UC Merced UC Merced Undergraduate Research Journal

Title

Exploring Pesticide Effects On Hematopoiesis and the Thymus

Permalink

https://escholarship.org/uc/item/5c43k31j

Journal

UC Merced Undergraduate Research Journal, 17(1)

Authors

Young, Jada Mari C. Manilay, Jennifer O.

Publication Date

2024

DOI 10.5070/M417164599

Copyright Information

Copyright 2024 by the author(s). This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License, available at https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed|Undergraduate

Issue 17, Volume 1 December 2024

Exploring Pesticide Effects on Hematopoiesis and the Thymus

Jada Mari C. Young and Jennifer O. Manilay, PhD

ACKNOWLEDGEMENTS

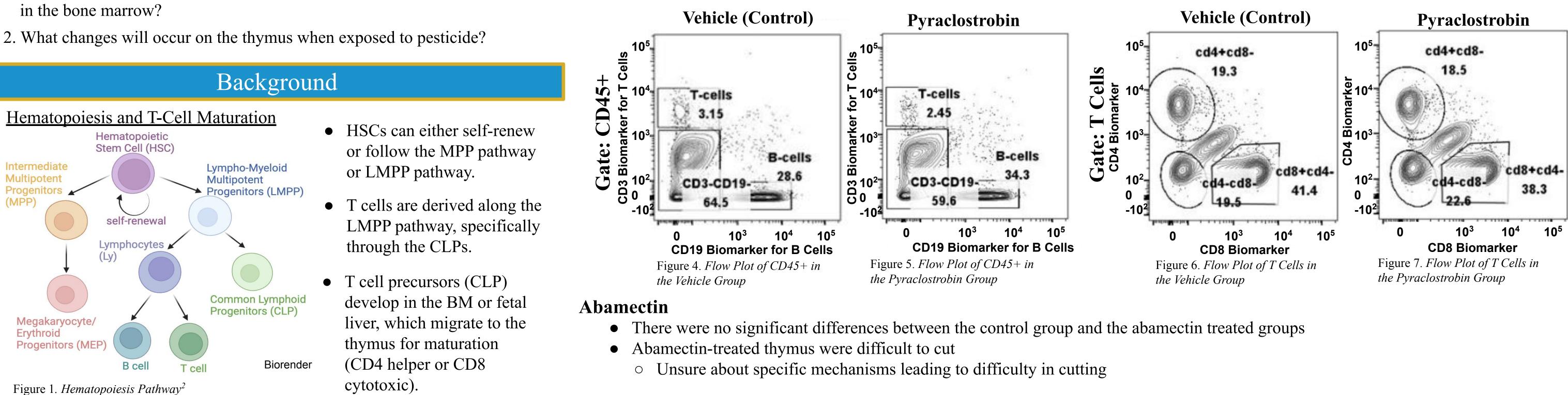
Thank you to TUSCEB and CIRM for funding this project (COMPASS Training Grant, EDUC5-13686). I'd like to thank Dr. Manilay, Dr. Rimando, Dr. Gravano, and DARS staff for teaching the techniques needed for this project. I also want to thank the lab mates in this pesticide project.

Exploring Pesticide Effects On Hematopoiesis and the Thymus Engineering and Biology

