UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Allowing applications to evolve with the Internet: The case for Internet Resource Descriptors

Permalink
https://escholarship.org/uc/item/5ch8f5w8g

Authors

Garcia-Luna-Aceves, J.).
Sevilla, Spencer

Publication Date
2014-06-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5ch8f5w8
https://escholarship.org
http://www.cdlib.org/

Allowing Applications To Evolve with The Internet:
The Case For Internet Resource Descriptors

Spencer Sevilla*, J.J. Garcia-Luna-Aceves*
{spencer, jj}@soe.ucsc.edu
* UC Santa Cruz, Santa Cruz, CA
T Palo Alto Research Center, Palo Alto, CA

Abstract—Today’s socket API requires an application to bind
a socket to a network address before it can use the socket to
communicate. Early bindings of names to addresses create signif-
icant bottlenecks, reliability problems, and force applications to
manage complex lower-layer issues. Many approaches have been
introduced to address this problem; however, all prior proposals
introduce additional identifiers, modify applications, or require
additional protocols in the protocol stack. In contrast, we propose
a generalized socket API based on Internet Resource Descriptors
(IRDs), which are opaque identifiers used by applications to refer
to network resources and are known only within the hosts in
which the applications run. IRDs enable sockets to evolve with
the Internet by hiding mobility, multihoming, and multiplexing
issues from applications, do not induce significant overhead
in the protocol stack, preserve backwards compatibility with
today’s networks and applications, and do not require additional
identifiers or protocols to be used in the protocol stack.

I. INTRODUCTION

A network application operating over the Internet requires
the description of a service, content, or destination to be
mapped into a route over which the service or content can be
provided or the destination can be reached from the source.
Since the inception of the Internet [1], this mapping has
been carried out through a number of indirections aimed at
separating the description of what an application requires
(names) from where (addresses) it is and how (routes) to reach
it [2]. Today, a network application wishing to communicate
with a remote process over the Internet carries out a two-step
resolution process based on the domain name system (DNS),
as illustrated in Fig. 1. First, the application contacts its DNS
resolver, which is another process located in the same host, to
map a user-friendly name into a set of IP addresses. In turn, the
DNS resolver interacts with the DNS and eventually resolves
the name provided by the application to a set of IP addresses.
The application then binds the resolved name to a specific
IP address by selecting one of the IP addresses from the set
provided by the DNS resolver, and passes it to the socket API
to send messages to the remote process. The routes between
the host where the application runs and the host where the
remote process resides are established and maintained in the
system based on IP routing tables.

The existing algorithms for name resolution and name-
address binding have served the Internet well over many years.

This work was sponsored in part by the Baskin Chair of Computer
Engineering at UC Santa Cruz

®
@lAppIicationlleNS Resolverl

oL
Socket APl = =§— — - -

RESOLVING SENDING

1: resolve “nameX” (4: parse address set)
2: resolve “nameX"=—>{addrX, addrY} 5:sendmsg(msg, addrX)
3:return {addrX, addrY}

Fig. 1: Traditional name resolution and name-address binding

However, as the Internet has become ubiquitous and wireless
networks and devices have proliferated, new application re-
quirements make the traditional approach to name resolution
and name-address binding untenable. Specifically, supporting
multi-homing and mobility of processes, seamlessly multiplex-
ing among multiple network interfaces at each host, and using
diverse protocols in wireless networks cannot be accomplished
today.

Not surprisingly, as Section Il summarizes, a large body of
work has been aimed at making naming and addressing more
responsive to the new realities of the Internet. The key prob-
lems that these proposals address are the “early binding” estab-
lished between the name of a process and the address where it
can be provided, and the need for applications to monitor and
manage this binding. Interestingly, all prior approaches address
these problems by introducing additional layers of transparent
identifiers (i.e., known outside a host) into the protocol stack.
Using these identifiers requires new communication protocols
to help solve the name-address binding problem, and changes
the interface provided to end-user applications. We argue
that this is not the right approach to solving the naming
and addressing problem of the current Internet architecture,
because it creates significant roadblocks to the adoption of any
of these new approaches. These roadblocks typically include
requiring the support of middle-boxes, requiring changes to
the network routing core, or requiring changes to applications
(which is arguably the greatest roadblock) by changing the
socket APL.

