
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Towards solving computer vision problems: datasets, labels, algorithms, and applications

Permalink
https://escholarship.org/uc/item/5cg0d9rm

Author
Kwak, Iljung Samuel

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5cg0d9rm
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Towards solving computer vision problems: datasets, labels, algorithms, and applications

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Iljung Samuel Kwak

Committee in charge:

Professor David Kriegman, Chair
Professor Serge Belongie
Professor Julian McAuley
Professor Mohan Trivedi
Professor Zhuowen Tu

2019

Copyright

Iljung Samuel Kwak, 2019

All rights reserved.

The Dissertation of Iljung Samuel Kwak is approved, and it is acceptable in

quality and form for publication on microfilm and electronically:

Chair

University of California San Diego

2019

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . ix

Acknowledgements . x

Vita . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1

Chapter 2 Urban Tribe Classification . 3
2.1 Introduction . 3
2.2 Related Work . 5
2.3 Group description . 8

2.3.1 Person detection and description . 8
2.3.2 Global group descriptors . 9

2.4 Group classification . 10
2.5 Experiments and Results . 12

2.5.1 Urban Tribes dataset . 12
2.5.2 Social group recognition experiments . 13

2.6 Conclusions and Future Work . 17
2.7 Acknowledgments . 17

Chapter 3 Collecting & Using Human Judgements of Similarity 18
3.1 Introduction . 18
3.2 Related Work . 22
3.3 Cost Effective Hits . 23

3.3.1 Synthetic Experiments . 24
3.3.2 Human Experiments . 26
3.3.3 Results . 29
3.3.4 Guidelines and conclusion . 32

3.4 “SNE-and-Crowd-Kernel” (SNaCK) embeddings . 33
3.4.1 Formulation . 33
3.4.2 SNaCK example: MNIST . 35

3.5 Experiments . 35
3.5.1 Incrementally labeling CUB-200-2011 . 36
3.5.2 Experiments on Yummly-10k . 40

iv

3.5.3 Interactively discovering the structure of pictographic character symbols 42
3.6 Conclusion . 43
3.7 Acknowledgments . 43

Chapter 4 Action Start Detection . 52
4.1 Introduction . 52
4.2 Related Work . 54
4.3 Problem Formulation . 55

4.3.1 Matching Loss . 56
4.3.2 Wasserstein/EMD Loss . 58
4.3.3 Per-Frame Loss . 59
4.3.4 Combined Loss . 59

4.4 Visualization . 59
4.5 Datasets . 60

4.5.1 Mouse Reach Dataset . 60
4.6 Experiments . 61

4.6.1 Mouse Experiments . 61
4.6.2 THUMOS’14 Experiments . 63
4.6.3 Implementation Details . 64
4.6.4 Mouse Reach Results . 66
4.6.5 THUMOS’14 Results . 68

4.7 Discussion . 69
4.8 Acknowledgments . 69

Chapter 5 Conclusion . 83

Bibliography . 85

v

LIST OF FIGURES

Figure 2.1. Social groups influence the appearance of their members. 4

Figure 2.2. Group image categorization. The approach consists of: (a) people detection,
(b) local and global descriptor computation, (c) group modeling and (d)
classification. 6

Figure 2.3. Person part detection examples. 8

Figure 2.4. Examples of social groups in the Urban Tribes dataset. The images show a
wide range of inter-class and intra-class variability. More details can be
seen at the dataset website. 12

Figure 2.5. Confusion matrix for classification results obtained with (a) BoP30k and
(b) SV M8, using 80% of the data for training. The rows show results in
alphabetical order of the labels (detailed in Table 2.4, from top to bottom.
To enhance contrast the color scale is set to [0,0.6]. 16

Figure 2.6. Examples of classification results. These images have been classified as
hipsters in all their tests. The two left images are correct, but the label for
the right two images should be goth. 16

Figure 3.1. Example questions of the form “Is object i more similar to j or object k?”. 21

Figure 3.2. Random triplets have a different distribution than grid triplets. 24

Figure 3.3. When the embedding quality is viewed as the number of triplets gathered
(top two graphs), it appears that sampling random triplets one at a time
yields a better embedding. 25

Figure 3.4. Example images from the dataset. The images in the dataset span a wide
range of foods and imaging conditions. The dataset as well as the collected
triplets will be made available upon publication. 27

Figure 3.5. The median time that it takes a human to answer one grid is shown. The
time per each task increases with a higher grid size (more time spent
looking at the results) and with a higher required number of near answers
(which means more clicks per task). Error bars are 25 and 75-percentile. . 28

Figure 3.6. Results of the human experiments on the food dataset. Left graph: Triplet
generalization error when viewed with respect to the total number of triplets.
Right: The same metric when viewed with respect to the total cost (to the
researcher) of constructing each embedding. 29

Figure 3.7. Example cuisine embedding created with grid or random triplets. 45

vi

Figure 3.8. The SNaCK embeddings capture human expertise with the help of machine
similarity kernels. 46

Figure 3.9. Overview of the SNE-and-Crowd-Kernel (“SNaCK”) embedding method. 47

Figure 3.10. A simple MNIST example to illustrate the advantages of SNaCK’s formu-
lation. 47

Figure 3.11. Experiment overview on CUB-200. See text for details. 48

Figure 3.12. Incremental labeling accuracy of several semi-supervised methods. X axis:
how many labels are revealed to each algorithm. Y axis: Dataset labeling
accuracy. Error bars show standard error of the mean (σ/

√
n) across five

runs. With 14 clusters, chance is ≈ 0.071. See Sec. 3.5.1 for details. 48

Figure 3.13. Embedding examples on CUB-200 Woodpeckers and Vireos created with
“SNaCK”. 49

Figure 3.14. Classification accuracy of a linear SVM classifier trained on labels discov-
ered by different methods. 49

Figure 3.15. Example SNaCK embedding on Yummly-10k.. 50

Figure 3.16. Experiment Overview for Yummly-10k. See text for details. 50

Figure 3.17. Increasing the number of crowdsourced triplet constraints allows all meth-
ods to improve the embedding quality. 50

Figure 3.18. An example GUI used to interactively explore and refine concept embed-
dings. 51

Figure 4.1. Overview of detecting the start of actions on mouse behavior videos. 70

Figure 4.2. An example screen shot of the web based network output viewer for videos. 71

Figure 4.3. Examples of labeled action starts from THUMOS’14 showing ambiguity
in the annotations. 72

Figure 4.4. The complete model consists of a fully connected layer, ReLU, Batch
Normalization, two Bi-directional LSTM layers, a fully connected layer
then a sigmoid activation layer. The LSTMs each have 256 hidden units. . 73

Figure 4.5. Example frames of behaviors the Mouse Reach Dataset. 74

Figure 4.6. More example frames of behaviors the Mouse Reach Dataset. 75

vii

Figure 4.7. Distribution of prediction distances from the ground truth location for the
Lift behavior . 76

Figure 4.8. Distribution of prediction distances from the ground truth location for the
Hand-open behavior . 77

Figure 4.9. Distribution of prediction distances from the ground truth location for the
Grab behavior . 78

Figure 4.10. Distribution of prediction distances from the ground truth location for the
Supinate behavior . 79

Figure 4.11. Distribution of prediction distances from the ground truth location for the
At-mouth behavior . 80

Figure 4.12. Distribution of prediction distances from the ground truth location for the
Chew behavior . 81

Figure 4.13. Varying τ influences the F1-Score for each behavior differently. 82

viii

LIST OF TABLES

Table 2.1. Individual descriptors. They are computed within the bounding box of each
part. 9

Table 2.2. Low level group descriptors. These are computed over all image pixels and
comprise the scene general information, such as lighting and color. 9

Table 2.3. High level group descriptors. These represent higher level semantic infor-
mation and are based on the distribution and pose of the detected persons in
the group. 9

Table 2.4. Summary of Urban Tribes dataset. 13

Table 2.5. Average accuracy for the recognition of all classes using different approaches. 15

Table 3.1. Results of the actual Mechanical Turk experiments. Workers are asked to
choose the k most similar objects from a grid of n images. $1 worth of
questions is invested, giving 100 grid selections. When n and k are large,
each answer yields more triplets. 30

Table 4.1. Number of labelled frames with the Mouse Reach Dataset. 62

Table 4.2. The Mouse Reach Dataset contains a total of 1165 videos of mice perform-
ing the reaching task. 62

Table 4.3. F1 scores for each loss, feature type, and behavior. Matching and Wasser-
stein losses outperform the per-frame MSE . 62

Table 4.4. p-mAP at depth Rec=1 shows the performance of the proposed loss functions
on THUMOS’14 at different offset thresholds. The *+FWD networks were
trained as forward only LSTM’s, whereas the *+BIDIR networks were
bi-directional LSTM’s. 66

Table 4.5. Average p-mAP at different depths on the THUMOS’14 dataset. 67

Table 4.6. For each loss and feature type, the F-score, precision and recall are re-
ported. The Matching and Wasserstein Losses have an improved F-score
and precision over MSE, implying fewer false positives. 68

ix

ACKNOWLEDGEMENTS

Throughout my graduate career, I have been fortunate enough to have constant support

from those around me. I’d like to thank my Ph.D. advisor, David Kriegman, for being a

patient and willing mentor. I am especially grateful for all our meetings regardless of time

zone differences. I also thank Serge Belongie for his guidance and showing me his enthusiasm

towards research. In addition, I thank Serge for allowing me to be a part of his research group,

SE(3), during a complex transition period. I thank Kristin Branson for also providing me with

mentorship and allowing me to finish my graduate research as a part of her lab.

Next, I’d like to thank my many co-authors and colleagues. In particular, Ana Murillo

was my first mentor on my first graduate research project. We spent many strange, but productive,

hours working together while she was in Spain and I in San Diego. To Kimberly Wilber, I will

always cherish our work together and remember your awe-inspiring spirit towards research and

life. Finally, I thank all the members of all the research labs I have been a part of. Although at

times I felt lost and distracted, every lab welcomed me as a part of their own. For Kai, Steve,

and Oscar for being wonderful senior members of the lab when I first started. To Catherine,

Tsung-Yi, and Zak, thanks for being awesome to hang out and discuss research with. To Alice,

Roian, and Nakul, thanks for being patient with me and helping with my move to Virginia. And

to my friends for being there and making the journey more fun.

Finally, thanks to my family. My parents and brother have been, and continue to be,

supportive in all my endeavors. Although I forget to call and keep in touch, they always forgive

and contact me. To my brother, Paul, I thank you for always helping me out whenever you were

able to. I joke about how you changed professions into a computer related field. But in reality, I

couldnt be happier that you found a profession you enjoy and it is a field that we share.

The work proposed in the first chapter was supported by ONR MURI Grant #N00014-

08-1-0638 and by projects DPI2012-31781, DPI2012-32100 and DGA T04-FSE. The work

described in Chapter 2 was partially supported by an NSF Graduate Research Fellowship award

(NSF DGE-1144153), a Google Focused Research award, and AOL-Program for Connected

x

Experiences. We also wish to thank Laurens van der Maaten and Andreas Veit for insightful

discussions.

The work in this dissertation is based on the following publications.

Chapter 2 is based on “From Bikers to Surfers: Visual Recognition of Urban Tribes,” I. S.

Kwak, A. C. Murillo, P. N. Belhumeur, D. Kriegman, and S. Belongie, British Machine Vision

Conference (BMVC) 2013 [KMB+13]. The dissertation author was the primary investigator.

Chapter 3 is based on the following papers: “Cost-effective hits for relative similarity

comparisons.” M. J. Wilber, I. S. Kwak, and Serge J. Belongie, Second AAAI conference on

human computation and crowdsourcing (HCOMP) 2014 [WKB14a]. and “Learning concept

embeddings with combined human-machine expertise,” M. J. Wilber, I. S. Kwak, D. Kriegman,

and S. Belongie, International Conference on Computer Vision (ICCV) 2015 [WKKB15]. The

dissertation author was one of two contributing authors of this paper in both algorithm and

manuscript development.

Chapter 4 is based on “Detecting the Starting Frame of Actions in Video,” I. S. Kwak,

D. Kriegman, K. Branson and is currently being prepared for submission for publication of the

material. The dissertation author was the primary investigator and author of this paper.

xi

VITA

2005 Bachelor of Science, Carnegie Mellon Universisty

2015 M.S. in Computer Science, University of California, San Diego

2019 Ph.D. in Computer Science, University of California, San Diego

PUBLICATIONS

I. S. Kwak, D. Kriegman, K. Branson, “Detecting the Starting Frame of Actions in Video.”
Under review.
Wilber, M., Kwak, I. S., Kriegman, D., and Belongie, S. “Learning concept embeddings with
combined human-machine expertise.” In Proceedings of the IEEE International Conference on
Computer Vision. 2015.
Wilber, Michael J., Iljung S. Kwak, and Serge J. Belongie. “Cost-effective hits for relative
similarity comparisons.” In Second AAAI conference on human computation and crowdsourcing.
2014.
Cao, C., Kwak, I. S., Belongie, S., Kriegman, D., and Ai, H. (2014, July). “Adaptive ranking of
facial attractiveness.” In IEEE International Conference on Multimedia and Expo (ICME), 2014.
E. Christiansen, I. S. Kwak, S. Belongie, and D. Kriegman. “Face box shape and verification.”
In International Symposium on Visual Computing (ISVC), 2013.
I. S. Kwak, A. C. Murillo, P. N. Belhumeur, D. Kriegman, and S. Belongie. “From Bikers to
Surfers: Visual Recognition of Urban Tribes.” In British Machine Vision Conference (BMVC).
2013.
A. C. Murillo, I. S. Kwak, L. Bourdev, D. Kriegman, and S. Belongie. “Urban tribes: Analyzing
group photos from a social perspective.” In Computer Vision and Pattern Recognition Workshops
(CVPR Workshop). 2012.

xii

ABSTRACT OF THE DISSERTATION

Towards solving computer vision problems: datasets, labels, algorithms, and applications

by

Iljung Samuel Kwak

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor David Kriegman, Chair

The solution to a supervised computer vision problem consists of an application, algo-

rithm, input data, and a set of human generated labels. Solving these kinds of tasks involves

collecting large quantities of data, collecting appropriate labels, and developing machine vision

algorithms tailored to the application. Progress on these problems has often benefited from

large scale datasets with high fidelity labels. Successful algorithms display a synergy between

application goals and the size and quality of the dataset. This thesis presents work highlighting

the importance of each component of a supervised vision task.

First, the problem of automatically classifying groups of people into social categories

is introduced. This problem is called Urban Tribe Classification. To tackle this problem, each

xiii

individual and the entire group of individuals are modeled. Since this was a newly introduced

computer vision problem, a dataset for this task was created. On this dataset, the combined

representation of group and individuals outperforms using only the person representations. This

model showed promising results for automatic subculture classification.

Second, the problem of creating perceptual embeddings based on human similarity

judgements is tackled. This work focuses on triplet similarity comparisons of the form “Is object

i more similar to j or k?”, which have been useful for computer vision and machine learning

applications. Unfortunately, triplet similarity comparisons, like many human labeling efforts,

can be prohibitively expensive. This work proposes two techniques for dealing with this obstacle.

First, an alternative display for collecting triplets is designed. This display shows a probe image

and a grid of query images, allowing the user to collect multiple triplets simultaneously. The

display is shown to reduce the cost and time of triplet collection. In addition, higher quality

embeddings are created with the improved triplet collection UI. A 10,000-food item dataset

of human taste similarity was created using this UI. Second, “SNaCK,” a low-dimensional

perceptual embedding algorithm that combines human expertise with automatic machine kernels,

is introduced. Both parts are complementary: human insight can capture relationships that are

not apparent from the object’s visual similarity and the machine can help relieve the human from

having to exhaustively specify many constraints.

Finally, the precise localization of key frames of an action is explored. This work focuses

on detecting the exact starting frame of a behavior, an important task for neuroscience research.

To address this problem, a loss designed to penalize extra and missed action start detections

over small misalignments. Recurrent neural networks (RNN) are trained to optimize this loss.

The model is shown to reduce the number of false positives, an important criteria defined by the

neuroscientist. The performance of the model is evaluated on a new dataset, the Mouse Reach

Dataset, a large, annotated video dataset of mice performing a sequence of actions. The dataset

was created for neuroscience research. On this dataset, the proposed model outperforms related

approaches and baseline methods using an unstructured loss.

xiv

Chapter 1

Introduction

As technology improves, the amount of data that can be created and collected greatly

increases. Because a large portion of this data is in the form of images and videos, computer

vision is uniquely positioned to help catalog and explore this data. Automatic analysis of visual

data provides an opportunity for collaboration with many fields. In addition to improved data

collection, advancements in technology have allowed more powerful algorithms to be created.

Supervised vision has benefited from these changes in technology.

Through social media, personal photo albums are often shared publicly online. Within

these personal albums, a common type of photo is the group photo. Where a group of friends

have their picture taken together in order to remember a shared moment. The work in Chapter

2 focuses on classifying these group photos into social categories. Understanding the social

categories that individuals ascribe to can help automated systems suggest similar interests for

those individuals. This problem is called Urban Tribe classification, and a new dataset for the

task is provided.

As more data is created and collected, it is not always clear what the best annotations

for new datasets are. Some datasets are not categorical by nature and sometimes the goal of

the dataset is to explore and discover categories. For these tasks, triplet comparisons have

been a useful type of label. Unfortunately, large numbers of triplets need to be collected to be

useful. The third chapter suggests two techniques for improving triplet collection. First, HCI

1

improvements for collecting triplets and their impact is explored. Second, human collected

triplets are augmented with learned representations.

Precisely detecting the start of actions in video has many useful applications. Within

neuroscience research, being able to pinpoint the exact frame a behavior begins can help

researchers correlate visible actions with neural recordings. The work in chapter 4 describes an

algorithm for detecting the start of behaviors and introduce a dataset for action start detection.

This dataset was labeled by experts in neuroscience and is better suited for precise detection

of events than existing action detection datasets. A structured loss for classifying single video

frames as the start of actions was designed. The proposed loss is competitive on the existing

dataset as well as the collected dataset. Accurately detecting action starts will be extremely

useful many vision applications and in particular for neuroscience research.

The supervised vision pipeline involves data, labels, algorithms, and applications. The

work in this thesis explores this pipeline. The work in chapter 2 designed a new dataset for a

new application. Chapter 3 explores improving interactions between researchers and labelers.

Finally, chapter 4 explores the entire pipeline by designing algorithms and constructing a dataset

more specific to the task.

