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ABSTRACT OF THE DISSERTATION

Toward Understanding the Dynamics of Over-parameterized Neural Networks
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Libin Zhu
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Professor Mikhail Belkin, Chair

The practical applications of neural networks are vast and varied, yet a comprehensive

understanding of their underlying principles remains incomplete. This dissertation advances

the theoretical understanding of neural networks, with a particular focus on over-parameterized

models. It investigates their optimization and generalization dynamics and sheds light on various

deep-learning phenomena observed in practice. This research deepens the understanding of the

complex behaviors of these models and establishes theoretical insights that closely align with

their empirical behaviours across diverse computational tasks.

In the first part of the thesis, we analyze the fundamental properties of over-parameterized

neural networks and we demonstrate that these properties can lead to the success of their

xvi



optimization. We show that feedforward neural networks corresponding to arbitrary directed

acyclic graphs undergo transition to linearity. The transition to linearity is characterized by

the networks converging to their first-order Taylor expansion of parameters as their “width”

approaches infinity. The width of these general networks is characterized by the minimum

indegree of their neurons, except for the input and first layers. We further demonstrate that the

property of transition to linearity plays an important role in the success of the optimization of

over-parameterized neural networks.

In this second part of the thesis, we investigate the modern training regime of over-

parameterized neural networks, particularly focusing on the large learning rate regime. While

neural networks can be approximated by linear models as their width increases, certain properties

of wide neural networks cannot be captured by linear models. We show that recently proposed

Neural Quadratic Models can exhibit the “catapult phase” [65] that arises when training such

models with large learning rates. We then empirically show that the behaviour of neural quadratic

models parallels that of neural networks in generalization, especially in the catapult phase regime.

Our analysis further demonstrates that quadratic models can be an effective tool for analysis of

neural networks.

Moreover, we extend the analysis of catapult dynamics to stochastic gradient descent

(SGD). We first present an explanation regarding the common occurrence of spikes in the

training loss when neural networks are trained with SGD. We provide evidence that the spikes

in the training loss of SGD are caused by catapults. Second, we posit an explanation for how

catapults lead to better generalization by demonstrating that catapults increase feature learning

by increasing alignment with the Average Gradient Outer Product (AGOP) of the true predictor.

Furthermore, we demonstrate that a smaller batch size in SGD induces a larger number of

catapults, thereby improving AGOP alignment and test performance.

Overall, by integrating theoretical insights with empirical validations, this dissertation

provides a new understanding of the complex dynamics governing neural network training and

generalization.
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Chapter 1

Introduction

Recent advances in neural networks have significantly transformed various sectors, includ-

ing image recognition, natural language processing, and autonomous systems. Notwithstanding

their remarkable capabilities, these networks frequently function as “black boxes”, posing sub-

stantial challenges for transparency and interpretability. This opacity is particularly concerning

with the rise of Large Language Models (LLMs) [84], which signal the potential emergence

of general artificial intelligence and ignite discussions regarding their safe development and

application. This “black box” challenge demands immediate attention and research efforts to

develop methods that demystify the inner workings of these networks.

Modern deep learning models often have substantial numbers of parameters. For exam-

ple, modern LLMs utilize billions or even trillions of parameters, significantly enhancing their

performance [7, 84, 24, 104]. These models are typically trained using gradient descent-based

methods, such as Stochastic Gradient Descent (SGD) or Adam [57]. Recently, there has been

a growing understanding of the dynamics of these gradient-based methods, especially in the

context of over-parameterized models that can perfectly fit the training data. The understanding

of over-parameterization and gradient-based methods can lead to improved transparency and in-

terpretability of neural networks. Therefore, in this thesis, we concentrate on over-parameterized

neural networks and tackle two major problems of neural networks: optimization and generaliza-

tion, within the context of gradient-based training.
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The thesis is structured into chapters, each addressing a different aspect of training

dynamics and generalization capabilities of neural networks.

Linear training dynamics

Neural networks are often considered highly nonlinear models due to their complex,

multi-layered non-linear structures. However, for wide neural networks, i.e., the number of

neurons in hidden layers is sufficiently large, they are indeed approximately linear in a ball of a

fixed radius of parameters. This property was first discovered in [46] in terms of the constancy

of the Neural Tangent Kernel (NTK) along the optimization path with gradient flow and was

termed as transition to linearity from [66].

In Chapter 2, we show that the property of transition to linearity holds for a much broader

class of neural networks – feedforward neural networks. The architecture of a feedforward neural

network can generically be described by a DAG [117, 110, 74], which includes standard network

architectures e.g., FCNs, CNNs and ResNets. This generalization shows that the transition to

linearity, or the constant Neural Tangent Kernel, does not depend on the specific designs of the

networks, and is a more fundamental and universal property.

Transition to linearity helps understand the training dynamics of wide neural networks

and plays an important role in developing the optimization theory for them, as has been shown

for certain particular wide neural networks [22, 21, 15, 64, 126, 125]. Specifically, their training

dynamics under certain settings can be accurately characterized by the corresponding linear

models, which are the first-order Taylor expansion of the neural networks. Such training

dynamics are referred to as linear dynamics or kernel regimes.

Catapult dynamics

While linear training dynamics apply to small constant learning rates, practical optimiza-

tion of neural networks often prefers larger learning rates, which exhibit non-linear dynamics

and result in better generalization. Therefore, understanding the non-linear dynamics of neural

networks is essential to explain their superior performance compared to other machine learning
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models.

For wide neural networks trained with a large learning rate, a notable non-linear phe-

nomenon termed “catapult dynamics” was observed in [65]. Here, the loss initially increases and

then decreases after reaching a large value, along with the decrease of the spectral norm of the

NTK. More interestingly, the neural networks have better test performance when the catapult

phase phenomenon occurs.

In Chapter 3, we utilize a quadratic model as a tool to shed light on the catapult dynamics

of neural networks. The quadratic model is defined as the second-order Taylor series expansion

of the network function. We analytically show that quadratic models exhibit catapult dynamics

when trained with a large learning rate. Moreover, we empirically show that the behavior of

neural quadratic models parallels that of neural networks in generalization, especially in the

catapult phase regime.

Feature learning in catapult dynamics

In Chapter 4, we extend the catapult dynamics that are typically observed in gradient

descent to SGD. Specifically, we show that the spikes in the training loss of SGD, that are

commonly observed in practice, are caused by catapult dynamics.

Additionally, we demonstrate that catapult dynamics improve the generalization perfor-

mance in SGD, similar to their effects in GD. We first show catapults enhance generalization

through increasing feature learning. The feature learning is quantified by the alignment between

the Average Gradient Outer Product (AGOP) of the trained network and of the true predictor.

This mechanism is empirically verified for a single catapult in GD and is shown to hold for

multiple catapults in GD, which can be induced by increasing the learning rates during training.

Second, we show that smaller batch size with SGD can lead to better test performance due to a

higher AGOP alignment, which is caused by an increase in the number of catapults.
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Chapter 2

Trainsition to linearity of general feedfor-
ward neural networks

In this chapter, we investigate a key property of neural networks known as transition to

linearity, a phenomenon where networks behave more predictably as they grow wider. Initially

identified in well-known network architectures like fully-connected [46, 64] and convolutional

networks [8], this characteristic suggests that such predictability might be intrinsic to neural

networks, not just specific architectures. However, the underlying mathematical structure and

broader implications of this transition have not been fully understood. In this chapter, we

focus on the general feedforward neural networks corresponding to Directed Acyclic Graphs

(DAGs), showing that the transition to linearity is a general property across various neural

network architectures. We further investigate how the transition to linearity leads to the success

of optimization, potentially shedding light on effective strategies for training and network design.

2.1 Introduction

A remarkable property of wide neural networks, first discovered in [46] in terms of the

constancy of the Neural Tangent Kernel along the optimization path, is that they transition to

linearity (using the terminology from [66]), i.e., are approximately linear in a ball of a fixed

radius. There has been an extensive study of this phenomenon for different types of standard

neural networks architectures including fully-connected neural networks (FCNs), convolutional
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neural networks (CNNs), ResNets [64, 15, 8, 34]. Yet the scope of the transition to linearity and

the underlying mathematical structure has not been made completely clear.

In this paper, we show that the property of transition to linearity holds for a much broader

class of neural networks – feedforward neural networks. The architecture of a feedforward

neural network can generically be described by a DAG [117, 110, 74]: the vertices and the edges

correspond to the neurons and the trainable weight parameters of a neural network, respectively.

This DAG structure includes standard network architectures e.g., FCNs, CNNs, ResNets, as well

as DenseNets [42], whose property of transition to linearity has not been studied in literature.

This generalization shows that the transition to linearity, or the constant Neural Tangent Kernel,

does not depend on the specific designs of the networks, and is a more fundamental and universal

property.

We define the width of a feedforward neural network as the minimum in-degree of all

neurons except for the input and first layers, which is a natural generalization of the the minimum

number of neurons in hidden layers which is how the width is defined for standard architectures.

For a feedforward neural network, we show it transitions to linearity if its width goes

to infinity as long as the in-degrees of individual neurons are bounded by a polynomial of the

network width. Specifically, we control the deviation of the network function from its linear

approximation by the spectral norm of the Hessian of the network function, which, as we show

vanishes in a ball of fixed radius, in the infinite width limit. Interestingly, we observe that not

only the output neurons, but any pre-activated neuron in the hidden layers of a feedforward

neural network can be regarded as a function with respect to its parameters, which will also

transition to linearity as the width goes to infinity.

The key technical difficulty is that all existing analyses for transition to linearity or

constant NTK do not apply to this general DAG setting. Specifically, those analyses assume

in-degrees of neurons are either the same or proportional to each other up to a constant ratio

[21, 64, 8, 125, 66, 6]. However, the general DAG setting allows different scales of neuron

in-degrees, for example, the largest in-degree can be polynomially large in the smallest in-degree.
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In such scenarios, the (2,2,1)-norm in [66] and the norm of parameter change in [21, 64] scales

with the maximum of in-degrees which causes a trivial bound on the NTK change. Instead,

we introduce a different set of tools based on the tail bound for the norm of matrix Gaussian

series [106]. Specifically, we show that the Hessian of the network function takes the form

of matrix Gaussian series, whose matrix variance relies on the Hessian of connected neurons.

Therefore, we reconcile the in-degree difference by building a recursive relation between the

Hessian of neurons, which exactly cancels out the in-degree with the scaling factor.

Transition to linearity helps understand the training dynamics of wide neural networks

and plays an important role in developing the optimization theory for them, as has been shown

for certain particular wide neural networks [22, 21, 15, 64, 126, 125]. While transition to

linearity is not a necessary condition for successful optimization, it provides a powerful tool

for analyzing optimization for many different architectures. Specifically, transition to linearity

in a ball of sufficient radius combined with a lower bound on the norm of the gradient at its

center is sufficient to demonstrate the PL∗ condition [67] (a version of the Polyak-Łojasiewicz

condition [89, 70]) which ensures convergence of optimization. We discuss this connection and

provide one such lower bound in Section 2.4.

Summary of contributions

We show the phenomenon of transition to linearity in general feedforward neural networks

corresponding to a DAG with large in-degree. Specifically, under the assumption that the

maximum in-degree of its neurons is bounded by a polynomial of the width m (the minimum

in-degree), we prove that the spectral norm of the Hessian of a feedforward neural network

is bounded by Õ(1/
√

m) in an O(1) ball. Our results generalize the existing literature on the

linearity of wide feedforward neural networks. We discuss connections to optimization. Under

additional assumptions we show that the norm of the gradient of a feedforward neural network

is bounded away from zero at initialization. Together with the Hessian bound this implies

convergence of gradient descent for the loss function.
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Notations

We use bold lowercase letters, e.g., w, to denote vectors, capital letters, e.g., A, to denote

matrices, and bold capital letters, e.g., H, to denote higher order tensors or matrix tuples. For a

matrix A, we use A[i,:] to denote its i-th row and A[:,i] to denote its j-th column.

We use ∇w f (w0) to denote the gradient of f with respect to w at w0, and H f (w) to

denote Hessian matrix (second derivative) of f with respect to w. For vectors, we use ∥ · ∥ to

denote Euclidean norm. For matrices, we use ∥ · ∥ to denote spectral norm and ∥ · ∥F to denote

Frobenius norm. We use ∥ · ∥∞ to denote function L∞ norm. For a set S , we use |S | to denote

the cardinality of the set. For n > 0, [n] denotes the set {1,2, ...,n}.

We use big-O notation to hide constant factors, and use big-Õ notation to additionally

hide logarithmic factors. In this paper, the argument of O/Õ(·) is always with respect to the

network width.

Given a vector w and a constant R > 0, we define a Euclidean ball B(w,R) as:

B(w,R) := {v : ∥v−w∥ ≤ R} . (2.1)

2.2 Neural networks with acyclic graph architecture

In this section, we provide a definition and notation for general feedforward neural

networks with an arbitrary DAG structure. This definition includes standard feedforward neural

network architectures, such as FCNs and DenseNet.

Defining feedforward neural networks

Graph Structure. Consider a directed acyclic graph (DAG) G = (V ,E ), where V and

E denote the sets of vertices and edges, respectively. See the left panel of Figure 2.1, for an

illustrative example. For a directed edge e ∈ E , we may also use the notation e = (v1,v2) to

explicitly write out the start vertex v1 and end vertex v2.

For a vertex v ∈ V , we denote its in-degree, in(v), by the number of incoming edges
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(a) (b)

Figure 2.1. (a): An example of directed acyclic graph. v1, v2 and v3 are three vertices and e1,
e2 are two edges of the graph. v3 has two incoming edges e1 and e2 which connects to v1 and
v2 respectively. (b): Organizing the vertices into layers. The vertices with 0 in-degree are in
0-th layer (or input layer), and last layer are called output layer in which the vertices have 0
out-degree. Note that the layer index is determined by the longest path from the inputs Vinput, for
example, the neuron in layer 3.

(edges that end with it):

in(v) = |Sin(v)|, with Sin(v) := {u ∈ V : (u,v) ∈ E }.

Similarly, for a vertex v ∈ V , we denote its out-degree out(v) by the number of outgoing edges

(edges that start from it):

out(v) = |Sout(v)|, with Sout(v) := {u ∈ V : (v,u) ∈ E }.

We call the set of vertices with zero in-degrees input: Vinput = {v ∈ V : in(v) = 0}, and

the set of vertices with zero out-degrees output Voutput = {v ∈ V : out(v) = 0}.

Definition 2.2.1. For each vertex v ∈ V \Vinput, its distance p(v), to the input Vinput, is defined

to be the maximum length of all paths that start from a vertex within Vinput and end with v.

It is easy to check that p(v) = 0 if v ∈ Vinput.

Feedforward neural network. Based on a given DAG architecture, we define the
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feedforward neural network. Each individual vertex corresponds to a neuron additionally

equipped with a scalar function (also called activation function). Each edge is associated with a

real-valued weight, a trainable parameter. Each neuron is defined as a function of the weight

parameters and the adjacent neurons connected by its incoming edges. The feedforward neural

network is considered as the output neurons, corresponding to the output Voutput, of all weight

parameters and input neurons which correspond to the input Vinput. Formally, we define the

feedforward neural network as follows.

Definition 2.2.2 (Feedforward neural network). Consider a DAG G = (V ,E ). For each vertex

v ∈ V \Vinput, we associate it with an activation function σv(·) : R→ R and each of its incoming

edges e = (u,v) ∈ E with a weight variable we = w(u,v). Then we define the following functions:

fv = σv( f̃v), f̃v =
1√
in(v)

∑
u∈Sin(v)

w(u,v) fu. (2.2)

When v ∈ Vinput, fv is prefixed as the input data, and we denote finput := { fv : v ∈ Vinput}. For

v /∈ Vinput, we call fv neurons and f̃v pre-activations. With necessary composition of functions,

each fv, and f̃v, can be regarded as a function of all related weight variables and inputs finput.

The feedforward neural network is defined to be the function corresponding to the output Voutput:

f (W ; finput) := foutput = { fv : v ∈ Voutput}, (2.3)

where W := {we : e ∈ E } denotes the set of all the weight variables.

Remark 2.2.3. The validity of the definition is guaranteed by the fact that the DAG is acyclic. It

makes sure that the dependence of each function fv on other neurons can pass all the way down

to the input finput, through Eq. (2.2).

Remark 2.2.4. For v ∈ Vinput
⋃

Voutput, we use the identity function I(·) as the activation functions.

Weight initialization and inputs. Each weight parameter we ∈ W is initialized i.i.d.

following the standard normal distribution i.e., N (0,1). The inputs are considered given, usually
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determined by datasets. Under this initialization, we introduce the scaling factor 1/
√
in(v) in

Eq. (2.5) to control the value of neurons to be of order O(1). Note that this initialization is an

extension of the NTK initialization [46], which was defined for FCNs therein.

Generality of DAG architecture. Including FCNs and DenseNets [42] as special

examples, the class of feedforward neural networks allows much more choices of architectures,

for example, neural networks with randomly dropped edges. Please see detailed discussions

about these specific examples in Appendix A.1. We note that our definition of feedforward

neural networks does not directly include networks with nont-trainable skip connections, e.g.,

ResNets, and networks with shared weights, e.g., CNNs. However, with a slight modification

of the analysis, the property of transition to linearity still holds. See the detailed discussion in

Appendix A.4 and A.5.

Organizing feedforward networks into layers

The architecture of the feedforward neural network is determined by the DAG G . The

complex structures of DAGs often lead to complicated neural networks, which are hard to

analyze.

For the ease of analysis, we organize the neurons of the feedforward neural network into

layers, which are sets of neurons.

Definition 2.2.5 (Layers). Consider a feedforward neural network f and its corresponding graph

structure G . A layer of the network is defined to be the set of neurons which have the same

distance p to the inputs. Specifically, the ℓ-th layer, denoted by f (ℓ), is

f (ℓ) = { fv : p(v) = ℓ,v ∈ V , ℓ ∈ N}. (2.4)

It is easy to see that the layers are mutually exclusive, and the layer index ℓ is labeled

from 0 to ℓ, where L+1 is the total number of layers in the network. As p(v) = 0 if and only

if v ∈ Vinput, the 0-th layer f (0) is exactly the input layer finput. The right panel of Figure 2.1
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provides an illustrative example of the layer structures.

In general, the output neurons foutput (defined in Eq. (2.3)) do not have to be in the same

layer. For the convenience of presentation and analysis, we assume that all the output neurons

are in the last layer, i.e., layer ℓ, which is the case for most of commonly used neural networks,

e.g., FCNs and CNNs. Indeed, our analysis applies to every output neuron (see Theorem 2.3.8),

even if they are not in the same layer.

With the notion of network layers, we rewrite the neuron functions Eq. (2.2), as well as

related notations, to reflect the layer information.

For ℓ-layer, ℓ= 0,1, · · · ,L, we denote the total number of neurons as dℓ, and rewrite the

layer function f (ℓ) into a form of vector-valued function

f (ℓ) =
(

f (ℓ)1 , f (ℓ)2 , ..., f (ℓ)dℓ

)T
,

where we use f (ℓ)i with index i = 1,2, · · · ,dℓ to denote each individual neuron. Correspondingly,

we denote its vertex as v(ℓ)i , and S
(ℓ)

i :=Sin(v
(ℓ)
i ). Hence, the in-degree in(v(ℓ)i ), denoted as m(ℓ)

i

here, is equivalent to the cardinality of the set S
(ℓ)

i .

Remark 2.2.6. Note that m(ℓ)
i , with the superscript ℓ, denotes an in-degree, i.e., the number of

neurons that serve as direct inputs to the current neuron in ℓ-th layer. In the context of FCNs,

m(ℓ)
i is equivalent to the size of its previous layer, i.e., (ℓ−1)-th layer, and is often denoted as

m(ℓ−1) in literature.

To write the summation in Eq. (2.2) as a matrix multiplication, we further introduce the

following two vectors: (a), f
S

(ℓ)
i

represents the vector that consists of neuron components fv

with v ∈ S
(ℓ)

i ; (b), w(ℓ)
i represents the vector that consists of weight parameters w

(u,v(ℓ)i )
with

u ∈ S
(ℓ)

i . Note that both vectors f
S

(ℓ)
i

and w(ℓ)
i have the same dimension m(ℓ)

i .
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With the above notation, the neuron functions Eq. (2.2) can be equivalently rewritten as:

f (ℓ)i = σ
(ℓ)
i ( f̃ (ℓ)i ), f̃ (ℓ)i =

1√
m(ℓ)

i

(
w(ℓ)

i

)T
f
S

(ℓ)
i
. (2.5)

For any ℓ ∈ [L], we denote the weight parameters corresponding to all incoming edges toward

neurons at layer ℓ by

w(ℓ) :=
(
(w(ℓ)

1 )T , ...,(w(ℓ)
dℓ
)T
)T

ℓ ∈ [L]. (2.6)

Through the way we define the feedforward neural network, the output of the neural network is a

function of all the weight parameters and the input data, hence we denote it by

f (w;xxx) := f (L) =
(

f (L)1 , ..., f (L)dL

)T
, (2.7)

where w is the collection of all the weight parameters, i.e., w :=
(
(w(1))T , ...,(w(L))T

)T
∈

R∑ℓ ∑i m(ℓ)
i .

With all the notations, for a feedforward neural network, we formally define the width of

it:

Definition 2.2.7 (Network width). The width m of a feedforward neural network is the minimum

in-degree of all the neurons except those in the input and first layers:

m := inf
ℓ∈{2,...,L},i∈[dℓ]

m(ℓ)
i . (2.8)

Remark 2.2.8. Note that, the network width m is determined by the in-degrees of neurons except

for the input and first layers, and not necessarily relates the number of neurons in hidden layers.

But for certain architectures e.g., FCNs, these two coincide that the minimum in-degree after the
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first layer is the same as the minimum hidden layer size.

We say a feedforward neural network is wide if its width m is large enough. In this paper,

we consider wide feedforward neural networks with a fixed number of layers.

2.3 Transition to linearity of feedforward neural networks

In this section, we show that the feedforward neural networks exhibit the phenomenon of

transition to linearity, which was previously observed in specific types of neural networks.

Specifically, we prove that a feedforward neural network f (w;xxx), when considered as a

function of its weight parameters w, is arbitrarily close to a linear function in the ball B(w0,R)

given constant R > 0, where w0 is randomly initialized, as long as the width of the network is

sufficiently large.

First, we make the following assumptions on the input xxx and the activation functions:

Assumption 2.3.1. The input is uniformly upper bounded, i.e., ∥xxx∥∞ ≤Cxxx for some constant

Cxxx > 0.

Assumption 2.3.2. All the activation functions σ(·) are twice differentiable, and there exist

constants γ0,γ1,γ2 > 0 such that, for all activation functions, |σ(0)| ≤ γ0 and the following

Lipschitz continuity and smoothness conditions are satisfied

∣∣σ ′(z1)−σ
′(z2)

∣∣≤ γ1|z1 − z2|,
∣∣σ ′′(z1)−σ

′′(z2)
∣∣≤ γ2|z1 − z2|, ∀z1,z2 ∈ R.

We note that the above two assumptions are very common in literature. Although ReLU

does not satisfy Assumption 2.3.2 due to non-differentiability at point 0, we believe our main

claims still hold as ReLU can be approximated arbitrarily closely by some differentiable function

which satisfies our assumption.
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Remark 2.3.3. By assuming all the activation functions are twice differentiable, it is not hard to

see that the feedforward neural network i.e., Eq. (2.7) is also twice differentiable.

Taylor expansion. To study the linearity of a general feedforward neural network, we

consider its Taylor expansion with second order Lagrange remainder term. Given a point w0, we

can write the network function f (w) (omitting the input argument for simplicity) as

f (w) = f (w0)+(w−w0)
T

∇w f (w0)︸ ︷︷ ︸
flin(w)

+
1
2
(w−w0)

T H f (ξ )(w−w0)
︸ ︷︷ ︸

R(w)

, (2.9)

where ξ is a point on the line segment between w0 and w. Above, flin(w) is a linear function

and R(w) is the Lagrange remainder term.

In the rest of the section, we will show that in a ball B(w0,R) of any constant radius

R > 0,

|R(w)|= Õ
(
1/
√

m
)

(2.10)

where m is the network width (see Definition 2.2.7). Hence, f (w) can be arbitrarily close to

its linear approximation flin(w) with sufficiently large m. Note that in Eq. (2.9), we consider a

single output of the network function. The same analysis can be applied to multiple outputs (see

Corollary A.3.1).

Remark 2.3.4. For a general function, the remainder term R(w) is not expected to vanish at a

finite distance from w0. Hence, the transition to linearity in the ball B(w0,R) is a non-trivial

property. On the other hand, the radius R can be set to be large enough to contain the whole

optimization path of GD/SGD for various types of wide neural networks (see [67, 126], also

indicated in [22, 21, 125, 64]). In Section 2.4, we will see that such a ball is also large enough

to cover the whole optimization path of GD/SGD for the general feedforward neural networks.

Hence, to study the optimization dynamics of wide feedforward neural networks, this ball is
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large enough.

To prove Eq. (2.10), we make an assumption on the width m:

Assumption 2.3.5. The maximum in-degree of any neuron is at most polynomial in the network

width m:

sup
ℓ∈{2,...,L},i∈[dℓ]

m(ℓ)
i = O(mc),

where c > 0 is a constant.

This assumption puts a constraint on the neurons with large in-degrees such that the

in-degrees cannot be super-polynomially large compared to m. A natural question is whether

this constraint is necessary, for example, do our main results still hold in cases some in-degrees

are exponentially large in m? While we believe the answer is positive, we need this assumption

to apply the proof techniques. Specifically, we apply the tail bound for the norm of matrix

Gaussian series [106], where there is a dimension factor equivalent to the number of weight

parameters. Thus an exponentially large dimension factor would result in useless bounds. It is

still an open question whether the dimension factor in the bound can be removed or moderated

(see the discussion after Theorem 4.1.1 in [106]).

With these assumptions, we are ready to present our main result:

Theorem 2.3.6 (Scaling of the Hessian norm). Suppose Assumption 2.3.1, 2.3.2 and 2.3.5 hold.

Given a fixed R> 0, with probability at least 1−exp
(
−Ω(log2 m)

)
over the random initialization

w0, for all w ∈ B(w0,R), each output neuron fk of a feedforward neural network satisfies

∥∥H fk(w)
∥∥= O

(
(logm+R)L2

/
√

m
)
= Õ

(
RL2

/
√

m
)
, k ∈ [dℓ]. (2.11)

This theorem states that the Hessian matrix, as the second derivative with respect to

weight parameters w, of any output neuron can be arbitrarily small, if the network width is

sufficient large.
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Note that Eq. (2.11) holds for all w ∈ B(w0,R) with high probability over the random

initialization w0. The basic idea is that, the spectral norm of Hessian can be bounded at the

center of the ball, i.e., w0, though probability bounds due to the randomness of w0. For all other

points w ∈ B(w0,R), the distance ∥w−w0∥, being no greater than R, controls ∥H(w)−H(w0)∥

such that it is no larger than the order of ∥H(w0)∥, hence ∥H(w)∥ keeps the same order. See the

proof in Appendix A.2.

Using the Taylor expansion Eq. (2.9), we can bound the Lagrange remainder and have

transition to linearity of the network:

Corollary 2.3.7 (Transition to linearity). Suppose Assumption 2.3.1, 2.3.2 and 2.3.5 hold. Given

a fixed R > 0, with probability at least 1− exp
(
−Ω(log2 m)

)
over the random initialization w0,

for all w ∈ B(w0,R), each fk will be closely approximated by a linear model:

| fk(w)− ( fk)lin(w)| ≤ 1
2

sup
w∈B(w0,R)

∥H fk(w)∥R2 = Õ
(

RL2+2/
√

m
)
.

For feedforward neural networks with multiple output neurons, the property of transition

to linearity holds with high probability, if the number of output neurons is bounded, i.e., dℓ =

O(1). See the result in Appendix A.3.

Furthermore, as defined in Definition 2.2.2, each pre-activation, as a function of all

related weight parameters and inputs, can be viewed as a feedforward neural network. Therefore,

we can apply the same techniques used for Theorem 2.3.6 to show that each pre-activation can

transition to linearity:

Theorem 2.3.8. Suppose Assumption 2.3.1, 2.3.2 and 2.3.5 hold. Given a fixed radius R > 0,

with probability at least 1− exp
(
−Ω(log2 m)

)
over the random initialization of w0, for all

w ∈ B(w0,R), any pre-activation in a feedforward neural network i.e., f̃ (ℓ)k (w) satisfies

∥∥∥∥H
f̃ (ℓ)k

(w)

∥∥∥∥= O
(
(logm+R)ℓ

2
/
√

m
)
= Õ

(
Rℓ2

/
√

m
)
, ℓ ∈ [L], k ∈ [dℓ]. (2.12)
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Figure 2.2. Transition to linearity of DAG
network. The experimental result approxi-
mates well the theoretical prediction of relative
change of tangent kernel from initialization
to convergence, as a function of the network
width. Each point on the solid curve is the
average of independent 5 runs.

Figure 2.3. An example of DAG network
with bottleneck neurons. The DAG network
f (W;xxx) has two bottleneck neurons (in red
dashed circles) with in-degree 1, while the
rest of neurons except for the input and the
first layer have large in-degree. In this case,
f (W;xxx) will still transition to linearity with
respect to W as the number of neurons goes to
infinity.

Remark 2.3.9. Note that pre-activations in the input layer i.e., the input data and in the first layer

are constant and linear functions respectively, hence the spectral norm of their Hessian is zero.

Experimental verification. To verify our theoretical result on the scaling of the Hessian

norm, i.e., Theorem 2.3.6, we train a DAG network built from a 3-layer DenseNet with each

weight removed i.i.d. with probability 1/2, on 10 data points of CIFAR-2 (2-class subset of

CIFAR-10 [59]) using GD. We compute the maximum relative change of the tangent kernel

(definition is deferred to Eq. (2.17)) during training, i.e., maxt ∥Kt −K0∥/∥K0∥ to simulate the

scaling of the spectral norm of the Hessian. We observe the convergence of loss for all widths

{2,22, ...,212}, and the scaling of the Hessian follows close to the theoretical prediction of

Θ(1/
√

m). See Figure 2.2.

Non-linear activation on output neurons breaks transition to linearity. In the above

discussions, the transition to linearity of networks are under the assumption of identity activation

17



function on every output neuron. In fact, the activation function on output neurons is critical to

the linearity of neural networks. Simply, composing a non-linear function with a linear function

will break the linearity. Consistently, as shown in [67] for FCNs, with non-linear activation

function on the output, transition to linearity does not hold any more.

“Bottleneck neurons” do not necessarily break transition to linearity. We have seen

that if all neurons have sufficiently large in-degree, the network will transition to linearity. Does

transition to linearity still hold, if neurons with small in-degree exist? We call neurons with small

in-degree bottleneck neurons, as their in-degrees are smaller than rest of neurons hence forming

“bottlenecks”. As we show in Appendix E, existence of these bottleneck neurons does not break

the transition to linearity, as long as the number of such neurons is significantly smaller than that

of non-bottleneck neurons. Figure 2.3 shows an example with two bottleneck neurons, whose

in-degree is 1. This network still transitions to linearity as the number of neurons goes to infinity.

Proof sketch of Theorem 2.3.6

By Lemma A.11.1, the spectral norm of H fk can be bounded by the summation of

the spectral norm of all the Hessian blocks, i.e., ∥H fk∥ ≤ ∑ℓ1,ℓ2 ∥H(ℓ1,ℓ2)
fk

∥, where H(ℓ1,ℓ2)
fk

:=

∂ 2 fk
∂w(ℓ1)∂w(ℓ2)

. Therefore, it suffices to bound the spectral norm of each block. Without lose of

generality, we consider the block with 1 ≤ ℓ1 ≤ ℓ2 ≤ L.

By the chain rule of derivatives, we can write the Hessian block into:

∂ 2 fk

∂w(ℓ1)∂w(ℓ2)
=

L

∑
ℓ′=ℓ2

dℓ′

∑
i=1

∂ 2 f (ℓ
′)

i

∂w(ℓ1)∂w(ℓ2)

∂ fk

∂ f (ℓ
′)

i

:=
L

∑
ℓ′=ℓ2

GL,ℓ′
k . (2.13)
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For each GL,ℓ′
k , since f (ℓ

′)
i = σ

(
f̃ (ℓ

′)
i

)
, again by the chain rule of derivatives, we have

GL,ℓ′
k =

dℓ′

∑
i=1

∂ 2 f̃ (ℓ
′)

i

∂w(ℓ1)∂w(ℓ2)

∂ fk

∂ f̃ (ℓ
′)

i

+
1√
m(L)

k

∑
i: f (ℓ

′)
i ∈F

S
(L)
k

(
w(L)

k

)
idL,k
ℓ′,i

σ
′′
(

f̃ (ℓ
′)

i

)
∂ f̃ (ℓ

′)
i

∂w(ℓ1)

(
∂ f̃ (ℓ

′)
i

∂w(ℓ2)

)T

=
1√
m(L)

k

L−1

∑
r=ℓ′

∑
i: f (r)i ∈F

S
(L)
k

(
w(L)

k

)
idL,k

r,i

σ
′
(

f̃ (r)s

)
Gr,ℓ′

i

+
1√
m(L)

k

∑
i: f (ℓ

′)
i ∈F

S
(L)
k

(
w(L)

k

)
idL,k
ℓ′,i

σ
′′
(

f̃ (ℓ
′)

i

)
∂ f̃ (ℓ

′)
i

∂w(ℓ1)

(
∂ f̃ (ℓ

′)
i

∂w(ℓ2)

)T

, (2.14)

where F
S

(L)
k

:= { f : f ∈ f
S

(L)
k

} and idL,k
ℓ′,i := {p :

(
f
S

(L)
k

)

p
= f (ℓ

′)
i }.

The first quantity on the RHS of the above equation, ∑

(
w(L)

k

)
idL,k
ℓ′,i

σ ′
(

f̃ (r)i

)
Gr,ℓ′

i , is a

matrix Gaussian series with respect to random variables w(L)
k , conditioned on fixed σ ′

(
f̃ (r)i

)
Gr,ℓ′

i

for all i such that f (r)i ∈ F
S

(ℓ)
k

. We apply the tail bound for matrix Gaussian series, Theorem

4.1.1 from [106], to bound this quantity. To that end, we need to bound its matrix variance, which

suffices to bound the spectral norm of ∑i Gr,ℓ′
i since σ ′(·) is assumed to be uniformly bounded

by Assumption 2.3.2. There is a recursive relation that the norm bound of GL,ℓ′
k depends on the

norm bound of Gr,ℓ′
i which appears in the matrix variance. Therefore, we can recursively apply

the argument to bound each G.

Similarly, the second quantity on the RHS of the above equation is also a matrix Gaussian

series with respect to w(L)
k , conditioned on fixed σ ′′

(
f̃ (ℓ

′)
i

)
∂ f̃ (ℓ

′)
i

∂w(ℓ1)

(
∂ f̃ (ℓ

′)
i

∂w(ℓ2)

)T

for all i such that

f (ℓ
′)

i ∈ F
S

(L)
k

. As σ ′′(·) is assumed to be uniformly bounded by Assumption 2.3.2, we use

Lemma A.2.1 to bound its matrix variance, hence the matrix Gaussian series can be bounded.

Note that such tail bound does not scale with the largest in-degree of the networks, since

the in-degree of fk, i.e., m(L)
k , will be cancelled out with the scaling factor 1√

m(L)
k

in the bound of

matrix variance. See the complete proof in Appendix A.2.
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2.4 Relation to optimization

While transition to linearity is a significant and surprising property of wide networks in its

own right, it also plays an important role in building the optimization theory of wide feedforward

neural networks. Specifically, transition to linearity provides a path toward showing that the

corresponding loss function satisfies the PL∗ condition in a ball of a certain radius, which is

sufficient for exponential convergence of optimization to a global minimum by gradient descent

or SGD [67].

Consider a supervised learning task. Given training inputs and labels {(xxxi,yi)}n
i=1, we

use GD/SGD to minimize the square loss:

L (w) =
1
2

n

∑
i=1

( f (w;xxxi)− yi)
2, (2.15)

where f (w; ·) is a feedforward neural network.

The loss L (w) is said to satisfy µ-PL∗ condition, a variant of the well-known Polyak-

Łojasiewicz condition [89, 70], at point w, if

∥∇wL (w)∥2 ≥ 2µL (w), µ > 0.

Satisfaction of this µ-PL∗ condition in a ball B(w0,R) with R = O(1/µ) around the starting

point w0 of GD/SGD guarantees a fast converge of the algorithm to a global minimum in this

ball [67].

In the following, we use the transition to linearity of wide feedforward networks to

establish the PL∗ condition for L (w). Taking derivative on Eq. (2.15), we get

∥∇wL (w)∥2 ≥ 2λmin(K(w))L (w), (2.16)
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where matrix K(w), with elements

Ki, j(w) = ∇w f (w;xxxi)
T

∇w f (w;xxx j) for i, j ∈ [n], (2.17)

is called Neural Tangent Kernel (NTK) [46], and λmin(·) denotes the smallest eigenvalue

of a matrix. Note that, by definition, the NTK matrix is always positive semi-definite, i.e.,

λmin(K(w))≥ 0.

Directly by the definition of PL∗ condition, at a given point w, if λmin(K(w)) is strictly

positive, then the loss function L (w) satisfies PL∗ condition.

To establish convergence of GD/SGD, it is sufficient to verify that PL∗ condition is

satisfied in a ball B(w0,R) with R = O(1/µ). Assuming that λmin(K(w0)) is bounded away

from zero, transition to linearity extends the satisfaction of the PL∗ condition from one point w0

to all points in B(w0,R).

PL∗ condition at w0

For certain neural networks, e.g., FCNs, CNNs and ResNets, strict positiveness of

λmin(K(w0)) can be shown, see for example, [22, 21]. We expect same holds more generally,

in the case of general feedforward neural networks. Here we show that λmin(K(w0)) can be

bounded from 0 for one data point under certain additional assumptions. Since there is only one

data point, λmin(K(w0)) = K(w0) = ∥∇w f (w0)∥2. We also assume the following on activation

functions and the input.

Assumption 2.4.1. The input x satisfies x ∼ N (0, Id0).

Assumption 2.4.2. The activation function is homogeneous, i.e. σ
(ℓ)
i (az) = arσ

(ℓ)
i (z),r > 0 for

any constant a. And infℓ∈[L−1],i∈[dℓ]Ez∼N (0,1)

[
σ
(ℓ)
i (z)2

]
=Cσ > 0.

