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Abstract

With new treatments and novel technology available, precision medicine has become a key topic in 

the new era of healthcare. Traditional statistical methods for precision medicine focus on subgroup 

discovery through identifying interactions between a few markers and treatment regimes. 

However, given the large scale and high dimensionality of modern data sets, it is difficult to detect 

the interactions between treatment and high dimensional covariates. Recently, novel approaches 

have emerged that seek to directly estimate individualized treatment rules (ITR) via maximizing 

the expected clinical reward by using, for example, support vector machines (SVM) or decision 

trees. The latter enjoys great popularity in clinical practice due to its interpretability. In this paper, 

we propose a new reward function and a novel decision tree algorithm to directly maximize 

rewards. We further improve a single tree decision rule by an ensemble decision tree algorithm, 

ITR random forests. Our final decision rule is an average over single decision trees and it is a soft 

probability rather than a hard choice. Depending on how strong the treatment recommendation is, 

physicians can make decisions based on our model along with their own judgment and experience. 

Performance of ITR forest and tree methods is assessed through simulations along with 

applications to a randomized controlled trial (RCT) of 1385 patients with diabetes and an EMR 

cohort of 5177 patients with diabetes. ITR forest and tree methods are implemented using 

statistical software R (https://github.com/kdoub5ha/ITR.Forest).
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1 Introduction

Many diseases, such as Type 2 diabetes (T2D), have a complex and multifactorial 

pathophysiology. Treatment of T2D typically begins with lifestyle modification and 

metformin, a medication that lowers blood glucose by reducing glucose production in the 

liver and enhancing muscle glucose uptake (Arakaki et al., 2014). When lifestyle 

modification and metformin are insufficient to control blood glucose, additional medications 

are necessary. There are several options for second- and third-line therapies for T2D, 

including sulfonylureas, thiazolidinediones, dipeptidyl peptidase-4 (DPP-4) inhibitors, 

sodium-glucose co-transporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) 

receptor agonists, and insulin. Different therapeutic drug classes have different mechanisms 

in treating T2D, resulting in some advantages and/or disadvantages, limitations, and adverse 

effects. Clinical guidelines provide less clarity regarding optimal second- and third-line 

therapies (Diamant et al., 2014; Forst et al., 2014). The unclear advantages of a combination 

of drug regimens and the increased potential for adverse effects make glucose lowering 

therapy increasingly complex (Bergenstal et al., 2010; Nyenwe et al., 2011). So far, there is 

no consensus for individualized treatment guidance on the selection of these treatments, 

especially when taking into account treatment heterogeneity effects. There are increasing 

efforts to develop individualized treatment rules (ITR) in the new era of precision medicine 

(Hayes et al., 2007; Cummings et al., 2010).

Traditional methods of personalized treatment suggestions are based on ad hoc subgroup 

analyses or searching for covariate-treatment interactions. These methods, however, may 

suffer from a lack of efficiency or validity due to the curse of dimensionality and multiple 

comparisons. Recent methodologies for developing ITR generally fall into three categories. 

The first approach focuses on developing novel algorithms of covariate-treatment interaction 

detection. For example, Su et al. (2009) and Lipkovich et al. (2011) developed the 

interaction tree methods by building splitting rules based on covariate-treatment interaction 

tests. Su et al. (2012) then extended their previous method to observational studies. The 

second category is two-step methods (Cai et al., 2011; Zhao et al., 2013; Foster et al., 2011; 

Faries et al., 2013). The first step is to estimate the differential treatment effect of each 

individual patient measured by a score function. These scores are then used as responses to 

establish a relationship with the covariates as the second step. The third class of methods is 

based on value functions which obtain optimal ITR by maximizing the value function (Qian 

and Murphy, 2011; Zhao et al., 2012; Zhang et al., 2012a). New methodologies have greatly 

extended our ability to explore solutions for precision medicine, but these methods have 

limitations. The results from interaction trees are easy to interpret, but since the covariate-

treatment interactions are maximized at each level of the tree, final trees do not connect with 

any objective function. Thus, it is hard to define an optimal solution for patients. Two-step 

methods usually need to impose parametric or semi-parametric models to estimate a score 

function in the first stage and are subject to model misspecification. Zhao et al. (2012) used 

a weighted classification framework and support vector machine (SVM) to estimate optimal 

treatment rules but solved the problem in the dual space. Consequently, results are hard to 

interpret and adopt for clinicians. In order to widely implement an ITR to inform clinical 

practice, interpretability of the rule is key. To this end, many value function based 
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procedures have recently been proposed (Xu et al., 2015; Laber and Zhao, 2015; Zhang et 

al., 2015; Fu et al., 2016). Among them, tree-based methods offer interpretability and enjoy 

great popularity among clinicians (Su et al., 2009; Lipkovich et al., 2011; Laber and Zhao, 

2015). In this paper, we also focus on the value function approach. We develop a recursive 

partitioning tree algorithm and random forest procedure to optimize the value function in 

order to obtain ITR.

The tree method was first proposed by Morgan and Sonquist (1963), advanced by the 

development of classification and regression trees (CART) (Breiman et al., 1984), and is 

useful in partitioning the predictor space into meaningful subgroups which may elucidate 

some underlying structure relating a response to predictors. Since an individual tree is 

known to be highly variable, random forests (Breiman, 2001), an extension of the bagging 

procedure (Breiman, 1996), was proposed to improve stability. However, both tree and 

random forest algorithms are typically used for supervised learning where correct outcome 

labels are provided. Recently Laber and Zhao (2015) proposed a tree algorithm to optimize 

the value function and search for ITR. Their method is different from original tree 

algorithms in that they incorporate an objective function (i.e., value function) along with 

treatment labels through a “purity” measure. Our proposed method may look similar as 

Laber and Zhao (2015)’s, but differs in the definition of the purity measure. We seek to 

maximize the value in a given node, conditional on existing treatment assignments in all 

other previously defined terminal nodes. Unlike traditional regression or classification tree 

methods where the error function (e.g., sum of squared error, misclassification error) is the 

widely adopted purity measure and is additive across all final nodes, the value function is a 

type of overall average of the outcome. Therefore, optimizing the value function within a 

single node as proposed by Laber and Zhao (2015) may lead to a suboptimal solution which 

cannot be translated to the overall optimized value defined using all final nodes. When the 

decision signal level is relatively weak, a single tree decision rule is highly variable. Our 

random forest algorithm generates a decision rule by averaging over all decision trees in the 

forest. The decision rule for a future patient is then a soft probability rather than a hard 

choice. This feature is greatly needed in clinical practice as the strength of the treatment 

recommendation allows physicians to make a treatment choice using the decision rule along 

with their judgment and experience. A variable importance measure similar to the one 

proposed by Breiman (2001) is also developed as a tool for guiding clinical decision 

making.