2

Chapter 2

Urban Tribe Classification

2.1 Introduction

The popularity of social media has created a massive influx of images. For some social

media platforms, such as Snapchat and Instagram, uploading and sharing images is a core part

of the user’s experience. Facebook alone receives over 300 million photos a day[Arm]. The

abundance of social media presents a compelling opportunity to analyze the social identities of

individuals captured within images. This points to an excellent opportunity for computer vision to

interact with other fields, including marketing strategies and psychological sociology [CBC+10,

JGC+10].

At the time of publication of the original paper described in this chapter, there had been

major strides in image semantic content analysis (in face, object, scene, and clothing recognition),

but algorithms at that time failed to fully capture information from groups of individuals within

images. For example in Fig. 2.1, visual searches of groups of people often provided uninspiring

results. Rather than matching personal style or social identity, the search provided images with

similar global image statistics. The mainstream media had noticed this deficiency in some recent

discussions [Car12] and wondered when vision algorithms will catch up to their expectations.

Since the publication of the original paper, semantic analysis of image content has

improved greatly. In particular, fashion and group photo analysis have become large fields

of research. In the fashion domain, researchers have created algorithms for generating outfit

3

recommendations from a single article of clothing [MTSVDH15, HWJD17] and retrieval of

clothing similar to a query article of clothing [LLQ+16, HKHL+15]. Similarly, in group photo

analysis, algorithms for detecting familial relationships [DCSH15] or classifying the type of

gathering [SGCC13] have been created. This chapter’s work represents early research in both

group and style analysis.

!"#$%%"&'()$&*+
,(*"'+$&+#(-".$/0+

!!!"

1$-"&)(2+3(-".$/0+#$%&'"()*+%"

,-./0(1+"

233%44.&(%4"

56%1/47"8$4(37"9&*6%-"

:(;%&" !!!"

<$&=%&" !!!"

,.$1/&'" !!!"
5>*)?-%"@)*+%"<%*&30"A%4$-/4"

B&(%1C4"

D%4(&%C"<%*&30"A%4$-/4"

Figure 2.1. The social groups influence the appearance of their members. This work leverages
this intuition to classify images of groups of people into social categories. This can improve
recommendation systems and user experience with social media, and image search engines can
take advantage of this classification and provide more meaningful search results.

In 1985 Michel Maffesoli described urban tribes [Maf96] as a group of people who have

similar visual appearances, personal style, and ideals. Among tribe members, similar personal

styles often manifest as common accessories such as leather jackets or surfboards. The scene

context also provides useful information: surfers are more likely to be photographed outdoors by

the sea, whereas bikers may congregate at biker bars or be photographed by their bikes on the

road. Though not as discriminative, the overall demeanor between tribes can vary as well, such

as the laid back smiling surfers versus the frowning dark subculture members. The visual cues

shared by members of these tribes provide the basis for this work; members from the same urban

tribe are expected to look more similar than members of different tribes, and they can be easily

identified by people just from visual information.

Automatic recognition of these urban tribe categories could provide interesting benefits

4

and applications. More relevant image searches can be conducted; more relevant advertisements

can enhance the web experience of both businesses and consumers; social networks can provide

better recommendations. Urban tribe classification can also improve surveillance of social

demographics. Unfortunately, this categorization problem is difficult because of the ambiguous

nature of social categories and the high intraclass variance. Social categories can evolve and

fracture into separate groups; individuals may exhibit features of multiple urban tribes or certain

individuals may not present a visually salient style at all.

This work highlights the problem of image group categorization from a social perspective,

and contributes towards its solution in several ways. Rather than approaching this problem by

classifying isolated individuals (as most fashion/style analysis works do), this work calculates

meaningful group features and models. Following this idea, a novel recognition pipeline is

presented (see Fig. 2.2) and different modeling approaches are evaluated, following common

frameworks used in other recognition tasks. Finally, a dataset, the Urban Tribes dataset, is

provided. The Urban Tribes dataset has around 100 labeled images per class, from 11 differ-

ent classes. This dataset is publicly available in order to facilitate further research on social

categorization of group pictures1.

The work described in this chapter is based on “From Bikers to Surfers: Visual Recogni-

tion of Urban Tribes,” I. S. Kwak, A. C. Murillo, P. N. Belhumeur, D. Kriegman, and S. Belongie,

British Machine Vision Conference (BMVC) 2013 [KMB+13].

2.2 Related Work

The work in this chapter attempts to recognize the content of an image from a social

perspective, which is a growing area of study [VPB09]. Ding and Yilmaz [DY11] show inter-

esting results for the subjective interpretation of action analysis, proposing how to discriminate

positive and negative social relations of individuals in a video sequence. [SWHY11, SLF13]

present promising approaches for predicting the occupation of a subject given that individual’s
1http://vision.ucsd.edu/content/urban-tribes

5

Figure 2.2. Group image categorization. The approach consists of: (a) people detection, (b)
local and global descriptor computation, (c) group modeling and (d) classification.

clothing and a rough scene context description. Lee and Grauman [LG11b] present a system for

discovering unfamiliar faces in photo albums by leveraging the “social context” of co-occuring

people. Closer to the goals and applications of the work in this chapter, Yu et al.[YJHL11]

analyze a user’s photo album and the associated metadata in order to suggest possible social

groups of interest, e.g., flickr or Facebook groups about flowers or animals. This is closely related

to the goal of analyzing social media, however the approach described in this chapter deals only

with visual information and focuses on the analysis of images with groups of people. Finally,

[WC15] has improved the classification results introduced in this chapter by using powerful

learned feature representations. A common element among most these works is the need for

both global image statistics as well as more semantic individual level attributes.

An important aspect of the work in this chapter involves analyzing a group of individuals

within an image. Group photos have been applied to a wide range of applications since the

publication of the original paper. The group structure or locations of faces has been used to detect

social relationships [SSF17, DCSH15, SGCC13, GC09], such as family members or sports

teammates. Group analysis has also been shown to improve individual identification [MKBK11].

Dhall et al. [DJRG12] highlights the importance of group analysis as a whole, and use it to better

understand the mood of the group of people in an image. In most of these works, the target goal

is to automatically analyze group photos, a common part of personal photo albums, from a social

6

context.

Automatic fashion analysis has become a well studied topic [KYBB14, HWJD17,

LLQ+16, AHSG17, MTSVDH15, VBK17]. The work in this chapter is most similar to Hipster

Wars [KYBB14], where the authors learn the styles of a variety of social classes. Hipster Wars

focused on images of individuals and explore both discovery and prediction of fashion styles

for social classes. In contrast the work in this chapter focuses on classifying group images

into social categories. In addition to style classification, other researchers have focused on

analyzing the quality of fashion styles [MTSVDH15, AHSG17, HWJD17]. For example, the

authors of [MTSVDH15, HWJD17] can generate outfit recommendations based on an article of

clothing.

Often attributes of individuals are used or predicted by socially motivated vision algo-

rithms. Semantic descriptions of clothing or faces are predicted by many algorithms [AHSG17,

PG11, LLWT15, LLQ+16], and their use has shown to improve many tasks, such as social group

and fashion analysis [SSF17, HWJD17]. In particular, Sun et al. [SSF17] argues for a stronger

connection with social psychology. Semantic attributes help with interpretability and can be

designed with the social domain theory. Han et al. [HWJD17] also argue for the importance of

attributes for clothing retrieval. Fashion recommendation systems may need to be able to use

either image examples or text based input

The work in this chapter takes advantage of techniques for individual person detection and

description. At the time, one of the leading methods is that of Bourdev and Malik [BM09], which

is based on the detection of person parts named poselets. Its effectiveness has been demonstrated

for human parsing [WTL11] and recognizing semantic attributes such as hair style or clothing

type [BMM11]. Clothing recognition itself has become a growing field [LSL+12, CGG12]. One

of these works, [YKOB12], mentions the interesting link between visual appearance and social

identity.

7

Person

Neck

Hat

Arm

Face
Head

Torso

Eye
mouth

Correctly rejected face
and person detections

Figure 2.3. Person part detection. Each person hypothesis can have up to six parts and fiducial
points for eyes and mouth. The part descriptors are computed within the bounding boxes of these
regions. The examples on the left and middle show a close up of the detections. The example
on the right presents two face and two person detections that were correctly rejected thanks to
the hypothesis construction process proposed (faces must be aligned with a person hypothesis;
person bounding box sizes can’t have large deviations).

2.3 Group description

The group modeling involves detecting individuals, extracting individual and group

features and building the group representation, as key steps for the classification detailed later.

2.3.1 Person detection and description

Individuals are detected within the image and each individual is described as a combi-

nation of parts. Similar to [MKB+12], individuals are detected by a combination of poselet

based person detection [BM09] and an open source face detector [ZR12]. A detected person is

composed of six part bounding boxes: face, head, upper head (hat), neck, torso and arms. Both

face and person detections are merged into a single person hypotheses whenever the overlap

of the face and body are above a threshold. This simple step filters out many detected people

that are in the background, rather than the main scene, as shown in the example in Fig. 2.3.

Thus, an image containing p persons is represented by a set of p hypotheses {h1,h2, . . . ,hp},

and each person hypothesis is composed of a set of parts (not all parts need to be detected

to build a hypothesis, as the torso or the arms may not appear in the image). Therefore each

individual hi is represented by a set with the corresponding parts descriptor vector dpart name:

hi = {dhead, d f ace, dhat , dneck, dtorso, darms}.

8

The descriptor set is detailed in Table 2.1, which is computed for each part. This set is

built on the descriptor set used in [MKB+12].

Table 2.1. Individual descriptors. They are computed within the bounding box of each part.

Ratio of skin pixels vs. total amount of pixels in the patch, obtained with a simple skin-
color-based segmentation (normalized to the average face color detected). This descriptor
reflects the type of clothing used and how much body is covered with it.
RGB, Luminance and Hue histograms computed for all pixels and computed only for
non-skin pixels. This will help modeling the type of clothing used.
Top 3 dominant values in Red, Green, Blue, Hue and Luminance color bands. Dominant
colors in clothes and accessories are very specific at some social categories.
HoG features [DT05], which will help capture the different poses.

2.3.2 Global group descriptors

In order to account for context and group properties, the image is represented by each

of the individuals hi, as explained above, together with a global group descriptor set, dglobal:

G = {h1, h2, . . .hp, dglobal}. The global descriptors are split in two sets, low level descriptors

(detailed in Table 2.2) and high level descriptors (detailed in Table 2.3).

Table 2.2. Low level group descriptors. These are computed over all image pixels and comprise
the scene general information, such as lighting and color.

Ratio of pixels within the detected person bounding boxes vs. total amount of pixels.
RGB, Luminance and Hue histograms computed on all pixels, on pixels out of the
detected person bounding boxes, i.e., background pixels.
Gist [OT01] and HOG [DT05] descriptors.

Table 2.3. High level group descriptors. These represent higher level semantic information and
are based on the distribution and pose of the detected persons in the group.

Proximity between individuals in the image. A histogram of distances between faces are
computed and the average ratio of overlap between person bounding boxes.
Alignment or pose of the group. The average angle between a face and its neighboring
ones according to a minimum spanning tree computed on the detected faces as proposed
in [GC09] is computed.
Scene layout of individuals. A histogram of face locations within the image, using a coarse
image grid, is computed.

9

2.4 Group classification

To classify a group of individuals into a social category, the features computed for each

person hypothesis and the group features are modeled jointly. This section describes two different

approaches studied. The group model is built upon the model proposed in past work [MKB+12].

The group is modeled as a set of individuals, combining their responses in a hierarchy of SVM

classifiers. Note that as described, a person hypothesis may have different number of parts

detected, which requires a careful classification framework able to deal with heterogeneous

descriptor sizes.

Bag of Parts-based classification.

Using the Bag of Parts model to represent a group of people, a bag of m people parts

are created and combined with a global descriptor vector dglobal . The combined group model

will be referred to as G = {p1, . . . , pm,dglobal}. This model combines all visible parts and the

group description. This approach will be named as BoPk, where k is the size of the vocabulary

used. The vocabulary is built for each part type, by running k-means clustering for each part.

This vocabulary built for each part type and referred as Vpart = {w1, ...,wk}. wk → histwk =

[countL1 , ...,countL j] is the histogram of frequencies for each word in each possible class L.

A signature of the image for each part is created for each vocabulary Vpart : histpart =

[countw1...countwk], where w1, . . . ,wk are the words from the corresponding Vpart . To be able

to deal with missing parts, each part type is evaluated separately, and later the distances are

combined for each part type into dBoP(G,L j). The distance from each part type p detected in the

image to the corresponding class is weighted by its frequency in the training:

dBoP(p,L j) = 1− ∑
k
i=1(countwi×histwi(j))

k
. (2.1)

There are usually several parts of each type in a group image (several faces, arms), and the BoP

models somehow how many occurrences of each possible part (i.e. part word) happen in the

group. It’s not possible to model the group descriptors in a similar way, because there is only one

10

per image. Therefore, the nearest neighbor between each reference, L j, and test global descriptor

is used:

dglobal(G,L j) = mint
j=1(|gi,g j|), (2.2)

where t is the number of training images in class L j. This distance is normalized between [0,1]

to allow for easy combination with dBoP, which is also normalized. Then, with c possible labels,

the label of the group using BoPk is calculated as:

L = argmin
j∈[1...c]

(dBoP(G,L j)+dglobal(G,L j)). (2.3)

SVM-based classification.

Alternatively, the group G is represented as a set of persons and the problem is modeled

as finding the most likely class C given a particular group image G, i.e., estimating P(C|G) for

each possible class. In this case, each person hypothesis has a probability for each class and the

final class estimation is a combination of all of them. In this setting, LIBSVM [CL11] is used to

train a multi-class SVM on the person hypotheses and the global descriptors. LIBSVM’s built in

function to calculate probabilities for each class is used. More formally, The goal is to calculate

P(C|G) = P(C|h1,h2, . . . ,hp,dglobal), and then the final label L assigned to the query group as

follows:

L = argmax
j∈[1...c]

P(C = j|h1,h2, . . . ,hp,dglobal). (2.4)

P(C|G) is estimated in the following ways:

P(C|G) = P(C|dglobal)
p

∏
i=1

P(C|hi) P(C|G) =
p

∏
i=1

P(C|hi ,dglobal) (2.5)

11

Figure 2.4. Examples of social groups in the Urban Tribes dataset. The images show a wide
range of inter-class and intra-class variability. More details can be seen at the dataset website.

2.5 Experiments and Results

This section evaluates the performance of the proposed algorithms.

2.5.1 Urban Tribes dataset

Creating the Urban Tribe Dataset posed an interesting challenge. Similar to computer

vision problems, such as clothing or beauty evaluation, urban tribe categories can be ambiguous

and subjective. This is a contrast to other classification problems involving people, where

accurate descriptions of each class and its standard appearance can be found, such as age, gender

or occupation evaluation. In order to obtain an unbiased dataset, the classes labels are provided

by Wikipedia. Eight categories from their list of subcultures2 to facilitate image collection were

selected. In addition to these social groups, three other classes corresponding to typical social

venues (formal events, dance clubs and casual pubs) were added. These classes are intended to

include some of the most common social event pictures that may not belong to a clear subculture,

but still present common appearances in clothing style.

2http://en.wikipedia.org/wiki/List of subcultures

12

Table 2.4. Summary of Urban Tribes dataset.

Label # images # people Label # images # people Label # images # people
biker 114 443 hip-hop 90 253 club 100 365

country 107 347 hipster 102 288 formal 103 414
goth 99 226 raver 116 305 casual/pub 125 459

heavy-metal 102 266 surfer 100 333

For each of the selected classes, images of groups of people were searched with different

search engines. Group labels were used as search keywords combined with location and event

keywords such as bar, venue, club or concert. Example search terms include ’bikers’ and ’biker

bar’. The dataset contains a broad range of scenarios for each class, both indoor and outdoor

venues, large group pictures acquired from the distance and close-up images, etc. As shown in

Fig. 2.4, the groups show a variety of realistic conditions and most classes present high intra-class

variation in appearance. Table 2.4 shows the class labels as well as the number of images (#

images) per class and total amount of detected persons for each class (# people). Although

the number of images per class was balanced, the number of detected persons per image was

different depending on the group.

2.5.2 Social group recognition experiments

This section evaluates the performance of the proposed algorithms and the most promising

paths towards this novel problem framework. Training and testing images were randomly selected

from each of the categories for 50 different iterations. Note that for the 11 classes in the Urban

Tribes Dataset, chance classification is 1
11 = 0.09. For each experiment, a fixed number of the

images from each class are used for learning the models, and the rest of images are used for

testing. A test is considered correct if the most likely group label is correct according to the

ground truth labels.

As explained in section 2.4, the Bag of Parts modeling builds a visual vocabulary for each

part using the training set, with k visual words per vocabulary. After evaluating different values

of k, k = 30 (BoP30k) for the rest of experiments, because the performance increased significantly

13

when increasing k until k = 30. The other approach modeled the group as a set of people and used

the training set descriptors to train several SVM classifiers. Different options were evaluted: 1)

SV M1, training a single SVM with all the descriptors of each person concatenated, including null

values for non-detected parts and replicating the same global descriptor for all hypothesis from a

particular image; 2) SV M2, training one SVM for all part descriptors similarly concatenated and

a second SVM for the global image descriptors; 3) SV M8, training a separated SVM classifier for

each part descriptor set and an additional SVM for the global image descriptors. The responses

from all the SVMs in each case are simply combined, providing a final probability of each image

being of a particular class. The option SV M1 provided significantly lower performance than the

rest during the preliminary tests, therefore results for configuration are not provided for the rest

of experiments.

Results from [WC15] are also provided, which were computed after the publication

of the original paper. [WC15] create a model called NetSDense, which uses features from an

AlexNet [KSH12] network pre-trained on ImageNet [RDS+14]. NetSDense consists of two

AlexNets. One for person crop classification and the other for scene image classification. A

person and scene SVM classifier uses the feature representations from AlexNet to compute

probabilities for an input to belong to a class. The person class probabilities are averaged and

weighted by the scene class probability.

Table 2.5 shows a summary of recognition experiments with different amount of training

data and different amount of parts used in the modeling, given the most suitable configurations

found for each modeling option considered (BoP30k, SV M2 and SV M8). Column allParts+

global shows the accuracy when combining all person parts and global descriptors; allParts

shows the accuracy when combining only person parts; global(scene) column shows the results

if only the global descriptors are used).

The last columns show additional baseline results: individual shows the average accuracy

when each person is classified independently from the rest of the group, i.e., there is no consensus

from the group nor group global descriptors used at all. f ace+head +global shows the results

14

Table 2.5. Average accuracy for the recognition of all classes using different approaches.

