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Abstract 
Visual search for a target is affected by visual similarity. 
Research on visual similarity has primarily focused on the 
high-level features of objects. Real-world objects are 
composed of low-level features that can be harder to measure 
and categorize. We have developed ObViS, an algorithm that 
measures the visual similarity of objects, based on Rao & 
Ballard (1995). ObViS calculates a high-dimensional vector 
that represents the low-level features of a real-world object. 
The algorithm was applied to a library of real-world object 
images in order to calculate the similarity of each object to 
every other object in the library. Two experiments evaluated 
the ability of our algorithm to predict the effects of visual 
similarity on visual search behavior. 

Keywords: similarity; visual similarity; visual search. 

Introduction 
The visual similarity of objects in a scene is an important 
exogenous factor driving visual search behavior. Theories of 
visual search acknowledge the importance of similarity but 
do not specify how the visual search system uses these 
exogenous factors to guide search (Wolfe, 2007). 

Most models of visual search, such as Treisman’s Feature 
Integration Theory (FIT) (Treisman & Gelade, 1980), 
propose separate serial and parallel search mechanisms. A 
limited set of features such as color and size can be 
processed in parallel. Parallel visual search for a target that 
can be distinguished solely on the basis of one of those 
features is fast and efficient. Serial visual search for a target 
that is defined by multiple features is slower and requires 
attention to bind together the features of objects.  

Six of the eight phenomena that Wolfe lists as affecting 
visual search response time entail some form of visual 
similarity: (1) target-distractor similarity, (2) distractor 
heterogeneity, (3) flanking/linear separability, (4) search 
asymmetry, (5) categorical processing,  and (6)  guidance 
(Wolfe, 2007). Each of the six types of visual similarity is 
specific to a low-level feature such as size, color, or 
orientation.  

In addition to low-level features, research on visual 
similarity has also focused on high-level features. 
Approaches to the study of similarity include: geometric, 
feature-based, alignment-based and transformational 
measures of similarity (Goldstone & Son, 2005). Each of 
these approaches requires a form of reductionist 
representation of low-level properties, features, or elements.  

Research on visual search has focused on issues 
surrounding the deployment of the serial or parallel 
processes. Visual search in the laboratory has used simple 
stimuli, manipulated set size or a few high-level features, 
tested search for a single feature, or the conjunction of two 
features, and used response time as their primary measure. 
Visual search in the real-world involved conjunctions of 
many low-level features that can be difficult to measure or 
categorize. 

Statistical models of visual search, such as Itti & Koch 
(2001), have demonstrated the potential use images of real-
world scenes in visual search experiments. Their 
mathematical model simulates the role of bottom-up 
saliency in guiding visual attention. It extracts low-level 
visual features such as color, intensity, and orientation from 
real-world images. The model calculates the conspicuity at 
every point in a scene and thus is able to provide bottom-up 
guidance to direct visual attention. Such models predict 
where the eye is attracted to in a visual scene and, thereby, 
have an important but limited role to play in explanations of 
visual search. 

 Top-down guidance may dominate bottom-up guidance, 
such as saliency, when there is a search target (Chen & 
Zelinsky, 2006). The goal of a visual search for a particular 
target is to find a location in a scene that matches the visual 
features of the target. The visual search system must be able 
to maintain a representation of the features of the target and 
compare those features with features at locations in the 
scene.  

Rao & Ballard’s Active Vision Architecture describes two 
primary visual routines: one for object identification and 
one for object location (Rao & Ballard, 1995). Statistical 
models of visual similarity, such as Rao & Ballard’s, share 
with saliency models their reliance on low-level visual 
features. They differ from saliency models in that they 
define vectors of low-level visual features for a known 
target and for the locations in a scene. They then compare 
the similarity of the target vector with the vectors computed 
for locations in the scene. Top-down guidance is based on 
the statistical similarity of scene locations to the search 
target.  

Cognitive architectures, such as ACT-R (Anderson & 
Lebierre, 1998), are used to model visual search behavior. 
Visual attention guidance in ACT-R suffers from the same 
reliance on high-level visual features that limits most 
theories of visual search. Statistical models of both bottom-
up and top-down guidance would greatly increase the ability 
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of cognitive models to model real-world visual search. We 
have implemented a variation of Rao & Ballard’s model and 
applied it to the study of visual search with real-world 
objects.  

