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Abstract

Genome-wide association studies have identified more than eighty risk variants for prostate 

cancer, mainly in European or Asian populations. The generalizability of these variants in other 

racial/ethnic populations needs to be understood before the loci can be utilized widely in risk 
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modeling. In this study, we examined 82 previously reported risk variants in 4,853 prostate cancer 

cases and 4,678 controls of African ancestry. We performed association testing for each variant 

using logistic regression adjusted for age, study, and global ancestry. Of the 82 known risk 

variants, 68 (83%) had effects that were directionally consistent in their association with prostate 

cancer risk and 30 (37%) were significantly associated with risk at p<0.05, with the most 

statistically significant variants being rs116041037 (p=3.7×10-26) and rs6983561 (p=1.1×10-16) at 

8q24, as well as rs7210100 (p=5.4×10-8) at 17q21. By exploring each locus in search of better 

markers, the number of variants that captured risk in men of African ancestry (p<0.05) increased 

from 30 (37%) to 44 (54%). An aggregate score comprised of these 44 markers was strongly 

associated with prostate cancer risk (per-allele odds ratio (OR)=1.12, p=7.3×10-98). In summary, 

the consistent directions of effects for the vast majority of variants in men of African ancestry 

indicate common functional alleles that are shared across populations. Further exploration of these 

susceptibility loci is needed to identify the underlying biologically relevant variants to improve 

prostate cancer risk modeling in populations of African ancestry.

Keywords

prostate cancer; genetic risk variant; generalizability; African ancestry

INTRODUCTION

Prostate cancer is the most common non-skin cancer and the second leading cause of cancer 

death for men in the United States. In African Americans, the incidence rate is 1.6 times that 

in European Americans and the mortality rate is 2.5 times greater1. Reasons for the greater 

disease burden, which has also been suggested in Africa2, are not known. However, studies 

have revealed that some risk variants are more common in men of African ancestry than in 

other racial/ethnic populations3, 4, suggesting a genetic basis for the greater disease burden. 

Genome-wide association studies (GWAS) and large-scale collaborative replication efforts 

have identified more than eighty prostate cancer risk variants, mainly in populations of 

European or Asian ancestry4-19. Direct testing of these variants in other populations will be 

required to characterize the risk conveyed by these loci globally. In an earlier study in 

African Americans (3,425 cases and 3,290 controls) we examined 49 risk variants in 28 

regions, and found that 71% of the variants (n=35) had effects that were directionally 

consistent with the initial reports3. Similar results were also noted in a study by Chang et 

al.20, which included many of these same participating studies. Although preliminary, these 

findings suggest that the majority of risk alleles found to date in other populations are also 

common in African Americans. In the present study, we continue to investigate the question 

of risk locus generalizability in African-ancestry populations, through testing a more 

comprehensive set of risk variants (n=82) in a larger sample of prostate cancer cases 

(n=4,853) and controls (n=4,678) of African ancestry, which includes the subjects from our 

previous investigation. For each variant, we compared the magnitude of association and risk 

allele frequency between African and the initial GWAS population. We also modeled 

prostate cancer risk based on a cumulative score of associated alleles.
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MATERIALS AND METHODS

Study Populations

We assembled a consortium of prostate cancer studies that included men of African ancestry 

and conducted a GWAS to search for additional risk loci that may be more common in men 

of African descent. Initial findings from the GWAS have been reported in Haiman et al.3, 4. 

The current study of prostate cancer in men of African ancestry includes 5,096 cases and 

4,972 controls (see Supplementary Note), the vast majority of which are African Americans 

(95%). This sample includes 11 studies that were part of our original investigation (cases/

controls: Multiethnic Cohort, 1,094/1,096; The Southern Community Cohort Study, 

212/419; The Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, 286/269; The 

Cancer Prevention Study II Nutrition Cohort, 76/152; Prostate Cancer Case-Control Studies 

at MD Anderson, 543/474; Identifying Prostate Cancer Genes, 368/172; The Los Angeles 

Study of Aggressive Prostate Cancer, 296/303; Prostate Cancer Genetics Study, 75/85; 

Case-Control Study of Prostate Cancer among African Americans in Washington, DC, 

292/359; King County (Washington) Prostate Cancer Study, 145/81; and The Gene-

Environment Interaction in Prostate Cancer Study, 234/92), as well as three additional 

studies (cases/controls: The North Carolina Prostate Cancer Study, 216/249; Selenium and 

Vitamin E Cancer Prevention Trial, 223/224; and Prostate Cancer in a Black Population, 

238/231) and additional samples from two of the original studies (cases/controls: 

Multiethnic Cohort, 747/662; and The Southern Community Cohort Study, 51/104). 

