
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
M Theory on AdSp x 511-p and superconformal field theories

Permalink
https://escholarship.org/uc/item/5cn501t8

Authors
Aharony, Ofer
Yaron, Oz
Zheng, Yin

Publication Date
1998-04-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5cn501t8
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:h

ep
-t

h/
98

03
05

1 
v2

   
1 

A
pr

 1
99

8

July 10, 2004 LBNL-41481, UCB-PTH-98/14, RU-98-05

hep-th/9803051

M Theory on AdSp × S11−p and Superconformal Field Theories

Ofer Aharony1a, Yaron Oz2b, Zheng Yin2c

1Department of Physics and Astronomy

Rutgers University, Piscataway, NJ 08855-0849, U.S.A.

and

Institute for Theoretical Physics

University of California, Santa Barbara, CA 93106, U.S.A.

2Department of Physics, University of California at Berkeley

Berkeley, CA 94720-7300, U.S.A.

and

Theoretical Physics Group, Mail Stop 50A–5101

Ernest Orlando Lawrence Berkeley National Laboratory,

1 Cyclotron Road, Berkeley, CA 94720, U.S.A.

email: a oferah@physics.rutgers.edu, b yaronoz@thsrv.lbl.gov, c zyin@thsrv.lbl.gov.

Abstract

We study the large N limit of the interacting superconformal field theo-

ries associated with N M5 branes or M2 branes using the recently proposed

relation between these theories and M theory on AdS spaces. We first ana-

lyze the spectrum of chiral operators of the 6d (0, 2) theory associated with

M5 branes in flat space, and find full agreement with earlier results obtained

using its DLCQ description as quantum mechanics on a moduli space of in-

stantons. We then perform a similar analysis for the DN type 6d (0, 2) theories

associated with M5 branes at an R5/Z2 singularity, and for the 3d N = 8 su-

perconformal field theories associated with M2 branes in flat space and at an

R8/Z2 singularity respectively. Little is known about these three theories, and

our study yields for the first time their spectrum of chiral operators (in the

large N limit).



1 Introduction

A duality between a certain limit of some superconformal field theories (SCFTs) in d

dimensions and string or M theory compactified on spaces of the form AdSd+1 × W has

recently been proposed in [1] (see also [2–8]). Here W is a compact manifold which in

the maximally supersymmetric cases is a sphere. A precise correspondence between the

supergravity limit on the AdSd+1 side and an appropriate large N limit on the conformal

field theory side has been formulated in [9, 10]. According to [10] the correlation functions

in the conformal field theory, which has as its spacetime Md, the boundary at infinity

of AdSd+1, can be calculated systematically from the dependence of the supergravity

action on the asymptotic behaviour of its fields at the boundary Md. In particular,

one can deduce the scaling dimensions of operators in the conformal field theory from

the masses of particles in string theory (or M theory). Using this correspondence, the

dimensions of chiral fields in four dimensional N = 4 SYM were matched with the masses

of Kaluza-Klein states on AdS5 × S5. Note that for chiral primary fields (which are in

short representations of the superconformal algebra) the dimension is determined in terms

of the R-symmetry representation, and it cannot receive any corrections (see [11, 12] for

details). Related works which appeared recently are [13–27].

In this paper we will study the proposed duality for several SCFTs. They are all

realized as the low energy theories on the branes of M theory. The first theory is the

six dimensional (0, 2) superconformal field theory on the worldvolume of N parallel M5

branes. This theory has a Matrix-like DLCQ description as a quantum mechanics on

the moduli space of instantons [28, 29]. Using this description chiral primary operators

in the theory were identified with compact cohomologies of the resolved moduli space

of instantons, and their spectrum was computed in [30]. We will discuss also the (0, 2)

Dk theories which arise for 5-branes at R5/Z2 singularities. These theories also have a

DLCQ description [28], but their spectrum of operators has not been computed until

now. The final theory we study is the three dimensional superconformal field theory on

the worldvolume of N parallel and coincident M2 branes. This is the strong coupling

(infrared) limit of 3d N = 8 U(N) gauge theories. Little is known about this theory and

it does not have a matrix description.