Remark 2.4.3. Here for simplicity we assume the activation functions are homogeneous with the

same r. It is not hard to extend the result to the case that each activation function has different r.
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Proposition 2.4.4. With Assumption 2.4.1 and 2.4.2, we have for any k ∈ [dℓ],

Ex,w0[∥∇w fk(w0)∥]≥
√

min
(

1, min
1≤ j≤L

C
∑

j−1
l′=0 rℓ′

σ

)
= Ω(1). (2.18)

The proof can be found in Appendix A.7.

The above proposition establishes a positive lower bound on ∥∇w f (w0)∥, hence also on

λmin(K(w0)). Using Eq. (2.16), we get that the loss function L (w) satisfies PL∗ at w0.

Extending PL∗ condition to B(w0,R)

Now we use transition to linearity to extend the satisfaction of PL∗ condition to the

ball B(w0,R). In Theorem 2.3.6, we see that, a feedforward neural network f (w) transitions

to linearity, i.e., ∥H f (w)∥= Õ(1/
√

m) in this ball. An immediate consequence is that, for any

w ∈ B(w0,R),

|λmin(K(w))−λmin(K(w0))| ≤ O

(
sup

w∈B(w0,R)
∥H f (w)∥

)
.

Since λmin(K(w0)) is bound from 0 and ∥H f (w)∥ can be arbitrarily small as long as m is large

enough, we have λmin(K(w)) is lower bounded from 0 in the whole ball. Specifically, there is a

µ > 0 such that

inf
w∈B(w0,R)

λmin(K(w))≥ µ.

Moreover, the radius R can be set to be O(1/µ), while keeping the above inequality hold. Then,

applying the theory in [67], existence of global minima of L (w) and convergence of GD/SGD

can be established.

For the case of multiple data points, extra techniques are needed to lower bound the

minimum eigenvalue of the tangent kernel. Since we focus more on the transition to linearity of

feedforward neural networks in this paper, we leave it as a future work.
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Non-linear activation function on outputs and transition to linearity. In this paper,

we mainly discussed feedforward neural networks with linear activation function on output

neurons. In most of the literature also considers this setting [46, 76, 81, 22, 21, 126, 125]. In

fact, as pointed out in [67] for FCNs, while this linearity of activation function on the outputs is

necessary for transition to linearity, it is not required for successful optimization. Specifically,

simply adding a nonlinear activation function on the output layer causes the Hessian norm to be

O(1), independently of the network width. Thus transition to linearity does not occur. However,

the corresponding square loss can still satisfy the PL∗ condition and the existence of global

minimum and efficient optimization can still be established.

2.5 Discussion and future directions

In this work, we showed that transition to linearity arises in general feedforward neural

networks with arbitrary DAG architectures, extending previous results for standard architec-

tures [46, 64, 66]. We identified the minimum in-degree of all neurons except for the input and

first layers as the key quantity to control the transition to linearity of general feedforward neural

networks.

We showed that the property of transition to linearity is flexible to the choice of the neuron

function Eq. (2.2). For example, skip connections Eq. (A.12) and shared weights Eq. (A.14)

do not break the property. Therefore, we believe our framework can be extended to more

complicated neuron functions, e.g., attention layers [41]. For non-feedforward networks, such as

RNN, recent work [5] showed that they also have a constant NTK. For this reason, we expect

transition to linearity also to occur for non-feedforward networks.

Another direction of future work is better understanding of optimization for DAG net-

works, which requires a more delicate analysis of the NTK at initialization. Specifically, with

multiple training examples, a lower bound on the minimum eigenvalue of the NTK of the

DAG networks is sufficient for the PL∗ condition to hold, thus guaranteeing the convergence of
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GD/SGD.
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Chapter 3

Catapult dynamics of neural networks

The recent observation of the transition to linearity in neural networks as their width

approaches infinity marks a significant milestone in the theoretical understanding of these

complex models. However, the optimization theory based on the transition to linearity requires a

small, constant learning rate to guarantee the success of the optimization. In contrast, modern

deep learning often uses large learning rates to enhance test performance. A notable finding

concerning the dynamics of neural networks trained with large learning rates is the catapult

dynamics [65], which has been shown to consistently improve the test performance of neural

networks. Understanding the catapult phase phenomenon seems to be important to understanding

the success of neural networks. Given that the optimization theory based on the transition to

linearity fails to explain this phenomenon, there is a clear need for an alternative mathematical

model.

In this chapter, we utilize quadratic models to bridge the gap between theoretical pre-

dictions and empirical observations in network training. We demonstrate that quadratic models

exhibit similar behavior in both optimization and generalization, especially when the catapult

phase occurs. Therefore, quadratic models can be an effective tool to understand the dynamics

of neural networks.
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3.1 Introduction

A recent remarkable finding on neural networks, originating from [46] and termed as

the “transition to linearity” [66], is that, as network width goes to infinity, such models become

linear functions in the parameter space. Thus, a linear (in parameters) model can be built to

accurately approximate wide neural networks under certain conditions. While this finding has

helped improve our understanding of trained neural networks [21, 83, 126, 76, 51, 15], not all

properties of finite width neural networks can be understood in terms of linear models, as is

shown in several recent works [116, 85, 71, 26]. In this work, we show that properties of finitely

wide neural networks in optimization and generalization that cannot be captured by linear models

are, in fact, manifested in quadratic models.

The training dynamics of linear models with respect to the choice of the learning rates1

are well-understood [88]. Indeed, such models exhibit linear training dynamics, i.e., there exists

a critical learning rate, ηcrit, such that the loss converges monotonically if and only if the learning

rate is smaller than ηcrit (see Figure 3.1a).

(a) (b)

Figure 3.1. Optimization dynamics for linear and non-linear models based on choice of learning
rate. (a): Linear models either converge monotonically if learning rate is less than ηcrit and
diverge otherwise. (b): Unlike linear models, finitely wide neural networks and NQMs Eq. (3.2)
(or general quadratic models Eq. (3.3)) can additionally observe a catapult phase when ηcrit <
η < ηmax.

1Unless stated otherwise, we always consider the setting where models are trained with squared loss using
gradient descent.
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(a) Optimization dynamics for f (wide neural networks): linear
dynamics and catapult dynamics.

(b) Generalization performance
for f , flin and fquad.

Figure 3.2. (a): Optimization dynamics of wide neural networks with sub-critical and super-
critical learning rates. With sub-critical learning rates (0 < η < ηcrit), the tangent kernel of wide
neural networks is nearly constant during training, and the loss decreases monotonically. The
whole optimization path is contained in the ball B(w0,R) := {w : ∥w−w0∥ ≤ R} with a finite
radius R. With super-critical learning rates (ηcrit < η < ηmax), the catapult phase happens: the
loss first increases and then decreases, along with a decrease of the norm of the tangent kernel .
The optimization path goes beyond the finite radius ball. (b): Test loss of fquad, f and flin plotted
against different learning rates. With sub-critical learning rates, all three models have nearly
identical test loss for any sub-critical learning rate. With super-critical learning rates, f and fquad
have smaller best test loss than the one with sub-critical learning rates. Experimental details are
in Appendix B.14.

Recent work [64] showed that the training dynamics of a wide neural network f (w;xxx)

can be accurately approximated by that of a linear model flin(w;xxx):

flin(w;xxx) = f (w0;xxx)+(w−w0)
T

∇ f (w0;xxx), (3.1)

where ∇ f (w0;xxx) denotes the gradient2 of f with respect to trainable parameters w at an initial

point w0 and input sample xxx. This approximation holds for learning rates less than ηcrit ≈

2/∥∇ f (w0;xxx)∥2, when the width is sufficiently large.

However, the training dynamics of finite width neural networks, f , can sharply differ

from those of linear models when using large learning rates. A striking non-linear property

of wide neural networks discovered in [65] is that when the learning rate is larger than ηcrit

but smaller than a certain maximum learning rate, ηmax, gradient descent still converges but

2For non-differentiable functions, e.g. neural networks with ReLU activation functions, we define the gradient
based on the update rule used in practice. Similarly, we use H f to denote the second derivative of f in Eq. (3.2).
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experiences a “catapult phase.” Specifically, the loss initially grows exponentially and then

decreases after reaching a large value, along with the decrease of the norm of tangent kernel (see

Figure 3.2a), and therefore, such training dynamics are non-linear (see Figure 3.1b).

As linear models cannot exhibit such a catapult phase, under what models and conditions

does this phenomenon arise? The work of [65] first observed the catapult phase phenomenon

in finite width neural networks and analyzed this phenomenon for a two-layer linear neural

network. However, a theoretical understanding of this phenomenon for general non-linear neural

networks remains open. In this work, we utilize a quadratic model as a tool to shed light on the

optimization and generalization discrepancies between finite and infinite width neural networks.

We define Neural Quadratic Model (NQM) by the second order Taylor series expansion of

f (w;xxx) around the point w0:

NQM : fquad(w) = f (w0)+(w−w0)
T

∇ f (w0)+
1
2
(w−w0)

T H f (w0)(w−w0). (3.2)

Here in the notation we suppress the dependence on the input data xxx, and H f (w0) is the Hessian of

f with respect to w evaluated at w0. Note that fquad(w) = flin(w)+ 1
2(w−w0)

T H f (w0)(w−w0).

Indeed, we note that NQMs are contained in a more general class of quadratic models:

General Quadratic Model : g(w;xxx) = wT
φ(xxx)+

1
2

γwT
Σ(xxx)w, (3.3)

where w are trainable parameters and xxx is input data. We discuss the optimization dynamics of

such general quadratic models in Section 3.3 and show empirically that they exhibit the catapult

phase phenomenon in Appendix B.14. Note that the two-layer linear network analyzed in [65] is

a special case of Eq. (3.3), when φ(xxx) = 0 (See Appendix B.13).

Main Contributions. We prove that NQMs, fquad, which approximate shallow fully-

connected ReLU activated neural networks, exhibit catapult phase dynamics. Specifically, we

analyze the optimization dynamics of fquad by deriving the evolution of fquad and the tangent
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kernel during gradient descent with squared loss, for a single training example and multiple

uni-dimensional training examples. We identify three learning rate regimes yielding different

optimization dynamics for fquad, which are (1) converging monotonically (linear dynamics); (2)

converging via a catapult phase (catapult dynamics); and (3) diverging. We provide a number of

experimental results corroborating our theoretical analysis (See Section 3.3).

We then empirically show that NQMs, for the architectures of shallow (see Figure 3.2b

as an example) and deep networks, have better test performances when catapult dynamics

happens. While this was observed for some synthetic examples of neural networks in [65], we

systematically demonstrate the improved generalization of NQMs across a range of experimental

settings. Namely, we consider fully-connected and convolutional neural networks with ReLU

and other activation functions trained with GD/SGD on multiple vision, speech and text datatsets

(See Section 3.4).

To the best of our knowledge, our work is the first to analyze the non-linear wide neural

networks in the catapult regime through the perspective of the quadratic approximation. While

NQMs (or quadratic models) were proposed and analyzed in [95], our work focuses on the

properties of NQMs in the large learning rate regime, which has not been discussed in [95].

Similarly, the following related works did not study catapult dynamics. [43] analyzed higher

order approximations to neural networks under gradient flow (infinitesimal learning rates). [11]

studied different quadratic models with randomized second order terms and [121] considered the

loss in the quadratic form, where no catapult phase happens. A recent work showed the existence

of the catapult phase in two-layer, homogenous networks [75].

Discontinuity in dynamics transition. In the ball B(w0,R) := {w : ∥w−w0∥ ≤ R} with

constant radius R > 0, the transition to linearity of a wide neural network (with linear output

layer) is continuous in the network width m. That is, the deviation from the network function

to its linear approximation within the ball can be continuously controlled by the Hessian of the
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network function, i.e. H f , which scales with m [66]:

∥ f (w)− flin(w)∥ ≤ sup
w∈B(w0,R)

∥H f (w)∥R2 = Õ(1/
√

m). (3.4)

Using the inequality from Eq. (3.4), we obtain ∥ fquad− flin∥= Õ(1/
√

m), hence fquad transitions

to linearity continuously as well in B(w0,R)3. Given the continuous nature of the transition to

linearity, one may expect that the transition from non-linear dynamics to linear dynamics for

f and fquad is continuous in m as well. Namely, one would expect that the domain of catapult

dynamics, [ηcrit,ηmax], shrinks and ultimately converges to a single point, i.e., ηcrit = ηmax, as m

goes to infinity, with non-linear dynamics turning into linear dynamics. However, as shown both

analytically and empirically, the transition is not continuous, for both network functions f and

NQMs fquad, since the domain of the catapult dynamics can be independent of the width m (or γ).

Additionally, the length of the optimization path of f in catapult dynamics grows with m since

otherwise, the optimization path could be contained in a ball with a constant radius independent

of m, in which f can be approximated by flin. Since the optimization of flin diverges in catapult

dynamics, by the approximation, the optimization of f diverges as well, which contradicts the

fact that the optimization of f can converge in catapult dynamics (See Figure 3.2a).

3.2 Notation and preliminary

We use bold lowercase letters to denote vectors and capital letters to denote matrices. We

denote the set {1,2, · · · ,n} by [n]. We use ∥ · ∥ to denote the Euclidean norm for vectors and

the spectral norm for matrices. We use ⊙ to denote element-wise multiplication (Hadamard

product) for vectors. We use λmax(A) and λmin(A) to denote the largest and smallest eigenvalue

of a matrix A, respectively.

Given a model f (w;xxx), where xxx is input data and w are model parameters, we use ∇w f to

represent the partial first derivative ∂ f (w;xxx)/∂w. When clear from context, we let ∇ f := ∇w f

3For general quadratic models in Eq. (3.3), the transition to linearity is continuously controlled by γ .
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for ease of notation. We use H f and HL to denote the Hessian (second derivative matrix) of the

function f (w;xxx) and the loss L (w) with respect to parameters w, respectively.

In the paper, we consider the following supervised learning task: given training data

{(xxxi,yi)}n
i=1 with data xxxi ∈ Rd and labels yi ∈ R for i ∈ [n], we minimize the empirical risk with

the squared loss L (w) = 1
2 ∑

n
i=1( f (w;xxxi)− yi)

2. Here f (w; ·) is a parametric family of models,

e.g., a neural network or a kernel machine, with parameters w ∈ Rp. We use full-batch gradient

descent to minimize the loss, and we denote trainable parameters w at iteration t by w(t). With

constant step size (learning rate) η , the update rule for the parameters is:

w(t +1) = w(t)−η
dL (w)

dw
(t), ∀t ≥ 0.

Definition 3.2.1 (Tangent Kernel). The tangent kernel K(w; ·, ·) of f (w; ·) is defined as

K(w;xxx,zzz) = ⟨∇ f (w;xxx),∇ f (w;zzz)⟩, ∀xxx,zzz ∈ Rd. (3.5)

In the context of the optimization problem with n training examples, the tangent ker-

nel matrix K ∈ Rn×n satisfies Ki, j(w) = K(w;xxxi,xxx j), i, j ∈ [n]. The critical learning rate for

optimization is given as follows.

Definition 3.2.2 (Critical learning rate). With an initialization of parameters w0, the critical

learning rate of f (w; ·) is defined as

ηcrit := 2/λmax(HL (w0)). (3.6)

A learning rate η is said to be sub-critical if 0 < η < ηcrit or super-critical if ηcrit < η < ηmax.

Here ηmax is the maximum leaning rate such that the optimization of L (w) initialized at w0 can

converge.
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Dynamics for Linear models

When f is linear in w, the gradient, ∇ f , and tangent kernel are constant: K(w(t)) =

K(w0). Therefore, gradient descent dynamics are:

F(w(t +1))− yyy = (I −ηK(w0))(F(w(t))− yyy), ∀t ≥ 0, (3.7)

where F(w0) = [ f1(w0), ..., fn(w0)]
T with fi(w0) = f (w0;xxxi).

Noting that HL (w0) = ∇F(w0)
T ∇F(w0) and tangent kernel K(w0) = ∇F(w0)∇F(w0)

T

share the same positive eigenvalues, we have λmax(HL (w0)) = λmax(K(w0)), and hence,

ηcrit = 2/λmax(K(w0)). (3.8)

Therefore, from Eq. equation 3.7, if 0 < η < ηcrit, the loss L decreases monotonically

and if η > ηcrit, the loss L keeps increasing. Note that the critical and maximum learning rates

are equal in this setting.

3.3 Optimization dynamics in Neural Quadratic Models

In this section, we analyze the gradient descent dynamics of the NQM corresponding

to a two-layer fully-connected neural network. We show that, unlike a linear model, the NQM

exhibits a catapult dynamics: the loss increases at the early stage of training then decreases

afterwards. We further show that the top eigenvalues of the tangent kernel typically become

smaller as a consequence of the catapult.

Neural Quadratic Model (NQM). Consider the NQM that approximates the following

two-layer neural network:

f (u,v;xxx) =
1√
m

m

∑
i=1

viσ

(
1√
d

uT
i xxx
)
, (3.9)
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where ui ∈ Rd , vi ∈ R for i ∈ [m] are trainable parameters, xxx ∈ Rd is the input, and σ(·) is

the ReLU activation function. We initialize ui ∼ N (0, Id) and vi ∈ Unif[{−1,1}] for each i

independently. Letting g(u,v;xxx) := fquad(u,v;xxx), this NQM has the following expression (See

the full derivation in Appendix B.1):

g(u,v;xxx) = f (u0,v0;xxx)+
1√
md

m

∑
i=1

v0,i(ui −u0,i)
T xxx1{

uT
0,ixxx≥0

}+
1√
md

m

∑
i=1

(vi − v0,i)σ
(
uT

0,ixxx
)

+
1√
md

m

∑
i=1

(vi − v0,i)(ui −u0,i)
T xxx1{

uT
0,ixxx≥0

}. (3.10)

Given training data {xxxi,yi}n
i=1, we minimize the empirical risk with the squared loss

L (w) = 1
2 ∑

n
i=1(g(w;xxxi)−yi)

2 using GD with constant learning rate η . Throughout this section,

we denote g(u(t),v(t);xxx) by g(t) and its tangent kernel K(u(t),v(t)) by K(t), where t is the

iteration of GD. We assume ∥xxxi∥= O(1) and |yi|= O(1) for i ∈ [n], and we assume the width

of f is much larger than the input dimension d and the data size n, i.e., m ≫ max{d,n}. Hence,

d and n can be regarded as small constants. In the whole paper, we use the big-O and small-o

notation with respect to the width m. Below, we start with the single training example case,

which already showcases the non-linear dynamics of NQMs.

Catapult dynamics with a single training example

In this subsection, we consider training dynamics of NQM Eq. (3.10) with a single

training example (xxx,y) where xxx ∈Rd and y ∈R. In this case, the tangent kernel matrix K reduces

to a scalar, and we denote K by λ to distinguish it from a matrix.

By gradient descent with step size η , the updates for g(t)−y and λ (t), which we refer to

as dynamics equations, can be derived as follows (see the derivation in Appendix B.2):
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Dynamics equations.

g(t +1)− y =


1−ηλ (t)+

∥xxx∥2

md
η

2(g(t)− y)g(t)
︸ ︷︷ ︸

Rg(t)


(g(t)− y) := µ(t)(g(t)− y), (3.11)

λ (t +1) = λ (t)−η
∥xxx∥2

md
(g(t)− y)2

(
4

g(t)
g(t)− y

−ηλ (t)
)

︸ ︷︷ ︸
Rλ (t)

, ∀t ≥ 0. (3.12)

Note that as the loss is given by L (t) = 1
2(g(t)− y)2, to understand convergence, it

suffices to analyze the dynamics equations above. Compared to the linear dynamics Eq. (3.7),

this non-linear dynamics has extra terms Rg(t) and Rλ (t), which are induced by the non-linear

term in the NQM. We will see that the convergence of gradient descent depends on the scale

and sign of Rg(t) and Rλ (t). For example, for constant learning rate that is slightly larger than

ηcrit (which would result in divergence for linear models), Rλ (t) stays positive during training,

resulting in both monotonic decrease of tangent kernel λ and the loss.

As λ (t) = λ0 −∑
t−1
τ=0 Rλ (τ), to track the scale of |µ(t)|, we will focus on the scale and

sign of Rg(t) and Rλ (t) in the following analysis. For the scale of λ0, which is non-negative by

Definition 3.2.1, we can show that with high probability over random initialization, |λ0|= Θ(1)

(see Appendix B.9). And |g(0)| = O(1) with high probability as well [22]. Therefore the

following discussion is with high probability over random initialization. We start by establishing

monotonic convergence for sub-critical learning rates.

Monotonic convergence: sub-critical learning rates (η < 2/λ0 = ηcrit)

The key observation is that when |g(t)| = O(1), and λ (t) = Θ(1), |Rg(t)| and |Rλ (t)|

are of the order o(1). Then, the dynamics equations approximately reduce to the ones of linear
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dynamics:

g(t +1)− y = (1−ηλ (t)+o(1))(g(t)− y),

λ (t +1) = λ (t)+o(1).

Note that at initialization, the output satisfies |g(0)| = O(1), and we have shown λ0 = Θ(1).

With the choice of η , we have for all t ≥ 0, |µ(t)| = |1−ηλ (t)+ o(1)| < 1; hence, |g(t)−

y| decreases monotonically. The cumulative change on the tangent kernel will be o(1), i.e.,

∑t |Rλ (t)|= o(1), since for all t, |Rλ (t)|= O(1/m) and the loss decreases exponentially hence

∑ |Rλ (t)|= O(1/m) · logO(1) = o(1). See Appendix B.3 for a detailed discussion.

Catapult convergence: super-critical learning rates (ηcrit = 2/λ0 < η < 4/λ0 = ηmax)

The training dynamics are given by the following theorem.

Theorem 3.3.1 (Catapult dynamics on a single training example). Consider training the NQM

Eq. (3.10) with squared loss on a single training example by GD. With a super-critical learning

rate η ∈
[

2+ε

λ0
, 4−ε

λ0

]
where ε = Θ

(
logm√

m

)
, the catapult happens: with high probability over

random initialization, the loss increases to the order of Ω

(
m(ηλ0−2)2

logm

)
then decreases to O(1).

Proof of Theorem 3.3.1. We use the following transformation of the variables to simplify nota-

tions.

u(t) =
∥xxx∥2

md
η

2(g(t)− y)2, w(t) =
∥xxx∥2

md
η

2(g(t)− y)y, v(t) = ηλ (t).

Then the Eq. (3.11) and Eq. (3.12) are reduced to

u(t +1) = (1− v(t)+u(t)+w(t))2u(t) := κ(t)u(t), (3.13)

v(t +1) = v(t)−u(t)(4− v(t))−4w(t). (3.14)

At initialization, since |g(0)| = O(1), we have u(0) = O
( 1

m

)
and w(0) = O

( 1
m

)
. Note that by
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definition, for all t ≥ 0, u(t) ≥ 0 and we have v(t) ≥ 0 since λ (t) is the tangent kernel for a

single training example.

In the following, we will analyze the above dynamical equations. To make the analysis

more understandable, we separate the dynamics during training into increasing phase and

decreasing phase. We denote δ := (η −ηcrit)λ0 = ηλ0 −2.

Increasing phase. In this phase, |u(t)| increases exponentially from O
( 1

m

)
to Θ

(
δ 2

logm

)

and |v(t)− v(0)|= O
(

δ

logm

)
. This can be shown by the following lemma.

Lemma 3.3.2. For T > 0 such that supt∈[0,T ] u(t) = O
(

δ 2

logm

)
, u(t) increases exponentially with

inft∈[0,T ]κ(t)≥
(

1+δ −O
(

δ

logm

))2
> 1 and supt∈[0,T ] |v(t)− v(0)|= O

(
δ

logm

)
.

Proof. See the proof in Section B.4.

After the increasing phase, based on the order of u(t) we can infer the order of loss is

Θ

(
mδ 2

logm

)
.

Decreasing phase. When u(t) is sufficiently large, v(t) will have non-negligible decrease

which leads to the decreasing of κ(t), hence in turn making u(t) decrease as well. Consequently,

we have:

Lemma 3.3.3. There exists T ∗ > 0 such that u(T ∗) = O
( 1

m

)
.

Proof. See the proof in Section B.5.

Then accordingly, the loss is of the order O(1).

Once the loss decreases to the order of O(1), the catapult finishes and we in general

have η < 2/λ (t) as |µ(t)| = |1−ηλ (t)+Rg(t)| < 1 where |Rg(t)| = O(L (t)/m) = O(1/m).

Therefore the training dynamics fall into linear dynamics, and we can use the same analysis for

sub-critical learning rates for the remaining training dynamics. The stableness of the steady-state

equilibria of dynamical equations can be guaranteed by the following:

36



Theorem 3.3.4. For dynamical equations Eq. (3.11) and (3.12), the stable steady-state equilibria

satisfy g(t) = y (i.e.,loss is 0), and λ (t) ∈ [ε,2/η − ε] with ε = Θ(logm/
√

m).

Divergence (η > ηmax = 4/λ0)

Initially, it follows the same dynamics with that in the increasing phase in catapult

convergence: |g(t)− y| increases exponentially as |µ(t)| > 1 and the λ (t) almost does not

change as Rλ (t) is small. However, note that Rλ (t)> 0 since 1) g(t)/(g(t)− y)≈ 1 when g(t)

becomes large and 2) η > 4/λ (t). Therefore, λ (t) keeps increasing during training, which

consequently leads to the divergence of the optimization. See Appendix B.7 for a detailed

discussion.

Catapult dynamics with multiple training examples

In this subsection we show the catapult phase will happen for NQMs Eq. (3.9) with

multiple training examples. We assume unidimensional input data, which is common in the

literature and simplifies the analysis for neural networks (see for example [109, 97]).

Assumption 3.3.5. The input dimension d = 1 and not all xi is 0, i.e., ∑ |xi|> 0.

We similarly analyze the dynamics equations with different learning rates for multiple

training examples (see the derivation of Eq. (B.7) and (B.8) in Appendix) which are update

equations of g(t)− yyy and K(t). And similarly, we show there are three training dynamics:

monotonic convergence, catapult convergence and divergence.

In the analysis, we consider the training dynamics projected to two orthogonal eigen-

vectors of the tangent kernel, i.e., ppp1 and ppp2, and we show with different learning rates, the

catapult phase can occur only in the direction of ppp1, or occur in both directions. We consider the

case where 2/λ2(0)< 4/λ1(0) hence the catapult can occur in both directions. The analysis for

the other case can be directly obtained from our results. We denote the loss projected to pppi by

ΠiL := 1
2 ⟨g− yyy, pppi⟩2 for i = 1,2. We have ΠiL (0) = O(1) with high probability over random

initialization of weights.
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We formulate the result for the catapult dynamics, which happens when training with

super-critical learning rates, into the following theorem, and defer the proof of it and the full

discussion of training dynamics to Appendix B.11.

Theorem 3.3.6 (Catapult dynamics on multiple training examples). Supposing Assumption 3.3.5

holds, consider training the NQM Eq. (3.10) with squared loss on multiple training examples by

GD. Then, with high probability over random initialization we have

1. with η ∈
[

2+ε

λ1(0)
, 2−ε

λ2(0)

]
, the catapult only occurs in eigendirection ppp1: Π1L increases to

the order of Ω

(
m(ηλ1(0)−2)2

logm

)
then decreases to O(1);

2. with η ∈
[

2+ε

λ2(0)
, 4−ε

λ1(0)

]
, the catapult occurs in both eigendirections ppp1 and ppp2: ΠiL for

i = 1,2 increases to the order of Ω

(
m(ηλi(0)−2)2

logm

)
then decreases to O(1),

where ε = Θ

(
logm√

m

)
.

We verify the results for multiple training examples via the experiments in Figure 3.3.

(a) Training loss (b) Largest eigenvalue of tangent
kernel

(c) Second largest eigenvalue of
tangent kernel

Figure 3.3. Training dynamics of NQMs for multiple examples case with different learning
rates. By our analysis, two critical values are 2/λ1(0) = 0.37 and 2/λ2(0) = 0.39. When
η < 0.37, linear dynamics dominate hence the kernel is nearly constant; when 0.37 < η < 0.39,
the catapult phase happens in ppp1 and only λ1(t) decreases; when 0.39 < η < ηmax, the catapult
phase happens in ppp1 and ppp2 hence both λ1(t) and λ2(t) decreases. The experiment details can be
found in Appendix B.14.
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Connection to general quadratic models and wide neural networks

General quadratic models. As mentioned in the introduction, NQMs are contained

in a general class of quadratic models of the form given in Eq. (3.3). Additionally, we show

that the two-layer linear neural network analyzed in [65] is a special case of Eq. (3.3), and we

provide a more general condition for such models to have catapult dynamics in Appendix B.13.

Furthermore, we empirically observe that a broader class of quadratic models g can have

catapult dynamics simply by letting φ(xxx) and Σ be random and assigning a small value to γ (See

Appendix B.14).

Wide neural networks. We have seen that NQMs, with fixed Hessian, exhibit the

catapult phase phenomenon. Therefore, the change in the Hessian of wide neural networks

during training is not required to produce the catapult phase. We will discuss the high-level idea

of analyzing the catapult phase for a general NQM with large learning rates, and empirically

show that this idea applies to neural networks. We train an NQM Eq. (3.2) fquad on n data points

{(xxxi,yi)}n
i=1 ∈ Rd ×R with GD. The dynamics equations take the following form:

fquad(t +1)− yyy =


I −ηK(t)+

1
2

η
2G(t)∇fquad(t)T

︸ ︷︷ ︸
Rfquad(t)


(fquad(t)− yyy), (3.15)

K(t +1) = K(t)− 1
4

η
(
4G(t)∇fquad(t)T −ηG(t)G(t)T)

︸ ︷︷ ︸
RK(t)

, (3.16)

where Gi,:(t) = (fquad(t)− yyy)T ∇fquad(t)H f (xxxi) ∈ Rm for i ∈ [n].

In our analysis for fquad which approximates two-layer networks in Section 3.3, we show

that catapult dynamics occur in the top eigenspace of the tangent kernel. Specifically, we analyze

the dynamics equations confined to the top eigendirection of the tangent kernel ppp1 (i.e, Π1L

and λ1(t)). We show that pppT
1 Rfquad ppp1 and pppT

1 RK ppp1 scale with the loss and remain positive when

the loss becomes large, therefore pppT
1 K ppp1 (i.e., λmax(K)) as well as the loss will be driven down,
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and consequently we yield catapult convergence.

We empirically verify catapults indeed happen in the top eigenspace of the tangent kernel

for additional NQMs and wide neural networks in Appendix B.14. Furthermore, a similar

behaviour of top eigenvalues of the tangent kernel with the one for NQMs is observed for wide

neural networks when training with different learning rates (See Figure B.1 in Appendix B.14).

3.4 Quadratic models parallel neural networks in general-
ization

In this section, we empirically compare the test performance of three different models

considered in this paper upon varying learning rate. In particular, we consider (1) the NQM,

fquad; (2) corresponding neural networks, f ; and (3) the linear model, flin.
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Figure 3.4. Best test loss plotted against different learning rates for f (w), flin(w) and fquad(w)
across a variety of datasets and network architectures.

We implement our experiments on 3 vision datasets: CIFAR-2 (a 2-class subset of

CIFAR-10 [59]), MNIST [61], and SVHN (The Street View House Numbers) [79], 1 speech

dataset: Free Spoken Digit dataset (FSDD) [47] and 1 text dataset: AG NEWS [31].
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In all experiments, we train the models by minimizing the squared loss using standard

GD/SGD with constant learning rate η . We report the best test loss achieved during the training

process with each learning rate. Experimental details can be found in Appendix B.14. We also

report the best test accuracy in Appendix B.14. For networks with 3 layers, see Appendix B.14.

From the experimental results, we observe the following:

Sub-critical learning rates. In accordance with our theoretical analyses, we observe

that all three models have nearly identical test loss for any sub-critical learning rate. Specifically,

note that as the width m increases, f and fquad will transition to linearity in the ball B(w0,R):

∥ f − flin∥= Õ(1/
√

m), ∥ fquad − flin∥= Õ(1/
√

m),

where R > 0 is a constant which is large enough to contain the optimization path with respect to

sub-critical learning rates. Thus, the generalization performance of these three models will be

similar when m is large, as shown in Figure 3.4.

Super-critical learning rates. The best test loss of both f (w) and fquad(w) is consistently

smaller than the one with sub-critical learning rates, and decreases for an increasing learning

rate in a range of values beyond ηcrit, which was observed for wide neural networks in [65].

As discussed in the introduction, with super-critical learning rates, both fquad and f can

be observed to have catapult phase, while the loss of flin diverges. Together with the similar

behaviour of fquad and f in generalization with super-critical learning rates, we believe NQMs

are a better model to understand f in training and testing dynamics, than the linear approximation

flin.

In Figure 3.4 we report the results for networks with ReLU activation function. We also

implement the experiments using networks with Tanh and Swish [93] activation functions, and

observe the same phenomena in generalization for f , flin and fquad (See Appendix B.14).
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3.5 Summary and Discussion

Summary. In this paper, we use quadratic models as a tool to better understand optimiza-

tion and generalization properties of finite width neural networks trained using large learning

rates. Notably, we prove that quadratic models exhibit properties of neural networks such as

the catapult phase that cannot be explained using linear models, which importantly includes

linear approximations to neural networks given by the neural tangent kernel. Interestingly, we

show empirically that quadratic models mimic the generalization properties of neural networks

when trained with large learning rate, and that such models perform better than linearized neural

networks.

Future directions. As quadratic models are more analytically tractable than finite width

neural networks, these models open further avenues for understanding the good performance

of finite width networks in practice. In particular, one interesting direction of future work is to

understand the change in the kernel corresponding to a trained quadratic model. As we showed,

training a quadratic model with large learning rate causes a decrease in the eigenvalues of the

neural tangent kernel, and it would be interesting to understand the properties of this changed

kernel that correspond with improved generalization. Indeed, prior work [71] has analyzed the

properties of the “after kernel” corresponding to finite width neural networks, and it would be

interesting to observe whether similar properties hold for the kernel corresponding to trained

quadratic models.

Another interesting avenue of research is to understand whether quadratic models can

be used for representation learning. Indeed, prior work [116] argues that networks in the neural

tangent kernel regime do not learn useful representations of data through training. As quadratic

models trained with large learning rate can already exhibit nonlinear dynamics and better capture

generalization properties of finite width networks, it would be interesting to understand whether

such models learn useful representations of data as well.
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Chapter 4

Feature learning of catapult dynamics

In this chapter, we focus on understanding the dynamics of training neural networks using

Stochastic Gradient Descent (SGD) with large learning rates—a practice that has shown empirical

success but remains partially unexplained by current optimization theories. Notably, significant

spikes in training loss are commonly observed in such settings, prompting key questions about

the mechanisms at play and their implications for model generalization. Here, we connect these

loss spikes, catapult dynamics, and the observed superior generalization with smaller batch sizes

in SGD into a cohesive framework. This chapter aims to provide a clear explanation of these

phenomena and their interrelations, enhancing our comprehension of neural network training.

Through combining theoretical insights with empirical evidence, we show how these dynamics

influence the learning process and impact the generalization performance of deep learning models

from the perspective of feature learning.

4.1 Introduction

Training algorithms are a key ingredient to the success of deep learning. Stochastic

gradient descent (SGD) [94], a stochastic variant of gradient descent (GD), has been effective in

finding parameters that yield good test performance despite the complicated nonlinear nature of

neural networks. Empirical evidence suggests that training networks using SGD with a larger

learning rate results in better predictors [27, 99, 29]. In such settings, it is common to observe
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significant spikes in the training loss [60, 96, 56, 115] (see Figure 4.1 as an example). One

may not a priori expect the training loss to decrease back to its “pre-spike” level after a large

spike. Yet, this is what is commonly observed in training. Furthermore, the resulting “post-spike”

model can yield improved generalization performance [36, 119, 42].

Figure 4.1. Spikes in training loss when optimized using SGD (x-axis: iteration). (Source:
Wikipedia).

Why do spikes occur during training, and how do the spikes relate to generalization?

In this work, we answer these questions by connecting three common but seemingly

unrelated phenomena in deep learning:

1. Spikes in the training loss of SGD,

2. Catapult dynamics in GD [65],

3. Better generalization when training networks with small batch SGD as opposed to larger

batch size or GD.

In particular, we show that spikes in the training loss of SGD are caused by catapult dynamics,

which were originally characterized in [65] as a single spike in the loss when training with GD

and large learning rate. We then show that smaller batch size in SGD results in a greater number

of catapults. We connect the optimization phenomena of catapults to generalization by showing

that catapults improve generalization through increasing feature learning, which is quantified

by the alignment between the Average Gradient Outer Product (AGOP) of the trained network
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Table 4.1. Smaller SGD batch size leads to a higher (better) AGOP alignment and smaller
(better) test loss. The results correspond to Figure 4.9a (a synthetic dataset).

Batch size AGOP alignment Test loss

2000 (GD) 0.81 0.74

50 0.84 0.71

10 0.89 0.59

5 0.95 0.42

and the true AGOP [35, 40, 112, 105, 91]. Since decreasing batch size in SGD leads to more

catapults, our result implies that SGD with small batch size yields improved generalization (see

Table 4.1 for an example). We outline our specific contributions in the context of optimization

and generalization below.

Optimization. We demonstrate that spikes in the training loss, specifically measured

by Mean Squared Error, occur in the top eigenspace of the Neural Tangent Kernel, a kernel

resulting from the linearization of a neural network [46]. Namely, we project the residual (i.e.,

the difference between the predicted output and the target output) to the top eigenspace of

the tangent kernel and show that spikes in the total loss function correspond to the spikes in

the components of the loss in this low-dimensional subspace (see Section 4.3). In contrast,

the components of the loss in the space spanned by the remaining eigendirections decrease

monotonically. Thus, the catapult phenomenon occurs in the span of the top eigenvectors while

the remaining eigendirections are not affected. This explains why the loss drops quickly to

pre-spike levels, namely the loss value right before the spike, from the peak of the spike. We

further show that multiple catapults can be generated in GD by increasing the learning rate

during training (see Section 4.3). While prior work [65] observed that the spectral norm of the

tangent kernel decreased for one catapult, we extend that observation by showing that the norm

decreases after each catapult.

We further provide evidence for catapults in SGD with large learning rates (see Sec-
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tion 4.3). Namely, we demonstrate that spikes in the loss when training with SGD correspond to

catapults by showing that similarly to GD:

1. The spikes occur in the top eigenspace of the tangent kernel,

2. Each spike results in a decrease in the spectral norm of the tangent kernel.

We corroborate our findings across several network architectures including Wide ResNet [119]

and ViT [20] and datasets including CIFAR-10 [59] and SVHN [79].

