
Lawrence Berkeley National Laboratory
LBL Publications

Title
MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes

Permalink
https://escholarship.org/uc/item/5c07c5pv

Authors
Freeman, C.M.
Boyle, K.L.
Reagan, M.
et al.

Publication Date
2014

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5c07c5pv
https://escholarship.org/uc/item/5c07c5pv#author
https://escholarship.org
http://www.cdlib.org/

MeshVoro: A Three-Dimensional Voronoi Mesh
Building Tool for the TOUGH Family of Codes

C.M. Freeman, K.L. Boyle, M. Reagan, J. Johnson, C. Rycroft, G.J. Moridis

Lawrence Berkeley National Laboratory
Earth Sciences Division

Berkeley CA 94720, USA

This report has been published in Computers & Geosciences 70: (2014) 26-34.

DISCLAIMER

This information was prepared as an account of work sponsored by an agency
of the U.S. Government. While this document is believed to contain correct
information, Neither the U.S. Government nor any agency thereof, nor the
Regents of the University of California, nor any of their employees, makes
any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness, of any
information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. References herein to any specific
commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the U.S. Government or any
agency thereof, or the Regents of the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of
the U.S. Government or any agency thereof or the Regents of the University of
California.

Abstract

Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have

limitations that restrict their application to particular geometries and circumstances. Mesh generation

needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool

that is based on the Voro++ (Rycroft 2009) library and is capable of generating complex three-

dimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and

transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of

codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because

it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and

relatively easy discretization of systems with challenging 3D geometries.

We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly

transform a complex geological grid into a simulation mesh that conforms to the specifications of the

TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with

a relatively small number of grid blocks, and we construct meshes for geometries that would have been

practically intractable with a standard Cartesian grid approach. We also discuss the limitations and

appropriate applications of this new technology.

1 Unstructured Simulation Meshing

Problems of modern interest in the subsurface sciences increasingly involve heterogeneities of flow

parameters and complex geometrical challenges. Examples of systems with significant heterogeneities

include reservoirs with faults and fractures, induced and naturally occurring. Examples of systems with

innate geometric complexity include systems involving wells, fractures, geological strata and faults, which

may be intersecting at arbitrary angles. Few tools are available which allow flexible mesh generation for

arbitrary three-dimensional geometries. TOUGH, as well as other codes capable of solving differential

equations over irregular and unstructured meshes, have solved problems involving grids obtained by the

“two-and-a-half dimensional” (2-1/2D) Voronoi tessellation. This term describes the practice of

performing a two-dimensional Voronoi tessellation of locally refined mesh on the X-Y plane, and then

projecting the computed mesh downward into the Z-axis in horizontal layers, modified in the Z-dimension

to follow the contours of the geological layers and to respect discontinuities caused by faults. This

approach results in computational savings, but it is generally limited to creating more efficient refinements

over essentially two-dimensional problems, and, thus, can only describe accurately geological systems that

are uniformly layered (stratified).

With the advent of ever more powerful computers and advanced computer language capabilities,

previously intractable problems are within reach. Thus, the problems of flow and transport that are

currently under consideration involve not only advanced coupled processes, but also intricate three-

dimensional geometries and extreme heterogeneities.

The TOUGH (Pruess et al., 1999) family of codes, including the new generation involving the TOUGH+

architecture (Moridis et al., 2008), uses the integral finite difference method (IFD - Edwards, 1972;

Narasimhan and Witherspoon, 1976; 1978) in its spatial discretization. This is a finite volume formulation

that allows the use of irregularly shaped cells (unstructured grids). In other words, individual grid blocks

in IDF may assume any shape and have any number of connected neighbors, so long as certain

connectivity conditions are met, which are discussed shortly. This attribute allows TOUGH applications

to use Voronoi (1908) tessellation-based mesh solutions. The majority of flow modeling applications do

not possess such flexibility, and thus cannot use Voronoi meshes. Such Voronoi-based grids offer unique

advantages in the description of domains with complex (especially 3D) geometries, in which case they

may be the only practical solution, as structured grids would require an inordinate number of gridbocks to

accomplish the task. Additionally, availability of the option of Voronoi-based grids would expand the

usefulness of the TOUGH family of codes by enabling the solution of previously intractable problems.

The first connectivity condition for a finite volume discretization is that the surface associated with a given

connection must be normal to the straight line connecting the cell centroids (centers of gravity). This

requirement is met by definition by any centroidal Voronoi (1908) tessellation, where a centroidal Voronoi

tessellation is defined as one where the generator points are identical to the centroids. Every facet of a

Voronoi cell is mathematically defined as being normal to the line connecting two neighboring points.