In [1] it was proposed that the SCFT of N M5 branes is dual to M theory on AdS7×S4,

while the SCFT on N M2 branes is dual to M theory on AdS4 × S7. Our aim is to study

these relations between eleven dimensional supergravity and M theory on the AdS spaces

and the large N limit of the corresponding superconformal field theories. In the next

section we will briefly review the precise correspondence between the supergravity and
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SCFTs. In section 3 we will consider the (0, 2) theory on N M5 branes, as well as the DN

(0, 2) theory. We will obtain the dimensions of the chiral operators of these theories from

the masses of Kaluza-Klein modes of supergravity on AdS7×S4, and find agreement with

the spectrum predicted using DLCQ. In section 4 we will consider the three dimensional

SCFT corresponding to the low energy theory of N M2 branes. Using the masses of the

Kaluza-Klein modes of supergravity on AdS4 × S7 we compute the spectrum of chiral

operators of this theory at large N . Section 5 is devoted to a discussion.

2 SCFT/AdS correspondence

In the following we will briefly review the SCFT/AdS correspondence proposed in

[9, 10]. The boundary Md of AdSd+1 is a d-dimensional Minkowski space with points

at infinity added. The symmetry group of AdSd+1 is SO(d, 2). It is also the conformal

group on Md. The proposed duality relates string theory (or M theory) on AdSd+1 to

the large N limit of some SCFTs on its boundary Md. In the Euclidean version the

boundary is Sd. Consider for simplicity the maximally supersymmetric case, so that the

internal space is also a sphere. Let φ be a scalar field on AdSd+1 and φ0 its restriction

to the boundary Sd (defined appropriately for massive fields in [10]). According to the

SCFT/AdS correspondence φ0 couples to a conformal field O on the boundary via
∫
Sd φ0O.

The proposed relation between the generating functional 〈exp
∫
Sd φ0O〉SCFT of the SCFT

on the boundary and the AdSd+1 theory is [10]

〈exp
∫

Sd

φ0O〉SCFT = Zs(φ0) , (2.1)

where Zs(φ0) is the supergravity (string/M theory) partition function computed with

boundary condition φ ∼ φ0 at infinity.

When φ has mass m the corresponding operator O has conformal dimension ∆ given

by

m2 = ∆(∆ − d) . (2.2)

Irrelevant, marginal and relevant operators of the boundary theory correspond to massive,

massless and “tachyonic” modes in the supergravity theory. If a p-form C on AdS is

coupled to a d− p form operator O on the boundary, then the relation between the mass

of C and the conformal dimension of O is given by

m2 = (∆ + p)(∆ + p − d) . (2.3)

The value of m2 in this formula refers to the eigenvalue of the Laplace operator on the

AdS space. In the supergravity literature, the values that are usually quoted for p-forms
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are the eigenvalues m̃2 of the appropriate Maxwell-like operators. The relation of these

to the dimension is given by

m̃2 = (∆ − p)(∆ + p − d) . (2.4)

Some of these chiral fields are universal. There is always a massless graviton in the

AdS, which couples to the stress energy tensor of the SCFT (of dimension ∆ = d). If

the internal space W has continuous rotational symmetry, there are also massless vector

fields in its adjoint representation, coupling to the R symmetry currents of the SCFT (of

dimension ∆ = d − 1).

3 (0, 2) SCFTs in Six Dimensions

Consider M theory on AdS7 × S4 with a 4-form flux of N quanta on S4, and with

the “radii” of the AdS7 and S4 being RAdS = 2RS4 = 2lp(πN)1/3. Eleven dimensional

supergravity is applicable at energies much smaller than the Planck scale 1/lp. For large N

this includes the energy range of the KK modes, whose mass is of the order of 1/RAdS (and

we will measure it in these units below). The bosonic symmetry of this compactification

of eleven dimensional supergravity is SO(6, 2) × SO(5).

In [1] it was proposed that the (0, 2) conformal theory, which is the decoupled intrinsic

theory on N parallel M5 branes∗, is dual to M theory on the above background in some

appropriate sense. The SO(6, 2) part of the symmetry of the supergravity theory is the

conformal group of the SCFT, which can be thought of as living on the boundary of the

AdS space. The SO(5) part of the symmetry corresponds to the R symmetry of the

superconformal theory.