Moreover, as small batch size leads to higher variance in the eigenvalues of the tangent

kernel for any given batch, small batch size results in an increased number of catapults.

Generalization. We posit that catapults improve the generalization performance by

alignment between the AGOP of the trained network with that of the true model1. The AGOP

identifies the features that lead to greatest change in predictor output when perturbed and has been

recently posited as the mechanism through which neural networks learn features [91, 13]. We use

AGOP alignment to provide an explanation for prior empirical results from [65, 124] showing

that a single catapult can lead to better test performance in GD. Moreover, we extend these prior

results to show that test performance continues to improve as the number of catapults increases

in GD. Thus, we show that decreasing batch size with SGD can lead to better test performance

due to an increase in the number of catapults. We further demonstrate that AGOP alignment is an

effective measure of generalization by showing that test error is highly correlated with the AGOP

alignment when training on the same task across different optimization algorithms including

Adagrad [23], Adadelta [120] and Adam [57] etc. We corroborate our findings on CelebA [69]

and SVHN [79] datasets and architectures including fully-connected and convolutional neural

networks. See Section 4.4.

Related works

Linear dynamics and catapult phase phenomenon. Recent studies have shown that

(stochastic) GD for wide neural networks provably converges to global minima with an appropri-
1When the underlying model is not available, we use a SOTA model as a substitute.
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ately small learning rate [21, 126, 67]. These works leveraged the fact that neural networks with

sufficiently large widths, under specific initialization conditions, can be accurately approximated

by their linearization obtained by the first-order Taylor expansion [46, 66, 68, 123]. Therefore,

their training dynamics are close to the dynamics of the corresponding linear models, under

which the training loss decreases monotonically. Such a training regime is commonly referred to

as the kernel regime. However, under the same setup of the kernel regime except using a large

learning rate, GD will experience a catapult phase [65]: the training loss increases drastically in

the beginning stage of training then decreases, while GD still converges. Recent studies focusing

on understanding catapults in GD include [124], which considers quadratic approximations

of neural networks, and [75], examining two-layer homogeneous neural networks. Our work

investigates the impact of catapults in SGD on both optimization and generalization through

experimental approaches.

Edge of stability. A phenomenon related to catapults is the “Edge of Stability” (EoS),

which describes the dynamics of the training loss and the sharpness, i.e., eigenvalues of the

Hessian of the loss, at the later stage of training networks with GD [16] and SGD [50, 49].

There is a growing body of work analyzing the mechanism of EoS in training dynamics with

GD [9, 4, 17, 108, 3, 2], and SGD [53]. It was conjectured in [16] that at EoS for GD the

spikes in the training loss are micro-catapults. Our work provides evidence that the spikes in the

training loss using SGD are catapults and demonstrates the connection between the loss spikes

and feature learning.

Generalization and sharpness. It has been observed that networks trained with SGD

generalize better than GD, and smaller batch sizes often lead to better generalization performance

[62, 55, 30, 48, 73, 54, 100]. Empirically, it has been observed that training with SGD results

in flat minima [38, 39]. However, we noticed that it is not always the case, e.g., [28]. A

number of works been argued that flatness of the minima is connected to the generalization

performance [80, 111, 58, 114, 52, 19], however we know only one theoretical result in that

direction [18]. Training algorithms aiming to find a flat minimum were developed and shown to
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perform well on a variety of tasks [45, 25]. As an explanation for empirically observed improved

generalization, prior work [65] argued that a single catapult with GD resulted in flatter minima.

In this work we propose a different line of investigation to understand generalization properties

of GD-based algorithms based on feature learning as measured by the alignment with AGOP.

4.2 Preliminaries

Notation. We use bold letters (e.g., w) to denote vectors and capital letters (e.g., K) to

denote matrices. For a matrix, we use ∥ · ∥F to denote its Frobenius norm and use ∥ · ∥2 to denote

its spectral norm. For trainable parameters, we use superscript t, as in wt , to denote the time

stamp during training. We use the big-O notation O(·) to hide constants, and use Õ(·) to further

hide logarithmic factors. For a map f (w) : Rp → Rc, we use ∇w f (v) and ∇2
w f (v) to denote the

first and second order derivative of f w.r.t. w evaluated at v respectively.

Optimization task. Consider a parameterized model f (w; ·) : Rp → R (e.g., a neural

network) with parameters w and a training dataset D = {(xxxi,yi)}n
i=1 with data xxxi ∈Rd and labels

yi ∈ R for i ∈ [n]. Denote X ∈ Rn×d as the collection of training input data, with each row of X

representing an input xxxi, and yyy := (y1, · · · ,yn)
T . We further write f ∈ Rn as the predictions of f

on X . The goal of the optimization task is to minimize the Mean Square Error (MSE)

L (w;(X ,yyy)) =
1
n

n

∑
i=1

( f (w;xxxi)− yi)
2 =

1
n
∥f− yyy∥2. (4.1)

Let w0 be the weight parameters at initialization. Mini-batch SGD is conducted as follows: at

each step t, randomly sample a batch B ⊂ D (of batch size b), and perform the update following

wt+1 = wt − η

b
∂

∂w ∑
(xxx j,y j)∈B

( f (wt ;xxx j)− y j)
2,

where η is the learning rate. When b = n, mini-batch SGD reduces to the full-batch gradient

descent (GD).
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Neural Tangent Kernel (NTK). Proposed in [46], NTK is a useful tool in understanding

and analyzing over-parameterized neural networks.

Definition 4.2.1 ((Neural) Tangent Kernel). The (neural) tangent kernel K(w; ·, ·) for a parame-

terized machine learning model f (w; ·) : Rp ×Rd → R is defined as:

∀xxx,zzz ∈ Rd, K(w;xxx,zzz) =
〈

∂ f (w;xxx)
∂w

,
∂ f (w;zzz)

∂w

〉
.

Given the training data inputs X , the NTK can be evaluated on any pair of inputs xxxi and

xxx j, which results in a n×n matrix K, called the NTK matrix. By definition, the NTK matrix K is

symmetric and positive semi-definite. Therefore, it can be decomposed as K = ∑
n
j=1 λ ju ju j

T ,

with λ j ∈ R and u j ∈ Rn, j ∈ {1, · · · ,n}, being the eigenvalues and unit-length eigenvectors,

respectively. Without loss of generality, we assume λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0.

Top-eigenspace and decomposition of the loss. Given an integer s, 1 ≤ s < n, we call

the top eigenspace (or top-s eigenspace) of NTK as the subspace spanned by the top eigenvectors

u j with 1 ≤ j ≤ s. We also define projection operators P≤s : Rn → Rn and P>s : Rn → Rn,

such that for any vector v ∈ Rn the followings hold:

P≤sv =
s

∑
i=1

⟨v,ui⟩ui, P>sv =
n

∑
i=s+1

⟨v,ui⟩ui.

The MSE Eq. (4.1) can be decomposed as

L =
1
n
∥f− yyy∥2

2 =
1
n
∥P≤s(f− yyy)∥2

2 +
1
n
∥P>s(f− yyy)∥2

2 =: L≤s +L>s. (4.2)

Critical learning rate. When a constant learning rate of the algorithm is used throughout

the training, it is important to select the learning rate η , as a large η easily leads to a divergence

of loss and a small η slows down the training procedure. A conventional wisdom is to set η no

larger than the critical learning rate ηcrit(w) := 2
λmax(HL (w)) , where HL := ∇2

wL (w) denotes
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the Hessian of the loss. This intuition follows from the well-known lemma in optimization:

Lemma 4.2.2 (Descent Lemma [78]). For a smooth loss L (w) : Rp → R, suppose that

λmax(HL (w))≤ β for all w ∈ Rp, then GD satisfies:

L (wt+1)≤ L (wt)−η

(
1− ηβ

2

)∥∥∇wL (wt)
∥∥2

.

For η < 2/β , the descent lemma guarantees the decrease of the loss. Note that this

inequality is tight for quadratic loss, e.g., loss for linear models. For neural networks with

sufficient width trained with a constant learning rate smaller than ηcrit, due to transition to linear-

ity [66], the critical learning rate ηcrit almost does not change during training [64]. Furthermore,

by decomposing the Hessian of the loss, it can be seen that ηcrit can be well-approximated by

NTK (exact, for linear models): ηcrit ≈ n/∥K∥2 = n/λ1, as detailed in Appendix C.1. For neural

networks that are not wide, [86, 3, 108] showed the approximation still holds and we provide

additional evidence for SGD trained with a large learning rate in Appendix C.1.

Note that unless specified, the critical learning rate is evaluated at initialization w0.

Catapult dynamics. It was recently observed in [65] that, for wide neural network, full

batch GD with a learning rate that is larger than ηcrit (e.g., η ∈ (ηcrit,2ηcrit) as shown in [65])

surprisingly ends up with a convergence. Instead of the expected divergence, the loss decreases

after a drastic increase at the beginning stage of training, forming a loss spike (see Figure 4.2).

Moreover, ∥K∥2 is observed to be smaller at the end of the spike.
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Figure 4.2. An illustration of the catapult. This experiment corresponds to Figure 4.3a.

Interestingly, the solution found by this large-learning-rate GD turns out to perform better

in terms of test loss. Intuitively, the decrease in ∥K∥2 raises the divergence threshold n/∥K∥2

which allows a final convergence.

In this paper, we refer catapult dynamics as the phenomenon of a drastic increase followed

by a fast decrease in the training loss which is triggered by a learning rate larger than ηcrit and

accompanied by a decreasing ∥K∥2.

4.3 Catapults in optimization

Catapults occur in the top eigenspace of the tangent kernel for GD

The training dynamics of the machine learning model, e.g., a neural network, are closely

related to its NTK Kt := K(wt ;X ,X)∈Rn×n. Specifically, when the loss is optimized by gradient

flow (continuous-time GD) with learning rate η , the output follows the dynamic equation [64]:

dft

dt
=−2η

Kt

n
(ft − yyy).

By discrete time GD, this becomes

ft+1 − yyy =
(

In −2η
Kt

n

)
(ft − yyy)+∆Ht

f
, (4.3)
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Figure 4.3. Catapult occurring in the top eigenspace of NTK in GD for 5-layer FCN (a) and
CNN (b). The training loss is decomposed into the eigenspace of NTK, i.e., L = L≤5 +L>5.
In the experiment, both networks are trained by GD on 128 data points from CIFAR-10 with
learning rate 6 and 8 respectively (the critical learning rates are 3.6 for FCN and 4.5 for CNN).

with ∆Ht
f

:=
〈
wt+1 −wt ,∇2

wf(ξ )(wt+1 −wt)
〉
∈ Rn and ξ = τwt +(1− τ)wt+1,τ ∈ (0,1).

Note that for finitely wide neural networks,
∥∥∥∆Ht

f

∥∥∥
2

is small compared to the first term [86,

108] and is exactly zero for infinitely wide neural networks [64]. Therefore, the training dynamics

of neural networks are mainly determined by the first term in R.H.S. of the above equation,

which relies on the spectral information of the NTK Kt . This data-dependent NTK is also useful

for understanding the generalization performance of neural networks [26, 10, 85, 72].

Consider decomposing Eq. (4.3) into eigendirections of the NTK Kt , i.e., ⟨ft − yyy,ut
i⟩.

Supposing the dynamics among eigendirections are not interacting and ui is constant, we expect

that the increase of training loss during catapult occurs in the top few eigendirections where

η > n/λi, while the loss corresponding to the remaining eigendirections remain decreasing.

Indeed, this has been theoretically shown to be true on quadratic models that approximate wide

neural networks [124].

Claim 1. The catapult occurs in the top eigenspace of the tangent kernel: the loss component

corresponding to the top-s eigenspace L≤s has a spike during the catapult, while the loss
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component in the complementary eigenspace L>s decreases monotonically.

Remark 4.3.1. We note that the catapult does not occur in all eigendirections, as the learning

rate η cannot be arbitrarily large. Instead, there is a maximum learning rate ηmax such that if

η > ηmax the algorithm will diverge. For instance, ηmax = 2ηcrit for quadratic models [124]

and ηmax ≈ 6ηcrit for ReLU networks [65]. Therefore, for any learning rate η ∈ (ηcrit,ηmax)

such that catapult occurs, only the top few eigendirections satisfy n/λi < ηmax. We consistently

observe that s is a small constant no larger than 10 in all our experiments.

We empirically justify Claim 1 for neural networks. In particular, we consider three

neural network architectures: a 5-layer Fully Connected Neural Network (FCN), a 5-layer

Convolutional Neural Network (CNN), and Wide ResNets 10-10; and three datasets CIFAR-10,

SVHN, and a synthetic dataset. The details of experimental setup can be found in Appendix C.6.

We present a selection of the results in Figure 4.3 with the remaining results in Figure C.3 and

C.4 in Appendix C.2. We can see that L≤5 corresponds to the spike in the training loss while

L>5 decreases almost monotonically. Concurrently with this study, [122] showed that the loss

spike in GD is primarily due to the low-frequency component, corroborating our findings through

a frequency perspective.

We note that the same phenomenon holds for multidimensional outputs. See more details

in Figure C.5 in Appendix C.2.

Inducing multiple catapults in GD

While prior work showed a single catapult during training with gradient descent [65,

124, 53], we present that catapults can be induced multiple times by repeatedly increasing the

learning rate during training.

Specifically, during a catapult, the norm of NTK ∥K∥2 decreases, which leads to an

increase in the critical learning rate ηcrit ≈ n/∥K∥2, see Figure 4.4. When the loss starts to

decrease during a catapult, ηcrit surpasses the current learning rate η of the algorithm. Hence,

after each catapult, one can reset the algorithmic learning rate η to be greater than the current
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(b) 5-layer CNN

Figure 4.4. Multiple catapults during GD with increased learning rates. We train a 5-layer FCN
and CNN on a subset of CIFAR-10 using GD. The learning rate is increased two times for each
experiment. The experimental details can be found in Appendix C.6.

ηcrit to trigger another catapult. In practice, we observe that a sequence of catapults can be

triggered by repeating the above procedure. See Figure 4.4 for a demonstration of various neural

network architectures.

Interestingly, with multiple catapults, the gradient descent can ultimately converge with a

much larger learning rate, which leads to a divergence, instead of a catapult, if set as the initial

learning rate of gradient descent (see Figure C.7 in Appendix C.2). Furthermore, thanks to the

relation ηcrit ≈ n/∥K∥2, this indicates that the multiple catapults achieve a much smaller ∥K∥2

which can not be obtained in the scenario of a single catapult. See Figure 4.4 for an experimental

demonstration. Moreover, the multiple catapults lead to better generalization performance than a

single catapult. We defer this discussion of generalization performance to Section 4.4.

Catapults in SGD

In this section, we consider the stochastic setting, and argue that the spikes often observed

in the training loss of SGD (e.g., Figure 4.1) are in fact catapults.
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Mechanism of catapults in SGD. Recall that the catapults are triggered when η >

ηcrit. Unlike in deterministic gradient descent, the mini-batch stochastic training dynamics is

determined by the NTK matrix evaluated on the given batch Xbatch. Specifically, the update

equation of mini-batch SGD becomes (c.f. Eq.(4.3) of GD):

ft+1
batch − yyybatch =

(
Ib −2η

Kt(Xbatch)

b

)
(ft

batch − yyybatch)+∆Hftbatch
, (4.4)

where b is the mini batch size, fbatch := f(Xbatch) and yyybatch is the label corresponds to Xbatch.

It is important to note that in mini-batch SGD the critical learning rate ηcrit(Xbatch) becomes

batch dependent: for batches that have relatively large (small, respectively) ∥Kbatch∥2, the

corresponding critical learning rate ηcrit(Xbatch) is relatively small (large, respectively). Then, if

ηcrit(Xbatch) of a given batch is smaller than the algorithmic learning rate η of SGD, we expect a

catapult will happen: an increase in the running training loss.

Indeed, this expectation is confirmed in our experiments. Specifically, we train the

network on a synthetic dataset with SGD and consider batch size one. We set the algorithmic
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Figure 4.5. Exact match between the occasion when η > ηcrit(Xbatch) and loss spike for SGD.
We train a two-layer neural network on a synthetic dataset using SGD with batch size one.
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learning rate higher than the critical learning rate for only one training example. As expected,

we observe that the loss spike only occurs when the gradient is computed based on that par-

ticular training example. See the results in Figure 4.5 and the detailed experimental setup in

Appendix C.6.

In more practical scenarios, we train a shallow network by SGD with mini-batch size

32, on a subset of CIFAR-10 with training size 128. First, when the algorithmic learning rate

η is smaller than ηcrit(Xbatch) of all the batches (as shown in the case of η = 0.1 in (Figure 4.6

upper left)), we observe that the training loss of mini-batch SGD monotonically decreases until

convergence without any spike; when η becomes greater than ηcrit(Xbatch) for some of the

batches (as shown in the case of η = 0.8 in Figure 4.6 upper right), many spikes appear in the

training loss. Moreover, we show that these spikes in the (total) training loss are caused by large

learning rates for batches. Specifically, for the case of η = 0.8, we verify that whenever the

(total) training loss increases, the algorithmic learning rate η is larger than the critical learning
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Figure 4.6. (a): Critical learning rates of batches and the training loss of SGD with learning
rate 0.1 (left two subfigures) and 0.8 (right two subfigures). (b): Loss decomposition with
η = 0.8. LR is an abbreviation for learning rate. We train a two-layer neural network on 128
data points of CIFAR-10 using SGD with batch size 32. We further decompose the loss into the
top-5 eigendirections of the NTK L≤5 and the remaining eigendirections L>5 corresponding to
η = 0.8.
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rate ηcrit(Xbatch) for the current batch Xbatch. This phenomenon is further verified for 5-layer

FCN and CNN. See Table 4.2.

Decreases in the spectral norm of the tangent kernel correspond to spikes. As shown

in prior work [65] and in the multiple catapults in Section 4.3 an important characterization of

the catapult dynamics is the decreasing NTK norm ∥K∥2. Here, we experimentally show that the

spectral norm of the NTK decreases whenever there is a spike in the SGD training loss.

Specifically, we consider four network architectures: (1) 5-layer FCN, (2) 5-layer CNN

(the same as the ones in Figure 4.3), (3) Wide ResNets 10-10 and (4) ViT-4. We train neural

networks on a subset of CIFAR-10 using SGD. Figure 4.7 shows some of the results (more

results on various datasets and parameterizations are available in Appendix C.3). One can easily

see that at each spike of the training loss, there is a significant drop in the spectral norm of NTK

∥K∥2, while ∥K∥2 are mostly increasing or staying unchanged at other steps. This empirical

evidence corroborates that these spikes are indeed (mini-)catapults, instead of some random

fluctuations in the training loss. All experimental details can be found in Appendix C.6.

Catapults occur in the top eigenspace of the tangent kernel for SGD. As discussed

in Section 4.3, another characteristic of the catapults is that they occur in the top eigenspace of

the tangent kernel. We show that these loss spikes in SGD also occur in the top eigenspace, as

Table 4.2. The match rate between ∆L t := L t+1 −L t > 0 and η > η t
crit(Xbatch). For each net-

work architecture, we calculate the match rate as the ratio of occurrences where η > η t
crit(Xbatch)

for all t such that L t+1 > L t until convergence of SGD (see the training loss in Figure 4.6(c)
for shallow net and Figure 4.7 (a,b) for deep nets). Each result is the average of 3 independent
runs.

Network Architecture Match rate between ∆L > 0
and η > ηcrit(Xbatch)(%)

Shallow network 97.32±0.45

5-layer FCN 96.17±1.46

5-layer CNN 94.67±3.27
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Figure 4.7. Catapult dynamics in SGD for modern deep architectures. The training loss is
decomposed based on the eigendirections of the NTK: L≤1 and L>1. We train the networks on
a subset of CIFAR-10 using SGD. The complete versions of Panel (c) and (d) can be found in
Figure C.8 in Appendix C.3.

another evidence that these spikes are catapults.

In the experiments, we decompose the training loss of SGD into L≤1 and L>1 based on

the eigendirections of the tangent kernel. We observe that L≤1 corresponds to the spikes in the

training loss, while the decrease of L>1 is nearly monotonic, with only small oscillations present.

See Figure 4.6b for the shallow network with η = 0.8 and Figure 4.7 for deep networks. Note

that for deep neural networks, compared to the catapults in GD where they occur in the top-5

eigendirections of the NTK (Figure 4.3), we consistently observe that for SGD, catapults occur

only in the top-1 eigendirection. Additional empirical validation can be found in Appendix C.3.

This observation, along with the results that the spectral norm of the NTK decreases

corresponding to the loss spike, is consistent with our findings for GD and provides evidence

that the spikes in training loss for neural networks are caused by catapults.

Remark 4.3.2 (Top eigenspace accounts for the sharp loss spikes in SGD). In SGD training loss,

the sharp spikes we observe last only a few iterations before rapidly returning to their pre-spike

levels. These spikes can be attributed to catapults occurring in the top-1 eigendirection of the

tangent kernel. Consider the loss change in each eigendirection of the tangent kernel. We expect

that the rate of loss change in each eigendirection depends on the corresponding eigenvalue’s

size. Therefore, with a constant learning rate, changes happen faster in the top eigendirections,

which accounts for the sharp loss spikes in SGD as they occur in the top-1 eigendirection.
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Remark 4.3.3 (Catapults in SGD with cyclical learning rate schedule). Training neural networks

with the learning rate cyclically varying between selected boundary values was widely shown

to improve the generalization performance of neural networks with less tuning [45, 98]. We

empirically show that the increasing phase of the cyclical learning rate schedule induces catapults

in SGD. Specifically, we observe that there is a spike in the training loss when the learning rate

is increased. We demonstrate that the loss spikes are caused by catapults, by providing similar

evidence to the case of SGD with a constant learning rate. See the results in Figure C.12 in

Appendix C.3.

4.4 Catapults lead to better generalization through feature
learning

Previous empirical results from [65, 124] show that a single catapult can lead to better

test performance in GD for wide neural networks. In this section, we observe a similar trend in

our experiments for both GD and SGD with multiple catapults. We posit an explanation for this

phenomenon by demonstrating that catapults improve feature learning by increasing alignment

between the Average Gradient Outer Products (AGOP) of the trained network and the true model,

therefore improving generalization. We formalize this claim as follows. Let {(xi, f ∗(xi))}n
i=1

denote training data with f ∗(x) denoting the true model. Then, for any predictor f , the AGOP,

G( f ,{x1, . . . ,xn}) is given as follows:

G( f ,{x1, . . . ,xn}) =
1
n

n

∑
i=1

∇x f (xi)∇x f (xi)
T ; (4.5)

where ∇x f denotes the gradient of f with respect to the input x.2 We will suppress the dependence

on the data {xi}n
i=1 to simplify notation. Assuming the data xi are i.i.d. samples from an

underlying data distribution, in the limit as n → ∞, Eq. equation 4.5 converges to a quantity

referred to as the Expected Gradient Outer Product (EGOP). Letting G∗ denote the EGOP of f ∗

2For predictors with multivariate outputs, we consider the Jacobian instead of the gradient.
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and G denote the AGOP of f , we define AGOP alignment using the cosine similarity between

G,G∗ as follows:

AGOP alignment : cos(G,G∗) :=
Tr
(
GT G∗)

∥G∥F ∥G∗∥F
. (4.6)

Remark 4.4.1. G∗ captures the directions along which f ∗ varies the most and those along which

it varies least. When training a predictor on data generated using low rank G∗, it is possible to

improve sample efficiency by first estimating G∗. Indeed, this has been theoretically shown in

the case of multi-index models, i.e., functions of the form f ∗(xxx) = g(Uxxx) where the index space

U is a low-rank matrix [35, 105, 118]. Additionally, a recent line of work connected AGOP with

feature learning in neural networks and further demonstrated that training predictors on data

transformed by AGOP can lead to substantial increases in test performance [91, 13, 92]. Thus,

we believe that AGOP alignment is a key measure for generalization, and we next corroborate

our claim empirically across a broad class of network architectures and prediction tasks.

Experimental settings. We work with a total of seven datasets: three synthetic datasets

and four real-world datasets. For synthetic datasets, we consider true functions f ∗(xxx) = (1) x1x2

(rank-2), (2) x1x2(∑
10
i=1 xi) (rank-3) and (3) ∑

4
j=1 ∏

j
i=1 xi (rank-4) [1]. For the four real-world

datasets, we use (1) CelebA [69], (2) SVHN dataset [79], (3) Fashion-MNIST [113] and (4)

USPS dataset [44]. When the underlying model is not available, we use a state-of-the-art model

as a substitute. We present the results for a selection of the datasets in this section and put the

results for the remaining datasets in Appendix C.5. The experimental details can be found in

Appendix C.6.

Improved test performance by catapults in GD. In Section 4.3, we showed that

catapults can be generated multiple times. We now show that generating multiple catapults leads

to improved test performance of neural networks trained with GD by leading to increased AGOP

alignment. In Figure 4.8, we can see for all tasks, the test loss/error decreases as the number

of catapults increases while AGOP alignment increases. This indicates that learning the EGOP
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strongly correlates with test performance.
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Figure 4.8. Correlation between AGOP alignment and test performance in GD with multiple
catapults. The learning rate is increased multiple times during training to generate multiple
catapults. We train 2-layer FCN in Panel(a), 4-layer FCN in Panel(b,d) and 5-layer CNN in
Panel(c). Experimental details can be found in Appendix C.6.

Remark 4.4.2. As discussed earlier, AGOP alignment is a means of improving sample efficiency

when training on data from multi-index models with low-rank index space. Our results on

synthetic datasets show that catapults increase AGOP alignment, thereby leading to improved

test performance. Additionally, we show that when the index space is full-rank, which can be

effectively learned by neural networks in the NTK regime, catapults do not improve the test

performance as well as the AGOP alignment. See Figure C.17 in Appendix C.4.

Improved test performance by catapults in SGD. In Section 4.3, we have demonstrated

the occurrence of catapults in SGD. We now show that decreasing batch size in SGD leads to

better test performance as a result of an increase in the number of catapults and thus, increased

AGOP alignment. We estimate the number of catapults during training by counting the number of

the occurrence of the event η −ηcrit(Xbatch)> ε with ε = 10−8 until the best validation loss/error.

In Figure 4.9, we can see that across all tasks, as the batch size decreases, (1) the number

of catapults increases, (2) the test loss/error decreases and (3) the AGOP alignment improves.

These findings indicate that in SGD, a smaller batch size leads to more catapults which in

turn improves the test performance through alignment with the AGOP. These observations are

consistent with our findings in GD.
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Figure 4.9. Correlation between AGOP alignment and test performance in SGD. We train a
2-layer FCN in Panel(a), 4-layer FCN in Panel(b,d) and 5-layer CNN in Panel(c) by SGD with a
constant learning rate. We report the results as the average of 3 independent runs. Experimental
details can be found in Appendix C.6.

Batch size does not affect generalization when the learning rate is small. Given

the discussion above, sufficiently small learning rates will result in no catapults for any batch

size. Thus we expect that all batch sizes will provide similar generalization performance for

sufficiently small learning rates. This, indeed, is what we observe in the experiments presented in

Figure 4.10 where we keep the same experimental setting as for Figure 4.9 except for a smaller

learning rate. Specifically, we observe that while decreasing batch size consistently improves

generalization for large learning rates, it has little effect on generalization for small learning

rates.
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Figure 4.10. “Large” vs. “small” learning rate on test performance with different batch sizes.
We consider the same setting as in Figure 4.9 except for selecting a smaller learning rate ηcrit/40
compared to ηcrit/2 in Figure 4.9. Here ηcrit is the critical learning rate for the whole dataset.

Generalization with different optimizers correlates with AGOP alignment. We

further demonstrate the strong correlation between the test performance and AGOP alignment
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by comparing the predictors trained on the same task with a number of different optimization

algorithms. From the results shown in Figure 4.11, we can see that the AGOP alignment strongly

correlates with the test performance, which suggests that models learning the AGOP is useful for

learning the problem.
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Figure 4.11. Correlation between test performance and AGOP alignment for different optimiza-
tion algorithms. We train a 2-layer FCN in Panel(a), a 4-layer FCN in Panel(b,d) and a 5-layer
CNN in Panel(c). We use GD, SGD, SGD with Momentum [90](SGD+M), RMSprop [37],
Adagrad [23], Adadelta [120] and Adam [57] for training. Experimental details can be found in
Appendix C.6.

4.5 Conclusions

In this work, we addressed the following questions: (1) why do spikes in training loss

occur during training with SGD and (2) how do the spikes relate to generalization? For the

first question, we demonstrate that the spikes in the training loss are caused by the catapult

dynamics in the top eigenspace of the tangent kernel. For the second question, we show that

catapults lead to increased alignment between the AGOP of the model being trained and the

AGOP of the underlying model or its state-of-the-art approximation. A consequence of our

results is the explanation for the observation that SGD with small batch size often leads to

improved generalization. This is due to an increase in the number of catapults for small batch

sizes, presumably due to increased batch variability, and thus to improved AGOP alignment.

64



4.6 Acknowledgements

Chapter 4, in full, is a reprint of Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakr-

ishnan, and Mikhail Belkin. “Catapults in sgd: spikes in the training loss and their impact on

generalization through feature learning.” ICML 2024. The dissertation author was the primary

investigator and author of this paper.

65



Chapter 5

Summary and discussion

Summary

This thesis investigates the complex dynamics of over-parameterized neural networks,

structured into two parts. The first part focuses on demonstrating how wide neural networks

exhibit a transition to linearity as their “width” increases, converging to the first-order Taylor

expansion of parameters. This transition to linearity is important for the success of optimization

for various architectures of feedforward neural networks corresponding to arbitrary directed

acyclic graphs.

The second part shifts to an investigation of modern training regimes, specifically con-

sidering optimization using large learning rates. We focus on the catapult phase phenomenon,

which happens when the neural networks are trained using gradient descent with a large learning

rate. We show that quadratic models can be a useful tool to understand the catapult dynamics, as

they similarly exhibit catapult dynamics when the learning rate is large, and also result in better

generalization.

Additionally, we extend the study of catapult dynamics to stochastic gradient descent

(SGD). We provide evidence that spikes in training loss observed during SGD are caused by

catapult dynamics. We further show that catapults enhance feature learning and thereby improve

generalization. We demonstrate that smaller batch sizes in SGD lead to a greater number of

catapults, thus improving feature learning and test performance.

Overall, the thesis integrates theoretical analysis with empirical evidence to offer novel
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insights into the complex dynamics that govern the training and generalization of neural networks.

Future directions

Understanding the feature learning caused by catapult dynamics. An interesting

avenue is to build a theory of how catapult dynamics promote feature learning. In Chapter 4, we

have empirically shown that catapult dynamics improve feature learning by enhancing the AGOP

alignment. However, a comprehensive theoretical understanding remains to be established. As

shown in Chapter 3, quadratic models, serving as a simpler proxy for neural networks, also

exhibit catapult dynamics; therefore, they can be used to understand the feature learning induced

by these dynamics. Additionally, in Chapter 4 we showed that catapult dynamics mainly occur

in a subspace of low dimension, specifically the top eigenspace of the tangent kernel. This

observation suggests that analyses confined to this subspace, which simplifies the complexity of

the analysis, are sufficient for the task.

Connecting the implicit bias to the feature learning. The implicit bias introduced

by optimization algorithms plays an important role in learning over-parameterized neural net-

works [33, 32, 101, 103]. Despite their impact, the relationship between these biases and the

networks’ generalization performance is not well understood. Feature learning is known to

explicitly affect generalization [91], suggesting that it could serve as a crucial link between

implicit biases and generalization. Therefore, it is an important direction to investigate how these

implicit biases lead to improved feature learning for neural networks. Furthermore, understand-

ing the nuances of this relationship can potentially guide the development of new more effective

algorithms.

Promoting the generalization of neural networks by feature learning. Since catapults

can effectively improve the generalization performance through AGOP alignment, it would be

interesting to incorporate these insights into practical neural network training. A promising

avenue is to construct regularization techniques based on the AGOP to promote feature learning

of neural networks. For example, the constraint on the norm of the AGOP, which is close to the
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norm of the weights by the neural ansatz in [91] can promote the smoothness of the predictor

hence improving the generalization.

Another interesting application is to investigate how adaptive learning rate strategies

interact with the catapult phase phenomenon and if they can further optimize the training process.

As the catapult phase phenomenon occurs when the learning rate is larger than a critical learning

rate (typically proportional to the inverse of the spectral norm of the tangent kernel), it would

be promising to develop an algorithm that is aware of the critical learning rate and adapts the

learning rate to be larger than the critical one. Therefore, a greater number of catapults will occur

during training and possibly it leads to a better generalization.
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Appendix A

Chapter 2 Supplementary

Notations for set of neurons. We extra define the following notations for the proof. For

0 ≤ ℓ ≤ L− 1, i ∈ [dℓ], we use F
S

(ℓ)
i

to denote the set of all the elements in the vector f
S

(ℓ)
i

(Eq. (2.5)):

F
S

(ℓ)
i

:= { f : f ∈ f
S

(ℓ)
i
}. (A.1)

And we use P(ℓ) to denote the set of all neurons in ℓ′-th layer i.e., f (ℓ
′) defined in

Eq. (2.4), with 0 ≤ ℓ′ ≤ ℓ:

P(ℓ) := { f : f ∈ f (ℓ
′), ℓ′ ≤ ℓ}. (A.2)

Activation functions. In Assumption 2.3.2, we assume the Lipschitz continuity and

smoothness for all the activation functions. In the proof of lemmas, e.g., Lemma A.2.1 and

A.2.2, we only use the fact that they are Lipschitz continuous and smooth, as well as bounded by

a constant γ0 > 0 at point 0, hence we use σ(·) to denote all the activation functions like what

we do in Assumption 2.3.2 for simplicity.

Notations for derivatives. Additionally, in the following we introduce notations of the

derivatives, mainly used in the proof of Lemma A.2.1 and Lemma A.2.2.

By definition of feedforward neural networks in Section 2.2, different from the standard
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neural networks such as FCNs and CNNs in which the connection between neurons are generally

only in adjacent layers, the neurons in feedforward neural networks can be arbitrarily connected

as long as there is no loop.

To that end, we define ∂ f
S

(ℓ)
i
/∂ f (ℓ

′) to be a mask matrix for any ℓ′ < ℓ, i ∈ [dℓ] to indicate

whether the neurons f
S

(ℓ)
i

appear in f (ℓ
′):

(
∂ f

S
(ℓ)
i

∂ f (ℓ′)

)

j,k

= I
{(

f
S

(ℓ)
i

)
k
∈ f (ℓ

′)
j

}
. (A.3)

And ∂ f (ℓ)i /∂ f
S

(ℓ)
i

and ∂ f (ℓ)i /∂w(ℓ)
i are standard derivatives according to Eq. (2.5):

∂ f (ℓ)i
∂ f

S
(ℓ)
i

=
1√
m(ℓ)

i

(
w(ℓ)

i

)T
(σ

(ℓ)
i )′( f̃ (ℓ)i ),

∂ f (ℓ)i

∂w(ℓ)
i

=
1√
m(ℓ)

i

(
f
S

(ℓ)
i

)T
(σ

(ℓ)
i )′( f̃ (ℓ)i ).

We give a table of notations that will be frequently used (See Table A.1). The same

notations will be used for ResNets and CNNs with extra subscripts res and cnn respectively.

Table A.1. Table of notations

Symbol Meaning

f (ℓ) Vector of neurons in ℓ-th layer
dℓ Number of neurons in ℓ-th layer, i.e., length of f (ℓ)

f
S

(ℓ)
i

Vector of in-coming neurons of f (ℓ)i

w(ℓ)
i Weight vector corresponding to in-coming edges of f (ℓ)i

m(ℓ)
i Number of in-coming neurons of f (ℓ)i , i.e., length of f

S
(ℓ)
i

and w(ℓ)
i

σ
(ℓ)
i Activation function on f̃ (ℓ)i

w(ℓ) Weight vector corresponding to all incoming edges toward neurons at layer ℓ
F

S
(ℓ)
i

Set of all the elements in the vector f
S

(ℓ)
i

(Eq. (A.1))

P(ℓ) Set of all neurons in f (ℓ
′) with 0 ≤ ℓ′ ≤ ℓ (Eq. (A.2))

idℓ1,i
ℓ2, j

Index of f (ℓ2)
j in the vector f

S
(ℓ1)
i
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A.1 Examples of feedforward neural networks

Here we show that many common neural networks are special examples of the feedfor-

ward neural networks in Definition 2.2.2.

Fully-connected neural networks

Given an input xxx ∈ Rd , an L-layer fully-connected neural network is defined as follows:

f (0) = xxx,

f (ℓ) = σ

(
1√

mℓ−1
W (ℓ) f (ℓ−1)

)
, ∀ℓ ∈ [L−1], (A.4)

f (W;xxx) := f (L) =
1√

mL−1
W (L) f (L−1),

where each f (ℓ) is a mℓ-dimensional vector-valued function, and W :=
(

W (1), ...,W (ℓ)
)

, W (ℓ) ∈

Rmℓ+1×mℓ , is the collection of all the weight matrices. Here σ(·) is an element-wise activation

function, e.g., sigmoid function.

For FCNs, the inputs are the 0-th layer neurons f (0) = xxx and the outputs are the ℓ-th layer

neurons f (ℓ), which have zero in-degrees and zero out-degrees, respectively. For each non-input

neuron, its in-degree is the number of neurons in its previous layer, mℓ−1; the summation in

Eq. (2.2) turns out to be over all the neurons in the previous layer, which is manifested in the

matrix multiplication of W (ℓ) f (ℓ−1). For this network, the activation functions are the same,

except the ones on input and output neurons, where identity functions are used in the definition

above.
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DenseNets

Given an input xxx ∈ Rd , an L-layer DenseNet [42] is defined as follows:

f (0) = f (0)temp = xxx,

f (ℓ) = σ


 1√

∑
ℓ−1
l′=0 mℓ′

W (ℓ) f (ℓ−1)
temp


 , (A.5)

f (ℓ)temp =

[(
f (ℓ−1)
temp

)T
,
(

f (ℓ)
)T
]T

, ∀ℓ ∈ [L−1],

f (W;xxx) := f (L) =
1√

∑
L−1
ℓ′=0 mℓ′

W (L) f (L−1)
temp , (A.6)

where W =
(

W (1), ...,W (L)
)

is the collection of all the weight matrices. Here σ(·) is an element-

wise activation function and for each ℓ ∈ [L], W (ℓ) ∈ Rmℓ×∑
ℓ−1
ℓ′=0 mℓ′ .

