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ARTICLE OPEN

Superconductor-to-metal transition in overdoped cuprates
Zi-Xiang Li1,2, Steven A. Kivelson3 and Dung-Hai Lee 1,2✉

We present a theoretical framework for understanding the behavior of the normal and superconducting states of overdoped
cuprate high temperature superconductors in the vicinity of the doping-tuned quantum superconductor-to-metal transition. The
key ingredients on which we focus are d-wave pairing, a flat antinodal dispersion, and disorder. Even for homogeneous disorder,
these lead to effectively granular superconducting correlations and a superconducting transition temperature determined in large
part by the superfluid stiffness rather than the pairing scale.

npj Quantum Materials            (2021) 6:36 ; https://doi.org/10.1038/s41535-021-00335-4

INTRODUCTION
For over three decades, research on the cuprate superconductivity
primarily focused on the underdoped and optimally doped region
of the phase diagram. Here, it is now widely accepted that Tc is not
set by the scale of Cooper pairing (as in BCS theory), but is instead
largely determined by the onset of phase coherence (i.e., by the
superfluid density)1,2. Phenomena such as the pseudogap,
intertwined orders, and strange metal behavior remain the focus
of considerable research today. In contrast, it is commonly
believed that the physics of the overdoped cuprates is more
conventional. For example, angle-resolved photoemission spectro-
scopy (ARPES) shows a large untruncated Fermi surface in the
normal state with reasonably well-defined quasi-particle peaks,
and a superconducting gap that decreases with increasing
doping, more or less in tandem with Tc

3. Moreover, in at least
one material4, quantum oscillations, of the sort expected on the
basis of band-theory, have been documented.
Thus, it was a surprise that recent penetration depth measure-

ments5,6 on crystalline LSCO films suggest that the super-
conductivity in the overdoped cuprates is also limited by the
onset of phase coherence. Consistent with this result, recent
ARPES measurements7 of overdoped Bi2212 found spectroscopic
evidence that Cooper pairs are already formed at temperatures
about 30% higher than Tc. Adding to the puzzle, recent optical
conductivity measurements8 showed that below Tc a large fraction
of the normal-state Drude weight remains uncondensed. This is
consistent with earlier specific heat measurements which show a
T-linear term that persists to the lowest temperatures, T≪ Tc, with
a magnitude that is a substantial fraction of its normal-state
value9,10. A possibly related observation11–13 from scanning
tunneling microscopy (STM) is that, at least up to moderate levels
of overdoping, a spectroscopic gap persists in isolated patches up
to temperatures well above Tc, so that the normal-state electronic
structure is suggestive of superconducting grains embedded in
a normal metal matrix. Other than the STM results (for which
the relevant data do not exist at very high overdoping), these
phenomena become increasingly dramatic as the doped hole
concentration, p, approaches the critical value, psmt, at which
the superconductor-to-metal transition occurs at the overdoped
end of the superconducting dome.
The primary goals of this paper are to present a simple

theoretical model that captures what we believe to be the essence
of the above phenomena, and to explain the cause of the

superconductor–metal transition. We are aware that our model
does not capture various quantitative aspects of the actual
materials. In the next two paragraphs, we present the physical
picture underlying this work.
A sketch of the Fermi surface of an overdoped cuprate is shown

in Fig. 1; it is shown as being hole-like, although in some cuprates
the Fermi surface passes through a Lifshitz transition at a doping
concentration, pLif < psmt, in which case it would be electron-
like14,15. The neighborhood of the van-Hove points—which we
will refer to as the antinodal regions—is also the portion of
the Fermi surface farthest from the gap nodes in the d-wave
superconducting state and so is where the gap is largest. As we
will discuss, the fact that the Fermi surface passes near the van-
Hove point, meaning that the Fermi velocity is small in the
antinodal regions, plays a significant role in the results we obtain;
whether it is electron or hole-like is relatively less important.
In considering the effects of disorder, the scattering between

antinodal regions (indicated by the orange line in the figure) is
particularly important, as it is pair-breaking. Such antinode to
antinode scattering is apparent in STM quasi-particle interference
measurements in both non-superconducting16 and superconduct-
ing17 overdoped Bi2201. In particular, in ref. 17, it is shown that at
voltages corresponding to the antinodal gap energy, the Fourier
transform of the local density of states exhibits a broad maximum
at momentum q= (π, π). Moreover, from the coherence factor, it is
inferred that this scattering occurs between momentum regions
having opposite signs of the gap function17.
When the Cooper pair coherence length is comparable to the

