
UC San Diego
UC San Diego Previously Published Works

Title
Leveraging the adolescent brain cognitive development study to improve behavioral 
prediction from neuroimaging in smaller replication samples

Permalink
https://escholarship.org/uc/item/5ch046cc

Journal
Cerebral Cortex, 34(6)

ISSN
1047-3211

Authors
Makowski, Carolina
Brown, Timothy T
Zhao, Weiqi
et al.

Publication Date
2024-06-04

DOI
10.1093/cercor/bhae223
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5ch046cc
https://escholarship.org/uc/item/5ch046cc#author
https://escholarship.org
http://www.cdlib.org/


Received: January 5, 2024. Revised: May 8, 2024. Accepted: May 14, 2024
© The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Cerebral Cortex, 2024, 34, bhae223

https://doi.org/10.1093/cercor/bhae223
Advance access publication date 17 June 2024

Original Article

Leveraging the adolescent brain cognitive development
study to improve behavioral prediction from
neuroimaging in smaller replication samples
Carolina Makowski 1,2,*, Timothy T. Brown3, Weiqi Zhao 1,4, Donald J. Hagler Jr1,2, Pravesh Parekh5, Hugh Garavan6,

Thomas E. Nichols7,8, Terry L. Jernigan4, Anders M. Dale1,2,3,*

1Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, United States
2Department of Radiology, University of California San Diego, La Jolla, CA, United States
3Department of Neurosciences, University of California San Diego, La Jolla, CA„ United States
4Department of Cognitive Science, University of California San Diego, La Jolla, CA, United States
5NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
6Department of Psychiatry, University of Vermont, Burlington, VT, United States
7Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
8Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
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Neuroimaging is a popular method to map brain structural and functional patterns to complex human traits. Recently published
observations cast doubt upon these prospects, particularly for prediction of cognitive traits from structural and resting state func-
tional magnetic resonance imaging (MRI). We leverage baseline data from thousands of children in the Adolescent Brain Cognitive
DevelopmentSM Study to inform the replication sample size required with univariate and multivariate methods across different
imaging modalities to detect reproducible brain-behavior associations. We demonstrate that by applying multivariate methods to
high-dimensional brain imaging data, we can capture lower dimensional patterns of structural and functional brain architecture that
correlate robustly with cognitive phenotypes and are reproducible with only 41 individuals in the replication sample for working
memory-related functional MRI, and ∼ 100 subjects for structural and resting state MRI. Even with 100 random re-samplings of 100
subjects in discovery, prediction can be adequately powered with 66 subjects in replication for multivariate prediction of cognition with
working memory task functional MRI. These results point to an important role for neuroimaging in translational neurodevelopmental
research and showcase how findings in large samples can inform reproducible brain-behavior associations in small sample sizes that
are at the heart of many research programs and grants.

Key words: brain-behavior associations; multivariate modeling; neurocognition; structural MRI; task functional MRI.

Introduction
Understanding how the brain gives rise to behavior is a central
goal and challenge of modern neuroscience. Non-invasive neu-
roimaging techniques have yielded valuable opportunities to link
brain structure and function with cognitive and mental health
phenotypes, which in turn could be useful to predict later behav-
ioral outcomes (Kardan et al. 2022). However, recent reports have
provided evidence that call into question the reproducibility of
brain-behavior associations across various magnetic resonance
imaging (MRI) modalities (Elliott et al. 2020; Kelly Jr and Hoptman
2022; Kennedy et al. 2022; Marek et al. 2022; Liu et al. 2023),
even in large samples such as the Adolescent Brain Cognitive
DevelopmentSM Study (ABCD Study®), which have yielded much
smaller effect sizes than anticipated (Dick et al. 2021).

Recent reports have suggested that studies require thousands
of individuals to be sufficiently powered to measure reproducible
brain-behavior associations when applying commonly used
univariate statistical methods (Marek et al. 2022; Liu et al.
2023). This has resulted in significant concerns across the brain
imaging community, and beyond, about the value of MRI