Institutional review board approval was obtained for all participating studies.

Genotyping and Quality Control

Genotyping of the 10,068 samples (7,123 included in our previous report plus 2,945 

additional samples) was conducted using the Illumina Infinium Human1M-Duo bead array. 

Samples (n=537) were removed based on the following exclusion criteria: (i) unknown 

replicates across studies, (ii) call rates <95%, (iii) >10% mean heterozygosity on the X 

chromosome and/or <10% mean intensity on the Y chromosome, (iv) ancestry outliers (>4 

standard deviations from the mean of eigenvector 1 or 2 as calculated using 

EIGENSTRAT21), and (v) samples that were related (1 from each group: monozygotic twin, 

parent-offspring, full- and half-sibling pairs as estimated in PLINK (http://

pngu.mgh.harvard.edu/purcell/plink/)). To assess genotyping reproducibility, we included 

215 replicate samples; the concordance rate was ≥99.9% for all pairs. The final analysis 

included 4,853 cases and 4,678 controls (Supplementary Table S1). Of the 82 single-

nucleotide polymorphisms (SNP) under investigation, 69 were genotyped and all had call 

rates >99%.

SNP Imputation

In order to test the established prostate cancer risk variants that were not directly genotyped 

and to further explore the known risk loci, we performed imputation using the software 

IMPUTE222. Phased haplotype data from a multiethnic reference panel of 1,092 individuals 

in 1000 Genomes Project (March 2012 release) were used to infer linkage disequilibrium 

(LD) patterns in order to impute missing markers. All 13 of the remaining variants were well 
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imputed as indicated by the “info score”, an imputation quality metric22. For these SNPs, the 

mean info score generated by IMPUTE2 was 0.97 with a range of 0.88 to 1.

Statistical Analysis

We tested 82 prostate cancer risk variants in 54 regions (with some regions having more 

than one variant associated with risk) that were identified in previous GWAS. All 82 

variants were weakly correlated with each other (r2<0.2 in EUR/AFR in 1000 Genomes 

Project). For some regions, such as 8q24, not all previously reported SNPs were presented 

because of high correlations with SNPs that were presented. For each SNP, per-allele odds 

ratio (OR) and 95% confidence interval (CI) was estimated using unconditional logistic 

regression adjusted for age (i.e. at diagnosis for cases and at blood draw or reference date for 

controls), study, and the first 10 principal components of global ancestry. We tested for 

allele dosage effects through a 1-degree of freedom Wald test. In the results and discussion 

section, “directionally consistent” refers to the direction of the association (OR) and not 

statistical significance (p-value).

We examined each locus in search of better markers of risk in this population using 

genotyped and well-imputed (info score≥0.8) common variants (minor allele 

frequency≥1%). For each known risk variant (referred to as index SNP), we examined all 

highly correlated variants (r2≥0.8) in the racial/ethnic population in which the original 

discovery was made. A marker that can better capture risk in men of African ancestry 

(referred to as AA marker) was defined as p<0.05, more statistically significant than the 

index SNP and with a larger effect size (OR).

For each index SNP and AA marker, we also examined the association with prostate cancer 

risk by disease severity and performed a case-only analysis (aggressive versus non-

aggressive disease). Aggressive disease was defined as metastatic disease, PSA>100 (ng/

mL), Gleason Score ≥8 and/or prostate cancer as a cause of death (n=1,238 cases).

We modeled the cumulative genetic risk of prostate cancer using index SNPs from previous 

GWAS (n=82). More specifically, we summed the number of risk alleles for each individual 

as a genetic risk score, which is appropriate for unlinked variants with independent effects of 

approximately the same magnitude for each allele, and estimated the odds ratio per allele 

and by quintile for this aggregate score. For individuals missing genotypes for a given SNP, 

we assigned the average number of risk alleles for that SNP to replace the missing value. 