correlation length of the disorder potential, the prior mentioned
pair-breaking causes the pair-field amplitude to be spatially
heterogeneous18,19. The superfluid stiffness is large in regions
with high pair-field amplitude, whereas the stiffness is low where
the pair-field amplitude is small. This is reminiscent of a granular
superconductor. The small stiffness in the inter-granular regions
causes the averaged zero-temperature superfluid density to be
low, hence superconducting phase fluctuations (both classical and
quantum) are enhanced. In the metallic regions the Cooper
pairing instability is inhibited since (a) the repulsive interactions
between electrons force the average of the superconducting order
parameter to be zero around the Fermi surface, and (b) a sign-
changing order parameter is suppressed by disorder scattering.
The unpaired electrons in the inter-granular regions give rise
to a substantial uncondensed Drude component in the optical
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conductivity and to a residual T-linear term in the specific heat. A
superconductor-to-metal transition occurs when the supercon-
ducting islands grow sufficiently sparse18.
Note that the normal-state transport is dominated by the nodal

quasiparticles, which are known to be less affected by impurity
scattering20,21. In the rest of the paper, we present results
corroborating the physical picture presented above.

RESULTS
The model
The model we use to describe the superconducting state contains
hopping terms, interaction terms, and disorder potential terms.
The Hamiltonian is

H ¼ �
X

i;j;σ

tijðcyiσcj;σ þ h:c:Þ þ
X

i;σ

ðwi � μÞcyiσci;σ þ Hint (1)

where tij is the hopping integral between sites i and j on a square
lattice which we take (to produce a cuprate-like Fermi surface) to
be tij= 1 between nearest-neighbor sites, tij=−0.35 between
second-neighbor sites, and tij= 0 for all further neighbors. To
compare different pairing symmetries, we consider two different
forms of Hint: (1) As a model of a d-wave superconductor (relevant
to the cuprates) we adopt a model with a nearest-neighbor
antiferromagnetic Heisenberg exchange interaction, Hint= J∑〈ij〉Si ⋅
Sj. (2) As a model of an s-wave superconductor, we consider an
attractive Hubbard interaction, Hint ¼ �U

P
ic
y
i"ci"c

y
i#ci#. We fix the

strength of the pairing interactions to J= 0.8 and U= 1.35,
respectively, so that the two superconducting gap scales in the
absence of disorder are approximately the same.
In treating the problem with disorder, we consider a finite

system of size 40 × 40 and, unless otherwise indicated, assume
periodic boundary conditions. The random potentials, wj, repre-
sent the effects of disorder: on a randomly chosen fraction nimp of
sites we set wj=w > 0, with wj= 0 on all other sites. Modeling
disorder as point-like impurities is a simplification. In reality, the
potential produced by the dopants can extend over multiple unit
cells. The point-like impurity is considered because it can cause
the large momentum transfer of antinode to antinode scattering
seen in STM16,17, which is a key ingredient in our theoretical
framework. In the main text, we report results for disorder
strength, w= 1, but in Supplementary Note 2 we include results
for other values—the main qualitative results do not depend
sensitively on the value of w. We repeat this with multiple

different impurity configurations in order to compute the
configuration averages of physical observables; typically, we
average over 64 distinct impurity configurations but we average
over 128 configurations when the impurity concentration is large
and the superconducting pairing is highly inhomogeneous.
We solve the model by self-consistent BCS mean-field

approximation. However, the disorder scattering is treated exactly.
Since H lacks translation invariance, the self-consistency equations
need to be solved numerically. Since our calculation does not
capture the thermal and quantum fluctuations, we focus primarily
on zero temperature and on doping sufficiently away from the
quantum critical doping of the superconductor–metal transition.
The carrier concentration is controlled by the chemical potential

μ and the impurity concentration nimp. Sometimes we fix μ while
changing nimp to reach the desired carrier (hole) concentration. In
the case where we want to study the effect of disorder at a fixed
carrier density, we tune μ while varying nimp to achieve the desired
carrier density. To avoid the complex issues of the pseudogap,
intertwined orders, and strange metals, we take our lowest carrier
concentration to be slightly larger than optimal doping. Thus
except in section “Role of the antinodal dispersion”, the impurity
concentration is measured relative to that present at optimal
doping. For example, in Fig. 2 we show the hole concentration p
as a function of nimp at fixed μ with w= 1.