in trying to understand human behavior, particularly for the
preponderance of investigations that have been conducted in
sample sizes well under one hundred, let alone thousands, of
individuals. Dozens of research groups and media outlets have
independently responded to this highly cited claim of thousands
of individuals being required in brain-wide association studies,
including many commentaries (“Cognitive neuroscience at the
crossroads” 2022, “Revisiting doubt in neuroimaging research”
2022; Bandettini et al. 2022; Deyoung et al. 2022; Gratton et al.
2022; Kong et al. 2022; Rosenberg and Finn 2022; Tiego and
Fornito 2022; Valk and Hettwer 2022; Chakravarty 2022; Uddin
2023), reports using synthetic data (Cecchetti and Handjaras
2022; Gell et al. 2023), neuroimaging/cognitive data from the
UK Biobank and/or Human Connectome Project (Cecchetti
and Handjaras 2022; Gell et al. 2023; Spisak et al. 2023), and
psychopathology/genetic data from the ABCD Study (Tiego et al.
2023). Across this wave of responses, it has become increasingly
clear that hundreds of individuals should be sufficient to measure
reproducible brain-behavior associations, particularly with the
right choice of multivariate prediction methods (Spisak et al. 2023)
and a more intentional focus on specific behavioral phenotypes.
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It remains to be seen how such multivariate methods enhance
power to predict behavior in a neurodevelopmental sample such
as the ABCD Study. Further, many reports focusing on brain-
behavior reproducibility issues have focused on resting state
functional MRI (fMRI), necessitating a broader investigation of
different imaging modalities, including structural and diffusion
MRI, and task-evoked brain activation with fMRI. Marek, Tervo-
Clemmens and colleagues (Marek et al. 2022) examined both
multivariate methods and task fMRI, but did not highlight
these results in the main conclusions of their paper, and used
a multivariate technique that may not have been optimal in
predicting cognition (Spisak et al. 2023). Task fMRI is of particular
interest in the prediction of cognitive performance, given its
success in mapping patterns of brain activity evoked by different
tasks, identifying both distributed and specific neural responses
to different processing demands. Our group and others have
recently shown that task-evoked activation outperforms resting
state functional connectivity measures when predicting cognition
in the ABCD study (Chen et al. 2022; Omidvarnia et al. 2023; Zhao
et al. 2023), and similar conclusions have been drawn in other
samples of youth and adults (Rosenberg et al. 2016; Greene et al.
2018; Jiang et al. 2020; Finn and Bandettini 2021).

Here we compare the sample sizes required to detect repro-
ducible brain-behavior associations across imaging modalities
using univariate and multivariate methods. We demonstrate that
by applying multivariate prediction methods that are sensitive to
the complex familial structure of the ABCD study, we can capture
significant patterns of associations between behavior and lower
dimensional representations of structural/functional brain archi-
tecture, reducing the burden of multiple comparisons common
to univariate studies. Multivariate analyses in turn yield larger
effect sizes and more reproducible patterns of brain-behavior
associations, negating the need for thousands of individuals, and
instead showing sufficient power can be reached with well under
one hundred individuals.

Materials and methods
Participants
Participants were drawn from the baseline visit of the ABCD
Study, a longitudinal neuroimaging study that tracks brain and
behavioral development of ∼ 11,880 children starting at 9–10 years
of age. The ABCD Study represents a demographically and ethni-
cally diverse cohort of youth in the United States, and includes
an embedded twin cohort and siblings. Informed consent was
obtained from parents/caretakers and assent was obtained from
the children. More detailed descriptions of recruitment and data
collection within the ABCD sample can be found in (Garavan et al.
2018; Volkow et al. 2018). See Supplementary Tables 1 and 3 for
sample details per imaging modality.

Imaging features predicting general cognition
We used six MRI-derived cortical features from three imaging
modalities to predict general cognitive performance, defined
by the Total Composite Score from the NIH Toolbox Cognition
Battery, as described by Luciana et al. (2018). This cognitive
measure allows for direct comparison with recent studies using
the same outcome variable in ABCD (Sripada et al. 2020; Marek
et al. 2022). A schematic of the imaging measures is shown in
Supplementary Fig. 1, and more details on image processing
are included in previous publications (Casey et al. 2018; Hagler
Jr et al. 2019) and in Supplementary Methods. For measures
derived from sMRI, we focused on cortical surface area (SA)

and cortical thickness (CT). For dMRI, we used measures derived
from restriction spectrum imaging (RSI) (White et al. 2013; Palmer
et al. 2022), including restricted normalized directional diffusion
(RND) within superficial white matter, and restricted normalized
isotropic diffusion (RNI) intracortically. As a supplementary
analysis, we also included fractional anisotropy (FA) within
superficial white matter from diffusion tensor modeling as a
comparison to RND (see Supplementary Material).

For task fMRI, we chose to focus on the emotional n-back (ENb)
task, which taps into working memory and emotional regulation
(Barch et al. 2013; Cohen et al. 2016; Casey et al. 2018). Our
recent work showed that task-based functional connectivity and
parameter estimates from the ENb task are more predictive of
general cognition than the other two tasks within the ABCD
protocol, i.e. the stop signal task and monetary incentive delay
task (Zhao et al. 2023). We applied standard processing of time
series data, assuming a single fixed impulse response function
across task conditions and brain regions. For each participant, we
extracted the task model parameters derived from a general linear
model applied to the time series data, which included the beta
estimates of the task condition regressors (Hagler Jr et al. 2019)
for the contrast between 2-back and 0-back trials, irrespective
of the type of stimulus presented (i.e. emotional face or place).
An average of the task model parameters across two runs was
calculated.

Finally, we also included resting state (RS) fMRI correlation
matrices, which estimate pair-wise correlations of brain activity
at rest across 333 cortical regions from the Gordon parcellation
(Gordon et al. 2016). We also explored prediction performance of
the 13 functional network communities derived from the Gordon
parcellation that are frequently analyzed in the neuroimaging lit-
erature (e.g. default mode, fronto-parietal, dorsal attention, etc.).