Approach allParts+global (std) allParts global(scene) individual f ace+head +global
80 random train images per class, 50 iterations, 278 tests per iteration

SV M2∗ 0.43 (0.04) 0.40 0.37 0.34 -
SV M8 0.46 (0.02) 0.40 0.37 0.38 -
BoP30k 0.37 (0.02) 0.36 0.18 - 0.30
NetSDense[WC15] 0.71(0.004) - 0.67(0005) - -

40 random train images per class, 50 iterations, 718 tests per iteration
SV M2∗ 0.38 (0.03) 0.38 0.31 0.33 -
SV M8 0.41 (0.01) 0.36 0.32 0.35 -
BoP30k 0.33 (0.02) 0.33 0.17 - 0.25
* SV M2 does not include arm parts because all part descriptors concatenated to train a single SVM was
performing significantly worse. This behavior was not observed for the rest of approaches.

Average accuracy for each type of descriptor considered separately (80 train images per class)
descriptors used: d f ace dhead dtorso dhat dneck darmL darmR dglobal

BoP30k 0.24 0.24 0.22 0.26 0.21 0.21 0.2 0.18

using the Bag of Parts configuration used in the referred previous work [MKB+12]. The last

rows in the table show the contribution of each type of descriptor separately. This analysis is

shown for the BoP approach, since it provides the classification result per part. For all modeling

options, even just one set of descriptors was able to classify the images above chance, but the

final classification scores are clearly improved when all the parts from all the individuals in

the image are combined. Particularly interesting is the increase due to the use of global group

information. Additionally, we have noted that the global descriptors classifier would correctly

predict the correct label between 10% to 15% of the tests (depending on the modeling option).

This supports the idea that group and context provide complementary information to person local

parts.

Among the models described in 2.4, the SVM based classification provided the best

results at the time. It is probably better at learning which components of each descriptor set

are more discriminative. We experimented with a reduced set of attributes for BoP approaches

did not improve the performance. From the confusion matrices shown in Fig. 2.5, interesting

hints for future improvements can be seen, such as the clear confusion in both matrices between

bikers and country (columns 1 and 3) in both directions. This can point to the need for additional

15

(a) (b)

Figure 2.5. Confusion matrix for classification results obtained with (a) BoP30k and (b) SV M8,
using 80% of the data for training. The rows show results in alphabetical order of the labels
(detailed in Table 2.4, from top to bottom. To enhance contrast the color scale is set to [0,0.6].

Figure 2.6. Examples of classification results. These images have been classified as hipsters in
all their tests. The two left images are correct, but the label for the right two images should be
goth.

descriptors or attributes. Analyzing the results, all images have been included, in average, in the

test set of 12 experiments. Figure 2.6 shows some sample classification results.

The NetSDense model, benefiting from powerful learned representations, out performs all

results by a significant margin. The authors of [WC15] also report classification results on just

each person, 0.47 and all the people, 0.67 in a scene. These results aren’t included in Table 2.5

because the human crops are not from poselets. Interestingly, these results match the findings

that the best results are from the combined representation of the group as well as the scene.

16

2.6 Conclusions and Future Work

An individual’s social identity can be defined by the individual’s association with various

social groups. Often these social groups influence the individual’s visual appearance. An

exhaustive baseline analysis is provided for the task as well as a dataset to aid future research.

The task introduced in this work opens opportunities for computer vision to improve targeted

advertising and social monitoring and provide more tailored experiences with social media.

The work in this chapter has shown that group representations are powerful. Although

more recent learned representations have outperformed past results, the recent results do not

fully capture the group structure of the individuals in an image. Future work should learn

group structure features. For example, Graph Neural Networks [ZCZ+18] could be used to

learn a representation for the group. With a graph neural network, detected individuals could

be represented by nodes in a graph and the network could model the structure as a whole.

Alternatively, the Transformer architecture [VSP+17] has shown promising results in natural

language parsing and could also be used to model the group structure. Here the representation

of individuals could be passed in as a sequence. In either case the entire group is an input to a

network architecture in order to learn group features.

2.7 Acknowledgments

Chapter 2 is based on “From Bikers to Surfers: Visual Recognition of Urban Tribes,” I. S.

Kwak, A. C. Murillo, P. N. Belhumeur, D. Kriegman, and S. Belongie, British Machine Vision

Conference (BMVC) 2013 [KMB+13]. The dissertation author was the primary investigator.

17

Chapter 3

Collecting & Using Human Judgements of
Similarity

3.1 Introduction

Rankings and similarity constraints provided by humans have been used in many fields,

such as psychometrics, social sciences, and computer vision. A common application for these con-

straints is to construct embeddings for visualization and exploration. The overall goal of the work

in described in this chapter is to generate these perceptual embeddings. Many researchers use

similar embeddings to enhance the performance of classifiers [SKP15, BHW+14, WHB+14a],

build retrieval systems [VdMW12b, McF12], and create visualizations that help experts better

understand high-dimensional spaces [DBH14, DSK+14]. This problem is tackled by improving

the collection of similarity constraints and by combining human similarity constraints with

learned representations.

The work in this chapter focuses on collecting and using the triplet constraint. Triplet

constraints are of the form, “Is object i more similar to object j or object k?”. These constraints

have been used in many vision applications, such as face recognition [SKP15] and image

retrieval [FSSM07]. Additionally triplets have been shown to be a more reliable form of human

similarity constraint [Ken48] than human based rankings or human pairwise similarity constraints.

By combining learned representations and human generated triplets, perceptual embeddings can

be created for the visual exploration of data.

18

Unfortunately, asking experts to exhaustively and authoritatively annotate a dataset

is not always possible [BEK+12]. Additionally, triplet based comparisons can potentially

have O(n3) complexity [TLB+11]. Hiring actual domain experts is often out of the question,

and even crowdsourcing websites such as Mechanical Turk can be prohibitively expensive.

Intelligently sampling comparisons can help alleviate this issue [TLB+11, JN11], but the number

of constraints to collect can still be too large for human annotation. To reduce the cost of

collecting triplets, a new user interface and query was designed and evaluated.

This chapter describes methods for improving the creation of perceptual embeddings

from triplet constraints. In 3.3, UI guidelines for collecting similarity comparisons are described,

with insights on how to manage the trade-off between user burden, embedding quality, and cost.

The method’s effectiveness is shown on a series of synthetic and human-powered experiments. In

3.4, an algorithm for creating perceptual embeddings called SNE-and-Crowd-Kernel Embedding,

SNaCK, is presented. The algorithm combines expert triplet hints with machine assistance to

efficiently generate concept embeddings. The effectiveness of SNaCK embeddings are shown on

tasks such as visualization, concept labeling, and perceptual organization.

The SNaCK algorithm performs dimensionality reduction in order to create visualizations.

Consider N objects, X = {xi}N
i=1 and xi ∈RD. The goal of dimensionality reduction is to produce

a target d-dimensional embedding Y = {yi}N
i=1,yi ∈Rd , where d < D. A classic technique for

creating low dimensional visualization is metric Multidimensional Scaling (MDS) [Wic03,

KW78]. MDS creates the embedding, Y , by attempting to preserve distances between points in

the original space by optimizing:

min
Y ∑

i 6= j=0,1,...,N
(de(xi,x j)−de(yi,y j))

2 (3.1)

where de is the Euclidean distance. Isomap [BS02] extends MDS by replacing de(xi,x j)

with dg(xi,x j), where dg is the geodesic distance between points. This change helps Isomap

to preserve local structure in the lower dimensional representation. t-Distributed Stochastic

19

Neighbor Embedding (t-STE) [VdMH08], which will be described in detail in Section 3.4.1, also

follows the intuition of MDS, but instead converts distances to conditional probabilities. t-STE

attempts to match the probability distribution of the original and target spaces. The probability

represents the likelihood that a point chooses another as its neighbor. Like Isomap, this helps

t-SNE preserve the local structure in the embedding. An alternative to metric MDS is non-metric

MDS (NMDS) [Kru64]. Non-metric MDS optimizes an alternative cost:

min
Y

∑i 6= j=0,1,...,N(dr(xi,x j)−de(yi,y j))
2

∑i6= j=0,1,...,N de(yi,y j)
(3.2)

where dr is any monotonic function, but it typically computes the rank order of pair-

wise distances. This formulation is interesting because it no longer requires knowing the exact

distances between points in the original space, which is useful when requesting similarities from

humans. Rather than requiring the full rank ordering of points, generalized non-metric MDS

(GNMDS) [AWC+07] focuses on pairwise comparisons of similarities de(xi,x j)
2 < de(xk,xl)

2.

When collecting data from humans, this formulation is even more appealing than NMDS and

MDS. Stochastic Triplet Embedding (t-STE) [VdMW12b], described in detail in Section 3.4.1, is

another algorithm for embedding points using relative comparisons. t-STE converts the pairwise

comparisons into probabilities and creates an embedding that matches the probability distribution

of the original space. The SNaCK algorithm proposed in this chapter combines t-SNE and t-STE.

The work described in this chapter based on the following papers: “Cost-effective hits

for relative similarity comparisons.” M. J. Wilber, I. S. Kwak, and Serge J. Belongie, Second

AAAI conference on human computation and crowdsourcing (HCOMP) 2014 [WKB14a]. and

“Learning concept embeddings with combined human-machine expertise,” M. J. Wilber, I. S.

Kwak, D. Kriegman, and S. Belongie, International Conference on Computer Vision (ICCV)

2015 [WKKB15].

20

Figure 3.1. Questions of the form “Is object i more similar to j or object k?” have been shown
to be a useful way of collecting similarity comparisons from crowd workers. Traditionally
these comparisons, or triplets, would be collected with a UI shown at the top. Here, triplets are
collected using a grid of images and ask the user to select the two most similar tasting foods.

21

3.2 Related Work

Perceptual embeddings have been used for a wide range of applications. In [AWC+07],

the authors created a two-dimensional embedding where one axis represented the brightness

of an object, and the other axis represented the glossiness of an object. [vdMW12a, McF12]

construct an embedding based on musical artist similarity. The goal is to use triplets to collect

and construct perceptual similarity embeddings. And as mentioned before, SNaCK combines

aspects of both t-Distributed Stochastic Neighbor Embedding (t-SNE, from [VdMH08]) and

Stochastic Triplet Embedding (t-STE, from [VdMW12b]).

The work in this chapter focuses on using triplet similarity constraints. In addition to

being useful for constructing perceptual embeddings [vdMW12a, FG09, GWKP11, McF12],

triplets have been used for classification tasks as well. In this case, triplets can be automatically

generated using categorical labels, where “object i is more similar to object j than object k”, if i

and j are in the same class and i and k are not in the same class. [SKP15] showed state of the art

face recognition results and [HBL17, CGZ+16] has shown that the re-identification problem can

also take advantage of triplet similarity constraints.

Alternative similarity constraints such as pairwise or rank ordering have also been used

to create perceptual embeddings. However when collecting these constraints from humans, it has

been shown that triplet constraints have been most consistent [Mil56, Ken48, DBH14]. In an

experiment comparing the speed and effectiveness of pairwise, triplet, and spatial arrangement

embeddings, [DBH14] found that triplet comparisons yield the least variance of human perceptual

similarity judgments than other methods. Unfortunately, triplet embeddings can require O(n3)

constraints to be uniquely specified [KvL14], even though many triplets are strongly correlated

and do not contribute much to the overall structure [SKP15].

A variety of methods have focused on reducing the number of triplets to collect [TLB+11,

JN11]. These algorithms focus on collecting triplets one at a time, but sampling the best triplets

first. The idea behind these systems is that the bulk of the information in the embedding can be

22

captured with a very small number of triplets, since most triplets convey redundant information.

For instance, Crowd Kernel Learning [TLB+11] considers each triplet individually, modeling the

information gain learned from that triplet as a probability distribution over embedding space. This

chapter includes a new UI design to improve the speed of triplet collection and leverages learned

representations to reduce the number of triplets required. Since the publication of the UI design,

a few works [LHLF15, PMB18] have used the proposed design for collecting triplets. Others

have altered the initial design to collect alternative types of similarity constraints [VMN+16].

3.3 Cost Effective Hits

Instead of asking “Is object i more similar to object j or object k?”, humans are presented

with a probe image and ask “Mark k images that are most similar to the probe,” as in Fig. 3.1.

This way, with a grid of size n, a human can generate k · (n− k) triplets per task unit. This kind

of query allows researchers to collect more triplets with a single screen. It allows crowd workers

to avoid having to wait for multiple screens to load, especially in cases where one or more of the

images in the queried triplets do not change. This also allows crowd workers to benefit from the

parallelism in the low-level human visual system [Wol94]. Because collecting triplets require

human effort, the right way to measure the embedding quality is with respect to human cost

rather than the number of triplets. This human cost is related to the time it takes crowd workers

to complete a task and the pay rate of a completed task. Some authors [WHB+14b, TLB+11]

already incorporate these ideas into their work but do not quantify the improvement. The goal is

to formalize their intuitive notions into hard guidelines.

It is important to note that the distribution of grid triplets is not uniformly random, even

when the grid entries are selected randomly and provided perfect answers. No authors that use

grids acknowledge this potential bias even though it deteriorates quality of the collection of

triplets, as will be shown in the experiments. Figure 3.2 shows a histogram of how many times

each object occurs in triplet answers. 59520 triplets were collected for both histograms. Each

23

0

1

2

3

4

5

6

7
How often do objects appear in triplet results? (Grid 16 choose 4)

1200 1400 1600 1800 2000 2200 2400
0

5

10

15

20

25

30
(Random sampling)

Figure 3.2. Random triplets have a different distribution than grid triplets. The top
histogram shows the occurrences of each object within human answers for “Grid 16 choose 4”
triplets, the bottom is a histogram of sampling random triplets individually. The variation when
using grid triplets (top) is much wider than the variation when sampling triplets uniformly.

object occurs in the answers about µ̂ = 1785 times, but the variation when using grid triplets,

top histogram, is much wider (σ̂ ≈ 187.0) than the variation when sampling triplets uniformly

(bottom histogram, σ̂ = 35.5). This effect is not recognized in the literature by authors who use

grids to collect triplets. When using grid sampling, some objects can occur far more often than

others, suggesting that the quality of certain objects’ placement within the recovered embedding

may be better than others. The effect is less pronounced in random triplets, where objects appear

with roughly equal frequency. This observation is important to keep in mind because the unequal

distribution influences the result.

3.3.1 Synthetic Experiments

The goal of the synthetic experiments is to answer two questions: Are the triplets acquired

from a grid of lower quality than triplets acquired one by one? Second, even if grid triplets are

lower quality, does their quantity outweigh that effect? To find out, synthetic “Mechanical Turk-

like” experiments were run with synthetic workers. For each question, a probe and a grid of n

24

103 104 105 106 107

Number of triplets

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
G

e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

Leave-1-out NN error

Grid 12, choose 3

Grid 12, choose 4

Grid 12, choose 5

Grid 12, choose 6

Random triplets

103 104 105 106 107

Number of triplets

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

G
e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

Constraint Error

Grid 12, choose 3

Grid 12, choose 4

Grid 12, choose 5

Grid 12, choose 6

Random triplets

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of screens

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

G
e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

Leave-1-out NN error

Grid 12, choose 3

Grid 12, choose 4

Grid 12, choose 5

Grid 12, choose 6

Random triplets

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of screens

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

G
e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

Constraint Error

Grid 12, choose 3

Grid 12, choose 4

Grid 12, choose 5

Grid 12, choose 6

Random triplets

Music dataset, 20 dimensions

Figure 3.3. When the embedding quality is viewed as the number of triplets gathered (top
two graphs), it appears that sampling random triplets one at a time yields a better embedding.
However, when viewed as a function of human effort, grid triplets create embeddings that
converge much faster than individually sampled triplets. See text for details.

objects are shown. The synthetic workers use Euclidean distance within a groundtruth embedding

to choose k grid choices that are most similar to the probe. As a baseline, triplet comparisons

are randomly sampled from the groundtruth embedding using the same Euclidean distance

metric. After collecting the test triplets, a query embedding is built with t-STE [VdMW12b] and

compared to the groundtruth. This way, the quality of the embedding with respect to the total

amount of human effort is measured, which is the number of worker tasks. This is not a perfect

proxy for human behavior, but it does let us validate the approach, and should be considered in

conjunction with the actual human experiments that are described later.

Dataset. UI paradigm is evaluated on the music similarity dataset from [VdMW12b].

The dataset contains 9,107 human-supplied triplets for 412 artists.

Metrics. The quality of the embedding is evaluated using two metrics from [vdMW12a]:

Triplet Generalization Error, which counts the fraction of the groundtruth embedding’s triplet

constraints that are violated by the recovered embedding; and Leave-One-Out Nearest Neighbor

error, which measures the percentage of points that share a category label with their closest

neighbor within the recovered embedding. As pointed out by [VdMW12b], these metrics measure

25

different things: Triplet Generalization Error measures the triplet generator UI’s ability to

generalize to unseen constraints, while NN Leave-One-Out error reveals how well the embedding

models the (hidden) human perceptual similarity distance function. These metrics test the impact

that different UIs have on embedding quality.

Results. The experiments show that even though triplets acquired via the grid converge

faster than random triplets, each individual grid triplet is of lower quality than an individual

random triplet. Figure 3.3 shows how the music dataset embedding quality converges with

respect to the number of triplets. If triplets are sampled one at a time (top two graphs), random

triplets converge much faster on both quality metrics than triplets acquired via grid questions.

However, this metric does not reveal the full story because grid triplets can acquire several triplets

at once. When viewed with respect to the number of screens (human task units), as in the bottom

two graphs in Figure 3.3, the grid triplets can converge far faster than random with respect to the

total amount of human work. This implies that “quality of the embedding wrt. number of triplets”

can be the wrong metric to optimize. A researcher who only considers the inferior performance

of grid triplets on the per-triplet metric will prefer sampling triplets individually, but they could

achieve much better accuracy using grid sampling even in spite of the reduced quality of each

individual triplet. In other words, efficient collection UIs are better than random sampling, even

though each triplet gathered using such UIs does not contain as much information.

3.3.2 Human Experiments

To verify that the UI modifications build better embeddings, Mechanical Turk experiments

were run on a set of 100 food images sourced from Yummly1 recipes with no groundtruth. The

images were filtered so that each image contained roughly one entrée. For example, images

of sandwiches with soups were avoided. Example images are shown in Fig. 3.4. For each

experiment, the same amount of money was allocated for each hit, allowing the embedding quality

with respect to cost to be quantified. This dataset and the human annotations are available for

1https://www.yummly.com

26

https://www.yummly.com

Figure 3.4. Example images from the dataset. The images in the dataset span a wide range of
foods and imaging conditions. The dataset as well as the collected triplets will be made available
upon publication.

download at the companion website, https://vision.cornell.edu/se3/projects/cost-effective-hits/.

