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Self-supervised Learning: A Scheme for
Discovery of "Natural” Categories by Single Units

Paul Munro
Institute for Cognitive Science C-015
University of California San Diego
La Jolla, CA 92093

ABSTRACT

Several dynamical systems have been previously proposed to give a neural-like (i.c. connectionist)
description of category formation. These typically cither involve supervised training (as in Sutton &
Barto, 1981; Reilly et al., 1982) or identify dense regions ("clusters’) in the stimulus distribution as
natural categories (Amari & Takeuchi, 1978; Rumeclhart & Zipser, 1985). By combining two existing
connectionist-type learning procedures, one supervised and one unsupervised, a hybrid “self-supervised
leamning” (SSL) mechanism for concept and category leaming has been developed. Each unit in the
network comes to represent some concept of the order of complexity of a single word; the activity of
the unit signals the contribution of its associated concept to the current mental state. A crucial
assumption of this approach is that every concept unit (C-unit) receives inputs from two or more
information streams. The self-supervised learning process is governed by a data-driven dynamical rule
which results in a two-stage learning process. In the first stage, a C-unit becomes selectively responsive
to a particular pattern s"'f from one of the information streams, ignoring all other patterns in that
stream. This is followed by an associative stage in which the unit develops graded response properties
to stimulus patterns incident from the other information stream(s). The trigger feature thus becomes a
kind of prototype for the concept to be formed by the C-unit. Populations of C-units display interest-

ing representational properties; these are seen to have attributes of both local and distributed represen-
tations.
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THEORETICAL ANALYSIS

Model architecture

The elements described in this model are labelled C-units (concept or category units). Each C-
unit receives input from two or more (n) groups of affercnts (Figure 1), or Input banks; in principle,

n need not be the same for every unit.

In general, indices will follow the convention that superscripts denote the bank and subscripts
the component within the bank: afferent j of bank { delivers activity s/ via a synapsc of strength w/
such that a partial response r' is computed over each bank by the unit in a two-step process consisting

of a linear summation followed by a nonlinear “squashing” or “compressing” function:

(') = Zwjsf ()

r' = o) @
where o is subject to the condition

c(0) =0 )
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Figure 1. Information flow in a C-unit. 8. An information flow diagram for a single bank, which autonomously follows an
algoritbm for supervised learning. The stimulus components s5; are weighted by corresponding unit parameters w; to give a
linear activation value x , which is passed to the squashing function o yielding the unit response r. The value of r is compared
with the training signal v to generate the error value (r—r) which is used to adjust the weights according to the rule
Aw, = a(r—r)s;, where the learning rate a is a small oumber. b. The complete C-unit consists of several input banks (four of
these are shown), which cach act as a supervised scmi-lincar unit. Each input bank reccives a common trainiog signal v, but
applics the signal to stimulus patterns from different environments. The lincar summation stage of one of the banks generates
this training signal (t=x‘) such that this bank cffectivey follows the rule for selectivity maximization described in the intro-
duction. The output r of the C-unit is given by a function of the bank responses r'; in this paper, r =|n'u(r’).
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o(x)> xo'(x) foral x>0

The response r of the unit is a function of the partial sums r' - - - #¥. The precise form of this

function need not be specified at this point, but it should be nondecreasing in all the r'; i.c. LA

ar!
for all i. Two cases have been considered - the sum (more generally, an arbitrary linear combination)

and the maximum.

The training bank is denoted by the superscript r and is assumed to become sclectively responsive
to some pattern from its environment E’. This pattern is the trigger featore of the unit and is
denoted by ¢"%. The partial sum and partial response induced by the trigger feature are correspond-

ingly labelled x" and ™,

Modification dynamics. the learning rule

The self-supervised learning (SSL) rule is expressed in terms of the time derivatives of the connec-
tivity values w/ in terms of the corresponding afferent activity s/, two partial responscs (that of the
bank to which w/ belongs and another that is produced by a special “training bank”), and a variable ¢

that is driven by the training bank’s partial response.

