, 2 arbitrary units; capillary temp,
300 °C; S-lens RF level, 50; Aux gas heater temperature, 370 °C. The following
acquisition parameters were used for MS1 analysis: resolution, 60,000, AGC target,
1e6; Maximum IT, 100 ms; scan range 150–1700m/z; spectrum data type, centroid.
Data-dependent MS/MS parameters: resolution, 15,000; AGC target, 1e5; max-
imum IT, 50 ms; loop count, 4; TopN, 4; isolation window, 1.0m/z; fixed first mass,
70.0m/z; (N)CE/stepped nce, 20, 30, 40; spectrum data type, centroid; minimum
AGC target, 8e3; intensity threshold, 1.6e5; exclude isotopes, on; dynamic exclu-
sion, 3.0 s. To increase the total number of MS/MS spectra, five runs with iterative
MS/MS exclusions were performed using the R package “IE-Omics”18 for both
positive and negative electrospray conditions.

HILIC–MS/MS analysis. For LC–MS/MS analysis of polar metabolites, the same
ThermoFisher equipment was used as above. Three microliters of the resuspended
HILIC solution was injected onto a Waters Acquity UPLC BEH Amide column
(150mm× 2.1 mm; 1.7 μm) coupled with an additional Waters Acquity VanGuard
BEH Amide precolumn (5mm× 2.1mm; 1.7 μm). The oven temperature was
maintained at 45 °C, and the flow rate was set at 0.4mL/min. HILIC chromatographic
separations were performed by the following parameters: solvent A consisted of water
with 10mM ammonium formate and 0.125% formic acid, solvent B was made from
acetonitrile/water (95/5, v/v) with 10mM ammonium formate and 0.125% formic
acid. A gradient run was set up as 0–2min at 100% B, 2–7.7min from 100% to 70% B,
7.7–9.5min from 70% to 40% B, 9.5–10.25min from 40% to 30% B, 10.25–12.75min
from 30% to 100% B, and 12.75–17min re-equilibrate at 100% B. Mass spectrometry
parameters were identical as above, but the MS1 mass was limited to 60–900 m/z.

GC-TOF MS analysis. 0.5 μL sample was injected with 25 s splitless time on an
Agilent 6890 GC (Agilent Technologies, Santa Clara, CA) using a Restek Rtx-5Sil
MS column (30 m × 0.25 mm, 0.25 μm) with 10 m Guard column (10 m × 0.25 mm,
0.25 μm) and 1mL/min Helium gas flow. The oven temperature was held 50 °C for
1 min, ramped up to 330 °C at 20 °C/min, and held for 5 min. Data were acquired
at 70 eV electron ionization at 17 spectra/s from 85 to 500 Da at 1850 V detector
voltage on a Leco Pegasus IV time-of-flight mass spectrometer (Leco Corporation,
St. Joseph, MI). The transfer line temperature was held at 280 °C with an ion source
temperature set at 250 °C. Standard metabolites mixtures and blank samples were
injected at the beginning of the run and every 10 samples throughout the run for
quality control. Raw data were preprocessed by ChromaTOF version 4.50 for
baseline subtraction, deconvolution, and peak detection. Binbase was used for
metabolite annotation and reporting20.

LC–MS data processing and statistics. All the LC–MS raw data files were con-
verted into ABF format using ABF converter (https://www.reifycs.com/
AbfConverter/). MS-DIAL ver.4.00 software was used for deconvolution, peak
picking, alignment, and compound identification19. The detailed parameter setting
was as follows: MS1 tolerance, 0.005 Da; MS2 tolerance, 0.01 Da; minimum peak
height, 20,000 amplitude; mass slice width, 0.1 Da; smoothing method, linear
weighted moving average; smoothing level, 5 scans; minimum peak width,
10 scans. [M+H]+, [M+NH4]+, [M+Na]+, [2M+H]+, [2M+NH4]+,
[2 M+Na]+ were included in adduct ion setting for positive mode lipidomics and
HILIC analysis, [M-H]–, [M+ Cl]–, [M+Hac-H]– for negative mode lipidomics,
and [M–H]–, [M+Cl]–, [M+ FA-H]–, [2M-H]– for negative mode HILIC ana-
lysis. Compounds were annotated by matching retention times, accurate precursor
masses, and MS/MS spectra against libraries in MassBank of North America
(https://mona.fiehnlab.ucdavis.edu/) and NIST17 (https://chemdata.nist.gov/).
Retention time libraries were produced from authentic standards and extrapolated
for lipids as published before19. The primary result data matrix was processed with
MS-FLO software to identify ion adducts, duplicate peaks, and isotopic features66.
Systematic error removal by random forest (SERRF software, https://
slfan2013.github.io/SERRF-online/#)28 was employed to correct for batch effects or
instrument signal drifts. For metabolites that were detected by two or more plat-
forms, values with the lowest relative standard deviation in quality control samples
were kept. Metabolites that were present in at least 6 of the 8 samples in at least one
of the 80 study groups (defined by age, sex, and brain region) were kept in the
dataset, otherwise, metabolites were removed from the dataset. Missing data were
replaced by 1/10th of the minimum value (default value 100).

Estimated concentrations were calculated based on a series of internal standards
with known concentrations spiked during the sample preparation. The quantitative
results of metabolites were obtained using the peak heights and the concentrations of
the spiked internal standards and then normalized to sample fresh weight. For HILIC
metabolites, the quantification was achieved by comparing to their corresponding
isotope-labeled internal standards. For lipid quantification, the concentrations of all

lipid candidates in a lipid class were estimated by the corresponding internal standard
of that class. As there was only one internal standard in each lipid class to quantify a
large diversity of lipids, it should be noted that the accuracy of quantifications was
inevitably affected by matrix effects and may not fully reflect the different MS
responses of lipids with different fatty acyl chains. In addition, for those important
neurochemicals whose internal standards were not available, the concentrations in the
pooled QC samples were estimated according to the reported endogenous
concentrations in the brain and then applied to all the brain samples. Quantification
results and quantification methods are summarized in Supplementary Data 3.

Statistical analysis was performed by normalization to the median intensity of
all identified compounds, log transformation, and Pareto scaling. PCA was used for
multivariate statistics and visualization, specifically for outlier detection. From the
total 640 total biological samples, three outlier samples were removed by outlier
analysis in PCA plots, including one MD sample from a female early adult, one BG
sample from a middle-aged female, and one OB from an old-aged male. Results
from Kruskal–Wallis tests were followed by Dunn’s multiple comparison
confinement. Results from Mann–Whitney U tests were corrected by the
Benjamini–Hochberg procedure to control the false discovery rate. Spearman rank
correlation analyses and fold change calculations were conducted using R.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that data supporting the findings of this study are available within
the paper and its Supplementary Information files. This data is available at the NIH
Common Fund’s National Metabolomics Data Repository (NMDR) website, the
Metabolomics Workbench (https://www.metabolomicsworkbench.org) where it has been
assigned Project ID PR001047. The data can be accessed directly via https://doi.org/
10.21228/M8C68D.
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