Univariate and multivariate subsampling scheme
A repeated hold-out validation scheme with 100 random subsam-
ples was used to estimate the out-of-sample prediction perfor-
mance of each imaging measure on general cognition. Each input
imaging measure included 5124 features (reflecting the number
of vertices), with the exception of the RS data, which comprised a
333 × 333 correlation matrix. For each of the 100 iterations, 90%
of the sample was randomly assigned to the discovery sample
and the remaining 10% to replication. Participants from the same
family were kept within the same training and testing set during
the cross validation.

Univariate associations
Within each training set defined through the subsampling
scheme described above, the mass univariate correlation between
each imaging measure and general cognition were estimated
after regressing out age, sex, scanner ID, and software version,
consistent with previous work (Sripada et al. 2020; Chaarani et al.
2021; Marek et al. 2022; Zhao et al. 2023). Within each iteration,
the vertex with the absolute maximum correlation coefficient
was identified and the outcome was defined as the correlation
coefficient at that same vertex in the test set, and averaged across
100 iterations.

Multivariate prediction
Principal component analysis (PCA) and ridge regression using
the Matlab function fitrlinear were utilized together to predict
the behavioral outcome of the unseen, test-set participants. More
details can be found in Supplementary Methods. Confounding
effects of the same covariates used in univariate analyses (age,
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sex, scanner ID and software version) were removed before out-
of-sample prediction. PCA and ridge regression implemented in
Matlab’s fitrlinear was utilized to predict the behavioral outcome
of the unseen, test-set participants. For each iteration, PCA was
carried out first on the discovery sample, with the same transfor-
mation subsequently applied to the replication set. Normalization
of imaging data before dimensionality reduction was also done
within the cross-validation framework. The shrinkage parameter
value, λ, was set to 1, consistent with previous work (Spisak
et al. 2023). The k value, representing the fraction of princi-
pal components used in prediction, was empirically determined
as follows. First, 15 different values of k spanning 0 to 1 (i.e.
0.001, 0.0016, 0.0027, 0.0044, 0.0072, 0.012, 0.019, 0.032, 0.052,
0.085, 0.14, 0.23, 0.37, 0.61, 1.00) were tested in a first round of
100 random subsamples, split into 90% and 10% discovery and
replication datasets, respectively. The k value that yielded the
optimal prediction performance was then subsequently used in
a second iteration of 100 random subsamples, from which pre-
diction performance was evaluated. The empirically determined
k value per imaging modality and behavioral measure is listed in
Supplementary Table 3.

The correlation between the predicted and the observed behav-
ioral score was used as the metric for out-of-sample behavioral
prediction performance of each imaging measure. The standard
deviation of the correlation estimates took into consideration the
expected 10% overlap in replication datasets given the 90/10 split
utilized in our cross-validation scheme. Specifically, all standard
deviation estimates were scaled up by a factor of ∼ 1.05, based on
the finite population correction 1/√(1−p) (where p is the expected
proportion overlap between replication samples of 0.1) (Bondy and
Zlot 1976). To investigate the performance of smaller discovery
sample sizes, we also applied the same subsampling scheme
over nine different discovery sample sizes spanning from 10 to
5,000 participants in log units (n = 10, 22, 47, 103, 224, 486, 1,057,
2,299, 5,000) for prediction of cognition from imaging features,
while fixing the replication sample size to be n = 1,000 across
discovery sample sizes. For standard deviation estimates in this
case, p reflected 1,000/nmodality. Note, for prediction with the fMRI-
derived features, there were not enough participants left over at
a discovery sample size of n = 5,000 to reach a replication sample
of n = 1,000. Thus, we only estimated out-of-sample performance
up to a discovery sample size of n = 2,299 for these features.

Generation of power curves
Power curves were generated in Matlab, where the replication
sample size needed to achieve a desired level of power was defined
as follows (Hulley et al. 2013) and consistent with recent papers
(Marek et al. 2022; Spisak et al. 2023):

N = [( Zα + Zβ/C]2 + 3

where Zα represents the standard normal score for a given two-
tailed alpha level (set to 0.05 in our work); Zβ represents the
standard normal score for a given beta-value (e.g. 0.2 for 80%
power) and C = arctan(r), where r represents the absolute max-
imum correlation for univariate analyses, taken as the mean
correlation across 100 iterations of out-of-sample prediction for
multivariate analyses.

Prediction performance for other phenotypes
Beyond general cognitive ability, we also investigated the
prediction of 7 other phenotypes (Supplementary Table 2;
Supplementary Fig. 5), including 1 in-scanner behavioral task
(accuracy on 2-back trials within the ENb task), 3 out-of-scanner

cognitive measures (crystallized [comprised of Picture Vocabulary
and Oral Reading tasks] and fluid composite [comprised of Pattern
Comparison Processing Speed, List Sorting Working Memory,
Picture Sequence Memory, Flanker, and Dimensional Change Card
Sort tasks] scores from the NIH Toolbox, and Matrix Reasoning
from the Wechsler Intelligence Test for Children-V (Wechsler
2014) and 3 measures of psychopathology (internalizing and
externalizing symptoms from the Child Behavior Checklist, as
well as a p factor calculated from the Child Behavior Checklist
subscale scores, as presented in Clark et al. (2021)).