In summary, our contribution in this paper is: (1) development of a value function ensemble 

tree algorithm, ITR forest, to generate an ITR; (2) ITR treatment probability estimation via 

an ITR forest; (3) implementation of variable importance measure to guide decision making; 

(4) demonstration of the methods through simulation, randomized controlled trials (RCT), 

and electronic medical record (EMR) examples. The software package ITR.Forest 
implemented by the statistical computing language R (R Core Team, 2017) along with 

documentation is available at https://github.com/kdoub5ha/ITR.Forest.
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2 Methods

2.1 Value Function and Individualized Treatment Rules

We are given a random sample of size N from a large population. For each unit i in the 

sample, where i = 1,…,N, let ti be the treatment assignment, yi be the response, and xi be the 

p × 1 vector of baseline covariates or markers. (Y, T, X) is the generic random variable of 

{(yi, ti, xi)}. We let Xj represent the jth covariate where j = 1,…,p. We denote the distribution 

of P by (Y, T, X), with E being the expectation with respect to P. For a binary treatment 

regime, ti indicates whether the treatment of interest is received, with ti = 1 indicating that 

the subject received active treatment and ti = 0 indicating that the subject received control, 

i.e., ti ∈ {0,1}. Using the potential outcome notation, let yi(0) denote the outcome under 

control and yi(1) the outcome under treatment. We observe ti and yi, where yi = tiyi(1) + (1 − 

ti)yi(0). Let r(X) denote a vector of binary ITR that is a function of the subjects’ baseline 

covariates X. For any given individualized treatment recommendation r, we let Pr be the 

distribution of (Y, T, X) given that T = r(X). Throughout our paper, we use I as an indicator 

operator where I(x) takes value 1 or 0 if the scalar x is “true” or “false” respectively. When 

applied to a vector or matrix, I is an element-wise operator.

The research question for individualized treatment recommendation or subgroup 

identification is only valid when multiple treatment options are available for the same 

subject. If only one treatment option is allowed or available for certain subjects, the optimal 

treatment is the only available one. Therefore, without loss of generality, our population 

space Ω is defined as Ω = {X| Pr(t|X) ∈ (0,1), ∀t ∈ {0,1}}. Since 

dP = Pr(Y ∣ X, T ) Pr(T ∣ X) Pr(X) and dPr = Pr(Y ∣ X, T )I(T = r(X)) Pr(X), we have, 

dPr
dP = I(T = r(X))

Pr(T ∣ X) . The expected value of treatment benefit with respect to r is,

V (r) = Er(Y ) = ∫ Y dPr = ∫ Y dPr

dP dP = E I(T = r(X))
Pr(T ∣ X) Y . (1)

Our goal is to estimate ro, such that, ro ∈ arg max V(r) (Qian and Murphy, 2011; Zhao et al., 

2012; Laber and Zhao, 2015; Zhang et al., 2012a). Using double expectation rule we have,

V (r) = E I(T = r(X))
Pr(T ∣ X) Y = E E I(T = r(X))

Pr(T ∣ X) Y T , X
= E[I(r(X) = 1) {E(Y ∣ T = 1, X) − E(Y ∣ T = 0, X)}] +

E{E(Y ∣ T = 0, X)} .

Therefore our optimizer maximizing V(r) with respect to r is

ro(X) = I(E(Y ∣ T = 1, X) > E(Y ∣ T = 0, X)) . (2)

The interpretation of equation (2) is straightforward: simply assign a treatment to patients 

who can benefit more from it. Equation (2) also connects our method with other 

personalized treatment suggestion methods such as the contrast function D(X) = E(Y|T = 1, 

X) − E(Y∣T = 0, X) that was defined and estimated by Cai et al. (2011) and Foster et al. 
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(2011) to generate ITR. In the context of precision medicine, people often assume that the 

responses Y are from the following model Y = β0 + g(X) + T × D(X) + ϵ, where β0 is the 

overall mean, both g(X) and D(X) are functions of baseline markers and centered at 0. Based 

on equation (2), it is easy to see that the optimal solution is, ro(X) = I(D(X) > 0). Therefore, 

our method also targets the treatment by marker interactions, similar to the interaction tree 

approaches (Su et al., 2009; Lipkovich et al., 2011).

With multivariate X, using fully non-parametric methods and incorporating non-linear 

functions for approximating ro(X) are extremely valuable, especially when D(X) takes a 

complex form (Foster et al., 2011). However, these methods are subject to the curse of 

dimensionality and pose challenges in making inferences about the resulting ITR and its 

associated value function. On the other hand, if D(X) is estimated by imposing parametric or 

semi-parametric models on E(Y|X, T), the plug-in estimate of ro(X) may lead to a much 

lower population average outcome compared to that of the true ro(X) (Qian and Murphy, 

2011). One may reduce model misspecification by including non-linear bases and selecting 

important variables via regularized estimation (Qian and Murphy, 2011; Imai and Strauss, 

2010). However, it remains challenging to efficiently choose non-linear basis functions to 

achieve an optimal bias and variance trade-off.

2.2 ITR Tree and Forest

We propose a nonparametric approach that maximizes the value function using a recursive 

partitioning algorithm and extend this method to generate random forests. We consider a 

study designed to assess a binary treatment effect on a continuous response with a number of 

baseline covariates present, either continuous or categorical. Our goal is to search for a 

treatment assignment with maximized value function. The value function is evaluated by the 

observed data and is estimated by,

V (r) = ∑
i = 1

N I(ti = r(xi))
Pr(ti ∣ xi)

yi ∕ ∑
i = 1

N I(ti = r(xi))
Pr(ti ∣ xi)

(3)

where P̂r(ti|xi) is an estimated propensity score and is typically estimated using logistic 

regression in observational studies (Rosenbaum and Rubin, 1983). This estimator of the 

value is referred to as the inverse probability weighted estimator (IPWE). We also 

incorporate the augmented inverse probability weighted estimator (AIPWE) used by Zhang 

et al. (2012b) in our investigation. The AIPWE protects against misspecification of P ̂r(ti|xi). 

For RCT, P̂r(ti|xi) = 0.5, assuming a 1 : 1 allocation ratio.

We now introduce how to grow a tree.

(1) Initial Split. For a given space 

Ω = {xi, i = 1…, N ∣ Pr(t ∣ xi) ∈ (0, 1), ∀t ∈ {0, 1}} ⊂ ℝp or a single node tree 

containing all patients, we start with an initial split. This split is induced by a 

threshold, c, on a covariate, e.g., X1. If X1 is continuous, then the binary decision 

r(X) is considered as r(X) = I(X1 ≤ c). If X1 is nominal with d distinct categories 

C = {c1,…,cd}, then the binary question becomes “Is X1 ∈ A?” for any subset A 
⊂ C. Observations answering “yes” go to the left child node and observations 
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answering “no” go to the right child node. We assign the new treatment label to 

the subject based on the child node in which that subject is placed. For example, 

if the subject goes to left, we consider the treatment decision as treated, 

otherwise it is control. We define this process by a partition:

{Ω1 = {Ω ∣ Xj ≤ c}, r(Ω1) = t} and {Ω2 = {Ω ∣ Xj > c}, r(Ω2) = t′}, t, t′ ∈ {0, 1},

where r(Ω) = t is defined as r(xi) = t, ∀xi ∈ Ω. The value function V (r) is then 

reevaluated using original treatment assignment and the new assignment

V (j, c, t, t′) = ∑
i ∈ Ω1

I(ti = t)
Pr(ti ∣ xi)

yi + ∑
i ∈ Ω2

I(ti = t′)
Pr(ti ∣ xi)

yi ∕ ∑
i ∈ Ω1

I(ti = t)
Pr(ti ∣ xi)

+ ∑
i ∈ Ω2

I(ti = t′)
Pr(ti ∣ xi)

.