Design. For each task, a random probe and a grid of n random foods are shown. The

user is asked to select the k objects that “taste most similar” to the probe. n is varied across

(4,8,12,16) and k is varied across (1,2,4). Three independent repetitions of each experiment

were run. Each HIT paid $0.10, which includes 8 usable grid screens and 2 catch trials. To

evaluate the quality of the embedding returned by each grid size, the same “Triplet Generalization

Error” was used as in the synthetic experiments: all triplets from all grid sizes are gathered

and a reference embedding via t-STE is constructed. Then, to evaluate a set of triplets, a target

embedding is constructed, and the number of reference embedding’s constraints violated by the

target embedding are counted. Varying the number of HITs shows how fast the embedding’s

quality converges.

27

https://vision.cornell.edu/se3/projects/cost-effective-hits/

4 8 12 16

Grid size

0

2

4

6

8

10

12

14

S
e
co

n
d
s

Timing tasks

Choose 4

Choose 2

Choose 1

Figure 3.5. The median time that it takes a human to answer one grid is shown. The time per
each task increases with a higher grid size (more time spent looking at the results) and with a
higher required number of near answers (which means more clicks per task). Error bars are 25
and 75-percentile.

28

102 103 104

Number of triplets

0.1

0.2

0.3

0.4

0.5

G
e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

Grid 4 choose 2

Grid 8 choose 4

Grid 12 choose 4

Grid 16 choose 4

Random triplets

CKL

$0.00 $1.00 $2.00 $3.00 $4.00 $5.00

Total cost ($)

0.1

0.2

0.3

0.4

0.5

G
e
n
e
ra

liz
a
ti

o
n
 E

rr
o
r

Grid 4 choose 2

Grid 8 choose 4

Grid 12 choose 4

Grid 16 choose 4

Random triplets

CKL

Human experiments on foods, 5 dimensional

Figure 3.6. Results of the human experiments on the food dataset. Left graph: Triplet
generalization error when viewed with respect to the total number of triplets. Right: The
same metric when viewed with respect to the total cost (to the researcher) of constructing each
embedding.

Baseline. Since the goal is to show that grid triplets produce better-quality embeddings

at the same cost as random triplets, random (i, j,k) constraints are collected from crowd workers

for comparison. Unfortunately, collecting all comparisons one at a time is infeasible (see the

“Cost” results below), so instead, a groundtruth embedding from all grid triplets is construct and

random constraints are uniformly sampled from the embedding. This is unlikely to lead to much

bias because 39% of the possible unique triplets were collected, meaning that t-STE only has to

generalize to constraints that are likely to be redundant. All evaluations are performed relative to

this reference embedding.

3.3.3 Results

Two example embeddings are shown in Fig. 3.7.

Cost. Across all experiments, 14,088 grids are collected, yielding 189,519 unique triplets.

Collecting this data cost $158.30, but sampling this many random triplets one at a time would

have cost $2,627.63, which was far outside this project’s budget2. If the 16-choose-4 grid strategy

is used (which yields 48 triplets per grid), then all unique triplets would be able to be sampled

2There are 100 · 99 · 98/2 = 485,100 possible unique triplets and each triplet answer would cost one cent.
Additionally there is a 10% cut for Amazon and 20% of the tasks are devoted to catch trials.

29

for about $140. A feat that would cost $6737.50 by sampling one at a time.

Table 3.1. Results of the actual Mechanical Turk experiments. Workers are asked to choose the
k most similar objects from a grid of n images. $1 worth of questions is invested, giving 100 grid
selections. When n and k are large, each answer yields more triplets.

Grid n choose k Error at $1 Time/screen (s) Wages ($/hr)
n: 4, k: 1 0.468 3.57 $10.09

k: 2 0.369 3.45 $10.45
n: 8, k: 1 0.400 3.04 $11.85

k: 2 0.311 5.79 $6.22
k: 4 0.273 7.65 $4.71

n: 12, k: 1 0.406 4.17 $8.64
k: 2 0.294 6.78 $5.31
k: 4 0.235 8.67 $4.15

n: 16, k: 1 0.413 6.72 $5.36
k: 2 0.278 8.84 $4.07
k: 4 0.231 9.59 $3.76

Random 0.477 – –
CKL 0.403 – –

Quality. In general, as more money is spent and more triplets are collected, t-STE does a

better job generalizing to unseen redundant constraints. All embeddings converge to lower error

when given more triplets, but this convergence is not monotonic because humans are fallible

and there is randomness in the embedding construction. See Fig. 3.6 for a graphical comparison

of grids with size 4,8,12, and 16. When viewed with respect to the number of triplets, random

triplets again come out ahead. However, when viewed with respect to cost, the largest grid

converges more quickly than others, and even the smallest grid handily outperforms random

triplet sampling. The embedding generated using a 16-choose-4 grid costs $0.75, while an

embedding with random triplets of similar quality costs $5.00.

This time, a large separation between the performance of various grid sizes is observed.

Grid 16-choose-4, which yields 4 ·12 = 48 triplets per answer, uniformly outperforms the rest,

with Grid 12-choose-4 (at 4 ·8 = 32 triplets per answer) close behind. Both of these outperform

8-choose-4 (16 triplets/answer) and 4-choose-2 (4 triplets/answer).

The performance grid is compared with the adaptive triplet sampling strategy described

30

in [TLB+11]. CKL picks triplets one-at-a-time but attempts to select the best triplet possible

to ask by maximizing the information gain from each answer. In the experiments, it did not

outperform random sampling. Further analysis will be future work.

Though catch trials comprised 20% of the collected grid answers, the results were

generally of such high quality that no filtering or qualification was required.

Time. Fig. 3.5 shows how fast each human takes to answer one grid question. The

smallest task was completed in 3.5 seconds, but even the largest grid (16 choose 4) can be

completed in less than 10 seconds. Times varies widely between workers: the fastest worker

answered 800 questions in an average of 2.1 seconds per grid task for 8-choose-1 grids.

Worker Satisfaction. At the standard 1c|-per-grid/$0.10-per-HIT rate, the workers are

able to make more than a few dollars per hour, shown in Tab. 3.1. The smallest tasks net more

than $10/hour by median, but even the largest task allows half of the workers to make $3.76

for every hour they spend. If the fastest, most skilled worker sustained their average pace in

8-choose-1 grids, they could earn over $17 per hour. Since there is a trade-off between grid

size and worker income, it is important to consider just how far the workers can be pushed

without stepping over the acceptable boundaries. Across all of the experiments, there were

no complaints, and the tasks were featured on multiple HIT aggregators including Reddit’s

HitsWorthTurkingFor subreddit and the “TurkerNation” forums as examples of bountiful

HITs.

According to the HitsWorthTurkingFor FAQ 3, “the general rule of thumb . . . is a

minimum of $6/hour.” Though HITs below this amount may be completed, the best workers

may pass for more lucrative HITs. Being featured in forums such as HitsWorthTurkingFor

helped give the HITS used in this chapter more visibility to a very large audience of potential

skilled turkers. Though high payouts mean higher cost, in this case, the benefit outweighed the

drawback.
3http://reddit.com/r/HITsWorthTurkingFor/wiki/index

31

3.3.4 Guidelines and conclusion

The work in this section has shown that taking advantage of a simple batch User interface,

researchers can save significant amounts of money when gathering crowdsourced perceptual

similarity data. The recommendations can be summarized as follows:

• Rather than collecting comparisons one-at-a-time, researchers should use a grid to sample

comparisons in batch, or should use some other UI paradigm appropriate to their task.

However, researchers should not assume that such batch comparisons are of identical

quality to uniformly random sampling. This is a trade-off that should be considered.

• If cost is an issue, researchers should quantify their results with respect to dollars spent.

Using the simple UI paradigm can create embeddings of higher quality than those created

using algorithms that pick the best triplet one-at-a-time.

• Researchers should continuously monitor the human effort of their tasks, so that they can

calculate an appropriate target wage.

• When using grids to collect triplets, researchers should consider the trade-off between size

and effort. Consider that an n-choose-k grid can yield

k(n− k) (3.3)

triplets per answer. Since this has a global maximum at n = 2k, one appropriate strategy is

to select the largest n that yields a wage of $6/hour and set k equal to n/2.

There are several opportunities for future work. First, the relationship between n, k,

and task completion time should be better quantified to build a more accurate model of human

performance. Second, triplet sampling algorithms such as “CKL” shoud be investigated more

thoroughly as there may be opportunities to adaptively select grids to converge faster than

random, giving advantages of both strategies.

32

3.4 “SNE-and-Crowd-Kernel” (SNaCK) embeddings

To create perceptual embeddings, the hybrid embedding algorithm, SNE-and-Crowd-

Kernel (SNaCK), jointly optimizes the objective functions of two different low-dimensional

embedding algorithms.4 The first algorithm, t-SNE [VdMH08], uses a distance matrix to

construct a low-dimensional embedding. Its goal is to ensure that objects which are close in the

original high-dimensional space are also close in the low-dimensional output without constraining

points that are far in the original space. The second method, t-STE [VdMW12b], allows labelers

to supply triplet constraints that draw from their domain knowledge and task-specific hints. The

work in this chapter will show that surprisingly simple joint optimization can capture the benefits

of both objectives. See Fig. 3.9 for an overview.

3.4.1 Formulation

As mentioned before, consider N objects. The goal to produce a d-dimensional embed-

ding Y ∈RN×d . Let K ∈RN×N be a distance matrix, and let T = {t1, . . . , tM} be a set of triplet

constraints. Each constraint t` = (i, j,k) implies that in the final embedding, object i should be

closer to object j than it is to k, meaning ‖yi− y j‖2 ≤ ‖yi− yk‖2. According to [VdMH08], the

loss function for t-SNE can be interpreted as finding the low-dimensional distribution of points

that maximizes the information gain from the original high-dimensional space.

CtSNE = ∑
i 6= j

pi j log
pi j

qi j
, (3.4)

4Code is available on the companion website, http://vision.cornell.edu/se3/projects/concept-embeddings

33

http://vision.cornell.edu/se3/projects/concept-embeddings

where

p j|i =
exp(−K2

i j/2σ2
i)

∑k 6=i exp(−K2
ik/2σ2

i)
(3.5)

pi j =
1

2N
(p j|i + pi| j) (3.6)

qi j =
(1+‖yi− y j‖2)−1

∑k 6=l(1+‖yk− yl‖2)−1 (3.7)

and σi is chosen to satisfy certain perplexity constraints.

The loss function for t-STE, given in [VdMW12b], can be interpreted as the joint

probability of independently satisfying all triplet constraints. It is defined as

CtST E = ∑
(i, j,k)∈T

log ptST E
(i, j,k), (3.8)

where

ptST E
(i, j,k) =

(
1+ ‖yi−y j‖2

α

)− 1+α

2

(
1+ ‖yi−y j‖2

α

)− 1+α

2
+
(

1+ ‖yi−yk‖2

α

)− 1+α

2
(3.9)

CtST E and CtSNE is used in the cost function, defined as

CSNaCK = λ ·CtST E + (1−λ) ·CtSNE (3.10)

To optimize this cost, gradient descent on ∂CSNaCK
∂Y is used. The implementation derives

from the t-SNE implementation in scikit-learn, so their optimization strategy is used. In

particular, t-SNE is trained for 300 iterations and early exaggeration [VdMH08] heuristic is used

for the first 100 iterations.

The λ parameter specifies the relative contribution of the machine-computed kernel and

the human-provided triplet constraints on the final embedding. For each experiment, λ is chosen

up front such that the norm of δCtST E
δY is approximately equal to δCtSNE

δY in cross validation.

34

3.4.2 SNaCK example: MNIST

To briefly illustrate why this formulation is interesting, a toy example is shown in Fig. 3.10

using MNIST data. In this example, suppose the expert wishes to capture the concept of primality

by partitioning the dataset into prime numbers {2,3,5,7}, composite numbers {4,6,8,9}, and

other {0,1}. Also, for the purpose of this simple example, assume that rather than labeling

the digits directly, the expert compares images based on concept similarity, i.e., primes are

more similar to primes than to other images. By running t-SNE on flattened pixel intensities,

Fig. 3.10 (A) illustrates that the embedding does a reasonable job of clustering numbers by

their label but clearly cannot understand primality because this concept is not apparent from

visual appearance. To compensate, triplet constraints of the form (i, j,k) where i and j share

the same concept and k does not are sampled. However, only 1,000 constraints are sampled for

these 2,000 images. t-STE (B) attempts to discover the differences between the numbers in a

“blind” fashion, but since it cannot take advantage of any visual cues, the underconstrained points

are effectively random. If given many more constraints, eventually t-STE can only collapse

everything into three points for each of the three abstract concepts. The SNaCK embedding

(C) displays the desired high-level concept grouping into primes/non-primes/others, and it can

capture the structure of each class. Points with too few constraints are corrected by the t-SNE

loss and the t-STE loss captures the appropriate structure.

3.5 Experiments

The MNIST example demonstrates SNaCK’s utility in a domain where concepts can be

derived from category labels and everything is known a priori. How does SNaCK perform on

domains where a fixed taxonomy or fixed category labels are not necessarily known up front? To

explore this question, a series of experiments were performed: first, SNaCK’s ability was shown

to help label a subset of CUB-200 in a semi-supervised fashion. In this setting, SNaCK learns

concepts that are equivalent to category labels and outperforms other semi-supervised learning

35

algorithms. Second, experiments on a dataset of 10,000 unlabeled food images demonstrate

SNaCK’s ability to capture the concept of food taste using crowdsourcing. The embedding’s

generalization error was evaluated on a held-out set of crowdsourced triplet constraints. Finally,

SNaCK’s ability was shown to embed a set of pictographic characters, demonstrating how

an expert can interactively explore and refine the structure of an embedding where no prior

knowledge is available.

3.5.1 Incrementally labeling CUB-200-2011

This scenario shows how SNaCK embeddings can help experts label a new dataset.

Suppose an expert has a large dataset with category annotations and an unlabeled smaller set

containing new classes similar to those they already know. The expert wishes to use their

extensive preexisting knowledge to quickly label the new set with a minimum amount of human

effort. The goal is to show that SNaCK allows the expert to collect high-quality labels more

quickly than other methods. Here, the learned “concepts” are equivalent to category labels.

These experiments are inspired by [LG11a]. See Fig. 3.11.

Dataset. In this task the “Caltech-UCSD Birds 200-2011” (CUB-200)

dataset [WBW+11] is used. It’s assumed that the expert has access to all images and labels

of 186 classes in the dataset (to train a machine kernel) and wishes to quickly label a testing

set of 14 classes of woodpeckers and vireos. This subset contains 776 images and was defined

in [FOZ+11]. Only profile-view bird images, where a single eye and the beak is visible, were

used. Images are rotated, scaled, and possibly flipped so the eye is on the left side of the image

and the beak is on the right side; part locations are collected using crowdsourcing. The image is

then cropped to the head. This is the same normalization strategy as [BHBP14].

Automatic similarity kernel. To generate the distance matrix K, a CNN is fine-tuned

for a classification task on all images in the 186 known classes. This allows the expert to leverage

their extensive pre-existing dataset to speed up label collection for the novel classes. The network

is a variation of the “Network-in-Network” model [LCY13], which takes cropped normalized

36

bird heads as input and outputs a 186-dimensional classification result. The pre-trained ImageNet

model is from the Caffe model zoo [JSD+14] and the network is fine-tuned for 20,000 iterations

on an Amazon EC2 GPU instance. To do this, the last layer is replaced with a 186-class

output and the learning rate is reduced for the other layers to a tenth of the previous value.5

Finally, KCNN
i, j is the Euclidean distance between features in the final layer before softmax. To

evaluate the importance of specialized kernels, this KCNN kernel is also compared to Euclidean

distances between pre-trained GoogLeNet [SLJ+14] features, and Euclidean distance between

HOG features.

Expert constraints. To generate triplet constraints in a semi-supervised fashion, the

labels for n images of the dataset are revealed and all triplets are sampled between these images

that satisfy same/different label constraints to generate Tn = {(i, j,k) | `i = ` j 6= `k,max(i, j,k)≤

n}. With these triplets, the amount of expert effort required to label novel images can be varied.

Note that in this test, the concepts to learn are equivalent to class labels, so all of the sampled

constraints are derived from ground truth. The food experiments, described in the next section,

will demonstrate SNaCK’s ability to learn more abstract concepts captured from subjective

human judgments.

Comparisons and metrics. To perform labeling with SNaCK, an embedding of all 776

images is generated and KMeans is used to find clusters. To evaluate, all points within each

discovered cluster is assigned to their most common ground truth label and the accuracy of

this assignment is calculated. See Fig. 3.13 for example embeddings varying the number of

expert label annotations. These results are compared against other semi-supervised learning

and constrained clustering systems: Label Propagation [BDR06], the multiclass version of the

Constrained Spectral Clustering KMeans (CSPKmeans) method described in [WQD12], and

Metric Pairwise-Constrained KMeans (MPCKmeans) [BBM04]. Label propagation uses KCNN

and the n revealed labels. The constrained clustering systems use KCNN and pairwise “Must-

5When trained using the standard training/testing protocol on all of CUB-200, this kind of model achieves
74.91% classification accuracy, which is comparable to the state-of-the-art [BHBP14].

37

Link” and “Cannot-Link” constraints as input, thus n image labels are revealed and all possible

pairwise constraints are sampled between them. As baselines, CNN features are calculated

and are clustered with KMeans and spectral clustering, which do not benefit from extra human

effort. Finally, the results are compared against the cluster results of using K-Means on a t-STE

embedding from the same triplet constraints used by SNaCK.

Results are shown in Fig. 3.12. SNaCK outperforms all other algorithms, but label

propagation and MPCKMeans also perform well. CSPKmeans is eventually outpaced by naively

asking the expert for image labels, perhaps because it was designed for the two-class setting

rather than the 14-class case. These experiments show that t-STE benefits from an automatic

machine kernel (compare SNaCK to t-STE), but the machine kernel can be improved with a

small number of expert annotations (compare KMeans or Spectral Clustering to SNaCK).

Using a kernel that captures bird similarity well is particularly important for this task.

All of the algorithms which use KCNN generally outperform SNaCK when using a pre-trained

GoogLeNet kernel. HOG features, which use no learning, are only slightly better than naive

labeling. Finally, t-STE cannot use any visual kernel, so it can only consider the images the

expert already revealed.

Sometimes the machine kernel disagrees with the expert hints. This may happen for

interesting reasons, such as mistakes in the training data. For example, Figure 3.8 shows an

instance of a Red-headed Woodpecker that was moved into a cluster containing many Pileated

Woodpeckers. Even though the human constraints encourage this sample to lie near similarly

labeled examples, this individual looks overwhelmingly similar to a Pileated Woodpecker, so the

t-SNE loss overpowered the t-STE constraints. If the embedding is colored with ground truth

labels, this mistake shows up as a single differently-colored point in the expected cluster, which

is immediately apparent to an expert.