The mean-field solution
The local value of the gap parameter, Δij, that enters the mean-
field equations, which we will refer to as the pair field, is given by
the product of the pairing interaction times the expectation value
of the pair annihilation operator. In the s-wave case, Δ is site
diagonal, Δj≡ Δjj= U〈cj↑cj↓〉 while for the d-wave case, Δij= J〈ci↑cj↓
+ cj↑ci↓〉, where i, j are any pair of nearest-neighbor sites. The self-
consistently computed values of the pair field for two impurity
configurations with different doped hole concentrations are
shown in Fig. 3.
In the s-wave case, we find that Δj has a uniform sign and a

magnitude that is weakly dependent on position. Moreover, it
does not depend on the doped hole concentration strongly. The
red symbols in Fig. 4a show the configuration averaged value of
∣Δi∣, as a function of p.
In the d-wave case, Δij has a magnitude that varies significantly

as a function of position and which is strongly doping dependent.
It also reflects the d-wave symmetry of the uniform state from
which it descends in that, with minor exceptions, Δij is positive on
bonds oriented in the x̂ direction, and negative on bonds in the ŷ
direction. The black symbols in Fig. 4b show the configuration
average of ∣Δij∣ as a function of p. Notice that it drops dramatically

Fig. 1 Model Fermi surface. Antinode to antinode scattering
induced by the disorder potential is indicated by the yellow arrow.

Fig. 2 Plot of the density of doped holes as a function of impurity
concentration. The disorder strength is fixed with w= 1.
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with increasing p, but then has a long tail with small magnitude
that extends to high values of p.
Note that the band structures used in the two cases are the

same; only the pairing interaction is different. The dramatic
contrast between the two cases manifests Anderson’s theorem for
the s-wave, and pair-breaking by the scalar disorder for the
d-wave.

Specifically, in the d-wave case, pair-breaking induced by the
antinode to antinode scattering tends to strongly suppress super-
conducting pairing. A consequence of this is that when disorder is
strong, the pair-field amplitude becomes granular (heterogeneous)
with significant pairing occurring only in rare regions where disorder
is weak19. This can be seen clearly in Fig. 3b. The superconducting
order parameter on different grains are connected by effective SNS

Fig. 3 The real-space distribution of the pair field. The upper two panels are for d-wave pairing (where the pair fields lie on nearest-neighbor
bonds); the lower two panels are for s-wave pairing (where the pair fields are on-site). The size of the symbols, namely the thickness of the
bonds in (a) and (b), and the size of the dots in (c) and (d), represents the magnitude of the pair field whereas the color (red positive, blue
negative) the sign. The left and right columns correspond to two different impurity concentrations. The magnitude of pair field in panel a
ranges from 0.0003 to 0.103 while that in (b) ranges from 0.000005 to 0.1008. In c and d, the magnitude of the pair field on each site ranges
from 0.076 to 0.18 and 0.073 to 0.20, respectively.

Fig. 4 The doping dependence of the spatial averaged zero-temperature magnitude of the pair field and the mean-field value of the
superfluid density. The band structures used in these plots are the same, the only difference is the pairing interaction. The red symbols
represent s-wave pairing while the black symbols represent the d-wave pairing. In the band structures used in constructing these plots, the
Fermi surface crosses van-Hove point, namely Lifshitz transition occurs, at the doping level pLif ≈ 0.33.
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(superconductor–metal–superconductor) Josephson junctions which,
as suggested in ref. 22, can vary randomly in sign due to the sign-
changing superconducting order parameter. This can cause frustra-
tion in the superconducting phase coherence, and ultimately, as we
will see shortly, to spontaneous time-reversal-symmetry breaking and
the existence of local super-current loops.
The net superfluid density is computed from the standard Kubo

formula, Supplementary Eqs. (2) and (3). In Fig. 4b we compare the
p dependence of the T= 0 mean-field superfluid density for the s-
wave and d-wave pairing cases. Notice that for the d-wave case,
the superfluid density drops considerably more rapidly than does
the pair-field amplitude. (This can be seen more quantitatively in
Supplementary Fig. 1, where the d-wave case is shown on a log-
linear scale.) This implies that phase fluctuation effects, beyond
the mean-field treatment, must inevitably become large in this
range of doping.
We have also computed the T dependence of the mean-field

superfluid density. For the d-wave case, the results are shown in
Supplemental Fig. 4. At low T (where we see a T-linear decrease),
the results may be physically meaningful, but at higher
temperatures, thermal-phase fluctuations, which are ignored in
our mean-field treatment, must certainly play a role in the
vanishing of the superfluid density as T→ Tc.