The best split of the variable Xs is the one that yields the maximum value 

function among all permissible splits of all markers as well as new treatment 

assignment, that is, given a covariate Xj and a split point c, we evaluate value 

function when r(Ω1) = 1 and r(Ω2) = 0 versus r(Ω1) = 0 and r(Ω2) = 1, i.e.,

V * = max
j, c, (t, t′) ∈ {(0, 1), (1, 0)}

V (j, c, t, t′) .

After the initial split the space is partitioned into two subspaces or nodes, Ω1 and 

Ω2, each with a new treatment label noted as ro(Ω1) and ro(Ω2), and an estimated 

maximum value V * for current tree.

(2) Second Split. We now proceed to the next split of both nodes generated from 

initial step, ω1 and Ω2. For each node, without loss of generality, we denote it as 

ω1. Starting with all of the data in Ω1, consider a splitting variable j, split point 

c, and define a new partition in subspace Ω1 as, Ω11 = Ω1 ⋂{Ω|Xj ≤ c} and Ω12 = 

Ω1 ⋂{Ω|Xj > c}. We seek the splitting variable j, split point c, and treatment 

assignment (t, t′) ∈ {(0,1), (1, 0)} that solves

max
j, c, (t, t′) ∈ {(0, 1), (1, 0)}

∑i ∈ Ω11 I(ti = t)
Pr(ti ∣ xi)

yi + ∑i ∈ Ω12 I(ti = t′)
Pr(ti ∣ xi)

yi + ∑i ∈ Ω2 I(ti = ro(xi))
Pr(ti ∣ Xi)

yi

∑i ∈ Ω11 I(ti = t)
Pr(ti ∣ xi)

+ ∑i ∈ Ω12 I(ti = t′)
Pr(ti ∣ xi)

+ ∑i ∈ Ω2 I(ti = ro(xi))
Pr(ti ∣ Xi)

,

and V ( * ) represents the maximized value of above function. This split will only 

be possible if V ( * ) is greater than V * by a pre-defined level. The same procedure 

applies to splitting Ω2. We adopt a sequential splitting procedure where the order 

in which nodes Ω1 and Ω2 are split is random (Dusseldorp and Van Mechelen, 

2014). Finally, we update partition of the space and the treatment assignment ro
for each subspace/node, as well as the estimated maximum value V * for current 

tree.

Doubleday et al. Page 6

J Comput Graph Stat. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3) Further Splits. At each step of the algorithm, we consider all potential splits of 

every terminal node of the tree. We then repeat the previous procedure shown in 

the second split. The order of updating terminal nodes is random. Again, for 

every node we retain a split if the overall value function is increased by a certain 

level.

The algorithm stops when a split can no longer be found to increase the value by a pre-

defined threshold. In constructing the initial tree, a terminal node is declared when any one 

of the following conditions is met: (1) the total number of observations in the node is less 

than some preset minimum node size; (2) the depth of the node is greater than some preset 

maximum tree depth.

Our partitioning algorithm is a sequential algorithm as noted by Dusseldorp and Van 

Mechelen (2014). However, such order effects can be counterbalanced by random forest 

algorithm when a random pre-selection of variables is employed (Strobl et al., 2009). The 

ITR is developed by maximizing an overall value function, such that in determining c* we 

calculate values based on all terminal nodes and their treatment assignments. This 

differentiates our method from that used by Laber and Zhao (2015). The algorithm stays the 

same for categorical covariates when subspaces are defined by Ω1 = {Ω|X1 ∈ A} and Ω2 = 

{Ω|X1 ∉ A}.

A random forest of ITR trees is then generated via bootstrap sampling, often referred to as 

“bagging” (Breiman, 2001). Bagging averages many noisy but approximately unbiased 

models and hence reduces the variance. From a bootstrap sample, an ITR tree is grown with 

each split determined by maximizing the value function of a randomly selected subset of m0 

predictors. For a set of p predictors we set m0 = max(⌊p/3⌋, 1) as suggested by Friedman et 

al. (2001). Repeating this procedure yields a random forest of uncorrelated ITR trees. Our 

final recommended ITR for each subject is the average of decisions over all trees in the ITR 

forest. A forest of J trees is denoted by ℱ = {τj : j = 1, 2, …, J}, where each τj is a single tree. 

For an individual i, a single ITR tree votes for treatment rτj(xi) = 1 or for control rτj(xi) = 0. 

Treatment assignment based on forest ℱ is calculated as 

pℱ = Pr(rℱ(xi) = 1) = 1
J ∑j = 1

J rτj(xi), which is leveraged to estimate the value function for a 

forest as,

V forest(r) =
∑i = 1

N I(ti = r(xi))[pℱI(ti = 1) + (1 − pℱ)I(ti = 0)]
Pr(ti ∣ xi)

yi

∑i = 1
N I(ti = r(xi))[pℱI(ti = 1) + (1 − pℱ)I(ti = 0)]

Pr(ti ∣ xi)

.

It was previously noted by Fu et al. (2016) and Laber and Zhao (2015) that the variance of 

the value estimated by equation (3) may become unstable when using the raw outcome Y. As 

a hedge against this instability residuals from a model may be used as the outcome measure. 

This gives Y * = Y − m(X) where m(X) are predicted values from some model. Fu et al. (2016) 

and Laber and Zhao (2015) recommended linear models and random forests to estimate 

m(X), respectively. For the remainder of this paper we use random forests to estimate m(X)
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unless otherwise noted. We utilize the R package randomForest with the defaults to 

estimate m(X) when random forests are used to stabilize the variance (Liaw and Wiener, 

2002). Y* is used to generate an ITR in training data and original outcome Y is used to 

calculate maximized value by validation data.

2.3 Pruning

A large tree likely suffers from overfitting as the tree growing algorithm is greedy. Breiman 

et al. (1984) suggested a pruning procedure that creates a set of optimally pruned subtrees of 

Γ0, and selects the best subtree based on a tree complexity penalty. The performance of an 

ITR tree is evaluated using

V λ(Γ) = V (Γ) − λ ⋅ Γ − Γ , (4)

where V(Γ) evaluates the total value in tree Γ. V(Γ) is obtained by evaluating equation (3) 

for the decision rule generated by tree Γ. Γ is the set of terminal nodes of tree Γ, Γ − Γ  is 

the number of internal nodes in Γ, and λ > 0 is a penalty based on tree size. A tree with 

larger Vλ(Γ) is desirable and a cross validation procedure is used to select tuning parameter 

λ.

Given a training data set and a penalty parameter λ, a large initial tree Γ0 and calculate 

V λ
train(Γ). Next, we want to trim the “weakest” branch of Γ0. To find the “weakest” branch of 

Γ0, consider each non-terminal node h of Γ0 and the branch Γh, which has h as its root node. 

