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Abstract. Uniformly describing the conjugacy classes of the unipotent upper triangular
groups UTn(Fq) (for all or many values of n and q) is a nearly impossible task. This paper
takes on the related problem of describing the normal subgroups of UTn(Fq). For q a prime,
a bijection will be established between these subgroups and pairs of combinatorial objects
with labels from F×q . Each pair comprises a loopless binary matroid and a tight splice,
an apparently new kind of combinatorial object which interpolates between nonnesting set
partitions and shortened polyominoes. For arbitrary q, the same approach describes a natural
subset of normal subgroups: those which correspond to the ideals of the Lie algebra utn(Fq)
under an approximation of the exponential map.
Keywords. Unipotent group, normal subgroup, Lie algebra ideal, nonnesting set partition,
matroid, q-Stirling number
Mathematics Subject Classifications. 05E16, 20G40, 17B45, 20E15

1. Introduction

The unipotent upper triangular group UTn(Fq) consists of all upper triangular matrices with
each diagonal entry equal to 1 over the finite field Fq with q elements. Uniformly indexing the
conjugacy classes or irreducible characters of UTn(Fq) (for every n and q) is an impossibly
difficult problem [13]. However, developments in unipotent combinatorics [1, 2, 5, 29] suggest
that the difficulty of the conjugacy problem belies nicer combinatorial structures present in the
more computable, conjugacy-adjacent properties of UTn(Fq).

Absent a good understanding of the fundamental structures in the representation theory of
UTn(Fq), two questions arise: what methods can access the important properties of UTn(Fq),
and is there a nice, combinatorial description for the output of these methods? Answers to the
former are often algebraic, like the Kirillov orbit method [17, 26], or recursive, like the character-
theoretic techniques in [15, 16, 23]. Answers to the latter—when positive—are bijections with
families of combinatorial objects; examples include supercharacter theories with classes and
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characters indexed by labeled set partitions [1] or nonnesting set partitions [2, 5], and an indexing
of certain irreducible characters with labeled lattice paths [24].

The aim of this paper is to determine whether the normal subgroups of UTn(Fq) belong to the
latter universe of bijections and combinatorial objects. Normal subgroups are closely related to
conjugacy classes, so it is not clear that the normal subgroups of UTn(Fq) should have a uniform
indexing set, and even if such a set exists, a nice exposition remains nontrivial.

What is known about the normal subgroups of UTn(Fq) follows the classical intuition. For
a Lie group G, the exponential map exp gives a bijection between closed normal subgroups
of G and ideals of the Lie algebra Lie(G). Over Fq, the map exp is not well-defined and the
right notion of closure is unclear, but morally there should be similar correspondences for nice
enough groups, as is the case in the Lazard correspondence [18], and for the finite groups of Lie
type. In [20] (see also [19]), Levčuk gives a bijection of this sort for UTn(Fq), using the map
a 7→ 1 + a from the nilpotent Lie algebra utn(Fq) to UTn(Fq) in place of exp.

Theorem A ([20, Theorem 1]). A subset N ⊆ UTn(Fq) is a normal subgroup if and only if
N = 1 + n for an additive subgroup n 6 utn(Fq) with {[a, b] | a ∈ utn(Fq), b ∈ n} ⊆ n, where
[a, b] = ab− ba is the Lie bracket of utn(Fq).

Lie algebra ideals are Fq-subspaces, so if q is not prime UTn(Fq) has normal subgroups
which do not correspond to Lie algebra ideals. (In fact, these are Lie ring ideals.) Let

In(q) = {1 + n | n is an ideal of utn(Fq)} ⊆ {N E UTn(Fq)}.

The main result of this paper concerns this set of “closed” normal subgroups.

Theorem B. There is a bijection

In(q)←→

(S, σ,M, τ)

∣∣∣∣∣∣∣
(S, σ) is an F×q -labeled tight splice on {1, 2, . . . , n}

and (M, τ) is an F×q -labeled loopless binary
matroid on the rows and columns of S

 .
When q is prime, this accounts for every normal subgroup of UTn(Fq).

An explanation of the objects in this bijection follows. A tight splice is an apparently un-
known object formed by connecting the blocks of a nonnesting set partition according to certain
rules. The result is a graph in which each connected component has the shape of a shortened
polyomino, a combinatorial object used in [7, 8, 9] to study Catalan statistics; these statistics
appear in my formula for |In(q)|, see Corollary 4.2. This grid-like shape allows for a labelling
scheme in which labels are placed in each “box” of a splice. For example

1 2

3

4

5 6

7 8

→
4 1

2

1 2

3

4

5 6

7 8
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illustrates the labeling of a tight splice with elements of F×5 (shown in red). This tight splice
originates from the nonnesting set partition with blocks {124|356|78} and has the shape of the
shortened polyomino (EESS, SESE).

The other object in the bijection is a loopless binary matroid with a labeling. The matroid is
given as a bipartite graph (sometimes called a Stanley graph, see Section 2.3 and [27, A135922])
on the set of rows and columns of the tight splice (above, there are two rows and two columns).
The labeling assigns an element of F×q to each edge in this graph.
Remark. There is a unique F×2 -labeling for each tight splice and each loopless binary matroid,
so in effect there is a bijection with unlabeled objects:

In(2)←→
{

(S,M)
∣∣∣∣∣ S is a tight splice on {1, 2, . . . , n} andM is a loop-

less binary matroid on the rows and columns of S.

}
.

The proof of Theorem B constructs each ideal of utn(Fq) from a unique tuple (S, σ,M, τ).
Each labeled tight splice (S, σ) determines a family of ideals via certain shared properties. Se-
lecting an ideal from this family is a matter of Fq-linear algebra, which can be encoded into a
labeled loopless binary matroid (M, τ). Considering the set of all normal subgroups in UTn(Fq)
when q is not prime, there is no equivalent encoding. Accordingly, I am able to give an outline
of sorts for the normal subgroups of UTn(Fq) in terms of tight splices (Corollary 5.7) and an
enumerative formula (Theorem 5.9), but not a nice bijective description.

A point of comparison is Marberg’s work in [22] on “supernormal” subgroups of UTn(Fq),
which relate to two-sided ideals in the associative algebra utn(Fq) in the same way that ordinary
normal subgroups relate to Lie algebra ideals. For prime q, there is a bijection between super-
normal subgroups and pairs comprising a nonnesting set partition and a certain type of Fq-vector
space. Each nonnesting set partition has a trivial tight splice, and in Theorem B, Marberg’s sub-
groups are given by a trivial tight splice (which has a unique labeling) and an arbitrary labeled
loopless binary matroid. Thus tight splices are a heuristic for the difference in ideal structure
between utn(Fq) as a Lie algebra and utn(Fq) as an associative algebra.

The paper is organized as follows. Section 2 is a review of preliminary material, including
nonnesting set partitions and matroids. Section 3 is an introduction to tight splices. In Sec-
tion 4, I construct the ideals of utn(Fq) from tight splices and loopless binary matroids, proving
Theorem B. Finally, Section 5 concerns the normal subgroups of UTn(Fq), including a proof of
Theorem A for completeness.

My results suggest a few new lines of inquiry. First, there is the question of normal subgroups
in maximal unipotent subgroups for other Lie types; I suspect that my approach will adapt well
to the classical cases. Second, normal subgroups form a sublattice in the lattice of subgroups
of UTn(Fq). The structure of this sublattice is mostly opaque, but Section 5.2.1 describes the
join-irreducible elements of the sublattice. Finally, the connection between tight splices and
shortened polyominoes remains somewhat mysterious.

2. Preliminaries

This section covers background material on nonnesting set partitions, ideals of utn(Fq), and
matroids.
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2.1. Nonnesting set partitions

Write [n] = {1, 2, . . . , n}, and let

[[n]] =
{

i j
= (i, j)

∣∣∣∣ 1 6 i < j 6 n
}
⊆ [n]× [n],

the set of increasing edges in the complete directed graph on [n]. When drawing elements of
[[n]] as edges, I will always orient them from left and right or from top to bottom.

There are a few partial orders on [[n]]. First, the orders �L and �R given by

i j
�L r s

if r 6 i and j = s and
i j

�R r s
if i = r and j 6 s.

Let � be the smallest partial order which extends both ≺L and ≺R, so that

i j
�

r s
if r 6 i < j 6 s.

This order will be the primary order on [[n]] used in this paper. The poset on [[n]] under � is
graded by the height function, ht(

i j
) = j − i.

A set partition of [n] is a subset λ ⊆ [[n]] which is an antichain in both �L and �R. This
definition differs from the usual notion of a partition of the set [n]—a collection of disjoint
subsets whose union is [n]—but is equivalent: from an antichain λ ⊆ [[n]], the graph on [n]
with edge set λ has connected components which divide [n] into pairwise disjoint sets. These
connected components also determine λ uniquely: since λmust be an antichian, these edges will
only occur between sequential elements of the same connected component.

The cardinality of a set partition λ of [n] is the number of edges in λ.

Example 2.1. Let λ = {(1, 2), (3, 5), (4, 6)} and µ = {(1, 2), (2, 6), (3, 4), (4, 5)} be set parti-
tions of [6], so that |λ| = 3 and |µ| = 4. As graphs,

λ =
1 2 3 4 5 6

and µ =
1 2 3 4 5 6

,

with connected components {1, 2}, {3, 5}, {4, 6} for λ and {1, 2, 6}, {3, 4, 5} for µ.

If a set partition λ of [n] is also an antichain in �, say that λ is nonnesting. Write

NNSPn = {nonnesting set partitions of [n]}.

For λ ∈ NNSPn, drawing the elements of [n] in increasing order from left to right will ensure
that no edge of λ starts and ends between the endpoints of another (“nests”). In Example 2.1, λ
is nonnesting but µ is not, as both (3, 4) ≺ (2, 6) and (4, 5) ≺ (2, 6).