The vast majority of subjects (96.4%) had no missing genotype for any SNP, with only two 

subjects missing ≥5% of the SNPs. We compared the results to a model of risk-associated 

variants in men of African ancestry (OR>1.0 and p<0.05), with index SNPs substituted by 

the AA markers when available (n=44). We stratified the analysis by age (>65 versus ≤65 

years) and tested for the interaction between genetic risk score and age groups. We also 

examined the risk score by disease severity.

RESULTS AND DISCUSSION

Of the 82 known risk alleles we examined, 68 (83%) were associated with increased prostate 

cancer risk (OR>1.0) and 30 (37%) reached nominal statistical significance (p<0.05) in men 
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of African ancestry (Supplementary Table S2). The number of variants with consistent 

directions of effects (68 out of 82) is statistically significantly more than expected 

(p=5.7×10-10, one-tailed binomial test). The vast majority of the 82 variants had consistent 

effects across the 14 study groups, with only 7 variants (9%) exhibiting statistically 

significant heterogeneity (Phet<0.05; Supplementary Table S2), which is slightly more than 

expected given the number of comparisons. In contrast to Europeans, one allele at 8q24 

(rs12543663, C) was significantly associated with reduced prostate cancer risk (OR=0.86, 

95% CI, 0.79-0.94, p=8.6×10-4), which is consistent with our previous observation in a 

subset of these samples3. Shown in Figure 1 is a comparison of the effect estimates from 

previous GWAS and those in men of African ancestry. The marked directional consistency 

of effects for many variants suggests that they are generalized markers of prostate cancer 

risk and that a common functional variant is shared across populations at most susceptibility 

loci.

Among all tested variants, the most associated markers were rs116041037 (OR=2.23, 

p=3.7×10-26) and rs6983561 (OR=1.29, p=1.1×10-16) at 8q24, as well as rs7210100 

(OR=1.40, p=5.4×10-8) at 17q21 (Supplementary Table S2), which are located in the regions 

that we have shown to be the most significantly associated with prostate cancer risk in our 

GWAS in men of African ancestry4. Of these, the risk alleles of rs116041037(A)5 and 

rs7210100(A)4 have only been found in populations of African ancestry with a frequency of 

2-3% and 4-5%, respectively.

Our sample size provided ≥80% power to detect the reported effect size (i.e. the OR from 

the largest replication stage in previous GWAS) for 50 (61%) of the 82 variants at a 

significance level of α=0.05 (Supplementary Fig. S1, Supplementary Table S2). However, 

even with ≥80% power, 25 variants (50%) were not replicated at p<0.05, which suggests 

that these variants might not be adequately correlated with the underlying biologically 

relevant variant in populations of African descent as demonstrated in our initial study3.

To address this hypothesis, we examined each locus in search of markers that might better 

capture risk in men of African ancestry (referred to as AA markers; see Methods). An AA 

marker revealed at 12q13 is demonstrated in Figure 2 as an example. The index SNP 

(rs902774), originally identified in a European GWAS14, was not significantly associated 

with risk in men of African ancestry (OR=0.94, p=0.28) given 89% statistical power. The 

most significant variant (rs55958994; OR=1.17, p=2.5×10-4) in this region is located 27kb 

downstream from the index SNP. These two markers are well-correlated in Europeans 

(r2=0.82) but are uncorrelated in Africans (r2=0.01), which suggests that rs55958994 is a 

better proxy of the underlying biologically relevant variant in men of African ancestry. 

Among all loci, an AA marker was identified for 21 index SNPs (Supplementary Table S3). 

Taking these AA markers into account, 44 (54%) of the 82 known risk signals reached 

nominal statistical significance (p<0.05).

The frequencies of the index risk alleles were slightly greater, on average, in men of African 

ancestry than in GWAS populations of European or Asian ancestry (Supplementary Table 

S4); the two African-specific variants were not considered in the comparisons (rs116041037 

and rs7210100). The mean risk allele frequency (RAF) was 4% greater, with 42 (53%) of 
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the 80 index risk alleles being more common in men of African ancestry than in the initial 

GWAS population. For the nominally significant risk-associated index variants in men of 

African ancestry (OR>1.0 and p<0.05; n=28), which are likely to be more strongly 

correlated with the functional alleles in this population, the mean RAF difference was 8%. 