The DenseNet shares much similarity with the fully-connected neural network, except

that each non-input neuron depends on all the neurons in previous layers. This difference makes

the in-degree of the neuron be ∑
ℓ−1
ℓ′=0 mℓ′ .

Neural networks with randomly dropped edges

Given a network f built from a DAG, for any neuron fv , where v ∈ V \Vinput, according

to Eq. (A.4), it is defined by

fv = σv( f̃v), f̃v =
1√
in(v)

∑
u∈Sin(v)

w(u,v) fu.

If each edge (u,v) is randomly dropped with parameter p ∈ (0,1), then the above equation

becomes

fv = σv( f̃v), f̃v =
1√
in(v)

∑
u∈Sin(v)

w(u,v) fu · I{ξu,v≥p},

where ξu,v is i.i.d. drawn from Bernoulli(p).
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To interpret such an architecture, we can simply remove the edges (u,v) in the DAG

where ξu,v < p. Then it is not hard to see that the new DAG network corresponds to the network

with randomly dropped edges.

Similarly, for a neural network with randomly dropped edges in multiple layers, we can

remove all the edges whose corresponding ξ is less than p. Then the resulting DAG can describe

this network architecture.

We note the similarity of this network with the popularly used dropout layer [102], both

of which have a mechanism of randomly dropping out neurons/edges. However, the major

difference is that, neural networks with dropout layers dynamically remove (or put mask on)

neurons/edges during training, while the networks we considered only here drop edges and are

fixed during training.

A.2 Proof of Theorem 2.3.6

We will first compute the Hessian matrix of the network function then show how to

bound the spectral norm of it.

We denote for each ℓ ∈ [L],

mℓ := inf
i∈[dℓ]

m(ℓ)
i , mℓ := sup

i∈[dℓ]
m(ℓ)

i . (A.7)

By Assumption 2.3.5, it is not hard to infer that mℓ and mℓ are also polynomial in m.

Fixing k ∈ [dℓ], to bound ∥H fk∥, we will first bound the spectral norm of the each Hessian

block H(ℓ1,ℓ2)
fk

, which takes the form

H(ℓ1,ℓ2)
fk

:=
∂ 2 fk

∂w(ℓ1)∂w(ℓ2)
, k ∈ [dℓ], ℓ1, ℓ2 ∈ [L].

Without lose of generality, we assume 1 ≤ ℓ1 ≤ ℓ2 ≤ L and we start with the simple case

when ℓ2 = L.
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If ℓ1 = ℓ2 = L, H(L,L)
fk

is simply a zero matrix since fk(w) is linear in w(ℓ).

If 1 ≤ ℓ1 < ℓ2 = L, we will use the following Lemma:

Lemma A.2.1. Given ℓ′ ≥ 1, for any ℓ′+1 ≤ ℓ≤ L, w ∈ B(w0,R), and j ∈ [dℓ], we have, with

probability at least 1− exp
(
−C f

ℓ,ℓ′ log2 m
)

,

∥∥∥∥∥∥

∂ f
S(ℓ)j

∂w(ℓ′)

∥∥∥∥∥∥
= O


 max

ℓ′+1≤p≤ℓ

√
m(ℓ)

j
√m p

(logm+R)ℓ
′


= Õ


 max

ℓ′+1≤p≤ℓ

√
m(ℓ)

j
√m p

Rℓ′


 , (A.8)

∥∥∥∥∥∥

∂ f
S(ℓ)j

∂w(ℓ′)

∥∥∥∥∥∥
F

= O
(√

m(ℓ)
j (logm+R)ℓ−1

)
= Õ

(√
m(ℓ)

j Rℓ−1
)
, (A.9)

where C f
ℓ,ℓ′ > 0 is a constant.

See the proof in Appendix A.8.

By Lemma A.2.1, with probability at least 1− exp
(
−Ω(log2 m)

)
,

∥∥∥H(ℓ1,L)
fk

∥∥∥=

∥∥∥∥∥∥
1√
m(ℓ)

k

∂ f
S

(ℓ)
k

∂w(ℓ1)

∥∥∥∥∥∥
= O

(
max

ℓ1+1≤ℓ≤L

1√
mℓ

(logm+R)ℓ1

)
= Õ(Rℓ1/

√
m).

For the rest of blocks that 1 ≤ ℓ1 ≤ ℓ2 ≤ L−1, we will use the following lemma to bound

their spectral norms:

Lemma A.2.2. Given 1 ≤ ℓ1 ≤ ℓ2 ≤ L−1, for any ℓ2 < ℓ≤ L, w ∈ B(w0,R), and j ∈ [dℓ], we

have, with probability at least 1− exp
(
−Ω(log2 m)

)
,

∥∥∥∥∥∥
∂ 2 f̃ (ℓ)j

∂w(ℓ1)∂w(ℓ2)

∥∥∥∥∥∥
= O

(
max

ℓ1+1≤p≤ℓ

1
√m p

(logm+R)ℓ
2

)
= Õ

(
max

ℓ1+1≤p≤ℓ

Rℓ2

√m p

)
. (A.10)

See the proof in Appendix A.9.

Remark A.2.3. Note that the above results hold for any ℓ≤ L. When ℓ= L, f̃ (ℓ)j = f j which is

what we need to show the transition to linearity of f j. When ℓ < L, as discussed before, we can
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regard f̃ (ℓ)j as a function of its parameters. We note that f̃ (ℓ)j with ℓ < L will also transition to

linearity by applying the same analysis for f j, which is the result of Theorem 2.3.8.

By letting ℓ= L in Lemma A.2.2, for any 1 ≤ ℓ1 ≤ ℓ2 ≤ L−1, with probability at least

1− exp
(
−Ω(log2 m)

)
,

∥∥∥H(ℓ1,ℓ2)
fk

∥∥∥= O
(

max
ℓ1≤ℓ≤L

1√
mℓ

(logm+R)ℓ
2
)
= O((logm+R)L2

/
√

m) = Õ(RL2
/
√

m).

Finally by Lemma A.11.1, the spectral norm of H fk can be bounded by the summation of

the spectral norm of all the Hessian blocks, i.e.,∥H fk∥ ≤ ∑ℓ1,ℓ2 ∥H(ℓ1,ℓ2)
fk

∥. Applying the union

bound over the indices of layers ℓ1, ℓ2, we finish the proof.

A.3 Feedforward neural networks with multiple output

In cases of multiple output neurons, the network function is vector-valued and its Hessian

is a three-order tensor. The spectral norm of Hessian is defined in a standard way, i.e.,

∥H f (w)∥ := sup
∥v∥=∥u∥=∥s∥=1

∑
i, j,k

(
H f (w)

)
i, j,k viu jsk,

where s ∈ Rdℓ and v, u have the same dimension with w. It is not hard to see that ∥H f (w)∥ ≤

dℓmaxk∈[dℓ] ∥H fk(w)∥.

If the number of output neurons dℓ is bounded (as in most practical cases), the spectral

norm of the Hessian of f is also of the order Õ(1/
√

m), with high probability, as a direct

consequence of Theorem 2.3.6.

Corollary A.3.1. Suppose Assumption 2.3.1, 2.3.2 and 2.3.5 hold. Given a fixed radius R> 0, for

all w ∈ B(w0,R), with probability at least 1− exp
(
−Ω(log2 m)

)
over the random initialization

75



w0, a vector-valued feedforward neural network f satisfies

∥∥H f (w)
∥∥= Õ

(
RL2

√
m

)
. (A.11)

A.4 Feedforward neural networks with skip connections

In this section, we discuss the property of transition to linearity holds for networks with

skip connection.

We formally define the skip connection in the following. We add a skip connection to

each neuron then the neuron functions Eq. (2.5) become

f (ℓ)i,res = σ
(ℓ)
i

(
f̃ (ℓ)i,res

)
+ f (A(ℓ,i))B(ℓ,i),res, f̃ (ℓ)i,res =

1√
m(ℓ)

i

(
w(ℓ)

i

)T
f
S

(ℓ)
i ,res

, (A.12)

where 1 ≤ ℓ ≤ L− 1 and i ∈ [dℓ]. Here A(ℓ, i) ∈ {0, · · · , ℓ− 1} denotes the layer index of the

connected neuron by skip connection with respect to f (ℓ)i,res and B(ℓ, i) ∈ [dA(ℓ,i)].

And for the output layer ℓ= L, we define

f (L)i,res = f̃ (L)i,res =
1√
m(L)

i

(
w(L)

i

)T
f
S

(L)
i ,res

,

where i ∈ [dL].

The following theorem shows the property of transition to linearity holds for networks

with skip connections. The proof of the theorem follows the almost identical idea with the proof

of Theorem 2.3.6, hence we present the proof sketch and focus on the arguments that are new for

fres.

Theorem A.4.1 (Scaling of the Hessian norm for fres). Suppose Assumption 2.3.1, 2.3.2 and

2.3.5 hold. Given a fixed radius R > 0, for all w ∈ B(w0,R), with probability at least 1−
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exp
(
−Ω(log2 m)

)
over the random initliazation of w0, each output neuron fk,res satisfies

∥∥∥H fk,res(w)
∥∥∥= Õ

(
RL2

√
m

)
, ℓ ∈ [L], k ∈ [dℓ]. (A.13)

Proof sketch of Theorem A.4.1. For each output fk,res, where k ∈ [dℓ], similar to the proof of

Theorem 2.3.6, we bound the spectral norm of each Hessian block, i.e., ∂ 2 fk,res

∂w(ℓ1)∂w(ℓ2)
. Without loss

of generality, we assume 1 ≤ ℓ1 ≤ ℓ2 ≤ L.

Similar to Eq.(2.13), we derive the expression of the Hessian block by definition:

∂ 2 fk,res

∂w(ℓ1)∂w(ℓ2)
=

L

∑
ℓ′=ℓ2

dℓ′

∑
i=1

∂ 2 f (ℓ
′)

i,res

∂w(ℓ1)∂w(ℓ2)

∂ fk,res

∂ f (ℓ
′)

i,res

:=
L

∑
ℓ′=ℓ2

GL,ℓ′
k,res.

And again by chain rule of derivatives, each GL,ℓ′
k,res can be written as

GL,ℓ′
k,res =

1√
m(L)

k

L−1

∑
r=ℓ′

∑
s: f (r)s,res∈F

S
(L)
k

(
w(L)

k

)
idL,k

r,s
σ
′
(

f̃ (r)s,res

)
Gr,ℓ′

s,res

︸ ︷︷ ︸
T1

+
1√
m(L)

k

L−1

∑
r=ℓ′

∑
s: f (r)s,res∈F

S
(L)
k

(
w(L)

k

)
idL,k

r,s
σ
′
(

f̃ (A(ℓ
′,s))

B(ℓ′,s),res

)
GA(ℓ′,s),ℓ′

B(ℓ′,s),res

︸ ︷︷ ︸
T2

+
1√
m(L)

k

∑
i: f (ℓ

′)
i,res∈F

S
(L)
k,res

(
w(L)

k

)
idL,k
ℓ′,i


σ

′′
(

f̃ (ℓ
′)

i,res

) ∂ f̃ (ℓ
′)

i,res

∂w(ℓ1)


 ∂ f̃ (ℓ

′)
i,res

∂w(ℓ2)




T


︸ ︷︷ ︸
T3

+
1√
m(L)

k

∑
i: f (ℓ

′)
i,res∈F

S
(L)
k,res

(
w(L)

k

)
idL,k
ℓ′,i


σ

′′
(

f̃ (A(ℓ
′,i))

B(ℓ′,i),res

) ∂ f̃ (A(ℓ
′,i))

B(ℓ′,i),res

∂w(ℓ1)


∂ f̃ (A(ℓ

′,i))
B(ℓ′,i),res

∂w(ℓ2)




T



︸ ︷︷ ︸
T4

,
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where F
S

(L)
k,res

:= { f : f ∈ f
S

(L)
k,res

} and idL,k
ℓ′,i := {p :

(
f
S

(L)
k ,res

)

p
= f (ℓ

′)
i,res}.

Note that the new terms which are induced by the skip connection in the above equation

are

T2 =
1√
m(L)

k

L−1

∑
r=ℓ′

∑
s: f (r)s,res∈F

S
(L)
k

(
w(L)

k

)
idL,k

r,s
σ
′
(

f̃ (A(ℓ
′,s))

B(ℓ′,s),res

)
GA(ℓ′,s),ℓ′

B(ℓ′,s),res,

and

T4 =
1√
m(L)

k

∑
i: f (ℓ

′)
i,res∈F

S
(L)
k,res

(
w(L)

k

)
idL,k
ℓ′,i


σ

′′
(

f̃ (A(ℓ
′,i))

B(ℓ′,i),res

) ∂ f̃ (A(ℓ
′,i))

B(ℓ′,i),res

∂w(ℓ1)


∂ f̃ (A(ℓ

′,i))
B(ℓ′,i),res

∂w(ℓ2)




T

 .

These two new terms take the same form with the original two terms i.e., T1 and T3,

which are matrix Gaussian series with respect to the random variables w(L)
k . Therefore, we can

use the same method as T1 and T3 to bound the spectral norm of T2 and T4.

As A(ℓ′, i)< ℓ′ by definition, the bound on T2 and T4 will be automatically included in

our recursive analysis. Then the rest of the proof is identical to the one for feedforward neural

networks, i.e., the proof of Theorem 2.3.6.

A.5 Feedforward neural networks with shared weights, e.g.,
convolutional neural networks

In this section, we consider the feedforward neural networks where weight parameters

are shared, e.g., convolutional neural networks, as an extension to our result where we assume

each weight parameter we ∈ W is initialized i.i.d. We will show that such feedforward neural

networks in which the weight parameters are shared constant times, i.e., independent of the width

m, the property of transition to linearity still holds.
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We formally define the networks with shared weights in the following:

f (ℓ)i, j,cnn = σ
(ℓ)
i

(
f̃ (ℓ)i, j,cnn

)
, f̃ (ℓ)i, j,cnn =

1√
m(ℓ)

i, j

(
w(ℓ)

i

)T
f
S

(ℓ)
i, j ,cnn

, (A.14)

where 1 ≤ ℓ≤ L, i ∈ [dℓ]. We introduce new index j ∈ [D(ℓ, i)] where D(ℓ, i) denotes the number

of times that weights w(ℓ)
i are shared. Note that the element in f

S
(ℓ)
i, j ,cnn

is allowed to be 0,

corresponding to the zero padding which is commonly used in CNNs.

We similarly denote the output of the networks f (L)i, j,cnn by fi, j,cnn.

To see how CNNs fit into this definition, we consider a CNN with 1-D convolution as a

simple example.

Convolutional neural networks

Given input xxx ∈ Rd , an ℓ-layer convolutional neural network is defined as follows:

f (0) = xxx,

f (ℓ) = σ

(
1√

mℓ−1 × p
W (ℓ) ∗ f (ℓ−1)

)
, ∀l ∈ [L−1],

fi(W;xxx) =
1√

mℓ−1 ×d

〈
W (ℓ)

[i,:,:], f (ℓ−1)
〉
, ∀i ∈ [dℓ], (A.15)

where W =
(

W (1), ...,W (ℓ)
)

is the collection of all the weight matrices.

We denote the size of the window by p×1, hence W (ℓ) ∈Rmℓ×mℓ−1×p for ℓ ∈ [L−1]. We

assume the stride is 1 for simplicity, and we do the standard zero-padding to each f (ℓ) such that

for each ℓ ∈ [L−1], f (ℓ) ∈Rmℓ×d . At the last layer, as f (ℓ−1) ∈Rmℓ−1×d and W (ℓ) ∈RmL×mℓ−1×d ,

we do the matrix inner product for each i ∈ [dℓ].

Now we show how Eq. (A.15) fits into Eq. (A.14). For ℓ ∈ [L−1], in Eq. (A.15), each

component of f (ℓ) ∈ Rmℓ×d is computed as

f (ℓ)i, j = σ

(
1√

mℓ−1 × p

〈
W (ℓ)

[i,:,:], f (ℓ−1)

[:, j−⌈ p−1
2 ⌉: j+⌈ p−1

2 ⌉]

〉)
.
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Therefore, m(ℓ)
i, j , w(ℓ)

i and f
S

(ℓ)
i, j ,cnn

in Eq. (A.14) correspond to mℓ−1 × p, W (ℓ)
[i,:,:] and

f (ℓ−1)

[:, j−⌈ p−1
2 ⌉: j+⌈ p−1

2 ⌉]
respectively. For ℓ = L, m(L)

i, j corresponds to mL−1 × d and f
S

(L)
i, j ,cnn

corre-

sponds to f (L−1). Then we can see our definition of networks with shared weights, i.e., Eq. (A.14)

includes standard CNN as an special example.

Similar to Theorem 2.3.6, we will show that the spectral norm of its Hessian can be

controlled, hence the property of transition to linearity will hold for f (ℓ)cnn. The proof of the

following theorem follows the almost identical idea with the proof of Theorem 2.3.6, hence we

present the proof sketch and focus on the arguments that are new for fcnn.

Theorem A.5.1. Suppose Assumption 2.3.1, 2.3.2 and 2.3.5 hold. Given a fixed radius R > 0, for

all w ∈ B(w0,R), with probability at least 1− exp
(
−Ω(log2 m)

)
over the random initliazation

of w0, each output neuron fi, j,cnn(w) satisfies

∥∥H fi, j,cnn(w)
∥∥= O

(
(logm+R)ℓ

2
/
√

m
)
= Õ

(
Rℓ2

/
√

m
)
, ℓ ∈ [L], i ∈ [dℓ], j ∈ [D(i, ℓ)].

(A.16)

Proof sketch of Theorem A.5.1. Similar to the proof of Theorem 2.3.6, by Lemma A.11.1, the

spectral norm of H fi, j,cnn can be bounded by the summation of the spectral norm of all the Hessian

blocks, i.e., ∥H fi, j,cnn∥ ≤ ∑ℓ1,ℓ2 ∥H(ℓ1,ℓ2)
fi, j,cnn

∥, where H(ℓ1,ℓ2)
fi, j,cnn

:= ∂ 2 fk
∂w(ℓ1)∂w(ℓ2)

. Therefore, it suffices to

bound the spectral norm of each block. Without lose of generality, we consider the block with

1 ≤ ℓ1 ≤ ℓ2 ≤ L.

By the chain rule of derivatives, we can write the Hessian block into:

∂ 2 fi, j,cnn

∂w(ℓ1)∂w(ℓ2)
=

L

∑
ℓ′=ℓ2

dℓ′

∑
k=1

D(k,ℓ′)

∑
t=1

∂ 2 f (ℓ
′)

k,t,cnn

∂w(ℓ1)∂w(ℓ2)

∂ fi, j,cnn

∂ f (ℓ
′)

k,t,cnn

:=
L

∑
ℓ′=ℓ2

GL,ℓ′
i, j,cnn. (A.17)

For each GL,ℓ′
i, j,cnn, since f (ℓ

′)
i, j,cnn = σ

(
f̃ (ℓ

′)
i, j,cnn

)
, again by the chain rule of derivatives, we
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have

GL,ℓ′
i, j,cnn =

dℓ′

∑
k=1

D(k,ℓ′)

∑
t=1

∂ 2 f̃ (ℓ
′)

k,t,cnn

∂w(ℓ1)∂w(ℓ2)

∂ fi, j,cnn

∂ f̃ (ℓ
′)

k,t,cnn

+
1√
m(L)

i, j

∑
k,t: f (ℓ

′)
k,t,cnn∈F

S
(L)
i, j,cnn

(
w(L)

i

)
id

L,i, j
ℓ′,k,t

σ
′′
(

f̃ (ℓ
′)

k,t,cnn

) ∂ f̃ (ℓ
′)

k,t,cnn

∂w(ℓ1)


∂ f̃ (ℓ

′)
k,t,cnn

∂w(ℓ2)




T

=
1√
m(L)

i, j

L−1

∑
r=ℓ′

∑
k,t: f (r)k,t,cnn∈F

S
(L)
i, j,cnn

(
w(L)

i

)
id

L,i, j
r,k,t

σ
′
(

f̃ (r)k,t,cnn

)
Gr,ℓ′

k,t,cnn

+
1√
m(L)

i, j

∑
k,t: f (ℓ

′)
k,t,cnn∈F

S
(L)
i, j,cnn

(
w(L)

i

)
id

L,i, j
ℓ′,k,t

σ
′′
(

f̃ (ℓ
′)

k,t,cnn

) ∂ f̃ (ℓ
′)

k,t,cnn

∂w(ℓ1)


∂ f̃ (ℓ

′)
k,t,cnn

∂w(ℓ2)




T

,

where F
S

(L)
i, j,cnn

:= { f : f ∈ f
S

(L)
i, j,cnn

} and idL,i, j
ℓ′,k,t := {p :

(
f
S

(L)
i, j ,cnn

)

p
= f (ℓ

′)
k,t,cnn}.

Compared to the derivation for standard feedforward neural networks, i.e., Eq. (2.14),

there is an extra summation over the index t, whose carnality is at most D(k, ℓ′). Recall that

D(k, ℓ′) denotes the number of times that the weight parameters w(ℓ′)
k is shared. Therefore, as

we assume D(k, ℓ′) is independent of the width m, the norm bound will have the same order of

m. Consequently, the spectral norm of each GL,ℓ′
i, j,cnn can be recursively bounded then Eq. (A.16)

holds.

A.6 Feedforward neural networks with bottleneck neurons

In this section, we show that constant number of bottleneck neurons which serve as

incoming neurons will not break the linearity.

We justify this claim based on the recursive relation in Eq. (2.13), which is used to prove

the small spectral norm of the Hessian of the network function, hence proving the transition to

linearity.
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Recall that each Hessian block can be written into:

∂ 2 fk

∂w(ℓ1)∂w(ℓ2)
=

L

∑
ℓ′=ℓ2

dℓ′

∑
i=1

∂ 2 f (ℓ
′)

i

∂w(ℓ1)∂w(ℓ2)

∂ fk

∂ f (ℓ
′)

i

:=
L

∑
ℓ′=ℓ2

GL,ℓ′
k . (A.18)

For each GL,ℓ′
k , we have a recursive form

GL,ℓ′
k =

dℓ′

∑
i=1

∂ 2 f̃ (ℓ
′)

i

∂w(ℓ1)∂w(ℓ2)

∂ fk

∂ f̃ (ℓ
′)

i

+
1√
m(L)

k

∑
i: f (ℓ

′)
i ∈F

S
(L)
k

(
w(L)

k

)
idL,k
ℓ′,i

σ
′′
(

f̃ (ℓ
′)

i

)
∂ f̃ (ℓ

′)
i

∂w(ℓ1)

(
∂ f̃ (ℓ

′)
i

∂w(ℓ2)

)T

=
1√
m(L)

k

L−1

∑
r=ℓ′

∑
i: f (r)i ∈F

S
(L)
k

(
w(L)

k

)
idL,k

r,i

σ
′
(

f̃ (r)s

)
Gr,ℓ′

i

+
1√
m(L)

k

∑
i: f (ℓ

′)
i ∈F

S
(L)
k

(
w(L)

k

)
idL,k
ℓ′,i

σ
′′
(

f̃ (ℓ
′)

i

)
∂ f̃ (ℓ

′)
i

∂w(ℓ1)

(
∂ f̃ (ℓ

′)
i

∂w(ℓ2)

)T

, (A.19)

where F
S

(L)
k

:= { f : f ∈ f
S

(L)
k

} and idL,k
ℓ′,i := {p :

(
f
S

(L)
k

)

p
= f (ℓ

′)
i }.

As mentioned in Section 2.3, to prove the spectral norm of GL,ℓ′
k is small, we need to

bound the matrix variance, which suffices to bound the spectral norm of

1√
m(L)

k

∑
i: f (r)i ∈F

S
(L)
k

Gr,ℓ′
i and

1√
m(L)

k

∑
i: f (ℓ

′)
i ∈F

S
(L)
k

∂ f̃ (ℓ
′)

i

∂w(ℓ1)

(
∂ f̃ (ℓ

′)
i

∂w(ℓ2)

)T

.

For the first quantity, if all f̃ (r)i are neurons with large in-degree, which is the case of

our analysis by Assumption 2.3.5, then each f̃ (r)i will transition to linearity by Theorem 2.3.8.

This is manifested as small spectral norm of Gr,ℓ′
i for all i. If some of f̃ (r)i are neurons with small

in-degree, their corresponding Gr,ℓ′
i can be of a larger order, i.e., O(1). However, note that the

cardinally of the set F
S

(L)
k

is m(L)
k . As long as the number of such neurons is not too large, i.e.,

o
(

m(L)
k

)
, the order of the summation will be not affected. Therefore, the desired bound for the

matrix variance will be the same hence the recursive argument can still apply.
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The same analysis works for the second quantity as well. Neurons with small in-degree

can make the norm of ∂ f̃ (ℓ
′)

i
∂w(ℓ1)

(
∂ f̃ (ℓ

′)
i

∂w(ℓ2)

)T

be of a larger order. However, as long as the number of

such neurons is not too large, the bound still holds.

For example, for the bottleneck neural network which has a narrow hidden layer (i.e.,

bottleneck layer) while the rest of hidden layers are wide, all neurons in the next layer to the

bottleneck layer are bottleneck neurons. Such bottleneck neural networks were shown to break

transition to linearity in [66]. However, we observe that for such bottleneck neural networks, the

number of bottleneck neurons is large, a fixed fraction of all neurons. With our analysis, if we

add trainable connections to the bottleneck neurons such that almost all (except a small number

of) bottleneck neurons become neurons with sufficiently large in-degrees, then the resulting

network can have the property of transition to linearity.

A.7 Proof of Proposition 2.4.4

Note that for any k ∈ [dℓ],

∥∇w fk(w0)∥ ≥ ∥∇w(ℓ) fk(w0)∥=

∥∥∥∥∥∥
1√
m(ℓ)

k

f
S

(ℓ)
k

∥∥∥∥∥∥
=

1√
m(ℓ)

k

∥∥∥∥ f
S

(ℓ)
k

∥∥∥∥ .

Since f
S

(ℓ)
k

contains neurons from P(ℓ) (defined in Eq. (A.2)), in the following we prove

Ex,w0

∣∣∣ f (ℓ)i

∣∣∣
2

is uniformly bounded from 0 for any ℓ ∈ {0,1, ...,L−1}, i ∈ [dℓ].

Specifically, we will prove by induction that ∀ ℓ ∈ {0,1, ...,L−1}, ∀ i ∈ [dℓ],

ExEw0[| f
(ℓ)
i |2]≥ min

{
1, min

1≤ j≤ℓ
C

∑
j−1
ℓ′=0 rℓ

′

σ

}
.

When ℓ= 0, Exxx
[
|xi|2

]
= 1 for all i ∈ [d0] by Assumption 2.4.1.

Suppose for all ℓ≤ q−1, ExEw0[| f
(ℓ)
i |2]≥ min

(
1,min1≤ j≤qC

∑
j−1
ℓ′=0 rℓ

′

σ

)
. When ℓ= q,
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ExEw0[| f
(q)
i |2] = Ew0




∣∣∣∣∣∣
σ
(q)
i


 1√

m(ℓ)
i

(w(q)
i )T f

S
(q)
i



∣∣∣∣∣∣

2



= ExEw0Ez∼N (0,1)




∣∣∣∣∣∣
σ
(q)
i



∥ f

S
(q)
i
∥

√
m(q)

i

z



∣∣∣∣∣∣

2

 .

By Assumption 2.4.2,

ExEw0Ez∼N (0,1)




∣∣∣∣∣∣
σ
(q)
i



∥ f

S
(q)
i
∥

√
m(q)

i

z



∣∣∣∣∣∣

2

= Ez∼N (0,1)[|σ (q)

i (z)|2]ExEw0





∥ f

S
(q)
i
∥2

m(q)
i




r


≥CσExEw0





∥ f

S
(q)
i
∥2

m(q)
i




r


We use Jensen’s inequality,

CσExEw0





∥ f

S
(q)
i
∥2

m(q)
i




r
≥Cσ



ExEw0

[
∥ f

S
(q)
i
∥2
]

m(q)
i




r

Then according to inductive assumption, we have

Cσ



ExEw0

[
∥ f

S
(q)
i
∥2
]

m(q)
i




r

≥Cσ

(
min

(
1, min

1≤ j≤q
C

∑
j−1
ℓ′=0 rℓ

′

σ

))r

≥ min
1≤ j≤q+1

C
∑

j−1
ℓ′=0 rℓ

′

σ .

Hence for all l ≤ q, ExEw0[| f
(ℓ)
i |2]≥min

(
1,min1≤ j≤q+1C

∑
j−1
ℓ′=0 rℓ

′

σ

)
, which finishes the inductive

step hence the proof.
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Therefore,

Ex,w0

[
∥∇w(ℓ) fk(w0)∥

]
= Ex,w0


 1√

m(ℓ)
k

∥∥∥∥ f
S

(ℓ)
k

∥∥∥∥


≥

√
min

(
1, min

1≤ j≤L
C

∑
j−1
ℓ′=0 rℓ′

σ

)
= Ω(1).

A.8 Proof of Lemma A.2.1

We prove the result by induction.

For the base case when ℓ= ℓ′+1,

∥∥∥∥∥∥

∂ f
S(ℓ)j

∂w(ℓ−1)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∂ f (ℓ−1)

∂w(ℓ−1)

∂ f
S(ℓ)j

∂ f (ℓ−1)

∥∥∥∥∥∥

≤ max
i: f (ℓ−1)

i ∈F
S

(ℓ)
j

1√
m(ℓ−1)

i

∣∣∣σ ′( f̃ (ℓ−1)
i )

∣∣∣
∥∥∥ f

S
(ℓ−1)
i

∥∥∥

≤ max
i: f (ℓ−1)

i ∈F
S

(ℓ)
j

γ1√
m(ℓ−1)

i

∥∥∥ f
S

(ℓ−1)
i

∥∥∥ .

and

∥∥∥∥∥∥

∂ f
S(ℓ)j

∂w(ℓ−1)

∥∥∥∥∥∥
F

=

√√√√√√ ∑
i: f (ℓ−1)

i ∈F
S

(ℓ)
j

∥∥∥∥∥
∂ f (ℓ−1)

i

∂w(ℓ−1)

∥∥∥∥∥

2

≤
√

m(ℓ)
j max

i: f (ℓ−1)
i ∈F

S
(ℓ)
j

1√
m(ℓ−1)

i

∣∣∣σ ′( f̃ (ℓ−1)
i )

∣∣∣
∥∥∥ f

S
(ℓ−1)
i

∥∥∥

≤
√

m(ℓ)
j max

i: f (ℓ−1)
i ∈F

S
(ℓ)
j

γ1√
m(ℓ−1)

i

∥∥∥ f
S

(ℓ−1)
i

∥∥∥ .

By Lemma A.11.3, with probability at least 1−m(ℓ−1)
i exp

(
−CP

ℓ−1 log2 m
)
,

∥∥∥ f
S

(ℓ−1)
i

∥∥∥= O
(
(logm+R)ℓ−2

√
m(ℓ−1)

i

)
= Õ

(
Rℓ−2

√
m(ℓ−1)

i

)
.
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For the maximum norm maxi

∥∥∥ f
S

(ℓ−1)
i

∥∥∥/
√

m(ℓ−1)
i , we apply union bound over the indices

i such that f (ℓ−1)
i ∈ F

S
(ℓ)
j

, the cardinality of which is at most
∣∣∣∣FS

(ℓ)
j

∣∣∣∣ = m(ℓ)
j . Hence with

probability at least 1−m(ℓ−1)
i m(ℓ)

j exp
(
−CP

ℓ−1 log2 m
)
,

max
i

∥∥∥ f
S

(ℓ−1)
i

∥∥∥/
√

m(ℓ−1)
i = O

(
(logm+R)ℓ−2

)
= Õ(Rℓ−2).

Since m(ℓ−1)
i ≤ mℓ−1 and m(ℓ)

j ≤ mℓ where mℓ−1,mℓ are polynomial in m, we can find a

constant C f
ℓ,ℓ−1 > 0 such that exp

(
−C f

ℓ,ℓ−1 log2 m
)
≥ exp

(
−CP

ℓ−1 log2 m
)
· exp(log(mℓ−1 ·mℓ)).

As a result, with probability at least 1− exp
(
−C f

ℓ,ℓ−1 log2 m
)

,

∥∥∥∥∥∥

∂ f
S(ℓ)j

∂w(ℓ−1)

∥∥∥∥∥∥
= O

(
(logm+R)ℓ−1

)
= Õ(Rℓ−1),

∥∥∥∥∥∥

∂ f
S(ℓ)j

∂w(ℓ−1)

∥∥∥∥∥∥
F

= O
(√

m(ℓ)
j (logm+R)ℓ−1

)
= Õ

(√
m(ℓ)

j Rℓ−1
)
.

Suppose ℓ≤ k, Eq. (A.8) and (A.9) hold with probability at least 1−exp
(
−C f

k,ℓ′ log2 m
)

.

For ℓ= k+1, since elements of f
S

(k+1)
j

are from P(k) where only f (ℓ
′), ..., f (k) possibly

depend on w(ℓ′), we have

∂ f
S

(k+1)
j

∂w(ℓ′)
=

k

∑
q=ℓ′+1

∑
i: f (q)i ∈F

S
(k+1)
j

∂ f
S

(q)
i

∂w(ℓ′)

∂ f (q)i
∂ f

S
(q)
i

∂ f
S

(k+1)
j

∂ f (q)i

. (A.20)

With simple computation, we know that for any i s.t. f (q)i ∈ F
S

(k+1)
j

:

∂ f (q)i
∂ f

S
(q)
i

∂ f
S

(k+1)
j

∂ f (q)i

=
1√
m(q)

i

σ
′( f̃ (q)i )w(q)

i

∂ f
S

(k+1)
j

∂ f (q)i

,
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where
∂ f

S
(k+1)
j

∂ f (q)i

is a mask matrix defined in Eq. (A.3).

Supposing that ∂ f
S

(q)
i
/∂w(ℓ′), i ∈ [dq] in Eq. (A.20) is fixed, for each q, we apply

Lemma A.11.6 to bound the spectral norm. Choosing t =
√

m(k+1)
j logm, with probability at

least 1−2exp
(
−m(k+1)

j log2 m
)

, for some absolute constant C > 0,

∥∥∥∥∥∥∥∥∥
∑

i: f (q)i ∈F
S

(k+1)
j

∂ f
S

(q)
i

∂w(ℓ′)

∂ f (q)i
∂ f

S
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i

∂ f
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(k+1)
j

∂ f (q)i

∥∥∥∥∥∥∥∥∥

≤Cγ1


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i

1√
m(q)

i

∥∥∥∥∥
∂ f

S
(q)
i

∂w(ℓ′)

∥∥∥∥∥

(√
m(k+1)

j +

√
m(k+1)

j logm+R
)
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i

1√
m(q)

i

∥∥∥∥∥
∂ f

S(q)i

∂w(ℓ′)

∥∥∥∥∥
F


 .

(A.21)

To bound the Frobenious norm of Eq. (A.20) for each q, we apply Lemma A.11.7 and

choose t =
∥∥∥∂ f

S(q)i
/∂w(ℓ′)

∥∥∥ logm. By union bound over indices i such that f (q)i ∈ F
S

(k+1)
j

, then

with probability at least 1−2m(k+1)
j exp

(
−c′ log2 m

)
, where c′ > 0 is a constant, we have

∥∥∥∥∥∥∥∥∥
∑

i: f (q)i ∈F
S

(k+1)
j

∂ f
S

(q)
i

∂w(ℓ′)

∂ f (q)i
∂ f

S
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j
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∥∥∥∥∥∥∥∥∥
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∥∥∥∥∥∥

2

≤
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i

∥∥∥∥∥∥

∂ f
S

(q)
i

∂w(ℓ′)
1√
m(q)

i

(
w(q)

i

)T
σ
′( f̃ (q)i )

∥∥∥∥∥∥

≤ γ1

√
m(k+1)

j max
i

1√
m(q)

i

(∥∥∥∥∥
∂ f

S
(q)
i

∂w(ℓ′)

∥∥∥∥∥(logm+R)+

∥∥∥∥∥
∂ f

S
(q)
i

∂w(ℓ′)

∥∥∥∥∥
F

)
. (A.22)
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To bound the maximum of
∥∥∥∂ f

S
(q)
i
/∂w(ℓ′)

∥∥∥/
√

m(q)
i and

∥∥∥∂ f
S

(q)
i
/∂w(ℓ′)

∥∥∥
F
/

√
m(q)

i that

appear in Eq. (A.21) and (A.22), with the induction hypothesis, we apply union bound over

indices i such that f (q)i ∈ F
S

(k+1)
j

. With probability at least 1−m(k+1)
j exp

(
−C f

q,ℓ′ log2 m
)

,

max
i

1√
m(q)

i

∥∥∥∥∥
∂ f

S
(q)
i

∂w(ℓ′)

∥∥∥∥∥= O

(
max

ℓ′+1≤p≤q

1
√m p

(logm+R)ℓ
′
)

= Õ

(
max

ℓ′+1≤p≤q

Rℓ′

√m p

)
,

max
i

1√
m(q)

i
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∂ f

S
(q)
i

∂w(ℓ′)

∥∥∥∥∥
F

= O
(
(logm+R)q−1)= Õ

(
Rq−1) .

Putting them in Eq. (A.21) and (A.22), we have

∥∥∥∥∥∥∥∥∥
∑

i: f (q)i ∈F
S

(k+1)
j

∂ f
S

(q)
i

∂w(ℓ′)

∂ f (q)i
∂ f

S
(q)
i

∂ f
S

(k+1)
j

∂ f (q)i

∥∥∥∥∥∥∥∥∥
= Õ


max




 max
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√
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j√mp


 ,1




 ,

∥∥∥∥∥∥∥∥∥
∑
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S
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j

∂ f
S

(q)
i
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∂ f (q)i
∂ f

S
(q)
i

∂ f
S

(k+1)
j

∂ f (q)i
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F

= Õ
(√

m(k+1)
j

)
,

with probability at least

1−2exp
(
−m(k+1)

j log2 m
)
−m(k+1)

j exp
(
−C f

q,ℓ′ log2 m
)
−2m(k+1)

j exp
(
−c′ log2 m

)
.