38

Discovering labels for semi-supervised classifiers

Does better incremental labeling translate into increased classification performance? This

scenario extends the previous experiment: SNaCK is used to discover labels for a training set and

measure the accuracy of a simple SVM classifier on a testing set. The goal is to decide whether

just letting an expert reveal n labels and training on this smaller set is better than revealing n

labels and using SNaCK to discover the rest. Will a classifier trained on many noisy, discovered

labels perform differently than a classifier trained on a smaller, perfect training set?

Dataset. This task uses the same set of 14 woodpeckers and vireos from CUB-200 as

before, but the procedure is different. The dataset is split into 396 training and 380 testing images

using the same train/test split as CUB-200. Then labels are discovered on the training images

using varying numbers of expert annotations and a linear SVM classifier is trained on all CNN

features using the discovered labels. Finally, accuracy is reported on the 380 testing images. The

idea is that the quality of the discovered labels influences the accuracy of the classifier: a poor

labeling method will cause the classifier to be trained on incorrect labels. Because all methods

use the same type of classifier, the quality of discovered labels is evaluated, not the classifier

itself.

Comparisons. As a baseline, the SVM classifiers trained on SNaCK-discovered labels

are compared to an SVM classifier trained on a smaller, better set of n correct labels provided

by expert ground truth. This corresponds to the “Naive Human Sampling” method in Fig. 3.12.

Baselines where the SVM training set labels are discovered using KMeans, spectral clustering,

and label propagation, are also compared to.

Results are shown in Fig. 3.14. Classifiers trained on noisy labels discovered from

SNaCK embeddings significantly outperform classifiers that are trained on smaller training sets,

even though many of SNaCK’s labels are incorrect. This is particularly true for fewer than 50

annotations. Accuracy of SNaCK, Label Propagation, and naive label sampling saturates at about

85%, which is likely due to the linear SVM’s limited generalization ability.

39

Interestingly, classification accuracy of labels discovered with MPCKMeans does not

monotonically improve with more expert annotations. This surprises us, but Fig. 3.12 does

show that MPCKmeans saturates to a smaller value in the semi-supervised labeling experiments,

indicating that it cannot perfectly satisfy (and thus does not benefit from) additional constraints.

Using SNaCK, an expert can build a classifier that achieves 78.8% classification accuracy

by labeling 50 images (12.6% of the dataset). A standard SVM that achieves this level of

accuracy requires a training set of 95 perfectly labeled images, showing that SNaCK can cut

down the expert’s work load to build training sets for classifiers.

3.5.2 Experiments on Yummly-10k

In this scenario, SNaCK is used to generate embeddings of food dishes. The goal is to

create a concept embedding that captures the concept of taste. Two foods should be close in this

embedding if they taste similar, according to subjective human judgments. This is different from

the earlier bird experiments because there are no longer labels or taxonomies to help refine the

embedding; all expert hints must come directly from unquantified human perception annotations.

See Fig. 3.16.

Dataset. This experiment uses 10,000 food images from the Yummly recipe web site,

dubbed Yummly-10k. This data contains a variety of meals, appetizers, and snacks from different

cultures and styles. The images are filtered by removing all images shorter or thinner than 300

pixels and removing all drinks and non-edibles. As metadata, Yummly includes weak ingredients

lists and the title of the dish, but it does not include food labels.

Automatic similarity kernels. SNaCK is not specific to any specific kernel representa-

tion, so two kinds of similarity measures are compared. Food Kernel 1 is a semantic similarity

measure between two foods’ ingredient lists, and Food Kernel 2 is a visual similarity measure

based on a convolutional neural network. To create Kword2vec
i, j (Food Kernel 1), let Ii and I j be

food i and j’s ingredients lists from Yummly. Let w(·) be an ingredient’s word2vec[MCCD13]

representation, scaled to unit norm, and let cost matrix C(a,b) = w(a) ·w(b) for a ∈ Ii,b ∈ I j.

40

Finally, let f : Ii → I j be the maximum-weight assignment between the two ingredient lists.

Then, Kword2vec
i, j =−∑a∈Ii C(a, f (a)). This way, Food Kernel 1 determines foods that share many

common ingredients are more similar than foods that have many dissimilar ingredients.

To build Food Kernel 2, a CNN is fine-tuned to predict a food label. Because Yummly-

10k does not have any labels, the network is trained on the Food-101 dataset from [BGVG14].

Similarly to the earlier bird experiments, the network is a variation of the “Network-in-Network”

model trained to classify 101 different foods. It was trained for 20,000 iterations on an Amazon

EC2 GPU instance by replacing the last layer and reducing the learning rate. The final kernel

is defined as the Euclidean distance between these CNN features. The CNN model provides

an excellent kernel to start from. When trained via the standard Food-101 protocol, this model

achieves rank 1 classification accuracy of 73.5%. The previous best accuracy on this dataset is

56.40% from [BGVG14].The best non-CNN is 50.76%. Of course, building a good classification

model is not the focus, but this accuracy is reported to show that the automatic kernel is effective

at distinguishing different foods.

Expert annotation. Because the goal of the embedding is to properly capture the concept

of food taste, expert annotations are collected directly from humans on Amazon Mechanical

Turk using the crowdsourcing interface described in 3.3. For each screen, a reference food image

i and a grid of 12 food images is shown. The human is asked to “Please select 4 food images that

taste similar to the reference food i.” Then all possible triplet constraints {(i, j,k), j ∈ S,k /∈ S}

are generated, where S is the user’s selection. Each HIT has 10 screens and yields 320 triplet

constraints. In total, 958,400 triplet constraints are collected.6

Experiment design. There are no labels associated with taste in the Yummly data, so

the quality of the perceptual embeddings must be evaluated with other metrics. To do this, the

“Triplet Generalization Error” metric common to previous work [HBSH15, ZMT15, VdMW12b,

WKB14b] is used. All triplet constraints are split into training and testing sets and embeddings

are generated with varying numbers of training triplet constraints. Triplet generalization error is

6Triplets are available from the companion website, http://vision.cornell.edu/se3/projects/concept-embeddings

41

http://vision.cornell.edu/se3/projects/concept-embeddings

defined as the fraction of violated testing triplet constraints, which measures the embedding’s

ability to generalize to constraints the expert did not specify. The two SNaCK kernels are

compared to t-STE.

Results are shown in Fig. 3.17 and an example embedding is shown in Fig. 3.15. As

more triplet constraint annotations become available, all methods produce embeddings of higher

quality. SNaCK with Kernel 2 eventually converges to 28% error while t-STE reaches 33%

error. Note that t-STE starts from random chance (50%) because it starts with no information,

while SNaCK-based methods initially start with lower error because the Stochastic Neighbor

loss on the automatic kernel encourages an initial embedding that contains some fine-grained

information. Kernel 2 consistently outperforms Kernel 1, indicating that in this experiment,

deep-learned visual features may be a better indication of food taste than the similarity of food

ingredient lists. However, even the “weaker” semantic ingredient information provides a much

better initial kernel than nothing at all.

3.5.3 Interactively discovering the structure of pictographic character
symbols

In this section possible tools for exploring unlabeled data are described. The work in

this section analyzes a set of 887 pictographic characters, colloquially known as Emoji. Using

CNN features pre-trained on ImageNet, an embedding that does a good job of grouping visually

similar Emoji together is created. However, if the goal is to capture the concept of emotion

within the set of Emoji, then similarity of visual features alone may be inadequate. For example,

in Fig. 3.18.A, a group of yellow faces are clustered at the upper right, but this group contains

different emotions and does not contain similar images in other artistic styles.

To interactively refine the embedding, the expert selects a reference Emoji and drags a

box around several images. The expert then indicates which of these images share the same

emotion as the reference. In the example in Fig. 3.18, a smiling Emoji was selected and compared

to all the Emoji in the green box (Fig. 3.18.B). After two bounding box selections and a few

42

minutes of work, we are able to collect 20,000 triplets and separate many of the smiling Emoji

from the rest of the embedding. From here, we could further inspect these Emoji and separate

the emotion of laughing from smiling.

As mentioned in the MNIST experiments, the SNaCK embeddings are capable of taking

advantage of visual cues when triplet information is not available. An example of this can be

seen in Fig. 3.18.D. A fearful face with glasses is moved from the left side of embedding to be

near other faces with similar expressions. SNaCK was able to do this without requiring triplets

to be collected between these faces. These examples give a brief illustration of how SNaCK can

be useful for examining unlabeled data.

3.6 Conclusion

The SNaCK algorithm can learn concept embeddings by combining human expertise

with machine similarity. We showed that SNaCK can help experts quickly label new sets of

woodpeckers and vireos, build training sets for classifiers in a semi-supervised fashion, and

capture the perceptual structure of food taste. We also presented a snapshot of a tool that can

help experts interactively explore and refine a set of pictographic characters. In the future, the

goal will be to pursue intelligent sampling for active learning of embeddings, and will extend the

system to explore large video datasets.

3.7 Acknowledgments

Chapter 3 is based on the following papers: “Cost-effective hits for relative similarity

comparisons.” M. J. Wilber, I. S. Kwak, and Serge J. Belongie, Second AAAI conference on

human computation and crowdsourcing (HCOMP) 2014 [WKB14a]. and “Learning concept

embeddings with combined human-machine expertise,” M. J. Wilber, I. S. Kwak, D. Kriegman,

and S. Belongie, International Conference on Computer Vision (ICCV) 2015 [WKKB15]. The

dissertation author was one of two contributing authors of this paper in both algorithm and

43

manuscript development.

44

Figure 3.7. Top: An example cuisine embedding, collected with the 16-choose-4 grid UI
strategy. This embedding cost $5.10 to collect and used 408 screens, but yielded 19,199 triplets.
It shows good clustering behavior with desserts gathered into the top left. The meats are close to
each other, as are the salads. Bottom: An embedding with 408 random triplets. This embedding
also cost $5.10 to collect, but the result is much dirtier, with worse separation and less structure.
Salads are strewn about the right half of the embedding and a steak lies within the dessert area.
From the experiments, an embedding of such low quality would have cost less than $0.10 to
collect using grid strategy.

45

Figure 3.8. The SNaCK embeddings capture human expertise with the help of machine similarity
kernels. For example, an expert can use this concept embedding of a subset of CUB-200 to
quickly find labeling mistakes. Red-headed Woodpeckers are visually dissimilar to Pileated
Woodpeckers, but SNaCK moved a Red-headed Woodpecker into the Pileated Woodpecker
cluster because of its appearance. This is probably a labeling mistake in CUB-200, and this
SNaCK embedding helped us discover it. The cluster of three visually similar vireo species
in the embedding center may be another good place to look for label problems.

46

Figure 3.9. Overview of the SNE-and-Crowd-Kernel (“SNaCK”) embedding method. As input,
SNaCK accepts a dataset of objects, a similarity kernel K, and a set of expert constraints in the
form of “Object i is closer to j than k”, which may be inferred from crowdsourcing or label
information. The output is a low-dimensional concept embedding that satisfies the expert hints
while preserving the structure of K.

Figure 3.10. A simple MNIST example to illustrate the advantages of SNaCK’s formulation.
Suppose an expert wishes to group MNIST by some property that is not visually apparent, in
this case: prime, composite or {0,1}. (A) shows t-SNE on 2,000 MNIST digits using flattened
pixel intensities. (B) shows t-STE on 1,000 triplets of the form (i, j,k), where i and j share the
same concept but k does not. (C) shows a SNaCK embedding using the same flattened pixel
intensities and the same triplet constraints. The SNaCK embedding is the only one that captures
the intra-class structure from (A) and the desired abstract grouping of (B). See 3.4.2 for details.

47

Figure 3.11. Experiment overview on CUB-200. See text for details.

0 100 200 300 400 500 600 700 800

Human effort: How many expert annotations?

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
a
ct

io
n
 o

f
co

rr
e
ct

ly
 l
a
b
e
le

d
 i
m

a
g
e
s

Incrementally labeling CU Birds 200, "Birdlets" set

KMeans on CNN
features

Spectral Clustering
on CNN features

Naive expert labeling,
adjusted for chance

SNaCK, CNN kernel

t-STE

MPCKMeans, CNN kernel

CSPKmeans, CNN kernel

Label Propagation,CNN kernel

SNaCK, pre-trained kernel

SNaCK, HOG kernel

Figure 3.12. Incremental labeling accuracy of several semi-supervised methods. X axis: how
many labels are revealed to each algorithm. Y axis: Dataset labeling accuracy. Error bars show
standard error of the mean (σ/

√
n) across five runs. With 14 clusters, chance is ≈ 0.071. See

Sec. 3.5.1 for details.

48

−40 −20 0 20 40

−40

−20

0

20

40

10 expert annotations
57.60% cluster accuracy

−40 −20 0 20 40

−40

−20

0

20

40

50 expert annotations
76.29% cluster accuracy

−40 −20 0 20 40
−50

−40

−30

−20

−10

0

10

20

30

40

200 expert annotations
89.30% cluster accuracy

Figure 3.13. Embedding examples on CUB-200 Woodpeckers and Vireos, showing the “SNaCK”
method with (left-to-right) 10, 50, and 200 expert label annotations. Colors indicate ground truth
labels. As the number of expert annotations increases, clusters within the SNaCK embedding
become more consistent.

0 50 100 150 200 250 300 350

Expert effort: Number of labels revealed in training set

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy
 o

n
 t

e
st

in
g
 s

e
t

Semisupervised classification
CU Birds 200, "Birdlets" set

Training labels from
KMeans on CNN
features

Training labels from
Spectral Clustering
on CNN features

SNaCK
discovers training labels

Expert reveals n
training labels

Label propagation
discovers training labels

MPCKmeans discovers
training labels

Figure 3.14. Classification accuracy of a linear SVM classifier trained on labels discovered by
different methods. X axis: how many training labels are revealed to each algorithm. Y axis:
Accuracy of classifier trained with these labels on the test set. Error bars show standard error of
the mean (σ/

√
n) across five runs. See Sec. 3.5.1 for details.

49

Figure 3.15. Left: Example SNaCK embedding on Yummly-10k, combining expertise from
Kernel 2 (CNN features) and 950,000 crowdsourced triplet constraints. Middle/right: Close-ups
of the embedding. On a large scale, SNaCK groups major food kinds together, such as desserts,
salad, and main courses. On a small scale, each food closely resembles the taste of its neighbors.
See the supplementary material version for larger versions of this figure.

Figure 3.16. Experiment Overview for Yummly-10k. See text for details.

0 100000 200000 300000 400000 500000

Number of triplet constraints

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

T
ri

p
le

t
g
e
n
e
ra

liz
a
ti

o
n
 e

rr
o
r

Triplet generalization error on Yummly-10k

SNaCK Kernel 1
(word2vec kernel)

SNaCK Kernel 2
(CNN kernel)

t-STE

Figure 3.17. Increasing the number of crowdsourced triplet constraints allows all methods to
improve the embedding quality, measured as the fraction of unsatisfied held-out triplet constraints
(“triplet generalization error”). However, SNaCK-based methods converge much more quickly
than t-STE and require less expert annotation to get a better result.

50

B

C D

A

Figure 3.18. An example GUI used to interactively explore and refine concept embeddings. (A)
shows a t-SNE embedding of Emoji using pre-trained ImageNet features. The user selects a set of
images (B) and indicates which ones share the same emotion (C). For example, the user selected
the smiling frog because it has a similar emotion to the top left image. The updated SNaCK
embedding (D) moves smiling emoji away from unrelated images, regardless of the artistic style
of the faces. Additionally one of the highlighted fearful faces, separate from the main cluster
of faces in (A) has moved to be near faces with a similar expression without collecting triplets
between them.

51

Chapter 4

Action Start Detection

4.1 Introduction

As technology improves, tools for automatic video analysis become more important.

There is currently a large quantity of video data for a variety of applications, such as entertainment,

surveillance, and robotics. In each case it becomes increasingly more difficult for humans to

analyze and inspect video data manually. This is either due to the sheer quantity of data available

or the need for rapid response. For example, video-based self-driving car technologies require

fast reactions to changes in the environment.

Video content analysis is generally framed in one of two ways; action classification and

action detection. In action classification [KTS+14, SZS12, IZJ+17], the goal is to assign a single

category to a trimmed video. These videos are on average a couple seconds long, and contain

a single behavior to classify. A variety of deep learning algorithms have been used to learn

spatio-temporal models, such as convolutional [TBF+15] and recurrent networks [KTS+14].

These algorithms can be useful for content based video retrieval, and the learned representation

can be used as input for action detection [WWN+18, EHNG16, GYC+17].

In fine-grained action detection or segmentation [IZJ+17, CHEGCN15], the goal is to

determine time intervals (start and end frames) of each action category. Videos in this type of

task can be much longer than action classification videos, and there may be multiple behaviors to

temporally localize per video. As with action recognition, both convolutional and recurrent net-

52

works [SCZ+17, XDS17, SMJ+16, WWN+18] have been applied to the task. Action detection

algorithms potentially have a wide range of applications, such as filtering background frames

from surveillance footage, extracting highlight footage, or generating descriptions.

This chapter will focus on a recent research direction for video analysis, automatically

detecting the start of actions. In contrast to action detection, where the duration of the behavior

is classified, this chapter focuses on classifying only a single frame, representing the start of the

behavior. [SPC+18] has proposed detecting the start of actions in an online setting, but this work

will focus on detecting action starts in an offline setting.

This is an important problem for many computer-vision applications, including in neuro-

science research. A fundamental goal in neuroscience is to understand the neural activity patterns

that produce behavior. To do this, researchers localize the start of bouts of actions in videos, and

then examine neural activity just prior to this [SGZ+18] (Figure 4.1a-b). This work will focus

on detecting action starts, although the proposed methods could be applied to any identified key

frame in an action bout.

There are three classes of errors that can be made in detecting action starts. One can miss

an action start (false negative), have an extra action start (false positive), or be detected too many

frames from the true start. Using an unstructured, per-frame error between the true and predicted

action starts would incorrectly penalize being offset by a small number of frames more than

having a false positive or negative (Figure 4.1c). Thus, this chapter proposes a structured loss

that involves finding the best match between action start predictions and labels, and this allows a

proper weighting of each of these three types of errors. A recurrent neural network (RNN) is

used to minimize this structured loss using gradient descent. As this loss is not differentiable, an

alternative differentiable proxy of this based on the Earth Mover’s Distance (EMD) is proposed.