Specificity of task fMRI contrast for prediction
To determine whether task functional activation patterns predict-
ing cognition are strengthened when using a task-based contrast
relevant for the predictive variable (e.g. 2- vs 0-back trials as
presented in our main analyses), or can be generalized to any
task-based contrast, we assessed predictive performance of three
additional contrasts from the ENb task on general cognition. This
included two non-working memory related contrasts (e.g. faces vs
places; emotional vs. neutral faces), and one contrast with a lower
working memory load (e.g. 0-back trials only).

Results
Participants
Final sample sizes per modality were: structural MRI (sMRI),
n = 11,174 (47.96% female), mean age in months (std) = 119.04
(7.50); diffusion MRI (dMRI), n = 10,200 (48.44% female), mean
age in months (std) = 119.11 (7.50); task fMRI, n = 5673 (49.29%
female), mean age in months (std) = 119.80 (7.96); and RS fMRI,
n = 5321 (50.4% female), mean age in months (std) = 119.90 (7.53).
Included participants and sample sizes (Supplementary Tables 1
and 3) varied by imaging modality based on recommended
inclusion flags (e.g. includes quality control criteria across
modalities, and behavioral performance cut-offs for task fMRI;
see Supplementary Table 4).

Univariate associations and absolute maximum
correlations between imaging features and
general cognition
Resultant cortical maps depicting brain-behavior univariate cor-
relations are in Fig. 1A and resting state fMRI univariate corre-
lations in Fig. 1B. Generally, correlations between brain structure
and general cognition were weak (max |r| = 0.151, 0.150, 0.122 for
CT, RND, and RNI, respectively), with slightly larger effect sizes
for SA globally with total composite scores (SA max |r| = 0.215).
RS fMRI yielded similar univariate associations as the struc-
tural measures (RS max |r| = 0.16). The strongest associations
between the chosen imaging measures and general cognition
emerged for ENb 2- vs. 0-back task parameter estimates (ENb
max |r| = 0.287). Notable positive associations emerged with dor-
solateral and medial prefrontal cortices and precuneus bilaterally
predicting total composite scores.

Multivariate associations
Results from multivariate prediction, using PCA and ridge regres-
sion in a repeated hold-out validation scheme with 100 random
subsamples, are shown in Fig. 2A. When exploring the predic-
tion performance of the functional correlations between 13 pre-
defined functional networks (Gordon et al. 2016) (e.g. default
mode, dorsal attention, fronto-parietal, etc.), we found very poor
performance across both multivariate (r = 0.008 + 0.043) and uni-
variate (r =−0.005 + 0.040) methods, even with opposite signs in
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Fig. 1. Univariate associations, estimated with Pearson r correlations, between general cognition and: A. Five vertex-wise cortical features; and B. Resting
state correlation data across 333 cortical regions from the Gordon parcellation. In panel B, regions are clustered by resting-state network for visualization
purposes only. Abbreviations: SA, surface area; CT, cortical thickness; RND, restricted directional diffusion within superficial white matter; RNI, restricted
isotropic diffusion intracortically; ENb, emotional N-back task fMRI, reflecting the 2- vs. 0-back contrast. RS, resting state fMRI. Aud, Auditory; CingOp.
Cingulo-Opercular; CingPar. Cingulo-parietal; Def. Default mode; DorAtt. Dorsal attention; FrPar,fronto-parietal; RsTemp. Retrosplenial temporal; Sal.
Salience; SMhand. Sensorimotor hand; SMmouth. Sensorimotor mouth; VenAtt, ventral attention; Vis. Visual.

the correlation between observed and predicted values of gen-
eral cognition. We thus focused on the functional correlations
between the full Gordon parcellation with 333 regions for all anal-
yses using resting-state fMRI as an imaging predictor in this work.

Multivariate prediction was comparable across sMRI features
(SA: r = 0.276 + 0.027 [adjusted standard deviation of the pre-
dicted correlation across folds, taking into consideration 10% over-
lap in test datasets]; CT: r = 0.284 + 0.031) and resting state (RS:
r = 0.286 + 0.142), but still remained weak for dMRI features (RND
in superficial white matter: r = 0.163 + 0.039; RNI intracortically:
r = 0.093 + 0.042). Task fMRI estimates yielded the best prediction
performance, with r = 0.425 + 0.036.

For comparison, univariate correlation values were defined
as the mean maximum absolute correlation value across
iterations with the following outcomes (also shown in Fig. 2B):
SA: r = 0.205 + 0.03; CT: r = 0.139 + 0.033; RND in superficial white
matter: r = 0.127 + 0.034; RNI intracortically: r = 0.083 + 0.036;
ENb: r = 0.242 + 0.04; RS: r = 0.116 + 0.045). As expected, mul-
tivariate analyses yielded stronger effects than univariate
analyses, particularly for sMRI and fMRI measures. Only a
small boost in power was observed for dMRI measures when
using multivariate as compared with univariate methods,
with particularly little improvement for intracortical restricted
diffusion. Results were comparable for RND and FA in superficial
white matter (Supplementary Fig. 2), with a slightly larger boost
with multivariate methods for RND (∼22% increase in prediction
from univariate to multivariate) compared to FA (15% increase).

