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Protein kinases must recognize their proper target substrates and 
regulators from among a large number of proteins in the cell1. How 
specificity is achieved is a critical question, given the prominent role 
of phosphorylation in signal transduction and the misregulation of 
kinase activity in disease2. In the cell cycle, CDKs process signals 
that lead to cell division3. Hundreds of CDK substrates have been 
identified in proteomic screens, and CDK phosphorylation alters the 
location, interactions, stability and activity of these target proteins4,5. 
A deregulated cell cycle is a hallmark of cancer, thus emphasizing the 
need for tight coordination of CDK activity6. Still, many questions 
remain regarding how regulatory proteins recognize CDKs and how 
CDKs discriminate among substrates to phosphorylate them in the 
appropriate order and at the appropriate times in the cell cycle.

The CDK complex is composed of the kinase subunit, the cyclin 
subunit and Cks. The active site of the kinase recognizes a mini­
mum consensus sequence of (S/T)P and an optimal consensus of 
(S/T)PX(R/K)7. In addition to activating the kinase domain, the 
cyclin subunit binds docking sequences present in some substrates 
and confers specificity8–10. Although Cks is essential for viability, and 
its deregulated expression correlates with tumorigenesis and poor 
cancer prognosis, its particular molecular functions have been less 
clear11–17. Genetic analysis has shown that Cks genes regulate cell 
growth and division11,12,15. In addition to binding CDK and influ­
encing kinase function, Cks has been implicated in other cellular pro­
cesses such as transcription and the degradation of the CDK inhibitor  
p27 (refs. 18–21).

Several studies have suggested that Cks associates with phospho­
rylated cell cycle–regulator proteins and has a role in CDK multisite 
phosphorylation. Multisite phosphorylation is critical for producing 

proper signaling output22–27, because it influences properties such as 
sensitivity and switch-like behavior and permits integration of a large 
number of inputs to produce diverse outputs28–31. Entry into mito­
sis, for example, is a switch-like transition, and multisite phosphor­
ylation of the mitotic regulators Wee1 and Cdc25 is critical for this  
behavior23,24,26,32,33. Similarly, multisite phosphorylation of Sic1 
in budding yeast generates an ultrasensitive response for S-phase 
entry22,25. Different signaling behaviors are generated by differences 
in enzyme mechanism such as degree of cooperativity and processivity 
of substrate processing30. Therefore, uncovering mechanistic details 
of how CDK acts on multisite substrates is important for understand­
ing the molecular origins of highly complex, vastly tunable signaling 
through phosphorylation.

A role for Cks in binding phosphorylated substrates was postu­
lated after structures of Cks revealed a conserved cationic pocket 
that weakly binds free phosphate and other anions34,35. When Cks 
is bound to CDK, structural modeling suggests that this cationic 
pocket is part of a continuous surface including the CDK active site 
and cyclin36. In the specific context of the Skp2–Skp1–Cullin ubiq­
uitin ligase, human Cks1 binds phosphorylated p27 to stimulate its 
ubiquitylation and degradation37. From these structural insights, it 
has been proposed that Cks binds CDK substrates primed by initial 
phosphorylation and facilitates further phosphorylation of the primed 
substrate. This hypothesis is supported by experiments that show that 
phosphorylation of cell cycle–regulatory proteins is reduced when 
Cks is immunodepleted from Xenopus egg extracts38. We found that 
semiprocessive phosphorylation of the G1-S regulator Sic1 depends 
on an intact Cks cationic pocket25. However, it has not been clari­
fied whether the stimulatory role of Cks on CDK activity relies on 
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Cks confers specificity to phosphorylation-dependent 
CDK signaling pathways
Denise A McGrath1,4, Eva Rose M Balog2,4, Mardo Kõivomägi3, Rafael Lucena2, Michelle V Mai1,  
Alexander Hirschi2, Douglas R Kellogg2, Mart Loog3 & Seth M Rubin1

Cks is an evolutionarily conserved protein that regulates cyclin-dependent kinase (CDK) activity. Clarifying the underlying 
mechanisms and cellular contexts of Cks function is critical because Cks is essential for proper cell growth, and its overexpression 
has been linked to cancer. We observe that budding-yeast Cks associates with select phosphorylated sequences in cell  
cycle–regulatory proteins. We characterize the molecular interactions responsible for this specificity and demonstrate that  
Cks enhances CDK activity in response to specific priming phosphosites. Identification of the binding consensus sequence allows 
us to identify putative Cks-directed CDK substrates and binding partners. We characterize new Cks-binding sites in the mitotic 
regulator Wee1 and discover a new role for Cks in regulating CDK activity at mitotic entry. Together, our results portray Cks as a 
multifunctional phosphoadaptor that serves as a specificity factor for CDK activity.
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specific priming sites or whether any site can prime the multisite 
phosphorylation reaction.

We demonstrate here that Cks recognizes specific phosphorylated 
sequences in CDK substrates, uncovering a new mechanism for CDK 
substrate targeting, CDK interactions with its regulators and signaling 
kinetics. We identify a Cks-binding consensus sequence and charac­
terize the complex with a phosphopeptide–Cks crystal structure. Cks 
interaction with the consensus sequence is required for efficient mul­
tisite phosphorylation of a subset of CDK substrates and for budding-
yeast viability. Using the Cks consensus sequence as a search motif, we 
identify new Cks-binding proteins and demonstrate a critical role for 
Cks in facilitating Wee1 regulation of CDK at mitotic entry.