Equilibrium current loops
A subtle but remarkable feature of the mean-field solution in the
highly overdoped regime is shown in Fig. 5. Here, the blue-colored
bonds represent ∣Δij∣ while the red arrows represent equilibrium
supercurrents. Here, the current operator on bond ijh i is given by

Jij ¼ itij
X

σ

hcyiσcjσ � h:c:i (2)

We stress that we have not added any time-reversal symmetry-
breaking perturbation. The currents form loops, thus satisfying the
continuity equations, and are manifestations of the spontaneous
breaking of time-reversal symmetry expected from the random-in-
sign Josephson couplings that emerge when superconducting
islands are small and sparse. The patterns of currents are
analogous to those in an XY spin-glass, with near-degeneracies
associated with reversing the local currents around localized loops
in different regions of the system. This near degeneracy is
reminiscent to the existence of two-level centers in a glass. They
can give rise to orbital paramagnetism. However, since all these

effects occur where the superfluid density is small, there may be
important qualitative changes in this behavior when the effect of
thermal and quantum phase fluctuations are included. For
instance, the near degeneracy of the two-level centers can be
lifted by tunneling processes in which the local currents reverse
direction. To the extent that they survive fluctuational effects,
these spontaneous current loops are a qualitatively significant
result of the combination of d-wave pairing and scalar disorder.

Role of the antinodal dispersion
Because the d-wave gap is maximal in the antinodal region of the
Brillouin zone (BZ), many features of the mean-field solution
depend sensitively on the band structure in this region. Here we
show the effects of the flat antinodal dispersion in overdoped
cuprates. Such effects have been emphasized in the recent
photoemission work7. Due to the enhanced density of states, we
find that the existence of the flat dispersion amplifies the disorder-
induced antinodal scattering, and hence enhances pairing
heterogeneity. Moreover, it leads to more rapid suppression of
the zero-temperature superfluid density with increasing p.
In Fig. 6, we compare results for two band structures: one with

a flat dispersion near the antinodes (as is generic in the
cuprates), and the other in which the antinodal dispersion is
relatively steep. The band-structure parameters are chosen such
that the doping level is fixed at 23% and the Fermi energy
(3.875t) is the same for the two different band structures (see
Supplementary Note 3). The most significant difference between
the flat and steep bands is the existence/absence of a flat
dispersion along the BZ boundary as shown in the relevant part
of the BZ in Fig. 6a. The spatial averaged zero-temperature pair-
field amplitudes and superfluid densities as a function of
impurity concentration are shown in panels b and c. Note that
in these figures, when the impurity concentration is varied, we
tune the chemical potential so that the hole concentration is
unchanged. It is apparent that the suppression of the pair-field
amplitude and of the superfluid density are considerably more
rapid in the case of a flat band. This result is consistent with
recent ARPES results7 and the interpretation therein. We
attribute the more rapid suppression of the pair-field amplitude
and the superfluid density to the larger density of states
associated with the flat band, and the concomitant enhance-
ment of the pair-breaking antinode to antinode scattering.

Fig. 5 Equilibrium current loops. The blue-colored bonds represent the absolute value of the d-wave pair field. The red arrows represent the
spontaneously generated super-current. The thickness of the arrow denotes the magnitude of the current. The impurity concentration is 0.19
in (a) and 0.31 in (b). No detectable current exists (smaller than 10−12) in (a) while they are quite apparent for (b). c Zoom-in view of the lower-
left corner indicated by the black dashed line in panel (b). For clarity, only when the magnitude of current is >0.001 (which is ~2/10 of the
maximum current value) do we plot a dark red arrow. For smaller current values we use pink arrows to represent them.
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The specific heat and optical conductivity
A feature of the inhomogeneous state is that there remains a
large density of gapless quasi-particle states arising from the
approximately normal metallic regions between the super-
conducting grains. This is reflected in a residual T-linear
contribution to the specific heat and to the ω→ 0 optical
conductivity that survives even as T→ 0. In Fig. 7, we plot the
ratio between the low-temperature specific heat coefficient
γ ≡ c/T and the corresponding value in the normal state as a
function of doping concentration. Notably, when the doping
concentration is high, the ratio approaches one. In Supplemen-
tary Fig. 3, we plot the real part of the optical conductivity as a
function of frequency at T= 0, which shows that a large portion
of normal-state Drude weight is uncondensed. In Supplemen-
tary Note 4, we discuss some discrepancies in the frequency
dependence of our result when compared with the experi-
mental data of ref. 8.