As the current result is for fixed q, applying the union bound over indices q ∈ {ℓ′+

1, ...,k}, we have with probability at least

1−2(k− ℓ′)exp
(
−m(k+1)

j

)
−∑

q
m(k+1)

j exp
(
−C f

q,ℓ′ log2 m
)
−2m(k+1)

j exp
(
−c′ log2 m

)
,
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∥∥∥∥∥∥∥∥∥
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j

∂ f
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S
(q)
i
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= O


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
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ℓ′+1≤p≤k

√
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j
√m p

,1


(logm+R)ℓ

′




= Õ


 max

ℓ′+1≤p≤k+1

√
m(k+1)

j
√m p

Rℓ′


 ,

∥∥∥∥∥∥∥∥∥

k

∑
q=ℓ′+1

∑
i: f (q)i ∈F

S
(k+1)
j

∂ f
S

(q)
i

∂w(ℓ′)

∂ f (q)i
∂ f

S
(q)
i

∂ f
S

(k+1)
j

∂ f (q)i

∥∥∥∥∥∥∥∥∥
F

= O
(√

m(k+1)
j (logm+R)k

)

= Õ
(√

m(k+1)
j Rk

)
.

Since m(k+1)
j is upper bounded by mk+1 which is polynomial in m, we can find a constant

C f
k+1,ℓ′ > 0 such that for each j, the result holds with probability at least 1−exp

(
−C f

k+1,ℓ′ log2 m
)

for ℓ≤ k+1. Then we finish the inductive step which completes the proof.

A.9 Proof of Lemma A.2.2

Before the proof, by Assumption 2.3.5, we have the following proposition which is

critical in the tail bound of the norm of the matrix Gaussian series, i.e., Lemma A.11.8. In the

bound, there will be a dimension factor which is the number of parameters (see Eq. (A.32)).

Note that the number of parameters at each layer can be exponentially large w.r.t. the width m.

If we naively apply the bound, the bound will be useless. However, each neuron in fact only

depends on polynomial in m number of parameters, which is the dimension factor we should use.

Proposition A.9.1. Fixed ℓ′ ∈ [L], we denote the maximum number of elements in w(ℓ′) that f (ℓ)i

depends on for all ℓ ∈ [L], i ∈ [dℓ] by m∗
ℓ′ , which is polynomial in m.
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The proof the proposition can be found in Appendix A.10.

Now we start the proof of the lemma. In fact, we will prove a more general result which

includes the neurons in output layer, i.e. ℓ-th layer. And we will use the result of Lemma A.2.1

in the proof. Specifically, we will prove the following lemma:

Lemma A.9.2. Given 1 ≤ ℓ1 ≤ ℓ2 ≤ L, for any ℓ2 ≤ ℓ≤ L, w ∈ B(w0,R), and j ∈ [dℓ], we have,

with probability at least 1− exp
(
−Ω(log2 m)

)
,

∥∥∥∥∥∥
∂ 2 f̃ (ℓ)j

∂w(ℓ1)∂w(ℓ2)

∥∥∥∥∥∥
= O

(
max

ℓ1+1≤p≤ℓ

1
√m p

(logm+R)ℓ
2

)
= Õ

(
max

ℓ1+1≤p≤ℓ

Rℓ2

√m p

)
. (A.23)

We will prove the results by induction.

For the base case that ℓ= ℓ2,

∥∥∥∥∥∥
∂ 2 f̃ (ℓ2)

j

∂w(ℓ1)∂w(ℓ2)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
1√
m(ℓ2)

j

∂ f
S(ℓ2)j

∂w(ℓ1)

∥∥∥∥∥∥
.

By Lemma A.2.1, we can find a constant M(ℓ2), j
ℓ1,ℓ2

> 0 such that with probability at least

1− exp
(
−M(ℓ2), j

ℓ1,ℓ2
log2 m

)
,

∥∥∥∥∥∥
1√
m(ℓ2)

j

∂ f
S(ℓ2)j

∂w(ℓ1)

∥∥∥∥∥∥
= O

(
max

ℓ1+1≤p≤ℓ2

1
√m p

(logm+R)ℓ1

)
.

Suppose for ℓ2 ≤ ℓ′ ≤ ℓ, with probability at least 1− exp
(
−M(ℓ), j

ℓ1,ℓ2
log2 m

)
for some

constant M(ℓ), j
ℓ1,ℓ2

> 0, Eq. (A.10) holds.

When ℓ′ = ℓ+1, we have

∥∥∥∥∥∥
∂ 2 f̃ (ℓ+1)

j

∂w(ℓ1)∂w(ℓ2)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

ℓ

∑
ℓ′=ℓ2

dℓ′

∑
i=1

∂ 2 f (ℓ
′)

i

∂w(ℓ1)∂w(ℓ2)

∂ f̃ (ℓ+1)
j

∂ f (ℓ
′)

i

∥∥∥∥∥∥
≤

ℓ

∑
ℓ′=ℓ2

∥∥∥∥∥∥

dℓ′

∑
i=1

∂ 2 f (ℓ
′)

i

∂w(ℓ1)∂w(ℓ2)

∂ f̃ (ℓ+1)
j

∂ f (ℓ
′)

i

∥∥∥∥∥∥
.

(A.24)
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We will bound every term in the above summation. For each term, by definition,

dℓ′

∑
i=1

∂ 2 f (ℓ
′)

i

∂w(ℓ1)∂w(ℓ2)

∂ f̃ (ℓ+1)
j

∂ f (ℓ
′)

i

=
dℓ′

∑
i=1

∂ 2 f̃ (ℓ
′)

i

∂w(ℓ1)∂w(ℓ2)

∂ f̃ (ℓ+1)
j

∂ f̃ (ℓ
′)

i

+
1√

m(ℓ+1)
j

∑
i: f (ℓ

′)
i ∈F

S
(ℓ+1)
j

(w(ℓ+1)
j )

id
ℓ+1, j
ℓ′,i

σ
′′( f̃ (ℓ

′)
i )

∂ f̃ (ℓ
′)

i

∂w(ℓ1)

(
∂ f̃ (ℓ

′)
i

∂w(ℓ2)

)T

. (A.25)

For the first term in Eq. (A.25), we use Lemma A.11.10. Specifically, we view Ui =

∂ 2 f̃ (ℓ
′)

i
∂w(ℓ1)∂w(ℓ2)

, hence with probability at least 1−∑
ℓ−ℓ′+1
k=1 k(m∗

ℓ1
+m∗

ℓ2
)exp

(
− log2 m/2

)
,

∥∥∥∥∥∥

dℓ′

∑
i=1

∂ 2 f̃ (ℓ
′)

i

∂w(ℓ1)∂w(ℓ2)

∂ f̃ (ℓ+1)
j

∂ f̃ (ℓ
′)

i

∥∥∥∥∥∥
= O


 max

i: f (ℓ
′)

i ∈F
S

(ℓ′+1)
j

∥∥∥∥∥
∂ 2 f̃ (ℓ

′)
i

∂w(ℓ1)∂w(ℓ2)

∥∥∥∥∥(logm+R)ℓ−ℓ′+1


 .

Here we’d like to note that from Lemma A.11.8, the tail bound depends on the dimension

of w(ℓ1) and w(ℓ2) which are ∑
dℓ1
i=1 m(ℓ)

i and ∑
dℓ2
i=1 m(ℓ)

i respectively. By Assumption 2.3.5, for any

ℓ, m(ℓ)
i is polynomial in m. Therefore, the number of elements in w(ℓ) that f (ℓ+1)

j depends on

is polynomial in m by Proposition A.9.1. And the matrix variance ν̃(ℓ′) in Lemma A.11.10 is

equivalent to the matrix variance that we only consider the elements in w(ℓ1) and w(ℓ2) that f (ℓ+1)
j

depends on, in which case the dimension is polynomial in m. Therefore we can use m∗
ℓ here. It is

the same in the following when we apply matrix Gaussian series tail bound.

Then we apply union bound over indices i such that f (ℓ
′)

i ∈ F
S

(ℓ′+1)
j

, whose cardinality

is at most m(ℓ+1)
j . By the inductive hypothesis, with probability at least 1−∑

ℓ−ℓ′+1
k=1 k(m∗

ℓ1
+
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m∗
ℓ2
)exp

(
− log2 m/2

)
−m(ℓ+1)

j exp
(
−M(ℓ), j

ℓ1,ℓ2
log2 m

)
,

∥∥∥∥∥∥

dℓ′

∑
i=1

∂ 2 f̃ (ℓ
′)

i

∂w(ℓ1)∂w(ℓ2)

∂ f̃ (ℓ+1)
j

∂ f̃ (ℓ
′)

i

∥∥∥∥∥∥
= O

(
max

ℓ1+1≤p≤ℓ′

1
√m p

(logm+R)(ℓ
′)2+ℓ−ℓ′+1

)
.

For the second term in Eq. (A.25), we view it as a matrix Gaussian series with respect to

w(ℓ+1)
j . The matrix variance takes the form

ν
(ℓ′), j
ℓ1,ℓ2

=
1

m(ℓ+1)
j

max





∥∥∥∥∥∥∥∥∥
∑

i: f (ℓ
′)

i ∈F
S

(ℓ+1)
j

(
σ
′′( f̃ (ℓ

′)
i )

)2
∥∥∥∥∥

∂ f̃ (ℓ
′)

i

∂w(ℓ1)

∥∥∥∥∥

2
∂ f̃ (ℓ

′)
i

∂w(ℓ2)

(
∂ f̃ (ℓ

′)
i

∂w(ℓ2)

)T

∥∥∥∥∥∥∥∥∥
,

∥∥∥∥∥∥∥∥∥
∑

i: f (ℓ
′)

i ∈F
S

(ℓ+1)
j

(
σ
′′( f̃ (ℓ

′)
i )

)2
∥∥∥∥∥

∂ f̃ (ℓ
′)

i

∂w(ℓ2)

∥∥∥∥∥

2
∂ f̃ (ℓ

′)
i

∂w(ℓ1)

(
∂ f̃ (ℓ

′)
i

∂w(ℓ1)

)T

∥∥∥∥∥∥∥∥∥




.

We use Lemma A.11.9 to bound ν
(ℓ′), j
ℓ1,ℓ2

. With the definition in Eq. (A.33), we rewrite

the above equation as ν
(ℓ′), j
ℓ1,ℓ2

= max
{

µ
(ℓ′), j
ℓ1,ℓ2

,µ
(ℓ′), j
ℓ2,ℓ1

}
. Hence with probability at least at least

1− exp
(
−C(ℓ′), j

ℓ1,ℓ2
log2 m

)
− exp

(
−C(ℓ′), j

ℓ2,ℓ1
log2 m

)
for some constant C(ℓ′), j

ℓ1,ℓ2
,C(ℓ′), j

ℓ2,ℓ1
> 0, we have

ν
(ℓ′), j
ℓ1,ℓ2

= O
(

max
(

1/m(ℓ+1)
j , max

ℓ1+1≤p≤ℓ
1/m p

)
(logm+R)4ℓ′−2

)
.

Using Lemma A.11.8 again and choosing t = logm
√

ν
(ℓ′), j
ℓ1,ℓ2

, we have with probability at

least 1− (m∗
ℓ2
+m∗

ℓ1
)exp

(
− log2 m/2

)
,

∥∥∥∥∥∥∥∥∥

1√
m(ℓ+1)

j

∑
i: f (ℓ

′)
i ∈F

S
(ℓ+1)
j

(
w(ℓ+1)

j

)
id
ℓ+1, j
ℓ′,i

σ
′′
(

f̃ (ℓ
′)

i

)
∂ f̃ (ℓ

′)
i

∂w(ℓ1)

(
∂ f̃ (ℓ

′)
i

∂w(ℓ2)

)T

∥∥∥∥∥∥∥∥∥
≤ (logm+R)

√
ν
(ℓ′), j
ℓ1,ℓ2

.
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Combined the bound on ν
(ℓ′), j
ℓ1,ℓ2

, with probability at least

1− exp
(
−C(ℓ′), j

ℓ1,ℓ2
log2 m

)
− exp

(
−C(ℓ′), j

ℓ2,ℓ1
log2 m

)
− (m∗

ℓ2
+m∗

ℓ1
)exp

(
− log2 m/2

)
,

we have

∥∥∥∥∥∥∥∥∥

1√
m(ℓ+1)

j

∑
i: f (ℓ

′)
i ∈F

S
(ℓ+1)
j

(
w(ℓ+1)

j

)
id
ℓ+1, j
ℓ′,i

σ
′′
(

f̃ (ℓ
′)

i

)
∂ f̃ (ℓ

′)
i

∂w(ℓ1)

(
∂ f̃ (ℓ

′)
i

∂w(ℓ2)

)T

∥∥∥∥∥∥∥∥∥

= O
(

max
(

1/
√

m(ℓ2+1)
j , max

ℓ1+1≤p≤ℓ
1/
√

m p

)
(logm+R)2ℓ′

)

= Õ
(

max
(

1/
√

m(ℓ2+1)
j , max

ℓ1+1≤p≤ℓ
1/
√

m p

)
R2ℓ′
)

= Õ
(

max
ℓ1+1≤p≤ℓ+1

R2ℓ′/
√

m p

)
.

Now we have bound both terms in Eq. (A.25). Combining the bounds, we have with

probability at least 1−∑
ℓ−ℓ′+1
k=1 k(m∗

ℓ1
+m∗

ℓ2
)exp

(
− log2 m/2

)
−m(ℓ+1)

j exp
(
−M(ℓ), j

ℓ1,ℓ2
log2 m

)
−

exp
(
−C(ℓ′), j

ℓ1,ℓ2
log2 m

)
− exp

(
−C(ℓ′), j

ℓ2,ℓ1
log2 m

)
−2(m∗

ℓ2
+m∗

ℓ1
)exp

(
− log2 m/2

)

∥∥∥∥∥∥

dℓ′

∑
i=1

∂ 2 f (ℓ
′)

i

∂w(ℓ1)∂w(ℓ2)

∂ f̃ (ℓ+1)
j

∂ f (ℓ
′)

i

∥∥∥∥∥∥
= O

(
max

ℓ1+1≤p≤ℓ+1
1/
√

m p(logm+R)(ℓ
′+1)2+ℓ−ℓ′

)
.

With the above results, to bound Eq. (A.24), we apply the union bound over the layer

indices l′ = ℓ2, ..., ℓ. Then with probability at least

1−
l

∑
ℓ′=ℓ2

ℓ−ℓ′+1

∑
k=1

k(m∗
ℓ1
+m∗

ℓ2
)exp

(
− log2 m/2

)
− (ℓ− ℓ2 +1)m(ℓ+1)

j exp
(
−M(ℓ), j

ℓ1,ℓ2
log2 m

)

−
l

∑
ℓ′=ℓ2

exp
(
−C(ℓ′), j

ℓ1,ℓ2
log2 m

)
−

l

∑
ℓ′=ℓ2

exp
(
−C(ℓ′), j

ℓ2,ℓ1
log2 m

)

−2(ℓ− ℓ2 +1)(m∗
ℓ2
+m∗

ℓ1
)exp

(
− log2 m/2

)
,
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we have

∥∥∥∥∥∥
∂ 2 f̃ (ℓ+1)

j

∂w(ℓ1)∂w(ℓ2)

∥∥∥∥∥∥
≤

ℓ

∑
ℓ′=ℓ2

∥∥∥∥∥∥

dℓ′

∑
i=1

∂ 2 f (ℓ
′)

i

∂w(ℓ1)∂w(ℓ2)

∂ f̃ (ℓ+1)
j

∂ f (ℓ
′)

i

∥∥∥∥∥∥

= O
(

max
ℓ1+1≤p≤ℓ+1

1/
√

m p(logm+R)(ℓ+1)2
)

= Õ
(

max
ℓ1+1≤p≤ℓ+1

R(ℓ+1)2
/
√

m p

)
.

By Proposition A.9.1, m∗
ℓ1
,m∗

ℓ2
are also polynomial in m. Hence, we can find a constant

M(ℓ+1), j
ℓ1,ℓ2

> 0 such that

exp
(
−M(ℓ+1), j

ℓ1,ℓ2
log2 m

)

>
ℓ

∑
ℓ′=ℓ2

ℓ−ℓ′+1

∑
k=1

k(m∗
ℓ1
+m∗

ℓ2
)exp

(
− log2 m/2

)
− (ℓ− ℓ2 +1)m(ℓ+1)

j exp
(
−M(ℓ), j

ℓ1,ℓ2
log2 m

)

−
ℓ

∑
ℓ′=ℓ2

exp
(
−C(ℓ′), j

ℓ1,ℓ2
log2 m

)
−

ℓ

∑
ℓ′=ℓ2

exp
(
−C(ℓ′), j

ℓ2,ℓ1
log2 m

)

−2(ℓ− ℓ2 +1)(m∗
ℓ2
+m∗

ℓ1
)exp

(
− log2 m/2

)
+ exp

(
−M(ℓ), j

ℓ1,ℓ2
log2 m

)
.

Then Eq. (A.25) holds with probability at least 1 − exp
(
−M(ℓ+1), j

ℓ1,ℓ2
log2 m

)
for any

ℓ2 ≤ ℓ+1 ≤ L, j ∈ [dℓ+1], which finishes the induction step hence completes the proof.

A.10 Proof of Proposition A.9.1

Fixing ℓ′ ∈ [L], for any ℓ ∈ {ℓ′, ...,L}, i ∈ [dℓ], we first show f (ℓ)i depends on polynomial

number of elements in w(ℓ′). We prove the result by induction.

If ℓ= ℓ′, then the number of elements in w(ℓ) that f (ℓ)i depend on is m(ℓ)
i .

Suppose ℓ′ ≤ ℓ≤ k that f (ℓ)i depends on polynomial number of elements in w(ℓ′). Then
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at ℓ= k+1, we know

f (k+1)
i = σ

(k+1)
i


 1√

m(k+1)
i

〈
w(k+1)

i , f
S

(k+1)
i

〉

 .

As f
S

(k+1)
i

contains m(k+1)
i neurons where each one depends on polynomial number of elements

in w(ℓ′) by the induction hypothesis. The composition of two polynomial functions is still

polynomial, hence f (k+1)
i also depends on polynomial number of elements in w(ℓ′).

The maximum number of elements in w(ℓ′) that f (ℓ)i depends on among all layers

ℓ is polynomial since it is the maximum of a finite sequence. By Assumption 2.3.5 that

supℓ∈{2,...,L−1},i∈[dℓ]m
(ℓ)
i = O(mc), it is not hard to see that the maximum among all i ∈ [dℓ]

is also polynomial.

A.11 Technical Lemmas and their proofs

Lemma A.11.1. Spectral norm of a matrix H is upper bounded by the sum of the spectral norm

of its blocks.

Proof.

∥H∥=

∥∥∥∥∥∥∥∥∥∥∥∥∥




H(1,1) 0 · · · 0

0 0 · · · 0
...

... . . . ...

0 0 · · · 0




+




0 H(1,2) · · · 0

0 0 · · · 0
...

... . . . ...

0 0 · · · 0




+ · · ·+




0 0 · · · 0

0 0 · · · 0
...

... . . . ...

0 0 · · · H(L,L)




∥∥∥∥∥∥∥∥∥∥∥∥∥

≤ ∑
ℓ1,ℓ2

∥H(ℓ1,ℓ2)∥.

Lemma A.11.2. For ℓ = 0,1, ..,L, with probability at least 1− exp
(
−CP

ℓ log2 m
)

for some

constant CP
ℓ > 0, the absolute value of all neurons in P(ℓ) Eq. (A.2) is of the order Õ(1) in the
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ball B(w0,R).

Proof. We prove the result by induction.

When ℓ= 0, P(0) = f (0) = {x1, ...,xd0} therefore for all i, | f (0)i | ≤Cxxx surely by Assump-

tion 2.3.1.

Suppose when ℓ= k, with probability at least 1− exp
(
−CP

k log2 m
)
, the absolute value

of each neuron in P(k) is of the order O
(
(logm+R)k) where CP

k > 0 is a constant. Then when

ℓ= k+1, there will be new neurons f (k+1) added to P(k), where each f (k+1)
i can be bounded by

| f (k+1)
i |=

∣∣∣∣∣∣
σ


 1√

m(k+1)
i

(
w(k+1)

i

)T
f
S

(k+1)
i



∣∣∣∣∣∣

≤ γ1√
m(k+1)

i

(
w(k+1)

i

)T
f
S

(k+1)
i

+σ(0).

By the union bound over all the elements in f
S

(k+1)
i

which are in P(k) and the induction

hypothesis, with probability at least 1−m(k+1)
i exp

(
−CP

k log2 m
)
,

∥ f
S

(k+1)
i

∥=

√√√√√
m(k+1)

i

∑
j=1

(
f
S

(k+1)
i

)
j
= O

(√
m(k+1)

i (logm+R)k
)
.

By Lemma A.11.4, supposing f
S

(k+1)
i

is fixed, choosing t = logm
∥∥∥ f

S
(k+1)
i

∥∥∥, with probability at

least 1−2exp
(
− log2 m/2

)
, in the ball B(w0,R),

∣∣∣(w(k+1)
i )T f

S
(k+1)
i

∣∣∣≤ (logm+R)
∥∥∥ f

S
(k+1)
i

∥∥∥ .

Combined with the bound on ∥ f
S

(k+1)
i

∥, with probability at least 1 − 2exp
(
− log2 m/2

)
−
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m(k+1)
i exp

(
−CP

k log2 m
)
,

∣∣∣ f (k+1)
i

∣∣∣≤ γ1√
m(k+1)

i

(logm+R)
∥∥∥ f

S
(k+1)
i

∥∥∥+ γ0 = O
(
(logm+R)k+1

)
= Õ(Rk+1).

Since m(k+1)
i ≤ mk+1 which is polynomial in m, we can find a constant CP

k+1 > 0 such that for all

i, we have

exp
(
−CP

k+1 log2 m
)
≥ 2exp

(
− log2 m/2

)
+ exp

(
−CP

k log2(m)+ log(mk+1)
)

+ exp
(
−CP

k log2 m
)
.

Hence the above results hold with probability 1− exp
(
−CP

k+1 log2 m
)
, which completes the

proof.

Lemma A.11.3. For ℓ ∈ [L], i ∈ [dℓ], with probability at least 1−m(ℓ)
i exp

(
−CP

ℓ log2 m
)
, in the

ball B(w0,R),

∥∥∥ f
S

(ℓ)
i

∥∥∥= O
(√

m(ℓ)
i (logm+R)ℓ−1

)
= Õ

(√
m(ℓ)

i Rℓ−1
)

Proof. By Lemma A.11.2, each neuron is of order Õ(1). Then we apply union bound over m(ℓ)
i

neurons and we get the result.

Lemma A.11.4. Given a fixed vector bbb ∈ Rn and a random vector a0 ∼ N (0, In), for any a in

the ball B(a0,R), we have with probability at least 1−2exp
(
−t2/(2∥bbb∥2)

)
,

|aT bbb| ≤ t +∥bbb∥R. (A.26)

Proof. We can write aT bbb = (a0 +∆a)T bbb = aT
0 bbb+∆aT bbb. Since a0 ∼ N (0,1), we have aT

0 bbb ∼

N (0,∥b∥2). By Proposition 2.5.2 in [107], for any t > 0, with probability at least 1 −
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2exp
(
−t2/(2∥bbb∥2)

)
,

|aT
0 bbb| ≤ t.

Therefore, with the same probability

|aT bbb| ≤ |aT
0 bbb|+ |∆aT bbb| ≤ t +∥bbb∥R.

Lemma A.11.5. For a random m×n matrix W = [B1aaa1,B2aaa2, ...,Bnaaan] where A= [aaa1,aaa2, ...,aaan]

is an Ni ×n random matrix whose entries i.i.d. follow N (0,1) and B1,B2, ...,Bn is a sequence

of m×Ni non-random matrices, we have for some absolute constant C > 0, for any t ≥ 0

∥W∥ ≤C
(

max
i

∥Bi∥(
√

n+ t)+max
i

∥Bi∥F

)
(A.27)

with probability at least 1−2exp
(
−t2).

Proof. We prove the result using an ε-net argument. Choosing ε = 1/4, by Corollary 4.2.13

in [107], we can find an ε-net N of the sphere Sn−1 with cardinalities |N | ≤ 9n.

By Lemma 4.4.1 in [107], ∥W∥ ≤ 2supxxx∈N ∥Wxxx∥.

Fix xxx ∈ N , it is nor hard to see that

Wxxx =
n

∑
i=1

xiBiaaai ∼ N

(
0,

n

∑
i=1

x2
i BiBT

i

)
,

which can be viewed as B′zzz where B′ =
√

∑
n
i=1 x2

i BiBT
i and zzz ∼ N (0, Im).

By Theorem 6.3.2 in [107], we have

∥∥∥B′zzz∥−∥B′∥F
∥∥

ψ2
≤CK2∥B′∥,

98



where K = maxi ∥zi∥ψ2 and ∥ ·∥ψ2 is the sub-guassian norm (see Definition 2.5.6 in [107]) and C

is an absolute constant.

By the definition of sub-gaussian norm, we can use the tail bound. For some positive

absolute constant c and for any µ > 0,

P
{
∥B′zzz∥−∥B′∥F ≥ u

}
≤ 2exp

(
−cu2/(K4∥B′∥2)

)
.

Then we unfix xxx using a union bound. We have with probability at least

1−9n2exp
(
−cu2/(K4∥B′∥2)

)
,

sup
xxx∈N

∥B′zzz∥−∥B′∥F ≤ µ.

Choose u =CK2∥B′∥(√n+t). If the constant C is chosen sufficiently large, we can let cu2/K4 ≥

3n+ t2. Thus,

P
{

sup
xxx∈N

∥B′zzz∥−∥B′∥F ≥ u
}
≤ 9n2exp

(
−3n− t2)≤ 2exp

(
−t2).

Combined with ∥W∥ ≤ 2supxxx∈N ∥Wxxx∥, we conclude that

P
{
∥W∥ ≥ 2CK2∥B′∥(√n+ t)+2∥B′∥F

}
≤ 2exp

(
−t2).

Noticing that ∥B′∥ ≤ maxi ∥Bi∥ and ∥B′∥F ≤ maxi ∥Bi∥F , we have

P
{
∥W∥ ≥ 2CK2 max

i
∥Bi∥(

√
n+ t)+2max

i
∥Bi∥F

}
≤ 2exp

(
−t2).

We absorb K into C as K is a constant. With abuse of notation of C which is absolute, we have

P
{
∥W∥ ≥C(max

i
∥Bi∥(

√
n+ t)+max

i
∥Bi∥F)

}
≤ 2exp

(
−t2).
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Lemma A.11.6. For a random m×n matrix W = [B1aaa1,B2aaa2, ...,Bnaaan] where A= [aaa1,aaa2, ...,aaan]

and B1,B2, ...,Bn is a sequence of m×N non-random matrices. Here A = A0 +∆A where A0

is an N × n random matrix whose entries i.i.d. follow N (0,1) and ∆A is a fixed matrix with

∥∆A∥F ≤ R given constant R > 0. We have for some absolute constant C > 0, for any t ≥ 0

∥W∥ ≤C
(

max
i

∥Bi∥(
√

n+R+ t)+max
i

∥Bi∥F

)
(A.28)

with probability at least 1−2exp
(
−t2).

Proof. Comparing to Lemma A.11.5, we only need to bound the norm of ∆W :

∆W := [B1∆aaa1,B2∆aaa2, , ...,Bn∆aaan],

where ∆A = [∆aaa1,∆aaa2, ...,∆aaan].

By the definition that ∥A0∥F =
√

∑
n
i=1 ∥∆aaai∥2, we have

∥∆W∥ ≤ ∥∆W∥F =

√
n

∑
i=1

∥Bi∆aaai∥2 ≤ max
i

∥Bi∥∥∆A∥F ≤ max
i

∥Bi∥R.

Therefore, for any t ≥ 0, with probability at least 1−2exp
(
−t2),

∥W∥ ≤ ∥W −∆W∥+∥∆W∥ ≤C
(

max
i

∥Bi∥(
√

n+R+ t)+max
i

∥Bi∥F

)
.

Lemma A.11.7. Consider a fixed matrix B ∈ Rm×n and a random vector a0 ∼ N (0, In). For

any a ∈ Rn in the ball B(a0,R) given constant R > 0, for any t > 0, we have with probability at
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least 1−2exp
(
−ct2/∥B∥2),where c is an absolute constant,

∥Ba∥ ≤ t +∥B∥F +∥B∥R. (A.29)

Proof. By Theorem 6.3.2 in [107], for any t > 0,

P{|∥Ba0∥−∥B∥F | ≥ t} ≤ 2exp
(
−ct2/∥B∥2),

where c > 0 is an absolute constant.

Note that ∥Ba∥ ≤ ∥Ba0∥+ ∥B(a− a0)∥ ≤ ∥Ba0∥+ ∥B∥R. With probability at least

1−2exp
(
−ct2/∥B∥2), we have

∥Ba∥ ≤ t +∥B∥F +∥B∥R.

Lemma A.11.8 (Matrix Gaussian series). For a sequence of fixed matrices {Bk}n
k=1 with di-

mension d1 × d2 and a sequence of independent standard normal variables {γk}, we define

Z = ∑
n
k=1(γk +∆γk)Bk where {∆γk}n

k=1 is a fixed sequence with ∑
n
k=1 ∆γ2

k ≤ R2 given constant

R > 0. Then we have for any t ≥ 0, with probability at least 1− (d1 +d2)exp
(
−t2/(2ν)

)
,

∥Z∥ ≤ t +Rν , (A.30)

where

ν = max

{∥∥∥∥∥∑k
BkBT

k

∥∥∥∥∥ ,
∥∥∥∥∥∑k

BT
k Bk

∥∥∥∥∥

}
. (A.31)
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Proof. By Theorem 4.1.1 in [106], for all t ≥ 0,

P(

∥∥∥∥∥
n

∑
k=1

γkBk

∥∥∥∥∥≥ t)≤ (d1 +d2)exp
(−t2

2ν

)
. (A.32)

Since

∥∥∥∥∥Z −
n

∑
k=1

γkBk

∥∥∥∥∥=
∥∥∥∥∥

n

∑
k=1

∆γkBk

∥∥∥∥∥

≤
√

n

∑
k=1

(∆γk)2

√√√√
∥∥∥∥∥

n

∑
k=1

BkBT
k

∥∥∥∥∥

≤ R
√

ν .

Then for Z, we have

P(∥Z∥ ≥ t +R
√

ν)≤ (d1 +d2)exp
(−t2

2ν

)
.

Lemma A.11.9 (Bound on matrix variance). For any ℓ ∈ [L], ℓ1, ℓ2 ∈ [ℓ], j ∈ [dℓ+1], with proba-

bility at least 1− exp
(
−C(ℓ), j

ℓ1,ℓ2
log2 m

)
for some constant C(ℓ), j

ℓ1,ℓ2
> 0, we have

µ
(ℓ), j
ℓ1,ℓ2

:=
1

m(ℓ+1)
j

∥∥∥∥∥∥∥∥∥
∑

i: f (ℓ)i ∈F
S

(ℓ+1)
j

(
σ
′′
(

f̃ (ℓ)i

))2
∥∥∥∥∥

∂ f̃ (ℓ)i

∂w(ℓ1)

∥∥∥∥∥

2
∂ f̃ (ℓ)i

∂w(ℓ2)

(
∂ f̃ (ℓ)i

∂w(ℓ2)

)T

∥∥∥∥∥∥∥∥∥

= O
(

max
(

1/m(ℓ+1)
j , max

min(ℓ1,ℓ2)+1≤p≤ℓ
1/m p

)
(logm+R)4ℓ−2

)

= Õ
(

max
(

1/m(ℓ+1)
j , max

min(ℓ1,ℓ2)+1≤p≤ℓ
1/m p

)
R4ℓ−2

)
. (A.33)

Proof. Without lose of generality, we assume ℓ1 ≤ ℓ2 ≤ ℓ.

We consider two scenarios, (a) ℓ1 ≤ ℓ2 = ℓ and (b) ℓ1 ≤ ℓ2 < ℓ.
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In the scenario (a), we analyze ℓ1 = ℓ2 = ℓ and ℓ1 < ℓ2 = ℓ respectively.

When ℓ1 = ℓ2 = ℓ, by definition,

∂ f̃ (ℓ)i

∂w(ℓ1)
=

1√
m(ℓ)

i

f
S

(ℓ)
i
.

By Lemma A.11.3, with probability at least 1 − m(ℓ)
i exp

(
−CP

ℓ log2 m
)
,
∥∥∥ f

S
(ℓ)
i

∥∥∥ =

O
(√

m(ℓ)
i (logm+R)ℓ−1

)
= Õ

(√
m(ℓ)

i

)
. Applying union bound over the indices i such

that f (ℓ)i ∈ f
S

(ℓ+1)
j

, the carnality of which is at most m(ℓ+1)
j , we have with probability at least

1−m(ℓ)
i m(ℓ+1)

j exp
(
−CP

ℓ log2 m
)
,

max
i: f (ℓ)i ∈F

S
(ℓ+1)
j

∥∥∥∥∥
∂ f̃ (ℓ)i

∂w(ℓ1)

∥∥∥∥∥= max
i: f (ℓ)i ∈F

S
(ℓ+1)
j

∥∥∥ f
S

(ℓ)
i

∥∥∥
√

m(ℓ)
i

= O
(
(logm+R)ℓ−1

)
= Õ(Rℓ−1).

It is not hard to see that

∑
i: f (ℓ)i ∈F

S
(ℓ+1)
j

∂ f̃ (ℓ)i

∂w(ℓ)

(
∂ f̃ (ℓ)i

∂w(ℓ)

)T

is a block diagonal matrix with i-th block in the form 1
m(ℓ)

i

f
S

(ℓ)
i

(
f
S

(ℓ)
i

)T
· I
{

f (ℓ)i ∈ f
S

(ℓ+1)
j

}
.

Therefore, µ
(ℓ), j
ℓ,ℓ can be bounded by

µ
(ℓ), j
ℓ,ℓ ≤ 1

m(ℓ+1)
j

γ
2
2


 max

i: f (ℓ)i ∈F
S

(ℓ+1)
j

∥∥∥ f
S

(ℓ)
i

∥∥∥
√

m(ℓ)
i




2
 max

i: f (ℓ)i ∈F
S

(ℓ+1)
j

∥∥∥∥∥
1

m(ℓ)
i

f
S

(ℓ)
i

(
f
S

(ℓ)
i

)T
∥∥∥∥∥




= O
(
(logm+R)4ℓ−4/m(ℓ+1)

j

)
= Õ

(
R4ℓ−4/m(ℓ+1)

j

)
,

with probability at least 1−2m(ℓ)
i m(ℓ+1)

j exp
(
−CP

ℓ log2 m
)
, where we apply the union bound on

∥∥∥ f
S

(ℓ)
i

∥∥∥ once again.
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By definition Eq. (A.7), m(ℓ)
i ≤ mℓ and m(ℓ+1)

j ≤ mℓ+1. By Assumption 2.3.5, mℓ,mℓ+1

are polynomial in m. If m is large enough, we can find a constant C(ℓ), j
ℓ,ℓ > 0 such that

exp
(
−C(ℓ), j

ℓ,ℓ log2 m
)
> 2m(ℓ)

i m(ℓ+1)
j exp

(
−CP

ℓ log2 m
)
,

thus the bound holds with probability 1− exp
(
−C(ℓ), j

ℓ,ℓ log2 m
)

.

When ℓ1 < ℓ2 = ℓ, By Eq. (2.5), we compute the derivative:

∂ f̃ (ℓ)i

∂w(ℓ1)
=

1√
m(ℓ)

i

∂ f
S

(ℓ)
i

∂w(ℓ1)
w(ℓ)

i . (A.34)

By Lemma A.2.1, with probability at least 1− exp
(
−C f

ℓ,ℓ1
log2 m

)
, we have

∥∥∥∂ f
S

(ℓ)
i
/∂w(ℓ1)

∥∥∥= Õ
(

max
ℓ1+1≤p≤ℓ

√
m(ℓ)

i /
√

m p

)

and
∥∥∥∂ f

S
(ℓ)
i
/∂w(ℓ1)

∥∥∥
F
= Õ

(√
m(ℓ)

i

)
. We use Lemma A.11.7 and choose

t = logm
∥∥∥∂ f

S
(ℓ)
i
/∂w(ℓ1)

∥∥∥ ,

then with probability at least 1− 2exp
(
−c′ log2 m

)
− exp

(
−C f

ℓ,ℓ1
log2 m

)
for some absolute

constant c′ > 0,

∥∥∥∥∥
∂ f̃ (ℓ)i

∂w(ℓ1)

∥∥∥∥∥=
1√
m(ℓ)

i

∥∥∥∥∥
∂ f

S
(ℓ)
i

∂w(ℓ1)
w(ℓ)

i

∥∥∥∥∥

≤ 1√
m(ℓ)

i

(
(logm+R)

∥∥∥∥∥
∂ f

S
(ℓ)
i

∂w(ℓ1)

∥∥∥∥∥+
∥∥∥∥∥

∂ f
S

(ℓ)
i

∂w(ℓ1)

∥∥∥∥∥
F

)

= O
(
(logm+R)ℓ

)
= Õ(Rℓ). (A.35)
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Similar to the case when ℓ1 = ℓ2 = ℓ,

∑
i: f (ℓ)i ∈F

S
(ℓ+1)
j

∂ f̃ (ℓ)i

∂w(ℓ)

(
∂ f̃ (ℓ)i

∂w(ℓ)

)T

is a block matrix.

Therefore,

µ
(ℓ), j
ℓ,ℓ ≤ 1

m(ℓ+1)
j

γ
2
2


 max

i: f (ℓ)i ∈F
S

(ℓ+1)
j

∥∥∥∥∥
∂ f̃ (ℓ)i

∂w(ℓ1)

∥∥∥∥∥




2
 max

i: f (ℓ)i ∈F
S

(ℓ+1)
j

∥∥∥∥∥
1

m(ℓ)
i

f
S

(ℓ)
i

(
f
S

(ℓ)
i

)T
∥∥∥∥∥




= O
(
(logm+R)4ℓ−2/m(ℓ+1)

j

)
= Õ

(
R4ℓ−2/m(ℓ+1)

j

)
,

with probability at least

1−2m(ℓ+1)
j exp

(
−c′ log2 m

)
−m(ℓ+1)

j exp
(
−C f

ℓ,ℓ1
log2 m

)
−2m(ℓ)

i m(ℓ+1)
j exp

(
−CP

ℓ log2 m
)
,

where we apply the union bound over the indices i for the maximum.

Similarly, we can find a constant C(ℓ), j
ℓ1,ℓ

> 0 such that the bound holds with probability

1− exp
(
−C(ℓ), j

ℓ,ℓ log2 m
)

.