To accurately evaluate action start detection, a new video data set, The Mouse Reach

Dataset, is introduced. This dataset has been annotated with the starting frames of a set of

behaviors. The data set consists of videos of mice performing a task that starts with reaching for

a food pellet and ends with chewing that pellet; when successful, the task consists of a sequence

53

of six actions (Figure 4.1a). The sequence has strong temporal structure that can be exploited by

an RNN, but can also vary substantially. Actions may be repeated, such as when a mouse fails to

grab the food pellet on the first attempt and then tries again. Experimental results show that an

RNN trained to minimize either of the structured losses outperforms an RNN trained to minimize

the per-frame loss. Furthermore, reaching tasks are often used in rodents and primates to study

motor control, learning, and adaptation, and tools for automatic quantification of reach behavior

would have immediate impact on neuroscience research [WP90, GGG+15, SGZ+18, KHX+19].

In summary this chapter a) introduces a novel structured loss function, b) a network

architecture designed to minimize the loss, and c) contributes a new, real-world dataset for

fine-grained action start detection, that has been annotated in the course of neuroscience research.

The algorithm is described in Section 4.3, dataset in Section 4.5, and experimental results in

Section 4.6.

Chapter 4 is based on “Detecting the Starting Frame of Actions in Video,” I. S. Kwak,

D. Kriegman, K. Branson and is currently being prepared for submission for publication of the

material. The dissertation author was the primary investigator and author of this paper.

4.2 Related Work

Although this work focuses on detecting the start of an action, there are many similarities

to fine-grained action detection, in which the goal is to categorize the action at each frame.

To incorporate the temporal context, 3D convolutional networks and recurrent networks have

been used to detect actions [SCZ+17, XDS17, SMJ+16, WWN+18]. Following the success of

object proposals [UVDSGS13, RHGS15] for object detection, algorithms for proposing temporal

segments for action classification have been developed [GYC+17, EHNG16].

Fine-grained action detection algorithms have leveraged feature representations first

developed for action recognition [WWN+18, EHNG16, GYC+17], in which the goal is to cat-

egorize the entire trimmed video. Large-scale action recognition datasets [CZ17, KTS+14]

54

have helped produce strong representations of short video snippets, which then can be used

by detection algorithms. 3D convolutional networks leverage lessons learned from successful

image recognition networks [TBF+15] and simultaneously learn appearance and motion in-

formation. Recurrent models, such as LSTMs, have been used to model long range temporal

relationships [KTS+14]. More recently, two stream networks [SZ14, WXW+16, CZ17] have

been successful at action recognition. The work presented in this chapter uses two-stream feature

representations as inputs to the detection model.

Online detection of action start (ODAS) [SPC+18] is the most similar past work to ours.

In ODAS, the goal is to accurately detect the start of an action for use in real-time systems.

In contrast, this chapter’s work focuses on offline detection of action starts to understand the

causes of behaviors, for example to understand the neural activity that produced a behavior. Both

offline and online start detection have similar difficulties in label sparsity. A dataset for which

the accuracy of the action start labels was the main focus in dataset creation is provided. This

dataset will be useful for both online and offline action start detection research.

4.3 Problem Formulation

Let X = [x1,x2, ...,xT] be a sequence of T video frames, where xt ∈ Rd is the feature

representation of each frame. The goal is to predict, for each frame t and behavior b, whether the

frame corresponds to the start of a behavior bout (yt
b = 1) or not (yt

b = 0). Let Y = [y1,y2, ...,yT]

be the sequence of ground truth labels for X , where yt ∈ {0,1}B and B is the number of behaviors.

Let Ŷ = [ŷ1, ŷ2, ..., ŷT] be a predicted sequence of labels. Behavior starts, yi
b = 1, are

matched with predictions, ŷ j
b = 1. Each label can be matched with at most one prediction within

|i− j|< τ frames. Labeled starts without a matched predicted start are false negatives (FN) and

get a fixed penalty of C f n. Predicted starts without a matched true start are false positives (FP)

and get a fixed penalty C f p.

More formally, let M ∈ ZT×B be a matching from true to predicted starts, where mi
b > 0

55

and yi
b = 1 means that the true start of behavior b at frame i is matched to a predicted start

of behavior b at frame mi
b, and mi

b = 0 indicates that the true start at frame i is not matched.

Similarly, let M̄ denote an inverse matching from predictions to labels consistent with M. Then,

the error criterion can be written as a minimum over matchings M:

Err(Y,Ŷ) =

min(M,M̄)∑bt [I(y
t
b = 1)(I(mt

b = 0)τ︸ ︷︷ ︸
FN

+ I(mt
b > 0)|t−mt

b|︸ ︷︷ ︸
TP

)+ I(ŷt
b = 1)I(m̄t

b = 0)τ︸ ︷︷ ︸
FP

]
(4.1)

Note that I(yt
b = 1)I(mt

b = 0) = 1 for false negatives and I(ŷt
b = 1)I(m̄t

b = 0) = 1 for

false positives.

The Hungarian algorithm [Kuh55] can be used to efficiently compute the optimal match-

ing (M,M̄) in this criterion. For each behavior, the bipartite graph consists of two sets of N +M

nodes, where N and M are the number of true and predicted action starts. In the first set, the

first N nodes correspond to true starts and the last M nodes correspond to false positives. In the

second set, the first M nodes correspond to predicted starts and the last N to false negatives. The

distance matrix is then

Dnm =



|sn− ŝm| n≤ N,m≤M

τ n > N,m≤M (FP)

τ n≤ N,m > M (FN)

τ n > N,m > M

,

where sn is the nth true action start and ŝm is the mth predicted action start.

4.3.1 Matching Loss

A structured loss based on this error criterion is proposed, which will be referred as the

Matching Loss. The classifier outputs are continuous values ŷt
b ∈ [0,1]. To compute this loss,

56

the classifier outputs are binarized by thresholding and non-maximal suppression, resulting in

a sequence of predicted action starts Ŝ. Ŝ is used to select an optimal matching M̂ using the

Hungarian algorithm, as described above. Then, the following loss is minimized, which is a

differentiable function of the continuous classifier outputs:

LH(Y,Ŷ ,M̂) = ∑tbCb[I(yt
b = 1)(I(m̂t

b = 0)C f n︸ ︷︷ ︸
FN

−

I(m̂t
b > 0)(τ−|t−mt

b|)ŷ
t
b︸ ︷︷ ︸

TP

)+

ŷt
bI(m̄t

b = 0)C f p︸ ︷︷ ︸
FP

]

(4.2)

where Cb is a weight for behavior b (usually set to one over the number of true starts of

that behavior). Ct p, C f n, and C f p are parameters for weighing the importance of true positives,

false negatives, and false positives respectively.

Note that the loss can be applied to any matching, but in this case the optimal matching

is chosen. With this loss, the importance of predicting action starts near the true behavior start

frame while avoiding spurious predictions can be directly enforced. A correct prediction is

penalized by the distance to the true behavior start frame and the confidence of the network

output. Any prediction that is not matched, will be penalized by the network’s output score.

Given the matching M̂, this loss is differentiable and thus can be minimized using gradient

descent. However, selecting the optimal matching M̂ is not differentiable. Following [SAN16,

WWN+18], the training will iteratively fix the network and select the the optimal matching, and

then fix the matching and apply gradient descent to optimize the network. Experimentation found

that, using this training procedure, the networks were able to learn to localize behavior start

locations. One concern for this loss function is that it is not fully differentiable. For example,

suppose there is a predicted start matched to a true start. While the total loss would decrease

if the prediction were closer to the true start frame, gradient descent on the Matching loss with

fixed matching will not do this.

57

4.3.2 Wasserstein/EMD Loss

The Matching Loss relies on an assignment of predictions to ground truth labels. The

assignment problem can be approximated with the Wasserstein Distance [PC+19]. Similar

to [WWN+18], the squared EMD loss, a variant of the 1-Wasserstein Distance, is used as

an alternative structured cost for the sequence. Unlike [WWN+18], no matching is applied

before computing the loss. Additionally, the work in this chapter applies the Wassertein loss

to all predictions for a behavior simultaneously, rather than to each prediction separately. The

EMD loss is completely differentiable. The predicted label sequence and the ground truth label

sequence are first normalized:

y′ib = 1
∑

T
i=0(y

i
b+ε)

(yi
b + ε)

ŷ′ib = 1
∑

T
i=0(ŷ

i
b+ε)

ŷi
b

. (4.3)

ε is added in case there are no labels or predictions in a given behavior class for a video. A

Gaussian blur with standard deviation, σb, and window size, wb is applied the groundtruth labels

to allow more robustness to small temporal offsets. The Wasserstein structured loss is then

defined as the sum of the cumulative differences over all behaviors:

LW = ∑
B
b=0 ∑

T
i=0

[
∑

i
j=0 y′ jb −∑

i
j=0 ŷ′ jb

]2
. (4.4)

The Wasserstein Loss enforces the goal of reducing false positives by linking multiple predictions.

Minimizing Wasserstein Loss tends to transfer probability mass closer to sharp spike labels.

This maps all network predictions to true action start locations and when multiple predictions

contribute to a true action start, the loss will penalize the extra mass (Figure 4.1c). In contrast, a

per-frame loss will treat spurious predictions separately, and penalize multiple predictions less

aggressively.

58

4.3.3 Per-Frame Loss

The per frame loss, L f , is defiend as the mean squared error (MSE) between Y and Ŷ .

A Gaussian blur is also applied to the groundtruth labels Y to allow more robustness to small

temporal offsets.

L f = ∑
B
b=0 ∑

T
i=0
[
yt

b− ŷt
b

]2 . (4.5)

4.3.4 Combined Loss

Similar to [WWN+18], it was helpful to combine the per-frame loss with the structured

losses (LH and LW) to improve optimization.

L (Y,Ŷ) = λL f (Y,Ŷ)+(1−λ)Ls(Y,Ŷ) (4.6)

where L f is the per-frame loss, the structured loss Ls is either LW or LH , and λ is a hyper

parameter between 0 and 1. This is especially true for the Matching Loss, since there may not be

any initial predictions that pass the network classifier score thresholding. Additionally, including

the per-frame loss reduces false negatives for the Matching Loss. Decreasing the weight of the

per-frame loss during training was also tested.

4.4 Visualization

A visualization tool was developed to help understand performance on video data. When

debugging various network architectures, it was difficult to review an individual frame associated

with a network prediction and understand what may have caused the network score. Additionally

it was difficult to seek to specific frames/seconds of a video manually. In order to help visualize

results, a web-based viewer, see Fig. 4.2, that synchronizes the network output score and video

frame was created. The viewer has two main components. A line graph, where the x-axis is

59

video frames and the y-axis is the network output score. The other component is a video viewer,

where the frame being shown is the currently selected frame. A frame can be selected by either

playing the movie or mousing over the line graph. Being able to slowly, or quickly, mouse over

consecutive video frames around curious network outputs helped find software bugs and explore

network architectures.

The viewer was created using a JavaScript library called d3.js [Bos]. Network outputs

are stored as a CSV file, where the first column is the frame number and any following columns

are any set of scores, such as the ground truth of a label and network predictions for that label.

Movie files can be any format supported by HTML5 such as MP4 or WebM.

4.5 Datasets

4.5.1 Mouse Reach Dataset

The Mouse Reach Dataset is a new video dataset which was carefully annotated with

action bout starts by experts. Neuroscientists collected this dataset for studying the neural

control of behavior, which involves examining recorded neural activity prior to a behavior

change [GGG+15]. Unlike most action detection datasets, in which the duration of the bout

is labeled, only the action start was relevant. In addition, only the action starts, not the ac-

tion ends, were well-defined and could be labeled consistently (Figure 4.1), thus only action

starts were annotated. The dataset can be downloaded at http://research.janelia.org/bransonlab/

MouseReachData/.

The dataset contains 1165 recordings of four mice attempting to grab and eat a food

pellet. Only the mice’s limbs are free to move. They were recorded many times a day for several

days from two fixed, time-synchronized cameras. The videos were recorded at 500 frames per

second in near infrared.

The biologists labeled the start of six different actions. “Lift” occurs when the mouse

begins to lift its paw from the perch. “Hand-open” occurs when the paw begins to open before

60

http://research.janelia.org/bransonlab/MouseReachData/
http://research.janelia.org/bransonlab/MouseReachData/

grabbing the pellet. “Grab” occurs when the paw begins to close around the pellet. “Supinate”

occurs when the begins to turn toward the mouse’s mouth. “At-mouth” occurs when the pellet

is first placed in the mouse’s mouth. “Chew” occurs when the mouse begins to eat the pellet.

Note that grab and supinate are annotated when the mouse misses and the paw does not contain a

pellet, but at-mouth and chew are not. The most common behavior is the “Hand-open” behavior

with 2227 labels – on average 1.91 labeled instances per video. The least common behavior is

“Chew”, with 664 labeled instances.

In these videos, the temporal sequence of actions is highly structured. For example, the

mouse cannot eat a food pellet without grabbing it first. Thus, long-range temporal context is

important. The most common sequence of labels is “Lift”, “Hand-open”, “Grab”, “Supinate”,

“At-mouth”, and “Chew”. However, the temporal sequence is also flexible, as when the mouse

misses a pellet it will backtrack and repeat actions. For example, multiple instances of grab can

occur in a row. This also produces an imbalance across action categories.

This dataset will provide computer vision researchers an opportunity to work with high

quality labels of action key frames. As mentioned previously, bout boundary detection has gained

interest in the vision research community, and this provides a dataset for comparing and spurring

algorithm development while providing useful tools for neuroscientists.

Table 4.1 and Table 4.2 provide more details on the dataset. The behaviors: Hand-open,

Grab and Supinate, occur more often because the mouse will fail to grab the food pellet and try

to grab food pellet again. The number of chew frames are low because the mouse will also fail to

eat the food pellet. Figure 4.5 and Figure 4.6 show sample frames of each of the behaviors.

4.6 Experiments

4.6.1 Mouse Experiments

The proposed loss functions are tested on the Mouse Reach Dataset. The goal of this

task is to detect the start of a behavior within τ frames. For these experiments τ = 10 frames

61

Table 4.1. Number of labelled frames with the Mouse Reach Dataset.

Behavior Total Average Per Video
Lift 1175 1.01

Hand-open 2227 1.91
Grab 2096 1.79

Supinate 1392 1.19
At-mouth 921 0.79

Chew 664 0.57
Background 830939 71081

Table 4.2. The Mouse Reach Dataset contains a total of 1165 videos of mice performing the
reaching task.

Mouse Total Videos
M134 217
M147 97
M173 492
M174 359

Table 4.3. F1 scores for each loss, feature type, and behavior. Matching and Wasserstein losses
outperform the per-frame MSE

Algorithm Lift Hand-open Grab Supinate At-mouth Chew
MSE+HOGHOF 0.79 0.78 0.84 0.65 0.44 0.45
Matching+HOGHOF 0.88 0.77 0.84 0.75 0.43 0.45
Wasserstein+HOGHOF 0.91 0.78 0.83 0.73 0.49 0.46
MSE+Canned I3D 0.81 0.77 0.83 0.68 0.46 0.41
Matching+Canned I3D 0.83 0.74 0.80 0.70 0.44 0.33
Wasserstein+Canned I3D 0.83 0.74 0.80 0.71 0.44 0.33
MSE+Finetuned I3D 0.61 0.51 0.53 0.45 0.28 0.29
Matching+Finetuned I3D 0.90 0.80 0.84 0.74 0.51 0.35
Wasserstein+Finetuned I3D 0.88 0.81 0.84 0.72 0.48 0.26
Finetuned I3D+Feedforward 0.38 0.25 0.37 0.30 0.17 0.15
ODAS 0.35 0.45 0.59 0.40 0.27 0.13

62

(0.02 seconds). 10 frames was chosen from a study of annotation consistency on a subset of

the videos. For each of the four mice, a test mouse is chosen and training is done with all other

mice’s videos and the first half of the test mouse’s videos. Then tested on the second half of the

test mouse’s videos. Training videos from the test mouse are included because, without this, for

all algorithms tested, generalization across mice was poor. Test sets consisted of 125, 55, 274,

and 192 videos for the four mice.

As mentioned before, a correct prediction, TP, is one that is within τ = 10 frames from

the ground truth frame start. These represent true positive results. All other network predictions

are false positives (FP) and missed ground truth starts are false negatives (FN). The F1-Score,

the harmonic mean of precision and recall, is calculated using the TP, FP, and FN.

4.6.2 THUMOS’14 Experiments

[SPC+18] detects action starts in an online setting. Although the work in this chapter

is not designed to be used in an online setting, their evaluation protocol can be used to test the

proposed algorithm on a known action detection dataset, THUMOS’14 [JLRZ+14]. [SPC+18]

defines point-level average precision, p-AP, as a way to evaluate the performance of start frame

detection. For each class, the predicted action starts are ordered by their confidences. Each

prediction is counted as a correct action start if it matches the ground truth action start class,

the temporal distance between the prediction and true start is less than a threshold, and no other

prediction has been matched to this start. With the matches, the point-level average precision,

p-AP, can be computed and averaged over classes to compute the p-mAP.

Following [SPC+18], two metrics are used to evaluate the algorithm on THUMOS’14.

The first is p-mAP, computed over different temporal distance thresholds. The temporal offsets

are set at every second from 1 to 10 seconds, or 30 to 300 frames. These offsets can provide

insight on how precise an action start can be detected, which is useful for tuning algorithms to

different applications. The second is AP depth at recall X% which is the average of precision

points on the P-R curve between 0% and X% recall. The AP depth at recall X% can be useful to

63

evaluate the precision of top predictions at low recall.

Although THUMOS’14 has been used as a baseline of online action start detection, the

Mouse Reach Dataset is better suited for action start detection. In Figure 4.3, example frames of

action starts of two long jump behaviors are shown. In this example, it does not seem the same

key start frame is labeled, although it is the same behavior. Because THUMOS’14 is labeled

for action detection, the start of a bout may not represent the start of the action. Some labeled

sequences are of highlights of the action and only show a subset of the action. For example, a

long jump action clip may only show the portion of the action where the athlete jumps into the

sand pit. However, the start of the action should be when the athlete begins their run towards the

sand pit.

4.6.3 Implementation Details

For all experiments, pre-computed or fine-tuned features are used as inputs to an RNN.

The base model is a two layer bi-directional LSTM with 256 hidden units. The inputs to the

LSTM pass through a fully connected layer, ReLU, and Batch Normalization. The ouputs are

transformed by a fully connected layer with a sigmoid activation layer. Fig. 4.4 shows the

model. ADAM [KB14] was used for optimization. The learning rate varied by loss function.

The network was trained for 400 epochs with a batch size of 10.