The Kaluza-Klein excitations of supergravity, in the maximally supersymmetric cases,

all fall into small representations of supersymmetry (since they contain no spins larger than

2). Thus, their mass formula is protected from quantum and string/M theory corrections.

According to the proposal in [10], they couple to chiral fields of the SCFT on the boundary,

whose scaling dimensions are similarly protected from quantum corrections. The spectrum

of the Kaluza-Klein harmonics of supergravity on AdS7 × S4 was analyzed in [31]. There

are three families of scalar excitations. Two families contain states with only positive m2

and correspond only to irrelevant operators. One family contains also states with negative

and zero m2. They fall into the k-th order symmetric traceless representation of SO(5)

∗See [11] for a discussion and references concerning these SCFTs.
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with unit multiplicity. Their masses are given by †

m2 = 4k(k − 3), k = 2, 3, . . . . (3.1)

The field corresponding to k = 1 also appears in the supergravity, and this is the singleton

which may be gauged away except at the boundary of the AdS space and decouples from

all other operators. In the field theory we can identify it with the decoupled free center

of mass motion. This will be true in all the constructions of this type, and in the rest of

the paper we will only discuss the interacting fields.

Using (2.2), the dimensions of the corresponding operators in the SCFT are

dim(O) = {2k, k = 2, 3, . . .} . (3.2)

These are precisely the dimensions of the chiral primary operators found in [30], which

parameterize the space of flat directions (R5)N/SN in a “gauge” invariant way‡. Thus,

this can be viewed as a test of the conjecture of [1]. In the matrix description of the

(0, 2) conformal theory these operators correspond to compact cohomology elements of

the resolved moduli space of instantons, localized at the origin [30]. Note that in [30]

only those chiral fields whose scalars are in totally symmetric traceless representations of

SO(5) were analyzed, but the duality suggests that these are the only chiral fields that

have finite dimensions for large N . For large N we find that the field with k = 2 is the

only relevant scalar deformation of the SCFT. This deformation breaks supersymmetry

completely, and it would be interesting to analyze which non-supersymmetric field theory

it leads to in the infrared.

There is one family of vector bosons that contains also massless states

m̃2 = 4(k2 − 1), k = 1, 2, . . . . (3.3)

Using (2.4), the dimensions of the corresponding 1-form operators in the SCFT are

dim(O) = {2k + 3, k = 1, 2, . . .} . (3.4)

The massless vector at k = 1 in (3.3) corresponds to the dimension five R symmetry

current.

†The overall coefficient of the mass formula depends on a parameter e giving the scale of the internal

manifold W and used in the relation between the 4-form field strength and the totally antisymmetric

tensor. Here it is determined by matching the mass formula and (2.2).
‡Note that for finite N the number of these fields is larger than the dimension of the moduli space, so

these fields are not all independent on the moduli space.

4



In general, chiral fields corresponding to all the towers of Kaluza-Klein harmonics are

related to the scalar operators of (3.2) by the superconformal algebra, as discussed in the

four dimensional case in [32]. Each value of k gives rise (at least for large enough k) to one

field in each tower of KK states, with an SO(5) representation that is determined by the

representation of the scalar field. In particular, the R symmetry currents and the stress

energy tensor sit in the same superconformal representation as the scalar field with k = 2

mentioned above. The highest component (in the θ expansion) of these superconformal

multiplets gives a series of scalar operators whose dimension starts at 12. The lowest

one of these operators couples to the trace of the graviton in spacetime, as discussed in

[25]§. In a superfield notation, the tower of scalars (3.2) corresponds to θ0 terms in the

multiplets, θ2 terms lead to a vector and a self-dual 3-form, θ4 terms lead to a graviton,

a scalar and a 2-form, θ6 terms lead again to a vector and a self-dual 3-form, and the θ8

terms lead again to a scalar. By θi terms here we mean fields which can be reached by

acting with i SUSY generators on the scalars of (3.2). The terms with an odd number of

θ’s include spinors and gravitinos. For low values of k, some of the terms with a higher

number of θ’s are descendants of the terms with a lower number of θ’s [32], but for large

k all the fields in the multiplet are independent.