Algorithm 
Our algorithm, ObViS, is a variant of the one developed by  
Rao & Ballard (1995) and Rao et al (2002). The algorithm 
represents image patches using high dimensional feature 
vectors, where the computed features consist of the image 
response to oriented spatial frequency filters. Such filters 
approximate the receptive fields of simple cells in primary 
visual cortex, and are also similar to features obtained from 
the statistics of natural images (Hyvärinen, Huri, & Hoyer, 
2009). In our implementation, we used 10 filters defined by 
the directional derivatives of a 2D Gaussian, using 
derivatives of up to 3rd order. The 10 combinations of 
Gaussian derivative order and orientation were as follows: 

 
Table 1: Steerable basis set. 

 
Order of derivatives Filter orientations 

used (degrees) 
0 0 
1 0,90 
2 0,60,120 
3 0,45,90,135 

 
This set of filters was chosen as it forms a steerable basis 

set—that is, the filter response at any orientation can be 
computed by a linear combination of the filter responses in 
the basis set (Freeman & Adelson, 1991). This property 
endows the feature representation with some rotation 
invariance, though we have not explored this property in our 
current work. In our implementation, the filter kernels were 
9x9 pixel discretized versions of the Gaussian derivatives 
defined above. These 10 filters were applied to 3 color 
channels extracted from the original image: luminance, red–
green, and blue–yellow color opponency channels. In 
addition, the filters were applied to these color channels at 5 
spatial scales, by resampling the image to 25, 50, 100, 200, 
and 400% of its original size. Thus in total, each image was 
represented by the ObViS algorithm using a set of 150 
measurements (10 filters x 3 color channels x 5 spatial 
scales). The use of color opponency channels was an 
extension to the algorithm presented by Rao et al (2002), as 
their implementation used only grayscale images whereas 
we are interested in capturing the visual similarity of color 
images. Finally, to determine the visual similarity between 
any two images, we determine the feature vector 
representation for two images, and then calculate the root 
mean square (RMS) of the difference between the images’ 
respective feature vectors. Images with low RMS difference 
are highly similar according to the ObViS measure of visual 
similarity. 
 

Experiments 
We conducted two visual search experiments that examined 
ObViS’ accuracy in predicting human visual search 
behavior. Subjects were asked to find target objects located 
in a circular array of object images from the Amsterdam 
Library of Object Images (ALOI) (Geusebroek, Burghouts, 
& Smeulders, 2005). We compared the timing, and accuracy 
of responses, and the number of fixations with predictions 
based on ObViS’ calculations of visual similarity. The two 
experiments differed in how similar the distractors displayed 
on each trial were to the target object. In experiment 1, for 
each trial, the distractors in the search array were all either 
similar, or dissimilar to the target. In experiment 2, for each 
trial, the distractors in the search array were approximately 
half similar and half dissimilar to the target.  

Methods 
Subjects. Thirty-four RPI undergraduates participated in the 
experiment 1 and twenty-seven RPI undergraduates 
participated in experiment 2. All subjects received course 
credit for their participation and signed informed consent 
forms. Subjects were screened for color blindness using a 
10-plated Ishihara test  (Ishihara, 1987).  
 
Materials. The experiment was run on a Mac OSX 
computer and displayed on a 17” flat-panel LCD monitor 
with a screen resolution set to 1280 x 960 pixels. The 
software used for the experiment was written in LispWorks 
5.0. The object images displayed during the experiment 
were 192 x 192 pixel images of real-world object from the 
Amsterdam Library of Object Images. A Cedrus RB-834 
response pad was used to collect responses. White noise was 
played over headphones, using the freeware program Noise, 
to reduce auditory distractions. All subjects in these 
experiments were eye-tracked using an LC Technologies 
eye-tracker that recorded at a rate of 120 Hz. Subjects were 
asked to rest their chin on a chinrest throughout the 
experiment.   
 
Design. The same 100 target objects were used as the target 
objects in experiments 1 and 2. The target object was 
present in the search array in only half of the trials. Subjects 
had to respond whether the target objected was present, and 
if so, identify its location in the circular search array. 
Experiments 1 and 2 differed in how similar the distractors 
displayed on each trial were to the target object.  