For scenario (b) that ℓ1 ≤ ℓ2 < ℓ, we apply Lemma A.11.6 to bound µ
(ℓ), j
ℓ1,ℓ2

. Specifically,

we view

Bi =
1√
m(ℓ)

i

∣∣∣σ ′′( f̃ (ℓ)i )
∣∣∣
∥∥∥∥∥

∂ f̃ (ℓ)i

∂w(ℓ1)

∥∥∥∥∥
∂ f

S
(ℓ)
i

∂w(ℓ2)
, (A.36)

ai = w(ℓ)
i . (A.37)

Choosing t = logm and supposing Bi is fixed, then with probability at least 1−2exp
(
− log2 m

)
,
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for some constant Kℓ, j
ℓ1,ℓ2

> 0,

∥∥∥∥∥∥∥∥∥
∑

i: f (ℓ)i ∈ f
S

(ℓ+1)
j

(
σ
′′( f̃ (ℓ)i )

)2
∥∥∥∥∥

∂ f̃ (ℓ)i

∂w(ℓ1)

∥∥∥∥∥

2
∂ f̃ (ℓ)i

∂w(ℓ2)

(
∂ f̃ (ℓ)i

∂w(ℓ2)

)T

∥∥∥∥∥∥∥∥∥

≤ (Kℓ, j
ℓ1,ℓ2

)2
(

max
i

∥Bi∥
(√

m(ℓ+1)
j + logm+R

)
+max

i
∥Bi∥F

)2

≤ (Kℓ, j
ℓ1,ℓ2

)2
γ

2
2


max

i

1√
m(ℓ)

i

∥∥∥∥∥
∂ f̃ (ℓ)i

∂w(ℓ1)

∥∥∥∥∥

∥∥∥∥∥
∂ f

S
(ℓ)
i

∂w(ℓ2)

∥∥∥∥∥

(√
m(ℓ+1)

j + logm+R
)

+max
i

1√
m(ℓ)

i

∥∥∥∥∥
∂ f̃ (ℓ)i

∂w(ℓ1)

∥∥∥∥∥

∥∥∥∥∥
∂ f

S
(ℓ)
i

∂w(ℓ2)

∥∥∥∥∥
F




2

By Eq. (A.35), with probability at least 1−2exp
(
−c′ log2 m

)
− exp

(
−C f

ℓ,ℓ1
log2 m

)
for

some absolute constant c′ > 0,

∥∥∥∥∥
∂ f̃ (ℓ)i

∂w(ℓ1)

∥∥∥∥∥= Õ(Rℓ). (A.38)

By Lemma A.2.1, with probability at least 1− exp
(
−C f

ℓ,ℓ2
log2 m

)
,
∥∥∥∂ f

S
(ℓ)
i
/∂w(ℓ2)

∥∥∥=

Õ
(

maxℓ2+1≤p≤ℓ

√
m(ℓ)

i /
√m p

)
and

∥∥∥∂ f
S

(ℓ)
i
/∂w(ℓ2)

∥∥∥
F
= Õ

(√
m(ℓ)

i

)
.

Combined them together, with probability at least 1−m(ℓ)
i m(ℓ+1)

j exp
(
−CP

ℓ log2 m
)
−

2m(ℓ+1)
j exp

(
−c′ log2 m

)
−m(ℓ+1)

j exp
(
−C f

ℓ,ℓ1
log2 m

)
−m(ℓ+1)

j exp
(
−C f

ℓ,ℓ2
log2 m

)
,

µ
(ℓ), j
ℓ1,ℓ2

= O
(

max
(

1/m(ℓ+1)
j , max

ℓ1+1≤p≤ℓ
1/m p

)
(logm+R)4ℓ−2

)

= Õ
(

max
(

1/m(ℓ+1)
j , max

ℓ1+1≤p≤ℓ
1/m p

)
R4ℓ−2

)
.

Similarly we can find a constant C(ℓ), j
ℓ1,ℓ2

> 0 such that the above bound holds with probability at
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least 1− exp
(
−C(ℓ), j

ℓ1,ℓ2
log2 m

)
.

For ℓ1 ≥ ℓ2, we similarly have

µ
(ℓ), j
ℓ2,ℓ1

= Õ
(

max
(

1/m(ℓ+1)
j , max

ℓ2+1≤p≤ℓ
1/m p

)
R4ℓ−2

)
,

with probability at least 1− exp
(
−C(ℓ), j

ℓ2,ℓ1
log2 m

)
.

Lemma A.11.10. For any 0 < ℓ′ ≤ ℓ ≤ L−1, given fixed matrices U1, ...,Udℓ′ ∈ Ru1×u2 , with

probability at least 1−∑
ℓ−ℓ′+1
k=1 k(u1 +u2)exp

(
− log2 m/2

)

dℓ′

∑
i=1

Ui
∂ f̃ (ℓ+1)

j

∂ f̃ (ℓ
′)

i

= O


 max

i: f (ℓ
′)

i ∈F
S

(ℓ′+1)
j

∥Ui∥(logm+R)ℓ−ℓ′+1




= Õ


 max

i: f (ℓ
′)

i ∈F
S

(ℓ′+1)
j

∥Ui∥


 .

Proof. We prove the result by induction.

For the base case that ℓ= ℓ′,

dℓ′

∑
i=1

Ui
∂ f̃ (ℓ

′+1)
j

∂ f̃ (ℓ
′)

i

=
dℓ′

∑
i=1

Uiσ
′
(

f̃ (ℓ
′)

i

) ∂ f
S

(ℓ′+1)
j

∂ f (ℓ
′)

i

∂ f̃ (ℓ
′+1)

j

∂ f
S

(ℓ′+1)
j

=
1√

m(ℓ′+1)
j

∑
i: f (ℓ

′)
i ∈F

S
(ℓ′+1)
j

Uiσ
′
(

f̃ (ℓ
′)

i

)(
w(ℓ′+1)

j

)
id
ℓ′+1, j
ℓ′,i

.

We view the above equation as a matrix Gaussian series with respect to w(ℓ′+1)
j . Its matrix

107



variance ν(ℓ′) can be bounded by

ν
(ℓ′) :=

1

m(ℓ′+1)
j

∥∥∥∥∥∥∥∥∥
∑

i: f (ℓ
′)

i ∈F
S

(ℓ′+1)
j

Uiσ
′
(

f̃ (ℓ
′)

i

)
∥∥∥∥∥∥∥∥∥

2

≤ max
i: f (ℓ

′)
i ∈F

S
(ℓ′+1)
j

γ
2
1∥Ui∥2.

Using Lemma A.11.8 and choosing t = logm
√

ν(ℓ′), we have with probability at least

1− (u1 +u2)exp
(
− log2 m/2

)
,

dℓ′

∑
i=1

Ui
∂ f̃ (ℓ

′+1)
j

∂ f̃ (ℓ
′)

i

≤ (logm+R)
√

ν(ℓ′) ≤ max
i
(logm+R)γ1∥Ui∥= O((logm+R)max

i
∥Ui∥).

Suppose with probability at least 1−∑
ℓ−ℓ′+1
k=1 k(u1 + u2)exp

(
− log2 m/2

)
, for all ℓ′ ≤

k ≤ ℓ,

dℓ′

∑
i=1

Ui
∂ f̃ (k)j

∂ f̃ (ℓ
′)

i

= O


 max

i: f (ℓ
′)

i ∈F
S

(ℓ′+1)
j

∥Ui∥(logm+R)k−ℓ′


 .

Then when k = ℓ+1, we have
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dℓ′

∑
i=1

Ui
∂ f̃ (ℓ+1)

j

∂ f̃ (ℓ
′)

i

=
ℓ

∑
r=ℓ′

dℓ′

∑
i=1

Ui
∂ f (r)

∂ f̃ (ℓ
′)

i

∂ f
S

(ℓ+1)
j

∂ f (r)
∂ f̃ (ℓ+1)

j

∂ f
S

(ℓ+1)
j

=
ℓ

∑
r=ℓ′

dr

∑
s=1

dℓ′

∑
i=1

Ui
∂ f (r)s

∂ f̃ (ℓ
′)

i

∂ f
S

(ℓ+1)
j

∂ f (r)s

∂ f̃ (ℓ+1)
j

∂ f
S

(ℓ+1)
j

=
ℓ

∑
r=ℓ′

dr

∑
s=1

dℓ′

∑
i=1

Ui
∂ f̃ (r)s

∂ f̃ (ℓ
′)

i

σ
′
(

f̃ (r)s

) ∂ f
S

(ℓ+1)
j

∂ f̃ (r)s

∂ f̃ (ℓ+1)
j

∂ f
S

(ℓ+1)
j

=
ℓ

∑
r=ℓ′

∑
s: f (r)s ∈F

S
(ℓ+1)
j

(
dℓ′

∑
i=1

Ui
∂ f̃ (r)s

∂ f̃ (ℓ
′)

i

)
σ
′
(

f̃ (r)s

) 1√
m(ℓ+1)

j

(
w(ℓ+1)

j

)
id
ℓ+1, j
r,s

For each r ∈ {ℓ′, ..., ℓ}, we view

∑
s: f (r)s ∈F

S
(ℓ+1)
j

(
dℓ′

∑
i=1

Ui
∂ f̃ (r)s

∂ f̃ (ℓ
′)

i

)
σ
′
(

f̃ (r)s

) 1√
m(ℓ+1)

j

(
w(ℓ+1)

j

)
id
ℓ+1, j
r,s

as a matrix Gaussian series with respect to w(ℓ+1)
j .

By the inductive hypothesis, for all r, its matrix variance can be bounded by

ν
(r) :=

1

m(ℓ+1)
j

∥∥∥∥∥∥∥∥∥
∑

s: f (r)s ∈F
S

(ℓ+1)
j

(
dℓ′

∑
i=1

Ui
∂ f̃ (r)s

∂ f̃ (ℓ
′)

i

)
σ
′
(

f̃ (r)s

)
∥∥∥∥∥∥∥∥∥

2

= O


 max

i: f (ℓ
′)

i ∈F
S

(ℓ′+1)
j

∥Ui∥2(logm+R)2r−2ℓ′


 .

Then we use Lemma A.11.8 and choose t = logm
√

ν(r). With probability at least
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1− (u1 +u2)exp
(
− log2 m/2

)
,

∥∥∥∥∥∥∥∥∥
∑

s: f (r)s ∈F
S

(ℓ+1)
j

(
dℓ′

∑
i=1

Ui
∂ f̃ (r)s

∂ f̃ (ℓ
′)

i

)
σ
′
(

f̃ (r)s

) 1√
m(ℓ+1)

j

(
w(ℓ+1)

j

)
id
ℓ+1, j
r,s

∥∥∥∥∥∥∥∥∥

≤ (logm+R)
√

ν(r)

≤ max
i: f (ℓ

′)
i ∈F

S
(ℓ′+1)
j

(logm+R)γ1∥Ui∥

= O


 max

i: f (ℓ
′)

i ∈F
S

(ℓ′+1)
j

∥Ui∥(logm+R)r−ℓ′+1


 .

We apply union bound over indices r = ℓ′, ..., ℓ and add the probability from the induction

hypothesis. With probability at least 1−∑
ℓ−ℓ′+1
k=1 k(u1 +u2)exp

(
− log2 m/2

)
,

∥∥∥∥∥∥

dℓ′

∑
i=1

Ui
∂ f̃ (ℓ+1)

j

∂ f̃ (ℓ
′)

i

∥∥∥∥∥∥
≤

ℓ

∑
r=ℓ′+1

∥∥∥∥∥∥∥∥∥
∑

s: f (r)s ∈F
S

(ℓ+1)
j

(
dℓ′

∑
i=1

Ui
∂ f̃ (r)s

∂ f̃ (ℓ
′)

i

)
σ
′
(

f̃ (r)s

) 1√
m(ℓ+1)

j

(
w(ℓ+1)

j

)
id
ℓ+1, j
r,s

∥∥∥∥∥∥∥∥∥

= O


 max

i: f (ℓ
′)

i ∈F
S

(ℓ′+1)
j

∥Ui∥(logm+R)ℓ−ℓ′+1




= Õ


 max

i: f (ℓ
′)

i ∈F
S

(ℓ′+1)
j

∥Ui∥Rℓ−ℓ′+1


 .

Then we finish the induction step which completes the proof.
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Appendix B

Chapter 3 Supplementary

B.1 Derivation of NQM

We will derive the NQM that approximate the two-layer fully connected ReLU activated

neural networks based on Eq. (3.2).

The first derivative of f can be computed by:

∂ f
∂ui

=
1√
md

vi1{uT
i xxx≥0}xxxT ,

∂ f
∂vi

=
1√
m

σ

(
1√
d

uT
i xxx
)
, ∀i ∈ [m].

And each entry of the Hessian of f , i.e., H f , can be computed by

∂ 2 f
∂u2

i
= 0,

∂ 2 f
∂v2

i
= 0,

∂ 2 f
∂uivi

=
1√
md

1{uT
i xxx≥0}xxxT , ∀i ∈ [m].

Now we get fquad taking the following form

NQM : fquad(u,v;xxx) = f (u0,v0;xxx)+
1√
md

m

∑
i=1

(ui −u0,i)
T xxx1{

uT
0,ixxx≥0

}v0,i

+
1√
m

m

∑
i=1

(vi − v0,i)σ

(
1√
d

uT
0,ixxx
)

+
1√
md

m

∑
i=1

(ui −u0,i)
T xxx1{

uT
0,ixxx≥0

}(vi − v0,i). (B.1)
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B.2 Derivation of dynamics equations

For simplicity of notation, we denote fquad by g. Note that at initialization, the first and

second derivatives of f with respect to parameters are the same as those of g.

Single training example

The NQM can be equivalently written as:

g(u,v;xxx) = g(u0,v0;xxx)+

〈
u−u0, ∇ug(u,v;xxx)

∣∣∣∣
u=u0,v=v0

〉

+

〈
v−v0, ∇vg(u,v;xxx)

∣∣∣∣
u=u0,v=v0

〉

+

〈
u−u0,

∂ 2g(u,v;xxx)
∂u∂v

∣∣∣∣
u=u0,v=v0

(v−v0)

〉
,

since ∂ 2g
∂u2 = 0 and ∂ 2g

∂v2 = 0.

And the tangent kernel λ (u,v;xxx) takes the form

λ (u,v;xxx) =

∥∥∥∥∥∇ug(u,v;xxx)
∣∣∣∣
u=u0,v=v0

+
∂ 2g(u,v;xxx)

∂u∂v

∣∣∣∣
u=u0

(v−v0)

∥∥∥∥∥

2

F

+

∥∥∥∥∥∇vg(u,v;xxx)
∣∣∣∣
u=u0,v=v0

+(u−u0)
T ∂ 2g(u,v;xxx)

∂u∂v

∣∣∣∣
u=u0,v=v0

∥∥∥∥∥

2

.

Here

∇uig(u,v;xxx)
∣∣∣∣
u=u0,v=v0

=
1√
md

m

∑
i=1

v0,i1
{

uT
0,ixxx≥0

}xxx, ∀i ∈ [m],

∇vg(u,v;xxx)
∣∣∣∣
u=u0,v=v0

=
1√
md

σ
(
uT

0 xxx
)
.

In the following, we will consider the dynamics of g and λ with GD, hence for simplicity

112



of notations, we denote

∇ug(0) := ∇ug(u,v;xxx)
∣∣∣∣
u=u0,v=v0

,

∇vg(0) := ∇vg(u,v;xxx)
∣∣∣∣
u=u0,v=v0

,

∂ 2g(0)
∂u∂v

:=
∂ 2g(u,v;xxx)

∂u∂v

∣∣∣∣
u=u0,v=v0

.

By gradient descent with learning rate η , at iteration t, we have the update equations for

weights u and v:

u(t +1) = u(t)−η(g(t)− y)
(

∇ug(0)+
∂ 2g(0)
∂u∂v

(v(t)−v(0))
)
,

v(t +1) = v(t)−η(g(t)− y)
(

∇vg(0)+(u(t)−u(0))T ∂ 2g(0)
∂u∂v

)
.

Then we plug them in the expression of λ (t +1) and we get

λ (t +1)

=

∥∥∥∥∇ug(0)+
∂ 2g(0)
∂u∂v

(v(t +1)−v(0))
∥∥∥∥

2

F
+

∥∥∥∥∇vg(0)+(u(t +1)−u(0))T ∂ 2g(0)
∂u∂v

∥∥∥∥
2

=

∥∥∥∥∇ug(0)+
∂ 2g(0)
∂u∂v

(
v(t)−η(g(t)− y)

(
∇vg(0)+(u(t)−u(0))T ∂ 2g(0)

∂u∂v

)
−v(0)

)∥∥∥∥
2

F

+

∥∥∥∥∥∇vg(0)+
(

u(t)−η(g(t)− y)
(

∇ug(0)+
∂ 2g(0)
∂u∂v

(v(t)−v(0))
)
−u(0)

)T
∂ 2g(0)
∂u∂v

∥∥∥∥∥

2

.
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Expanding the terms in the norms we have

λ (t +1) = λ (t)+η
2(g(t)− y)2

∥∥∥∥
∂ 2g(0)
∂u∂v

(
∇vg(0)+(u(t)−u(0))T ∂ 2g(0)

∂u∂v

)∥∥∥∥
2

F

+η
2(g(t)− y)2

∥∥∥∥∥

(
∇ug(0)+

∂ 2g(0)
∂u∂v

(v(t)−v(0))
)T

∂ 2g(0)
∂u∂v

∥∥∥∥∥

2

−2η(g(t)− y)
〈

∇ug(0)+
∂ 2g(0)
∂u∂v

(v(t)−v(0)),

∂ 2g(0)
∂u∂v

(
∇vg(0)+(u(t)−u(0))T ∂ 2g(0)

∂u∂v

)〉

−2η(g(t)− y)
〈

∇vg(0)+(u(t)−u(0))T ∂ 2g(0)
∂u∂v

,

(
∇ug(0)+

∂ 2g(0)
∂u∂v

(v(t)−v(0))
)T

∂ 2g(0)
∂u∂v

〉
.

Due to the structure of ∂ 2g(0)
∂u∂v , we have

∥∥∥∥
∂ 2g(0)
∂u∂v

(
∇vg(0)+(u(t)−u(0))T ∂ 2g(0)

∂u∂v

)∥∥∥∥
2

F
=

∥xxx∥2

md

∥∥∥∥∇vg(0)+(u(t)−u(0))T ∂ 2g(0)
∂u∂v

∥∥∥∥
2

=
∥xxx∥2

md
∥∇vg(t)∥2 ,

and

∥∥∥∥∥

(
∇ug(0)+

∂ 2g(0)
∂u∂v

(v(t)−v(0))
)T

∂ 2g(0)
∂u∂v

∥∥∥∥∥

2

=
∥xxx∥2

md

∥∥∥∥∇ug(0)+
∂ 2g(0)
∂u∂v

(v(t)−v(0))
∥∥∥∥

2

F

=
∥xxx∥2

md
∥∇ug(t)∥2

F .
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Furthermore,

〈
∇ug(0)+

∂ 2g(0)
∂u∂v

(v(t)−v(0)),
∂ 2g(0)
∂u∂v

(
∇vg(0)+(u(t)−u(0))T ∂ 2g(0)

∂u∂v

)〉

=
∥xxx∥2

md
⟨v(t)−v(0),∇vg(0)⟩+ ∥xxx∥2

md
⟨∇ug(0),u(t)−u(0)⟩+

〈
∇ug(0),

∂ 2g(0)
∂u∂v

∇vg(0)
〉

+

〈
∂ 2g(0)
∂u∂v

(v(t)−v(0)),
∂ 2g(0)
∂u∂v

(u(t)−u(0))T ∂ 2g(0)
∂u∂v

〉

=
∥xxx∥2

md
⟨v(t)−v(0),∇vg(0)⟩+ ∥xxx∥2

md
⟨∇ug(0),u(t)−u(0)⟩+g(0)

+
∥xxx∥2

md

〈
v(t)−v(0),

∂ 2g(0)
∂u∂v

(u(t)−u(0))T
〉

= g(t)∥xxx∥2/md. (B.2)

Similarly, we have

〈
∇vg(0)+(u(t)−u(0))T ∂ 2g(0)

∂u∂v
,

(
∇ug(0)+

∂ 2g(0)
∂u∂v

(v(t)−v(0))
)T

∂ 2g(0)
∂u∂v

〉

= g(t)∥xxx∥2/md.

As a result,

λ (t +1) = λ (t)+
∥xxx∥2

md
η

2(g(t)− y)2
λ (t)− 4∥xxx∥2

md
η(g(t)− y)g(t)

= λ (t)+η
∥xxx∥2

md
(g(t)− y)2

(
ηλ (t)−4

g(t)
g(t)− y

)
.

For g, we plug the update equations for u and v in the expression of g(t +1) and we can
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get

g(t +1) = g(0)+ ⟨u(t +1)−u(0),∇ug(0)⟩+ ⟨v(t +1)−v(0),∇vg(0)⟩

+

〈
u(t +1)−u(0),

∂ 2g(0)
∂u∂v

(v(t +1)−v(0)
〉

= g(0)+
〈

u(t)−η(g(t)− y)
(

∇ug(0)+
∂ 2g(0)
∂u∂v

(v(t)−v(0))
)
−u(0),∇ug(0)

〉

+

〈
v(t)−η(g(t)− y)

(
∇vg(0)+(u(t)−u(0))T ∂ 2g(0)

∂u∂v

)
−v(0),∇vg(0)

〉

+

〈
u(t)−η(g(t)− y)

(
∇ug(0)+

∂ 2g(0)
∂u∂v

(v(t)−v(0))
)
−u(0) ,

∂ 2g(0)
∂u∂v

(
v(t)−η(g(t)− y)

(
∇vg(0)+(u(t)−u(0))T ∂ 2g(0)

∂u∂v

)
−v(0)

)〉
.

Writing out the inner product we have

g(t +1) = g(t)−η(g(t)− y)
〈

∇ug(0)+
∂ 2g(0)
∂u∂v

(v(t)−v(0)),∇ug(0)
〉

−η(g(t)− y)
〈

∇vg(0)+(u(t)−u(0))T ∂ 2g(0)
∂u∂v

,∇vg(0)
〉

+η
2(g(t)− y)2

〈
∇ug(0)+

∂ 2g(0)
∂u∂v

(v(t)−v(0)),

∂ 2g(0)
∂u∂v

(
∇vg(0)+(u(t)−u(0))T ∂ 2g(0)

∂u∂v

)〉

−η(g(t)− y)
〈

u(t)−u(0),
∂ 2g(0)
∂u∂v

(
∇vg(0)+(u(t)−u(0))T ∂ 2g(0)

∂u∂v

)〉

−η(g(t)− y)
〈

∇ug(0)+
∂ 2g(0)
∂u∂v

(v(t)−v(0)),
∂ 2g(0)
∂u∂v

(v(t)−v(0))
〉
.
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Using the definition of λ (t) and Eq.(B.2) we have

g(t +1) = g(t)−η(g(t)− y)λ (t)

+η
2(g(t)− y)2

〈
∇ug(0)+

∂ 2g(0)
∂u∂v

(v(t)−v(0)),

∂ 2g(0)
∂u∂v

(
∇vg(0)+(u(t)−u(0))T ∂ 2g(0)

∂u∂v

)〉

= g(t)−η(g(t)− y)λ (t)+
∥xxx∥2

md
η

2(g(t)− y)2g(t)

Therefore,

g(t +1)− y =
(

1−ηλ (t)+
∥xxx∥2

md
η

2(g(t)− y)g(t)
)
(g(t)− y).

Multiple training examples

We follow the similar notation on the first and second order derivative of g with Ap-

pendix B.2. Specifically, for k ∈ [n], we denote

∇ugk(0) := ∇ug(u,v;xk)

∣∣∣∣
u=u0,v=v0

,

∇vgk(0) := ∇vg(u,v;xk)

∣∣∣∣
u=u0,v=v0

,

∂ 2gk(0)
∂u∂v

:=
∂ 2g(u,v;xk)

∂u∂v

∣∣∣∣
u=u0,v=v0

.

By GD with learning rate η , we have the update equations for weights u and v at iteration

t:

u(t +1) = u(t)−η

n

∑
k=1

(gk(t)− yk)

(
∇ugk(0)+

∂ 2gk(0)
∂u∂v

(v(t)−v(0))
)
,

v(t +1) = v(t)−η

n

∑
k=1

(gk(t)− yk)

(
∇vgk(0)+(u(t)−u(0))T ∂ 2gk(0)

∂u∂v

)
.
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We consider the evolution of K(t) first. Plugging in the expression of u(t) and v(t +1)

we have

Ki, j(t +1) =
〈

∇ugi(0)+
∂ 2gi(0)
∂u∂v

(v(t +1)−v(0)),∇ug j(0)+
∂ 2g j(0)
∂u∂v

(v(t +1)−v(0))
〉

+

〈
∇vgi(0)+(u(t +1)−u(0))T ∂ 2gi(0)

∂u∂v
,∇vg j(0)+(u(t +1)−u(0))T ∂ 2g j(0)

∂u∂v

〉

= Ki, j(t)−
〈

η
∂ 2gi(0)
∂u∂v

n

∑
k=1

(gk(t)− yk)

(
∇vgk(0)+(u(t)−u(0))T ∂ 2gk(0)

∂u∂v

)
,

∇ug j(0)+
∂ 2g j(0)
∂u∂v

(v(t)−v(0))
〉

−
〈

η
∂ 2g j(0)
∂u∂v

n

∑
k=1

(gk(t)− yk)

(
∇vgk(0)+(u(t)−u(0))T ∂ 2gk(0)

∂u∂v

)
,

∇ugi(0)+
∂ 2gi(0)
∂u∂v

(v(t)−v(0))
〉

+

〈
η

∂ 2gi(0)
∂u∂v

n

∑
k=1

(gk(t)− yk)

(
∇vgk(0)+(u(t)−u(0))T ∂ 2gk(0)

∂u∂v

)
,

η
∂ 2g j(0)
∂u∂v

n

∑
k=1

(gk(t)− yk)

(
∇vgk(0)+(u(t)−u(0))T ∂ 2gk(0)

∂u∂v

)〉

−
〈

η
∂ 2g j(0)
∂u∂v

n

∑
k=1

(gk(t)− yk)

(
∇ugk(0)+

∂ 2gk(0)
∂u∂v

(v(t)−v(0))
)
,

∇vgi(0)+(u(t)−u(0))T ∂ 2gi(0)
∂u∂v

〉

−
〈

η
∂ 2gi(0)
∂u∂v

n

∑
k=1

(gk(t)− yk)

(
∇ugk(0)+

∂ 2gk(0)
∂u∂v

(v(t)−v(0))
)
,

∇vg j(0)+(u(t)−u(0))T ∂ 2g j(0)
∂u∂v

〉

+

〈
η

∂ 2gi(0)
∂u∂v

n

∑
k=1

(gk(t)− yk)

(
∇ugk(0)+

∂ 2gk(0)
∂u∂v

(v(t)−v(0))
)
,

η
∂ 2g j(0)
∂u∂v

n

∑
k=1

(gk(t)− yk)

(
∇ugk(0)+

∂ 2gk(0)
∂u∂v

(v(t)−v(0))
)〉

.
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We separate the data into two sets according to their sign:

S+ := {i : xi ≥ 0, i ∈ [n]}, S− := {i : xi < 0, i ∈ [n]}.

We consider two scenarios: (1) xi and x j have different signs; (2) xi and x j have the same

sign.

(1)

With simple calculation, we get if xi and x j have different signs, i.e., i ∈ S+, j ∈ S− or

i ∈ S−, j ∈ S+,

∂ 2gi(0)
∂u∂v

∂ 2g j(0)
∂u∂v

= 0,
∂ 2gi(0)
∂u∂v

∇ug j(0) = 0,
∂ 2gi(0)
∂u∂v

∇vg j(0) = 0.

Without lose of generality, we assume i ∈ S+, j ∈ S−. Then we have

Ki, j(t +1) = Ki, j(t).

(2)

If xi and x j have the same sign, i.e., i, j ∈ S+ or i, j ∈ S−,

∂ 2gi(0)
∂u∂v

∂ 2g j(0)
∂u∂v

=
1√
m

∂ 2gi(0)
∂u∂v

x j,
∂ 2gi(0)
∂u∂v

∇ug j(0) =
1√
m

∇ugi(0)x j,

and
∂ 2gi(0)
∂u∂v

∇vg j(0) =
1√
m

∇vgi(0)x j.
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For i, j ∈ S+, we have

Ki, j(t +1)

= Ki, j(t)−
2η√

m ∑
k∈S+

(gk(t)− yk)xi

〈
∇vgk(0)+(u(t)−u(0))T ∂ 2gk(0)

∂u∂v
,

∇ug j(0)+
∂ 2g j(0)
∂u∂v

(v(t)−v(0))
〉

− 2η√
m ∑

k∈S+

(gk(t)− yk)xi

〈
∇ugk(0)+

∂ 2gk(0)
∂u∂v

(v(t)−v(0)),

∇vg j(0)+(u(t)−u(0))T ∂ 2g j(0)
∂u∂v

〉

+
η2

m
xix j

∥∥∥∥∥ ∑
k∈S+

(gk(t)− yk)

(
∇vgk(0)+(u(t)−u(0))T ∂ 2gk(0)

∂u∂v

)∥∥∥∥∥

2

+
η2

m
xix j

∥∥∥∥∥ ∑
k∈S+

(gk(t)− yk)

(
∇ugk(0)+

∂ 2gk(0)
∂u∂v

(v(t)−v(0))
)∥∥∥∥∥

2

= Ki, j(t)−
4η

m
xix j ∑

k∈S+

(gk(t)− yk)gk(t)+
η2

m
xix j ((g(t)− yyy)⊙mmm+)

T K(t)((g(t)− yyy)⊙mmm+)

= Ki, j(t)−
4η

m
xix j ((g(t)− yyy)⊙mmm+)

T (g(t)⊙mmm+)

+
η2

m
xix j ((g(t)− yyy)⊙mmm+)

T K(t)((g(t)− yyy)⊙mmm+) .

Similarly, for i, j ∈ S−, we have

Ki, j(t +1) = Ki, j(t)−
4η

m
xix j ((g(t)− yyy)⊙mmm−)

T (g(t)⊙mmm−)

+
η2

m
xix j ((g(t)− yyy)⊙mmm−)

T K(t)((g(t)− yyy)⊙mmm−) .
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Combining the results together, we have

K(t +1) = K(t)+
η2

m
((g(t)− yyy)⊙mmm+)

T K(t)((g(t)− yyy)⊙mmm+) ppp1 pppT
1

+
η2

m
((g(t)− yyy)⊙mmm−)

T K(t)((g(t)− yyy)⊙mmm−) ppp2 pppT
2

− 4η

m
((g(t)− yyy)⊙mmm+)

T (g(t)⊙mmm+) ppp1 pppT
1

− 4η

m
((g(t)− yyy)⊙mmm−)

T (g(t)⊙mmm−) ppp2 pppT
2 .

Now we derive the evolution of g(t)− yyy. Suppose i ∈ S+. Then we have

gi(t +1)

= gi(0)+ ⟨u(t +1)−u(0),∇ugi(0)⟩+ ⟨v(t +1)−v(0),∇vgi(0)⟩

+

〈
u(t +1)−u(0),

∂ 2gi(0)
∂u∂v

(v(t +1)−v(0)
〉

= gi(t)−η

〈
n

∑
k=1

(gk(t)− yk)

(
∇ugk(0)+

∂ 2gk(0)
∂u∂v

(v(t)−v(0))
)
,∇ugi(0)

〉

−η

〈
n

∑
k=1

(gk(t)− yk)

(
∇vgk(0)+(u(t)−u(0))T ∂ 2gk(0)

∂u∂v

)
,∇vgi(0)

〉

−η

〈
n

∑
k=1

(gk(t)− yk)

(
∇ugk(0)+

∂ 2gk(0)
∂u∂v

(v(t)−v(0))
)
,
∂ 2gi(0)
∂u∂v

(v(t)−v(0)

〉

−η

〈
n

∑
k=1

(gk(t)− yk)

(
∇vgk(0)+(u(t)−u(0))T ∂ 2gk(0)

∂u∂v

)
,(u(t)−u(0)T ∂ 2gi(0)

∂u∂v

〉

+η
2

〈
n

∑
k=1

(gk(t)− yk)

(
∇ugk(0)+

∂ 2gk(0)
∂u∂v

(v(t)−v(0))
)
,

∂ 2gi(0)
∂u∂v

n

∑
k=1

(gk(t)− yk)

(
∇vgk(0)+(u(t)−u(0))T ∂ 2gk(0)

∂u∂v

)〉

= gi(t)−η ∑
k∈S+

(gk(t)− yk)Kk,i(t)+
η2

m ∑
k∈S+

∑
j∈S+

(gk(t)− yk)(g j(t)− y j)g j(t)xkxi.
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Similarly, for i ∈ S−, we have

gi(t +1) = gi(t)−η ∑
k∈S−

(gk(t)− yk)Kk,i(t)+
η2

m ∑
k∈S− f

∑
j∈S−

(gk(t)− yk)(g j(t)− y j)g j(t)xkxi.

Combining the results together, we have

g(t +1)− yyy =
(

I −ηK(t)+
η2

m
((g(t)− yyy)⊙mmm+)

T (g(t)⊙mmm+)ppp1 pppT
1

+
η2

m
((g(t)− yyy)⊙mmm−)T (g(t)⊙mmm−)ppp2 pppT

2

)
(g(t)− yyy).

B.3 Optimization with sub-critical learning rates

Theorem B.3.1. Consider training the NQM Eq. (3.10), with squared loss on a single training

example by GD. With a sub-critical learning rate η ∈ [ε, 2−ε

λ0
] with ε = Θ

(
logm√

m

)
, the loss

decreases exponentially with

L (t +1)≤
(

1−δ +O
(

1
mδ

))2

L (t) = (1−δ +o(δ ))2L (t),

where δ = min(ηλ0,2−ηλ0).

Furthermore, supt |λ (t)−λ (0)|= O
( 1

mδ

)
.

We use the following transformation of the variables to simplify notations.

u(t) =
∥xxx∥2

md
η

2(g(t)− y)2, w(t) =
∥xxx∥2

md
η

2(g(t)− y)y, v(t) = ηλ (t).

Then the Eq. (3.11) and Eq. (3.12) are reduced to

u(t +1) = (1− v(t)+u(t)+w(t))2u(t) := κ(t)u(t)

v(t +1) = v(t)−u(t)(4− v(t))−4w(t).
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At initialization, since |g(0)|= O(1), we have u(0)≤Cu/m for some constant Cu > 0.

As |w(t)|= C
√

u(t)√
m . where C := η∥xxx∥|y|√

d
> 0, we have |w(0)| ≤CuC/m3/2. Note that by definition,

for all t ≥ 0, u(t) ≥ 0 we have v(t) ≥ 0 since λ (t) is the tangent kernel for a single training

example. From the definition of δ , we can infer that δ < 1.

In the following, we will show that if v(0) ∈ [ε,2− ε] with ε = Θ

(
logm√

m

)
, then there

exist constant Cκ ,Cv > 0 such that for all t ≥ 0,

κ(t)≤
(

1−δ +
Cκ

mδ

)2

< 1, |v(t)− v(0)| ≤ Cv

mδ
,

if Cκ ≥ 9Cu +(Cu +CuC)δ and m satisfies

m > max

{
12Cκ

δ 2 ,

√
6Cκ

δ 3/2 ,C2

}
.

Given the condition on m, we have (1−δ + Cκ

mδ
)2 < 1.

We will prove the result by induction. When t = 0, we have

κ(0) = (1− v(0)+u(0)+w(0))2 <

(
1−δ +

Cu

m
+

CuC
m3/2

)2

<

(
1−δ +

Cκ

mδ

)2

,

where we use the assumption Cκ ≥ (Cu +CuC)δ .

Therefore the result holds at t = 0.

Suppose when t = T the results hold. Then at t = T +1, by the inductive hypothesis that

u(t) decreases exponentially with κ(t)<
(

1−δ + Cκ

mδ

)2
, we can bound the change of v(T +1)
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from v(0):

|v(T +1)− v(0)|

=
T

∑
t=0

|u(t)(4− v(t))+4w(t)|

≤
T

∑
t=0

|u(t)||4− v(t)|+
T

∑
t=0

4|w(t)|

≤ max
t∈[0,T ]

|v(t)−4| ·
u(0)−u(T )maxt∈[0,T ]κ(t)

1−maxt∈[0,T ]κ(t)
+

w(0)−w(T )maxt∈[0,T ]
√

κ(t)

1−maxt∈[0,T ]
√

κ(t)

≤ 4 · u(0)
1−maxt∈[0,T ]κ(t)

+
w(0)

1−maxt∈[0,T ]
√

κ(t)

≤ 4 · Cu/m
δ/2

+
CuC/m3/2

δ/2

≤ 9Cu

mδ
.

For the summation of the “geometric sequence” i.e., {u(0),u(1), · · · ,u(T )} where u(0)

and u(T ) have the determined order but the ratio has an upper bound, we use the maximum ratio,

i.e., maxκ(t) in the denominator to upper bound the summation.

For 1−maxt∈[0,T ]κ(t), we use the bound that

1−
(

1−δ +
Cκ

mδ

)2

= 2δ −δ
2 − C2

κ

m2δ 2 −
2Cκ

mδ
+

2Cκ

m

≥ δ − δ

6
− δ

6
− δ

6

≥ δ

2
,

where we use the assumption on m.
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Furthermore,

κ(T +1) = (1− v(T +1)+u(T +1)+w(T +1))2

= (1− v(0)+ v(0)− v(T +1)+u(T +1)+w(T +1))2

≤
(

1−δ +
9Cu

mδ
+

Cu

m
+

CuC
m3/2

)2

≤
(

1−δ +
Cκ

mδ

)2

.

Here we use the assumption Cκ ≥ 9Cu +(Cu +CuC)δ .

Therefore, we finish the inductive step hence finishing the proof.

B.4 Proof of Lemma 3.3.2

We present the formal statement of Lemma 3.3.2:

Lemma 3.3.2. Consider constants Cu,C′
u,Cv,Cκ ,Cε > 0 which satisfies Cκ ≥ 28C′

u +C′
uδ +

C
√

C′
u where C = η ∥xxx∥|y|/

√
d, and Cv ≥ 28C′

u. If m satisfies

m ≥ max

{
Cκδ

Cu(C+1)
,

(
2Cu +4C

√
Cu

CκCε

)2

,
576C2

C′
uδ 2 ,exp(Cvδ ),exp(4Cκ)

}
,

then with high probability over random initialization of the weights, the following holds: for

T > 0 such that supt∈[0,T ] u(t) ≤ C′
uδ 2

logm , u(t) increases exponentially with ratio inft∈[0,T ]κ(t) ≥(
1+δ − Cκ δ

logm

)2
> 1 and supt∈[0,T ] |v(t)− v(0)| ≤ Cvδ

logm .

