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Joint Clustering and Registration

of Functional Data

Yafeng Zhang and Donatello Telesca

Department of Biostatistics, University of California Los Angeles,

Los Angeles, California, U.S.A.

March 27, 2014

Abstract
Curve registration and clustering are fundamental tools in the analysis of func-
tional data. While several methods have been developed and explored for either
task individually, limited work has been done to infer functional clusters and
register curves simultaneously. We propose a hierarchical model for joint curve
clustering and registration. Our proposal combines a Dirichlet process mixture
model for clustering of common shapes, with a reproducing kernel representa-
tion of phase variability for registration. We show how inference can be carried
out applying standard posterior simulation algorithms and compare our method
to several alternatives in both engineered data and a benchmark analysis of the
Berkeley growth data. We conclude our investigation with an application to
time course gene expression.

Keywords: Curve registration; Dirichlet process, Functional data clustering;
Time course microarray data.

1 Introduction

Functional data is often characterized by both shape and phase variability. A
typical example where these two sources of variation are clearly identified and
interpreted are data arising from the study of human growth. Panel (a) and
(b) of Figure 3 shows growth velocity curves of 39 boys and 54 girls from the
Berkeley Growth Study (Tuddenham and Snyder, 1954). An overall pattern is
observed that growth velocity decelerates to zero from infancy to adulthood,
with some subtle acceleration-deceleration pulses during late childhood and a
prominent pubertal growth spurt. In this setting, phase variability is identified
as variation in the timing of subject-specific growth. Explicit consideration of
phase variability is necessary in order to obtain consistent estimation of typical
growth patterns.

1



The formal analytical treatment of this problem has a long history in Statis-
tics and Engineering. Initial contributions focused on curve alignment (regis-
tration) via dynamic time warping (Sakoe and Chiba, 1978; Wang and Gasser,
1997, 1999) or landmark registration (Gasser and Kneip, 1995). Model-based
alternatives represent subject-specific profiles as a parametric transformation
of a common smooth regression function, evaluated over random functionals of
time (Lawton et al., 1972; Kneip and Gasser, 1988). Several of these meth-
ods involve a transformation of both the x and y axes, essentially defining the
mean profile for curve i as fi(x) = bi + aim

(

µi(x)
)

, where µi(x) is a monotone
transformation function accounting for phase variability. In longitudinal set-
tings, Brumback and Lindstrom (2004) introduced a mixed effect formulation
of these models, formally accounting for dependence within subject. Similary,
Telesca and Inoue (2008) proposed a Bayesian hierarchical curve registration
(BHCR) model allowing for posterior inference on both the shape function m(·)
and transformation functions µi(x). Whereas these considerations are valid for
any function argument x, it is most natural to think of x as a time scale. In the
following, we will therefore focus on the case of functional data observed over
time.

Besides technical differences, these models of curve registration share a fun-
damental assumption, implying that all observed functional profiles are gener-
ated through semi-parametric transformations of a common shape m(·). While
this assumption is likely to be warranted in standard applications, the increasing
popularity of these methods for the analysis of more general data classes (Telesca
et al., 2009, 2012) motivates a methodological extension, conceiving the possible
existence of shape-invariant subgroups, with group shapes m1(·), . . . ,mk(·).

We are not the first to recognize a need for combing clustering and registra-
tion. Stepwise procedures, where first curves are registered and then clustered
according to a chosen heuristic, have been explored in several applications (Liu
and Müller, 2004; Tang and Müller, 2009; Slaets et al., 2012). Joint clustering
and registration procedures have been discussed by Gaffney and Smyth (2005)
and Liu and Yang (2009). While stepwise procedures are likely to provide sub-
optimal estimation, available joint clustering and registration techniques have
only been developed under the assumption of linear shape invariant time trans-
formations, where µi(t) = αit + βi. Furthermore, model complexity, conceived
as the number of clusters, is only treated as a nuisance parameter and fixed in
a post-hock fashion via BIC or pBIC (Chou and Reichl, 1999).

We extend the BHCR model of Telesca and Inoue (2008) to allow for shape-
subgroups. Our proposal is based on a reproducing kernel (B-spline) represen-
tation of both shape and time transformation functions. To relax the homomor-
phic assumption, we define a non-parametric prior over shape functionals via
a Dirichlet process (DP) mixture (Ferguson, 1973; Antoniak, 1974; Quintana,
2006). Clustering is achieved implicitly and is interpreted in terms of shape
similarities. The number of clusters is subject to direct estimation and infer-
ences account fully for this layer of uncertainty, without the need for post-hock
adjustments. Furthermore, we show how posterior simulation remains straight-
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forward via a simple extension to standard Metropolis within Gibbs MCMC
transitions.