The “weakest” branch of Γ0 satisfies the following conditions: (1) node h has the greatest 

number of parent nodes (i.e. is far away from the initial node of Γ0) and (2) Γ0 − Γh has the 

highest value among all branches Γh. V λ
train(Γ0 − Γℎ) is the overall value of the initial tree 

after branch Γh is trimmed. The “weakest” branch is both the farthest away from the root 

node of Γ0 and also contributes the smallest additional value to the tree. Hence, if two 

branches, say Γh1 and Γh2, have root nodes equidistant from the root node of Γ0, we would 

prune Γhi, which satisfies arg
i

max{V λ
train(Γ0 − Γℎi)}. This results in subtree Γ1 ≺ Γ0 where ≺ 

means “subtree of”. Repeating this procedure until the tree is pruned back to the root node 

results in a series of optimally pruned subtrees ΓM ≺ ΓM−1 ≺ · · · ≺ Γ1 ≺ Γ0 with ΓM being 

the null tree having no splits. The optimal subtree will be the subtree which maximizes 

equation (4), denoted as Γm. The test sample is then run down Γm to obtain the validated 

value V λ
test(Γm). We repeat this procedure for every partitioned data pair (e.g. 5-fold) and 

calculate the mean validated value for the given λ. The final λ is chosen so that mean 

validated value is maximized over a sequence of values of λ. A similar pruning procedure 

was used by Su et al. (2009).

2.4 Variable Importance Measure

When there are new markers introduced to assist in treatment selection, it is important to 

evaluate their value in improving population average outcomes, in our case ITR. We 

designed a variable importance measure in order to evaluate which markers are important for 

an ITR. Our variable importance algorithm is based on random forests (Breiman, 2001) and 
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was similarly used in the interaction tree method (Su et al., 2009). First, a random forest of 

ITR trees is constructed. For a bootstrap sample Lb, each tree Γb represents an ITR. Next, 

the sample not in Lb, Lb
⊥, is sent down the tree and the value V(Γb) computed as defined in 

equation (3). After permuting the jth marker in Lb
⊥, the permuted sample is evaluated by Γb 

and Vj (Γb) is recomputed. Finally, the relative difference between V(Γb) and Vj(Γb) is 

recorded. This procedure is repeated for B bootstrap samples. We define the importance 

measure Wj to be the average of relative differences over B bootstrap samples, i.e., 

Wj = 1
B ∑b

V (Γb) − V j(Γb)
V (Γb) . Further details on the algorithm can be found in Supplementary 

Material Algorithm 2 and Breiman (2001).

3 Simulation

This section contains simulated experiments designed to investigate the performance of the 

ITR forest and tree procedures. Data is generated from the models outlined in Table 1. Each 

data set consists of a continuous response Y, a binary treatment T, and four independent 

covariates X1, X2, X3, X4 from a unit uniform distribution. Unless otherwise stated, 

simulation replicates also include 10 excess noise predictors from a unit uniform 

distribution.

Simulation A is an RCT design while simulations B - D are observational study designs. 

Simulation models A and B have a single tree structure. Models A.1 and B.1 produce a tree 

with one split and two terminal nodes: an initial split is at X1 = 0.5 with the treatment sent to 

those with X1 < 0.5. Models A.2 and B.2 produce a tree with two splits and three terminal 

nodes. The initial split is at X1 = 0.3 and the right child node is further split at X3 = 0.1. 

Treatment is assigned to patients with X1 > 0.3 and X3 > 0.1. Models C.1 and C.2 have well 

defined subgroups which benefit from treatment, but the ITR cannot be defined by a tree 

structure. In model C.1, all patients benefit from treatment with increasing values of X1 

accompanied by an increase in value defined by equation (3). In model C.2, patients with X1 

+ X3 > 1 benefit from treatment and those with greater values of X2 or X4 receive increased 

benefit. In both C schemes, treatment effects are smooth functions of covariates. Scheme D 

is a null model with no defined subgroup and should produce a tree with no splits. We use 

accuracies of correctly predicting treatment assignment given an ITR to evaluate the 

performance of ITR trees and forests. Maximized value is also used to evaluate the 

procedure, particularly in comparison with other methods (Matsouaka et al., 2014). For 

simulations A and B, signal ratio is defined as θ = β1/β2. Signal ratio compares the benefit 

of receiving treatment for those in the subgroup (β1) with the benefit of receiving control for 

those not in the subgroup (β2). We fix β2 = 1, and vary β1 so that θ ∈ {1, 3, 5}. For 

simulation C, the linear interaction effect β is varied from 1 to 5. For all simulations, models 

were trained on n = 300, 500 and 800 observations and validated on n = 1000 observations. 

All simulation analyses used 100 replicates.

3.1 Pruning

Accuracy of the pruning procedure is reported in Table 2. It contains the percent of correct 

sized trees after pruning and a summary of the selected penalty parameter λ values. The 
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penalty λ was selected using the method presented in section 2.3 with a 5-fold cross 

validated estimate of λ. Values of λ vary depending on sample size, effect size, and outcome 

variable as previously noted by (Laber and Zhao, 2015). Performance is notably better when 

θ = 1 versus θ = 3 for simulations A.2 and B.2. This is likely due to the treatment effect 

differential between those who benefit from treatment versus those who benefit from 

control. While stabilization of the variance may address some of the issues associated with 

this imbalance, a single tree structure may not be powerful enough to overcome the effect 

difference. In general, accuracies increase as sample size increases. For training samples of n 
= 800 the correct sized tree was grown at least 78% of the time, with the exception of 

simulation scheme B.2. When θ = 1 a training sample of n = 800 grew the correct sized tree 

in 67% of replicates. Scheme D is used to estimate the type I error rate. The null tree was 

selected in at least 99% of replicates for scheme D.

A larger sample size example with n = 2500 observations from scheme B.2 with θ = 3 is 

reported (Figure 1). It is used so that a large initial tree structure is generated. The optimal λ 
= 0.04 was selected using 5-fold cross validation. The resulting optimal tree structure selects 

both correct splitting variables and correct cut points and contains no superfluous splits. 

Further details related to this example can be found in the documentation of our software 

package (https://github.com/kdoub5ha/ITR.Forest).

3.2 Accuracy

Accuracy of the ITR forest and tree methods is assessed for simulations A-C. The choice of 

splitting variable and cut point is summarized in the context of our pruning procedure by 

generating a large tree, pruning the tree (per section 2.3), and using a validation sample of n 
= 1000 observations to assess whether the correct treatment is assigned to a patient. Figure 2 

presents the average and the standard deviation of of the ITR tree procedure accuracies over 

100 simulation replicates. Signal ratio, θ = 1, 3, 5 or linear interaction effect, β = 1, 3, 5 and 

sample sizes are n = 300, 500, 800. Table 3 shows results from constructing a single ITR 

forest. We generated a single data set of n = 300 observations with θ, β = 3 for each 

simulation scheme, and each data set was fit with an ITR forest of 500 trees and an ITR tree 

model with 5-fold cross validated pruning. Treatment predictions from each model were 

obtained for a validation sample of n = 1000 observations. The top panel in Table 3 shows 

the patient level forest summary, the probability of being assigned to active treatment using 

all trees in the ITR forest, for a randomly selected subset of 10 validation individuals. IPWE 

is shown for all schemes and AIPWE results are shown for schemes B and C. For ITR forest 

and tree methods random forests were used for variance stabilization. A linear model was 

initially used for variance stabilization in scheme C, but ITR tree methods both produced 

null models so random forests were used instead.