Similar differences were also observed when evaluating the median RAFs and when 

incorporating AA markers (Supplementary Table S4). Although based on only a subset of 

markers that were significantly associated with risk at p<0.05 (n=28 index SNPs or n=42 

index plus AA markers), there is a suggestion that the risk alleles for prostate cancer at these 

loci may be more common in men of African ancestry than in the initial GWAS population. 

This assertion will need to be reassessed and formally tested once the underlying 

biologically functional alleles are discovered.

When considering the index SNPs and AA markers, only 5 (6%) of the 82 known risk 

signals were more associated with aggressive disease based on the case-only analysis (4 

expected at α=0.05), with the top three variants being rs7141529 (Phet=0.0087) at 14q24, 

rs339331 (Phet=0.0093) at 6q22, and rs721048 (Phet=0.018) at 2p15 (Supplementary Table 

S5). Of these, rs339331 is linked to a non-synonymous variant in the gene GPRC6A23; it has 

also been suggested to function by regulating RFX6 expression through modulating 

HOXB13 chromatin binding24.

We further examined the cumulative effect of the risk signals through a composite risk score 

(see Methods). Using the index SNPs (n=82), the risk per allele was 1.06 (95% CI, 

1.05-1.07, p=6.7×10-53) and individuals in the top quintile of the risk score distribution were 

at 2.7-fold greater risk compared to those in the lowest quintile (Table 1). As expected, the 

risk modeling was improved when incorporating AA markers and restricting to variants that 

were significantly associated with risk in men of African ancestry (n=44; Supplementary 

Table S6). The risk per allele was 1.12 (95% CI, 1.11-1.13, p=7.3×10-98), with the risk 

comparing the top versus the lowest quintile being 3.7 (Table 1). In aggregate, these variants 

can stratify men more effectively than the strongest known risk factor, a first-degree family 

history of prostate cancer, which has a relative risk of ~2.025. Associations of similar 

strength were observed for aggressive and non-aggressive prostate cancer (Phet=0.05; Table 

1). When stratifying by age, risk for younger men (age≤65) in the top quintile was 4.4-times 

those in the lowest quintile, while the odds ratio for men older than 65 years of age was 2.9 

(Pinteraction=0.02; Supplementary Table S6). While these variants are informative for 

stratifying prostate cancer risk in men of African ancestry, their combined effects in each 

stratum are modest and they have limited ability to differentiate aggressive versus non-

aggressive disease. Thus, their potential for predictive clinical utility remains limited. 

Together with identifying and directly testing the biologically functional alleles at these 

known loci, which is likely to improve population risk stratification, efforts are still needed 

to reveal variants that are of particular importance and potentially unique to men of African 

ancestry, such as those at 8q245 and 17q214. Larger-scale replication testing of variants 

from this GWAS in men of African ancestry is underway as part of the NCI GAME-ON 

Consortium (http://epi.grants.cancer.gov/gameon/), in an attempt to further discover loci that 

may help us to better understand the higher risk of prostate cancer in this population as well 
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as to develop genetic risk prediction profiles that may be more suitable and tailored for this 

population.

Compared to our previous study (case/control: 3,425/3,290)3, the current study has greater 

power because of increased sample size (case/control: 4,853/4,678). Of the 38 SNPs that we 

have re-examined in this study, 25 (66%) were more significantly associated with prostate 

cancer risk than in our previous study due to the greater sample size. Furthermore, we 

included 44 additional risk variants that have been discovered since our last publication and 

imputed to 1000 Genomes Project (versus HapMap in our previous study), which allowed 

for a more comprehensive assessment of common variation at each locus.

To date, this is the largest study of prostate cancer in men of African ancestry to examine the 

generalizability of risk with the established variants. These findings suggest that the vast 

majority of currently known variants also contribute to prostate cancer risk in men of 

African ancestry. Although power was <80% for 32 (39%) of the 82 variants tested, the 

direction of effect sizes for these variants in men of African ancestry was generally 

consistent with the previous reports. In exploring each locus, the number of variants that 

were significantly associated with risk increased from 30 (37%) to 44 (54%). Further fine-

mapping of these susceptibility loci in larger multiethnic samples will be required to reveal 

the underlying biologically relevant variants as well as the best set of genetic markers for 

prostate cancer risk stratification in men of African ancestry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty & Impact Statements

In the largest study to date, we found the vast majority of established prostate cancer risk 

variants also contribute to prostate cancer risk in men of African ancestry. A subset of 

variants were also found to be informative for prostate cancer risk modeling in this 

population. These findings motivate further genomic characterization to understand the 

contribution of these loci to risk in this population which may be influenced by linkage 

disequilibrium patterns.
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Figure 1. Effect Size Comparison of Known Risk Variants in Previous GWAS and in Men of 
African Ancestry
The odds ratio (OR) and 95% confidence interval (CI) for 82 known risk variants in 

previous GWAS and in men of African ancestry (AA). For SNPs reported in multi-stage 

GWAS, the OR and 95% CI from the largest replication stage was used for comparison. The 

red dots represent ORs in this study; the blue diamonds represent ORs in previous GWAS. 