A subset F ⊆ [[n]] is a upper set (with respect to �) if is is upwardly closed: if (i, j) ∈ F
and (r, s) � (i, j), then F must also contain (r, s). For λ ⊆ [[n]] and ` ∈ Z>0, let

↑`(λ) =
⋃

(i,j)∈λ
{(r, s) ∈ [[n]] | (r, s) � (i, j), ht((r, s)) > ht((i, j)) + `},
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p1, 2q
0

p2, 3q p3, 4q p4, 5q p5, 6q

p1, 3q
1

p2, 4q p3, 5q
0

p4, 6q
0

p1, 4q
2

p2, 5q
1

p3, 6q
1

p1, 5q
3

p2, 6q
2

p1, 6q
4

ð 45˝

Figure 2.1: The Hasse diagram of [[6]] with elements of the upper set ↑ (λ) generated by the
nonnesting set partition λ = {(1, 2), (3, 5), (4, 6)} boxed, and the corresponding Ferrer’s shape.
Each (i, j) ∈ ↑ (λ) is labeled by the integer max{` ∈ Z>0 | (i, j) ∈ ↑`(λ)}.

be the upper set of elements at least ` covering relations in� above some (i, j) ∈ λ. An example
of this construction can be seen in Figure 2.1.

Write ↑ (λ) = ↑0 (λ) for the upper set generated by the set λ. The fundamental theorem of
finite distributive lattices states that there is a bijection

NNSPn ←→ {upper sets of [[n]]}
λ 7−→ ↑ (λ)

min(F) ←− [ F

where min(F) denotes the set of �-minimal elements in F .
Remark. The number of upper sets of [[n]] is the nth Catalan number 1

n+1

(
2n
n

)
. One proof (of

many, see [28, Problem 178]) is as follows: draw upper sets as in Figure 2.1 and then rotate
counterclockwise by forty-five degrees; the result is a Ferrer’s shape which fits inside the shape
(n − 1, n − 2, . . . , 1). For λ ∈ NNSPn, each (i, j) ∈ λ corresponds to a removable corner of
the shape associated to ↑ (λ).

2.2. Normal subgroups and ideals from nonnesting set partitions

The set [[n]] indexes the above-diagonal entries of an n× n matrix, so

utn(Fq) =
⊕

(i,j)∈[[n]]
Fqei,j with ei,j = (δi,rδj,s)16r,s6n,

where δ is the Kronecker delta. The support of a subset n ⊆ utn(Fq) or 1 + n ⊆ UTn(Fq) is

supp(n) = supp(1 + n) =
{

i j
∈ [[n]]

∣∣∣∣ ai,j 6= 0 for some a ∈ n
}
.

It is straightforward to see that this set will be an upper set in [[n]] if n is closed under all inner
derivations b 7→ [xei,j, b] with x ∈ Fq and (j, k) ∈ [[n]]. Consequently, supp(n) is an upper set
if 1 + n is closed under conjugation by UTn(Fq), as

(1 + xej,k)(1 + b)(1 + xej,k)−1 = 1 + b+ [xej,k, b],
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for each b ∈ utn(Fq), (j, k) ∈ [[n]], and x ∈ Fq.
For ideals n,m ⊆ utn, supp(n + m) = supp(n) ∪ supp(m), so for each upper set F there is

a maximal ideal
utF =

⊕
(i,j)∈F

Fqei,j

having support F . Under ↑ the set NNSPn indexes these ideals: let

utλ = ut↑(λ) for each λ ∈ NNSPn.

By [22, Lemma 4.1], the set of nonnesting set partitions of [n] (or upper sets of [[n]]) also
indexes a family of normal subgroups of UTn(Fq):

UTλ = UT↑(λ) = 1 + ut↑(λ) for each λ ∈ NNSPn.

Call these subgroups normal pattern subgroups. If q 6= 2 these are the only normal subgroups
of UTn(Fq) which are closed under conjugation by every invertible diagonal matrix [11, Propo-
sition 2.1].

Example 2.2. Several examples of normal pattern subgroups can be found below.

1. For n = 6 and λ = {(1, 2), (3, 5), (4, 6)} as in Example 2.1, the normal pattern subgroup
corresponding to λ is

UTλ =

∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗

0 ∗ ∗
0 ∗

0

0
0 0
0 0 0
0 0 0 0
0 0 0 0 0

1
1

1
1

1
1

.

I have drawn a line below the entries corresponding to elements of ↑ (λ) to emphasize the
connection between this upper set and UTλ.

2. Consider the nonnesting set partitions ∅, λ = {(1, n)}, and µ = {(i, i+ 1) | 1 6 i < n}.
The corresponding normal pattern subgroups are

UT∅ = 1, UTλ = Z(UTn(Fq)), and UTµ = UTn(Fq),

where Z(UTn(Fq)) is the center of UTn(Fq).

The sets ↑`(λ) have an interpretation in terms of ideals and normal pattern subgroups:

ut↑`(λ) = [utn, [utn, . . . [utn︸ ︷︷ ︸
` times

, utλ] . . . ]]] and UT↑`(λ) = [UTn, [UTn, . . . [UTn︸ ︷︷ ︸
` times

,UTλ] . . . ]]],

where [·, ·] first denotes the Lie bracket, and then the group commutator.
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2.3. Loopless binary matroids

The construction of ideals of utn(Fq) in Section 4 involves indexing certain Fq-vector spaces. If
q = 2 this can be done with a certain class of matroid; more generally there is a q-analogue for
this class, defined below. This approach is due to the preprint [14] which is not widely available;
for the sake of completeness all statements from this source will be proved.

A matroid is a pair (K,B) consisting of a ground set K and a collection B of subsets of K
called bases, satisfying

(M1) B 6= ∅ and

(M2) for A,B ∈ B and a ∈ K with a ∈ A with a /∈ B, there is at least one b ∈ B with b /∈ A
such that A ∪ {b} − {a} ∈ B.

A loop of (K,B) is an element ofK which is not contained in any basis of (K,B). The matroid
(K,B) is loopless if it has no loops.

A function φ : K → Frq, r > 0 is an Fq-representation of (K,B) if each A ⊆ K satisfies:

A ∈ B if and only if φ(A) is an Fq-basis for Fq -span(φ(K)).

A matroid (K,B) which has an F2-representation is said to be binary.

Lemma 2.3 ([14, Lemma 3.3]). Let (K,B) be a binary matroid with a totally ordered ground
set K, and take A ∈ B to be lexicographically minimal. Then (K,B) is entirely determined by

(A; {Eb | b /∈ A}) with Eb = {a ∈ A | (A ∪ {b} − {a}) ∈ B}.

Also, a < b for each a ∈ Eb.

As stated at the beginning of the section, a proof will be included for completeness.

Proof. Let φ : K → Fr2 be a representation of (K,B). By assumption φ(A) is a basis for
Fq -span(φ(K)), so for each b /∈ A

φ(b) =
∑
a∈A

αaφ(a) for some αa ∈ F2. (2.1)

The coefficient αa = 1 if and only if φ (A ∪ {b} − {a}) is a basis of Fq -span(φ(K)), so Eb =
{a ∈ A | αa = 1}. Since A is the unique lexicographically minimal element of B, this also
implies that a < b for each a ∈ Eb. Finally, φ(b) is determined by Eb and φ(A), so the linear
dependence relations on the set φ(K) can be deduced entirely from {Eb | b /∈ A}.

In fact, any pair (A; {Eb | b /∈ A}) satisfying a < b for each a ∈ Eb uniquely determines a
binary matroid via the F2-representation in equation (2.1).
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2.3.1 A graph model for loopless binary matroids

A construction of [14] produces a unique graph from each loopless binary matroid; labeling the
edges of these graphs will give the “labeled loopless binary matroids” of the main result. This
section gives an exposition of this construction, including proofs for completeness. A similar
construction for arbitrary matroids is also know, see [25, Section 6.4].

A directed bipartite graph (U, V,E) on the vertex set U t V with edges E is unidirectional
if E ⊆ U × V and for each v ∈ V , there is at least one edge (u, v) ∈ E. For a set K, let

GK = {Unidirectional bipartite graphs (U, V,E) with U t V = K}.

Now, suppose that K is a totally ordered set, and let
→
GK = {(U, V,E) ∈ GK | u < v for every (u, v) ∈ E}.

Example 2.4. Let K = {1 < 2 < 3}. There are six members of
→
GK :

1

2

3

, 1

2

3 , 1

2

3 , 1

2

3 , 1 2

3
, and 1 2

3
.

Remark. When K = {1 < 2 < · · · < k}, the set
→
GK is described in [27, A135922] under the

name “Stanley graphs,” though this name does not appear elsewhere in the literature.

Proposition 2.5 ([14, Proposition 3.5]). Let K be a totally ordered set. The maps

{Loopless binary matroids on K} ←→
→
GK

(A; {Ev | v /∈ A}) 7−→ (A,K − A, {(u, v) | v /∈ A, u ∈ Ev})
(U ; {E ∩ (U × {v}) | v ∈ V }) ←− [ (U, V,E)

are mutually inverse, giving a bijection.

Example 2.6. With K = {1 < 2 < 3}, Example 2.4 shows the six members of
→
GK . Under

Proposition 2.5, the basis of each corresponding loopless binary matroid is, respectively:

{{1, 2, 3}}, {{1, 2}, {2, 3}}, {{1, 2}, {1, 3}}, {{1, 2}, {1, 3}, {2, 3}},
{{1, 3}, {2, 3}}, and {{1}, {2}, {3}}.