Following Liu and Müller (2004), we show how this modeling approach is
particularly useful for the analysis of time-course gene expression. While it is
known that co-expressed genes are likely to be co-regulated, various regulation
mechanisms, such as feedback loops and regulation cascades, may warp the
timing of expression for genes involved in the same process or regulatory pathway
(Weber et al., 2007). It is therefore desirable to have a model that can assign
genes with similar, yet time-warped, expression profiles to the same cluster
(Qian et al., 2001; Qin, 2006). In other words, it is important to have a model
that is phase-variation tolerant when defining curve subgroups.

The remainder of this article is organized as follows. In section 2, we describe
the the sampling model and priors. A posterior simulation strategy via MCMC
is described in Section 3. In section 4, we apply the joint model to simulated
datasets and compare it with single-purpose models: a clustering only model
and a registration only model. In section 5 we apply the model to the Berkeley
Growth Study data. In section 6, we apply the model to time course microarray
data of response of human fibroblasts to serum stimulation. Finally in section
7, we conclude the paper with a critical discussion.

2 Model Formulation

2.1 Sampling Model

Let yi(t) denote the observation of curve i at time t, where i = 1, . . . , N and
t ∈ T = [t1, tn]. The sampling model is specified as follows:

yi(t) = ci + aimi{µi(t,φ i),θ i}+ ǫi(t), (1)

where ǫi(t) ∼ N(0, 1/τi) and τi is the precision parameter.
In formula (1), µi() is the curve specific time transformation function, char-

acterizing the latent time scale of curve i, and mi() is the curve specific shape
function. The apparent lack of identifiability between µi() and mi() will be
resolved in §2.2 by specifying a random probability functional prior for mi(),
implicitly producing functional clusters.

To achieve flexible modeling of both time transformation and shape func-
tions, we use B-splines (De Boor, 1978). We model µi(t,φ i) =B T

µ (t)φ i, where
B µ(t) is the B-spline basis vector at time t andφ i is the curve specific basis
coefficient vector. µi() is a monotone function mapping the sampling time in-
terval T to the interval T = [t1 −∆, tn +∆], with expansion constraint ∆ ≥ 0
to allow the time scale to be transformed outside the observed sampling time
interval T . To ensure monotonicity and function image boundaries, we impose
the following constraints

(t1 −∆) ≤ φi1 < . . . < φiq < φi(q+1) < . . . < φiQ ≤ (tn +∆). (2)
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We model shape functions as mi{µi(t,φ i),θ i} =B T
m{µi(t,φ i)}θ i whereBm(·)

is a B-spline basis vector and θ i is the curve specific basis coefficient vector.
No constraints are usually imposed on θ i, unless specific shapes are preferred
a-priori (see for example, Telesca et al. (2012)).

We note that the stochastic functionals mi() and µi() are now fully described
by the distributions ofθ i andφ i respectively. Identifiability ofφ i is ensured by
modeling θ i as a Dirichlet process mixture. In this setting, realizations of θ i

are discrete with probability one, with K < N unique component vectors θ ∗
k,

(k = 1, . . . ,K). These component vectors, in turn, define cluster specific shape
functions m∗

k(), to which member curves are aligned through µi(t)
−1. Details

are discussed in the following section.

2.2 Prior Model

We assume that shape function parameters θ i and precisions τi to follow a
Dirichlet process mixture prior. Let G0() be a base distribution absolutely
continuous with respect to the Lebesque measure on R

p ∪ R
+ and δ(θ j , τj) a

Dirac mass at (θ j , τj). Using a predictive Pòlya urn scheme (Blackwell and
MacQueen, 1973), we specify the prior distribution as follows:

θ i, τi|θ−i, τ−i ∼
α

(α+N − 1)
G0(θ i, τi) +

1

(α+N − 1)

∑

j 6=i

δ(θ j , τj), (3)

where −i = {j : j 6= i} is the set all the indices other than i and α is the weight
parameter of the Dirichlet process model. This prior generates the shapeθ i and
error precision τi for curve i, from a mixture involving a random draw from the
base density G0() or the point mass (θ j , τj)’s, j 6= i.

Realizations from the prior in (3) define a discrete distribution, implying ties
among (θ i, τi)’s, i = 1, . . . , N . These ties are naturally interpreted as clusters
among theN curves, namely, curve i and j belong to the same cluster if (θ i, τi) =
(θ j , τj). As a result, only K < N unique values are observed, each of which
is associated with a cluster and is denoted by (θ ∗

k, τ
∗
k ), k = 1, . . . ,K. In this

setting, we can re-express formula (3) as:

θ i, τi|θ
∗
k, τ

∗
k ∼

α

(α+N − 1)
G0(θ i, τi) +

1

(α +N − 1)

K
−i
∑

k=1

nk(−i)δ(θ
∗
k, τ

∗
k ), (4)

where nk(−i) is the size of cluster k andK−i is number of clusters when curve i is
excluded. The representation above implies that a complete sample of (θ i, τi),
(i = 1, . . . , N) is in one to one correspondence with a set of unique values,
(θ ∗

k, τ
∗
k ), (k = 1, . . . ,K), through cluster labels s = (s1, . . . , sN). Specifically,

si = k if (θ i, τi) = (θ ∗
k, τ

∗
k ) and si = K−i + 1 if (θ i, τi) is a new sample from

G0(θ i, τi), which means curve i forms a new cluster of its own. As a result, the
number of clusters K is also determined implicitly.