RESULTS
Cks binds to specific phosphorylated sites in CDK substrates
A number of phosphorylation-dependent CDK–substrate complexes 
have been reported23,39, and we and others have demonstrated that 
Cks binds to phosphorylated sequences in intrinsically disordered 
domains of several CDK substrates25,40. To test whether Cks binds spe­
cific phosphorylated sites, we examined the affinity of Saccharomyces 
cerevisiae Cks (Cks1) for the N-terminal domain of the replication-
licensing factor Cdc6. As determined by isothermal titration calor­
imetry (ITC), Cks1 binds to phosphorylated (phos) Cdc61–48 with 
Kd = 9.8 ± 0.2 µM, whereas no detectable heat was measured for the 
unphosphorylated protein (Fig. 1a). The pres­
ence of two distinct and independent Cks1-
binding sites in phosCdc61–48 is supported by 
the stoichiometry parameter; the data fit to a 
one-site model with n ≈2, thus indicating that 
two molecules of Cks1 bind noncooperatively 
to each phosphorylated Cdc6 molecule.

We then mutated different combinations of 
phosphoacceptor sites and found that Cks1 
binds to Cdc61–48 phosphorylated only at T7 
and T23 (Cdc61–48;T39A S43A) with a similar 
affinity and stoichiometry as fully phosphor­
ylated Cdc61–48 (Fig. 1b and Supplementary 
Fig. 1). In contrast, we observed no detect­
able binding signal with Cdc61–48 phosphor­
ylated only at T39 and S43. Cdc6 constructs 
in which only T7 (Cdc61–48;T23A T39A S43A) or 
T23 (Cdc61–48;T7A T39A S43A) are phospho­
rylated bind with similar affinity as for the 
wild-type protein but have stoichiometries 
of n ≈1. We also tested binding of Cks1 to 
synthetic peptides, phosCdc2–10 and pho­
sCdc619–26, which contain only phosphor­
ylated T7 or T23 respectively. Each bound to 
Cks1 with an affinity about ten-fold less than 

that of phosphorylated Cdc1–48. A Cdc61–48 construct in which T7 
and T23 are mutated to alanine and the sequence surrounding T39 
is replaced with the T7 sequence (Cdc61–48;T7-T39swap) binds Cks1 
with wild-type affinity. We conclude that the majority of the cohe­
sive interactions are contained within short sequences including the 
phosphothreonines and suggest that the peptides bind with slightly 
lower affinity, owing to a greater entropy penalty. Together, these data 
demonstrate that T7 or T23 phosphorylation is necessary and suf­
ficient for Cks1 association and that Cks1 has binding requirements 
beyond the minimum phosphorylated (S/T)P CDK site.

We tested the minimum sequence around T7 required for binding 
Cks1, using a dot-blot assay. We cross-linked synthetic phosphopep­
tides to BSA, spotted them onto a PVDF membrane and then incub­
ated the membrane with hexahistidine-tagged Cks1 and probed it 
with an anti-hexahistidine antibody (Fig. 2a). We found that the 
heptapeptides AIPIpTPT and IPIpTPTK (p, phospho-) were suffi­
cient for Cks1 binding. ITC measurements confirmed that AIPI(pT)P, 
SAIPI(pT)P and AIPI(pT)PT bind Cks1 with similar affinity as does 
phosCdc62–10 (Supplementary Table 1). We substituted phospho­
serine and phosphotyrosine for phosphothreonine and observed no 
binding to Cks1 in both the dot-blot and ITC assays.

In order to identify the Cdc6 sequence determinants of Cks affinity, 
we used SPOT arrays with peptides directly synthesized on a mem­
brane (Fig. 2b). Every spot contains a version of the phosCdc63–10 
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Figure 1  Cks1 binds specific phosphorylated 
CDK sites in the N-terminal domain of Cdc6. 
(a) ITC measurements of affinity of purified 
Cdc61–48, phosphorylated with recombinant 
CDK, for Cks. Left, phosCdc61–48 binding to 
Cks1 with Kd = 9.8 ± 0.2 µM. Right, titration 
with unphosphorylated Cdc61–48. (b) ITC 
measurements with phosphorylated Cdc61–48 
constructs and synthetic peptides. Sequence 
mutations are highlighted in red within each 
construct. Additional ITC data curves are shown 
in Supplementary Figure 1a–g.
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sequence in which a single substitution is made at each position with 
each of the 20 amino acids. The array was probed as described above, 
except Cks1 was alkylated to prevent the formation of disulfide link­
ages (Supplementary Fig. 2). We observed that no residue is tolerated 
at the pT position (0 position), including the phosphomimetics gluta­
mate and aspartate, and that proline is required in the +1 position. 
These results indicate that all Cks1-binding sequences contain the 
phosphorylated CDK consensus site TP. Cks1 also displays a marked 
propensity for binding to peptides with a bulky hydrophobic residue 
in the −2 position. The array demonstrates that any residue is toler­
ated in the −4, −3, +2 and +3 positions, although a basic residue or 
proline seems to be disfavored in the +2 position. There appears to be 
a varied preference in the −1 position; however, there is no clear corre­
lation between the chemical properties of the tolerated side chains.

In order to corroborate that these observations are general for Cks1 
binding and are not influenced by subtle effects of the specific Cdc63–10  
sequence context, we conducted the array based on a sequence in Sic1 
(Fig. 2c). Sic1 T5 is a preferred CDK-phosphorylation site that serves 
as a priming site for Cks-dependent phosphorylation25. Probing a 
phosSic12–9 array for Cks1 binding, we again found a requirement for 
phosphothreonine and proline in the 0 and +1 positions, respectively, 
a preference for a bulky hydrophobic residue in the −2 position and a 
disfavoring of a positive residue in the +2 position.