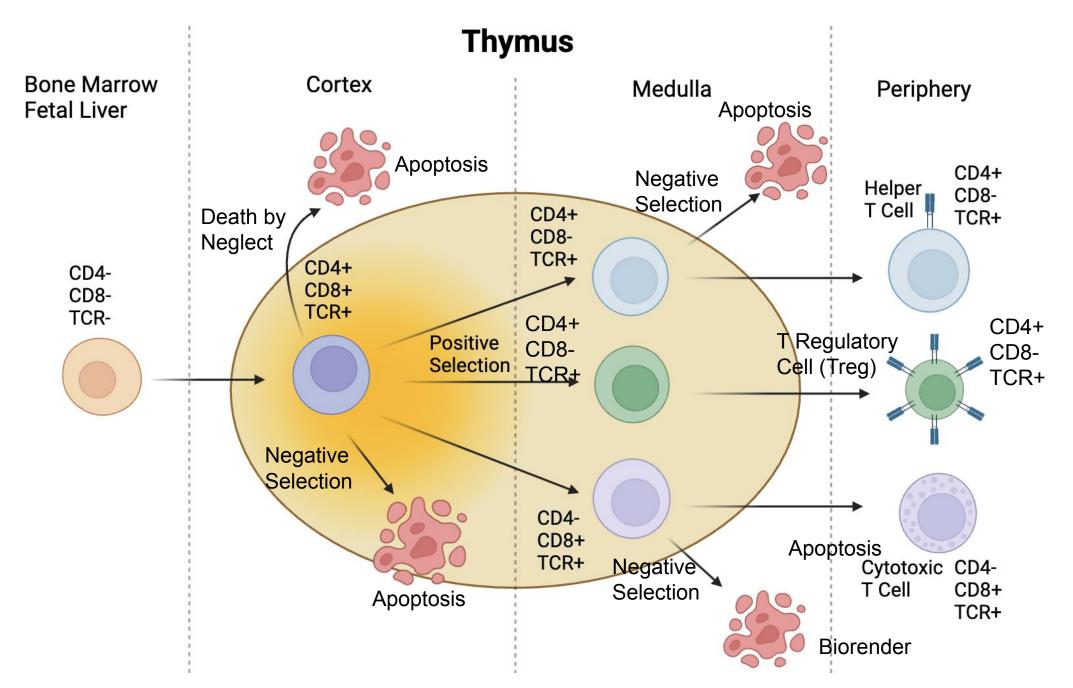
Abstract

INTRODUCTION: Hematopoiesis in the bone marrow (BM) produces red blood cells, platelets, or various white blood cells. Common lymphocyte progenitors in the BM can migrate to the thymus to form T lymphocytes, a type of immune cell. In some cases, bone marrow failure (BMF) arises from impairments in hematopoiesis and results in the inability to produce necessary blood cells. California's Central Valley has a high exposure to pesticides due to agriculture. Past research shows correlations between leukemia and high pesticide exposure, but surprisingly, there has been little published research regarding the direct effects of pesticides on BMF. This study aims to use mouse models to aid our understanding of the molecular effects of two pesticides, abamectin and pyraclostrobin, on hematopoiesis. In previous studies, abamectin led to weight loss while pyraclostrobin led to weight gain.

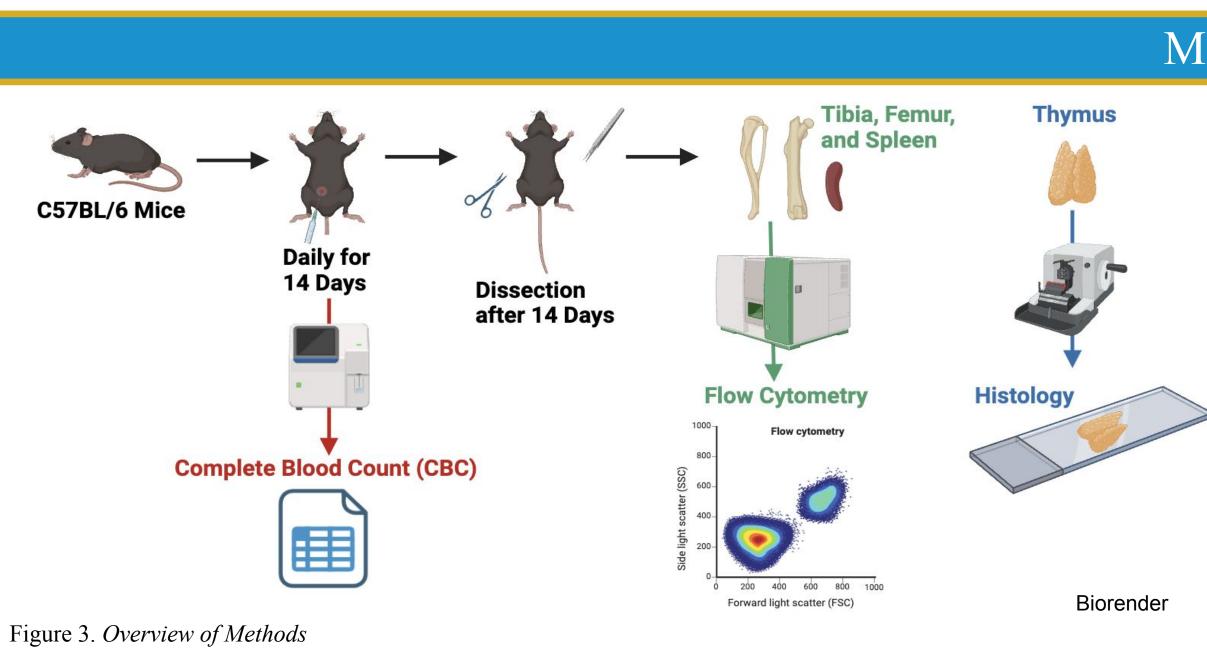
HYPOTHESIS: We hypothesize that changes in the BM due to pesticide exposure may result in lower numbers of T lymphocytes.