Proof. Due to the random initialization of the weights, we have with probability, there exists

constant Cu > 0 such that |u(0)| ≤Cu/m. As |w(t)|= C
√

u(t)√
m , where C := η∥xxx∥|y|√

d
> 0, we have

|w(0)| ≤ C
√

Cu
m3/2 .

We prove the results by induction.

Recall that δ := ηλ0 −2 ∈ [ε,2− ε] where ε ∈ [Cε logm/
√

m,C′
ε logm/

√
m] for some

constant 0 <Cε <C′
ε .
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When t = 0, as v(0) = ηλ0 = δ +2, we have

κ(0) = (1− v(0)+u(0)+w(0))2

= (1− (δ +2)+u(0)+w(0))2

= (1+δ −u(0)−w(0))2 .

Based on the condition on m that m ≥ Cκ δ

Cu(C+1) , we have,

(1+δ −u(0)−w(0))2 ≥
(

1+δ − Cu

m
− CuC

m3/2

)2

≥
(

1+δ − Cu

m
− CuC

m

)2

≥
(

1+δ − Cκδ

logm

)2

.

And by the condition m ≥
(

2Cu+4c
√

Cu
CκCε

)2
, we get

|v(1)− v(0)| ≤ |u(0)||2−δ |+4|w(0)| ≤ 2Cu/m+
4C

√
Cu

m3/2 ≤Cκδ/ logm.

Therefore the results hold at t = 0.

Suppose when t = T ′ the results hold. Then at t = T ′+1, by the inductive hypothesis

that u(t) increases exponentially with a rate at least
(

1+δ − Cκ δ

logm

)2
from u(0) ≤ Cu/m to
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u(T ′)≤ C′
uδ 2

logm , we can bound the change of v(t):

|v(T ′+1)− v(0)|=
∣∣∣∣∣

T ′

∑
t=1

u(t)(v(t)−4)+4w(t)

∣∣∣∣∣

≤ max
t∈[0,T ′]

|v(t)−4|
T ′

∑
t=1

u(t)+4
T ′

∑
t=1

|w(t)|

≤ max
t∈[0,T ′]

|v(t)−4|
u(T ′)mint∈[0,T ′]κ(t)
mint∈[0,T ′]κ(t)−1

+4
|w(T ′)|mint∈[0,T ′]

√
κ(t)

mint∈[0,T ′]
√

κ(t)−1

≤
(

max
t∈[0,T ′]

|v(t)− v(0)|+ |v(0)−4|
) (

C′
uδ 2

logm

)
· (1+δ )2

(
1+δ −

(
Cκ δ

logm

))2
−1

+

4
(

C
√

C′
uδ√

m logm

)
· (1+δ )

(
1+δ −

(
Cκ δ

logm

))
−1

≤
(

2−δ +
Cvδ

logm

)
·
(

9C′
uδ

logm

)
+

24C
√

C′
u√

m logm

≤ 28C′
uδ

logm
. (B.3)

Here are the techniques we used for the above inequalities: for the summation of the

“geometric sequence” i.e., {u(0),u(1), · · · ,u(T ′)} where u(0) and u(T ′) have the determined

order but the ratio has a lower bound, we use the smallest ratio, i.e., infκ(t) to upper bound the

summation. Specifically, we apply the following inequality to bound the summation:

T ′

∑
t=1

u(t)≤
T ′

∑
t=1

u(T ′)
(
mint∈[0,T ′]κ(t)

)t−1

= u(T ′)
T ′

∑
t=1

1
(
mint∈[0,T ′]κ(t)

)t−1

≤ u(T ′)
mint∈[0,T ′]κ(t)

mint∈[0,T ′]κ(t)−1
.
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Additionally, sine m ≥ exp(4Cκδ ), we used the inequality

(
1+δ − Cκδ

logm

)2

−1 =

(
1− Cκδ

logm

)2

δ
2 +2

(
1− Cκδ

logm

)
δ

≥ 2
(

1− Cκδ

logm

)
δ ≥ δ ,

and
(

1+δ −
(

Cκ δ

logm

))
−1 ≥ δ

2 to bound the denominator of the summation of the geometric

sequence.

And we further used the inequality 0 < δ < 2 and 24C
√

C′
u√

m logm ≤ C′
uδ

logm by the condition on m

to get the final upper bound.

Consequently, by the assumption Cv ≥ 28C′
uδ , we have |v(T ′+1)− v(0)| ≤ Cvδ

logm .

Now we bound the ratio κ(T ′+1). By our assumption, u(T ′+1)≤ u(T )≤ C′
uδ 2

logm , and

we can similarly bound |w(T ′+1)| ≤ C
√

C′
uδ√

m logm as |w(T ′+1)|= C
√

u(T ′+1)√
m .

And the rate κ(T ′+1) satisfies

κ(T ′+1) = (1− v(T ′+1)+u(T ′+1)+w(T ′+1))2

=
(
1− v(0)+ v(0)− v(T ′+1)+u(T ′+1)+w(T ′+1)

)2

=
(
1+δ + v(T ′+1)− v(0)−u(T ′+1)−w(T ′+1)

)2
.

Note that |v(T ′+ 1)− v(0)| ≤ 28C′
uδ

logm by Eq. (B.3). By the assumption that m ≥ exp(4Cκ) and

Cκ ≥ 28C′
u +C′

uδ +C
√

C′
u, we have δ > |v(T ′+1)− v(0)|+u(T ′+1)+ |w(T ′+1)|.
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Consequently, we can get

κ(T ′+1) =
(
1+δ + v(T ′+1)− v(0)−u(T ′+1)−w(T ′+1)

)2

≥
(
1+δ −|v(T ′+1)− v(0)|−u(T ′+1)−|w(T ′+1)|

)2

≥
(

1+δ − 28C′
uδ

logm
− C′

uδ 2

logm
− C

√
C′

uδ√
m logm

)2

≥
(

1+δ − Cκδ

logm

)2

.

Since m ≥ exp(4Cκ), we have
(

1+δ − Cκ δ

logm

)2
≥
(
1+ 3

4δ
)2

> 1.

Then we finish the inductive step hence finishing the proof.

B.5 Proof of Lemma 3.3.3

A formal statement of Lemma 3.3.3 is as follows:

Lemma 3.3.3. Under the condition of Lemma 3.3.2, if we further assume that m satisfies

m >

max

{
exp(2Cvδ ),

256C2

(Cε −C′
v)

2C′
u

2 ,exp
(

5(C′
u +4C

√
C′

u)
)
,exp

(
C′

u(Cε −2C′
v)−8C

√
C′

u

20CC′
u

)}
,

where C′
v := 18C′

u +2Cv, and Cv ≥ 4C
√

C′
u, Cε > 2C′

v, then with high probability over random

initialization of the weights, the following holds: there exists T ∗ > 0 such that u(T ∗) = O
( 1

m

)
.

Proof. The main idea of the proof is the following: as u(t) increases, v(t) decreases since

u(t)(4− v(t))≫ w(t) = Θ(
√

u(t)/
√

m) in Eq. (3.14) and u(t)(4− v(t))< 0. Furthermore, the

increase of u(t) speeds up the decrease of v(t). However, v(t) cannot decrease infinitely as

v(t) ≥ 0 by definition. Therefore, u(t) has to stop increasing at some point and decrease to a

small value.
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We first show that by the choice of the learning rate that 4−v(0)≥ ε where ε =Θ

(
logm√

m

)
,

we will have 4− v(t)> 0 for all t in the increasing phase. Recall that δ := ηλ0 −2.

Proposition B.5.1. Under the condition in Lemma 3.3.2, if we further assume that m >

exp
(

48C
√

C′
u

Cε

) 2
3

, then for T > 0 such that supt∈[0,T ] u(t)≤ C′
uδ 2

logm , we have v(T )< 4− Cε logm
2
√

m .

See the proof in Appendix B.8

Given the constant C′
u in Lemma 3.3.2, we define the end of the increasing phase by T1,

i.e.,

T1 := sup
{

t : u(t)≤ C′
uδ 2

logm

}
. (B.4)

We further show that there exists T2 ≥ T1 such that v(T2)≤ 3.

Note that we indeed can show that there exists T2 such that v(T2)<C where C ∈ (2,4)

is a constant independent of m. Here for the simplicity of the presentation, we take C as 3.

Furthermore, we note that T1,T2 depends on m.

Before that, we present a useful result that controls the decrease of v(t):

Proposition B.5.2. For t such that v(t)< 4, if u(t)> 4C
m(4−v(t))2 , then v(t +1)< v(t).

See the proof in Appendix B.8.

Now we are ready to show the existence of T2 such that v(T2)≤ 3.

Proposition B.5.3. Under the condition of Lemma 3.3.2, if we further assume that m satisfies

m > max



exp

(
7682C2

C′
uC2

ε

)
,exp

(
2C′

u +Cε

)
,exp

(
48C

√
C′

u

Cε

)2/3

,
16C2

C′
u

2



 ,

and C′
u ≥ 4C2, there exists T2 ≥ T1 such that v(T2)≤ 3.

See the proof in Appendix B.8

Since v(T2)< 3 hence 4− v(T2)≥ 1. Simply using Proposition B.5.2, we get
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Proposition B.5.4. v(t) keeps decreasing after T2 until u(t) = O
( 1

m

)
.

By definition v(t) = ηλ (t) where λ (t)≥ 0, v(t) will not keep decreasing for t → ∞ hence

there exists T ∗ such that u(T ∗) = O
( 1

m

)
. And it indicates that the loss will decrease to the order

of O(1).

B.6 Proof of Theorem 3.3.4

We compute the steady-state equilibria of Eq. (3.13) and (3.14). By letting u(t+1) = u(t)

and v(t +1) = v(t), we have the steady-state equilibria (u∗,v∗) satisfy one of the following:

(1) u∗ = 0, v∗ ∈ R;

(2) |1− v∗+u∗+w∗|= 1, u∗(4− v∗)+4w∗ = 0.

As w(t)2 = C2u(t)
m where C := η∥xxx∥|y|√

d
> 0, we write w as a function of u for simplicity, hence

w∗ = w(u∗).

As the dynamics equations are non-linear, we analyze the local stability of the steady-state

equilibria. We consider the Jacobian matrix of the dynamical systems:

J(u,v) =




2(1− v+u+w)(1+ dw
du )u+(1− v+u+w)2 −2(1− v+u+w)u

v−4−4dw
du 1+u


 .

We analyze the stability of two equilibria separately.

For Scenario (1), we evaluate J(u,v) at the steady-state equilibrium (u∗,v∗) then we get

J(u∗,v∗) =




(1− v∗)2 0

v∗−4−4dw
du 1


 .

We get the two eigenvalues of J(u∗,v∗) are 1 and (1− v∗)2. We will show the Lyapunov stability
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of the equilibrium (u∗,v∗). Specifically, we apply Theorem 1.2 in [14]. We find the domain

D = {(u,v) : u ≤C1, |v− v∗| ≤ min(|C2 − v∗|, |2−C2 − v∗|},

where C1 = Θ(1/m) and C2 = Θ(1/
√

m), and the Lyapunov function V (u,v) = u+(v− v∗)2. It

is not hard to verify that V is locally Lipschitz in D as V is continuous in a compact domain.

Furthermore, we can see that (u∗,v∗) with u∗ = 0,v∗ ∈ [ε,2 − ε] where ε = Θ(logm/
√

m)

satisfies the condtions Eq. (3,4) in Theorem 1.2 in [14]. Therefore, (u∗,v∗) with u∗ = 0 and

v∗ ∈ [ε,2− ε] is a stable equilibrium point.

For Scenario (2), we again evaluate J(u,v) at the steady-state equilibrium (u∗,v∗) then

we get

J(u∗,v∗) =



−2u∗+ C

√
u∗√
m +1 2u∗

− 2C√
mu∗

1+u∗


 ,

where we replace v∗ by 4+ 4w∗/u∗ based on the second equality in Scenario (2). Note that

u∗(4−v∗)> 0 since v < 4 during the whole training process, therefore we have w∗ < 0 to achieve

the equilibrium.

We can compute the eigenvalue of J(u∗,v∗) then we get

λJ = 1+
C

2
√

m

√
u∗− u∗

2
± 1

2
(u∗)1/4

√
16

C√
m
− C2

√
u∗

m
+6

Cu∗√
m
−9(u∗)3/2i.

Note that when Scenario (2) holds, there are only two possible cases

(2.1) u∗ = Θ(1/m), |w∗|= Θ(1/m) and v∗ = Θ(1);

(2.2) u∗ = Θ(1/m), |w∗|= Θ(1/m) and v∗ = Θ(1/m).

For (2.1), by the first equality v∗ = 2−u∗+w∗ ∈ (1,2). Then plugging v∗ into the second

equality yields u∗ ∈
(

4
3

C2

m ,2C2

m

)
.
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For (2.2), by the second equality that u∗(4− v∗)+4w∗ = 0, we have u∗ = C2

m +o(1/m).

By computing the modulo of λJ , we have

|λJ|= 1+
5C√

m

√
u∗−u∗+o

(
1
m

)
.

Therefore, for both (2.1) and (2.2) we have |λJ|> 1 which indicates (u∗,v∗) is unstable.

B.7 Optimization with η > ηmax

Theorem B.7.1. Consider training the NQM Eq. (3.10), with squared loss on a single training

example by GD. If the learning rate satisfies η ∈
[

4+ε

λ0
,∞
)

with ε = Θ

(
logm√

m

)
, then GD diverges.

Proof. We similarly use the transformation transformation of the variables to simplify notations.

u(t) =
∥xxx∥2

md
η

2(g(t)− y)2, w(t) =
∥xxx∥2

md
η

2(g(t)− y)y, v(t) = ηλ (t).

Then the Eq. (3.11) and Eq. (3.12) are reduced to

u(t +1) = (1− v(t)+u(t)+w(t))2u(t) := κ(t)u(t)

v(t +1) = v(t)−u(t)(4− v(t))−4w(t).

We similarly consider the interval [0,T ] such that supt∈[0,T ] u(t) = O(1/logm). By

Lemma 3.3.2, in [0,T ], u(t) increases exponentially with a rate supt∈[0,T ]κ(t)> 9. We assume

|w(t)|> |u(t)(4− v(t))| for all t ∈ [0,T ], which is the worst case as v(t) will increase the least.

By Lemma 3.3.2, we have ∑
T
t=0 |w(t)|= O

(
1√

m logm

)
, which is less than ε . Therefore, we have

v(T )> 4.

Then at the end of the increasing phase, we have |u(T1)(4− v(T1))| = Ω(1/
√

m) is

of a greater order than |w(T1)| = O(1/
√

m logm), hence v(t) will increase at T1. Note that
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κ(T1) = (1−4+o(1))2 = 9+o(1), hence u((t) also increases at T1.

It is not hard to see that v(t) will keep increasing unless u(t) decreases to a smaller

order. Specifically, if |u(t)(4− v(t))| = |4w(t)|, it requires u(t) to be of the order at least

O(1/
√

logm) (by letting εu(t) = Θ(w(t)) = Θ(
√

u(t)/m)), which will not happen as κ(t) =

(1− v(t)+o(1))2 > 1 and it contradicts the decrease of u(t).

Therefore, both u(t) and v(t) keep increasing which leads to the divergence of GD.

B.8 Proof of propositions

Proof of Proposition B.5.1

Proof. Note that 4− v(0) = 2−δ ≥ Cε logm√
m by definition, where Cε > 0 is a constant. To show

4− v(T )> Cε logm
2
√

m , a sufficient condition is v(T )− v(0)< Cε logm
2
√

m .

Specifically, we will prove for T > 0 such that supt∈[0,T ] u(t)≤ C′
uδ 2

logm , the following holds:

v(T )− v(0)< 4
T

∑
t=0

|w(t)| ≤ 24C
√

C′
u√

m logm
,

where C,C′
u are the same constants defined in Lemma 3.3.2. Then by the condition that m >

exp
(

48C
√

C′
u

Cε

)2/3

, we have v(T )− v(0)< Cε logm
2
√

m .

We will prove the result by induction.

When T = 0, the result holds trivially.

Suppose T = T ′ the result holds. When T = T ′+ 1, since v(T ′)− v(0) < 0, we have

v(T ′)< 4. Therefore, by the update equation of v(t) Eq. (3.14), we have

v(T ′+1) = v(T ′)−u(T ′)(4− v(T ′))−4w(T ′)

≤ v(T ′)−4w(T ′)

≤ v(T ′)+4|w(T ′)|.
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Then v(T ′+1)− v(0) = v(T ′+1)− v(T ′)+ v(T ′)− v(0)≤ ∑
T ′+1
t=0 |w(t)|.

By Lemma 3.3.2, we have ∑
T ′+1
t=0 |w(t)| ≤ 24C

√
C′

u√
m logm . Indeed, this inequality holds for any

T ′+1 such that supt∈[0,T ′+1] u(t)≤ C′
uδ 2

logm .

Therefore, we finish the inductive step hence finish the proof.

Proof of Proposition B.5.2

Proof. A sufficient condition for v(t) to decrease is

u(t)(4− v(t))> 4|w(t)|= 4C
√

u(t)√
m

.

If u(t)> 4C
m(4−v(t))2 , then the above condition is satisfied.

Proof of Proposition B.5.3

Proof. Note that for t ∈ [0,T1], by Lemma 3.3.2, the change of v(t) satisfies supt |v(t)− v(0)| ≤
Cvδ

logm .

For δ < 1− Cvδ

logm , i.e., v(0)< 3− Cvδ

logm , we have v(T1)< v(0)+ |v(T1)− v(0)|= 2+δ +

|v(0)− v(T1)|< 3. Therefore, the existence of T2 can be guaranteed by simply letting T2 = T1.

For δ ≥ 1− Cvδ

logm , i.e., v(0)≥ 3− Cvδ

logm , we will show there exists T2 ≥ T1 which depends

on m such that v(T2)< 3.

We prove the existence of T2 by contradiction. Suppose that for all t ≥ T1 +1 we have

v(t)≥ 3.

For the simple case that if all u(t) > 4C
m(4−v(t))2 , then by Proposition B.5.2, v(t) keeps

decreasing which will ultimately lead to v(t)< 3.

Suppose there is an iteration t ≥ T1 + 1 such that u(t) ≤ 4C
m(4−v(t))2 . The following

Proposition guarantees that v(t) will decrease to a smaller value after t once such t occurs.

Therefore, we can find T2.
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Proposition B.8.1. Under the condition of Lemma 3.3.2, suppose m further satisfies

m > max
{

exp
(

7682C2

C′
uC2

ε

)
,
16C2

C′
u

2 ,exp
(
2C′

u +Cε

)}
,

where C′
u ≥ 4C2.

Then if there is T ≥ 0 such that u(T )≤ 4C
m(4−v(T ))2 and v(T )> 3, we have v(T ′+2)< v(T )

and u(T ′+1)> 4C
m(4−v(T ′))2 , where T ′ is the end of the increasing phase starting from T .

See the proof in Appendix B.8.

Proof of proposition B.8.1

Proof. Since u(T )≤ C′
u

logm by the assumption that m > 16C2

C′
u

2 , the training dynamics falls into the

increasing phase from T . We denote the end of the increasing phase starting from T by T ′, i.e.,

T ′ = sup
{

t : u(t)≤ C′
uδ 2

logm
, t ≥ T

}
.

We will prove the result by induction.

Suppose T ′ is the end of the first increasing phase, i.e., T ′ = T1. By proposition B.5.1,

v(T1)< 4− Cε logm
2
√

m . And the magnitude of u(T1 +1) can be lower bounded by

u(T1 +1)≥ C′
u

4logm
, (B.5)

where we use δ ≥ 1
2 by the assumption on m that and plug δ in C′

uδ 2

logm .

Note that when m> exp(28C′
u), δ ≥ 1

2 is necessary for v(T1)> 3 as |v(T1)−v(0)| ≤ 28C′
uδ

logm

by Inequality (B.3).

Furthermore, with the above bound on u(T1 +1), we have

136



v(T1 +1) = v(T1)−u(T1)(4− v(T1))−4w(T1)

≤ 4− Cε logm
2
√

m
+

C′
u

4logm
Cε logm

2
√

m
+4|w(T1)|

≤ 4− Cε logm
2
√

m
+

C′
uCε

8
√

m
+

2
√

C′
u√

m logm

≤ 4− Cε logm
4
√

m
. (B.6)

Consequently, when C′
u ≥ 4C2 and m > exp(2C′

u +Cε), we have

u(T1 +1) = κ(T1)u(T1) = (1− v(T1)+u(T1)+w(T1))
2u(T1)

≤
(

1−4+
Cε logm

4
√

m
+

C′
u

4logm
+

C
√

C′
u

2
√

m logm

)2
C′

u
4logm

≤ 9C′
u

4logm
.

Therefore, at T1 +1, we have

v(T1 +1)− v(T1 +2)≥ u(T1 +1)(4− v(T1 +1))− 4C
√

u(T1 +1)√
m

≥ C′
u

4logm
Cε logm

4
√

m
− 8C

√
C′

u√
m logm

=
C′

uCε

16
√

m
− 6C

√
C′

u√
m logm

≥ C′
uCε

32
√

m
,

where we use the assumption that m > exp
(

256C2

9C′
uC2

ε

)
.

Note that the increase is caused by the term w(t) since for all t ∈ [T,T1 + 1] we have
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u(t)(4− v(t))< 0. Then we have the maximum increase during [T,T1 +1] be bounded by

v(T1 +1)− v(T )≤
T1+1

∑
t=T

4|w(t)| ≤ 24C
√

C′
u√

m logm
,

where we use Eq. (B.3) in the proof of Lemma 3.3.2.

By the assumption on m that m > exp
(

7682C2

C′
uC2

ε

)
, we have v(T1 +2)< v(T ).

If there is T̃ > 0 such that u(T̃ )≤ 4C
m(4−v(T̃ ))2 while v(T̃ )> 3, there is another increasing

phase. Since v(T̃ )< v(T ), we can apply the same analysis under the same condition to show

v(T̃1 +2) < v(T̃ ), where T̃1 is the end of the increasing phase starting from T̃ . Therefore, we

finish the inductive step hence finish the proof.

Proof of Proposition B.11.1

Restate Proposition B.11.1: For any u,v ∈ Rm, rank(K)≤ 2. Furthermore, ppp1, ppp2 are eigen-

vectors of K, where p1,i = xi1{i∈S+}, p2,i = xi1{i∈S−}, for i ∈ [n].

Proof. By Definition 3.2.1,

Ki, j =
1
m

m

∑
k=1

(v2
k +u2

k)xix j1{ukxi≥0}1{ukx j≥0}, i, j ∈ [n].

By definition of eigenvector, we can see

n

∑
j=1

Ki, j p1, j =
1
m

n

∑
j=1

m

∑
k=1

(v2
k +u2

k)xix2
j1{ukxi≥0}1{ukx j≥0}1{ j∈S+}

=
n

∑
j=1

x2
j1{ j∈S+}

1
m

m

∑
k=1

(v2
k +u2

k)xi1{ukxi≥0}1{ukx j≥0}

= xi1{xi∈S+}
n

∑
j=1

x2
j1{ j∈S+}

1
m

m

∑
k=1

(v2
k +u2

k)1{ukx j≥0},

where we use the fact that if xix j < 0, Ki, j = 0.

As p1,i = xi1{xi∈S+} and ∑
n
j=1 x2

j1{ j∈S+}
1
m ∑

m
k=1(v

2
k +u2

k)1{ukx j≥0} does not depend on i, we can
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see ppp1 is an eigenvector of K with corresponding eigenvalue λ1 = ∑
n
j=1 x2

j1{ j∈S+}
1
m ∑

m
k=1(v

2
k +

u2
k)1{ukx j≥0}.

The same analysis can be applied to show ppp2 is another eigenvector of K with corresponding

λ2 = ∑
n
j=1 x2

j1{ j∈S−}
1
m ∑

m
k=1(v

2
k +u2

k)1{ukx j≥0}.

For the rank of K, it is not hard to verify that K = λ1 ppp1 pppT
1 +λ2 ppp2 pppT

2 hence the rank of K is at

most 2.

B.9 Scale of the tangent kernel for single training example

Proposition B.9.1 (Scale of tangent kernel). For any δ ∈ (0,1), if m ≥ c′ log(4/δ ) where c′ is

an absolute constant, with probability at least 1−δ , ∥xxx∥2/(2d)≤ λ (0)≤ 3∥xxx∥2/(2d).

Proof. Note that when t = 0,

λ (0) =
1

md

m

∑
i=1

(
uT

0,ixxx1{uT
0,ixxx≥0

}
)2

+
1

md

m

∑
i=1

(v0,i)
2∥xxx∥2

(
1{

uT
0,ixxx≥0

}
)2

.

According to NTK initialization, for each i ∈ [m], v0,i ∼N (0,1) and u0,i ∼N (0, I). We

consider the random variable

ζi := uT
0,ixxx1{uT

0,ixxx≥0
}, ξi := v0,i1

{
uT

0,ixxx≥0
}.

it is not hard to see that ζi and ξi are sub-guassian since uT
0,ixxx and v0,i are sub-gaussian. Specifi-

cally, for any t ≥ 0,

P{|ζi| ≥ t} ≤ P{|uT
0,ixxx| ≥ t} ≤ 2exp

(
−t2/(2∥xxx∥2)

)
,

P{|ξi| ≥ t} ≤ P{|v0,i| ≥ t} ≤ 2exp
(
−t2/2

)
,

where the second inequality comes from the definition of sub-gaussian variables.
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Since ξi is sub-gaussian, by definition, ξ 2 is sub-exponential, and its sub-exponential

norm is bounded:

∥ξ
2
i ∥ψ1 ≤ ∥ξi∥2

ψ2
≤C,

where C > 0 is a absolute constant. Similarly we have ∥ζi∥2
ψ2

≤C∥xxx∥2.

By Bernstein’s inequality, for every t ≥ 0, we have

P

{∣∣∣∣∣
m

∑
i=1

ξ
2
i − m

2

∣∣∣∣∣≥ t

}
≤ 2exp

(
−cmin

(
t2

∑
m
i=1 ∥ξ 2

i ∥2
ψ1

,
t

maxi ∥ξ 2
i ∥ψ1

))
,

where c > 0 is an absolute constant.

Letting t = m/4, we have with probability at least 1−2exp(−m/c′),

m
4
≤

m

∑
i=1

ξ
2
i ≤ 3m

4
,

where c′ = c/(4C).

Similarity, we have with probability at least 1−2exp(−m/c′),

m
4
∥xxx∥2 ≤

m

∑
i=1

ζ
2
i ≤ 3m

4
∥xxx∥2.

As a result, using union bound, we have probability at least 1−4exp(−m/c′),

∥xxx∥2

2d
≤ λ (0)≤ 3∥xxx∥2

2d
.
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B.10 Scale of the tangent kernel for multiple training
examples

Proof. As shown in Proposition B.11.1, ppp1 and ppp2 are eigenvectors of K, hence we have two

eigenvalues:

λ1(0) =
pppT

1 K(0)ppp1

∥ppp1∥2 , λ2(0) =
pppT

2 K(0)ppp2

∥ppp2∥2 .

Take λ1(0) as an example:

λ1(0)∥ppp1∥2 =
n

∑
i, j=1

xix j1{xi≥0}1{x j≥0}
m

∑
k=1

(u2
0,k + v2

0,k)xix j1{u0,kxi≥0}1{u0,kx j≥0}

=
m

∑
k=1

(u2
0,k + v2

0,k)
(
1{u0,k≥0}

)2 n

∑
i, j=1

x2
i x2

j1{xi≥0}1{x j≥0}.

Similar to the proof of Proposition B.9.1, we consider ξk := v0,k1{u0,k≥0} which is a

sub-gaussian random variable. Hence ξ 2
k is sub-exponential so that ∥ξ 2

k ∥ψ1 ≤C where C > 0 is

an absolute constant. By Bernstein’s inequality, for every t ≥ 0, we have

P

{∣∣∣∣∣
m

∑
i=1

ξ
2
i − m

2

∣∣∣∣∣≥ t

}
≤ 2exp

(
−cmin

(
t2

∑
m
i=1 ∥ξ 2

i ∥2
ψ1

,
t

maxi ∥ξ 2
i ∥ψ1

))
,

where c > 0 is an absolute constant.

Letting t = m/4, we have with probability at least 1−2exp(−m/c′),

m
4
≤

m

∑
i=1

ξ
2
i ≤ 3m

4
,

where c′ = c/(4C).

The same analysis applies to ζk := u0,k1{u0,k≥0} as well and we have with probability at
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least 1−2exp(−m/c′),

m
4
≤

m

∑
i=1

ζ
2
i ≤ 3m

4
.

As a result, we have probability at least 1−4exp(−m/c′),

λ1(0)∥ppp1∥2 =
1
m

m

∑
i=k

(u2
0,k + v2

0,k)
(
1{uk(0)≥0}

)2
n

∑
i, j=1

x2
i x2

j1{xi≥0}1{x j≥0}

∈
[

1
2

n

∑
i, j=1

x2
i x2

j1{xi≥0}1{x j≥0},
3
2

n

∑
i, j=1

x2
i x2

j1{xi≥0}1{x j≥0}

]
.

Applying the same analysis to λ2(0), we have with probability 1−4exp(−m/c′),

λ2(0)∥ppp2∥2 =
1
m

m

∑
i=k

(u2
0,k + v2

0,k)
(
1{uk(0)≤0}

)2
n

∑
i, j=1

x2
i x2

j1{xi≤0}1{x j≤0}

∈
[

1
2

n

∑
i, j=1

x2
i x2

j1{xi≤0}1{x j≤0},
3
2

n

∑
i, j=1

x2
i x2

j1{xi≤0}1{x j≤0}

]
.

The largest eigenvalue is max{λ1(0),λ2(0)}. Combining the results together, we have

with probability at least 1−4exp(−m/c′),

1
2

M ≤ ∥K(0)∥ ≤ 3
2

M,

where M = max
{

∑
n
i, j=1 x2

i x2
j1{xi≥0}1{x j≥0}

∑
n
i=1 x2

i 1{xi≥0} ,
∑

n
i, j=1 x2

i x2
j1{xi≤0}1{x j≤0}

∑
n
i=1 x2

i 1{xi≤0}

}
.

B.11 Analysis on optimization dynamics for multiple train-
ing examples

In this section, we discuss the optimization dynamics for multiple training examples.

We will see that by confining the dynamics into each eigendirection of the tangent kernel, the
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training dynamics is similar to that for a single training example.

Since xi is a scalar for all i ∈ [n], with the homogeneity of ReLU activation function, we

can compute the exact eigenvectors of K(t) for all t ≥ 0. To that end, we group the data into two

sets S+ and S− according to their sign:

S+ := {i : xi ≥ 0, i ∈ [n]}, S− := {i : xi < 0, i ∈ [n]}.

Now we have the proposition for the tangent kernel K(the proof is deferred to Appendix B.8):

Proposition B.11.1 (Eigenvectors and low rank structure of K). For any u,v ∈Rm, rank(K)≤ 2.

Furthermore, ppp1, ppp2 are eigenvectors of K, where p1,i = xi1{i∈S+}, p2,i = xi1{i∈S−}, for i ∈ [n].

Note that when all xi are of the same sign, rank(K) = 1 and K only has one eigenvector

(either ppp1 or ppp2 depending on the sign). It is in fact a simpler setting since we only need to

consider one direction, whose analysis is covered by the one for rank(K) = 2. Therefore, in the

following we will assume rank(K) = 2. We denote two eigenvalues of K(t) by λ1(t) and λ2(t)

corresponding to ppp1 and ppp2 respectively, i.e., K(t)ppp1 = λ1(t)ppp1, K(t)ppp2 = λ2(t)ppp2. Without

loss of generality, we assume λ1(0)≥ λ2(0).

By Eq. (3.5), the tangent kernel K at step t is defined as:

Ki, j(t) = ⟨∇vgi(t),∇vg j(t)⟩+ ⟨∇ugi(t),∇ug j(t)⟩

=
1
m

m

∑
k=1

(
(uk(t))2 +(vk(t))2)xix j1{uk(0)xi≥0}1{uk(0)x j≥0}, ∀i, j ∈ [n].

Similar to single example case, the largest eigenvalue of of tangent kernel is bounded

from 0:

Proposition B.11.2. For any δ ∈ (0,1), if m ≥ c′ log(4/δ ) where c′ is an absolute constant, with
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probability at least 1−δ , M/2 ≤ λmax(K(0))≤ 3M/2 where

M = max

{
∑

n
i, j=1 x2

i x2
j1{xi≥0}1{x j≥0}

∑
n
i=1 x2

i 1{xi≥0}
,
∑

n
i, j=1 x2

i x2
j1{xi≤0}1{x j≤0}

∑
n
i=1 x2

i 1{xi≤0}

}
.

The proof can be found in Appendix B.10.

For the simplicity of notation, given ppp,mmm ∈ Rn, we define the matrices Kppp,mmmand Qppp,mmm:

Kppp,mmm(t) := ((g(t)− yyy)⊙mmm)T K(t)((g(t)− yyy)⊙mmm) ppppppT ,

Qppp,mmm(t) := ((g(t)− yyy)⊙mmm)T (g(t)⊙mmm) ppppppT

It is not hard to see that for all t, Kppp,mmm and Qppp,mmm are rank-1 matrices. Specially, ppp is the only

eigenvector of Kppp,mmm and Qppp,mmm.

With the above notations, we can write the update equations for g(t)− yyy and K(t) during

gradient descent with learning rate η :

Dynamics equations.

g(t +1)− yyy =


I −ηK(t)+

η2

m

(
Qppp1,mmm+(t)+Qppp2,mmm−(t)

)
︸ ︷︷ ︸

Rg(t)


(g(t)− yyy), (B.7)

K(t +1) = K(t)+
η2

m

(
Kppp1,mmm+(t)+Kppp2,mmm−(t)

)
− 4η

m

(
Qppp1,mmm+(t)+Qppp2,mmm−(t)

)
︸ ︷︷ ︸

RK(t)

, (B.8)

where mmm+,mmm− ∈ Rn are mask vectors:

m+,i = 1{i∈S+}, m−,i = 1{i∈S−}.
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Now we are ready to discuss different three optimization dynamics for multiple training

examples case, similar to the single training example case in the following.

Monotonic convergence: sub-critical learning rates (η < 2/λ1(0))

We use the key observation that when ∥g(t)∥ is small, i.e., O(1), and ∥K(t)∥ is bounded,

then ∥Rg(t)∥ and ∥RK(t)∥ are of the order o(1). Then the dynamics equations approximately

reduce to the ones of linear dynamics for multiple training examples:

g(t +1)− yyy = (I −ηK(t)+o(1))(g(t)− yyy),

K(t +1) = K(t)+o(1).

At initialization, ∥g(0)∥= O(1) with high probability over random initialization. By the choice

of the learning rate, we will have for all t ≥ 0, ∥I −ηK(t)∥ < 2, hence ∥g(t)− yyy∥ decreases

exponentially. The cumulative change on the norm of tangent kernel is o(1) since ∥RK(t)∥=

O(1/m) and the loss decreases exponentially hence ∑∥RK(t)∥= O(1/m) · logO(1) = o(1).

Catapult convergence: super-critical learning rates
(

2
λ1(0)

< η < min
(

2
λ2(0)

, 4
λ1(0)

))

We summarize the catapult dynamics in the following:

Restate Theorem 3.3.6(Catapult dynamics on multiple training examples). Supposing Assump-

tion 3.3.5 holds, consider training the NQM Eq. (3.10) with squared loss on multiple training

examples by GD. Then,

1. with η ∈
[

2+ε

λ1(0)
, 2−ε

λ2(0)

]
, the catapult only occurs in eigendirection ppp1: Π1L increases to

the order of Ω

(
m(η−2/λ1(0))2

logm

)
then decreases to O(1);

2. with η ∈
[

2+ε

λ2(0)
, 4−ε

λ1(0)

]
, the catapult occurs in both eigendirections ppp1 and ppp2: ΠiL for

i = 1,2 increases to the order of Ω

(
m(η−2/λi(0))2

logm

)
then decreases to O(1),

where ε = Θ

(
logm√

m

)
.

The proof can be found in Appendix B.12.
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For the remaining eigendirections ppp3, · · · , pppn, i.e., the basis of the subspace orthogonal to

ppp1 and ppp2, we can show that the loss projected to this subspace does not change during training

in the following proposition. It follows from the fact that K, Rg(t) and RK(t) are orthogonal to

pppi ppp
T
i for i = 3, · · · ,n.

Proposition B.11.3. ∀t ≥ 0, ΠiL (t) = ΠiL (0) for i = 3, · · · ,n.

Once the catapult finishes as the loss decreases to the order of O(1), we generally have

η > 2/λ1 and η > 2/λ2. Therefore the training dynamics fall into linear dynamics, and we can

use the same analysis for sub-critical learning rates for the remaining training dynamics.

Divergence: (η > ηmax = 4/λ1(0))

Similar to the increasing phase in the catapult convergence, initially ∥g(t)− yyy∥ increases

in direction ppp1 and ppp2 since linear dynamics dominate and the learning rate is chosen to be larger

than ηcrit. Also, we approximately have η > 4/λ1(t) at the end of the increasing phase, by a

similar analysis for the catapult convergence. We consider the evolution of K(t) in the direction

ppp1. Note that when ∥g(t)∥ increases to the order of Θ(
√

m), g(t)⊙mmm+ will be aligned with ppp1,

hence with simple calculation, we approximately have

pppT
1 RK(t)ppp1 ≈

∥g(t)∥2∥ppp1∥2

m
η(λ1(t)−4η)> 0.

Therefore, λ1(t) increases since pppT
1 K(t + 1)ppp1 = pppT

1 K(t)ppp1 + pppT
1 RK(t)ppp1 > pppT

1 K(t)ppp1. As a

result, ∥I −ηK(t) +Rg(t)∥ becomes even larger which makes ∥g(t)− yyy∥ grows faster, and

ultimately leads to divergence of the optimization.
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B.12 Proof of Theorem 3.3.6

As the tangent kernel K has rank 2 by Proposition B.11.1, the update of weight parameters

w is in a subspace with dimension 2. Specifically,

w(t +1) = w(t)−η
∂g
∂w

∂L

∂g
(t),

where ∂g/∂w has rank 2. Therefore, to understand the whole training dynamics, it is sufficient

to analyze the dynamics of the loss in eigendirection ppp1 and ppp2.

We will analyze the dynamics of the loss L and the tangent kernel K confined to ppp1 and

ppp2. It turns out that the dynamics in each eigen direction is almost independent on the other

hence can be reduced to the same training dynamics for a single training example.