We performed ITC with Cks1 and phosCdc62–10 peptides to con­
firm and quantify the SPOT array results (Supplementary Table 1). 
Replacement of the phosphothreonine for a different phosphorylated 
side chain (pT7pS and pT7pY) or substitution of the +1 proline (P8K) 
results in loss of detectable heat. Substitutions of aromatic residues 
for the proline in the −2 position either have little effect or slightly 
increase binding affinity relative to that of wild type, whereas sub­
stitution of a charged lysine at the −2 position (P5K) results in no 
detectable heat. The +2 position in the SPOT array disfavored a posi­
tive charge or proline. However, by ITC, we found that substitution 
of a proline (T9P) or a lysine (T9K) for the +2 threonine results in a 
binding affinity similar to that of wild-type peptide.

Three CDK sites (T5, T33 and T45) in the Sic N-terminal domain 
(Sic11–215, ‘Sic1∆C’) facilitate Cks binding10, and these sites are 
known to promote priming-dependent phosphorylation25. T5 and 
T45 contain a proline in the −2 position, and their phosphoryla­
tion promotes higher-affinity binding to Cks compared to that of 
the binding promoted by phosphorylation of T33, which contains a 
glutamate in the −2 position10. We measured affinity for wild type 
and substituted phosSic12–9 peptides (Supplementary Table 1). 
PhosSic12–9 binds with a slightly weaker affinity (Kd = 95 ± 8 µM) 
than does the entire phosphorylated Sic1 N terminus and phosSic1∆C 
that contains only T5 as a phosphoacceptor site (Kd = 11 ± 3 µM 
and Kd = 20 ± 10 µM, respectively10,25). As in the case of Cdc6, this 
observation suggests an interaction between the immediate sequence  

surrounding T5 and Cks1. The affinities of phosSic12–9 peptides with 
single amino acid substitutions show the same trend as for the Cdc6 
peptides (Supplementary Table 1). The ITC measurements are also  
consistent with the SPOT array data, with the exception that a positive 
lysine is tolerated in the +2 position in the ITC measurements.

Structural basis of Cks binding specificity
We next determined the 2.9-Å crystal structure of a Cks1–phosCdc6 
complex to understand the molecular determinants of the specificity 
observed in our binding experiments (Table 1 and Fig. 3). Crystals 
were grown from a fusion-protein construct, phosphorylated after 
purification, in which the Cdc63–9 sequence was appended to the C 
terminus of Cks11–112 (Supplementary Fig. 3). The Cdc6 sequence 
binds across a surface of Cks1 that is distal to the CDK-binding site 
and is made up of one face of the Cks1 β-sheet and helix 2 (Fig. 3a). 
The phosphate on the Cdc6 T7 side chain is bound to the previously 
described cationic pocket (Fig. 3b)34,35. The Cdc6 T7 γ-methyl makes 
van der Waals contacts with Y30 and R42 in Cks1; this explains the 
specificity for phosphothreonine over phosphoserine. Cdc6 P8, which 
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Figure 2  Sequence requirements for Cks1 binding. (a) Dot-blot peptide experiment to determine the minimum length required for association with 
Cks1. Indicated peptides conjugated to BSA, spotted onto PVDF membrane, incubated with histidine-tagged Cks1 and probed with an anti-histidine 
antibody are shown. The full blot for this experiment is shown in Supplementary Figure 7a. (b) Scanning mutagenesis SPOT peptide array based on the 
Cdc63–10 AIPIpTPTK peptide. Peptides containing the indicated single amino acid substitution synthesized onto the membrane and probed for Cks1 
binding as in a are shown. (c) As in b, except the array is constructed from a phosphorylated Sic12–9 peptide.

Table 1  Data collection and refinement statistics
phosCdc63–9–Cks11–112

Data collection

Space group P41212

Cell dimensions

  a, b, c (Å) 84.7, 84.7, 239.9

  α, β, γ (°) 90, 90, 90

Resolution (Å) 60.0–2.9 (3.06–2.90)

Rmerge 0.0463 (0.2598)

I / σI 12.65 (3.57)

Completeness (%) 99.79 (99.90)

Redundancy 10.0 (9.9)

Refinement

Resolution (Å) 58.1–2.9

No. reflections 20,140

Rwork / Rfree 24.5% / 28.1%

No. atoms 3,852

  Protein 3,800

  Water 52

Average B factors 56.5

  Protein 47.60

  Water 52.30

r.m.s. deviations

  Bond lengths (Å) 0.011

  Bond angles (°) 1.39

One crystal was used. Values in parentheses are for highest-resolution shell.
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is in the +1 position, fits into a pocket formed by both Y30 and T80 
in Cks1. That no other hydrophobic residues are tolerated in this  
+1 position suggests that geometry constraints in the Cdc6 backbone 
are important for proline specificity. The dihedral angles adopted by 
the +1 proline (Φ ≈ −80, ψ ≈ −160) to contact Y30 and T80 are rela­
tively disfavored by other residues. The loss of affinity upon proline 
substitution probably arises from the compromise of maintaining the 
side chain–Cks1 contacts and adopting such strained torsion angles. 
The γ-hydroxyl of Cks1 T80 acts as a hydrogen-bond donor to the 
backbone carbonyl of I6 (−1 position) in Cdc6. Although there is 
no clear correlation among the chemical properties of the tolerated 
amino acids at the −1 position in the array data (Fig. 2b,c), this hydro­
gen bond may select for particular backbone dihedral preferences that 
best facilitate its formation.

A second pocket formed by Cks L83 and R75 fits Cdc6 P5  
(the −2 position). The distances to the −2 proline side chain explain 
the preference for a large hydrophobic residue in this position.  
The presence of R75, which is highly conserved in Cks proteins, is also 
consistent with the observed preference for aromatic residues in the 
−2 position of the binding consensus sequence (Fig. 2b,c), because 
the guanidinium group is capable of making cation-π interactions 
with aromatic side chains41. There are few interactions in the crystal 
structure between Cks1 and residues in the +2, +3 and −3 positions 
in the Cdc6 peptide, results consistent with our observation that any 
amino acid type can substitute there.