An F×q -labeling for an element (U, V,E) ∈
→
GK is a function τ : E → F×q . In light of

Proposition 2.5, define the set of F×q -labeled loopless binary matroids on K to be
→
GK(q) = {(M, τ) | M = (U, V,E) ∈

→
GK , τ : E → F×q }.

Draw elements of
→
GK(q) as edge-labeled graphs.
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Example 2.7. TakingK = {1 < 2 < 3} as in the previous example, several elements of
→
GK(5)

are shown below.

WithM = 1

2

3 and τ(2, 3) = 4: (M, τ) = 1

2

3
4

.

WithM = 1

2

3
, τ(1, 3) = 1, and τ(2, 3) = 2: (M, τ) = 1

2

31

2
.

WithM = 1 2

3
and τ(1, 2) = 3: (M, τ) = 1 2

3

3
.

The q-Stirling numbers of the second kind are defined by{
k

j

}
q

=
∑
V⊆[k]
|V |=k−j

∏
v∈V

qiV (v) − 1
q − 1 with iV (v) = |{w ∈ [k]− V | w < v}| (2.2)

for k > j > 0. Note that subsets of [k] which contain 1 contribute nothing to the sum; also note
that

{
k
j

}
q

is a polynomial expression in q − 1 with positive coefficients, as

qs − 1
q − 1 =

s−1∑
i=0

qi =
s−1∑
i=0

(
s

i+ 1

)
(q − 1)i for s > 0.

Remark. Formula (2.2) is due to [12] (see [6, Equation 10.1] for a recent statement) and is a
specialization of the symmetric function hk−j of [21, Section I.2]. Other definitions, including
a Stirling-like recurrence, can be found in [6] and [30], among other sources.

Proposition 2.8 ([14, Corollary 3.4]). For a totally ordered set K with k elements,

∣∣∣→GK(q)
∣∣∣ =

k∑
j=0

(q − 1)k−j
{
k

j

}
q

.

Proof. Without loss of generality, take K = {1 < 2 < · · · < k}. It is sufficient to show that∣∣∣→GK(q)
∣∣∣ =

∑
V⊆[k]−{1}

∏
v∈V

(qiV (v) − 1).

Compute
∣∣∣→GK(q)

∣∣∣ by summing over choices of V ⊆ K, which must not contain 1. Fixing
V and taking U = K − V , each choice of E and τ is equivalent to a function τ̃ : U × V → Fq
with

τ̃(u, v) =

τ(u, v) if (u, v) ∈ E,
0 otherwise.

For each v ∈ V , there are qiV (v)−1 allowable restrictions of τ̃ toU×{v}. Finally, τ̃ is determined
by these restricted functions, each of which may be chosen independently.
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3. Splices

It is not obvious, but for a given ideal n ⊆ utn(Fq) there are relatively few
i j

∈ supp(n) for

which Fqei,j 6⊆ n. These edges occur according to certain straightforward rules, which are for-
malized in the definition of a tight splice of a nonnesting set partition. Studying a generalization
of these rules first leads to a few interesting connections.

Let λ and ν be disjoint set partitions of [n]. The set S = λ t ν is a splice of λ if:

(S1) for each
i

k
∈ ν, λ contains at least one edge

i j
or

j k
with i < j < k; and

(S2) for 1 6 j < k 6 n,
i

k
∈ ν and

i j
∈ λ if and only if

k l
∈ λ and

j

l
∈ ν.

Every set partition λ has at least one splice, the trivial splice λ = λ t∅.
Say that λ is the underlying partition of the splice S = λt ν, and that ν is the set of vertical

edges of S. Both sets are determined by S: ν = S − λ, and

λ =
{

i j
∈ S

∣∣∣∣ no element of S precedes
i j

in either �L or �R
}
.

In Sections 4 and 5, λ will always be nonnesting. In this case, the above equation simplifies to
λ = min(S), the �-minimal elements of S.

When drawing a splice S = λt ν, the convention will be to draw edges from λ horizontally
and ν vertically, as in (S1) and (S2). For example,

S =

1 2

3
4

5
6

7
8

9 10 11

with ∈ λ and ∈ ν (3.1)

shows a spliceS = λtν of λ = {(1, 2), (3, 5), (4, 6), (5, 7), (6, 8), (9, 10), (10, 11)} ∈ NNSP11,
with ν = {(1, 4), (2, 6), (4, 9), (6, 10), (8, 11)}.
Remarks. (R1) In his groundbreaking work on the representation theory of UTn(Fq) [3, 4],

André defines a set of “superclasses” which are unions of conjugacy classes. A subsequent
work [1] indexes these classes with labeled set partitions of [n].
In the language of splices, [4, Theorem 2.2] states that a superclass indexed by the set
partition λ is a single conjugacy class if and only if λ has no nontrivial splices. This
suggests that splices may be useful in further study of André’s superclasses.

(R2) If S is a splice of a nonnesting set partition, each connected component in the graph of
a S can be drawn in a grid-like shape, as in (3.1). This shape coincides with that of a
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shortened polyomino [7, 8, 9], defined as a pair of lattice paths in Z2 subject to certain
conditions. For example, the splice in (3.1) corresponds to the shortened polyominoes

= (ESES, SSEE) and = (EE,EE).

The number of shortened polyominoes with k steps in each path is the kth Catalan number.
This connection has yet to be thoroughly investigated, but it does seem to be significant:
each important statistic on splices matches a known statistic for shortened polyominoes,
and thus other Catalan objects.

3.1. Bindings, rows, and columns

Given a splice S = λ t ν, define the bindings of S to be elements of

bind(S) =


i j

k l

∣∣∣∣∣∣∣∣∣ i j
,
k l

∈ λ and
i

k
,
j

l
∈ ν with j < k

 ,
so that bind(S) records the tuples of edges to which (S2) applies.

If S = λ t ν is a splice, then ν gives an equivalence relation ∼cols on λ, generated by

i j
∼cols

k l
if

i j

k l

∈ bind(S).

Define the columns of S to be the equivalence classes of λ under ∼cols, and write

cols(S) = {C ⊆ λ | C is a column of S}.

Each C ∈ cols(S) has the form C = {(i`, j`) | 1 6 ` 6 |C|} for

... ...

i1

i2

i|C|−1

i|C|

j1

j2

j|C|−1

j|C|

...
⊆ S with ∈ λ and ∈ ν,

including the noteworthy special case of {(i, j)} ∈ cols(S) when (i, j) is not contained in any
bindings of S. As a result,

|λ| = | cols(S)|+ | bind(S)|. (3.2)
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Similarly, λ gives an equivalence relation ∼rows on ν, generated by

i

k
∼rows

j

l
if

i j

k l

∈ bind(S).

Let the rows of S be the equivalence classes of ν under ∼rows, and write

rows(S) = {R ⊆ ν | R is a row of S}.

EachR ∈ rows(S) is of the formR = {(i`, k`) | 1 6 ` 6 |R|} for

. . .

. . .i1 i2 i|R|−1 i|R|

k1 k2 k|R|−1 k|R|

. . . ⊆ S with ∈ λ and ∈ ν.

This gives a row counterpart to equation (3.2),

|ν| = | rows(S)|+ | bind(S)|. (3.3)

Unlike columns, (S1) and (S2) ensure that every row has at least two elements.
For the splice S = λ t ν with λ = {(1, 2), (3, 5), (4, 6), (5, 7), (6, 8), (9, 10), (10, 11)} and

ν = {(1, 4), (2, 6), (4, 9), (6, 10), (8, 11)} as in (3.1),

cols(S) =
{{

1 2
,

4 6
,

9 10

}
,
{

6 8
,

10 11

}
,
{

3 5

}
,
{

5 7

}}
.

and

rows(S) =


 1

4
,

2

6

 ,
 4

9
,

6

10
,

8

11


 .

Lemma 3.1. Let S = λ t ν be a splice and R a row of S. Let I and K be the connected
components in the graph of λ which contain {i | (i, k) ∈ R} and {k | (i, k) ∈ R}, respectively.
Then I 6= K, and if λ is nonnesting, every (i, k) ∈ ν with i ∈ I or k ∈ K belongs toR.

Proof. Let s = max({i | (i, k) ∈ R}). By (S1) and (S2) S has a binding
r s

t u

∈ bind(S) with
r s

,
t u

∈ λ and
r

t
,
s

u
∈ R ⊆ ν,

and either s = max(I), or (s, v) ∈ λ with v > u. In either case, u /∈ I , so I 6= K.
If λ nonnesting, only s = max(I) can be true because (t, u) ≺ (s, v). Thus if (i, k) ∈ ν with

i ∈ I , repeated application of (S2) shows that (i, k) ∼rows (s, w) for some (s, w) ∈ ν. As ν is a
set partition,w = u and (i, k) ∈ R. A similar line of reasoning applied to min({k | (i, k) ∈ R})
shows that (i, k) ∈ ν with k ∈ K also shows that (i, k) ∈ R.

With the description of rows given above, Lemma 3.1 can be used to show that the graph of a
splice of a nonnesting set partition is planar and has the properties described in (R2). However,
these facts will not be used in the scope of this paper.
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3.2. Tight splices

Take λ ∈ NNSPn, so that λ is a nonnesting set partition. Say that a splice S of λ is tight if
S∩ ↑2(λ) = ∅. By (S2), this is equivalent to the more straightforward condition

i j

k l

∈ bind(S) only if k = j + 1. (T)

Proposition 3.2. Let S = λ t ν be a tight splice. If λ is nonnesting, then so is ν.

Proof. As λ and ν are disjoint, tightness implies that ν ⊆ ↑1 (λ)− ↑2 (λ). Now observe that
↑1(λ)− ↑2(λ) is an antichain under ≺.