We note that if we omit the time transformation modeling with µi(t,φ i)
and use time t directly in the shape functions mi(t,θ i), our model reduces to
standard functional clustering via Dirichlet process mixtures.
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We assume that the base DP mixture density factors as G0(θ i, τi) = p(θ i |
τi)p(τi), whereθ i | τi ∼ N

(

0 , (τθτiΣ )−1
)

and τi ∼ Ga(a, b), a Gamma distribu-
tion with mean a/b. The specific form of the precision matrix Σ is determined
by a second-order shrinkage process: θip − θi(p−1) = θi(p−1) − θi(p−2) + ξip
with ξip ∼ N

(

0, 1/(τθτi)
)

(p = 1, . . . , P ) where P is the dimension of θ i and
θi0 = θi(−1) = 0 (Lang and Brezger, 2004). In this setting, the product τθτi can
be interpreted as a smoothing parameter for curve i.

Similarly, we also use a penalized B-spline prior on the time transformation
function parametersφ i. In particular, lettingφ 0 be the vector associated with
identity transformation so that µ(t,φ 0) = t, we assume φiq − φ0q = φi(q−1) −
φ0(q−1) + νiq with νiq ∼ N(0, 1/τφ) (q = 1, . . . , Q) where Q is dimension ofφ i

and φi0 = 0, implyingφ i ∼ N
(

φ 0, (τφΩ)
−1
)

. In the foregoing, Ω is deterministic
and τφ is interpreted as a smoothing parameter.

Following Telesca et al. (2009), when modeling cluster specific common shape
functions, we let the number of spline knots equal to the number of sampling
time points. For the curve specific time transformation functions structural
smoothness is imposed by their monotonicity (2), suggesting parsimony in the
choice of the number of knots. In many application contexts, 1 to 4 equally
spaced interior knots allow for enough flexibility in the representation of time
transformation.

For ease of computation, we complete our model with priors and hyperpriors
following principles of conditional conjugacy. Specifically, curve specific mean
levels parameters are specified as ci ∼ N(c0, 1/τc) and curve specific amplitude
parameters ai ∼ N(a0, 1/τa)I(ai > 0). The assumption of strictly positive am-
plitudes is appropriate if synchronous but negatively correlated curves are to
be clustered separately. Removing positivity restrictions will imply clustering
of synchronous profiles. We complete our prior specifications assuming c0 ∼
N(0, 1/τc0), a0 ∼ N(1, 1/τa0

), τa ∼ Ga(aa, ba) and τc ∼ Ga(ac, bc). Smooth-
ing parameters priors are specified as τθ ∼ Ga(aθ, bθ) and τφ ∼ Ga(aφ, bφ).
Finally, the weight parameter of the Dirichlet process mixture is defined as
α ∼ Ga(aα, bα).

3 Posterior Inference

3.1 Posterior Simulation

Markov Chain Monte Carlo simulation from the posterior distribution is concep-
tually straightforward and obtained as a simple sequence of Metropolis-Hastings
within Gibbs transitions.

For ease of notation, we let η i = (θ t
i, τi)

t and y i = (yi(t1), . . . , yi(tn))
t.

Without loss of generality, we also assume that curves are of the same length
n. The proposed Markov transition sequence is implemented by: (i) sampling
(φ i,η i,s i) given all other parameters, (ii) resampling η ∗

k = (θ t∗
k , τ∗k )

t given
cluster indicatorss i and all other parameters and (iii) sampling α and remaining
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parameters from their full conditional posteriors. We outline details as follows.

(i) Sampling (φ i,η i,s i). The full conditional posterior of η i is a Dirichlet
process mixture with updated mixing probabilities and components (Escobar,
1994; West et al., 1994):

η i |η
∗
k,φ i,y i ∼

qi0Gi(η i |φ i,y i) +
K

−i
∑

k=1

qikδ(η
∗
k)

qi0 +
K

−i
∑

k=1

qik

, (5)

where qi0 = α
∫

f(y i |φi ,η i)dG0(η i) is α times the marginal likelihood of y i,
Gi(η i |φ i,y i) ∝ f(y i |φi ,η i)G0(η i) is the full conditional density of η i and
qik = nk(−i)f(y i |φ i,η

∗
k) is the product of cluster size nk(−i) and the likelihood

associated withη i =η ∗
k.