We verified the importance of the molecular interactions observed 
in the crystal structure of the Cks1–phosCdc6 complex with single 
amino acid mutations in Cks1, purifying Y30E, R75A, R75K, T80D 
and L83D Cks1 mutants and testing them for binding to phosCdc6 
by ITC. The structure shows that Y30 and T80 are important for 
binding the +1 proline, whereas R75 and L83 form the pocket to 
accommodate the −2 proline. All the mutants were folded properly, 
as determined by CD (Supplementary Fig. 4a). As predicted by 
the structure, mutations at these positions inhibited binding to the  
phosCdc62–10 peptide in the calorimetry assay; in each case, no heat 
was detected (Supplementary Fig. 1z–dd).

Priming-dependent CDK activity requires Cks-substrate binding
We next explored the implications of Cks-substrate docking for its 
function in stimulating CDK activity toward cell-cycle substrates. 
We previously found that priming phosphorylation of Sic1 facilitates 
semiprocessive phosphorylation of critical phosphodegrons, and 
the requirement for an intact Cks1 cationic pocket demonstrated 
the importance of Cks-dependent kinetics for CDK signaling25.  

The structural details of the Cks–substrate complex observed here 
allowed us to test specifically the effect of disrupting this complex 
on CDK kinetics. We tested whether Cks1 mutations that abolish 
interactions with substrate residues inhibit multisite phosphoryla­
tion (Fig. 4). As previously described25, we added recombinant Cks1 
to Cdk1–Clb5 purified from budding yeast and used the enzyme to 
phosphorylate the noninhibitory truncation Sic1∆C in a kinase assay. 
In the reaction with wild-type Cks1, hyperphosphorylated species 
are present within 8 min and are the dominant product (Fig. 4a). 
Previous substrate-competition experiments established that the rapid 
accumulation of these hyperphosphorylated forms is due to a semi­
processive mechanism25. In contrast, hyperphosphorylated Sic1∆C 
does not appear in the same reaction time upon addition of Cks1 
with mutations to the phosphate-binding pocket (‘+pocket’, R33E 
S82E R102A) or a Y30E mutation. Stronger bands corresponding to 
hypophosphorylated forms are instead present. Use of R75A, T80D 
and L83D mutants also results in considerable loss of hyperphospho­
rylated Sic1∆C, and intermediate forms containing fewer phosphates 
are the dominant product. All the mutants are capable of forming a 
complex with CDK (Supplementary Fig. 4b). In reactions with a 
Sic1∆C containing a single phosphorylation site (i.e., all sites mutated 
to alanine except T5), the mutants behave similarly to wild-type Cks1 
(Fig. 4a). This control reaction demonstrates that Cks1 mutations that 
disrupt substrate docking have no effect on the catalytic activity of 
the kinase toward a single phosphoacceptor site but instead result in 
defects specifically in the mechanism of multisite phosphorylation.

To demonstrate directly the function of Cks in priming-dependent  
phosphorylation, we assayed kinase activity on primed substrates 
(Fig. 4b,c). We synthesized a Cdc62–29 peptide with T7 as a phospho­
threonine. We then measured the steady-state kinetics of phosphate 
incorporation at T23 in the presence of the phosphorylated T7. The Km 
for the kinase reaction using Cdk1–Clb5 and wild-type Cks1 is less than 
that measured for a generic single-site substrate or Sic1 with a single 
T5 phosphoacceptor site available (Supplementary Fig. 5). Conversely, 
the absolute kcat value for the wild-type reaction, calculated in these 
experiments by comparison of Vmax to the published absolute kcat for 
the H1 peptide9, is similar to the kcat for reactions with single-site sub­
strates. We tested, in similar reactions, Cks1 that contains mutations in 
the consensus sequence–binding residues (Fig. 4b). These reactions all 
proceed with Km values greater than those for reactions with wild-type 
protein. As observed in the Sic1∆C multisite phosphorylation assay, 
mutations in the cationic pocket or Y30 have the largest effect on Km, 
whereas the T80D, L83D and R75A mutations all show clear but more 
modest effects. These data demonstrate that Cks1 residues critical for 
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Figure 3  Crystal structure of a phosCdc63–9–Cks11–112 complex. (a) Ternary complex including CDK showing the phosphorylated substrate-binding  
site in Cks distal from CDK. The model was created by alignment of Cks1 from the structure solved here and hsCks1 in the hsCks1–Cdk2 complex  
(PDB 1BUH36). (b) Close-up views of the phosCdc63–9–binding site in Cks1.
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binding phosphorylated substrates are required for the Km decrease 
that results from priming in a multisite kinase reaction.

We also assayed the importance of the Cks-binding consensus 
sequence in the substrate. We synthesized Cdc6 peptides with muta­
tions in the phosphoacceptor site or in surrounding consensus resi­
dues and used them in kinase reactions with wild-type Cks1 (Fig. 4c).  
Mutation of the priming phosphothreonine to an alanine (T7A) 
leads to a Km increase for the reaction measuring phosphate incor­
poration at T23. Mutation of the proline in the −2 position of the 
consensus site to a tyrosine (P5Y) does not change the Km from the 
wild-type reaction, whereas mutation to a lysine (P5K) increases the 
Km by three-fold, results consistent with our binding measurements.  
Mutation of the +1 proline (P8A) results in a six-fold increase in 
Km. These results together further establish the importance of the 
Cks-substrate association for enhancing CDK multisite kinetics and 
demonstrate that a binding consensus, and not solely a phosphate, 
directs the priming-dependent reaction.