Power calculations
Power curves for multivariate and univariate outcomes are shown
in Fig. 3A and B, respectively. To achieve 80% power to detect the
measured brain-behavior associations with multivariate analyses,
approximately 100 subjects in the replication sample are required
across sMRI features and RS. Samples of 293 and 905 subjects are
required for RND and RNI from dMRI, respectively. For ENb fMRI
features, only 41 subjects are required. This can be compared to
the higher number of subjects required with univariate associa-
tions; specifically, 185 subjects for surface area features, 404 for
cortical thickness, over 480 for dMRI features, 132 for ENb fMRI

features, and 581 for RS. These out-of-sample replication sample
sizes based on prediction performance follow classic power law
principles as previously reported (Spisak et al. 2023). Plots of sign
error rates by sample size are included in Supplementary Fig. 3.

Prediction performance as a function of
discovery sample size
The above analyses define the replication sample size required
to achieve a desired level of power, given the thousands of indi-
viduals used in the discovery sample. Our final set of analy-
ses explored the out-of-sample prediction performance achieved
over nine different discovery sample sizes spanning from 10 to
5,000 participants in log units (n = 10, 22, 47, 103, 224, 486, 1,057,
2,299, 5,000) for prediction of cognition from imaging features
(Fig. 4), with the same prediction scheme as described above, and
selecting a random subsample of n = 1,000 participants from the
remaining sample to be used as the replication set. Consistent
with the results presented above, a clear advantage for mul-
tivariate as compared to univariate methods was observed for
sMRI (Fig. 4A) and task fMRI features (Fig. 4E). For example, with
∼ 100 subjects in the discovery sample, a prediction performance
of r = 0.34 was obtained for multivariate methods using ENb
fMRI features, corresponding to approximately 66 subjects in the
replication sample required to achieve 80% power. This can be
compared with r = 0.14 with univariate methods (∼398 subjects
required) given 100 subjects in the discovery sample.

Prediction performance for other phenotypes
The out-of-sample prediction performance for seven other mea-
sures (1 in-scanner behavioral measure of 2-back trial accu-
racy, 3 cognitive and 3 measures related to psychopathology;
Supplementary Table 2) beyond the total composite score from
the NIH toolbox are shown in Supplementary Fig. 4, with corre-
sponding replication sample size estimates to detect these effects
with 80% power in Supplementary Fig. 5. In general, imaging
measures (especially fMRI and structural MRI) were more predic-
tive of cognitive variables than psychopathology, although psy-
chopathology measures still benefit from multivariate methods,
especially for prediction from ENb fMRI and surface area for a
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Fig. 2. Comparison of out-of-sample prediction performance from multivariate analyses (panel A) per imaging measure/modality, vs. maximum absolute
correlations derived from univariate analyses (panel B). Error bars reflect standard deviation, adjusted for the 10% sample overlap in test datasets.
Numbers above each bar reflect the sample size required to achieve 80% power to detect effects in a replication sample, given the uncovered r values
from the ABCD discovery sample. Abbreviations: sMRI, structural MRI; dMRI, diffusion MRI; fMRI, functional MRI; SA, surface area; CT, cortical thickness;
RND, restricted directional diffusion within superficial white matter; RNI, restricted isotropic diffusion intracortically; ENb, emotional N-back task fMRI,
reflecting the 2- vs. 0-back contrast; RS, resting state fMRI.

Fig. 3. Power curves displaying replication sample sizes required (x-axis: Log-scale N) to achieve desired level of power (y-axis) based on performance of
each imaging measure in predicting general cognition in replication sample using (A) multivariate vs (B) univariate methods. Abbreviations: SA, surface
area; CT, cortical thickness; RND, restricted directional diffusion within superficial white matter; RNI, restricted isotropic diffusion intracortically; ENb,
emotional N-back task fMRI, reflecting the 2- vs. 0-back contrast; RS, resting state fMRI.

general “p” factor of psychopathology. The highest performance
was achieved with ENb fMRI predicting 2-back trial accuracy with
an r = 0.503, which would require only 29 subjects in a replication
sample to detect with 80% power. This finding is consistent with
our previous report of in-scanner task-relevant behavior having
notably strong associations with fMRI, as compared to an out-of-
scanner cognitive task (Zhao et al. 2023).

Specificity of task fMRI contrast for prediction
Finally, we show that the predictive power of task functional MRI is
linked to the relevance of the chosen ENb contrast for the behav-
ioral outcome (Supplementary Fig. 6). Specifically, we find that
multivariate prediction of general cognition is much lower across
the two non-working memory related contrasts (faces vs places:
r = 0.126 + 0.051; emotional vs neutral faces r = 0.091 + 0.041)

and for using 0-back trials only (r = 0.248 + 0.054), compared to
using the 2- vs 0-back trial contrast as presented throughout the
manuscript (r = 0.425 + 0.036).