To improve mixing rates, we combine the sampling ofs i,η i andφ i. Specif-

ically, we use K−i copies ofφ i,φ
1
i , . . . ,φ

K
−i

i , one for each cluster. We update

φ k
i , assumingη i =η ∗

k, with the Metropolis-Hastings algorithm as in Telesca and
Inoue (2008), so that the appropriate time transformation is found for curve i
to be registered with the common shape function of cluster k. We calculate
each qik (k = 1, . . . ,K−i) in (5) using the corresponding η ∗

k and φ k
i . When

calculating qi0, we use the value ofφ i from the previous iteration of the Gibbs
sampler.

Specifically, let B i = Bm{ui(t ,φ i)} = Bm{B T
µ (t )φ i} and c i = ci1 , and

define the following summaries: E i = a2iB
T
iB i + τθΣ , µ i = aiB

T
i (y i −c i),

a′i =
n
2 + a and b′i =

1
2 (y i −c i)

T (I − a2iB iE
−1
i B T

i )(y i −c i) + b. To sampleη i

from its full conditional (5), we follow the procedure below:

1. Sample cluster membership si which takes values on K−i + 1, 1, . . . ,K−i

with probabilities proportional to qi0, qi1, . . . , qiK
−i
.

2. If si = K−i+1, we keepφ i unchanged. Curve i forms a new cluster, and a
draw ofη i from Gi(η i |φ i,y i) is obtained by first sampling τi ∼ Ga(a′i, b

′
i)

and then sampling θ i | τi ∼ N(E −1
i µ i, (τiE i)

−1). If si = k, we use the

correspondingφk
i as a draw ofφ i and letη i =η ∗

k.

(ii) Resamplingη ∗
k given cluster indicatorss i. After a sample ofη T = (η T

1 , . . . ,η
T
N )

and s = (s1, . . . , sN )T is generated, to improve mixing rates, we update each
η ∗

k from its full conditional Gk(η
∗
k |y i∈Sk

) ∝
∏

i∈Sk
f(y i |φi ,η i)G0(η

∗
k), where

Sk = {i : si = k} is the set of curves in cluster k (MacEachern and Müller,
1998). Furthermore, Gk(η

∗
k |y i∈Sk

) ∝ p(θ ∗
k | τ∗k ,y i∈Sk

)p(τ∗k |y i∈Sk
), s.t.

η ∗
k |y i∈Sk

∼ N(E −1
k µ k, (τ

∗
kE k)

−1)

×Ga

(

1

2

∑

i∈Sk

ni + a,
1

2

(

∑

i∈Sk

(y i −c i)
T (y i −c i)−µT

kE
−1
k µ k

)

+ b

)

,
(6)
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whereE k =
∑

i∈Sk
a2iB

T
iB i + τθΣ andµ k =

∑

i∈Sk
aiB

T
i (y i −c i).

(iii) Sampling α and all hyper parameters. To develop the full conditional of

α, we note that p(K|α,N) ∝ N !αK Γ(α)
Γ(α+N) (Antoniak, 1974). Following (West,

1992), we define an auxiliary random quantity x | α ∼ B(α+1, N) and a mixing
probability πx:

πx

1− πx

=
aα +K − 1

N(bα − log(x))
.

Conditioning on x, it is easily shown that the full conditional distribution of α
is a mixture of gamma densities. Specifically,

α | x,K ∼

πxGa(aα +K, bα − log(x)) + (1− πx)Ga(aα +K − 1, bα − log(x))
(7)

The rest of the model parameters are simulated directly from their full condi-
tional posterior distributions. Detailed results are reported in Web Appendix
A.

3.2 Posterior Inference

We base our inference on MCMC samples from the posterior distribution of
the model parameters. Inference for functional quantities is obtained by post-
processing these finite-dimensional posterior samples. To get a point estimate
of the clustering structure we use the maximum a-posterior (MAP) clustering.

Given M posterior samples ofφ
(j)
i , (j = 1, . . . ,M), posterior samples of the

time transformation function µi(t) at any time point t ∈ T can be calculated
as:

µ
(j)
i (t) = µ

(j)
i (t,φ

(j)
i ) =B T

µ (t)φ
(j)
i . (8)

Here, the posterior mean function µ̂i(t) = 1
M

∑M

j=1 µ
(j)
i (t) provides an point

estimate of µi(t), and curves are registered on the transformed time scales µ̂i(t)
within each cluster.