Returning to Fig. 1, the dashed line illustrates the socket
API between the application and the operating system where
it runs. It is apparent from the figure that the application
binds itself to a particular name for the service or content it
requests, and then also binds itself explicitly to a particular



IP address by selecting one from the set provided by the
DNS resolver. The first binding is unavoidable, because any
application must identify what network resource it requires,
and the operating system cannot assume this choice. However,
any demultiplexing and further binding by the application
is unnecessary and detrimental. These additional bindings
require applications to be rewritten to take advantage of system
innovations, prevent old protocols from being “retired” without
breaking backwards compatibility with older applications, and
prohibit mobility and multi-homing. Additional bindings also
add complexity into applications, including logic which is
often duplicated across all applications (such as selecting an
IP address from a set).

To address these problems, we introduce a new approach
that allows applications to “evolve with the Internet” by
freeing them from managing the demultiplexing of addresses
and the binding of names to addresses. What is novel about our
approach is that we do so without introducing, requiring, or
preventing the use of any new identifiers, services, or protocols
in the Internet stack. This achieves support for several new
network features (such as mobility and multihoming) today
while maintaining backwards compatibility, supporting future
extensibility, and avoiding the roadblocks listed above. The
basis of our approach consists of augmenting the current
use of identifiers (names or addresses) that are the same
across an entire network, which we call transparent identifiers,
with identifiers that are known only inside the host where
named processes are running, which we call opaque identifiers.
Section IIT addresses the benefits of using opaque identifiers.

Section IV describes our approach, which introduces In-
ternet Resource Descriptors (IRDs) as an integral part of
the existing socket API. IRDs are protocol-agnostic opaque
identifiers known only inside a host that replace network
addresses or other transparent identifiers in the current socket
API. When an application calls a name-resolution or service-
discovery function, it receives an IRD instead of an address.
Once the application has an IRD, it uses the descriptor with
the socket API to send and receive messages, and the operating
system then demultiplexes the resource descriptor to a network
address. This provides a layer of indirection that enables
applications to seamlessly migrate across network addresses
and entire network protocols.

Section V discusses the advantages of IRDs implemented
as a Linux kernel module. We present the results of experi-
ments based on this prototype, which show that IRDs support
mobility and multihoming without requiring major changes to
existing applications or introducing any significant overhead
in the protocol stack.

II. RELATED WORK

Work on the binding of names, addresses, and routes to one
another goes back several decades, and due to space limitations
we mention a small fraction of that work. Watson [3] provides
an excellent summary of early work on the subject. Shoch [2]
provided one of the best characterization of these concepts:
“the name of a resource indicates what we seek, an address
indicates where it is, and a route tells how to get there.” This

set of primitives was also discussed by Saltzer [4], who pointed
out that an address is really just a name of a lower-level
entity, and the binding process connects a name to a particular
address. It is implied that a particular layer in the network
maintains and manages its named bindings to the next layer
down. Interestingly, early works on the characterization of
bindings among names, addresses and routes do not advocate
how they should be carried out.

Several proposals have been made on how to evolve the
Internet to address its current limitations with naming and
addressing. FII [5], [6] and Plutarch [7] highlight the fact that
new solutions cannot be deployed incrementally, and must be
uniformly adopted simultaneously. To address this problem,
these proposals advocate for an Internet framework that allows
for heterogeneity between different network domains (referred
to as “contexts” in Plutarch). Both Plutarch and FII advocate
a new network API, and FII suggests some guidelines for its
design, but neither proposal provides a model of what this
API should be, its implementation, or a roadmap for migrating
applications to use it. Ghodsi et. al. [6] briefly propose that a
future network API should be based on hostnames, as opposed
to network addresses. However, they describe the network API
as something that must be redone from the ground-up, without
specifics.

Many proposals [8], [9], [10], [11], [12] advocate the
introduction of new layers of transparent identifiers into the
stack as a way of eliminating some of the naming and
addressing problems in the current Internet architecture. In
[9], the authors propose that applications start with a service
identifier (SID) provided by the end-user, resolve it to a set
of endpoint identifiers (EID), and then choose one to bind to
a socket. EIDs are used only by the transport layer, and are
translated and bound to network addresses in order for routing
and communication to occur. A similar proposal, Serval [12],
identifies the same problems and proposes the introduction
of a Service Access Layer (SAL) between the network and
transport layers. The SAL redoes the socket API to bind
directly to service identifiers (SID) instead of the traditional
tuple based on an IP address and a port number.