METHODS: We exposed 8-week-old C57BL/6 mice to pyraclostrobin or abamectin for 14 days via intraperitoneal injections and monitored their health with routine weighing and complete blood cell analysis using a Hemavet cell counter. After 14 days, we collected BM and spleen cells for flow cytometric analysis on a ZE5 Cell Analyzer and the thymus for histology.

RESULTS: We expect to see a decrease in T lymphocytes in the periphery and impairments in the thymus structure.


CONCLUSION: For future work, this study hopes to uncover underlying mechanisms of BMF, possible disease mitigation strategies, and encourage safer policies for pesticide use.

Research Question


- 1. How do pesticides affect hematopoiesis and T lymphocytes in the bone marrow?

• CD8 T cells secrete cytokines and kill pathogens. If a T cell expresses high self-reactivity, it undergoes apoptosis or become Tregs¹

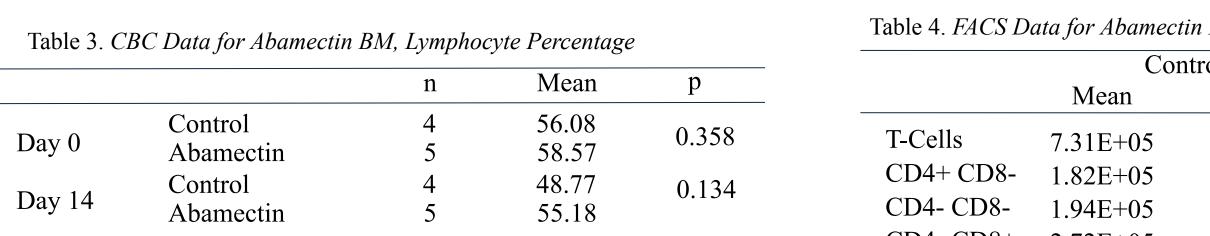
Jada Mari C. Young and Jennifer O. Manilay, PhD School of Natural Sciences, University of California, Merced

- Since this is a pilot experiment and doesn't have sufficient repeat experiments, it was decided that p values less than 0.1 but approaching 0.05 are statistically significant

Pyraclostrobin

Note. ****** p < 0.05

- There were significant differences in the lymphocyte % between mice in the control group and the pyraclostrobin group at Day 14, p = 0.047
- Day 0 has been disregarded since no significant changes should occur on the first day of treatment


 Table 1. CBC Data for Pyraclostrobin BM, Lymphocyte Percentage

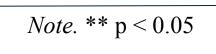
		n	Mean	р
Day 0	Control	4	51.87	0.077
	Pyraclostrobin	5	58.11	0.077
Day 14	Control	4	66.32	0.047**
	Pyraclostrobin	5	61.36	

- There were significant differences between CD4+ CD8- control and pyraclostrobin treated groups, p = 0.026
- There were significant differences between CD4- CD8- control and pyraclostrobin treated groups, p = 0.086

 Table 2. FACS Data for Pyraclostrobin BM

	Control		Pyraclostrobin		
	Mean	SD	Mean	SD	р
T-Cells	6.99E+05	8.78E+04	5.21E+05	1.18E+05	0.173
CD4+ CD8-	1.52E+05	5.56E+03	1.01E+05	1.60E+05	0.026**
CD4- CD8-	1.36E+05	1.71E+04	1.12E+05	4.27E+05	0.086**
CD4- CD8+	3.08E+05	9.34E+03	2.07E+05	1.23E+05	0.352