Similar estimators are defined for cluster-specific shape functions:

mk(t) = c0 + a0B
T
m(t)θ ∗

k, (k = 1, . . . ,K); (9)

and curve specific profiles:

mi(µi(t)) = ci + aiB
T
m(B T

µ (t)φ i)θ i. (10)

Point-wise credible intervals and functional bands are easily obtained as empir-
ical quantiles. Alternatively, the simultaneous credible band for a function f(·)
can be obtained as described in Crainiceanu et al. (2007) and Telesca and Inoue
(2008).

To assess the model fit, we use the Conditional Predictive Ordinate (CPO)
(Geisser and Eddy, 1979; Pettit, 1990). The theoretical CPO for curve i is
defined as

p(y i|y−i) =

∫

p(y i|Θ)p(Θ|y−i)dΘ, (11)
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where Θ denotes the collection of all model parameters. A Monte Carlo estimate,
based on posterior draws is defined as:

CPOi =







M−1
M
∑

j=1

p(y i|Θ
(j))−1







−1

. (12)

Overall model fit is assessed using the log pseudo marginal likelihood (LPML),
computed as:

LPML =

N
∑

i=1

log(CPOi). (13)

4 A Monte Carlo Study of Engineered Data

We carry out a simulation study aimed at assessing the merits of joint clustering
and registration and comparing the performance of our modeling strategy to
common clustering techniques. We consider 100 datasets, each consisting of, 45
curves in 4 clusters. Each curve i is generated as: yi(t) = ci+aifk(µi(t))+ǫit, (if
si = k), with ci ∼ N(0, σ = 0.3), ai ∼ N(1, σ = 0.3)I(ai > 0) and ǫit ∼ N(0, σ =
0.3). We simulate realizations at 21 equidistant time points within interval
T = [0, 20]. We use the following cluster specific shape functions: f1(t) =
cos(t/4) + sin(t/4), f2(t) = cos(t/8), f3(t) = sin(t/2) and f4(t) = 0. Cluster 4
serves as a noise cluster with no signal. Finally, time transformations µi(t) are
generated as a monotone linear combination of B-spline basis, defined by one
interior knot at t = 10.

We fit our model overparametrizing functional forms and fix 31 equidistant
interior knots between −5 to 25 to model common shapes spline bases, and 3
interior knots at (5, 10, 15) to model time transformation spline bases. Precisions
and the Dirichelet mixture weight α are assigned diffuse Ga(0.01, 0.01) priors,
(mean=1, variance=100).

To assess the joint model’s ability to simultaneous cluster and register curves, we
compare the model with a registration only (BHCR) model and the clustering
only model as described in section 2.2. For both the clustering only model
and the registration only model, 20K iterations is run for the MCMC with the
first 10K as burn-in. We also compare our model with model-based clustering
(MCLUST) (Fraley and Raftery, 2002) and functional clustering (FCM) (James
and Sugar, 2003).

Figure 1 shows the results from one of the simulations. Panel (a) shows
45 curves color-coded by cluster membership. Panel (b) shows estimated indi-
viduals curves clustered and registered within each cluster, with superimposed
cluster-specific shape functions (solid black). Panel (c) shows posterior expected
cluster-specific shape functions (black) against the simulation truth (gray). The
model is able to accurately recover cluster specific shapes. Panel (d)-(f) show
results for three individual curves, each from one of the first three clusters. Pos-
terior estimates of individual curves (solid black) are close to the simulation
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truth (solid gray) and 95% simultaneous credible bands achieve calibrated cov-
erage. Also shown are profile estimates from the the registration only model
(dotdash) and the clustering only model (dotted). As expected, since the reg-
istration only model assumes all the curves share a common shape function,
cluster-specific functional features are confounded and model fits tend to ex-
hibit spurious features. The clustering only model is inherently highly flexible,
as small sub-clusters are allowed to form and fit specific profiles. However, since
there tend to be only few curves in each cluster, the loss of information results
in noisier estimates.

We also compared our joint model with MCLUST and FCM in terms of both
curve estimation accuracy and clustering accuracy. We apply MCLUST and
FCM on the same 100 datasets, allowing for up to 10 clusters. Figure 2 summa-
rizes comparison results. Panel (a) shows boxplots of the log pseudo marginal
likelihood (LPML) comparing the three Bayesian models. In panel (b) we show
boxplots of the simulation mean squared error (MSE) between the estimated
and true individual curves for all five models. The joint model exhibits best
performance in terms of MSE, and the three Bayesian model perform better
than MCLUST and FCM. To compare the clustering performance we used ad-
justed Rand index (Hubert and Arabie, 1985). Panel (c) shows the boxplots
of adjusted Rand indices for the four clustering models. The joint model leads
to much higher indices, when compared to the other models considered. The
clustering only model does as well as MCLUST and considerably better than
FCM. Panel (d) shows a bar plot for the number of clusters identified by the
four models. Out of the 100 datasets, the joint model identifies 4 clusters in
38 datasets and 5 clusters in 33 datasets. FCM also does well in identifying
the correct cluster numbers, specifically it identifies 4 clusters in 46 datasets
and 3 clusters in 27 datasets. The clustering only model and MCLUST tend to
overestimate the number of clusters.