A simple generalization of this construction gives the large N limit of the DN (0, 2)

SCFTs, which correspond to the low energy theories of N M5-branes coinciding at an

R5/Z2 orientifold singularity [33, 34]. In the original theory of the 5-branes, the Z2 acts

by a reflection of the 5 directions transverse to the 5-branes, and also by changing the

sign of the 3-form field C of eleven dimensional supergravity. Taking the near horizon

limit as in [1], we find that the Z2 acts by a total inversion of the 5 Cartesian coordinates

embedding S4 in R5 around the center of the sphere. It has no fixed points so that the

resulting manifold is completely smooth (orbifolds in string theory were discussed in a

similar context in [18, 24]). In the supergravity solution, all we need to do therefore is

to identify the fields on one side of the sphere with the fields at the antipodal points,

with also a sign change for the C-field. For large N , when the sphere is large and the

antipodal points are far away from each other, we expect to still be able to trust the

supergravity solution after this identification. The identification projects out half of the

spherical harmonics on the S4. For scalars, only those with even k in (3.2) remain. As

before, the rest of the chiral operator spectrum is determined by the superconformal

symmetry. The correlation functions of the remaining operators will be the same as they

were, with corresponding operators, in the A2N case (to leading order in 1/N). Note that

these theories also have a DLCQ description [28] as a quantum mechanics on the moduli

§Similar operators with dimension ∆ = 2d exist also for d = 3 and d = 4.
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space of DN instantons, but it is difficult to use it to compute the spectrum since there

is no obvious resolution of the singularities in the moduli space (unlike the case discussed

in [30]). Note also that the orientifold carries a 5-brane charge of (−1

2
), but this becomes

negligible in the large N limit where we can trust the supergravity solution.

4 Three Dimensional N = 8 SCFTs

Consider now M theory on AdS4 × S7 with a 7-form flux of N quanta on S7. The

“radii” of AdS4 and S7 are given by 2RAdS = RS7 = lp(32π2N)1/6. Eleven dimensional

supergravity is applicable for energies of the order of 1/RAdS if N is large. The bosonic

symmetries of this compactification are SO(3, 2)× SO(8).

In [1] it was proposed that the conformal theory on N parallel M2 branes on the

boundary on AdS4 is dual to M theory on the above background∗. The SO(3, 2) part

of the symmetry of the supergravity theory is the conformal group of the SCFT on the

boundary. The SO(8) part of the symmetry corresponds to the R symmetry of the

boundary SCFT. From the point of view of type IIA string theory, this SCFT is the

infrared (strong coupling) limit of the 3d N = 8 U(N) gauge theory on N coincident

D2-branes.

As before, we study the correspondence between the Kaluza-Klein excitations of su-

pergravity and the chiral fields of the SCFT. The spectrum of the Kaluza-Klein harmonics

of eleven dimensional supergravity on AdS4×S7 was analyzed in [35, 36]. There are three

families of scalar excitations and two families of pseudoscalar excitations. Three of them

contain states with only positive m2 and correspond to irrelevant operators. One family

contains also states with negative and zero m2 with masses given by †

m2 =
1

4
((k − 2)(k − 4) − 8) =

1

4
k(k − 6), k = 2, 3, ... (4.1)

They fall into the k-th order symmetric traceless representation of SO(8) with unit mul-

tiplicity.

Using (2.2), the scaling dimensions of the corresponding chiral operators in the SCFT

are

dim(O) = {
k

2
, k = 2, 3, ...} . (4.2)

∗See [11] for a discussion and references related to this conformal field theory.
†Note that to match our formulas with the conventions of [35, 36], there is (besides the overall nor-

malization of the mass as before) also a shift in m2, which is shifted relative to the Laplacian in [35, 36].
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As before, we can identify these operators with the natural gauge invariant coordinates

on the moduli space of these theories, which is (R8)N/SN . Regarding this theory as the

IR limit of the 3D N = 8 SYM theory, some of these operators may be identified with

operators of the form tr(X i1X i2 ...X ik), where the X i are the scalar fields in the vector

multiplet. However, in the gauge theory there are only 7 scalar fields, and the additional

field arises from dualizing the vector field, which one cannot do explicitly in the non-

Abelian case. For k = 2 . . . 5 these are relevant operators in the conformal theory, and for

k = 6 they are marginal.