To demonstrate the importance of Cks1 association with specific 
priming-site sequences in vivo, we examined the viability of Cks1 
mutants that are defective in consensus-sequence binding in bud­
ding yeast (Fig. 4d). We identified a mutation (L98S) in Cks1 that has 
temperature sensitivity at 34 °C. At the restrictive temperature, growth 
is impaired, as described previously12, but is rescued by wild-type 

Cks1 expressed from a CEN vector and under control of the alco­
hol dehydrogenase promoter. In contrast, expression of a phosphate  
binding–pocket mutant or the consensus sequence–binding mutants 
fails to rescue the temperature sensitivity.

The Cks-binding consensus is present in a subset of CDK substrates
To find CDK substrates that associate with Cks, we considered 
the sequence (F/I/L/P/V/W/Y)XTP, which contains the minimum 
requirements for binding Cks1, on the basis of our data. We inputted 
this sequence into the Yeast Genome Database Pattern Matching tool 
(http://www.yeastgenome.org/cgi-bin/PATMATCH/nph-patmatch/) 
and found that 3,263 sequences match the consensus; these sequences 
are found in 2,100 different open reading frames (ORFs) (Fig. 5a). 
269 of the 2,100 ORFs are known CDK substrates, as determined in 
at least one of the two global CDK-substrate identification studies4,5. 
There are 522 putative Cks-binding sequences within these 269 ORFs 
(listed in Supplementary Table 2).

In order to filter and characterize better the properties of Cks tar­
gets, we further analyzed the 522 putative Cks-binding sites found in 
CDK substrates (Fig. 5). We first searched for evidence validating that 
the sites are phosphorylated by CDK or other kinases. 48 of the 522 
sites were identified as CDK-phosphorylation sites in an MS-based 
proteomics screen to identify CDK substrates (Fig. 5a)5, and 42 other 
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a substrate with a single phosphorylation site. Phosphorylated 
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sites were identified as phosphorylation sites in the PhosphoGRID 
database (www.phosphogrid.org/). These 90 Cks consensus sites 
that correspond to validated phosphorylation sites (highlighted in 
Supplementary Table 2) are found in 70 different ORFs.

CDK sites tend to be found in regions of proteins that lack struc­
ture5,42. We analyzed whether the Cks consensus sites are in sequences 
that are likely to be structured or disordered, using a web-based dis­
order prediction tool43. We found that 309 of the 522 putative Cks 
sites (59%) are in regions of likely disorder, whereas 73 of the 90 (81%) 
Cks sites that are verified phosphorylation sites are found in likely 
disordered regions (Fig. 5b). When all putative Cks sites are con­
sidered, there is no significant preference for disordered sequences; 
however, the statistics for the subset of Cks sites corresponding to 
verified phosphorylation sites do suggest that Cks preferentially binds 
unstructured sequences. The disorder frequency of Cks sites is less 
than the disorder frequency (99%) of all verified CDK sites in the 
MS screen5. It may be that Cks sites are more likely to be found in 
predicted structured regions because of the hydrophobic amino acid 
in the −2 position.

Considering the role of Cks in stimulating multisite phosphoryla­
tion kinetics, we predicted and found that Cks sites preferentially 
occur in substrates that contain multiple CDK sites. Putative Cks 
sites that are verified phosphorylation sites occur in substrates with 
more than one CDK site at a frequency that is greater than expected 
from the multiplicity distribution of all CDK substrates found in the 
MS screen (Fig. 5c)5.

Cks mediates Cdk1-directed Wee1 activity at mitotic entry
In examining the list of putative Cks binding partners, we found the 
potential docking association of Cks1 with budding yeast Wee1 (called 
Swe1) to be of particular interest because Swe1 is known to form a 
phosphorylation-dependent complex with Cdk1 during mitotic entry. 
This complex is required for efficient inhibitory phosphorylation of 

Cdk1 by Swe1 on Y19 (refs. 23,32,33). Formation of the complex 
requires phosphorylation of eight consensus sites in Wee1 by Cdk1 
(ref. 33). Similar mechanisms are likely to act in vertebrate cells32,44,45. 
We hypothesized that Cks docking to specific phosphorylated consen­
sus sites mediates the Cdk1–Wee1 complex, and we tested this idea 
with mutational analysis of Swe1 in budding yeast.

Of the eight consensus Cdk1 phosphosites in Swe1, there are four 
phosphothreonines: T45, T121, T196 and T373. All except T45 pos­
sess a bulky hydrophobic residue in the −2 position, and T196 and 
T373 were previously found to have an important role in Cdk1-
complex formation in budding yeast33. Although neither the precise 
sequences surrounding the sites nor their location in the primary 
sequence is conserved in higher eukaryotes, most Swe1 orthologs 
contain three or four putative Cks-binding sites. We tested Cks1 
binding to each of these phosphopeptides by ITC and found, as 
predicted, that all except T45 bound Cks1 with an affinity similar 
to that between phosCdc62–10 and Cks1 (Supplementary Table 1).  
To assay the importance of the Cks-binding sites in vivo, we con­
structed a yeast strain in which the three consensus threonines in 
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consensus sequence (F/I/L/P/V/W/Y-XTP) and the number of proteins containing those sequences (in parentheses). The set of all verified CDK sites is  
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Figure 6  Cks consensus sites in Wee1 are required for Cdk1 inhibitory 
phosphorylation. Immunoblots (IB) probing Swe1 and phosphorylation 
on Cdk1 Y19 in yeast expressing wild-type (left) or triple-mutant (T121S 
T196S T373S; right) Wee1 (Swe1). Time course after release from a G1 
arrest is shown. Exposures of the full gels for this experiment are shown in 
Supplementary Figure 7c.
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Swe1 were mutated to serines (T121S T196S T373S; ‘triple mutant’) 
and in which Cdk1 phosphorylation of Swe1 is preserved, but Cks 
association is inhibited. We observed no considerable difference in the 
phosphorylation pattern of mutant and wild-type Swe1 (Fig. 6) after 
release from G1 arrest, results suggesting that the Cks consensus sites 
do not have a role in Swe1 hyperphosphorylation in vivo. The triple- 
mutant cells do show a defect in phosphorylation of Cdk1 on Y19 
(Fig. 6). The decreased Cdk1 phosphorylation is not due to reduced 
Swe1, because the total amount of Swe1 and its phosphorylation state 
are consistent between mutant and wild-type cells (Fig. 6). We con­
clude that the Cks consensus sites are critical for Swe1 activity toward 
Cdk1. That hyperphosphorylation of Swe1 appears to be normal in 
the mutant suggests that Cks1 binding does not influence multisite 
phosphorylation in this context. Rather, Cks1 mediates formation of 
the complex in response to phosphorylation of the Cks1 consensus 
site, and this in turn allows Swe1 to phosphorylate Cdk1 efficiently 
on its inhibitory site.