As we have stated in Section I, a striking feature of
today’s Internet architecture and all the proposals addressing
its name-address binding limitations is that they all assume that
applications must bind themselves to transparent identifiers
(e.g., IP addresses or SIDs) that are known outside the hosts
in which the applications run. It has been pointed out in [9]
that, if transparent identifiers are used, then the only way
to break the early binding between names and addresses is
by introducing additional layers of such identifiers and the
protocols and interfaces needed to use them. However, this
approach still locks the applications, and the socket API or
newly proposed network APIs, to particular formats for the
transparent identifiers and the communication protocols using
them. This is a big problem for the Internet evolution: just
as the designers of the original Internet architecture could
not predict today’s problems associated with early bindings
of names to addresses, it is not possible to predict what
problems may result from the use of new identifiers that
must be unambiguous on a network-wide basis. Furthermore,



requiring applications to use new identifiers in the API forces
application developers to modify applications as the Internet
evolves.

III. THE ARGUMENT FOR OPACITY
A. Identifiers and The Network

A resource or destination must be denoted with the same
identifier by all network forwarding devices (e.g., middle
boxes and routers) in order for data packets to reach their
intended destinations. Hence, from the perspective of the
network, only transparent identifiers are useful.

The very nature of transparent identifiers requires that they
be unique, unambiguous, and supported within the domain
in which they are to be used. For example, two hosts
on the same network cannot share the private IP address
192.168.100.1 or multicast DNS name name_1.local.
However, all transparent identifiers need not be global. Mul-
tiple types of transparent identifiers may be needed in the
network, because globally unique identifiers may not make
sense in certain networks (e.g., Plutarch [7]) and may be
considered detrimental in others. For example, a network of
things inside a house might prefer to only use local addressing
for security, and an extremely resource-constrained sensor
network may not be able to afford the overhead of a universal
identifying protocol - even the IPv4 header today is considered
overly bloated for sensors.

B. Identifiers and End Systems

Transparent identifiers have been used to denote resources in
end systems (hosts) in all Internet architectures, starting with
the original proposal by Cerf and Khan [1]. At first glance,
this appears to be a trivial choice, given that intermediate
systems (routers, switches and middle boxes) require the use
of transparent identifiers. However, this choice overlooks the
fact that end systems manage resources individually, while
intermediate systems do so in coordination with other systems.
More importantly, it ties the application developers to specific
protocols and types of identifiers used in the network, which
inhibits the deployment of any new networking approach based
on new transparent identifiers.

To allow the applications and the Internet to evolve more
freely, a host should be allowed to denote resources by means
of opaque identifiers known only within the host, and translate
the opaque identifiers it uses to transparent values before
packets are sent out over the wire. Given that opaque values
are meaningless until translated by the system, they can easily
support multiple network stacks and protocols simultaneously,
as well as switching between them. Moreover, they can do
so without requiring additional overhead, coordination, or a
separate identity layer.

Interestingly, while opaque identifiers have not been used
in any previous Internet architecture, they are not new to
computing system design. Specifically, file descriptors were
originally designed as a part of UNIX to provide a standard
interface for applications that did not depend on either the
physical location of the file or the underlying addressing
scheme. Before their introduction, applications had to be

written for specific hardware profiles, and this provided a
significant roadblock to innovation, given that minor changes
in the hardware broke all the applications. This problem is
analogous to the state of network programming today, where
changes in network addresses disrupt connectivity and changes
in network protocols require applications to be rewritten.

By adopting file descriptors, applications remain ignorant
of lower-level concerns, and this has enabled tremendous
innovation in both filesystem and hardware design. Similarly,
the use of opaque identifiers in the network stack provides an
architectural solution to the majority of problems in today’s
networks by allowing different components of the stack to
evolve and change independently of each other. In contrast, an
API based on transparent identifiers is not nearly as modular:
by design, an application using a transparent identifier must
specify both the identifier and its format. This implicitly binds
the application to whatever values were supplied, and ensures
that the application must deal with any change in either value,
such as switching addresses or protocols.

From the perspective of the application, opaque identifiers
enable simple applications to take advantage of a wide range of
network features. More importantly, applications written using
opaque identifiers can automatically “opt-in” to new network
features without being re-written. Application developers do
not have to, and are not able to, make any assumptions about
network addresses, protocols, or stacks being used, or the
features provided by the host stack.