We repeated the joint clustering and registration analysis under several prior
specifications, in order to assess sensitivity. While the formal task is daunting,
due to the large number of parameters in the model, we have found that rea-
sonable variations in prior choice has little impact on final inference, detailed
results are reported in Web Appendix A. Clearly, different considerations may
apply under different sample size scenarios.

5 A Cluster Analysis of the Berkeley Growth

Data

We apply the proposed model to the well known Berkeley Growth data and
compare it with the clustering only model, registration only model, MCLUST
and FCM. As discussed in Section 1, the Berkeley Growth Study (Tuddenham
and Snyder, 1954) recorded the height of 39 boys and 54 girls for 27 time points
between age 2 to 18, with one measurement a year before age 9 and two measure-
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Figure 1: Simulation study: assessing model fit. (a) Simulated unregistered
curves in 4 clusters shown in different colors from one sample dataset. (b) Estimated
individuals curves clustered and registered within each cluster, superimposed by the
posterior cluster specific common shape functions (solid black). (c) Estimated cluster
specific common shape functions (black) and simulation truth (gray). (c)-(f) Three
individual curves from cluster 1, 2 and 3, circles indicate the data points for each curve.
Estimated individual curves and the true curves are shown in solid black and gray,
respectively. 95% simultaneous credible bands are shown as dashed lines. Estimated
individual curves from the registration only model and the clustering only model are
shown as the dotdash and dotted lines respectively.
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Figure 2: Simulation study: clustering comparison. (a) Boxplots of log pseudo
marginal likelihood (LPML) over the 100 datasets for the joint model (JM), the clus-
tering only model (CO) and the registration only model (RO). (b) Boxplots of MSE
over all the estimated curves by the five models, JM, CO, RO, MCLUST (MC) and
FCM (FC). (c) Boxplots of adjusted Rand indices for the four clustering models, JM,
CO, MC and FC. (d) Bar plots of cluster numbers identified by the four clustering
models, JM (black), CO (dark gray), MC (light gray) and FC (white), in the 100
datasets.
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ments a year after. To construct the growth velocity curves from the original
growth curves, a smoothing spline model was fitted to each growth curve, and
the first degree derivatives were obtained from the model and used in our com-
parisons. In Figure 3(a) and (b), the growth velocity curves of boys (blue)
and girls (pink) are plotted against age with superimposed cross-section means
(black). Within each sex, curves have similarities in shape, while each curve
shows individual time and amplitude variation. As pointed out by Ramsay and
Li (1998) and Gervini and Gasser (2004), failing to account for time variability,
produces inconsistent estimates of sex-specific growth velocities. Our analysis is
non-standard, as we use sex as a hidden label to assess clustering performance.
While illustrative, this exercise finds justification in the fact that sex is expected
to explain a large portion of variation in adolescent growth patterns.

Shape functions basis are constructed fixing ∆ = 7 and placing 27 equidis-
tant interior knots between −3 to 23. To model time transformation functions,
we place four interior knots at (5.2, 8.2, 11.6, 14.8) and partition the interval
T = [2, 18] into five subintervals. Priors on precisions and mixture weight are
set as in Sec. 4. Our inferences are based on 20K MCMC iterations, with 10K
burn-in.
The model identifies two clusters, seemingly discriminative according to sex.If we
label the first cluster as the ”boy” cluster and the second cluster as the ”girl”
cluster, then 43 out of 54 girls are clustered correctly and 34 out of 39 boys
are clustered correctly. The overall classification accuracy is 83%. Estimated
time transformation functions, common shape functions and registered curves
are shown in Figure 3. Panel (c) and (d) show the registered curves for the 2
clusters, superimposed by their corresponding common shape functions from the
joint model (black solid), MCLUST (red), FCM (green) and the cross sectional
mean curves (black dashed). Individual curves are colored by their true gender
information, blue for boys and pink for girls. Therefore, pink curves in panel (c)
and blue curves in panel (d) show the misclassified cases. Panel (e) and (f) show
the estimated curve specific time transformation functions for the two clusters.

We compared the joint model with the clustering only model, the registration
only model, MCLUST and FCM, and the results are shown in Figure 4. Panel
(a) shows the boxplots of CPO of the 93 individual growth curves by the three
Bayesian models. It shows that the joint model fits the data best, followed by
the registration only model and the clustering only model. When the curves
are not too dramatically different, the registration only model can fit the data
accurately by finding a common shape function representing all the curves well.