DISCUSSION
Although it has been postulated that Cks stimulates CDK activity by 
binding primed substrates3,13, little evidence has been provided for 
this model, and the association of Cks with phosphorylated substrates 
has not been well characterized. We demonstrate here that Cks binds 
phosphorylated CDK substrates in a sequence-dependent manner 
and find that efficient hyperphosphorylation of substrates depends 
on recognition of sequence elements that surround the phosphate. 
Our results support a model in which Cks binds specific priming 
sites to facilitate phosphorylation at other sites (Fig. 7a). Other data 
suggest that Cks1 orients substrates for CDK phosphorylation at sites 
that are C terminal to the Cks1-binding site10. Characterization of 
the Cks-binding consensus sequence has permitted identification 
of a large set of CDK substrates (269 proteins containing 522 Cks 
sites) that may use the Cks-dependent hyperphosphorylation mecha­
nism. Considering that a smaller subset of putative Cks-binding sites 
contains sites for which phosphorylation has been directly observed  
(90 sites in 70 proteins), we anticipate that the actual number of  
Cks-interacting substrates in the cell is more modest. It remains an 
open question how many real Cks-directed CDK substrates exist, and 
it will be interesting to explore the different cell-cycle contexts in 
which Cks contributes to the desired signaling response.

The observation that only a subset of CDK sites have the required 
surrounding sequence for Cks binding has important implications for 
the understanding of multisite phosphorylation in cell-cycle regula­
tion. The data presented here and in the accompanying paper dem­
onstrate that CDK phosphoacceptor sites differentially influence the 
kinetics of phosphate incorporation at other sites10. This regulatory 
mechanism can be used to control whether and when sites with criti­
cal outputs are phosphorylated. For example, in Sic1, phosphorylation  

at specific sites required for ubiquitylation and degradation requires 
priming phosphorylation at the Cks consensus site10. It has also been 
shown recently that different phosphorylation events in the retino­
blastoma protein induce distinct conformational changes27, and this 
motivates the need for unique control of phosphorylation at distinct 
sites. This notion that specific phosphorylation sites have distinct 
roles in tuning signaling outputs differs from other models for the 
mechanism of multisite phosphorylation in the cell cycle22,24, in 
which phosphorylation sites have generic roles.

Our data suggest that the influence of Cks on CDK-substrate phos­
phorylation kinetics depends on whether Cks-binding consensus sites 
are phosphorylated early or late in the multisite reaction. In the case 
that a Cks-binding site is phosphorylated early, phosphorylation trig­
gers Cks binding to enhance phosphorylation of the remaining sites 
(Fig. 7a). The consensus sequence for optimal Cks1 affinity contains 
a CDK-acceptor site (TP), and this is consistent with a self-priming 
mechanism. We note that other kinases could phosphorylate the Cks 
consensus site, including MAP kinases, which also recognize TP46. 
The scenario depicted in Figure 7a is true for Sic1. Two optimal CDK 
sites that act as Cks-dependent priming (T5 and T33) sites are required 
for semiprocessive phosphorylation of Sic1 and its degradation10,25. 
Cdc25 phosphorylation also uses the priming mechanism; mutation 
of Cks consensus sites abrogates cooperativity in the phosphorylation 
kinetics26. Alternatively, if Cks consensus sites are phosphorylated late 
in the multisite reaction, CDK phosphorylation proceeds without or 
with limited Cks-induced stimulation for that particular substrate 
(Fig. 7b). Swe1 (Wee1) may be an example of such a substrate. We 
observe no effect on Swe1 hyperphosphorylation in vivo when the Cks 
consensus is disrupted, and it has been proposed that the best Cks 
consensus sites (T196 and T373) are phosphorylated late33.

We found that the Cks consensus site in budding-yeast Wee1 is 
required for its ability to phosphorylate CDK on the inhibitory Y19 
site. This observation demonstrates a new role for Cks in regulation 
of CDK activity through influencing post-translational modifications 
and explains one mechanism by which Cks regulates mitotic entry. 
It also emphasizes that the cellular role of Cks extends beyond its 
capacity to stimulate CDK kinetics. Cks mediates phosphorylation- 
dependent interactions between CDK and its own regulators  
(Fig. 7b). The Wee1–Cdk1 complex is a second example of this func­
tion, the first example being the binding of human Cks1 (hsCks1) to 
phosphorylated p27 (phosp27) within a ubiquitin ligase18,19.