The splice of the nonnesting set partition λ = {(1, 2), (3, 5), (4, 6), (5, 7), (6, 8), (9, 10),
(10, 11)} in (3.1) is not tight, but

S =

1 2

3

4

5

6

7

8

9 10 11

(3.4)

is a tight splice of λ, with vertical edges {(1, 3), (2, 5), (6, 9), (8, 10)}.
For λ ∈ NNSPn, let

Tλ = {tight splices S of λ}

and
Tn =

⊔
λ∈NNSPn

Tλ.

Proposition 3.3. Let λ ∈ NNSPn. The set Tλ has a maximum element K, and

Tλ = {λ t ν | ν is a union of elements of rows(K)} .

Proof. For S ∈ Tλ and R ∈ rows(S), the set λ t R ∈ Tλ is a tight splice of λ. It is therefore
sufficient to show that the union of any subset of Tλ is a tight splice of λ.

Let S1 = λ t ν1,S2 = λ t ν2, . . . ,S` = λ t ν` be tight splices of λ, and let

T = S1 ∪ S2 ∪ · · · ∪ S` = λ t ν with ν =
⋃̀
i=1

νi.

Then ν ⊆ ↑1(λ)−↑2(λ), so ν is a nonnesting set partition. Lastly, each Si satisfies (S1) and (S2),
which are existentially quantified, so T does as well.
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3.3. Labeling tight splices

For S ∈ Tn, an F×q -labeling of S will be a function σ : bind(S)→ F×q . Let

Tλ(q) = {(S, σ) | S ∈ Tλ, σ : bind(S)→ F×q }

and
Tn(q) =

⊔
λ∈NNSPn

Tλ(q).

Such a labeling can be realized graphically by drawing label values in the center of each binding.
For example, with p > 3,

1 2

3

4

5

6

7

8

9 10 11

2 3

shows an F×p -labeling σ of the tight splice S from (3.4), explicitly defined by

σ

( 1 2

3 5

)
= 2 and σ

( 6 8

9 10

)
= 3.

3.4. Ordering rows and columns

Let S be a splice and define

CR(S) = cols(S) t rows(S).

Proposition 3.4. Let S = λ t µ be a splice. Then |CR(S)| = |λ|+ |µ| − 2| bind(S)|.

Proof. This follows directly from equations (3.2) and (3.3).

The main result of Section 4 requires a uniform total order on the sets CR(S), so as to define
F×q -labeled loopless binary matroids on CR(S). One such order is described below.

To start, draw S in the usual way, and then lower each successive connected component so
that no row of S is directly to the right of another. For example, taking S as in (3.4), we move
the second connected component down by one unit:

1 2

3

4

5

6

7

8

9 10 11

−→

1 2

3
4

5
6

7
8

9 10 11

.

Label each column and row along the upper and right sides of the drawing, respectively. Then
number each label, starting from the upper left, and proceeding rightward (for columns) or down
(for rows), as in
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1 2

3
4

5
6

7
8

9 10 11

R1

R2

C1 C2 C3 C4 C5

with

C1 =
{

1 2
,

3 5

}
, C2 =

{
5 7

}
, C3 =

{
4 6

}
, C4 =

{
6 8

,
9 10

}
,

C5 =
{

10 11

}
, R1 =

 1

3
,

2

5

 , and R2 =

 6

9
,

8

10

 .
Finally, enumerate the set CR(S) by first listing columns according to number, and then rows in
the same way. This enumeration defines the final ordering, as in:

C1 < C2 < C3 < C4 < C5 < R1 < R2.

Remark. Aside from ease of description, I do not know of any benefit of this order over any
other, at least in the scope of this paper. However, the analogous choice of order for shortened
polyominoes is fairly significant (see [8, Section 5]), so it would be interesting to know of a
property of ideals or normal subgroups which prefers one order over another.

4. Lie ideals

Fix a prime power q. This section describes a bijective indexing for the ideals of the Lie algebra
utn = utn(Fq). Recall the definitions of Tn(q) from Section 3.3, CR(S) from Section 3.4, and
→
G CR(S)(q) from Section 2.3.1.

Theorem 4.1. There is a bijection

{Lie algebra ideals of utn} ←→
{

(S, σ,M, τ)
∣∣∣∣ (S, σ) ∈ Tn(q), (M, τ) ∈

→
G CR(S)(q)

}

With Theorem A, this implies Theorem B. With the formula for |
→
G CR(S)(q)| from Proposi-

tion 2.8, the next result also follows.

Corollary 4.2. The number of Lie algebra ideals in utn is

∑
S∈Tn

(q − 1)| bind(S)|
|CR(S)|∑
j=0

(q − 1)|CR(S)|−j
{
|CR(S)|

j

}
q

.

The aim of this section is to prove Theorem 4.1; an outline of the proof structure follows.
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1. Each labeled tight splice (S, σ) ∈ Tn(q) selects a family of ideals, denoted fam(S, σ).
Proposition 4.3 states that

{Lie algebra ideals of utn} =
⊔

(S,σ)∈Tn(q)
fam(S, σ).

For each (S, σ), there are ideals DS,σ and ZS,σ such that DS,σ ⊆ n ⊆ ZS,σ for each
n ∈ fam(S, σ). Every n ∈ fam(S, σ) is then determined by its image in ZS,σ/DS,σ.

2. For each (S, σ) ∈ Tn(q), Proposition 4.13 gives a explicit bijection
→
G CR(S)(q)←→ fam(S, σ).

Each F×q -labeled loopless binary matroid (M, τ) on CR(S) uniquely determines a sub-
space of ZS,σ/DS,σ which lifts to an ideal in fam(S, σ).

Remark. The notation used for the ideals ZS,σ and DS,σ is meant to evoke the terms center and
derivation: Proposition 4.9 and Lemma 4.8 respectively state that for n ∈ fam(S, σ),

Z(utn/n) = ZS,σ/n, and [utn,ZS,σ] = DS,σ.

4.1. Splices and families of ideals

For λ ∈ NNSPn and (S, σ) ∈ Tλ(q), define a subspace of utn

ZS,σ =

a ∈ utλ

∣∣∣∣∣∣∣∣∣ ai,j = σ

( i j

j+1 l

)
aj+1,l for each

i j

j+1 l

∈ bind(S)

 .
In ZS,σ, matrix entries corresponding to elements of the same column of S have a fixed ratio.
Section 4.1.1 gives a more in-depth description, including a basis and several examples.

Now suppose that S = λ t ν, and define the (S, σ)-family of ideals

fam(S, σ) =

ideals n of utn

∣∣∣∣∣∣∣
supp(n) = ↑ (λ),

{(i, j) ∈ ↑1(λ) | Fqei,j 6⊆ n} = ν,
and n ⊆ ZS,σ

 .
Proposition 4.3. Each ideal of utn is contained in a unique family:

{ideals of utn} =
⊔

(S,σ)∈Tn(q)
fam(S, σ).

Proposition 4.3 constitutes the first half of Theorem 4.1. The proof of this proposition will
follow a sequence of three lemmas.

Lemma 4.4. Let n be an ideal of utn, and take λ ∈ NNSPn with ↑ (λ) = supp(n). Then

[utn, [utn, n]] = ut↑2(λ).
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Proof. By assumption n ⊆ utλ, so

[utn, [utn, n]] ⊆ [utn, [utn, utλ]] = ut↑2(λ),

establishing one direction of containment. The other will follow from the construction of a basis
for ut↑2(λ) within [utn, [utn, n]]. Given any (i, l) ∈ ↑2(λ), it is possible to choose

• (j, k) ∈ λ with (j, k) � (i, l) and ht((j, k)) + 2 6 ht((i, l)), and

• a ∈ utn with aj,k 6= 0.

Using these choices, define a new element for each (i, l) ∈ ↑2(λ),

b(i, l) =


[ek+1,l, [ek,k+1, a]] = ∑

r6j ar,ker,l if i = j < k < l,
[ei,j, [ek,l, a]] = (−aj,k)ei,l if i < j < k < l,
[ei,j−1, [ej−1,j, a]] = ∑

s>k aj,sei,s if i < j < k = l.

The i, l-entry of b(i, l) is necessarily nonzero and supp({b(i, l)}) ⊆ ↑ ({(i, l)}), so the transition
from {b(i, l) | (i, l) ∈ ↑2(λ)} to {ei,l | (i, l) ∈ ↑2(λ)} is nonsingular and triangular with respect
to �. Thus {b(i, l) | (i, l) ∈ ↑2(λ)} is a basis for ut↑2(λ).

Lemma 4.5. Fix λ ∈ NNSPn, and take a ∈ utλ. For any (j, j + 1) ∈ [[n]],

[Fqej,j+1, a] + ut↑2(λ) =



Fq(ai,jei,j+1 − aj+1,lej,l) + ut↑2(λ) if (i, j), (j + 1, l) ∈ λ,

Fq(ai,jei,j+1) + ut↑2(λ)
if (i, j) ∈ λ and for all
l ∈ [n], (j + 1, l) /∈ λ,

Fq(aj+1,lej,l) + ut↑2(λ)
if (j + 1, l) ∈ λ and for
all i ∈ [n], (i, j) /∈ λ,

ut↑2(λ) otherwise.

Lemma 4.5 should be seen more as a computational shortcut than a precise description of
the set [Fqej,j+1, a] + ut↑2(λ): in the event that one or both of aj+1,l or ai,j is zero, several of the
cases above are equal.

Proof. To begin, note that [utn, utλ] = ut↑1(λ), so [utn, a] ⊆ ut↑1(λ) for any a ∈ utλ. Every
element of ut↑1(λ)/ut↑2(λ) has a canonical representative with all nonzero entries occurring in
positions indexed by elements of ↑1(λ)− ↑2(λ), and it is these representatives which appear in
the statement of the lemma.