For the Mouse Reach dataset experiments two types of input features were used:

HoG+HOF [DT05] and I3D [CZ17]. The HoG+HOF are hand-designed features that capture

image gradients and motion gradients. The features were computed on overlapping windows on

each view point, resulting in an 8000 dimensional feature vector. I3D is a state-of-the-art action

recognition network that uses sets of RGB and optical flow frames as input. The output from

the last average pooling layer before the 1×1×1 convolutional classification layer was used

as the I3D feature representation. For each frame in the video sequence, I3D was applied to a

64 frame window, centered around the input frame. The features used from the I3D network

are 14336 dimensions. The features from the model trained on the Kinetics dataset [CZ17] will

64

be refered to as Canned I3D. The I3D network was also fine-tuned by training the feedforward,

per-frame I3D network on the Mouse Reach Dataset. This feature set is referred to as Finetuned

I3D. HoG+HOF features will be provided with the dataset.

RNNs were trained with each of the three feature types (HOGHOF, Canned I3D, and

Finetuned I3D) and each of three losses: Matching (Section 4.3.1), Wasserstein (Section 4.3.2),

and MSE (Mean-squared error, Section 4.3.3).

When using the HOG+HOF and Canned I3D features as inputs with the Matching Loss,

LH , in the combined loss (4.6) the weight of the per-frame loss λ was reduced from an initial

value 0.99 to 0.5 with an exponential step size of 0.9 every five epochs until L f and Ls were

weighted equally. For the Finetuned I3D features, λ was reduced to 0.25. The following

parameters were set Ct p = 4, C f p = 1, C f n = 2. For the Wasserstein Loss, λ = 0.5. In order to

help all the losses deal with the scarcity of positive samples, the ground truth label sequence

was blurred with a Gaussian kernel with σb = 2 and wb = 19 frames. Like the choice of τ , the

window size was chosen based off of the annotation consistency study.

For the THUMOS’14 experiments features from an I3D network pre-trained on the

Kinetics Dataset [CZ17] were created. Like the Mouse Reach experiments, outputs before the

classifications layer were used as a feature representation. Unlike the Mouse Reach experiments,

only the pre-trained RGB 3D convolutional branch of the I3D network were used, because the

RGB branch is highly similar to the C3D network used in the ODAS work. The same hyper

parameters for the losses as the Mouse Reach experiments were used, except the maximum

matching offset was τ = 30 frames (1 second). In the mouse videos, the researchers were

interested in start detections within frames of the behavior starting, however for THUMOS’14,

results were evaluated at the level of seconds. For these reasons the ground truth sequence was

blurred with a kernel wb = 59 frames and σb = 8. In addition to the bi-directional LSTM, a

forward only LSTM was trained. A forward only LSTM could be used in an online fashion,

which should be more comparable to the results from [SPC+18].

65

Table 4.4. p-mAP at depth Rec=1 shows the performance of the proposed loss functions on
THUMOS’14 at different offset thresholds. The *+FWD networks were trained as forward only
LSTM’s, whereas the *+BIDIR networks were bi-directional LSTM’s.

Offsets 1 2 3 4 5 6 7 8 9 10
SceneDetect 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.05
ShotDetect 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.05
ODAS [SPC+18] 0.03 0.04 0.04 0.05 0.05 0.06 0.06 0.07 0.07 0.08
MSE-FWD 0.06 0.10 0.11 0.12 0.13 0.14 0.15 0.15 0.15 0.15
Matching-FWD 0.06 0.10 0.11 0.12 0.13 0.14 0.15 0.15 0.15 0.15
Wasserstein-FWD 0.05 0.09 0.10 0.11 0.12 0.12 0.13 0.13 0.13 0.13
MSE+BIDIR 0.08 0.14 0.15 0.16 0.16 0.17 0.18 0.18 0.18 0.18
Matching+BIDIR 0.09 0.14 0.16 0.17 0.18 0.19 0.19 0.20 0.20 0.20
Wasserstein+BIDIR 0.05 0.09 0.11 0.12 0.12 0.13 0.13 0.14 0.14 0.14

4.6.4 Mouse Reach Results

The network trained with MSE loss will be considered as a baseline and will be compared

to a networks trained with the proposed structured loss functions. RNNs trained with the MSE

loss are equivalent to the most standard framework for action detection, if the bout lengths are

just one frame. Table 4.6 shows the precision, recall and F1 score for each of these losses, using

the HoG+HOF, pre-trained, and fine-tuned I3D features. Results of the fine-tuned feed-forward

I3D network are also shown. The structured losses have a better F1 score because they have

higher precision, implying an improved false positive rate. This matches one of the goals of

structured losses, to penalize spurious start detections. The Matching loss explicitly penalizes

false positive predictions and the Wasserstein Loss attempts to match the number of predicted

behavior starts with the ground truth. Overall, the Wasserstein Loss performs best regardless of

the input features. Table 4.3 shows the performance breakdown with respect to each behavior.

The action categories that benefited most from the structured losses were lift and supinate.

The MSE+Finetuned I3D performs far worse than expected and it maybe due to finetuned

feature training. Only the labeled frames were used as positive samples. No frames in a window

with radius 10 around the positive sample are sampled. Additionally no hard negatives at the

border of this window were used for training. Because MSE does not penalize false positive

66

Table 4.5. Average p-mAP at different depths on the THUMOS’14 dataset.

Depth@X 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
SceneDetect 0.30 0.18 0.12 0.09 0.07 0.06 0.05 0.04 0.4 0.03
ShotDetect 0.26 0.15 0.11 0.08 0.07 0.06 0.05 0.04 0.04 0.03
ODAS [SPC+18] 0.42 0.27 0.19 0.14 0.11 0.10 0.08 0.07 0.06 0.05
MSE+FWD 0.55 0.48 0.46 0.45 0.45 0.45 0.44 0.44 0.44 0.44
Matching+FWD 0.64 0.57 0.55 0.54 0.54 0.53 0.53 0.53 0.53 0.53
Wasserstein+FWD 0.58 0.55 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53
MSE+BIDIR 0.46 0.36 0.30 0.26 0.24 0.24 0.23 0.23 0.23 0.23
Matching+BIDIR 0.59 0.52 0.48 0.45 0.44 0.43 0.42 0.42 0.42 0.42
Wasserstein+BIDIR 0.42 0.35 0.33 0.31 0.30 0.29 0.29 0.29 0.29 0.29

as harshly as the structured losses, it is happy to predict many extra action starts due to similar

feature representation of neighboring frames, as seen by the poor precision score. It is possible

the feature representation and the MSE performance can be improved by implementing hard

negative mining.

Figures 4.7, 4.8, 4.9, 4.10, 4.11, and 4.12 show the distribution of predictions for each

behavior. Within the τ = 10 frames of the true start, the structured losses predict far fewer

false positives without missing true positives. Thus, the losses are more likely to produce a

single prediction for an action start than MSE. Figure 4.13 shows how predictions far from the

action start eventually are matched. Perhaps surprisingly, there does not seem a big difference in

performance between HOG/HOF features and the fine-tuned I3D features learned for this task.

At the time of this writing, source code and the trained model for the ODAS [SPC+18]

algorithm was unavailable, so reimplementation their algorithm was used. To make comparisons

as fair as possible, the I3D network was used as the backbone network, instead of the reported

C3D. The network was trained with adaptive sampling and temporal consistency, but without

a GAN to generate hard negatives. The implementation of ODAS without a GAN model was

slightly better than the I3D+Feedforward model. However the recurrent models all outperform

the implementation of ODAS.

67

Table 4.6. For each loss and feature type, the F-score, precision and recall are reported. The
Matching and Wasserstein Losses have an improved F-score and precision over MSE, implying
fewer false positives.

Algorithm F1 Score Precision Recall
MSE+HOGHOF 0.69 0.62 0.79
Matching+HOGHOF 0.73 0.72 0.74
Wasserstein+HOGHOF 0.75 0.78 0.71
MSE+Canned I3D 0.70 0.64 0.76
Matching+Canned I3D 0.69 0.72 0.66
Wasserstein+Canned I3D 0.73 0.77 0.70
MSE+Finetune I3D 0.48 0.37 0.69
Matching+Finetune I3D 0.75 0.80 0.70
Wasserstein+Finetune I3D 0.75 0.85 0.66
I3D+Feedforward 0.27 0.16 0.88
ODAS 0.22 0.12 0.94

4.6.5 THUMOS’14 Results

Table 4.4 shows the p-mAP performance of the algorithms with different offset thresholds.

The Matching+BIDIR algorithm matches or outperforms all other algorithms for each threshold

offset. Interestingly, the Wasserstein+BIDIR loss performs worse then both MSE+BIDIR and

Matching+BIDIR on THUMOS’14. Across each cost function, using bidirectional networks

provides about a 0.02 improvement at most threshold offsets. Forward only for the Mouse Reach

dataset will be tested for future work.

The baseline MSE+FWD algorithm performs better than ODAS. It’s possible that lack of

GAN hard negative training is causing the baseline forward algorithms to perform better than

ODAS. As mentioned previously label balance was improved through sampling positive samples

more often. Applying the label re-weighting may help in this example as well.

The average p-mAP at depth X% results are shown in Table 4.5. All of the algorithms

perform better than ODAS at each depth. Interestingly, the FWD only algorithms perform worse

at each offset threshold, but they perform better on the average p-mAP at each depth.

68

4.7 Discussion

In this work an algorithm for predicting the frame a behavior begins was devleoped and a

new dataset for action start detection research, the Mouse Reach Dataset, was provided. Due

to the nature of the task, a structured loss functions that reduces the number of false positive

predictions was designed. The two different losses perform better than the baseline on the Mouse

Reach Dataset. However on the THUMOS’14 dataset the Matching loss performed the best. In

the future tests on the importance of τ and smoothing of the ground truth labels are planned.

By modifying τ or the size of the Gaussian kernel on the ground truth labels, the temporal

localization accuracy can be adjusted.

The model will also be compared to existing techniques used by biologists for automati-

cally detecting the start of behaviors. Currently biologists use JAABA [KRRA+13] for detecting

action starts. Because JAABA uses a different type of labels, it is not trivial to make direct

comparisons between action start detection and bout start detection. Additionally JAABA does

not require every bout to be labeled, but the work in this chapter requires every start to be labeled.

Properly comparing the different algorithms will require some work.

Finally behavior discovery will be investigated. Currently labels created by humans are

being used, but there is no guarantee that these behaviors are connected to neurological events.

Ideally, using SNaCK 3 and learned models of video could be combined. By combining SNaCK

embeddings with the video analysis described in this chapter, it may be possible to explore

mouse behavior space.

4.8 Acknowledgments

Chapter 4 is based on “Detecting the Starting Frame of Actions in Video,” I. S. Kwak,

D. Kriegman, K. Branson and is currently being prepared for submission for publication of the

material. The dissertation author was the primary investigator and author of this paper.

69

300 400 500 600 700 800

Lift

HandOpen

Grab

Sup

AtMouth

Chew

Neuron 1
2

3
4
5
6

7

8

S
pi

ke
 r

at
e

a

b

Label

Prediction 1

Prediction 2

c

Per-frame
error

Matching
error

Per-frame
error

Matching
error

Wasserstein
error

Wasserstein
error

0.6 0.8 1.0 1.2 1.4 1.6
Time (s)

Figure 4.1. (a) In this neuroscience experiment, a mouse has been trained to reach for a food
pellet. This movement consists of a sequence of actions: lift, hand-open, grab, supinate, pellet at-
mouth, and chewing [GGG+15]. (b) A fundamental goal in systems neuroscience is to associate
patterns of neural activity (top) with the behaviors it causes (bottom), e.g. spiking in several
of the recorded cortical neurons precedes the onset of lift. Colors indicate different behaviors,
and saturation indicates annotator confidence. Confidence changes are sharper at action starts
than ends, as starts are usually associated with large accelerations, e.g. pinpointing the start of a
lift is much easier than pinpointing its end. (c) Given a sequence of labeled frames (Labels), a
per-frame loss prefers multiple or missed detections (Prediction 1) to a small temporal offset
in the predictions (Prediction 2). The structured losses proposed in this work are designed to
instead heavily penalize extra or missed detections. Error plots (black) show the error accrued
on each frame.

70

Figure 4.2. An example screen shot of the web based network output viewer for videos. The
green line is ground truth and purple is the network’s predictions. The mouse can hover over the
frames that caused the false positive predictions. The vertical blue line near 600 frames denotes
the current visible frame in the video. The purple and green rectangles shows the frame number
and scores of that frame. In this case, frame 578 is being viewed and the ground truth supinate
score is 0 and the network prediction of the behavior is 0.52. The side of the mouse paw can be
seen, which is something visible in the mouse supinate behavior, but the paw is quite far from
the food pellet.

71

Start - 10 frames Annotated start Start + 10 frames

a)

b)

Figure 4.3. Examples of labeled action starts from THUMOS’14 showing ambiguity in the
annotations. Each row shows annotated long jump starts (middle column), 10 frames before the
start (left column), and 10 frames after (right column). The frames representing the start of the
long-jump behavior do not seem to correspond to the same key frame in these examples. Row a)
shows an example without scene transitions, and the action is annotated to start when the athlete
leans back before running. Row b) includes a scene transition to a replay of the action. The
annotated action start is after the athlete has already started his run. These examples show very
different action start frames, and thus the proposed dataset is a better test of key frame detection.

72

Figure 4.4. The complete model consists of a fully connected layer, ReLU, Batch Normalization,
two Bi-directional LSTM layers, a fully connected layer then a sigmoid activation layer. The
LSTMs each have 256 hidden units.

73

Figure 4.5. Example frames of behaviors the Mouse Reach Dataset. The first row is the lift
behavior. Here the mouse paw is beginning to move off of the perch. The next row is the
Hand-open behavior. Here is the mouse beginning to open his paw to grab a pellet. The third
row is the grab behavior. The mouse beginning to close his paw around a food pellet.

74

Figure 4.6. The supinate behavior is shown in the first row. The mouse is beginning to turn its
paw towards its mouth. The second row shows the At-mouth behavior. The At-mouth behavior
occurs when the food pellet is starting to be placed into the mouth. The last row shows the chew
behavior, where the food pellet in the mouth and the mouse is starting to eat the pellet.

75

Figure 4.7. Each of these graphs shows the number of predictions at a certain frame distance
from the ground truth behavior location for the Lift behavior. The networks were trained with
HOGHOF features. The top shows the distribution of true positives and the bottom the false
positives.

76

Figure 4.8. These graphs show the distribution of predictions for the Hand-open behavior.

77

Figure 4.9. These graphs show the distribution of predictions for the Grab behavior.

78

Figure 4.10. These graphs show the distribution of predictions for the Supinate behavior.

79

Figure 4.11. These graphs show the distribution of predictions for the At-mouth behavior.

80

Figure 4.12. These graphs show the distribution of predictions for the Chew behavior.

81

Figure 4.13. In all the other results in this paper, a match is considered correct when the predicted
behavior is within ten frames of the true action start. Here τ is varied between 5 and 50 frames.
The Matching loss F-score is shown on the top and the Wasserstein Loss is bottom. The networks
were not retrained for these results, but simply re-analyzed. For the first 3 behaviors, the network
detects the start within twenty frames. However, for the At-mouth and Chew behaviors, the
network needs a much larger window.

82

Chapter 5

Conclusion

This thesis presents three different topics, each exploring parts of the supervised pipeline

and showing improved results by tailoring parts of the pipeline to the needs of the application.

Chapter 2 explores a new problem space, and a new dataset designed for the problem was created.

In chapter 3, the process of the dataset labeling was explored, which improved the quality of

constructed perceptual embeddings. Finally, Chapter 4 focuses on a problem that is not well

studied. The quality of results was improved drastically with the creation of a well-designed

dataset and algorithm for the problem.

Chapter 2 introduced the problem of urban tribe classification. This chapter introduced a

technique for modeling the scene and group of individuals for the purpose of social category

classification. The importance of the modeling group structure was explored and shown to be

important for the task. Additionally, with deep learning, future work corroborated the intuition

discovered in Chapter 2. The models in Chapter 2 were tested on a novel dataset collected for

the task.

In Chapter 3, triplet constraint collection for building perceptual embeddings was ex-

plored. UI modifications for collecting triplets were tested both synthetically and with human

mechanical turkers. The UI improvements show that with efficient triplet collection high quality

perceptual embeddings can be created. In addition to the changes to the UI, chapter 3 introduces

a method for combining a learned machine kernel with human constraints for reducing the

83

number of constraints needed and improving the quality of the embedding. The improvements in

the algorithm are shown quantitatively through a variety of tasks such as discovering mislabeled

birds and new categories. This work also provides a large food dataset of human taste similarities.

Finally, the precise localization of key frames of an action is explored. The work in this

chapter focuses on detecting the exact starting frame of a behavior, which is a previously, but

not heavily researched task. A new structured loss, that penalizes extra and missed action starts

heavily, was designed for this task. This loss was optimized with recurrent neural networks

(RNNs) and was compared to existing approaches. The model and loss were tested both on an

existing dataset as well as a newly collected dataset. Past work relied on evaluating performance

on datasets ill-suited for action onset detection. The new dataset, the Mouse Reach Dataset, is

more suited for the task of action start detection because experts have labeled only the starting

frame of a behavior. On both datasets, the proposed model outperforms related approaches and

baseline methods using an unstructured loss.

84

Bibliography

[AHSG17] Ziad Al-Halah, Rainer Stiefelhagen, and Kristen Grauman. Fashion forward:
Forecasting visual style in fashion. In Proceedings of the IEEE International
Conference on Computer Vision, pages 388–397, 2017.

[Arm] R. Armburst. Capturing Growth: Photo Apps and Open
Graph. http://developers.facebook.com/blog/post/2012/07/17/
capturing-growth--photo-apps-and-open-graph/.

[AWC+07] Sameer Agarwal, Josh Wills, Lawrence Cayton, Gert Lanckriet, David J Krieg-
man, and Serge Belongie. Generalized non-metric multidimensional scaling. In
International Conference on Artificial Intelligence and Statistics, 2007.

[BBM04] Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. Integrating constraints
and metric learning in semi-supervised clustering. In ICML. ACM, 2004.

[BDR06] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. Label Propagation
and Quadratic Criterion, pages 193–216. MIT Press, 2006.

[BEK+12] Oscar Beijbom, Peter J Edmunds, David I Kline, B Greg Mitchell, and David
Kriegman. Automated annotation of coral reef survey images. In CVPR. IEEE,
2012.

[BGVG14] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–Mining
Discriminative Components with Random Forests. In ECCV. Springer, 2014.

[BHBP14] Steve Branson, Grant Van Horn, Serge Belongie, and Pietro Perona. Bird
species categorization using pose normalized deep convolutional nets. In BMVC,
Nottingham, 2014.