A probability greater than 0.5 indicates a majority of trees voted for active treatment, and 

active treatment would be recommended for this individual. Otherwise, control would be 

recommended. If the probability is close to 0.5, a treatment recommendation may be 

withheld. We note that for a 500 tree ITR forest the standard deviation for treatment 

assignment of 0.5 is 0.5 ∕ 500 = 0.022 Hence, when a treatment assignment probability 

between 0.478 and 0.522, the decision may be made in combination with a clinician’s 
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experience. Subject 5 from scheme A.1, for instance, has a predicted probability of 

benefiting from active treatment of 0.49. Although this gives the optimal treatment 

recommendation for this patient of being on control, the expertise of the patient’s physician 

should come into play as well. This subject has covariate values X1 = 0.04 and X3 = 0.94, so 

that they satisfy the subgroup inclusion criteria strongly for X3 but not for X1. In a few 

instances a subject received an incorrect treatment recommendation. In scheme B.2, 

observations with X1 > 0.3 and X3 > 0.1 should be assigned to active treatment, otherwise 

control. Subject 1 received an incorrect recommendation to be on active treatment using both 

IPWE and AIPWE methods. This subject had X1 = 0.72 and X3 = 0.02 and so strongly 

meets the subgroup criteria for X1, but not for X3. In scheme C.1, all 10 subjects were 

recommended to be on active treatment as was expected. In scheme C.2, subject 10 was 

misclassified. This subject had X1 = 0.94 and X3 = 0.16 so that the sum of these two 

covariates is close to 1, leading to the misclassification. The bottom panel of Table 3 shows 

the percent of all 1000 validation observations from the ITR forest and ITR tree models 

which received correct treatment assignments. A single ITR tree structure performed well 

compared to the ITR forest. The ITR forest, however, has the additional benefit of the soft 

treatment assignment probability and this is made clear in Table 4. The accuracy for RCT 

simulations (A) was better than EMR simulations (B) due to the need to estimate Pr(ti ∣ xi). 
Additionally, we investigated use of training samples of n = 100, but found the smaller 

sample size prohibitive to discovery of subgroups. Thus, only sample sizes of n = 300 or 

greater are presented in this paper.

3.3 Variable Importance

Variable importance measures are reported for simulated data with sample sizes of n = 300, 

500, and 800. All variable importance measures were estimated using a 500 tree ITR forest, 

and the reported variable importance measures were scaled so that ∑j Wj = 1 for easier 

interpretation. We note that when excess noise predictors were included in estimating 

variable importance, the excess predictors received at most 4% of the importance measure 

and typically received less than 0.1%. Hence, we exclude noise variables from variable 

importance analysis in this paper. A summary of variable importance measures for simulated 

data is presented in Figure 3. Note that for simulations A.1, B.1, and C.1 the subgroup is 

defined by X1 and for simulations A.2, B.2, C.2 the subgroup is defined by X1 and X3. IPWE 

was used for scheme A while AIPWE was used for schemes B and C. The ITR forest 

procedure showed excellent ability to select the correct subgroup defining variable(s) as 

most important. Since the cut point in schemes A.2 and B.2 of X1 = 0.3 is farther from the 

uniform (0,1) boundary than the cut point for X3 of 0.1, the variable importance measure for 

X1 was greater than X3. This is because there are fewer observations sampled on average 

with X3 < 0.1 than with X1 < 0.3. This point is illustrated in the supplementary material 

(Figure S1) by considering sampling schemes with both cut points set at 0.3. If both cut 

points are 0.3 the variable importance measures for X1 and X3 were similar. Scheme C.1 

showed X1 as most important predictor once n ≥ 500 and the effect size β ≥ 2. Scheme C.2 

showed most of the importance measures going to X1 and X3, even for smaller training 

samples.
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3.4 Method Comparison

The maximized value of the ITR forest and tree methods was compared to a few optimal 

treatment recommendation methods. Methods considered were interaction trees (Su et al., 

2009) (IT tree), outcome weighted learning using SVM (Zhao et al., 2012), and minimal 

node impurity measure (MIDAs) (Laber and Zhao, 2015). ITR trees were pruned using 5-

fold cross validation. Optimal tree size selection for MIDAs was similar, but used a 10-fold 

cross validation per the suggestion in Laber and Zhao (2015). Random forests were used to 

stabilize variance in MIDAs. Bayesian Information Criterion (BIC) was used in IT tree 

methods along with the amalgamation algorithm. Outcome weighed learning via SVM used 

a linear kernel and 5-fold cross validation to find an ITR in R package DTRlearn (Liu et al., 

2015). We also include random guessing as a reference for arbitrary treatment assignment. 

Each model was trained on n = 300 observations with θ = 3 or β = 3 and validated on n = 

1000 observations. IPWE was used for simulation A.2 and AIPWE used for the other 

simulations. Results are found in Table 4. Simulations A.1 and B.1 were excluded from this 

section of the paper since the ITR tree and MIDAs methods are identical estimators of 

rewards/value defined by equation (3) when the tree structure consists of only a single split. 

Different number of excess prognostic markers (noise) were included, generated from a 

uniform distribution. Results for the null model D were consistent for all methods and 

random guessing resulted in the smallest value. ITR forest gave the best estimated 

maximized value for all simulations considered, demonstrating the utility of the ITR forest 

method and its robustness.

4 Data Applications

The ITR forest and tree methods were applied to RCT data from the DURAbility of Basal 

versus Lispro mix 75/25 insulin Efficacy (DURABLE) study (Buse et al., 2009) and an 

EMR data set from Clinical Practice Research Datalink (CPRD) (https://www.cprd.com/

intro.asp). DURABLE investigated two treatments, a mix of 75% insulin lispro protamine 

suspension and 25% lispro (LM75/25) vs Glargine, in patients with type 2 diabetes with the 

objective of achieving glycemic control. CPRD is an observational and intervention based 

research service that operates as part of the UK Department of Health. EMR data was 

obtained by Eli Lilly and Company in order to compare two injectable treatments, basal 

insulin and glucagon-like peptide-1 receptor agonists (GLP-1), in patients with type 2 

diabetes in an effort to control glycemic change (Lawson et al., 1998). The outcome used for 

these models is percent change in HbA1c from baseline. Optimal tree size was determined 

using the pruning procedure outlined in section 2.3 using a 5-fold cross validation estimator 

of λ. A random sample of 10 subjects were set aside in each study to assess the model 

performance and the remaining individuals used to train the model. A 500 tree ITR forest 

was constructed using all available variables. We compared the ITR generated by both tree 

and random forest using the 10 held-out individuals. Random forests were used to stabilize 

the variance for both data sets.