C. Identifiers, Locators, and Translation

[10], [13], [14], [15] have each proposed a network stack
architecture that translates a host identifier, such as a DNS
hostname or HIP identity, into a network locator (e.g. an
IPv4 address). These proposals adapt the socket API and
transport layer to bind directly to the host identifier, and
then translate the identifier to the network locator between
the transport and network layers. Such architectures enable
network-layer mobility and multihoming, and are particularly
appealing because they accomplish this without injecting an
additional naming layer into the stack.

However, in each of these proposals, the host identifier is
still transparent, so the constraints of the chosen host identifier
still apply. For example, DNS-based sockets cannot support
environments where DNS is inappropriate, such as MANETS,
and HIP-based sockets cannot support resource-constrained
environments, such as sensor networks. Moreover, since all of
these proposals translate between the transport and network
layers, they are implicitly bound to the TCP/IP stack, and
therefore cannot support alternate network stacks such as Blue-
tooth, Zigbee, or NFC. Thus, these proposals merely substitute
one set of identifiers for another, and remain fundamentally
unable to support a wide range of future Internet proposals,
such as as FII and Plutarch.

IV. IRDsS: INTERNET RESOURCE DESCRIPTORS

We propose to allow applications to evolve freely with the
Internet by adopting Internet Resource Descriptors (IRDs)
into the socket API as an extrapolation of file descriptors.



Application
® / IRD TID TID

ird_1 |addrA:portB |addrC:portD
NULL

gl
System APl = =4t = = = =
IDNS Resolverl <__’| IRD System I@

olt @ \

RESOLVING

1: resolve(“nameX’, portY)

2: resolve “nameX"—addrX

3: store addrX:portY, generate ird_X
4:return ird_X

Fig. 2: Name resolution with IRDs and DNS

ird_X |addrX:portY

SENDING

5: sendmsg(msg, ird_X)
6: resolve ird_X = addrX:portY
7: sendmsg(msg, addrX, portY)

By design, an IRD is an opaque identifier, protocol-agnostic,
known only within the host in which the applications using
the identifier run, and meaningless until it is translated by the
system to bind it with a transparent identifier associated with
one or more places in the Internet. An IRD could represent
some content, another host, a peripheral device connected
through Bluetooth or NFC, an Internet application distributed
across multiple machines, or even a toaster or light switch in
the coming Internet-of-Things.

A. Acquiring a Resource Descriptor

Applications acquire an IRD through any service-discovery
or name-resolution function that would traditionally return
a transparent identifier (TID) to the application. Figure 2
illustrates this process for the case of DNS. When the ap-
plication calls the name-resolution function, the function uses
whatever resolution protocol is appropriate (Steps 1-2 in the
figure). Note that which values are supplied by the application,
and which are generated by the resolver, largely depends
on the resolution protocol used. For example, the DNS has
no understanding of port numbers, so the application must
provide a port, whereas the mDNS-SD service registry enables
applications to reference a service using its name directly, and
other protocols such as Bluetooth coordinate through other
discovery methods.

After resolution is complete, instead of returning the TID
directly to the application, the function stores the TID as an
entry in the resource descriptor table (RDT) and generates
an IRD corresponding to the RDT entry (Step 3). Last, the
function returns this IRD to the application (Step 4).

An important part of IRD acquisition is that it takes place
through a peripheral resolution function, and not the socket
API itself. This split is crucial, because it supports a much
more diverse set of resolution protocols. In addition to DNS
hostnames, proposals for resource discovery today include
attribute-based querying (e.g. type=printer, loc=lab5), implied
scoping (the Bluetooth device currently paired with my com-
puter and labeled as “My Phone”), or cryptographic IDs (such
as HIP [10]). It would be exceedingly difficult to design a
single, unifying socket function call that could support such
a diverse set of resolution protocols, yet each protocol can
easily exist as its own specific resolution function with its
own parameters, as long as the function populates the RDT and
returns a corresponding IRD. Building on this argument, other
approaches to IRD acquisition could emerge, such as obtaining
an IRD from another application (via an IPC process) or

specifically tailored helper functions. These methods allow
for intricate relationships between applications to emerge,
and could also provide additional security measures, such
as obtaining an IRD from a “black box” function without
knowing what was resolved or where the IRD points to.