[BHW+14] Steve Branson, Grant Van Horn, Catherine Wah, Pietro Perona, and Serge
Belongie. The Ignorant Led by the Blind: A Hybrid Human-Machine Vision
System for Fine-Grained Categorization. IJCV, 108(1-2):3–29, February 2014.

[BM09] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human
pose annotations. In ICCV, 2009.

[BMM11] L. Bourdev, S. Maji, and J. Malik. Describing people: Poselet-based attribute
classification. In ICCV, 2011.

85

http://developers.facebook.com/blog/post/2012/07/17/capturing-growth--photo-apps-and-open-graph/
http://developers.facebook.com/blog/post/2012/07/17/capturing-growth--photo-apps-and-open-graph/

[Bos] Mike Bostock. D3.js.

[BS02] Mukund Balasubramanian and Eric L Schwartz. The isomap algorithm and
topological stability. Science, 295(5552):7–7, 2002.

[Car12] M. Carroll. How Tumblr and Pinterest are fueling the image intelligence problem.
Forbes, January 17 2012. Web http://onforb.es/yEfDmM.

[CBC+10] D. J. Crandall, L. Backstrom, D. Cosley, S. Suri, D. Huttenlocher, and J. Klein-
berg. Inferring social ties from geographic coincidences. PNAS, 2010.

[CGG12] H. Chen, A. Gallagher, and B. Girod. Describing clothing by semantic attributes.
In ECCV, 2012.

[CGZ+16] De Cheng, Yihong Gong, Sanping Zhou, Jinjun Wang, and Nanning Zheng.
Person re-identification by multi-channel parts-based cnn with improved triplet
loss function. In Proceedings of the iEEE conference on computer vision and
pattern recognition, pages 1335–1344, 2016.

[CHEGCN15] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Car-
los Niebles. Activitynet: A large-scale video benchmark for human activity
understanding. In CVPR, 2015.

[CL11] C. Chang and C. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2011. http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

[CZ17] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new
model and the kinetics dataset. In CVPR, 2017.

[DBH14] C.D. Demiralp, M.S. Bernstein, and J. Heer. Learning Perceptual Kernels for
Visualization Design. IEEE Trans. on Visualization and Computer Graphics,
20(12):1933–1942, December 2014.

[DCSH15] Qieyun Dai, Peter Carr, Leonid Sigal, and Derek Hoiem. Family member
identification from photo collections. In 2015 IEEE Winter Conference on
Applications of Computer Vision, pages 982–989. IEEE, 2015.

[DJRG12] A. Dhall, J. Joshi, I. Radwan, and R. Goecke. Finding happiest moments in a
social context. In ACCV, 2012.

[DSK+14] C. Demiralp, C.E. Scheidegger, G.L. Kindlmann, D.H. Laidlaw, and J. Heer.
Visual Embedding: A Model for Visualization. IEEE Computer Graphics and
Applications, 34(1):10–15, January 2014.

[DT05] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In CVPR, 2005.

86

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[DY11] L. Ding and A. Yilmaz. Inferring social relations from visual concepts. ICCV,
2011.

[EHNG16] Victor Escorcia, Fabian Caba Heilbron, Juan Carlos Niebles, and Bernard
Ghanem. Daps: Deep action proposals for action understanding. In ECCV,
2016.

[FG09] M. Ferecatu and D. Geman. A statistical framework for image category search
from a mental picture. IEEE TPAMI, June 2009.

[FOZ+11] Ryan Farrell, Om Oza, Ning Zhang, Vlad I. Morariu, Trevor Darrell, and Larry S.
Davis. Birdlets: Subordinate categorization using volumetric primitives and
pose-normalized appearance. In ICCV, 2011.

[FSSM07] A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-consistent local
distance functions for shape-based image retrieval and classification. In IEEE
ICCV, 2007.

[GC09] A. Gallagher and T. Chen. Understanding images of groups of people. In CVPR,
2009.

[GGG+15] Jian-Zhong Guo, Austin R Graves, Wendy W Guo, Jihong Zheng, Allen Lee,
Juan Rodriguez-Gonzalez, Nuo Li, John J Macklin, James W Phillips, Brett D
Mensh, et al. Cortex commands the performance of skilled movement. Elife,
2015.

[GWKP11] Ryan Gomes, Peter Welinder, Andreas Krause, and Pietro Perona. Crowdcluster-
ing. NIPS, 2011.

[GYC+17] Jiyang Gao, Zhenheng Yang, Kan Chen, Chen Sun, and Ram Nevatia. Turn tap:
Temporal unit regression network for temporal action proposals. In ICCV, 2017.

[HBL17] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet
loss for person re-identification. arXiv preprint arXiv:1703.07737, 2017.

[HBSH15] Eric Heim, Matthew Berger, Lee M. Seversky, and Milos Hauskrecht. Efficient
Online Relative Comparison Kernel Learning. arXiv preprint arXiv:1501.01242,
2015.

[HKHL+15] M Hadi Kiapour, Xufeng Han, Svetlana Lazebnik, Alexander C Berg, and
Tamara L Berg. Where to buy it: Matching street clothing photos in online shops.
In Proceedings of the IEEE international conference on computer vision, pages
3343–3351, 2015.

[HWJD17] Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S Davis. Learning fash-
ion compatibility with bidirectional lstms. In Proceedings of the 25th ACM
international conference on Multimedia, pages 1078–1086. ACM, 2017.

87

[IZJ+17] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban, Ivan Laptev, Rahul
Sukthankar, and Mubarak Shah. The thumos challenge on action recognition for
videos ”in the wild”. Computer Vision and Image Understanding, 2017.

[JGC+10] X. Jin, A. Gallagher, L. Cao, J. Luo, and J. Han. The Wisdom of Social
Multimedia: Using Flickr for Prediction and Forecast. In ACM Multimedia Int.
Conf., 2010.

[JLRZ+14] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah, and
R. Sukthankar. THUMOS challenge: Action recognition with a large number of
classes, 2014.

[JN11] K.G. Jamieson and R.D. Nowak. Low-dimensional embedding using adaptively
selected ordinal data. In Allerton Conference on Communication, Control, and
Computing, 2011.

[JSD+14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[Ken48] Maurice George Kendall. Rank correlation methods. Griffin, 1948.

[KHX+19] John W Krakauer, Alkis M Hadjiosif, Jing Xu, Aaron L Wong, and Adrian M
Haith. Motor learning. Comprehensive Physiology, 9:613–663, 2019.

[KMB+13] Iljung S Kwak, Ana Cristina Murillo, Peter N Belhumeur, David J Kriegman,
and Serge J Belongie. From bikers to surfers: Visual recognition of urban tribes.
In BMVC, volume 1, page 2, 2013.

[KRRA+13] Mayank Kabra, Alice A Robie, Marta Rivera-Alba, Steven Branson, and Kristin
Branson. Jaaba: interactive machine learning for automatic annotation of animal
behavior. Nature methods, 10(1):64, 2013.

[Kru64] Joseph B Kruskal. Nonmetric multidimensional scaling: a numerical method.
Psychometrika, 29(2):115–129, 1964.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[KTS+14] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional
neural networks. In CVPR, 2014.

88

[Kuh55] Harold W. Kuhn. The Hungarian Method for the assignment problem. Naval
Research Logistics Quarterly, 1955.

[KvL14] Matthus Kleindessner and Ulrike von Luxburg. Uniqueness of Ordinal Embed-
ding. JMLR, 2014.

[KW78] Joseph B Kruskal and Myron Wish. Multidimensional scaling, volume 11. Sage,
1978.

[KYBB14] M Hadi Kiapour, Kota Yamaguchi, Alexander C Berg, and Tamara L Berg.
Hipster wars: Discovering elements of fashion styles. In European conference
on computer vision, pages 472–488. Springer, 2014.

[LCY13] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network.
arXiv:1312.4400 [cs], December 2013. arXiv: 1312.4400.

[LG11a] Yong Jae Lee and K. Grauman. Learning the easy things first: Self-paced visual
category discovery. In CVPR, pages 1721–1728, June 2011.

[LG11b] Yong Jae Lee and Kristen Grauman. Face discovery with social context. In
BMVC, pages 1–11, 2011.

[LHLF15] Tianqiang Liu, Aaron Hertzmann, Wilmot Li, and Thomas Funkhouser. Style
compatibility for 3d furniture models. ACM Transactions on Graphics (TOG),
34(4):85, 2015.

[LLQ+16] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. Deepfashion:
Powering robust clothes recognition and retrieval with rich annotations. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1096–1104, 2016.

[LLWT15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face
attributes in the wild. In Proceedings of the IEEE international conference on
computer vision, pages 3730–3738, 2015.

[LSL+12] S. Liu, Z. Song, G. Liu, C. Xu, H. Lu, and S. Yan. Street-to-shop: Cross-scenario
clothing retrieval via parts alignment and auxiliary set. In CVPR, 2012.

[Maf96] M. Maffesoli. The Time of the Tribes: The Decline of Individualism in Mass
Society. Sage Publications, 1996.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[McF12] Brian McFee. More like this: machine learning approaches to music similarity.
PhD thesis, University of California, San Diego, May 2012.

[Mil56] George A Miller. The magical number seven, plus or minus two: some limits on
our capacity for processing information. Psychological review, 63(2):81, 1956.

89

[MKB+12] A. C. Murillo, I. S. Kwak, L. Bourdev, D. Kriegman, and S. Belongie. Urban
tribes: Analyzing group photos from a social perspective. In CVPR Workshop
on Socially Intelligent Surveillance and Monitoring (SISM), 2012.

[MKBK11] O. K. Manyam, N. Kumar, P. N. Belhumeur, and D. Kriegman. Two faces are
better than one: Face recognition in group photographs. In Int. Joint Conference
on Biometrics (IJCB), 2011.

[MTSVDH15] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
Image-based recommendations on styles and substitutes. In Proceedings of the
38th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 43–52. ACM, 2015.

[OT01] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic represen-
tation of the spatial envelope. IJVC, 2001.

[PC+19] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Founda-
tions and Trends R© in Machine Learning, 11, 2019.

[PG11] D. Parik and K. Grauman. Relative Attributes. In ICCV, 2011.

[PMB18] Omid Poursaeed, Tomáš Matera, and Serge Belongie. Vision-based real estate
price estimation. Machine Vision and Applications, 29(4):667–676, 2018.

[RDS+14] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition
challenge. CoRR, abs/1409.0575, 2014.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, 2015.

[SAN16] Russell Stewart, Mykhaylo Andriluka, and Andrew Y Ng. End-to-end people
detection in crowded scenes. In CVPR, 2016.

[SCZ+17] Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki Miyazawa, and Shih-Fu
Chang. Cdc: Convolutional-de-convolutional networks for precise temporal
action localization in untrimmed videos. In CVPR, 2017.

[SGCC13] Henry Shu, Andrew Gallagher, Huizhong Chen, and Tsuhan Chen. Face-graph
matching for classifying groups of people. In 2013 IEEE International Confer-
ence on Image Processing, pages 2425–2429. IEEE, 2013.

[SGZ+18] Britton Sauerbrei, Jian-Zhong Guo, Jihong Zheng, Wendy Guo, Mayank Kabra,
Nakul Verma, Kristin Branson, and Adam Hantman. The cortical dynamics
orchestrating skilled prehension. bioRxiv, page 266320, 2018.

90

[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A Unified
Embedding for Face Recognition and Clustering. arXiv:1503.03832 [cs], March
2015. arXiv: 1503.03832.

[SLF13] Ming Shao, Liangyue Li, and Yun Fu. What do you do? occupation recogni-
tion in a photo via social context. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3631–3638, 2013.

[SLJ+14] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going Deeper with Convolutions. arXiv:1409.4842 [cs], September
2014. arXiv: 1409.4842.

[SMJ+16] Bharat Singh, Tim K Marks, Michael Jones, Oncel Tuzel, and Ming Shao.
A multi-stream bi-directional recurrent neural network for fine-grained action
detection. In CVPR, 2016.

[SPC+18] Zheng Shou, Junting Pan, Jonathan Chan, Kazuyuki Miyazawa, Hassan Mansour,
Anthony Vetro, Xavier Giro-i Nieto, and Shih-Fu Chang. Online detection of
action start in untrimmed, streaming videos. In ECCV, 2018.

[SSF17] Qianru Sun, Bernt Schiele, and Mario Fritz. A domain based approach to social
relation recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3481–3490, 2017.

[SWHY11] Z. Song, M. Wang, X. Hua, and S. Yan. Predicting occupation via human
clothing and contexts. ICCV, 2011.

[SZ14] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks
for action recognition in videos. In Advances in neural information processing
systems, pages 568–576, 2014.

[SZS12] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A
dataset of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402, 2012.

[TBF+15] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3d convolutional networks. In ICCV,
2015.

[TLB+11] Omer Tamuz, Ce Liu, Serge Belongie, Ohad Shamir, and Adam Tauman Kalai.
Adaptively learning the crowd kernel. In ICML, 2011.

[UVDSGS13] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM
Smeulders. Selective search for object recognition. IJCV, 2013.

[VBK17] Andreas Veit, Serge Belongie, and Theofanis Karaletsos. Conditional similarity
networks. Computer Vision and Pattern Recognition (CVPR), 2017.

91

[VdMH08] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
JMLR, 9(2579-2605):85, 2008.

[vdMW12a] L. van der Maaten and K. Weinberger. Stochastic triplet embedding. In IEEE
MLSP, 2012.

[VdMW12b] Laurens Van der Maaten and K. Weinberger. Stochastic triplet embedding. In
IEEE Int. Workshop on Machine Learning for Signal Processing, 2012.

[VMN+16] Andreas Veit, Tomas Matera, Lukas Neumann, Jiri Matas, and Serge Belongie.
Coco-text: Dataset and benchmark for text detection and recognition in natural
images. arXiv preprint arXiv:1601.07140, 2016.

[VPB09] A. Vinciarelli, M. Pantic, and H. Bourlard. Social signal processing: Survey of
an emerging domain. Image and Vision Computing, 2009.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, 2017.

[WBW+11] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California
Institute of Technology, 2011.

[WC15] Yufei Wang and Garrison W Cottrell. Bikers are like tobacco shops, formal
dressers are like suits: Recognizing urban tribes with caffe. In 2015 IEEE Winter
Conference on Applications of Computer Vision, pages 876–883. IEEE, 2015.

[WHB+14a] Catherine Wah, G. V. Horn, Steve Branson, Subhransu Maji, Pietro Perona, and
Serge Belongie. Similarity Comparisons for Interactive Fine-Grained Catego-
rization. CVPR, 2014.

[WHB+14b] Catherine Wah, Grant Van Horn, Steve Branson, Subhransu Maji, Pietro Per-
ona, and Serge Belongie. Similarity comparisons for interactive fine-grained
categorization. In IEEE CVPR, 2014.

[Wic03] Florian Wickelmaier. An introduction to mds. Sound Quality Research Unit,
Aalborg University, Denmark, 2003.

[WKB14a] Michael J Wilber, Iljung S Kwak, and Serge J Belongie. Cost-effective hits
for relative similarity comparisons. In Second AAAI conference on human
computation and crowdsourcing, 2014.

[WKB14b] Michael J Wilber, Iljung S Kwak, and Serge J Belongie. Cost-effective hits for
relative similarity comparisons. In AAAI Conference on Human Computation
and Crowdsourcing, 2014.

92

[WKKB15] Michael Wilber, Iljung S Kwak, David Kriegman, and Serge Belongie. Learning
concept embeddings with combined human-machine expertise. In Proceedings
of the IEEE International Conference on Computer Vision, pages 981–989, 2015.

[Wol94] Jeremy M. Wolfe. Guided search 2.0 a revised model of visual search. Psycho-
nomic Bulletin & Review, 1, June 1994.

[WP90] Ian Q Whishaw and Sergio M Pellis. The structure of skilled forelimb reaching
in the rat: a proximally driven movement with a single distal rotatory component.
Behavioural brain research, 41(1):49–59, 1990.

[WQD12] Xiang Wang, Buyue Qian, and Ian Davidson. On constrained spectral cluster-
ing and its applications. Data Mining and Knowledge Discovery, 28(1):1–30,
September 2012.

[WTL11] Y. Wang, D. Tran, and Z. Liao. Learning hierarchical poselets for human parsing.
CVPR, 2011.

[WWN+18] Zijun Wei, Boyu Wang, Minh Hoai Nguyen, Jianming Zhang, Zhe Lin, Xiaohui
Shen, Radomı́r Mech, and Dimitris Samaras. Sequence-to-segment networks
for segment detection. In Advances in Neural Information Processing Systems,
2018.

[WXW+16] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang,
and Luc Van Gool. Temporal segment networks: Towards good practices for
deep action recognition. In ECCV, 2016.

[XDS17] Huijuan Xu, Abir Das, and Kate Saenko. R-c3d: Region convolutional 3d
network for temporal activity detection. In ICCV, 2017.

[YJHL11] J. Yu, X. Jin, J. Han, and J. Luo. Collection-based sparse label propagation and
its application on social group suggestion from photos. ACM Trans. Intell. Syst.
Technol., 2011.

[YKOB12] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg. Parsing clothing in
fashion photographs. In CVPR, 2012.

[ZCZ+18] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. Graph neural networks: A review of methods and applications. arXiv
preprint arXiv:1812.08434, 2018.

[ZMT15] Liwen Zhang, Subhransu Maji, and Ryota Tomioka. Jointly Learning Multi-
ple Perceptual Similarities. arXiv:1503.01521 [cs, stat], March 2015. arXiv:
1503.01521.

[ZR12] X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark local-
ization in the wild. In CVPR, 2012.

93

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Urban Tribe Classification
	Introduction
	Related Work
	Group description
	Person detection and description
	Global group descriptors

	Group classification
	Experiments and Results
	Urban Tribes dataset
	Social group recognition experiments

	Conclusions and Future Work
	Acknowledgments

	Collecting & Using Human Judgements of Similarity
	Introduction
	Related Work
	Cost Effective Hits
	Synthetic Experiments
	Human Experiments
	Results
	Guidelines and conclusion

	``SNE-and-Crowd-Kernel'' (SNaCK) embeddings
	Formulation
	SNaCK example: MNIST

	Experiments
	Incrementally labeling CUB-200-2011
	Experiments on Yummly-10k
	Interactively discovering the structure of pictographic character symbols

	Conclusion
	Acknowledgments

	Action Start Detection
	Introduction
	Related Work
	Problem Formulation
	Matching Loss
	Wasserstein/EMD Loss
	Per-Frame Loss
	Combined Loss

	Visualization
	Datasets
	Mouse Reach Dataset

	Experiments
	Mouse Experiments
	THUMOS'14 Experiments
	Implementation Details
	Mouse Reach Results
	THUMOS'14 Results

	Discussion
	Acknowledgments

	Conclusion
	Bibliography