4.1 DURABLE study

For the DURABLE study, the variables available at baseline were fasting plasma glucose, 

insulin, 7-points glucose readings taken throughout a day, weight, height, BMI (body mass 
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index), diastolic blood pressure, systolic blood pressure, heart rate, and duration of diabetes 

in n = 1385 patients. Of the 1385 patients, 688 received LM75/25 and 697 received Glargine 

as control. After setting aside 10 subjects for validation, the remaining 1375 observations 

were used to construct an ITR forest and an ITR tree. The variable importance measure 

returned weight as the most important predictor of treatment assignment using the IPWE and 

AIPWE (Figure 5). A tree with 2 terminal nodes was determined to be optimal for both 

IPWE and AIPWE (Figure 4). There was correspondence between patient weight receiving a 

plurality of the importance measure and being the covariate selected for the initial split. 

Table 5 shows treatment assignment using an ITR forest. Patients 1, 6, and 9 were 

interesting cases, receiving opposing decisions from the ITR forest and ITR tree models. 

These three patients had weights of 115 kg, 106 kg, and 129 kg and so were recommended 

to take Glargine by the ITR tree. These results were consistent with the mechanism of 

reactions. Glargine is a basal insulin which lowers the overall blood glucose, and LM 75/25 

is a pre-mixed insulin which covers both postprandial and basal glucose. Heavier patients 

need more basal insulin and LM 75/25 may not deliver enough without causing 

hypoglycemia. Therefore, Glargine works better for these types of patients.

4.2 Electronic Medical Records

The EMR data set contained 5177 patient observations, 837 treated with GLP-1 and 4340 

with basal insulin. Variables available at baseline were the indexed laboratory result, age, 

diabetes duration, Charlson score, ethnicity, race, categorical body mass index, and 

insurance status. The lab result is a measurement of a patient’s average blood glucose level 

during the past 3 months and Charlson score is a composite score of patient comorbidities. 

The pruning procedure selected a tree with two terminal nodes for the IPWE and AIPWE 

(Figure 4). Index lab result was selected as the splitting variable with patients having a lab 

result lower than 12 being assigned to GLP-1 and basal insulin otherwise. Treatment 

assignments are shown in Table 5. Variable importance measures returned the Charlson 

score as the most important predictor of treatment assignment for both the IPWE and 

AIPWE (Figure 5). All 10 of the patients held out of the training sample were recommended 

strongly to be on treatment. All 10 patients had a lab score less than 12 leading to the 

consistent recommendation of treatment among these patients. These results are helpful for 

us to better decide on how to initiate first line injectable anti-diabetic treatments when 

patients have failed on multiple oral medications. Our results indicate that for patients with 

higher average blood glucose, it is better to start with insulin treatment. For patients with 

lower average blood glucose, GLP-1 treatment is recommended. The average blood glucose 

also indicates the disease progression. Patients with lower blood glucose often have better 

beta cell function where GLP-1 treatments work better.

The computational cost of each method is shown in Table 6 using this EMR data. Each tree 

using the value function as the reward is grown in less than 25 seconds. The IT tree runs in 

1.6 seconds and ITR forest in 38 seconds. OWL is the slowest among all.
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5 Discussion

Individualized treatment rules are increasingly being used by clinical and intervention 

scientists to account for patient response heterogeneity (Ludwig and Weinstein, 2005; Hayes 

et al., 2007). These treatment rules belong to the new era of precision medicine (Piquette-

Miller and Grant, 2007; Hamburg and Collins, 2010). Regression based methods model the 

response as a function of patient characteristics and treatment, selecting treatments that 

maximize the predicted mean outcome (Qian and Murphy, 2011). However, because such 

methods indirectly infer the optimal treatment rule through a regression model, they are 

subject to model misspecification. Direct methods are an alternative to regression based 

indirect methods that depend on modeling the conditional mean first. Zhao et al. (2012) 

demonstrated that optimal treatment rules can be estimated within a weighted classification 

framework and solved the problem using support vector machines (SVM) via the hinge loss 

(Cortes and Vapnik, 1995). However, without an interpretable and transparent representation 

of the model behind these approaches, clinical investigators may be hesitant to use the 

estimated treatment rule to inform clinical practice or future research. In this paper, we 

attempted to directly maximize clinical response to estimate optimal individualized 

treatment rule using a recursive partitioning tree algorithm. The recursive partitioning tree 

method is a non-parametric search procedure, easy to interpret, and handles high 

dimensional and large scale modern data sets (e.g., genomics and EMR) seamlessly. We 

used a random forest ensemble predictor to mitigate the inherent instability of a single tree, 

which may be a weak standalone predictor.

When there are new biomarkers introduced to assist in treatment selection, it is important to 

evaluate their value in improving population average outcomes. A variable highly 

differentially associated with yi(1) and yi(0) may not necessarily be important for improving 

ITRs. This is somewhat similar to the phenomenon observed in the risk prediction literature: 

a variable highly significant in regression modeling may not result in large improvement in 

prediction. We then developed variable importance measures based on ITR forests, 

providing a measure of the overall influence of a covariate in predicting treatment outcome. 

When the dimension of new markers is large, it would be crucial to employ the cross-

validation to correct for the overfitting bias as suggested by Zhao et al. (2012). Procedures 

for efficiently selecting the informative markers warrant further research.

The decision rule from an ITR tree with only a few splits can make discussion of treatment 

between patients and health care providers transparent. Through simulation for both RCT 

and observational designs, we demonstrate the accuracy and stability of our algorithms. The 

ITR forest outperforms comparable methods in maximizing value function in all the non-

trivial scenarios considered in this paper, demonstrating the robustness of the ITR forest. 

The application to RCT and observational studies further validate the utility of this method. 

In general, a composition of the ITR tree, forest and variable importance measure will give 

clinicians useful tools in considering treatment regimens. We recommend that samples be 

adequately large, so that identification of subgroups, assuming they exist, is feasible.

There are several extensions of our method that can be pursued. Incorporating multiple and 

continuous treatments into the ITR tree and forest method can be achieved by modifying our 
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splitting criteria. Sample sizes for most clinical trials are powered for the primary objectives 

of those studies, and often not for precision medicine or subgroup identifications. Therefore, 

synthesizing evidence from multiple studies could potentially develop a more robust ITR. 

Finally, it is known that the greedy search approach induces a bias in variable selection 

towards variables with more distinct values (Doyle, 1973). Our tree and forest methods can 

be further calibrated by incorporation of previous efforts to correct this bias (Loh, 2002).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Example of the pruning procedure in section 2.3 by a simulated example from scheme B.2 

with θ = 3, 10 excess noise variables, and a training sample of n = 2500 observations. (Left) 
The full tree shown with each split represented by a 3 component vector (splitting variable, 

splitting value, child node to which active treatment is sent). (Right) Plot of 5-fold cross 

validated penalized value function, Vλ (Γ), (y-axis) with error bars plotted against the 

penalty parameter λ (x-axis). The optimally pruned tree structure is embedded in the right 

panel.