In line with this decision, DNS resolution through the
getaddrinfo function is currently implemented as a user-
space library function, as opposed to a kernel-space syscall.
This design keeps the complexity of DNS resolution out of
the kernel, which contributes to system speed and stability.
By following this model, we maintain these same goals, and
achieve another significant benefit of lowering the bar needed
to deploy a new resolution protocol. Deploying or updating
a function implemented in a user-space library is far less
challenging or risky than a kernel-level change, and this allows
a vast set of different resolution protocols to be developed and
distributed without compromising or affecting the operating
system itself.

B. Sending Messages

Once an application has acquired an IRD, it can use it to
communicate with the standard socket API, as shown in Steps
5 to 7 of Figure 2. When an application sends messages with
a socket by calling sendmsg, instead of passing a network
address, the application passes the IRD it acquired. The system
uses the RDT to translate the IRD to an appropriate TID and
protocol, and completes the operation using this value. Note
that the bottom-most box is labeled as “Network™ instead of
“IP,” given that demultiplexing an IRD could result in an IP
address and port, a Bluetooth ID, a HIP identity, an EID, or
any other transparent identifier, depending on the RDT entry.

Similar to file descriptors, a separate RDT is kept for each
process. This alleviates security issues (such as a malicious
process poisoning the RDT), simplifies RDT management (e.g.
creating/destroying entries), and reduces the work necessary to
translate an IRD.

Discovery protocols often return several network addresses
for a single request. In this case, the RDT stores the entire set
of addresses for the IRD. When an application sends messages
to an IRD with multiple address values associated with it in the
corresponding RDT entry, the system demultiplexes the IRD
and selects a particular address. This helps keep applications
simple, yet still enables them to take advantage of integrated
support for features such as mobility and multihoming. It also
enables policies to quickly be implemented system-wide, such
as preferring one interface or protocol to another. Moving
the demultiplexing to the system enables greater optimization
and decision-making with a more complete perspective of
the state of the network, and also enables the system to
mask recoverable errors (e.g., routes changing, or one network
address going down) from the application entirely.

C. Binding And Receiving Messages

For an Internet application to receive messages in the
traditional Internet architecture, it must accomplish two tasks:
First, it must bind a socket to a particular network protocol and
protocol-specific identifier, such as an IP-port tuple. Second, it



Application
® / TRD TID TID

ird_1  |addrA:portB [addrC:portD

@u@
System APl = =jt = = = =
@ [Registration | == [ 1RD system | @

@ ird_X |addrX:portY NULL
ol |®
REGISTRATION BINDING

1: register(“serviceX")

2: map “serviceX”—> addrX:portY

3: register “serviceX”—-addrX:portY
4: store addrX:portY, generate ird_X
5:return ird_X

Fig. 3: Binding to an IRD

6: bind(socket, ird_X)
7:resolve ird_X = addrX:portY
8: bind(socket, addrX, portY)

must announce its presence by registering the identifier with a
discovery or resolution service. Despite its importance, this
second step is typically overlooked or executed in an ad-
hoc manner, such as manually configuring a DNS server or
relying on a priori knowledge that certain ports correspond to
certain services. The one exception to this is the mDNS API,
which requires applications to programmatically announce
their services as user-friendly names.

Following this model, we propose the introduction of reg-
istration functions that complement the resolution functions
described above. Applications wishing to receive connections
must first use a function to register the resource or service
they wish to provide, and the registration function returns an
IRD to the application. This process is illustrated in Steps 1-5
of Figure 3, and is largely similar to the resolution process
shown in Figure 2. Once a service is registered and mapped
to an IRD, the application may then bind a socket to this IRD
the same way it binds a socket today, as shown in Steps 6-8.

This process enables an application to identify itself using
only the appropriate registration function, and still receive
messages across multiple network addresses and stacks.

D. Connection-Oriented Protocols

Connection-oriented protocols typically provide guarantees,
such as reliable in-order delivery. Dynamically changing the
addresses or protocols used can potentially violate these guar-
antees unless such a handoff is coordinated by the protocol
itself. Thus, when a connection-oriented socket (indicated by
the SOCK_STREAM argument) is bound to an IRD, the system
must not dynamically change the TID.

However, connection-oriented protocols still benefit from
the use of IRDs, since they ensure that changes to a transport
protocol do not propagate up or down the stack. For example,
there exist several different proposals for TCP multihoming
and mobility, ranging from opening multiple simultaneous
TCP sessions [16] to implementing one of many solutions [17],
[18], [19] designed for in-flight handovers. These solutions
are different architecturally, each has different advantages and
disadvantages, and arguably more work will be forthcoming
on transport-layer approaches aimed at handling mobility.
However, from the perspective of the application and the rest
of the network stack, all of these approaches are identical: the
IRD is unchanged, and connectivity is preserved.