We start with eigendirection ppp1. For dynamics equations Eq. (B.7) and (B.8), we consider

the training dynamics confined to direction ppp1 and we have

Π1L (t) =
(
1−ηλ1(t)+ pppT

1 Rg(t)ppp1
)2

Π1L (t) := κ1(t)Π1L (t),

λ1(t +1) = λ1(t)+ pppT
1 RK(t)ppp1,

where we use the notation Π1L (t) = 1
2 ⟨g(t)− yyy, ppp1⟩2.

We further expand pppT
1 Rg(t)ppp1 and pppT

1 RK(t)ppp1 and we have

pppT
1 Rg(t)ppp1 =

2η2

m
Π1L (t)+

η2

m
⟨(g(t)− yyy)⊙mmm+,yyy⊙mmm+⟩ ,

pppT
1 RK(t)ppp1 =

2η

m
Π1L (t)(ηλ1(t)−4)− 4η

m
⟨(g(t)− yyy)⊙mmm+,yyy⊙mmm+⟩ .

Analogous to the transformation for Eq. (3.11) and (3.12) as we have done in the proof of
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Theorem 3.3.1, we let

u1(t) =
2η2

m
Π1L (t), w1(t) =

η2

m
⟨(g(t)− yyy)⊙mmm+,yyy⊙mmm+⟩ , v1(t) = ηλ1(t).

Then the dynamic equations can be written as:

u1(t +1) = (1− v1(t)+u1(t)+w1(t))2u1(t), (B.9)

v1(t +1) = v1(t)−u1(t)(4− v1(t))−4w1(t). (B.10)

Note that at initialization, ∥g(t)∥= O(
√

1) with high probability, hence we have u1(0) =

O
( 1

m

)
and w1(0) = O

( 1
m

)
(we omit the factor n as n is a constant). Furthermore, |w1(t)| =

Θ

(√
u1(t)√

m

)
. Therefore, both the dynamic equations and the initial condition are exactly the

same with the ones for a single training example (Eq. (3.13) and (3.14)). Then we can follow the

same idea of the proof of Theorem 3.3.1 to show the catapult in eigendirection ppp1.

Similarly, when we consider the training dynamics confined to ppp2, we have

u2(t +1) = (1− v2(t)+u2(t)+w2(t))2u2(t), (B.11)

v2(t +1) = v2(t)−u2(t)(4− v2(t))−4w2(t), (B.12)

where

u2(t) =
2η2

m
Π2L (t), w2(t) =

η2

m
⟨(g(t)− yyy)⊙mmm−,yyy⊙mmm−⟩ , v2(t) = ηλ2(t).

Then the same analysis with Theorem 3.3.1 can be used to show the catapult in direction ppp2.

Note that when 2/λ2(0) > 4/λ1(0), the learning rate is only allowed to be less than

4/λ1(0) otherwise GD will diverge, therefore, there will be no catapult in direction ppp2.
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B.13 Special case of quadratic models when φ(xxx) = 0

In this section we will show under some special settings, the catapult phase phenomenon

also happens and how two layer linear neural networks fit in our quadratic model.

We consider one training example (xxx,y) with label y = 0 and assume the initial tangent

kernel λ (0) = Ω(1). Letting the feature vector φ(xxx) = 0, the quadratic model Eq.(3.3) becomes:

g(w) =
1
2

γwT
Σ(xxx)w.

For this quadratic model, we have the following proposition:

Proposition B.13.1. With learning rate 2
λ (0) < η < 4

λ (0) , if Σ(xxx)2 = ∥xxx∥2 · I, g(w) exhibits

catapult phase.

Proof. With simple computation, we get

g(t +1) =
(
1−ηλ (t)+ γη

2∥xxx∥2(g(t))2)g(t),

λ (t +1) = λ (t)− γ∥xxx∥2(g(t))2(4−ηλ (t)).

We note that the evolution of g and λ is almost the same with Eq. (3.11) and Eq. (3.12) if we regard

γ = 1/m. Hence we can apply the same analysis to show the catapult phase phenomenon.

It is worth pointing out that the two-layer linear neural network with input xxx ∈ Rd

analyzed in [65] that

f (U,v;x) =
1√
m

vT Uxxx,

where v ∈ Rm,U ∈ Rm×d is a special case of our model with w =
[
Vec(U)T ,vT ]T , γ = 1/

√
m
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and

Σ =




0 Im ⊗ xxx

Im ⊗ xxxT 0


 ∈ Rmd+m.

B.14 Experimental settings and additional results

Verification of non-linear training dynamics of NQMs, i.e., Figure 3.3

We train the NQM which approximates the two-layer fully-connected neural network

with ReLU activation function on 128 data points where each input is drawn i.i.d. from N (−2,1)

if the label is −1 or N (2,1) if the label is 1. The network width is 5,000.

Experiments for training dynamics of wide neural networks with multiple examples

We train a two-layer fully-connected neural network with ReLU activation function on

128 data points where each input is drawn i.i.d. from N (−2,1) if the label is −1 or N (2,1) if

the label is 1. The network width is 5,000. See the results in Figure B.1.

(a) Training loss (b) Largest eigenvalue of tangent
kernel

(c) Second largest eigenvalue of
tangent kernel

Figure B.1. Training dynamics of wide neural networks for multiple examples case with different
learning rates. Compared to the training dynamics of NQMs, i.e., Figure 3.3, the behaviour of
of top eigenvalues is almost the same with different learning rates: when η < 0.37, the kernel
is nearly constant; when 0.37 < η < 0.39, only λ1(t) decreases; when 0.39 < η < ηmax, both
λ1(t) and λ2(t) decreases. See the experiment setting in Appendix B.14.
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Training dynamics confined to top eigenspace of the tangent kernel

We consider the corresponding dynamics equations (3.15) and (3.16) for neural networks:

f(t +1)− yyy = (I −ηK(t)+Rf(t))(f(t)− yyy), (B.13)

K(t +1) = K(t)−RK(t). (B.14)

Note that for NQMs, Rf(t) and RK(t) have closed-form expressions but generally for

neural networks they do not have.

We consider the training dynamics confined to the top eigenvector of the tangent kernel

ppp1(t):

⟨ppp1(t), f(t +1)− yyy⟩=
(
I −ηλ1(t)+ ppp1(t)

T Rf(t)ppp1(t)
)
⟨ppp1(t), f(t)− yyy⟩ ,

ppp1(t)
T K(t +1)ppp1(t) = λ1(t)− ppp1(t)

T RK(t)ppp1(t).

We conduct experiments to show that ppp1(t)
T Rf(t)ppp1(t) and ppp1(t)

T RK(t)ppp1(t) scale with

the loss and remain positive when the loss is large. Furthermore, the loss confined to ppp1 can

almost capture the spike in the training loss.

In the experiments, we train a two-layer FC and CNN with width 2048 and 1024 respec-

tively on 128 points from CIFAR-2 (2 class subset of CIFAR-10) and SVHN-2 (2 class subset

from SVHN-10). The results for NQM can be seen in Figure B.2 and for neural networks can be

seen in Figure B.3.
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(a) FC on CIFAR-2 (b) CNN on CIFAR-2 (c) FC on SVHN-2 (d) CNN on SVHN-2

Figure B.2. Training dynamics confined to the top eigenspace of the tangent kernel for NQMs.

(a) FC on CIFAR-2 (b) CNN on CIFAR-2 (c) FC on SVHN-2 (d) CNN on SVHN-2

Figure B.3. Training dynamics confined to the top eigenspace of the tangent kernel for wide
neural networks.

Training dynamics of general quadratic models and neural networks

As discussed at the end of Section 3.3, a more general quadratic model can exhibit the

catapult phase phenomenon. Specifically, we consider a general quadratic model:

g(w;xxx) = wT
φ(xxx)+

1
2

γwT
Σ(xxx)w.

We will train the general quadratic model with different learning rates, and different γ respectively,

to see how the catapult phase phenomenon depends on these two factors. For comparison, we

also implement the experiments for neural networks. See the experiment setting in the following:

General quadratic models. We set the dimension of the input d = 100. We let the

feature vector φ(xxx) = xxx/∥xxx∥ where xi ∼ N (0,1) i.i.d. for each i ∈ [d]. We let Σ be a diagonal
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matrix with Σi,i ∈ {−1,1} randomly and independently. The weight parameters w are initialized

by N (0, Id). Unless stated otherwise, γ = 10−3, and the learning rate is set to be 2.8.

Neural networks. We train a two-layer fully-connected neural networks with ReLU

activation function on 20 data points of CIFAR-2. Unless stated otherwise, the network width is

104, and the learning rate is set to be 2.8.

See the results in Figure B.4.

(a)

(b)
(a) Loss (log scaled) vs.

γ/width
(b) Tangent kernel norm

vs. γ/width
(c) Loss vs. learning

rate
(d) Tangent kernel norm

vs. learning rate

Figure B.4. General quadratic models have similar training dynamics with neural networks
when trained with super-critical learning rates. (a): experiments on general quadratic models.
Smaller γ or larger learning rates lead to larger training loss at the peak. Larger learning rates
make tangent kernel decrease more. (b): experiments on two-layer neural networks. Larger
width (corresponding to smaller γ) and larger learning rates have similar effect on the training
loss at the peak and decrease of tangent kernel norm with quadratic models. Note that width or γ

seems to have no effect on the tangent kernel norm at convergence.

Test performance of f , flin and fquad, i.e., Figure 3.2(b) and Figure 3.4

For the architectures of two-layer fully connected neural network and two-layer con-

volutional neural network, we set the width to be 5,000 and 1,000 respectively. Specific to

Figure 3.2(b), we use the architecture of a two-layer fully connected neural network.

Due to the large number of parameters in NQMs, we choose a small subset of all the

datasets. We use the first class (airplanes) and third class (birds) of CIFAR-10, which we call

CIFAR-2, and select 256 data points out of it as the training set. We use the number 0 and 2 of
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SVHN, and select 256 data points as the training set. We select 128, 256, 128 data points out of

MNIST, FSDD and AG NEWS dataset respectively as the training sets. The size of testing set is

2,000 for all. When implementing SGD, we choose batch size to be 32.

For each setting, we report the average result of 5 independent runs.

Test performance of f , flin and fquad in terms of accuracy

In this section, we report the best test accuracy for f , flin and fquad corresponding to the

best test loss in Figure 3.4. We use the same setting as in Appendix B.14.
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Figure B.5. Best test accuracy plotted against different learning rates for fquad, f , and flin. (a):
2-layer FC on MNIST trained with GD. (b): 2-layer FC on AG NEWS trained with GD.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Learning rate

0.750

0.755

0.760

0.765

0.770

0.775

0.780

0.785

B
es

tT
es

tA
cc

ur
ac

y

2-layer FC on CIFAR-2 with SGD

NN
Quadratic
Linear
Critical LR

(a)

1.0 1.5 2.0 2.5 3.0 3.5
Learning rate

0.77

0.78

0.79

0.80

B
es

tT
es

tA
cc

ur
ac

y

2-layer CNN on SVHN with GD

NN
Quadratic
Linear
Critical LR

(b)

Figure B.6. Best test accuracy plotted against different learning rates for fquad, f , and flin. (a):
2-layer FC on CIFAR-2 trained with SGD. (b): 2-layer CNN on SVHN trained with GD.

154



25 50 75 100 125 150
Learning rate

0.565

0.570

0.575

0.580

0.585

0.590
B

es
tT

es
tA

cc
ur

ac
y

2-layer FC on FSDD with GD

NN
Quadratic
Linear
Critical LR

(a)

1 2 3 4
Learning rate

0.74

0.75

0.76

0.77

0.78

B
es

tT
es

tA
cc

ur
ac

y

2-layer CNN on CIFAR-2 with GD

NN
Quadratic
Linear
Critical LR

(b)

Figure B.7. Best test accuracy plotted against different learning rates for fquad, f , and flin. (a):
2-layer FC on FSDD trained with GD. (b): 2-layer CNN on CIFAR-2 trained with GD.

Test performance of f , flin and fquad with architecture of 3-layer FC

In this section, we extend our results for shallow neural networks discussed in Section 3.4

to 3-layer fully connected neural networks. In the same way, we compare the test performance

of three models, f , flin and fquad upon varying learning rate. We observe the same phenomenon

for 3-layer ReLU activated FC with shallow neural networks. See Figure B.8 and B.9.

We use the first class (airplanes) and third class (birds) of CIFAR-10, which we call

CIFAR-2, and select 100 data points out of it as the training set. We use the number 0 and 2

of SVHN, and select 100 data points as the training set. We select 100 data points out of AG

NEWS dataset as the training set. For the speech data set FSDD, we select 100 data points in

class 1 and 3 as the training set. The size of testing set is 500 for all.

For each setting, we report the average result of 5 independent runs.
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Figure B.8. Best test accuracy plotted against different learning rates for fquad, f , and flin. (a):
3-layer FC on CIFAR-2 trained with GD. (b): 3-layer FC on SVHN-2 trained with GD.
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Figure B.9. Best test accuracy plotted against different learning rates for fquad, f , and flin. (a):
3-layer FC on FSDD-2 trained with GD. (b): 3-layer FC on AG NEWS trained with GD.

Test performance with Tanh and Swish activation functions

We replace ReLU by Tanh and Swish activation functions to train the models with the

same setting as Figure 3.4. We observe the same phenomenon as we describe in Section 3.4.
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(a) Swish activation function
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Figure B.10. Best test loss plotted against different learning rates for fquad, f , and flin. We use
2-layer FC as the architecture and train all the models on AG NEWS with GD.
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(a) Swish activation function
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(b) Tanh activation function

Figure B.11. Best test loss plotted against different learning rates for fquad, f , and flin. We use
2-layer FC as the architecture and train all the models on FSDD with GD.
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(a) Swish activation function
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Figure B.12. Best test loss plotted against different learning rates for fquad, f , and flin. We use
2-layer CNN as the architecture and train all the models on CIFAR-2 with GD.
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Figure B.13. Best test loss plotted against different learning rates for fquad, f , and flin. We use
2-layer CNN as the architecture and train all the models on SVHN with GD.
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Appendix C

Chapter 4 Supplementary

C.1 The critical learning rate can be well approximated
using NTK for wide neural networks

In this section, we show that the critical learning rate ηcrit := 2
λmax(HL ) can be well

approximated using NTK, i.e., η̃crit := n
λmax(K)(w) . Note that ∥K∥= λmax(K)(w).

Approximation of the critical learning rate using NTK during training with a small
constant learning rate

For MSE L (w;X) = 1
n ∑

n
i=1( f (w;xi)− yi)

2, we can compute its HL by the chain rule:

HL (w) =
2
n

n

∑
i=1

(
∂ f (w;xi)

∂w

)T
∂ f (w;xi)

∂w
︸ ︷︷ ︸

A (w)

+
2
n

n

∑
i=1

( f (w;xi)− yi)
∂ 2 f (w;xi)

∂w2
︸ ︷︷ ︸

B(w)

.

Assume ∥xxxi∥= O(1) and |yi|= O(1) for all i ∈ [n]. For B(w0), by random initialization

of weights w0, with high probability, we have | f (w0;xi)− yi|= O(logm), and
∥∥∥∂ 2 f (w0;xi)

∂w2

∥∥∥
2
=

Õ(1/
√

m) [66, 123] where m denotes the width of the network. Therefore, by the union bound,

with high probability, we have B(w0) = Õ(1/
√

m).

Note that λmax(A (w)) = 2
nλmax(K(w)) for any w. Combining all the bounds together,
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we have
∣∣λmax(HL )(w0)− 2

nλmax(K)(w0)
∣∣= Õ(1/

√
m). Then we have

|ηcrit − η̃crit|=
∣∣∣∣

2
λmax(HL )(w0)

− n
λmax(K)(w0)

∣∣∣∣= Õ(1/
√

m)

as long as λmax(K)(w0) = Ω(1), which is true with high probability over random initialization

for wide networks [82, 12].

For wide neural networks trained with a small constant learning rate,
∥∥∥∂ 2 f (w0;xi)

∂w2

∥∥∥
2
=

Õ(1/
√

m) holds during the whole training process of GD/SGD, hence this approximation

holds [66].

Approximation of the critical learning rate using NTK during training with a large
learning rate

In this section, we provide further evidence for SGD that η̃crit approximates ηcrit during

training even with a large learning rate. Recall that η̃crit = b/λmax(K(w;Xbatch)) where b is the

batch size. We consider the same network architectures as the shallow network in Figure 4.6 and

deep networks in Figure 4.7.

We can see Figure C.1 shows that ηcrit is close to η̃crit during training with SGD.
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Figure C.1. Validation of ηcrit ≈ η̃crit during SGD with catapults. Plot of points (ηcrit, η̃crit) at
each iteration of SGD for the shallow network, 5-layer FCN and CNN. The models are trained
on 128 data points from CIFAR-10 by SGD with batch size 32. The settings are the same with
Table 4.2.
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C.2 Additional experiments for the catapult in GD

Catapults occur in the top eigenspace of NTK

In this section, we provide additional empirical evidence to justify Claim 1. In particular,

we consider three neural network architectures: a 5-layer Fully Connected Neural Network

(FCN), a 5-layer Convolutional Neural Network (CNN), and Wide ResNets 10-10; and three

datasets CIFAR-10, SVHN, and a synthetic dataset. For the synthetic dataset, we consider the

rank-2 regression task with training size 128.

From the experimental results, we can see that for a large learning rate that causes catapult

dynamics, the loss spike occurs in the top eigenspace of the tangent kernel. See Figure C.2 for 5-

layer FCN and CNN on CIFAR-10 dataset and C.3 one SVHN dataset, and C.4 for Wide-ResNets

on CIFAR-10 dataset.

We further show Claim 1 holds for multidimensional outputs in Figure C.5. In particular,

for k-class classification tasks, we project the flattened vector of predictions of size kn to the top

eigenspaces of the empirical NTK, which is of size kn× kn. Correspondingly, we empirically

observe that catapults occur in the top ks eigenspace with a small s.
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Figure C.2. The training loss and the spectral norm of the tangent kernel during catapult for
5-layer FCN (a) and CNN (b) on CIFAR-10 dataset. Both networks are trained under the same
experimental setting with Figure 4.3.
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Figure C.3. Catapult dynamics for 5-layer FCN (a-b) and CNN (c-d) on SVHN dataset. Panel
(a) and (c) are the training loss and the spectral norm of the tangent kernel with learning rate
6.0 and 3.0 respectively, and Panel (b) and (d) are the training loss decomposed into the top
eigendirections of the tangent kernel, L≤5 and the remaining eigendirections, L>5. All the
networks are trained on a subset of SVHN with 128 data points. In this experiment, the critical
learning rates for FCN and CNN are 3.4 and 1.6 respectively.
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Figure C.4. Catapult dynamics for FCN (a-b) on a synthetic dataset and Wide ResNets 10-10
(c-d) on CIFAR-10 dataset. Panel (a) and (c) are the training loss and the spectral norm of the
tangent kernel with learning rates 5.0 and 3.0 respectively, and Panel (b) and (d) are the training
loss decomposed into the top eigendirections of the tangent kernel, L≤5 and the remaining
eigendirections, L>5. For the synthetic dataset, we use the rank-2 regression task considered in
Section 4.4. The size of the training set is 128. In this experiment, the critical learning rates for
FCN and WRN are 1.9 and 1.5 respectively.
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Figure C.5. Catapult dynamics for 5-layer FCN (a-b) and CNN (c-d) on multiclass classification
tasks. Panel (a) and (c) are the training loss and the spectral norm of the tangent kernel with
learning rate 100 and 80 respectively, and Panel (b) and (d) are the training loss decomposed
into the top eigendirections of the tangent kernel, L≤5 and the remaining eigendirections, L>5.
All the networks are trained on a subset of CIFAR-10 with 10 classes. Here the dimension of
the eigenspace s = 1,3,5 refers to 10,30,50 respectively due to the output dimension 10. The
critical learning rate for FCN and CNN are 34 and 16 respectively.

Multiple catapults in GD occur in the top eigenspace of NTK

For the multiple catapults shown in Figure 4.4, similar to a single catapult, we show that

the catapults occur in the top eigenspace of NTK. See Figure C.6.
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Figure C.6. Multiple catapults in GD with increased learning rates. With the same setting of
Figure 4.4, the training loss is decomposed into the top eigendirections of the tangent kernel,
L≤10 and the remaining eigendirections, L>10

.

Multiple catapults allow a larger learning rate at convergence

Corresponding to Figure 4.4 in Section 4.3, we show that if the neural networks are

trained with the learning rate at the convergence, i.e., after multiple catapults, the GD will

diverge.
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Figure C.7. GD diverges when trained with the learning rate after multiple catapults. Corre-
sponding to Figure 4.4, we train the model using GD with learning rate at convergence, 60 and
40 respectively for the 5-layer FCN and CNN.
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C.3 Additional experiments for catapults in SGD

Full training process visualization corresponding to Figure 4.7

We present the complete training loss and the spectrum norm of the NTK corresponding

to Figure 4.7(c,d) in Figure C.8.
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(a) Wide ResNets 10-10
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Figure C.8. Catapult dynamics in SGD for modern deep architectures corresponding to the
whole training process. These are complete versions corresponding to Figure 4.7(c,d). The
training loss is decomposed based on the eigendirections of the NTK: L≤1 and L>1.

Catapults in SGD with Pytorch default parameterization

In Figure 4.7, we used NTK parameterization (see the definition in Appendix C.6) for the

neural networks. We further validate our empirical observations on (1) the occurrence of the loss

spikes of SGD in the top eigenspace of the tangent kernel and (2) the decrease in the spectral norm

of the tangent kernel during loss spikes in the setting with Pytorch default parameterization, under

which the wide networks are still close to their linear approximations [66, 116] in Figure C.9.
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(d) ViT-4

Figure C.9. Cataput dynamics in SGD for modern deep architectures with Pytorch default
parameterization. The tasks are the same with Figure 4.7 except that we use Pytorch default
parameterization. The training loss is decomposed based on the eigendirections of the NTK:
L≤1 and L>1.

Catapults in SGD with additional datasets

We show that the findings in Figure 4.7 hold for a subset of SVHN dataset (see Fig-

ure C.10) and for a larger dataset (5,000 data points from CIFAR-2) and for multi-class classifi-

cation problems (see Figure C.11).
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(c) Wide ResNets 10-10 (zoomed-in)
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Figure C.10. Cataput dynamics in SGD for modern deep architectures on 2-class SVHN. The
tasks are the same with Figure 4.7 except that we train the neural networks on a subset of SVHN
dataset. The training loss is decomposed into the top eigenspace of the tangent kernel L≤1 and
its complement L>1. Here L = L≤1 +L>1.
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(b) 5-layer CNN
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(c) Myrtle network [77]

Figure C.11. Catapult dynamics in SGD for large datasets (Panel (a) and (b)) and multi-class
classification problems (Panel(c)). Panel(a,b): The networks are trained on 5,000 data points
from CIFAR-2. Panel(c): The network is trained on 128 points from CIFAR-10. The training
loss is decomposed into the top eigenspace of the tangent kernel L≤1 and its complement L>1.
Here L = L≤1 +L>1.

Catapults occur in training with cyclical learning rates

In this section, we show that catapults occur in SGD with a cyclical learning rate schedule.

Specifically, we show that loss spikes occur in the top eigenspace of the tangent kernel and there

is a decrease in the spectral norm of the tangent kernel according to each loss spike.
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(b) Loss decomposition

Figure C.12. Catapults in SGD with cyclical learning rates. Panel (a): The plot of the training
loss and the spectral norm of the tangent kernel corresponding to the whole training set with a
cyclic learning rate schedule. Panel (b): The training loss is decomposed into the top and non-top
eigenspace of the tangent kernel, i.e.,L≤1 and L>1. Here L = L≤1 +L>1. We train Wide
ResNets 10-10 on a subset of CIFAR-10. The setting is the same with Figure 4.7c.

C.4 Additional experiments for feature learning in GD

Validation loss/error for multiple catapults corresponding to Figure 4.8

We present the validation loss/error in Figure C.13 for the tasks corresponding to Fig-

ure 4.8. The learning rate is increased during training to generate multiple catapults.
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Figure C.13. Validation loss/error of multiple catapults in GD corresponding to Figure 4.8.
Panel(c)&(d) only present first 200 iterations.

Feature learning with near zero initialization

We compare the performance of networks exhibiting multiple catapults with those

initialized using near zero initialization scheme, i.e., each weight is sampled i.i.d. from N (0,σ2)

with σ = 0.1. This is in contrast to the NTK parameterization where we use σ = 1. It was

argued in [116] that feature learning occurs with near zero initialization. We can see that small

initialization achieves the smallest test loss/error as well as the best AGOP alignment, which

indicates that learning AGOP correlates strongly with the test performance.
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Figure C.14. Multiple catapults in GD compared to the near zero initialization scheme. We
train a 2-layer FCN in Panel(a), a 4-layer FCN in Panel(b,d) and a 5-layer CNN in Panel(c).
For near zero initialization, each weight parameter is i.i.d. from N (0,σ2) with σ = 0.1. The
experimental setup is the same as Figure 4.8.

For the Rank-2 regression task, we visualize the AGOP in the following Figure C.15,

where we can see that the features are learned better, i.e., closer to the True AGOP, with a greater

number of catapults.
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Figure C.15. Visualization of AGOP for rank-2 regression task. All pixels are normalized to the
range [0,1] and the top 10 rows and columns of the AGOP are plotted.

Feature learning in GD for additional datasets

In this section, we show the findings observed in Figure 4.8 hold for Rank-4 regression,

USPS dataset and Fashion MNIST dataset. See Figure C.16.
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Figure C.16. Correlation between AGOP alignment and test performance in GD with multiple
catapults on additional datasets. We train a 4-layer FCN using GD for all tasks. The learning
rate is increased multiple times during training to generate multiple catapults. Experimental
details can be found in Appendix C.6.

No feature learning for full rank task

In Figure C.17, we show that for a full-rank task where the target function is f ∗(xxx) =

1√
d
∥xxx∥, catapults do not improve the test performance or the AGOP alignment.
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Figure C.17. Multiple catapults in GD for a full rank task. We train a 2-layer FCN on a
synthetic dataset with a full rank target function f ∗(xxx) = 1√

d
∥xxx∥ using GD.The learning rate is

increased multiple times during training to generate multiple catapults. The experimental details
can be found in Appendix C.6.

C.5 Additional experiments for feature learning in SGD

Feature learning of catapults in SGD with Pytorch parameterization

In this section, we further verify our observation on the feature learning of SGD with

Pytorch default parameterization on the same tasks with Figure 4.9 in Section 4.4.
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Figure C.18. Correlation between AGOP alignment and test performance in SGD with Pytorch
default parameterization. The tasks are the same with Figure 4.9 except that we use Pytorch
default parameterization.
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Validation loss/error of SGD corresponding to Figure 4.9
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Figure C.19. Validation loss/error corresponding to Figure 4.9. Panel(c) presents the validation
error from iteration 4000.
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Figure C.20. Validation loss/error with Pytorch default parameterization corresponding to
Figure C.18. Panel(c) presents the validation error from iteration 2000.

Feature learning in SGD for additional datasets

In this section, we show the findings observed in Figure 4.9 hold for Rank-4 regression,

USPS dataset and Fashion MNIST dataset. See Figure C.21.
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Figure C.21. Correlation between AGOP alignment and test performance in SGD. We train a
4-layer fully connected neural network using SGD.

Verification of catapults in SGD

In Figure C.22, we verify that the spikes in the training loss of SGD with small batch

sizes are caused by catapult dynamics. Specifically, we show that the spikes occur in the top

eigendirection of the NTK.
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Figure C.22. Verification of catapult dynamics: loss decomposition of Rank-2 and Rank-4
regression tasks corresponding to Figure 4.9 with batch size 5. The training loss is decomposed
into the top eigenspace of the tangent kernel L≤1 and its complement L>1. Here L = L≤1 +
L>1.
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No feature learning with a small learning rate for SGD

In Figure 4.9, we have shown that a smaller batch size leads to more catapults, hence

resulting in better test performance. In this section, we show that the test performance with

different batch sizes is similar when training with a small learning rate, where no catapults occur.

This further verifies that a greater number of catapults accounts for better test performance for

small batch sizes. See Figure C.23.
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Figure C.23. The networks are trained with a smaller learning rate corresponding to Figure C.19a
&b. We train the network with a learning rate 0.1.

C.6 Experimental details

For all the networks considered in this paper, we use ReLU activation functions. We

parameterize the networks by NTK parameterization [46]. Note that NTK parametrization is

widely used for understanding neural networks [63, 21, 65]. We also verify our results with

Pytorch [87] default parameterization for the experiments shown in Figure C.9 and C.18.

NTK parameterization. Given a neural network with NTK parameterization, all the

trainable weight parameters are i.i.d. drawn from N (0,1). For a fully connected layer, it takes

the form

f ℓ+1 = ReLU

(
1√
mℓ

W ℓ f ℓ+bℓ
)
,
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where W ℓ ∈ Rmℓ+1×mℓ, f ℓ ∈ Rmℓ,bℓ ∈ Rmℓ+1 . For a convolutional layer, it takes the form

f ℓ+1
i, j,k = ReLU


 1√

mℓs2

⌈ s+1
2 ⌉

∑
p=0

⌈ s+1
2 ⌉

∑
q=0

mℓ

∑
o=1

W ℓ
p,q,o,k f ℓi−⌈ s−1

2 ⌉, j−⌈ s−1
2 ⌉,o +bℓk


 ,

where W ℓ ∈Rs×s×mℓ×mℓ+1, f ℓ ∈Rh×w×mℓ,bℓ ∈Rmℓ+1 . Note that s is the filter size and we assume

the stride to be 1 in this case. For f ℓ with negative indices, we let it be 0, i.e., zero padding. For

the output layer, we use a linear layer without activation functions.

Dataset. For the synthetic datasets, we generate data {(xxxi,yi)}n
i=1 by i.i.d. xxxi ∼

N (0, I100) and yi = f ∗(xxx)+ ε with ε ∼ N (0,0.12). For two real-world datasets, we con-

sider a subset of CelebA dataset with glasses as the label, the Street View House Numbers

(SVHN) dataset, USPS dataset and Fashion MNIST dataset. Due to computational limitations

with GD, for some tasks, we select two classes (number 0 and 2) of SVHN dataset, USPS dataset

and Fashion MNIST dataset.

EGOP (Epexcted Gradient Outer Product). Note that for these low-rank polynomial

regression tasks, we know the analytical form of target functions hence we can calculate the

EGOP by G∗ = Exxx
∂ f ∗
∂xxx

∂ f ∗
∂xxx

T
. For real-world datasets, we estimate the EGOP by using the AGOP

of one of the state-of-the-art models f̂ that achieve high test accuracy: Ĝ = 1
n ∑

n
i=1

∂ f̂
∂xxxi

∂ f̂
∂xxxi

T
.

In the following, we provide the detailed experimental setup for each experiment. Note

that in the classification tasks, i.e. CelebA and SVHN datasets, the test error refers to the

classification error on the test split.

Experiments in Section 4.3

Figure 4.3: We use a 2-class subset of CIFAR-10 dataset [59] (class 7 and class 9) and

randomly select 128 data points out of it. For the network architectures, we use a 5-layer FCN

with width 1024 and 5-layer CNN with 512 channels per layer. For CNN, we flatten the image

into a one-dimensional vector before the last fully connected layer.

Figure 4.4: We use the same training tasks as in Figure 4.3. For FCN, we start with a
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learning rate 6 and we increase the learning rate to [10,15] at iteration [15,60]. For CNN, we

start with a learning rate 8 and we increase the learning rate to [15,20] at iteration [10,40].

Figure 4.5: We consider a synthetic dataset (xi,yi) where xi are sampled i.i.d. on unit

sphere and yi = 1 with training size and dimension both equal to 100. We train a wide two-layer

ReLU network with second-layer weights fixed, using SGD with batch size one. The critical

learning rate ηcrit(xi) for (a minibatch of size one) xi is proportional to 1/∥xi∥2
2 = const. We

select one data point (x∗,y∗) from the training set and multiply both x∗ and y∗ by 2. This makes

the critical learning rate corresponding to the sample x∗ four times smaller. We choose the

(constant) learning rate η between the critical learning rate of (the mini-batch) x∗ and the critical

learning rates of the rest of the data points. Thus SGD with learning rate η induces catapult on

x∗ but not on any other data points.

Figure 4.6: For the shallow network, we use a 2-layer FCN with width 1024. We train

the model on 128 data points from CIFAR 2 using SGD with batch size 32. We use a constant

learning rate 0.8. We stop training when the training loss is less than 10−3.

Table 4.2: The 5-layer FCN and CNN are the same as in Figure 4.3. We train the model

on 128 data points from CIFAR 2 using SGD with batch size 32. We use a constant learning rate

6 and 8 for 5-layer FCN and CNN respectively. We stop training when the training loss is less

than 10−3.

Figure 4.7: The 5-layer FCN and CNN are the same as in Figure 4.3. And we use

the standard Wide ResNets 10-10 and ViT-4 architectures. The learning rates for 5-layer FCN,

5-layer CNN, are 6,8,3,0.2 respectively. We train the model with a constant learning rate, and

we stop training when the training loss is less than 10−3. All the models are trained on 128 data

points from CIFAR-2 using SGD with batch size 32.

Experiments in Section 4.4

Figure 4.8: For rank-2 task, we train a 2-layer FCN with width 1024. The size of the

training set, testing set and validation set are 2000,5000 and 5000 respectively.
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For rank-3 task, CelebA tasks, we train a 4-layer FCN with width 256. The size of the

training set, testing set and validation set are 1000,5000 and 5000 respectively.

For SVHN-2 tasks, we train a 5-layer CNN with width 256. We select class 0 and class 2

out of the full SVHN datasets as SVHN-2. The size of the training set, testing set and validation

set are 1000,5000 and 5000 respectively.

We increase the learning rate during training. For Rank-2 task, we increase the learning

rate to [8,16,30,50,75,80] at iteration [50,150,220,280,350,400]. For Rank-3 task, we increase

the learning rate to [40,100,150] at iteration [20,60,80]. For SVHN-2 task, we increase the

learning rate to [30,60,90] at iteration [10,35,50]. For CelebA task, we increase the learning

rate to [40,70,100] at iteration [10,35,50]. We decay the learning rate if necessary after the

catapult to avoid extra catapults until the end of training.

Figure 4.9: For both Rank-2 and Rank-3 tasks, we let the size of training set, testing set

and validation set be 2000,5000 and 5000. For the SVHN task, we train the full SVHN using

the 5-layer Myrtle network. For the CelebA task, we train the full 2-class CelebA dataset with

glasses feature using 4-layer FCN with width 256. To obtain the true AGOP, we use one of the

SOTA models (WideResNet 16-2) which achieves 97.2% test accuracy on SVHN and 5-layer

Myrtle network which achieves 95.7% test accuracy on CelebA.

We use the same learning rate across batch sizes for each task. The learning rate is chosen

as 1
2ηcrit corresponding to the whole training set. For SVHN and CelebA tasks, we estimate

ηcrit using a subset with size 5000 of the whole training set. We train the model with batch size

[5,10,50,100,2000]. For all tasks, we stop training when the training loss is less than 10−3. We

report the average of 3 independent runs.

Figure 4.11: We use the same network architectures and training/validation/testing sets

as in Figure 4.8.

For all the tasks, except for GD, all the optimizers use a mini-batch size 100.

We stop training when the training loss is less than 10−3. We report the average of 3

independent runs.
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For the rank-2 task and rank-4 task, we know the target function hence we can analytically

compute the exact true AGOP. For SVHN-2 task and CelebA task, to estimate the true AGOP, we

use one of the SOTA models, Myrtle-5 which achieves 98.4% test accuracy on two-class SVHN

dataset and 95.7% test accuracy on CelebA dataset.

The following table is the learning rate we choose for the experiments:

Table C.1. Choice of learning rates for Figure 4.11.

Task SGD GD SGD+M Adadelta Adagrad RMSprop Adam

Rank-2 2.0 2.0 2.0 2.0 0.1 10−2 10−2

Rank-3 2.0 2.0 2.0 2.0 10−2 10−2 10−3

Rank-4 1.0 1.0 1.0 1.0 5×10−3 10−3 10−3

SVHN-2 5.0 5.0 5.0 5.0 5×10−3 10−4 10−3

CelebA 10.0 10.0 10.0 10.0 5×10−3 10−3 10−3

The experiment is to demonstrate the correlation between AGOP alignment and test

performance. For this reason, we did not fine-tune the learning rate to achieve the best test

performance.

Experiments in Appendix C.3

Figure C.5: We use the same network architectures as in Figure 4.3 and we train 128

data point from CIFAR-10.

Figure C.10: We use the same setting as Figure 4.7, except we train the networks on 128

data points from SVHN-2(number 0 and 2).

Figure C.11: For panel(a) and panel(b), we train the same 5-layer FCN and CNN as

in Figure 4.3 and on 5,000 data points from CIFAR-2. For panel(c), we train a 5-layer Myrtle

network on 128 points from CIFAR-10.
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Experiments in Appendix C.4

Figure C.16: For rank-4 task, USPS dataset and Fashion MNIST dataset, we train a

4-layer FCN with width 256. The size of the training set, testing set and validation set are

1000,5000 and 5000 respectively.

For rank-4 task, we increase the learning rate to [15,40,60] at iteration [50,75,110]. For

USPS dataset, we increase the learning rate to [15,30,40] at iteration [10,30,45]. For Fashion

MNIST dataset, we increase the learning rate to [10,40,55] at iteration [6,20,30].

Figure C.17: We train a 2-layer FCN with width 1024. We consider a synthetic dataset,

where f ∗(xxx) = 1√
d
∥xxx∥. The size of the training set and validation set is 128,2000 respectively.

During training, we start with lr=6 and increase the learning rate to [7,12,40,80] at iteration

[30,120,180,280].

Experiments in Appendix C.5

Figure C.18: We use the same setup with Figure 4.9 except that all the networks are

parameterized with Pytorch default parameterization. The learning rates are 0.01, 0.01, 0.05 and

1.0 for each task.

Figure C.21: For rank-4 task, USPS dataset and Fashion MNIST dataset, we train a

4-layer FCN with width 256. The size of the training set, testing set and validation set are

2000,5000 and 5000 respectively. We add 10% label noise for the USPS dataset and Fashion

MNIST dataset. To obtain the true AGOP, we use one of the SOTA models (5-layer CNN) which

achieves 99.2% test accuracy on USPS and 5-layer Myrtle network which achieves 91.8% test

accuracy on Fashion MNIST.
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