The horizontal bars represent the corresponding 95% CIs. For each tested allele, frequency 

and statistical power (%) in AA are provided in the parentheses. The SNPs are sorted based 

on the ORs in AA. Detailed information for each SNP is provided in Supplementary Table 

S2.
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Figure 2. A Regional Association Plot of the Prostate Cancer Risk Locus at Chromosome 12q13
The -log10 p-values are from the association with prostate cancer risk in men of African 

ancestry (AA). Squares are genotyped SNPs and circles are imputed SNPs. The index SNP 

(rs902774), originally identified in a European GWAS, is designated by a purple square. 

The r2 shown is estimated in Europeans from 1000 Genomes Project (1000G EUR) in 

relation to rs902774. Grey symbols are SNPs not in 1000G EUR (r2 cannot be estimated). 

The top red circle represents a better marker of risk in AA (rs55958994) at this locus. The 

plot was generated using LocusZoom (http://csg.sph.umich.edu/locuszoom/).
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Table 1

A genetic risk score for prostate cancer in men of African ancestry.

Index markers from GWAS (n=82) Risk-associated markers in men of African ancestry (n=44)

Prostate cancer Overall Overall Aggressivea Non-aggressive

Per alleleb

N (cases/controls) 4,853/4,678 4,853/4,678 1,238/4,678 3,615/4,678

OR(95% CI)c 1.06(1.05-1.07) 1.12(1.11-1.13) 1.14(1.12-1.16) 1.12(1.10-1.13)

P-value 6.7×10-53 7.3×10-98 7.5×10-50 2.6×10-77

Quintiles of risk allelesd

Q1 N (cases/controls) 568/934 488/936 124/936 364/936

OR(95% CI)c 1.0(ref.) 1.0(ref.) 1.0(ref.) 1.0(ref.)

P-value - - - -

Q2 N (cases/controls) 725/937 658/935 161/935 497/935

OR(95% CI)c 1.26(1.09-1.46) 1.39(1.19-1.61) 1.34(1.04-1.74) 1.41(1.19-1.67)

P-value 1.9×10-3 2.5×10-5 2.5×10-2 5.4×10-5

Q3 N (cases/controls) 993/935 893/936 220/936 673/936

OR(95% CI)c 1.74(1.51-2.01) 1.91(1.65-2.22) 1.85(1.44-2.36) 1.93(1.64-2.27)

P-value 1.0×10-14 6.0×10-18 1.2×10-6 2.3×10-15

Q4 N (cases/controls) 1,061/936 1,105/935 281/935 824/935

OR(95% CI)c 1.85(1.61-2.13) 2.39(2.07-2.77) 2.51(1.98-3.20) 2.37(2.02-2.78)

P-value 8.7×10-18 4.9×10-32 6.6×10-14 3.1×10-26

Q5 N (cases/controls) 1,506/936 1,709/936 452/936 1,257/936

OR(95% CI)c 2.67(2.33-3.06) 3.69(3.20-4.26) 4.07(3.23-5.13) 3.57(3.06-4.18)

P-value 1.6×10-44 1.9×10-72 2.0×10-32 1.3×10-57

a
Metastatic disease, PSA>100 (ng/mL), Gleason Score ≥8 and/or prostate cancer as a cause of death.

b
Among controls, mean and range for the 82 index alleles is 77 (53-97); for the 44 risk-associated alleles the mean and range is 40 (26-56).

c
Odds ratio and 95% confidence interval adjusted for age, study, and global ancestry (the 1st 10 eigenvectors).

d
Quintiles based on distribution in controls (cutpoints for 82 SNPs: 72.0, 75.0, 78.0 and 81.2; for 44 SNPs: 36.7, 39.0, 41.1 and 43.7).
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