Aw/ = a(x' - qa(x")) s

4)

768



MUNRO

Ag = ax' (' - q)

where the learning rate a is a small number and the superscript ¢ specifies the training bank, such that
the partial response x' “trains® the other partial responses {r‘ ; i+ ) to approximate it to the degree
that the pattern ' predicts the pattern to the training bank #. The function ¢ is monotone increasing

and satisfics the conditions given by (3).

Final states of the training bank

The SSL equation (4) reduces to the selectivity maximization rule of Bienenstock et al. (1982)
along the training bank; the function o as constrained by Eq. (3) is included to ensure this. For the

training bank, equation (4) becomes

Aw; = a(x' - qo(x")) s ©
Aq = ax' (' —¢q)

The response r' achieves very high selectivity over the environment E°. Under the assumption of
linear independence within the subenvironments, the training bank attains maximum selectivity; i.e. it
responds to exactly one pattern in E’. Let the chosen pattem, i.e. the trigger stimulus of the training
bank, be denoted by s and let the corresponding partial sum and partial response [i.c. w''s7%] be

respectively denoted by x™'¢ and r™'¢,

Final states of the trained banks

Consider a trained (i #¢) bank for whick the corresponding subenvironment E' comsists of

linearly independent patterns. Stable equilibria can then be found by setting the expression (4a) for
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Aw/ to zero for cach pattern s in E'. If p is the conditional probabiiity that s™ is present on the

training bank given & at bank /, then for all patterns s€ E*;

p(x" —qo(x")) + (1-p)(—qo(x')) = 0 (6)

If the training bank has reached equilibrium then xt =g and hence,

p = Prob(s' =s"" I¢) = o(x") )

REPRESENTATIONS OF STIMULI ACROSS POPULATIONS OF C-UNITS

Up until this point, the description and analysis of SSL has been confined to the single-unit
level. While this is appropriate for presentation of the learning mechanism, it is inadequate for under-
standing certain more global properties, such as those pertaining to the representation of the current

state of the world.

If the number of information streams is restricted to just twe and all patterns witbin their suben-
vironments atre cquiprobable, then this observation follows concerning the total activity level of the
population: The sum of the unir activities evoked by a givem presentation acress twe inf ormation streams
decreases with increasing joint probability of the stimulus combination. That is, the net activity of the

population is correlated with the novelty of the stimulus. The relationship between the net activity
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Figure 2. A complete represemation of a 2x3 environmers. u. The subenvironment E’ consists of the two equiprobable pat-
terns A and B, E” consists of the three equiprobable patterns 1, 2, and 3. Their joint probabilities are shown in the pie chart
and the table. b. The five subpatterns (A ,B8,1,23) are each the trigger feature for one of the C-units in this minimally com-
plete population. The C-unit representation is shown as ap activity pattern over these units for each of the six possible joint
patterns, together with the pattern's joint probability and the net activity elicited in the population. For every joint pattern,
at least two units correspond to the constituent subpatterns and are thus maximally active. These two components of the ac-
tivity pattern are shown as unshaded bars, while the "associative” components are shown as shaded bars.

771



MUNRO

and the joint probability can be shown to be: (by Baye's theorem):

Aror(ij) = 4= (N; + Ny) py ®)

An example system In this example, a population has come to equilibrium with two pattern
streams. The respective subenvironments E/ and E” consist respectively of two and three equiprob-
able patterns: E/ = {A,B); E” ={1,2,3}). Only five (N, + N;) equilibrium states are possible, so for
convenience consider a population of just five units, each having converged to a different equilibrium
state. Thus the units can be labelled according to the stimulus selected along their training bank. The
statistics of the environment and the representations of joint stimuli across the population are
described in Figure 2. This simple example illustrates several basic aspects of distributed representa-
tions by high-order units. Note that for each pattern, the net activity plus 5 times the joint probability

is 4 and hence Eq. (8) is verified.
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