Doubleday et al. Page 18

J Comput Graph Stat. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Percent of validation sample observations assigned to the correct treatment using the ITR 

tree method. Models were trained on n = 300 (circle), 500 (square), and 800 (diamond) 

observations, pruned using a 5-fold cross validation estimator of penalty parameter λ, and 

validated using a sample of n = 1000 observations. Point estimates and 95% equal tail 

intervals over 100 replicates are displayed. A.1 and A.2 use IPWE and AIPWE used 

otherwise. Signal ratios (θ) and linear interaction effect (β) were varied from 1 to 5.

ITR: individualized treatment rule; IPWE: inverse probability weighted estimator; AIPWE: 

augmented inverse probability weighted estimator.

Doubleday et al. Page 19

J Comput Graph Stat. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Variable importance measures for simulation studies A, B, and C with n = 300, 500, 800. 

Signal ratios of θ = 1, 3, 5 (A and B schemes) and β = 1, 3, 5 (C schemes) using ITR forest 

method with the IPWE for A schemes and AIPWE for B and C schemes. Gray scale 

indicates θ, β = 1 (black) to θ, β = 5 (light gray). The subgroup defining variable(s) for 

models A.1, B.1, and C.1 is X1 and for models A.2, B.2, and C.2 are X1 and X3.

ITR: individualized treatment rule; IPWE: inverse probability weighted estimator; AIPWE: 

augmented inverse probability weighted estimator
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Figure 4: 
Estimated ITR for DURABLE RCT (left) and EMR (right) using a single ITR tree structure 

and optimal pruning as described in section 2.3. RCT model was trained using n = 1375 

observations and EMR model was trained on n = 5167 observations. The IPWE and AIPWE 

for both data sets returned the same optimal tree. Each internal node is defined by the triple 

(splitting variable, splitting value, child node to which active treatment, LM75/25 for 

DURABLE and GLP-1 for EMR, is sent).

ITR: individualized treatment rule; RCT: randomized controlled trial; EMR: electronic 

medical records; IPWE: inverse probability weighted estimator; AIPWE: augmented 

inverse probability weighted estimator; DURABLE: Assessing the DURAbility of basal vs 

lispro mix 75/25 insulin efficacy trial; LM75/25: mix of 75% insulin lispro protamine 

suspension and 25% lispro (LM75/25); GLP-1: glucagon-like peptide-1 receptor agonists.
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Figure 5: 
Variable importance measures for DURABLE RCT and EMR diabetes data generated using 

a 500 tree ITR forest with IPWE (black) and AIPWE (gray).

ITR: individualized treatment rule; RCT: randomized controlled trial; EMR: electronic 

medical records; IPWE: inverse probability weighted estimator; AIPWE: augmented 

inverse probability weighted estimator; DURABLE: Assessing the DURAbility of basal vs 

lispro mix 75/25 insulin efficacy trial.
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Table 1:

Simulation schemes for assessing the performance of ITR tree and forest methods. The A schemes are RCT 

design while B, C, and D schemes are observational study models. Models A.1 and B.1 have subgroups 

defined by a single variable and single cut point which should produce a tree with a single split. Models A.2 

and B.2 have subgroups defined by two variables and two cut points which should produce a tree with two 

splits. Models C.1 and C.2 are linear interaction models with one and two interacting variables, respectively. 

Models C.1 and C.2 cannot be expressed by a single tree. Model D has no subgroups and so should produce a 

null tree. Covariates X1, X2, X3, X4 are independent and distributed as Uniform(0, 1). Errors ϵ ∼ N(0, 1). Ω 
represents all samples and ∅ represents the null set.

Scheme Model Pr(T |X) Subgroup A

A.1 Y = 2 + 2I(X2 < 0.5) + β1I(x ∈ A)T+ β2[1 − I(x ∈ A)](1 − T)+ ϵ 0.5 X1 < 0.5

A.2 Y = 2 + 2I(X2 < 0.5) + β1I(x ∈ A)T+ β2[1 − I(x ∈ A)](1 − T)+ ϵ 0.5 X1 > 0.3 and X3 > 0.1

B.1 Y = 1 + 2X2 +4X4 + β1I(x ∈ A)T+ β2[1 − I(x ∈ A)](1 − T)+ ϵ logit−1(−4 + 3X2 + 5X4) X1 < 0.5

B.2 Y = 1 + 2X2 + 4X4 + β1I(x ∈ A)T + β2[1 − I(x ∈ A)](1 − T)+ ϵ logit−1(—4 + 3X2 + 5X4) X1 > 0.3 and X3 > 0.1

C.1 Y = 6 + 2X1 + βX1
2T + ϵ logit−1(−4 + 3X2 + 5X4) Ω

C.2 Y = 6 + 2T + 2X1 + 2X3 + βI(X ∈ A) exp{X2 + X4}T + ϵ logit−1(—4 + 3X2 + 5X4) X1 + X3 > 1

D Y = 1 + 2T + 2X1 + 2X3 + ϵ logit−1(−6 + 3X1 + 3X2 + 3X3 + 3X4) ∅

ITR: individualized treatment rule; RCT: randomized controlled trial.
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Table 2:

Proportion (95% interval) of correctly sized trees selected by the pruning procedure over 100 replicates. 

Penalty parameter λ and its minimum and maximum (in parenthesis) obtained using 5-fold cross validation for 

the 100 replicates are shown. Schemes A and B have θ = 1, 3 and all schemes presented were trained with 

samples of n = 300, 500, and 800. All replicates include 10 excess noise variables.

θ = 3 θ = 1

Scheme n Correct Tree
Proportion (95% CI)

λ
Mean (Min, Max)

Correct Tree
Proportion (95% CI)

λ
Mean (Min, Max)

300 0.94 (0.88, 0.97) 0.017 (0, 0.13) 0.94 (0.88, 0.97) 0.026 (0, 0.10)

A.1 500 0.97 (0.92, 0.99) 0.012 (0, 0.08) 0.96 (0.90, 0.98) 0.016 (0, 0.06)

800 0.95 (0.89, 0.98) 0.004 (0, 0.04) 0.94 (0.88, 0.97) 0.010 (0, 0.04)

300 0.44 (0.35, 0.54) 0.033 (0, 0.20) 0.48 (0.38, 0.58) 0.034 (0, 0.17)

A.2 500 0.67 (0.57, 0.75) 0.016 (0, 0.14) 0.92 (0.85, 0.96) 0.014 (0, 0.06)

800 0.78 (0.69, 0.85) 0.010 (0, 0.09) 0.91 (0.84, 0.95) 0.012 (0, 0.04)

300 0.83 (0.74, 0.89) 0.043 (0, 0.41) 0.90 (0.83, 0.94) 0.083 (0, 0.50)

B.1 500 0.77 (0.68, 0.84) 0.034 (0, 0.22) 0.90 (0.83, 0.94) 0.057 (0, 0.40)

800 0.87 (0.79, 0.92) 0.029 (0, 0.17) 0.91 (0.84, 0.95) 0.041 (0, 0.19)