The structure of hsCks1 bound to phosp27 in the context of the 
Skp2–Skp1–Cullin ligase was previously solved37, and comparison 
with the phosCdc6–Cks1 structure here indicates several similari­
ties (Supplementary Fig. 6). The location of the phosphothreonine 
phosphate and γ-methyl groups and contacts with the +1 proline 
are equivalent. One notable difference is the presence of a gluta­
mate in the −2 position in phosp27, which is not preferred in the  

CDK

Cyclin

Cks

CDK

Cyclin

Cks
P

CDK

Cyclin

Cks
P

P

P

P

P

P
CDK

Cyclin

Cks
P

CDK

Cyclin

Cks

CDK

Cyclin

Cks

P

P
P

P

P
CDK

Cyclin

Cks
P

P

P

P

P

CDK

Cyclin

Cks
P

P

P
P

P

P

a

b

Figure 7  Cks is a specificity factor that 
mediates CDK-substrate association for 
multiple functions. (a) Cks binds substrates 
phosphorylated at specific consensus sites  
(blue phosphate (P)), and the Cks–CDK–
substrate complex stimulates further 
phosphorylation. The stimulatory effect requires 
that the Cks consensus site be phosphorylated 
early in the reaction, as is true in Sic1.  
(b) Cks acts as an adaptor that targets CDK to 
its regulators. In the case of Wee1, association 
with Cks consensus sites induces inhibitory 
phosphorylation in CDK (red phosphate).

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



1414	 VOLUME 20  NUMBER 12  DECEMBER 2013  nature structural & molecular biology

a r t i c l e s

Cks1-binding consensus site. In the phosp27–hsCks1 ligase structure, 
this phos27 E185 hydrogen-bonds with R294 and Y346 of Skp2 and 
Q52 of hsCks1. In Cks1, L83 is in the equivalent position as Q52. 
This difference explains why glutamate in the −2 position facilitates 
the phosp27-hsCks1 interaction in the context of ubiquitylation, 
whereas a hydrophobic residue is required for general Cks1 binding 
to phosphorylated targets. HsCks2 has a leucine at the hsCks1 Q52 
position, similarly to Cks1, the fission-yeast ortholog suc1 and the 
frog ortholog p9. Our observations suggest that hsCks2, like its more 
distant orthologs, has a general role in CDK binding to its substrates 
and regulators, whereas Cks1 has evolved to gain its specific function 
as an adaptor for the Skp2 SCF ligase. Further dissection of the func­
tional differences between the human Cks paralogs will be important 
for understanding the role of Cks in tumorigenesis and for its use as 
a cancer diagnostic.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Coordinates and structure factors for the  
Cks11–112–phosCdc63–9 fusion protein have been deposited in the 
Protein Data Bank under accession code 4LPA.

Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper.
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ONLINE METHODS
Protein expression and purification. Wild-type full-length S. cerevisiae Cks1 
was either expressed untagged or tagged as indicated from a pET vector in E. coli. 
The untagged wild-type protein and the Cks1–112–phosCdc63–9 fusion used for 
crystallization were purified by ion-exchange chromatography and size-exclusion 
chromatography, and the hexahistidine-tagged protein was purified with nickel-
NTA chromatography and subsequent ion-exchange chromatography. The GST-
tagged protein was purified with glutathione Sepharose resin and subsequently 
by ion-exchange chromatography. The GST tag was then cleaved by GST-tagged 
TEV protease, and the GST-TEV and cleaved GST tag were separated from Cks1 
with glutathione Sepharose. The S. cerevisiae Cdc61–48 peptides were all expressed 
as hexahistidine fusion constructs and purified as described for His-tagged Cks. 
Cdk6–CycV or Cdk2–CycA were used as previously described to phosphorylate 
purified proteins for calorimetry and crystallization47. Quantitative phosphate 
incorporation was verified by electrospray MS in all cases, with the exception that 
for wild-type Cdc61–48, we could at most achieve a maximum of three phosphates 
added and determined that our sample was a mixture of peptides containing three 
out of four sites phosphorylated. This mixture is consistent with our observation 
of a stoichiometry of slightly less than n = 2.

For kinase assays, N-terminally His-tagged recombinant Sic1∆C (aa 1–215) 
protein was purified by cobalt affinity chromatography. Clb5–CDK purified 
with the TAP-tag method was used as described previously4. Wild-type Cks1 
and Cks1 +pocket mutant (R33E S82E R102A) used in kinetics assays were 
purified as described48.

Peptide SPOT-binding assays. Synthetic phosphopeptides were resuspended 
in PBS, pH 7.4, to a concentration of 1.8 mM and covalently coupled to 1 mg/ml 
BSA by stirring with an equal volume of 0.2% glutaraldehyde at room tempera­
ture. Reactions were quenched after 1 h with an equal volume of 1M glycine, and 
samples were dialyzed against 25 mM Tris-HCl, pH 7.4, and 150 mM NaCl. Small 
volumes (0.5–3 µl) of peptide samples were spotted onto methanol-activated 
PVDF membrane. Positional scanning peptide arrays were synthesized on amino-
PEG cellulose membranes by the MIT Biopolymers Laboratory. Blocked mem­
branes were probed with 2 µM hexahistidine-tagged Cks, detected with HRP-His 
Probe (Santa Cruz, sc-8036; validation provided on manufacturers website) and  
developed with SuperSignal West Dura ECL reagents (Thermo Scientific).

Crystallization and structure determination. After phosphorylation, the 
fusion protein was prepared for crystallization by elution from a Superdex  
75 (GE Healthcare) column in a buffer containing 25 mM Tris, 150 mM NaCl, and 
1 mM DTT at a concentration of 40 mg/mL. Proteins were crystallized by sitting-
drop vapor diffusion at 20 °C. Crystals grew for 2 weeks in a solution containing 
400 mM potassium sodium tartrate and 0.1 M MES, pH 5.5, and were harvested 
and flash frozen in the same solution with 30% glycerol.