V. PROTOTYPE IMPLEMENTATION

We developed a prototype implementation of IRDs as a
Linux kernel module, deployable on any distribution based on

port = 5060;
ird = getaddrinfo(”otherhost.local”, port);
sock = socket(AF_IRD, SOCK_DGRAM, 0);
msg = askUserForMessage();
while (msg != “quit”) {
sendto(sock, ird, msg);
msg = askUserForMessage();

Fig. 4: IRD Chat App Pseudocode

Linux 2.6.x or 3.0.x. We chose to develop a kernel module to
reduce compilation effort and to make our code more portable.
We wrote a custom getaddrinfo function that interacts
with the RDT to resolve DNS hostnames to IRDs instead of
IP addresses, and added IPv4 and IPv6 support into the RDT.

Our prototype works by implementing a new socket family,
AF_IRD, and defining IRDs as a subtype of the generic
sockaddr structure. Defining IRDs this way lets us leave
the generic socket API intact, while still affording us a large
address space (twelve bytes) for identifying Internet resources.
These sockaddrs are translated by our prototype RDT, which
follows a simple policy: it stores and uses addresses in the
same order they are entered into the RDT by a resolution
protocol. If an error is returned when sending a message, the
offending address is removed and the message is resent using
the next address, only returning an error to the application
when no more addresses exist.

A. Handling Mobility, Multihoming, and Disconnections

To test the functionality of our prototype, we wrote a very
simple datagram-oriented chat application, roughly outlined in
Figure 4, that uses IRDs and deployed it across four computers
running Linux Mint 9. The computers are all equipped with
WiFi cards and ethernet ports, and the WiFi radios all within
broadcast range of each other. As a base-case, we configured
the WiFi interfaces into an ad-hoc network with manually-
assigned private IP addresses, and ensured that each node
could send messages to every other node. With this topology
in place, we were able to conduct a series of connectivity
experiments highlighting support for network multihoming,
failures, and mobility.

In our first experiment, we tested multihoming as well as
Internet compatibility by connecting two of the computers
to the Internet via ethernet and manually adding their new
network addresses to each other’s RDT. By simply changing
the order of addresses in the RDT, we were able to seamlessly
enable multihoming between these two network addresses,
and do so without either (1) having to change anything in
the application or (2) even alerting the application to the fact
that a change in network addresses had occurred. Building
on this experiment, we induced failures into a network path
by unplugging the ethernet cable or disconnecting from the
802.11 ad-hoc network, at either the client or server side.
When these failures occurred, the RDT removed the invalid
network address and switched over to the other one automat-
ically, again without requiring anything from the application.
When we ran this same experiment over the traditional IP
stack, the application was unable to deal with any of these
cases. On the client side, the application was forced to re-



IRD

Messages Received

o

12 10

a5 6 7 8
Seconds Elapsed

Fig. 5: Chat message-delivery comparison

resolve a hostname or manually manage a list of network
addresses in order to continue to send messages after a network
disconnection. Conversely, on the server-side, the bound socket
was unable to receive messages and had to be restarted after
a network handoff.

Figure 5 shows the results of a simple experiment in which
one application sent messages to another at a rate of one
message per second, and at the 5-second mark the sender
was disconnected from the 802.11 ad-hoc network. Here,
the IP-based sender immediately failed to deliver any further
messages, yet the IRD sender was able to switch network
addresses and continue delivery uninterrupted. Clearly, some
of these network problems can be mitigated by introducing
additional application-specific code to handle network-error
cases; however, this presents the application developer with an
additional hurdle and a fundamental tradeoff of effort rendered
unnecessary with the use of IRDs. The pseudocode in Figure 4
shows what is needed for the IRD-based chat application, and
this highlights that the code is remarkably simple and yet it
can still support complex network cases that the traditional IP
stack cannot.

B. Performance Evaluation of IRD Translation

When a message is sent to an IRD, it must be translated
to a network address, and this necessarily incurs some per-
formance overhead. To measure this overhead in the system,
we developed an iperf-style application to measure UDP
throughput over the loopback interface, effectively measuring
the performance and speed of the network stack itself. The
results of this test are summarized in Table I, and show that
while IRDs do introduce a small amount of overhead, the
difference is well within acceptable bounds and is not likely
to introduce performance bottlenecks.