DISCUSSION
There are several aspects of the superconductor-to-metal transi-
tion in overdoped cuprates that have been the subject of various
recent theoretical studies.
One issue concerns the microscopic mechanism for the

superconductor-to-insulator transition. While on the underdoped
side of the superconducting dome, the gap scale appears to
remain large even as Tc→ 0, on the overdoped side the gap
(measured in various ways) decreases significantly as Tc→ 0. Since
it is generally believed that spin-fluctuations are a dominant
contributor to the d-wave pairing, and since signatures of incipient
antiferromagnetic order become increasingly weak with increas-
ing p, it is reasonable to associate the drop in Δ with a weakening
of the pairing interaction. That such a trend occurs in a Hubbard
model with a band structure suitable for the cuprates has
recently been shown in ref. 23. On the other hand, whether
the short-range antiferromagnetic correlation drops sufficiently

strongly to account for the demise of the superconducting phase
is under debate24. In the present study, we showed (at mean-field
level) that even holding the strength of the pairing interaction
fixed, a strong drop in the pairing scale can be accounted for
simply as a consequence of an increased density of random
scattering centers. We consider it likely that both effects play a
role in the overdoped cuprates.
Another issue concerns how disorder is treated. In recent

theoretical studies of overdoped cuprates23,25,26, the effects of
disorder are treated in an effective medium approximation,
in which macroscopic fluctuations in the local impurity config-
urations are averaged out, and the superconducting state
is homogeneous. These studies ignore any self-organized

Fig. 6 The comparison between flat and steep bands. The spatially averaged zero-temperature d-wave pair-field amplitude (b) and
superfluid phase stiffness (c) computed with the two different band structures shown in (a). Results for the partially flat band are shown as the
black squares and for the steep band by the red.

Fig. 7 Doping dependence of specific heat coefficient γ1 normal-
ized by the corresponding normal-state value γ1N. The zero-
temperature specific heat coefficient is extracted by fitting C(T)/T
using C(T)/T= γ1+ γ2T and extrapolating to T= 0. The fitting is
illustrated in the inset, where the left panel is for the d-wave SC state
while the right corresponds to the normal state.
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granularity. Nonetheless, with suitable choices of parameters, they
have been shown to produce phenomenologically reasonable
results. However, we feel that the experimentally observed5

quantitative similarity between Tc and Tθ (i.e., the T= 0 superfluid
density expressed2 in temperature units), implicates the reduced
superfluid density as the cause of the superconductor-to-metal
transition. The emergent granularity that we have found
provides a theoretically sound origin for such a reduced superfluid
density.
The current work, emphasizing the interplay of d-wave pairing

and disorder as the cause of a superconductor-to-metal transition,
is qualitatively different from older studies of the superconductor-
to-insulator transition in the case of an s-wave SC27,28, despite the
appearance of self-organized granularity in both cases. In
particular, the residual resistivity at the end of SC dome is roughly
10 μΩ-cm, i.e., two orders of magnitude smaller than the quantum
of resistivity5 per Cu–O plane. Although our model and calculation
are similar to some previous works of mean-field calculation on
dirty d-wave superconductors29–34, the issues we address, namely
the disorder-driven superconductor-to-metal transition, have not
been sharply articulated previously.
Thus, we propose the key to understanding the essence of

overdoped cuprates is the combined effect of disorder and d-
wave pairing. These features, especially when combined with
relatively flat bands in the antinodal regions of the BZ, lead to a
self-organized granular superconducting state. As an additional
consequence of the d-wave pairing, the Josephson coupling
between the superconducting islands is generically frustrated in
the strong disorder limit. As a consequence, there are sponta-
neous current loops and associated local breaking of time-reversal
symmetry. There are several possible observable signatures of
this22; for instance, we find that under conditions in which the
mean-field zero-temperature superfluid density is significantly
suppressed by disorder, the superfluid density can be an
increasing function of an applied field for small fields. In addition,
due to the formation of local current loops, the system can exhibit
a paramagnetic Meissner effect35, namely, a paramagnetic
response upon applying a small magnetic field. Such effects are
beyond the reach of theories which treat the disorder in effective
medium approximation.
Finally, we reiterate that the model, and the mean-field

treatment of it we have discussed, are simplified compared to
any actual cuprate. Indeed, it follows from the present results that
thermal and quantum fluctuations, not included explicitly in our
treatment so far, are inevitably important in the vicinity of
superconductor-to-metal transition. Thus, while our work is a step
toward understanding the basic physics of superconductor-to-
metal transition in overdoped cuprates, many important issues are
still unsettled.

METHODS
Self-consistency mean-field calculation
The results are obtained by numerically self-consistency mean-field
calculation. The system size in our calculation is 40 × 40. We average over
distinct disorder configurations to compute the physical observables.
Typically, the number of disorder configurations is 64, but we average over
128 configurations when the impurity concentration is large and the
superconducting pairing is highly inhomogeneous.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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