2 101-CD19-CD3-


54.4

the Abamectin Group

 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5}

Figure 11. *Flow Plot of CD45+ in*

CD19 Biomarker for B Cells

CD19- CD3-

the Vehicle Group

 10^0 10^1 10^2 10^3 10^4

CD19 Biomarker for B Cells

Figure 10. *Flow Plot of CD45+ in*

℃ ⊢ 10⁴

D ⁴

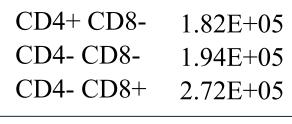
te:

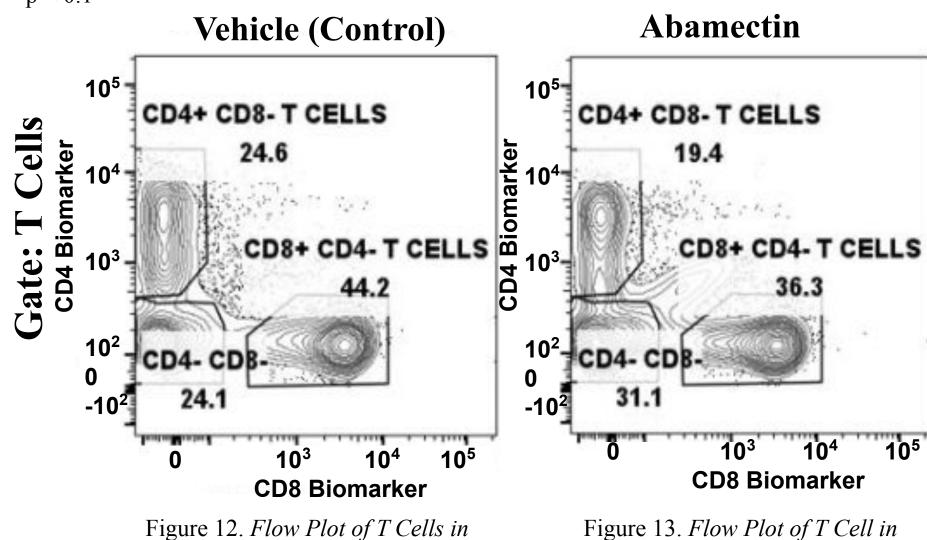
Vehicle (Control)

T CELLS

5.51

B CELLS




T CELLS

3.32

B CELLS

37.0

the Vehicle Group

Methods

Pesticide Effect on Bone Marrow, Weight, and the Thymus

- High pesticide usage leads to public health concerns due to pesticides' effects; BN
- is sensitive to pesticide effects and can lead to hypoplastic/aplastic marrow failure
- Abamectin (insecticide) leads to weight loss⁵ with unknown effects on the thymu
- Pyraclostrobin (fungicide) leads to weight gain due to triglyceride accumulation and blocking of Electron Transport Chain (ETC) III⁶
- Arises from mitochondrial dysfunction, leading to metabolic syndrome \circ Leads to atrophy in the thymus, specifically a decrease in size⁴

Overview of Complete Blood Count (CBC), Flow Cytometry, and Histology

- **CBC** to analyze changes in blood cell parameters, such as white blood cells
- Flow cytometry to analyze cell populations in the bone marrow
- Histology to analyze anatomical changes in the thymus, a primary lymphoid orga consisting of two lobes.

Results

• Independent-samples T-test was used to examine Lymphocyte Percentage differences between mice in control groups, and mice in pyraclostrobin or mice in abamectin groups

n	BM
tr	പ

trol Abamectin			
SD	Mean	SD	р
2.93E+05	1.69E+07	2.77E+07	0.493
6.94E+04	2.51E+06	4.05E+06	0.497
4.57E+04	6.57E+06	1.09E+07	0.492
2.02E+05	5.61E+06	9.20E+06	0.493