The difference between write() and sendmsg() is that
sendmsg() requires the application to pass a sockaddr structure
with each message, whereas write() requires the socket to have
previously been bound to a sockaddr. Thus, in our implemen-
tation, we only translate the IRD when the socket is bound, as
opposed to per-datagram. This fundamental difference results
in simpler execution, and explains the increased throughput
seen in Table 1, both in the traditional IP stack and for the
IRD-based approach.

C. Backwards Compatibility

Because IRDs work without changing the protocol stack
itself, they are fully compatible with existing protocols, and
this includes application endpoints that do not use resource

Native Stack
348.7 MBps
613.2 MBps

Resource Descriptors
318.8 MBps
603.1 MBps

sendmsg()
write()

TABLE I: Loopback throughput

descriptors. We tested this and found that IRD-enabled clients
could easily send messages to applications bound to a tradi-
tional address and port combination. The inverse is also true,
in that server-side applications adapted to use resource descrip-
tors were equally able to receive messages and communicate
with non-IRD clients. This is a crucial consideration for de-
ployment, because it means that applications and systems can
be migrated to resource descriptors asynchronously, without
fear of breaking compatibility with other endpoints.

VI. CONCLUSION

We introduced the concept of Internet resource descriptors
(IRD), which extends the concept of file descriptors in UNIX
to allow applications to use opaque identifiers known only
within a host to bind only once to application-friendly names
of Internet resources. This allows Internet applications and
the Internet stack to evolve independently of one other. We
showed how IRDs can be demultiplexed to support multiple
network addresses and protocols simultaneously, and why
IRDs provide significant improvements to today’s Internet
architecture by supporting multihoming and mobility, without
sacrificing performance.

REFERENCES

[1] V. Cerf and R. Kahn. A Protocol for Packet Network Interconnection.
IEEE Trans. Commun., pages 637-648, 1974.

[2] J. Shoch. Inter-Network Naming, Addressing, and Routing. 17th I[EEE
Computer Society Conference (COMPCON 78), 1978.

[3] R.W. Watson. Identifiers (Naming) in Distributed Systems. Distributed
Systems—Architecture and Implementation (LCN 105), Chapter 9:191—
210, 1981.

[4] J. Saltzer. On The Naming and Binding of Network Destinations. RFC
1498, August 1993.

[5] T. Koponen et. al. Architecting for innovation. ACM SIGCOMM
Computer Communication Review, 41(3):24-36, 2011.

[6] A. Ghodsi et. al. Intelligent Design Enables Architectural Evolution.
ACM HotNets, page 3, 2011.

[7] J. Crowcroft et.al. Plutarch: an argument for network pluralism. ACM
FDNA 03, 2003.

[8] I. Stoica et. al. Internet Indirection Infrastructure. ACM SIGCOMM,
2002.

[9] H. Balakrishnan et. al. A Layered Naming Architecture for The Internet.
ACM SIGCOMM, pages 343-352, 2004.

[10] R. Moskowitz et. al. IETF RFC 5201: Host identity protocol. 2008.

[11] B Ford. Breaking Up The Transport Logjam. ACM HotNets, 2008.

[12] E. Nordstrom et. al. Serval: An end-host stack for service-centric
networking. Proc. 9th USENIX NSDI, 2012.

[13] J. Ubillos et. al. IETF draft: Name-based sockets architecture. 2010.

[14] Erik Nordmark and Marcelo Bagnulo. IETF RFC 5533: Shim6: Level
3 multihoming shim protocol for IPv6. 2009.

[15] D. Farinacci et. al. IETF RFC 6830: The locator/ID separation protocol
(LISP). 2013.

[16] Alan Ford, Costin Raiciu, Mark Handley, Sebastien Barre, and Janard-
han Iyengar. Architectural guidelines for multipath tcp development.
RFC6182 (March 2011), www. ietf. ort/rfc/6182, 2011.

[17] K. Brown and S. Singh. M-tcp: Tcp for mobile cellular networks. ACM
SIGCOMM Computer Communication Review, pages 19—43, 1997.

[18] D Funato, K Y., and H. Tokuda. TCP-R: TCP mobility support for
continuous operation. pages 229-236, 1997.

[19] A. Bakre and BR. Badrinath. I-TCP: Indirect TCP for mobile hosts.
ICDCS 95, pages 136-143, 1995.