300 0.39 (0.30, 0.49) 0.052 (0, 0.35) 0.20 (0.13, 0.29) 0.085 (0, 0.40)

B.2 500 0.33 (0.25, 0.43) 0.049 (0, 0.15) 0.37 (0.28, 0.47) 0.048 (0, 0.22)

800 0.47 (0.38, 0.57) 0.031 (0, 0.16) 0.67 (0.57, 0.75) 0.031 (0, 0.33)

300 0.99 (0.95, 0.96) 0.004 (0, 0.15) 0.99 (0.95, 1.00) 0.002 (0, 0.12)

D 500 1.00 (0.96, 1.00) 0.000 (0, 0.01) 1.00 (0.96, 1.00) 0.000 (0, 0.17)

800 1.00 (0.96, 1.00) 0.000 (0, 0) 1.00 (0.96, 1.00) 0.000 (0, 0.02)
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Table 4:

Average maximized value (standard deviation) for ITR forest, ITR tree, MIDAs by Laber and Zhao (2015), IT 

tree by Su et al. (2009), OWL via SVM by Zhao et al. (2012), and random guessing, over 100 simulation 

replicates. Models were trained on n = 300 observations with θ = 3 (A and B schemes) or β = 3 (C schemes), 

along with 10, 25, or 50 excess noise predictors (p). Reported mean maximized value and standard derivation 

were estimated based on the validation samples of n = 1000 and 100 simulation replicates. Note that for all 

schemes larger values are desired. The IT tree method failed to identify a rule in over 50% of replicates for C.1 

and D so results are not included.

Model p ITR Forest
ITR Tree

MIDAs IT Tree OWL Random
IPWE AIPWE

A.2 10 5.427 (0.06) 5.181 (0.09) 5.221 (0.08) 5.196 (0.09) 5.288 (0.04) 4.994 (0.06) 4.131 (0.06)

A.2 25 5.399 (0.06) 5.166 (0.08) 5.200 (0.07) 5.184 (0.08) 5.297 (0.02) 4.912 (0.06) 4.142 (0.06)

A.2 50 5.385 (0.08) 5.152 (0.12) 5.203 (0.09) 5.178 (0.09) 5.284 (0.06) 4.828 (0.06) 4.131 (0.07)

B.2 10 6.586 (0.05) 6.406 (0.05) 6.404 (0.05) 6.264 (0.10) 6.387 (0.06) 6.257 (0.07) 5.326 (0.09)

B.2 25 6.557 (0.05) 6.384 (0.05) 6.389 (0.04) 6.268 (0.12) 6.286 (0.05) 6.174 (0.10) 5.350 (0.09)

B.2 50 6.546 (0.05) 6.372 (0.08) 6.392 (0.05) 6.257 (0.09) 6.391 (0.05) 6.098 (0.09) 5.343 (0.09)

C.1 10 8.023 (0.09) 7.923 (0.13) 7.911 (0.12) 7.816 (0.10) - 7.803 (0.10) 7.640 (0.05)

C.1 25 8.015 (0.07) 7.891 (0.13) 7.917 (0.12) 7.845 (0.11) - 7.764 (0.08) 7.640 (0.07)

C.1 50 7.994 (0.09) 7.884 (0.15) 7.900 (0.15) 7.828 (0.14) - 7.720 (0.09) 7.659 (0.07)

C.2 10 12.72 (0.24) 12.08 (0.42) 12.19 (0.36) 11.22 (0.44) 12.63 (0.27) 12.31 (0.31) 8.905 (0.23)

C.2 25 12.65 (0.31) 12.06 (0.31) 12.10 (0.35) 11.20 (0.51) 12.63 (0.23) 12.04 (0.30) 8.881 (0.22)

C.2 50 12.55 (0.30) 11.96 (0.35) 12.10 (0.39) 11.20 (0.40) 12.53 (0.25) 11.87 (0.28) 8.878 (0.21)

D 50 5.048 (0.08) 5.081 (0.09) 5.055 (0.08) 5.073 (0.05) - 4.902 (0.08) 4.187 (0.14)

ITR: individualized treatment rule; IPWE: inverse probability weighted estimator; AIPWE: augmented inverse probability weighted estimator; 
MIDAs: minimum impurity decision assignments; IT tree: interaction tree; OWL: outcome weighted learning; SVM: support vector machine.
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Table 5:

Probabilities of 10 held-out subjects being assigned to treatment group using a 500 tree ITR forest for 

DURABLE and EMR studies. Models were trained using all but 10 held-out subjects. Shown are:

DURABLE RCT EMR

Subject Pr
1

ITR Tree
2

Original
3 Subject Pr

1

IPWE(AIPWE) ITR Tree
2

Original
3

1 61.6 0 1 1 100 (100) 1 0

2 90.0 1 1 2 100 (99.2) 1 0

3 74.6 1 1 3 98.7 (95.7) 1 0

4 48.6 0 1 4 100 (100) 1 1

5 87.4 1 1 5 68.9 (70.4) 1 1

6 69.0 0 0 6 98.3 (94.3) 1 1

7 76.5 1 1 7 100 (100) 1 1

8 83.3 1 1 8 100 (100) 1 0

9 71.0 0 1 9 97.3 (93.2) 1 1

10 67.1 1 1 10 91.6 (87.9) 1 0

1
“Pr”: % trees voting for treatment over 500 trees in ITR forest.

2
“ITR Tree”: Treatment assignment from ITR tree.

3
“Original”: original treatment assignments. IPWE estimates are shown with AIPWE estimates in parentheses for EMR. IPWE and APIWE in 

“ITR Tree” procedure generate the same assignments in EMR study (7th column). For DURABLE trial, treatment assignment of “1” indicates 
LM75/25 and “0” indicates Glargine. For EMR, treatment assignment of “1” indicates GLP-1 and “0” indicates basal insulin.

ITR: individualized treatment rule; RCT: randomized controlled trial; EMR: electronic medical records; IPWE: inverse probability weighted 
estimator; AIPWE: augmented inverse probability weighted estimator; DURABLE: Assessing the DURAbility of basal vs lispro mix 75/25 insulin 
efficacy trial; LM75/25: mix of 75% insulin lispro protamine suspension and 25% lispro (LM75/25); GLP-1: glucagon-like peptide-1 receptor 
agonists.
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Table 6:

Computational time, in seconds, for each ITR method. EMR data from section 4 was used to train each model 

on a desktop computer with an Intel(R) Core i7-6700 CPU @ 3.40GHz with 16 GB of RAM. EMR data 

consisted of n = 5177 observations with 14 covariates (4 continuous, 10 categorical).

ITR Forest
ITR Tree

MIDAs IT Tree OWL
IPWE AIPWE

Time (seconds) 37.8 22.9 23.2 24.0 1.6 538
*

*
OWL model failed to converge after 538 seconds.

ITR: individualized treatment rule; IPWE: inverse probability weighted estimator; AIPWE: augmented inverse probability weighted estimator; 
MIDAs: minimum impurity decision assignments; IT tree: interaction tree; OWL: outcome weighted learning.
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