Discussion
Our work demonstrates that by leveraging large datasets such
as ABCD, reproducible brain-behavior associations can be mea-
sured with multivariate methods applied to structural and func-
tional MRI in smaller replication samples (e.g. approximately
100 subjects) typical of many existing publications, grants, and
databases. We find that a working-memory functional MRI task
is particularly well-powered to predict general cognition in the
baseline ABCD sample, with only ∼ 41 subjects required to achieve
80% power, and this is further boosted to just 29 subjects when
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Fig. 4. Replication curves showing out-of-sample prediction performance (defined by r on the y-axis) for each of the six imaging measures predicting
general cognition, as a function of sample size in the discovery sample (represented on the x-axis in log-scale units). Replication sample size was
fixed to be n = 1,000 across discovery sample sizes. For prediction with the fMRI-derived features, there were not enough participants left over at a
discovery sample size of n = 5,000 to reach a replication sample of n = 1,000. Thus we only estimated out-of-sample performance up to a discovery
sample size of n = 2,299 for these features. Multivariate metrics are compared to univariate r-values, reflecting the absolute maximum correlation value.
Error bars reflect standard deviation, adjusted for sample overlap in the replication datasets, and are jittered for better visualization. Abbreviations:
sMRI. Structural MRI; dMRI. Diffusion MRI; fMRI. Functional MRI; SA. Surface area; CT. Cortical thickness; RND. restricted directional diffusion within
superficial white matter; RNI. Restricted isotropic diffusion intracortically; ENb. Emotional N-back task fMRI, reflecting the 2- vs. 0-back contrast; RS.
Resting state fMRI.
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predicting a measure of performance on the fMRI task itself.
Finally, we show that with 100 random samplings of just 100
subjects in the discovery sample, prediction can be adequately
powered with just 66 subjects in the replication sample when
using multivariate methods to predict cognition from working
memory task-fMRI data. This work paints a much more opti-
mistic landscape of opportunities offered by non-invasive MRI
techniques across different imaging modalities with even several
dozen subjects, particularly with targeted experimental designs
and improved statistical analysis.

The boost in power afforded by multivariate as compared to
univariate methods in measuring brain-behavior associations is
well-documented (Sripada et al. 2020; Palmer et al. 2021; Zhao
et al. 2021; Marek et al. 2022; Spisak et al. 2023). Associations
between cognitive performance and neuroimaging phenotypes
are particularly amenable to multivariate methods, given the
distributed and sparse nature of these effects across the brain
(Palmer et al. 2021; Zhao et al. 2021). Functional MRI analysis
has long capitalized on observed strong patterns of spatial and
temporal correlations across the brain (Derado et al. 2010). Struc-
tural imaging-derived phenotypes also have a strong covariance
structure between regions (Lerch et al. 2006), likely due to gra-
dients of core neurodevelopmental genetic factors shaping the
cortex early in life (Rakic 1988, 2009; van der Meer et al. 2020;
Makowski et al. 2022). In line with our previous work (Palmer
et al. 2021), multivariate methods capturing distributed brain
structural patterns explained a larger amount of variance in
cognition compared to univariate mapping. We observed weak
univariate effect sizes between structural/diffusion imaging mea-
sures and cognitive measures, with the lowest effects for intracor-
tical restricted diffusion. However, and importantly, these small
effects with sMRI and RS fMRI received substantial boosts with
multivariate modeling. Our results emphasize the importance of
taking into consideration structural and functional brain patterns
as a whole in brain-behavior analyses, rather than analyzing any
single vertex or region-of-interest in isolation. Although results
were weaker overall with measures of psychopathology (e.g. inter-
nalizing and externalizing symptoms, p factor of psychopathol-
ogy), these measures still benefited from a boost in prediction,
particularly when predicted by fMRI and surface area, using mul-
tivariate methods. Generally, we also observed that surface area
and task fMRI performed quite well for other cognitive measures,
once again suggesting that replication sample sizes still only
require on the order of hundreds, not thousands, of individuals
for these imaging measures.

The notably high prediction performance of the ENb task on
general cognition and accuracy on 2-back trials showcases the
power of using a task-evoked functional MRI study design in pre-
dicting task-relevant behavior. Our group has previously shown
that accuracy on 2-back trials was highly correlated with total
composite cognition (Zhao et al. 2023), while performance on
a motor inhibitory task exhibited little or no correlation with
either cognitive measure. This behavioral correlation pattern was
consistent with the greater prediction performance of the ENb
task on total composite cognition, and the weak associations
found with the motor inhibitory task. We also demonstrate that
the choice of task fMRI contrast is an important variable in a
predictive framework, whereby we only saw a boost in predic-
tive performance with the 2- vs 0-back contrast, and not for
other contrasts that do not engage working memory-related pro-
cesses to the same extent. Although structural MRI and resting-
state fMRI can be useful in mapping brain-behavior associa-
tions, our results do emphasize the advantage of using an active

experimental functional brain imaging paradigm to improve pre-
dictive performance of behavior.