For (j, j + 1) ∈ [[n]] and any a ∈ utλ,

[Fqej,j+1, a] = Fq

 ∑
l>j+1

aj+1,lej,l −
∑
i<j

ai,jei,j+1

 = Fq

∑
i<j

ai,jei,j+1 −
∑
l>j+1

aj+1,lej,l

 .
Passing to the quotient utλ/ut↑2(λ), the canonical representative of [Fqej,j+1, a]+ut↑2(λ) can have
nonzero i, j + 1-entry only if (i, j) ∈ ↑ (λ) and (i, j + 1) /∈ ↑2 (λ); together these conditions
imply (i, j) ∈ λ. Similarly, the representative has nonzero j, l-entry only if (j + 1, l) ∈ λ.
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The next lemma is a slightly stronger statement than Proposition 4.3 which will also apply
to normal subgroups, as discussed in Section 5.

Lemma 4.6. For λ ∈ NNSPn, let n be an arbitrary subset of utn with λ ⊆ supp(n), and suppose
that m is an additively closed subset of utn which satisfies

{[a, b] | a ∈ utn, b ∈ n}+ ut↑2(λ) ⊆ m ⊆ ut↑1(λ).

Let ν = {(r, s) ∈ ↑1 (λ) | Fqer,s 6⊆ m}. Then S = λ t ν is a tight splice of λ, and there is a
unique labeling σ : bind(S)→ F×q for which n ⊆ ZS,σ.

Proof of Lemma 4.6. The first step of the proof is to show that S is a tight splice. From the
assumption that ut↑2(λ) ⊆ m it follows that ν ⊆ ↑1 (λ)−↑2 (λ), so S satisfies conditions (S1)
and (T):

if
r

s
∈ ν then

r+1 s
or

r s−1
∈ λ.

What remains in this step is to show that S satisfies (S2). For each (i, j) ∈ λ we can choose
an a ∈ n with ai,j 6= 0. Using Lemma 4.5 to assist with computation, m contains

[Fqej,j+1, a] + ut↑2(λ) =

Fq(ai,jei,j+1 − aj+1,lej,l) + ut↑2(λ) if (j + 1, l) ∈ λ,
Fqei,j+1 + ut↑2(λ) if (j + 1, l) /∈ λ for all l ∈ [n].

If (i, j + 1) ∈ ν then in order to avoid a contradiction there must be some l ∈ [n] with
(j + 1, l) ∈ λ, aj,l 6= 0, and Fqej,l /∈ m. As a consequence, (j, l) ∈ ν, establishing

i j
∈ λ,

i

j+1
∈ ν only if

j+1 l
∈ λ,

j

l
∈ ν for some l ∈ [n].

The “if” direction of (S2) follows similarly, establishing that S is a tight splice of λ.
The second and final step of the proof is to define a labeling σ of S for which n ⊆ ZS,σ. Fix

a binding

i j

j+1 l

∈ bind(S), with
i

j+1
,
j

l
∈ ν and

i j
,
j+1 l

∈ λ.

Using Lemma 4.5 again, for each a ∈ n

[Fqej,j+1, a] + ut↑2(λ) = Fq(ai,jei,j+1 − aj+1,lej,l) + ut↑2(λ) ⊆ m.

Sincem is closed under addition andFqei,j+1,Fqej,l 6⊆ m, there must be a single valueαi,j,j+1,l ∈
F×q for which

ai,jei,j+1 − aj+1,lej,l ∈ Fq(ei,j+1 − αi,j,j+1,kej,l)
for every a ∈ n. Such a value exists for each binding of S , giving a labeling σ of bind(S) with

σ

( i j

j+1 l

)
= αi,j,j+1,l.
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Proof of Proposition 4.3. Suppose that n is an ideal with support ↑ (λ) for λ ∈ NNSPn, and let
m = n ∩ utn, so that m is an ideal, and

{(r, s) ∈ ↑1(λ) | Fqer,s 6⊆ m} = {(r, s) ∈ ↑1(λ) | Fqer,s 6⊆ n}.

By Lemma 4.4, ut↑2(λ) ⊆ [utn, n]. As supp(n) = ↑ (λ), [utn, n] ⊆ ut↑1(λ)∩n. Therefore n and m
fulfill the assumptions of Lemma 4.6. The result is a unique element (S, σ) ∈ Tn(q) for which
n ∈ fam(S, σ), proving the proposition.

4.1.1 Bounding ideals

Let (S, σ) ∈ Tn(q) with S = λ t ν. By definition each ideal n ∈ fam(S, σ) is contained in

ZS,σ =

a ∈ utλ

∣∣∣∣∣∣∣∣∣ ai,j = σ

( i j

j+1 l

)
aj+1,l for each

i j

j+1 l

∈ bind(S)

 .
There is an analogous lower bound for each family. Let

DS,σ = ut↑(λ)−S ⊕
⊕

i j
j+1 l

∈bind(S)

Fq

ei,j+1 − σ
( i j

j+1 l

)
ej,l

 .

A piece of combinatorial intuition for these definitions is as follows: in ZS,σ, we consider entries
from λ of S as related by ∼cols, while in DS,σ we consider entries from ν as related by ∼rows.

Both ZS,σ and DS,σ are ideals of utn, as

ut↑2(λ) ⊆ DS,σ ⊆ ut↑1(λ) ⊆ ZS,σ ⊆ utλ.

This also shows that ZS,σ ∈ fam(λ, f∅) and DS,σ ∈ fam(min( ↑1 (λ)), f∅), where f∅ is the
unique labelling of a trivial splice, which has no bindings. It is therefore typical that neither
ZS,σ nor DS,σ belong to fam(S, σ).

Example 4.7. For n = 8 and q = 5, take S = λ t ν and σ : bind(S)→ F×5 as given by

3

1 2

1 2

3 4

5

6

7 8

.
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Therefore

ZS,σ = ut↑1(λ) ⊕ F5(e1,2 + 3e3,4 + 3e5,7)⊕ F5(e4,6 + 2e7,8)

=

0
0
0
0
0
0
0
0

α

0
0
0
0
0
0
0

∗
0
0
0
0
0
0
0

∗
∗

3α
0
0
0
0
0

∗
∗
∗
0
0
0
0
0

∗
∗
∗
β

0
0
0
0

∗
∗
∗
∗

3α
0
0
0

∗
∗
∗
∗
∗
∗

2β
0

over all values of α, β ∈ F5,

and ↑ (λ) − S = {(1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 6), (3, 7),
(3, 8), (4, 8), (5, 8)}, so

DS,σ = ut↑(λ)−S ⊕ F5(e1,3 − 3e2,4)⊕ F5(e3,5 − e4,7)⊕ F5(e4,7 − 2e6,8)

=

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

γ

0
0
0
0
0
0
0

∗
−3γ

0
0
0
0
0
0

∗
∗
δ
0
0
0
0
0

∗
∗
∗
0
0
0
0
0

∗
∗
∗

ε− δ
0
0
0
0

∗
∗
∗
∗
∗
−2ε

0
0

over all values of γ, δ, ε ∈ F5.

Following the convention of Example 2.2, I have drawn paths in each matrix above to emphasize
the support of each ideal, with two paths in DS,σ to emphasize the difference in support from
ZS,σ, reflecting the general fact that supp(ZS,σ) = ↑ (λ) and supp(DS,σ) = ↑1(λ).

Lemma 4.8. For any (S, σ) ∈ Tn(q), [utn,ZS,σ] = DS,σ.

Proof. By Lemma 4.4, ut↑2(λ) ⊆ [utn,ZS,σ]. The span of the commutators of ZS,σ which are
not contained in ut↑2(λ) can then be computed using Lemma 4.5, as in the proof of Lemma 4.6:

[utn,ZS,σ] = ut↑(λ)−S ⊕
⊕

i j
j+1 l

∈bind(S)

Fq

ei,j+1 − σ
( i j

j+1 l

)
ej,l

 = DS,σ.

Proposition 4.9. For (S, σ) ∈ Tn(q) and n ∈ fam(S, σ), Z(utn/n) = ZS,σ/n, and as a conse-
quence DS,σ ⊆ n ⊆ ZS,σ.

The converse is almost never true. If S 6= ∅, there are ideals between DS,σ and ZS,σ which
do not belong to fam(S, σ); one example is ut↑1(λ), where λ is the underlying partition of S.
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Proof. Write Z = {a ∈ utλ | [utn, a] ⊆ n}. Assuming that Z = ZS,σ, it follows that n ⊆ ZS,σ,
from which Lemma 4.8 implies DS,σ ⊆ n. The goal, therefore, is to show that Z = ZS,σ.

By Lemma 4.4, ut↑2(λ) ⊆ n, so ut↑1(λ) ⊆ Z. Thus, a ∈ Z if and only if [utn, a]+ut↑2(λ) ⊆ n.
Using Lemma 4.5 to compute [utn, a] + ut↑2(λ),

a ∈ Z if and only if Fq(ai,jei,j+1 − aj+1,lej,l) ⊆ n for each
i j

j+1 l

∈ bind(S).

Since n ∈ fam(S, σ), it must be the case that Fqei,j+1,Fqej,l 6⊆ n and

ei,j+1 − σ
( i j

j+1 l

)
ej,l ∈ n for each

i j

j+1 l

∈ bind(S),

so a ∈ Z if and only if a ∈ ZS,σ.

Now consider the quotient ZS,σ/DS,σ. A direct computation gives that

dim(ZS,σ/DS,σ) = | rows(S) t cols(S)| = |CR(S)|.