As before, chiral operators corresponding to the other towers of Kaluza-Klein harmon-

ics are related to those from this family by the superconformal symmetry. Again, we can

identify the operators of (4.2) with θ0 components of the small superconformal multiplet,

and then the θ2 terms include a pseudoscalar and a vector field, the θ4 terms include a

graviton, a scalar and an axial vector, the θ6 terms include a pseudoscalar and a vector

field, and the θ8 terms give a scalar. The odd θ terms give spinors and gravitinos.

In this case, unlike the previous case, there is one other family of pseudoscalar excita-

tions which also contains states with negative and zero m2, corresponding to relevant and

marginal operators (respectively) in the SCFT. The masses of this family are given by

m2 =
1

4
((k − 1)(k + 1) − 8) , k = 1, 2, ... . (4.3)

The k’th state transforms in a representation of SO(8) corresponding to the product of

a 35c with (k − 1) 8v’s (in a symmetric traceless way). Using (2.2) the dimensions of the

corresponding operators in the SCFT are

dim(O) = {
k + 3

2
, k = 1, 2, ...} . (4.4)

For instance, for k = 1 we have 35 pseudoscalar relevant operators of dimension 2. In the

UV SYM which flows to this SCFT, we can identify these operators with a product of

two fermions times k − 1 scalars, as in [10, 32]. The deformation of the SCFT by any of

the relevant scalar operators breaks the supersymmetry completely.

As in the M5 branes case, we identify one family of vector bosons that also contains

massless states. The masses of this family are given by

m̃2 =
1

4
(k2 − 1), k = 1, 2, ... . (4.5)

Using (2.4), the dimensions of the corresponding 1-form operators in the SCFT are

dim(O) = {
k + 3

2
, k = 1, 2, ...} . (4.6)
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The massless vector at k = 1 in (4.5) corresponds to the dimension two R symmetry

current.

As earlier, we can also put the M2 branes at an R8/Z2 singularity (which this time is

just an orbifold point). Again we find that the resulting 3D N = 8 SCFT is a truncation

of the theory discussed above. Only half of its chiral operators remain, the even k elements

of (4.2) and the operators related to them by superconformal symmetry.

5 Discussion

In this note we computed the spectrum of chiral operators in the large N limit of

several series of supersymmetric conformal field theories with 16 supercharges using the

conjecture of [1]. In general, on the supergravity side the only operators of low m2 are

the KK modes, which fall into small representations. Thus, the conjecture of [1] implies

that only chiral operators of the SCFT have dimensions that do not grow with N in the

large N limit. This is quite surprising from the conformal field theory point of view,

as is the similar statement for the large g2N limit of the 4D N = 4 SYM theories. In

the supergravity approximation we cannot reliably study non-chiral operators at all. In

principle, in the full M theory such operators could be analyzed. We would expect the

m2 of such states to be of the order of M2
p , which translates into operators of dimension

N1/6 in the six dimensional case and N1/3 in the three dimensional case. However, it is

difficult to access such operators from the M theory side, since there is not yet any known

non-perturbative definition for M theory on constant curvature spaces (it is not clear how

to generalize the DLCQ formulation of Matrix theory [37] to this case).

In addition to the conjecture about the large N behavior of the superconformal field

theories in [1], there was also a conjecture about the agreement of the finite N theories

with the appropriate string/M theory backgrounds. However, it is not clear how to check

this (very strong) conjecture. One obvious property of the finite N theories is that their

spectrum of (“single-particle”) chiral primary operators is finite, namely the series of

operators described above are truncated at k = N . This corresponds to a dimension of

order N , which in turn corresponds to an m2 that is much larger than the Planck scale,

so it is not clear how to see this in the string/M theory side. Presumably, in order to

check this conjecture in some way, one would need to compute higher order corrections

in 1/N (say, to 3-point functions). In the case of the 6D theories, such computation are

in principle accessible on the SCFT side through their DLCQ construction [30], but it is

not clear how to compute such quantum corrections on the M theory side.
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