As a comparable measure of model fit we compute the squared error (SE)
between each curve and its fitted profiles.Panel (b) shows the boxplots of the
SE over all the growth curves for the five models. The joint model gives the
smallest SE, and the three Bayesian models fit the data better than MCLUST
and FCM in terms of SE. Panel (c) and (d) show the model fitting results of
two individual curves of a boy and a girl.
Interpreting sex as a clustering lable, we compare the joint model, the clustering
only model, MCLUST and FCM using adjusted Rand indices (RIs). We find
the following: FMC (RI = 0.61), MCLUST (RI = 0.47), JM (RI = 0.43) and
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Figure 3: Growth velocity data analysis. (a) and (b) Individual unregistered
growth velocity curves for 39 boys (blue dashed) and 54 girls (pink dashed): cross-
sectional means in solid-black. (c) Registered curves in the 1st cluster: 34 boys (blue
dashed) and 11 girls (pick dashed). Estimated common shapes are indicated in (solid-
black), MCLUST (red), FCM (green) and the cross sectional mean in (dashed-black).
(d) Registered curves in the 2nd cluster: 43 girls (pink dashed) and 5 boys (blue
dashed). Common shape functions as in (c). (e) and (f) Estimated curve specific time
transformation functions for the two clusters: boys (dashed-blue) and girls (dashed-
pink).
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Figure 4: Growth velocity data model comparison. (a) Boxplots of log CPO of
the 93 individual growth curves by the joint model (JM), the clustering only model
(CO) and the registration only model (RO). (b) Boxplots of the squared error (SE)
over all the growth curves for JM, CO, RO, MCLUST (MC) and FCM (FC). (c)
Model fitting results of the growth velocity curve of a boy (blue line with circles) by
JM (black solid), CO (black dashed), RO (black dotdash), MCLUST (red) and FCM
(green). (d)Model fitting results of the growth velocity curve of a girl (pick line with
circles) by JM (black solid), CO (black dashed), RO (black dotdash), MCLUST (red)
and FCM (green).
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CO (RI = 0.10). By this measure FCM and MCLUST seem to outperform our
joint clustering and registrations model, with FCM giving the best clustering
results. We note that when fitting MCLUST, we set the candidates of cluster
numbers to be between 2 to 10, because when 1 is included as a candidate,
MCLUST chooses it as the optimal cluster number, which leads to an adjusted
Rand index of 0. On the other hand, as shown in panel (a) and (b) in Figure 3,
FMC and MCLUST seem to provide unsatisfactory estimates of cluster specific
shape functions, which the joint clustering and registration model estimates
consistently with the findings of Ramsay et al. (1995) and Telesca and Inoue
(2008), supporting the existence of the mid growth spurts.

6 Response of Human Fibroblasts to Serum

In this section, we apply the joint model to time course expression data of the
response of human fibroblasts to serum in a microarray experiment of 8613 genes
(Iyer et al., 1999). For human fibroblasts to proliferate in culture, they require
growth factors provided by fetal bovine serum (FBS). In their study, after in-
ducing primary cultured human fibroblasts to enter a quiescent state by serum
deprivation for 48 hours, the authors stimulated fibroblasts by adding medium
containing 10% FBS. A microarray experiment was then conducted to measure
temporal gene expression levels at 12 time points, from 15 minutes to 24 hours
after serum stimulation. Furthermore, they selected 517 genes with substantial
time course expression change in response to serum and formed clusters using
K-means clustering (Eisen et al., 1998). In our analysis, we consider a subset of
78 genes, since they are associated with clear biological function categories as
described in the original paper, and this provides a standard for us to validate
the biological relevance of the clustered identified by our model.

We use the same prior setup as in previous sections. To model shape func-
tions we use a maximum expansion constraint ∆ = 6 and place interior knots at
the sampling time points and 5 equidistant points in two intervals from −5 to −1
and from 25 to 29 respectively. To estimate the time transformation functions,
we place four interior knots at (0.5, 2, 8, 16) in the sampling interval T = [0, 24].
Our inferences are based on 20K MCMC iterations, with 10K burn-in.

Panel (a) of Figure 5 shows the unregistered temporal expression curves
of the 78 genes selected from the microarray experiment of human fibroblasts’
response to serum. Panel (b) shows the registered expression curves which
are clustered into 4 groups. Panel (c)-(f) show the 4 clusters of registered
expression curves separately, superimposed by their cluster specific common
shape functions.