Similar to the structural MRI measures, we find that resting
state fMRI predictors also receive a generous boost from multi-
variate prediction methods (r = 0.286 and 94 subjects to detect
with 80% power for general cognition) compared to univariate
(r = 0.116 and 584 subjects needed). Beyond general cognition,
the resting state correlation matrix predicted other cognitive
and psychopathology measures in a manner similar to cortical
thickness predictors. However, our ENb task fMRI predictors still
outperformed resting state fMRI across all behavioral outcomes.
There was also a large degree of variability in resting state fMRI
prediction across iterations, as can be seen by the larger adjusted
standard deviation estimates, particularly for multivariate predic-
tion. We also further emphasize in this work, concordant with
recent work from our group (Zhao et al. 2023), that task fMRI
outperforms resting state fMRI in predicting task-relevant behav-
ior (i.e. accuracy on 2-back trials). Altogether, this suggests that
low-dimensional patterns of resting-state correlations across the
brain are more useful than any single pair-wise correlation on its
own in predicting behavior. However, the absence of an actively
engaging task with resting state fMRI may be contributing to much
more heterogeneous performance metrics across different sub-
samples, compared with the more stable estimates derived from
task fMRI. Finally, we found very poor performance of functional
correlations between pre-defined networks that are frequently
incorporated into neuroimaging analyses, calling into question
the validity and biological interpretation of these networks when
defined in independent samples.

We did not observe large boosts in effect sizes with diffusion
MRI measures when comparing multivariate to univariate asso-
ciations. RND within superficial white matter showed a slight
boost, with 290 participants required in the replication sample
to achieve 80% power in predicting cognition with multivariate
methods, compared with 508 with univariate methods at the same
level of power. Notably, RND, derived from restriction spectrum
imaging modeling, benefited more from multivariate methods for
prediction of general cognition compared to fractional anisotropy
of superficial white matter. The slight improvement in perfor-
mance of RND compared to FA is consistent with several reports
that RSI measures, derived from multi-shell diffusion imaging
acquisitions, may be more sensitive in capturing microstructural
properties especially in the context of neurodevelopment (Palmer
et al. 2022), and neurological and psychiatric disorders (Carper
et al. 2016; Loi et al. 2016; Reas et al. 2018). For restricted isotropic
diffusion intracortically, both methods still required over 1000
individuals. Although the current manuscript focused on peri-
cortical associations (i.e. in and around the cortex), it cannot be
ruled out that diffusion measures of other brain regions, that
may be more reliably measured with MRI (e.g. deeper white
matter tracts, subcortical structures), would still benefit from
multivariate analyses. Future work extending multivariate anal-
yses to voxel-wise prediction of cognitive and other behavioral
phenotypes hypothesized to be more strongly associated with
microstructure would be fruitful in testing this hypothesis.

The conclusion reaching many headlines that thousands of
individuals are required to measure brain-behavior associations
with structural and functional MRI (Marek et al. 2022) is based on
the assumption that researchers are working within a univariate
framework and sampling across a broad array of outcomes. This
conclusion was also based largely on the poor performance of
resting-state functional connectivity to predict cognition and
other behaviors, a method that does not orient participants’
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attention to any particular task or stimulus, and in turn, may
not be the best candidate for predicting measures of cognition
(Rosenberg and Finn 2022; Zhao et al. 2023). This “brain-wide
association study” approach of sampling across a large array
of behavioral outcomes with mass univariate analyses bears
some resemblance to methods used in genome-wide association
studies (GWAS). However, the application of multivariate methods
helps ease the burden of multiple comparison corrections that
mass univariate methods typically require. Instead, our findings
highlight a different use case of a GWAS-like framework, where
we can leverage a larger discovery sample, such as the one
afforded by the ABCD Study, to define multivariate brain patterns
associated with behavioral measures of interest, and in turn,
inform findings in smaller samples. In this vein, our approach
parallels that of the application of consortia-led GWAS to the
derivation of polygenic risk scores in independent datasets, where
large samples can help us obtain more precise predictive weights
for out-of-sample prediction.

However, large “ABCD-like” samples are not always necessary
if working with strong brain-behavior relationships to begin with.
Here we highlight analyses testing out-of-sample prediction per-
formance given different discovery sample sizes, showing that
even with 100 random samplings of 50 subjects in the discovery
sample, only ∼ 100 subjects are required in replication to pre-
dict general cognition from task fMRI data using multivariate
methods. It is important to note, however, that there is still
large variability in prediction estimates across 100 iterations at
smaller discovery samples. Additionally, integration of regulariza-
tion methods in our multivariate prediction framework may have
contributed to the well-powered results even in smaller discovery
samples by reducing the chances of overfitting, leading to a more
optimal model. This further emphasizes the fact that with the
correct methodological choices, thousands of individuals are not
always required in either discovery or replication samples in pur-
suit of meaningful and reproducible brain-behavior associations.
This is particularly evident when predicting relevant in-scanner
behavior (i.e. 2-back accuracy) from task activation during the
ENb task, where only 29 replication subjects were required to
assess this relationship with 80% power. Larger samples, however,
are required for other weaker brain-behavior associations, for
instance with internalizing and externalizing measures of psy-
chopathology in ABCD.