In experiment 1, subjects performed a visual search for a 
target in a search array that contained distractor objects that 
were either similar or dissimilar to the target. All subjects in 
experiment 1 saw the same 400 trials. In half of the trials, 
the distractor objects were all similar to the target; in the 
other half of the trials the distractor objects were all 
dissimilar to the target (Table 2).  

In experiment 2, subjects performed a visual search for a 
target in a search array that contained approximately half 
similar and half dissimilar distractor objects (Table 3).  The 
similarity of all distractor objects was based on calculations 
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from the ObViS algorithm. All subjects in experiment 2 saw 
the same 400 trials. The locations of all objects, in all trials, 
for all subjects, were randomized.  
 

Table 2: Experiment 1 trials. 
 

Trial count Targets Similar 
Distractors 

Dissimilar 
Distractors 

100 0 8 0 
100 0 0 8 
100 1 7 0 
100 1 0 7 

 
Table 3: Experiment 2 trials. 

 
Trial count Targets Similar 

Distractors 
Dissimilar 
Distractors 

100 1 4 3 
200 0 4 4 
100 1 3 4 

 
Procedure. Experiments 1 and 2 used the same 

procedures. All task instructions were presented using a 
Keynote presentation prior to the experiment. Subjects 
pressed a button on the response pad labeled “next” to begin 
each trial. A fixation cross, consisting of a white “+” was 
displayed in the center of the screen (Figure 3a). The trial 
did not begin until the participant had fixated on the fixation 
cross for 500 milliseconds. The target image was then 
displayed in the center of the screen for 300 milliseconds 
(Figure 3b). A random dot image was displayed for 300 
milliseconds (Figure 3c). A circular search array was then 
displayed until the subject responded by pressing the 
“Present” or “Absent” button on the response pad (Figure 
3d). 

Following a response, the random dot image was 
displayed for another 300 milliseconds (Figure 3e). If the 
response indicated that the target was present, the subjects 
were asked to indicate the location of the target. Buttons 
were arranged on the screen in locations that matched the 
locations of objects in the search array  (Figure 3f). Subjects 
responded by moving a mouse to and clicking on one of the 
buttons. Once the participant responded, a progress screen 
displayed the number of trials completed out of the total 
number of trials. Subjects pressed the response pad button 
labeled “next” to begin the next trial (Figure 3).  

 

 
Figure 3: Experimental procedure for experiments 1 & 2.  

 
Measures. The search array was displayed until the 
participant responded that the target object was either 
present or absent. The duration of time from the initial 
display of the search array until the participant responded 
was measured as the response time. The participant’s 
response was recorded and measured as target presence 
accuracy.  

Eye-tracking data was recorded throughout the 
experiment. The number of fixations on distractor objects 
was counted for each trial.  

Results 
Response time was compared for trials in which the target 
object was present in the search array and trials in which it 
was absent.  

In experiment 1, subjects took longer to respond on trials 
when the target was absent (M = 1190.13, SE = 61.76), than 
on trials in which the target was present (M = 1066.22, SE = 
34.05), t(129)two-tail = 1.716, p = 0.089, marginally 
significant. 

Experiment 2 showed the same trend in response times: 
subjects took longer to respond on trials in which the target 
object was absent (M = 1234.83, SE = 54.82), as compared 
to trials when the target was present (M = 1064.59, SE = 
31.76), t(79)two-tail = 2.872, p = 0.005 (Figure 4). 
 

 
 

Figure 4. Response time (ms), by target presence, in 
experiments 1 & 2.   

 
In experiment 1, each trial contained distractors that were 

all similar or all dissimilar to the target object. Response 
time was significantly greater for trials with distractors that 
were similar to the target (M = 1244.35; SE = 56.04) than 
for trials with dissimilar distractors (M = 1012.00; SE = 
39.18), t(130)two-tail = 1.66, p = 0.0009 (Figure 5). In 
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experiment 2, each trials contained both similar and 
dissimilar distractors, so the analogous comparison was not 
possible.  

 

 
 
Figure 5. Response time (ms), by distractor type, in 

experiment 1.   
 