There is a fairly natural basis for this quotient which is indexed by CR(S). For R ∈ rows(S),
let

bR = ei,j for
i

j
∈ R with i minimal,

and for C ∈ cols(S), let

bC =
∑

(i,j)∈C

 ∏
(r,s),(s+1,t)∈C

s+16i

σ

( r s

s+1 t

) ei,j with
∏
∅

= 1,

so that bC ∈ ZS,σ, supp({bC}) = C, and (bC)i,j = 1 for the unique (i, j) ∈ C with i minimal.
Graphically, for each (i, j) ∈ C the (i, j)-entry of bC is the product of the labels above the edge
(i, j) in the column C, and all other entries of bC are zero.

Example 4.10. Continuing from Example 4.7, let n = 8, q = 5, and take S = λ t ν, σ,
cols(S) = {C1, C2}, and rows(S) = {R1,R1} as in

3

1 2

1 2

3 4

5

6

7 8

R1

R2

C1 C2

.
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Accordingly,

bC1 = e1,2 + 3e3,4 + 3e5,7, bC2 = e4,6 + 2e7,8, bR1 = e1,3, and bR2 = e3,5.

Refer to Example 4.7 to verify that these elements, modulo DS,σ, give a basis of ZS,σ/DS,σ.

Lemma 4.11. For (S, σ) ∈ Tn(q), the set

{bC + DS,σ | C ∈ cols(S)} ∪ {bR + DS,σ | R ∈ rows(S)}

is a basis for ZS,σ/DS,σ.

Proof. Proceed in two steps, based on the division of ZS,σ/DS,σ into the two subquotients
ut↑1(λ)/DS,σ and ZS,σ/ut↑1(λ). First, if S = λ t ν, then

⊕
(i,j)∈ν

Fqei,j =
⊕

R∈rows(S)
FqbR ⊕

⊕
i j

j+1 l
∈bind(S)

Fq

ei,j+1 − σ
( i j

j+1 l

)
ej,l

 ,
so

ut↑1(λ) = ut↑1(λ)−ν ⊕
⊕

(i,j)∈ν
Fqei,j = DS,σ ⊕

⊕
R∈rows(S)

FqbR.

Describing a basis for ZS,σ/ut↑1(λ) is more straightforward. The subspace
∑

(i,j)∈λ
ai,jei,j

∣∣∣∣∣∣∣∣∣ ai,j = σ

( i j

j+1 l

)
aj+1,l for each

i j

j+1 l

∈ bind(S)

 ⊆ ZS,σ

is a transversal of ZS,σ/ut↑1(λ), and the set {bC | C ∈ cols(S)} is a basis for this subspace.

Corollary 4.12. Let λ ∈ NNSPn and (S, σ) ∈ Tλ(q). Then

dim(DS,σ) = | ↑1(λ)| − | rows(S)| and dim(ZS,σ) = | ↑1(λ)|+ | cols(S)|.

4.2. Labeled loopless binary matroids and ideals

In this section, fix λ ∈ NNSPn and (S, σ) ∈ Tλ(q). Recall that

CR(S) = cols(S) t rows(S).

Section 3.4 describes a total order on the set CR(S). With this order, the construction in Sec-
tion 2.3 describes the set

→
G CR(S)(q) of F×q -labeled loopless binary matroids on CR(S).

Each (M, τ) ∈
→
G CR(S)(q) will determine an ideal of utn. IfM = (U, V,E), let

nS,σ,M,τ = Fq-span

bU +
∑

(U ,V)∈E
τ(U ,V)bV

∣∣∣∣∣∣∣
U ∈ U with either

(U ,V) ∈ E for some
V ∈ V , or U ∈ cols(S)

+ DS,σ. (4.1)

The subspace nS,σ,M,τ satisfies DS,σ ⊆ nS,σ,M,τ ⊆ ZS,σ, so by Lemma 4.8 is an ideal of utn.
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Proposition 4.13. For all (S, σ) ∈ Tn(q), the map
→
G CR(S)(q) → fam(S, σ)

(M, τ) 7→ nS,σ,M,τ

is a bijection.

This proposition gives the remainder of Theorem 4.1. The proof will follow Lemma 4.15.

Example 4.14. For n = 6, and q = 5, take S = λ t ν, σ : bind(S)→ F×5 , cols(S) = {C1, C2},
and rows(S) = {R1} as given by

3

1 2

3 5 4 6

R1

C1 C2

.

The canonical order on CR(S) is C1 < C2 < R1, and the set of loopless binary matroids on an
isomorphic ordered set is given in Example 2.4. Below are three elements of

→
G CR(S)(5) with

the corresponding members of fam(S, σ):

C1

C2

R1

4
7−→ FqbC1 + Fq(bC2 + 4bR1) + DS,σ;

C1

C2

R1
1

2
7−→ Fq(bC1 + bR1) + Fq(bC2 + 2bR1) + DS,σ; and

C1 C2

R1

3
7−→ Fq(bC1 + 3bC2) + DS,σ.

In order to prove Proposition 4.13, we will view ZS,σ/DS,σ as the set of CR(S)-indexed
coordinates from Fq, as in

(αC1 , . . . , αC| cols(S)| , αR1 , . . . , αR| rows(S)|) =
∑

V∈CR(S)
αVbV + DS,σ.

Given any subspace W of ZS,σ/DS,σ, there is a canonical basis for W which will serve as a
stand-in for W itself. Let k = dim(W ) and take (xi,V)16i6k,V∈CR(S) to be the unique reduced
row-echelon form matrix over Fq with row span W . That is, if

xi = (xi,C1 , . . . , xi,R| rows(S)|) for 1 6 i 6 k,

then W = Fq-span{x1, . . . , xk} and there are elements U1 < U2 < · · · < Uk of CR(S) with
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1. xi,V = 0 for all V < Ui, and

2. xi,Uj
= δi,j .

Call this basis the RRE basis of W .

Lemma 4.15. Let W be a subspace of ZS,σ/DS,σ with RRE basis {x1, . . . , xk}. Then W =
n/DS,σ for some n ∈ fam(S, σ) if and only if

(a) for each C ∈ cols(S), xi,C 6= 0 for at least one value of i, 1 6 i 6 k, and

(b) for each 1 6 i 6 k, xi 6= bR + DS,σ for anyR ∈ rows(S).

Proof. Let n be the unique subspace of ZS,σ with DS,σ ⊆ n and n/DS,σ = W . By Lemma 4.8,
n is an ideal of utn. Recall that n ∈ fam(S, σ) if and only if

(i) supp(n) = ↑ (λ),
(ii) for each (i, j) ∈ ↑1(λ), ei,j ∈ n if and only if (i, j) /∈ ν, and

(iii) n ⊆ ZS,σ.

By assumption, (iii) holds. The following shows that (i) is equivalent to (a), and (ii) to (b).
For each (r, s) ∈ λ, the (r, s)-entry of each member of any coset in utλ/ut↑1(λ) will be

identical. As DS,σ ⊆ ut↑1(λ), the same is true for utλ/DS,σ. Therefore, for each a ∈ ZS,σ,
C ∈ cols(S), and (r, s) ∈ C, the (r, s)-entry of each member of a+ DS,σ is nonzero if and only
if the C-coordinate of a + DS,σ is nonzero. Since cols(S) partitions the set λ, (i) is equivalent
to (a).

ForR ∈ rows(S) and (i, j) ∈ R,

Fqei,j + DS,σ =
⊕

(r,s)∈R
Fqer,s + DS,σ = FqbR + DS,σ,

so (ii) holds if and only if bR+DS,σ /∈ W for anyR ∈ rows(S). With the properties of an RRE
basis, this is equivalent to condition (b).

Proof of Proposition 4.13. It is not clear from the outset that each nS,σ,M,τ belongs to fam(S, σ),
so this must be established. Fix (M, τ) ∈

→
G CR(S)(q) withM = (U, V,E) and write

{U1,U2, . . . ,Uk} =


U ∈ U with either

(U ,V) ∈ E for some
V ∈ V , or U ∈ cols(S)


in increasing order. Let

xi = bUi
+

∑
(Ui,V)∈E

τ(Ui,V)bV

so that by definition
nS,σ,M,τ = Fq-span{xi | 1 6 i 6 k}+ DS,σ.

The set {xi | 1 6 i 6 k} is the RRE basis of W = nS,σ,M,τ/DS,σ, as the definition of
→
G CR(S)

ensures that
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1. xi,V = 0 for all V < Ui, and

2. xi,Uj
= δi,j .

This basis satisfies the conditions of Lemma 4.15, so n ∈ fam(S, σ).
To show that the given map is also a bijection, construct an inverse as follows. For n ∈

fam(S, σ), let W = n/DS,σ and take {xi | 1 6 i 6 k} to be the RRE basis of W with
corresponding indices U1 < U2 < · · · < Uk satisfying conditions 1. and 2. above. Let

V = {V ∈ CR(S) | xi,V 6= 0 and V 6= Ui for every 1 6 i 6 k},
U = CR(S)− V,
E = {(Ui,V) ∈ U × V | xi,V 6= 0}, and

τ(Ui,V) = xi,V ,

and letM = (U, V,E). ThenM∈
→
G CR(S) and (M, τ) ∈

→
G CR(S)(q), since {xi | 1 6 i 6 k} is

an RRE basis. Finally, nS,σ,M,τ = n by definition.

5. Normal subgroups

Recall that Theorem A asserts a correspondence between the normal subgroups of UTn(Fq)
and certain ideal-like additive subgroups of utn(Fq), and that as a consequence the results of
Section 4 also apply to certain normal subgroups, giving Theorem B. One particularly nice
consequence is the following corollary.

Corollary 5.1. Let p be a prime. The map{
(S, σ,M, τ)

∣∣∣∣ (S, σ) ∈ Tn(p), (M, τ) ∈
→
G CR(S)(p)

}
−→ {N E UTn(Fp)}

(S, σ,M, τ) 7−→ 1 + nS,σ,M,τ

is a bijection.