As shown in Figure 5 (c), genes in cluster 1 are down-regulated at first
and reach their lowest expression levels between 4 and 12 hours after serum
stimulation. They begin to express about 16 hours after the serum treatment,
which is also the time when the stimulated fibroblasts replicate their DNA and
reenter into the cell-division cycle. Several genes in cluster 1 are known to be
involved in mediating cell cycle and proliferation, for instance, PCNA, Cyclin A,
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Figure 5: Human fibroblast gene expression analysis. (a) Unregistered time
coures expression curves for 78 genes selected from a microarray experiment of Human
fibroblasts’ response to serum. (b) Registered expression curves forming 4 clusters
colored by green, red, blue and pink. (c) Thirty five genes in cluster 1 superimposed
by the cluster specific common shape function (solid black). (d) Nine genes in cluster
2. (e) Five genes in cluster 3. (f) Twenty nice genes in cluster 4.
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Table 1: Clusters of genes and their biological functions

Cluster Size Typical Genes Functions
1 35 PCNA, Cyclin A, Cyclin B1 Cell cycle and proliferation

CDC2, CDC28 kinase
2 9 LBR Cell cycle and proliferation
3 5 PAI1, PLAUR, ID3 Coagulation and hemostasis

Transcription factors
4 29 MINOR, JUNB, CPBP Signal transduction

TIGF, SGK, NET1 Transcriptional factors

Cyclin B1, CDC2 and CDC28 kinase, as shown in Table 1. Cluster 2 in Figure
5(d) shows similar expression pattern to cluster 1, except they expression level
are lower than those in cluster 1 through the time window. Genes in cluster
2 are also involved in cell cycle and proliferation, such as LBR. Figure 5(e)
shows that genes in cluster 3 respond immediately to serum stimulation, reach
their expression peaks around 10 hours later and remain induced towards the
end. They are known to be transcription factors and involved in coagulation
and hemostasis because of fibroblasts’ role in clot remodeling. Typical genes
include PAI1, PLAUR and ID3. As shown in Figure 5(f), genes in cluster 4 are
also induced quickly by serum treatment, reach their peaks at about 2 hours,
and then gradually return to a quiescent state. Several of the genes here are
known to encode transcriptional factors and other proteins involved in signal
transduction, such as MINOR, JUNB, CPBP, TIGF, SGK and NET1.

7 Discussion

We propose a Bayesian hierarchical model for joint curve registration and clus-
tering. Compared to previous methods, our proposal comes with several advan-
tages. First, the model provides flexible nonlinear modeling for both components
of variation. The Dirichlet process mixture prior over shape functionals strikes
an automatic balance between complexity and parsimony. The implied poste-
rior identifies subgroups of homomorphic curves, without the need to specify
the number of clusters a priori. Finally, the increased model flexibility is still
amenable to straightforward posterior simulation via MCMC, which provides
exact inferences about a rich set of quantities of interest, without the need for
simplifications or approximations.

The proposed B-spline representation of both shape and time transforma-
tion functions requires the a priori specification of the number and placement
of spline knots. Our experiences suggests that a set of knots reproducing the
original sampling time points works well for shape functions and 1 to 4 equidis-
tant interior knots are enough for time transformation functions, as they carry
smoothing properties through monotonicity constraints. Our simulation study
shows that the model is robust to different prior choices. We however maintain,
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that different considerations may apply to ultra-sparse or, conversely, ultra-
dense data settings.

The proposed modeling strategy has potentially broad applications to func-
tional data analysis; especially when curve registration and clustering are of joint
interest, as shown in our applications. In the first case study of the Berkeley
Growth Data, our model is able to accurately separate growth curves into two
clusters labelled by sex, and to correctly estimate the overall growth patterns for
both sexes after registering curves in each cluster. In the second case study of
time course expression data of human fibroblasts’ response to serum, our model
identifies fours clusters of genes involved in distinct biological functions.

The proposed estimator of the clustering structure is the MAP clustering.
Because Dirichlet process mixtures fully account for stochasticity in the po-
tential alternative assignment of individual profiles to functional groups, it is
possible, in principle, that the clustering structure with the second highest pos-
terior probability is only a little less probable than the MAP clustering, yet it
provides quite a different grouping structure.

We have not detected this type of phenomenon in our analyses. However,
when it happens, some care is needed in summarizing complex posterior evi-
dence. A possible alternative strategy to MAP is based on the estimation of
a pairwise probability matrix whose elements are estimated probabilities that
two curves are in the same cluster. Such a matrix can be easily generated by
averaging the sampled association matrices from the MCMC output. Elements
of an association matrix takes values 1, if two corresponding curves are in the
same cluster, and 0 otherwise. Hierarchical clustering may be used subsequently
as a way to explore grouping structures (Medvedovic and Sivaganesan, 2002).
Alternatively, Dahl (2006) proposed a least squares clustering by selecting the
sampled clustering which minimizes the sum of squared deviations of its asso-
ciation matrix from the pairwise probability matrix.

Finally, when covariate information is available, the proposed model is easily
extended to include a dependent Dirichlet process prior, using covariates to
inform clustering.

Supplementary Materials

Supplementary information is available from the authors.
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