Figure 13. Flow Plot of T Cell in the Abamectin Group

Figure 8. Thymus 10, Control Group, 4X magnifica

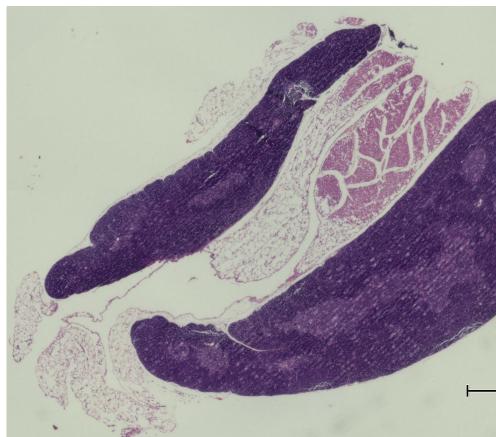


Figure 9. Thymus 30, Pyraclostrobin Group, 4X Ma • Pyraclostrobin-treated thymus is sr

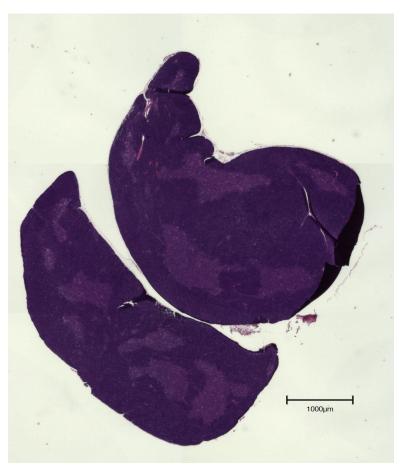


Figure 14. Thymus 1, Control Group, 4X magnifi

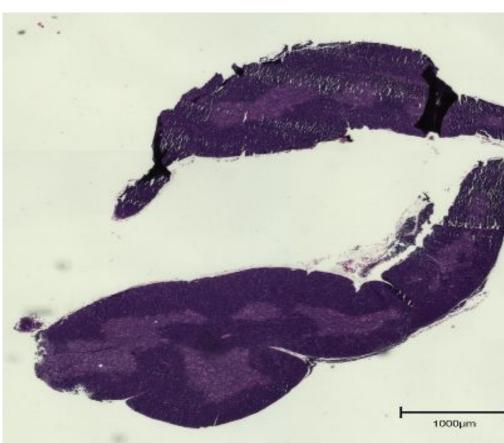



Figure 15. Thymus 30, Abamectin Group, 4X Magnification

	Conclusion
M re ³	• Pyraclostrobin CBC data shows a decrease in lymphocytes at day 14 and statistically significant (p < 0.05)
S	• Abamectin CBC data at day 14 shows no lymphocyte changes
	 By using flow cytometry, specific T cell populations are determined CD4+ CD8- and CD4- CD8- T cell populations in BM were decreased in pyraclostrobin-treated mice
n	• Longer exposure may be required to observe changes in other parameters/cell populations
	Future Directions
	• Use same experimental setup with different pesticides and/or different aged mice
rtex	• Use different exposure method instead of injections (i.e., dermal)
	• Perform a more in-depth experiment on the effects of abamectin or pyraclostrobin on mice, such as longer exposure
	• Quantify the thymus subsets by FAC
- Blood Cells	• Enumerate and test function of Th1, Th2, Th17 and Tregs in the peripheral immune organs
ion	References
100μm gnification	 Abbas et al. Cellular and Molecular Immunology 2018; 9th edition Belyavsky et al. IJMS 2021; 22(17): 9231. doi.org/10.3390/ijms22179231 Chatterjee et al. IJSC 2010; 3(1): 54-62. doi.org/10.15283/ijssc.2010.3.1.54 Hobbie et al., NTP Nonneoplastic Lesion Atlas, Thymus – Atrophy 2014 Joint FAO/WHO Meeting on Pesticide Residues, Pesticide residues in food – 2015 Luz et al. Toxicology 2018; 393: 150-159. doi.org/10.1016/j.tox.2017.11.010
naller	Acknowledgements
	Thank you to TUSCEB and CIRM for funding this project (COMPASS Training Grant, EDUC5-13686). I'd like to thank Dr. Manilay, Dr. Rimando, Dr. Gravano, and DARS staff for teaching the techniques needed for this project. I also want to thank the lab mates in this pesticide project.
	Contact
cation	