A number of examples which apply Theorem 4.1 to construct previously obscure ideals (and
thus normal subgroups) can be found in Section 4. The indexing for the better known normal
subgroups of UTn(Fq) in Corollary 5.1 is similar but distinct from previous work.

In [22, Theorem 4.1], Marberg constructs a family of normal subgroups of UTn(Fp) which
have the form 1 + a for a two-sided associative algebra ideal a ⊆ utn(Fp). These ideals are
nicely characterized as the subspaces a ⊆ utn(Fp) with

ut↑1(λ) ⊆ a ⊆ utλ,

where λ is the nonnesting set partition with supp(a) = ↑ (λ). Thus in Corollary 5.1, Marberg’s
normal subgroups—including all central subgroups and normal pattern subgroups—are indexed
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by trivial splices. For example,


1 α ∗ ∗
0 1 0 ∗
0 0 1 2α
0 0 0 1

 ←→ (S, σ,M, τ) with
(S, σ) =

1 2 3 4

C1 C2

,

and (M, τ) = C1 C2
2

.

More generally, these subgroups are indexed by tuples (λ, f∅,M, τ), where λ = λt∅ denotes
the trivial splice of λ ∈ NNSPn, f∅ is the unique labeling of bind(λ) = ∅, and (M, τ) is an
F×p -labeled loopless binary matroid on the set CR(λ), which contains only one-element columns.

Some caution is required when comparing Corollary 5.1 to [22, Theorem 4.1], however, as
the latter uses a different convention for relating nonnesting set partitions to subsets of utn(Fq).
In this paper, a nonnesting set partition determines the support of each corresponding subgroup,
but in [22] nonnesting set partitions determine a different property which is, in a sense, dual to
support. The dual property is difficult to describe in the scope of this paper, but the indexing
schemes are morally equivalent (see [2, Section 3.1] for details), and versions of both results can
be given in either convention.

The remainder of the section is divided into two subsections. Subsection 5.1 gives a proof of
Theorem A, which is not significantly different from that of [20, Theorem 1]. This is included
mainly for completeness, but some intermediate results are needed in the sequel. Subsection 5.2
states new results about the normal subgroups of UTn(Fq), including an enumerative formula
and a discussion of the lattice of normal subgroups.

5.1. Proof of Theorem A

In this section fix a prime power q, and write utn = utn(Fq) and UTn = UTn(Fq). In order to
distinguish the Lie bracket from the group commutator, I will adopt the notation

[a, b]Lie = ab− ba and [a, b] = a−1b−1ab.

The following computation will be used repeatedly: for a ∈ UTn, (s, t) ∈ [[n]], and x ∈ Fq,

[1 + xes,t, a] = 1 + x
∑

(r,u)�(s,t)
(a−1)r,sat,uer,u. (5.1)

Lemma 5.2. Let N E UTn and take λ ∈ NNSPn with supp(N) = ↑ (λ). Then

[UTn, [UTn, N ]] = UT↑2(λ).

Proof. By assumption N ⊆ UTλ, so [UTn, [UTn, N ]] ⊆ UT↑2(λ). The opposite containment
will follow from the fact that

{1 + xei,l |
i l

∈ ↑2(λ), x ∈ Fq} ⊆ [UTn, [UTn, N ]],

which generates UT↑2(λ). Fix (i, l) ∈ ↑2(λ) and x ∈ Fq. It is possible to choose
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• (j, k) ∈ λ with (j, k) � (i, l) and ht((j, k)) + 2 6 ht((i, l)) and

• a ∈ N with aj,k 6= 0.

Use this choice to define a new element

b =


[1 + xek+1,l, ([1 + ek,k+1, a

−1])−1] = 1 + x
∑
r<k ar,ker,l if i = j < k < l,

[1 + xei,j, [1 + ek,l, a
−1]] = 1 + x

∑
u>l aj,k(a−1)l,uei,u if i < j < k < l,

[1 + xei,j−1, [1 + ej−1,j, a]] = 1 + x
∑
u>j aj,uei,u if i < j < k = l.

The (i, l)-entry of b is xaj,k 6= 0, so a standard computation (e.g. [10, Corollary 3.4]) shows that
b is conjugate to 1 + xaj,kei,l.

Lemma 5.3. Let N be a subgroup of UTn. For any λ ∈ NNSPn with supp(N) ⊆ ↑ (λ),

[UTn, N ]UT↑2(λ) = 1 + 〈[b, a− 1]Lie | b ∈ utn, a ∈ N〉+ ut↑2(λ).

Proof. For a ∈ UTλ, 1 6 j < n, and x ∈ Fq equation (5.1) gives

[1+xej,j+1, a]UT↑2(λ) =



(1 + x((a−1)i,jei,j+1 + aj+1,lej,l))UT↑2(λ) if (i, j), (j + 1, l) ∈ λ,

(1 + x(a−1)i,jei,j+1)UT↑2(λ)
if (i, j) ∈ λ and for all
l ∈ [n], (j + 1, l) /∈ λ,

(1 + x(a−1)j+1,lej,l)UT↑2(λ)
if (j + 1, l) ∈ λ and for
all i ∈ [n], (i, j) /∈ λ,

UT↑2(λ) otherwise.

As supp({a}) ⊆ ↑ (λ), (a−1)i,j = −ai,j for each (i, j) ∈ λ. Therefore the above expression
matches the analogous statement about commutators from Lemma 4.5 and

[1 + xej,j+1, a]UT↑2(λ) = 1 + [xej,j+1, a− 1]Lie + ut↑2(λ)

By assumption [UTn, N ] ⊆ UT↑1(λ), so the subgroup [UTn, N ]UT↑2(λ)/UT↑2(λ) is central
in UTn/UT↑2(λ). Therefore, for any a ∈ N , 1 6 j, k < n, and x, y ∈ Fq

[(1 + xej,j+1)(1 + yer,r+1), a]UT↑2(λ) = [1 + xej,j+1, a]UT↑2(λ)[1 + yer,r+1, a]UT↑2(λ).

Elements of the form 1 + xej,j+1 generate UTn, and from consideration of support

UT↑1(λ)/UT↑2(λ) −→ ut↑1(λ)/ut↑2(λ)
aUT↑2(λ) 7−→ (a− 1) + ut↑2(λ)

is an isomorphism, completing the proof.
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Lemma 5.4. Let λ ∈ NNSPn and S ∈ Tλ. The bijection

utλ/ut↑(λ)−S −→ UTλ/UT↑(λ)−S
a+ ut↑(λ)−S 7−→ (1 + a)UT↑(λ)−S

is an isomorphism of groups.

Proof. By consideration of support the statement will follow if{
i k

∣∣∣∣ i j
,
j k

∈ ↑(λ)
}
⊆ ↑(λ)− S.

Suppose that (i, j), (j, k) ∈ ↑ (λ), and note that ht((i, k)) = ht((i, j)) + ht((j, k)). If
either ht((i, j)) > 1 or ht((j, k)) > 1, then (i, k) ∈ ↑2 (λ), a subset of ↑ (λ) − S. Otherwise
(i, j), (j, k) ∈ λ, in which case i and k are in the same connected component of the graph of λ.
In this case (i, k) is not contained in any splice of λ by Lemma 3.1, so (i, k) ∈ ↑ (λ)− S .

Lemma 5.5. Let n be a subgroup of utn with {[a, b]Lie | a ∈ utn, b ∈ n} ⊆ n, and let n =
Fq -span(n). Then

1. [utn, n]Lie = 〈[a, b]Lie | a ∈ utn, b ∈ n〉, and this is a subset of n, and

2. n is an ideal of utn.

Proof. Take a ∈ utn, b1, b2, . . . , bk ∈ n, and α1, α2, . . . , αk ∈ Fq. Then[
a,

k∑
i=1

αibi

]
Lie

=
k∑
i=1

αi[a, bi]Lie =
k∑
i=1

[αia, bi]Lie ⊆ n ⊆ n.

Proof of Theorem A. Let N ⊆ UTn and n ⊆ utn with N = 1 + n, and take λ ∈ NNSPn with
↑ (λ) = supp(N) = supp(n). The aim is to show that N is a normal subgroup if and only if n
is an additive subgroup with {[a, b]Lie | a ∈ utn, b ∈ n} ⊆ n.

First suppose that N E UTn. Let m = [UTn, N ]− 1. By Lemma 5.2 and Lemma 5.3,

m = 〈[a, b]Lie | a ∈ utn, b ∈ n〉+ ut↑2(λ), (5.2)

and m ⊆ n, so what remains is to show that n is an additive group. By equation (5.2), m and n
meet the conditions of Lemma 4.6, so there is a tight splice S of λ for which

ut↑(λ)−S ⊆ m ⊆ n.

Under the isomorphism of Lemma 5.4, n/ut↑(λ)−S maps to N/UT↑(λ)−S , so n is a group.
Now suppose that n is a subgroup of utn with {[a, b]Lie | a ∈ utn, b ∈ n} ⊆ n. By Lemma 5.5,

n = Fq -span(n) is an ideal and [utn, n]Lie ⊆ n. By Lemma 4.6, there is a tight splice S of λ for
which

ut↑(λ)−S ⊆ [utn, n]Lie ⊆ n.

Under the isomorphism of Lemma 5.4, N/UT↑(λ)−S is the image of n/ut↑(λ)−S , and so N is a
subgroup of UTn. Lemma 5.3 then gives

[UTn, N ] ⊆ 〈[a, b] | a ∈ utn, b ∈ n〉+ ut↑2(λ) ⊆ N,

and so N E UTn.
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A slightly stronger restatement of Lemma 5.3 now follows.

Corollary 5.6. Let 1 + n E UTn(Fq) and n = Fq -span(n). Then

[UTn(Fq), 1 + n] = 1 + [utn(Fq), n]Lie.