We have previously shown in our own work that a notable
portion of the variance attributed to imaging measures in pre-
dicting cognition is shared with sociodemographic variables (Zhao
et al. 2023), reflecting the complex interplay between socioeco-
nomic resources and other environmental factors, brain devel-
opment and behavior. Others have also shown the importance
of socioeconomic resources on brain-behavior relationships in
models integrating both structural (Thomas and Coecke 2023;
Farah 2017; Brito and Noble 2014; Raizada and Kishiyama 2010)
and functional (Tomalski et al. 2013; Tomasi and Volkow 2023;
Demir et al. 2015) imaging modalities. Sociodemographic factors
capture a complex array of variables that differentially and jointly
influence brain structure. For instance, in a large developmental
sample of youth between the ages of 3 and 20 years, parental
education and family income were non-linearly associated with
cortical surface area, with most pronounced effects at lower
income levels and in heteromodal brain regions, such as frontal
and temporal areas important for language and memory (Noble
et al. 2015). Socioeconomic resources are also hypothesized to
modulate neurodevelopmental trajectories (Thomas and Coecke
2023), where evidence has suggested altered development of gray

matter (Hanson et al. 2013), cortical thickness (Piccolo et al. 2016)
and myelin-based markers (Ziegler et al. 2020) with age as a
function of socioeconomic factors. These neuroanatomical and
functional relationships with variables such as poverty levels,
household income, and parental education may be an integrated
result of the impact of socioeconomic resources on cognition in
youth, reflected through both neural and behavioral mechanisms
(Ursache and Noble 2016). We acknowledge that socioeconomic
status is a highly complex, multi-dimensional construct that
would require the inclusion of a larger array of environmental,
community-based and developmental measurements to better
understand its influence on cognition, which could form the basis
for future work using the ABCD Study dataset.

The included age range of participants in this work (ages
9–11 years) marks a time of dynamic development with respect
to both neurocognition and brain maturation, captured in part by
our MRI-based cortical measures. Alterations in synaptic density
within the cortical mantle are intricately linked with cognitive
development (Rakic et al. 1994; Petanjek et al. 2023; Petanjek
et al. 2011). Sex differences in cortical trajectories with age have
also been shown putatively linked to differences in synaptic and
dendritic architecture (Duerden et al. 2019). Although we only
focused on a single timepoint and pooled across the sexes to
remain consistent with other recent work in this domain, it will be
important to integrate incoming longitudinal data from the ABCD
Study, to elucidate if any imaging modalities or brain patterns may
have more predictive power of cognition in a neurodevelopmental
context. Sex-dependent maturational patterns may also yield
important clues for cognitive performance and neuropsychiatric
measures that show sex differentiation.

We recognize that although effects were strongest with task
fMRI compared to other imaging modalities, the included sam-
ple of 5,673 individuals may not generalize to the full sociode-
mographic spread of the ABCD baseline sample. Similarly, our
sample with recommended resting state fMRI data for inclu-
sion (n = 5,321) represented the smallest sample of all of the
imaging modalities. We aimed to stay as consistent as possible
with other recent work testing the reproducibility and power of
brain-behavior associations with neuroimaging, and restricted
our covariates to age, sex, and scanner type. However, future
investigations would benefit from a deeper understanding of
the impact of sociodemographic and environmental factors in
behavioral prediction paradigms, as discussed above. The brain-
behavior associations reported here may not generalize to older
adolescents or adults, given the age range of the included ABCD
baseline sample. Future work is encouraged to integrate longitudi-
nal data from ABCD to boost effect sizes of brain-behavior associ-
ations (Kang et al. 2023), as well as integrate independent datasets
from different developmental stages for broader generalization
and external validation. Given the relatively weaker predictive
power of resting-state fMRI compared to task fMRI for cognition
shown both in this work and others (Zhao et al. 2021; Marek et al.
2022), there has been increased dialogue surrounding a potential
paradigm shift from resting state to task-based functional MRI
measures (Greene et al. 2018). Mental health-related phenotypes
are of particular interest in adolescent samples, but show weaker
effects with brain structure and function in ABCD Study data
compared to general cognition. Future directions would benefit
from a focus on modeling of behavioral phenotypes to improve
precision behavioral phenotyping (Tiego et al. 2023). It will also
be important to integrate independent datasets for external val-
idation. Finally, recommendations have been made to steer away
from single modeling approaches and understand how various
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models (e.g. mixture modeling) (Greene et al. 2022) could better
capture the complex relationships between brain and behavior
reflected in large diverse datasets such as ABCD.

We show that reproducible brain-behavior associations can
be obtained with dozens, rather than thousands, of individuals,
helping to quell growing concerns of the demise of reproducible
results with neuroimaging. Our findings help shed clarity on the
utility of neuroimaging studies, particularly for understanding
normative and aberrant neurodevelopment, and present a more
hopeful view for future funding priorities of smaller neuroimaging
studies and policy decisions.
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