Data were collected at λ = 1.0332Å, 100 K on Beamline 23-ID-D at the 
Advanced Photon Source, Argonne National Laboratory. Diffraction spots were 
integrated with Mosflm49 and scaled with SCALE-IT50. Phases were solved by 
molecular replacement with PHASER51. ScCks1 (PDB 1QB3) was used as a search 
model. The initial model was rebuilt with Coot52, and the Cdc6 peptide was 
added to electron density visible in the previously described phosphate-binding 
pocket. The resulting model was refined with Phenix53. Several rounds of position 
refinement with simulated annealing and individual temperature-factor refine­
ment with default restraints were applied. Final Ramachandran statistics were as 
follows: outliers, 0.2%; allowed, 6.8%; favored, 93.0%.

Isothermal titration calorimetry. ITC was performed with the MicroCal VP-ITC 
calorimeter. Cks1 was dialyzed overnight before the assay in a buffer containing 
150 mM NaCl, 25 mM Tris-HCl, pH 7.4, 1 mM β-mercaptoethanol, and 0.01% 
NaN3. In most cases, the synthetic phosphopeptides were dialyzed for up to 5 d in 
the same buffer. Cdc61–48 was buffer-exchanged into ITC buffer over Superdex75 
on the day of ITC. For experiments with synthetic peptides, phosphopeptides 
at concentrations of 2–6 mM were titrated into Cks1 at a concentration of  
~50–100 µM. For experiments with Cdc61–48, Cks1 at a concentration of ~0.5–1 mM  
was titrated into Cdc61–48 at a concentration of ~30–80 µM. Data were ana­
lyzed with the Origin calorimetry software package, assuming a one-site binding 
model. Experiments were repeated two to four times, and the reported error is 
the s.d. of each set of measurements.

Kinetic assays. The general composition of the assay mixture was as follows: 
50 mM HEPES, 180 mM NaCl, 5 mM MgCl2, 0.2 mg/ml BSA, 2% glycerol,  
2 mM EGTA, 500 nM Cks1 and 500 µM ATP (with added [γ-32P]ATP (Perkin 
Elmer)), pH 7.4. 20 mM imidazole was also added in experiments with protein 
substrate. Around 1–5 nM of purified Cdk1–Clb5 kinase complex was used. 
Reactions were initiated by addition of preincubation mixture and [γ-32P]ATP to 
the substrate protein or peptide. Aliquots were collected at least at two different 
time points, and the reaction was stopped by addition of the SDS-PAGE sample 
buffer (in the case of proteins) or 2.5 M guanidine hydrochloride (in the case 
of biotin-labeled peptides). For quantitative phosphorylation assays, the initial 
velocity conditions were defined as a substrate turnover ranging up to 20% of 
the total turnover in assays with biotinylated peptides and as 5% in assays with 
protein substrate. For the assay with different Cks1 mutants, purified kinase 
complex was preincubated for 45 min with Cks1 proteins. The composition of 
the preincubation mixture was as follows: 50 mM HEPES, 150 mM NaCl, 5 mM 
MgCl2, 0.4 mg/ml BSA, 500 µM ATP and 1 mM Cks1, pH 7.4. For capturing 
biotinylated peptides, SAM2 Biotin Capture Membrane (Promega) was used 
according to the instructions given by the manufacturer. 10% SDS-PAGE with 
added Phos-tag reagent (FMS Laboratory NARD Institute) was used to separate 
different Sic1∆C phosphoforms54. Sic1∆C concentrations were kept in the range 
of 1–3 µM, several fold below the estimated Km value.

Budding-yeast temperature-sensitivity rescue experiment. A temperature-
sensitive Cks1-mutant yeast strain (TS) was created with error-prone PCR and 
homologous recombination in the wild-type S. cerevisiae strain DK186 (WT).  
The TS strain (containing a L98S mutation) and wild-type strains were trans­
formed with the CEN vector pRS315 containing either wild-type yeast Cks1 or a 
Cks1 point mutant and grown in selective media to saturation. The transformants 
were then spot-plated at 1:5 serial dilutions on selective media and grown at room 
temperature or 34 °C. All Cks1 expression from the CEN vector was under control 
of the yeast alcohol dehydrogenase promoter (pADH).

Wee1 and Cdk1 phosphorylation in budding yeast. A strain in which the 
endogenous SWE1 gene was replaced by Swe1 T121S T196S T373S was gener­
ated by transformation of a strain carrying wee1∆øURA3 with the full-length 
wee1 T121S T196S T373S allele excised from a plasmid. Loss of the URA3 gene 
was selected for by plating on FOA and was confirmed by PCR and western 
blot. A control strain was also created by integration of the wild-type copy of 
the SWE1 gene from a plasmid at the SWE1 locus. The time course and west­
ern blots were performed as previously described33. For Swe1 western blots, 
electrophoresis was performed on a 10% polyacrylamide gel until a 66.5-kD 
marker ran to the bottom of the gel. Western blots were transferred for 90 min 
at 800 mA at 4 °C in a transfer tank in a buffer containing 20 mM Tris base,  
150 mM glycine, and 20% methanol. Blots were first probed overnight at 4 °C 
with P-cdc2 (Tyr15 9111L; Cell Signaling Technology, dilution 1:5,000; valida­
tion on manufacturer website) and affinity-purified rabbit polyclonal antibodies 
raised against a Swe1 peptide (dilution 1:1,000; validation in ref. 23). Blots were 
then probed with an HRP-conjugated donkey anti-rabbit secondary antibody  
(GE Healthcare, dilution 1:5,000; validation provided on manufacturer website).

Original images of autoradiographs and blots used in this study can be found 
in Supplementary Figure 7.
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