Proof. This follows from Lemma 5.2, Lemma 5.3, and Theorem A.

5.2. Further results on normal subgroups

Some aspects of my description of Lie algebra ideals extend to the set {N E UTn(Fq)}, even
when q is not prime. For (S, σ) ∈ Tn(q) with S = λ t ν, define the normal subgroup family

NSGfam(S, σ) =

N E UTn(Fq)

∣∣∣∣∣∣∣
supp(N) = ↑ (λ),

{(i, j) ∈ ↑1(λ) | 1 + Fqei,j 6⊆ N} = ν,
and N ⊆ 1 + ZS,σ

 .
This set of subgroups relates to the previously defined fam(S, σ) of ideals by

{1 + n | n ∈ fam(S, σ)} = {1 + n ∈ NSGfam(S, σ) | n is an Fq-subspace}.

Corollary 5.7. Each normal subgroup of UTn(Fq) is contained in a unique normal subgroup
family:

{N E UTn(Fq)} =
⊔

(S,σ)∈Tn(q)
NSGfam(S, σ).

Further, 1 + DS,σ 6 N for every N ∈ NSGfam(S, σ).

Proof. Let N E UTn(Fq) and take λ ∈ NNSPn so that supp(N) = ↑ (λ). Then UT↑2(λ) ⊆
[UTn(Fq), N ], so Lemma 5.3 implies

[utn(Fq), N − 1] + ut↑2(λ) ⊆ (N − 1) ∩ ut↑1(λ).

Thus Lemma 4.6 applies to n = N − 1 and m = n ∩ ut↑1(λ), giving the first claim exactly. The
second claim follows from Lemma 4.8, Proposition 4.9, and Corollary 5.6:

1 + DS,σ = [UTn(Fq), 1 + ZS,σ] ⊆ N.

Lemma 4.11 states that for any (S, σ) ∈ Tn(q),

ZS,σ/DS,σ = Fq -span{bV + DS,σ | V ∈ CR(S)}.

Lemma 5.8. Let (S, σ) ∈ Tn(q), and take W to be an additive subgroup of ZS,σ/DS,σ. Then
W = n/DS,σ for a normal subgroup 1 + n ∈ NSGfam(S, σ) if and only if W satisfies

if V ∈ cols(S): bV + DS,σ occurs with nonzero coefficient in some element of W ,
if V ∈ rows(S): FqbV + DS,σ 6⊆ W , (Int)

for each V ∈ CR(S).
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Proof. Take n 6 utn(Fq) so that DS,σ ⊆ n and n/DS,σ = W . As n ⊆ ZS,σ, what remains
is to determine when Fqei,j 6⊆ n for each (i, j) ∈ ν and supp(n) = ↑ (λ), where S = λ t ν.
These conditions are respectively equivalent to W satisfying (Int) for all R ∈ rows(S) and all
C ∈ cols(S).

Recall that Proposition 3.4 gives the concise formula |CR(S)| = |S| − 2| bind(S)|.

Theorem 5.9. For q = pd with p a prime and d ∈ Z+,

|{N E UTn(Fq)}| =
∑
S∈Tn

(q − 1)| bind(S)|
|CR(S)|∑
i=0

(−1)|CR(S)|−i
(
|CR(S)|

i

)
di∑
j=0

(
di

j

)
p

,

where
(
n
k

)
p

denotes the p-binomial coefficient.

Proof of Theorem 5.9. Fix (S, σ) ∈ Tn(q). For each X ⊆ CR(S), there is a bijection

{W 6 ZS,σ/DS,σ | W does not satisfy (Int) for V /∈ X} ←→ {W ′ 6 Fq -span{bV | V ∈ X}}

given by projection onto Fq -span{bV | V ∈ X}. Applying the principal of inclusion-exclusion,

|NSGfam(S, σ)| =
|CR(S)|∑
i=0

(−1)|CR(S)|−i
(
|CR(S)|

i

)
|{W ′ 6 Fdip }| (5.3)

which completes the proof as
(
di
j

)
p

counts the subgroups W ′ 6 Fdip with |W ′| = pj .

Remarks. (R1) When q = p is prime, Theorem 5.9 and Corollary 4.2 give the same formula;
in particular Equation (5.3) is equal to the sum of q-Stirling numbers in Corollary 4.2.

(R2) Theorem 5.9 shows that the number of normal subgroups in UTn(Fq) is a polynomial in p
(considered as an indeterminate); see Table 5.1. When d 6= 1 so that q 6= p, this expression
is not always a polynomial in q (e.g. n = 2, d = 2).

(R3) Computing |{N E UTn(Fq)}| for 1 6 n 6 10 and 1 6 d 6 5 suggests that this quantity
may have positive and unimodal coefficients as a polynomial in p−1. Corollary 4.2 implies
positivity for d = 1 and n > 0, but unimodality is entirely mysterious.

n = 2 n = 3 n = 4 n = 5

d = 1 2 r + 5 3r2 + 10r + 14 r4 + 11r3 + 41r2

+62r + 42

d = 2 r + 4 r4 + 7r3 + 19r2

+25r + 19

r9 + 12r8 + 64r7 + 204r6

+438r5 + 673r4 + 756r3

+610r2 + 327r + 100

r16 + 19r15 + 169r14

+938r13 + 3653r12

+lower order terms

Table 5.1: The value of |{N E UTn(Fpd)}| as a polynomial in r = p− 1 for small n and d. The
coefficients of each polynomial in this table are positive and unimodal.
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5.2.1 Lattices of normal subgroups

The ideals of utn(Fq) naturally form a lattice, so it is also possible to endow the set

In(q) = {1 + n | n is an ideal of utn(Fq)}

with a lattice structure: (1 + n)∧ (1 +m) = 1 + (n∩m) and (1 + n)∨ (1 +m) = 1 + (n+m).
The set {N E UTn(Fq)} is also a lattice, with ∧ and ∨ given respectively by intersection and
product of subgroups. A consequence of Theorem A is that these lattice structures agree.

Corollary 5.10. Let 1 + m and 1 + n be normal subgroups of UTn(Fq). Then

(1 + n)(1 + m) = 1 + (n + m).

Proof. The product (1 + n)(1 + m) is the intersection of all normal subgroups containing both
1 + n and 1 + m; by Theorem A this is the intersection of the sets 1 + r for additive subgroups
r of utn which contain m, n, and {[a, b] | a ∈ utn(Fq), b ∈ r}; this is clearly 1 + (m + n).

An element M of a lattice L is said to be join irreducible if there is a unique element of L
which is covered by M . For L = In(q) or {N E UTn(Fq)}, say that M ∈ L is generated by
1 + a ∈ UTn(Fq) in L if M is the minimal element of L which contains 1 + a. For example,
M = {1} is generated by 1 in both lattices.

Proposition 5.11. Let L = In(q) or {N E UTn(Fq)}. A subgroup M ∈ L is join irreducible
if and only if M 6= {1} and M is generated in L by an element of UTn(Fq).

Proving the proposition requires a description of the elements of In(q) and {N E UTn(Fq)}
which are generated by any particular element of UTn(Fq). For each 1 + a ∈ UTn(Fq), there
is a unique nonnesting set partition λ ∈ NNSPn for which supp({a}) ⊆ ↑ (λ) and ai,j 6= 0 for
each (i, j) ∈ λ. Let K be the maximal tight splice of λ as described in Proposition 3.3, and
define a labeling θ : bind(K)→ F×q by

θ

( i j

j+1 l

)
= aj+1,l/ai,j.

Lemma 5.12. Let 1 + a ∈ UTn(Fq), and take λ,K, and θ as defined above for 1 + a.

(i) The elements of UTn(Fq) which generate the same normal subgroup as 1 + a does are
exactly those in the set 1 + F×p a+ DK,θ, and this subgroup is 1 + Fpa+ DK,θ.

(ii) The elements of UTn(Fq) which generate the same element of In(q) as 1 + a does are
exactly those in the set 1 + F×q a+ DK,θ, and this subgroup is 1 + Fqa+ DK,θ.

Proof. Claims (i) and (ii) follow from nearly identical arguments, so I will only present the proof
of (i). From the definition of K and θ, it is the case that a ∈ ZK,θ. Lemma 5.8 therefore implies
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that 1 +Fpa+DK,θ E UTn(Fq), so what remains is to show that 1 +Fpa+DK,θ is the minimal
normal subgroup containing 1 + a.

Suppose that N is the minimal normal subgroup of UTn(Fq) which contains a, so that N ⊆
1 + Fpa+ DK,θ. It follows from the definition of N that supp(N) = ↑ (λ), so by Corollary 5.7,
N properly contains 1 + DS,σ for some (S, σ) ∈ Tλ(q). Thus

|N | > |DS,σ| = q|↑1(λ)|−| rows(S)| > q|↑1(λ)|−| rows(K)| = |DK,θ|

since rows(S) ⊆ rows(K). The order ofN is a power of p, so |N | > p|DK,θ| = |1+Fpa+DK,θ|,
and thus N = 1 + Fpa + DK,θ. Generalizing this argument, every element of 1 + F×p a + DK,θ
generates 1 + Fpa+ DK,θ.

Finally, suppose that 1 + b ∈ UTn(Fq) also generates 1 +Fpa+DK,θ as a normal subgroup.
As 1 + DK,θ is normal, this must mean that 1 + b ∈ 1 + F×p a+ DK,θ.

Proof of Proposition 5.11. If M ∈ L is join irreducible, then M is generated in L by each
element of M − K, where K ∈ L is the unique element covered by M . If M is generated by
an element 1 + a ∈ UTn(Fq), then M is one of the subgroups in Lemma 5.12. For a 6= 0, these
subgroups cover only DK,θ in their respective lattices, and are therefore join irreducible.
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