The number of fixations on distractor objects was counted 

for each trial. In experiment 1, when the target was absent, 
subjects averaged more fixations on similar distractors (M = 
2.99; SE = 0.22), than on dissimilar distractors (M = 1.76; 
SE =0.17). When the target was present, subjects averaged 
fewer fixations on distractors, but still had more fixations on 
similar distractors (M = 0.88; SE = 0.07), than on dissimilar 
distractors (M = 0.41; SE = 0.04) (figure 6). An ANOVA  
showed a significant main effect of target presence, (F(1, 
124) = 23.15, p < 0.001). There was also a significant main 
effect of distractor type, (F(1, 124) = 6.46, p < 0.05). There 
was no significant interaction.   

In experiment 2, when the target was absent, subjects 
averaged more fixations on similar distractors (M = 1.96; SE 
= 0.11), than on dissimilar distractors (M = 0.94; SE = 0.07). 
An  ANOVA  showed a significant main effect of target 
presence, (F(1, 100) = 70.20, p < 0.001). There was also a 
significant main effect of distractor type, (F(1, 100) = 25.73, 
p < 0.001). There was a significant interaction between the 
two factors (F(1, 100) = 25.73, p < 0.001); there was a larger 
difference in mean fixation count for trials with similar 
distractors when the target was absent.  When the target was 
present, subjects averaged fewer fixations on distractors, but 
still had more fixations on similar distractors (M = 0.54; SE 
= 0.03), than on dissimilar distractors (M = 0.22; SE = 0.02) 
(Figure 7).  
 

 
Figure 6. Mean number of fixations on distractor object 

per trial, by target present and distractor type, in experiment 
1.   

 

 

 
Figure 7. Mean number of fixations on distractor object 

per trial, by target present and distractor type, in experiment 
2.   

 
Target presence accuracy was a measure of the accuracy 

of subjects’ response that the target was present or absent. 
Overall, subjects made few mistakes in both experiment 1 
(M = 96.32%; SE = 0.36), and experiment 2 (M = 96.30%; 
SE = 0.002).  In experiment 1, accuracy was significantly  
higher for trials in which the target was absent (M = 
97.06%; SE = 0.36), than when the target was present (M = 
95.58%; SE = 0.60), t(130)two-tail = 2.12, p = 0.018. In 
experiment 2 there was no main effect of target presence on 
accuracy; accuracy for trials with the target absent (M = 
95.83%; SE = 0.002), was not significantly different than 
trials with the target present (M = 96.54%; SE = 0.003) , 
t(79)two-tail = 1.36, p = 0.17. Each trial in experiment 1 had 
distractors that were either all similar to the target or all 
dissimilar to the target. Target presence accuracy was higher 
for trials with dissimilar distractors (M = 97.76%; SE = 
0.60), compared to trials with similar distractors (M = 
94.88%; SE = 0.36), t(130)two-tail = 4.31, p = 0.0001. 

General Discussion 
We developed the ObViS algorithm in order to measure 

visual similarity for the top-down guidance of visual search.  
One of the goals of this work was to extend the study of 
visual search and visual similarity to real-world objects. We 
replicated the basic visual search phenomena. The 
algorithm’s calculations were used to manipulate the 
similarity of visual search distractors. The response time 
data replicated phenomena typically found in laboratory 
search tasks using very simple stimuli; subjects took longer 
to find target when the distractors were similar to the target. 
They also made more mistakes in their responses when the 
distractors objects were similar to the target.  

Fixation data added an additional source of information 
that has not typically been used in the study of similarity.   
Our results demonstrated that the longer response times for 
visual searches with similar distractors were the result of a 
greater number of fixations.  

There are other visual search phenomena that we did not 
test. We did not manipulate set size, randomize locations, 
occlude objects, or place objects in natural scenes. All of 
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these phenomena could be studied in future work using our 
measures of visual similarity.  

Conclusions 
We developed a measure of the visual similarity of real-
world objects based on the representation of their low-level 
visual features. We applied the algorithm to a library of 
object images. The resulting similarity calculations were 
used to manipulate the similarity of distractors in visual 
search tasks. We replicated basic findings on the effects of 
target presence and distractor similarity, using real-world 
objects. Further refinement of the ObViS algorithm could 
improve its ability to predict the effects of visual similarity 
on visual search. The algorithm could be used to create 
iconic representations to guide top-down visual search in 
computational models. ObViS could extend the study of 
visual search and visual similarity to real-world objects and 
even provide visual representations for cognitive 
architectures.   
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