Voronoi tessellations possess the added attribute that the common interface is equidistant from those two

connected points. In Voronoi tessellations, the tessellation generator points are not necessarily identical to

the element centroids. In other words, Voronoi tessellations may not necessarily be centroidal, and thus

do not strictly satisfy the requirements for accuracy of a finite volume spatial discretization. We discuss

the consequences of using non-centroidal Voronoi meshes in Section 4. MeshVoro includes a module

which processes the generated mesh to guarantee that the mesh is watertight, i.e. that the mesh does not

possess connections which should not be present and is not missing connections which should be present.

This post-processing essentially verifies the correctness of each interface.

2 Algorithmic Innovations

In the course of developing and applying MeshVoro to a variety of problems, we faced many unique

challenges. Generally, these challenges were related either to the visualization of the simulation results, or

to enforcing sufficient smoothness of the mesh to promote numerical tractability.

2.1 Tetrahedralization

A perhaps surprising obstacle to the general use of Voronoi meshes, and unstructured meshes made up of

arbitrary polyhedra in general, is the lack of robust and flexible tools for visualizing the meshes. A basic

requirement of any simulation study is the capability to view the state of a simulation at any point in time

in a spatially intuitive way for diagnostic and analytical purposes. However, it is typical for even the most

cutting-edge visualization software packages to support rendering of only basic shapes, such as tetrahedra

and hexahedra, but not of arbitrary polyhedra.

In order to address the issue of visualization, we subdivide the polyhedral Voronoi mesh into tetrahedra.

We rely on the fact that any convex polyhedron can be broken into a number of tetrahedra equal to the

number of edges of the original polyhedron by following a relatively straightforward algorithm: For each

edge of the Voronoi polyhedron, we begin with the two points defining the beginning (Point 1) and the

end (Point 2) of the edge. Then, recalling that each edge constitutes the intersection of two faces, we

define Point 3 as the center of one of the faces adjacent to that edge. Finally, we define Point 4 as the

centroid of the Voronoi cell. These four points define a tetrahedron. A cube, or hexahedron, having

twelve edges, will be subdivided into 24 tetrahedra by the iterative application of this algorithm. The

geometries of two such tetrahedra are depicted in Fig. 1.

Figure 1 — A cube (hexahedron) is partially decomposed into tetrahedra. Points 1 and 2 represent
the two ends of a single edge; Point 3 represents the center of one of the faces bordered
by that edge; and Point 4 represents the centroid of the Voronoi element. These four
points make up a single tetrahedron.

If the points defining these tetrahedra are stored in the memory during the computations for mesh

generation, they can be used to generate output files in standard formats such as .vtk (Shroeder et al.

1998). Thus the tetrahedralization of the original Voronoi mesh can be visualized. The data reflecting the

simulation state can be visualized by color-coded mapping onto the mesh elements. This allows us to

robustly visualize the state of the simulation system at any point in time. The costs and benefits of

retaining these tetrahedral in memory are discussed in the next section.

In a graph-theoretic sense, the Voronoi mesh is the dual of the Delaunay tetrahedralization for the

generator points (Florack et al. 2012). Note that the Delaunay tetrahedralization is not the

tetrahedralization algorithm employed by MeshVoro. In the MeshVoro tetrahedralization algorithm, the

interior volume of each tetrahedron belongs strictly to one Voronoi cell, whereas the volume of a given

tetrahedron in the Delaunay tetrahedralization will overlap partially into several different Voronoi cells.

2.2 Extension to Very Large Meshes

In the course of developing and applying the MeshVoro tool to different research problems, we discovered

that some simulation meshes are too large to be handled even on powerful modern computers without

special tools. A direct decomposition of a mesh consisting of 2,264,000 elements (discussed in more

detail in section 3.1) into tetrahedra would result in nearly 100 million tetrahedra. Merely storing the

relevant metadata needed to express these 100 million objects results in a 22 gigabyte file. Performing the

operations necessary for visualization on files of this size requires infeasible amounts of computer memory

and processing power.

Using a combination of Python, C and C++, we wrote a special suite of modules that allow a user to

specify in a pre-processing step which regions of the mesh should be selectively visualized. This special

suite of the MeshVoro code sets aside only the tetrahedra which make up this selected region, then extracts

the relevant simulation state data from hundreds of output files generated by massively parallel TOUGH+

runs, each representing one portion of the mesh, and collates the selected data into a more compact file

format. Finally a .vtk (Shroeder et al. 1998) output file is generated from the extracted data, resulting in a

many-orders-of-magnitude reduction in the required file sizes and needed computing resources.

2.3 Lloyd’s Iteration

In general, the intersections and edges of discrete three-dimensional objects pose a significant challenge to

accurate mesh building. For example, the point at which the wells depicted in Fig. 6 pass through the

overlying interface between geological strata must preserve both the continuity of the well and the

continuity of the surface plane of the geological layer. Creating a mesh for the region of intersection

between these two objects in a way that respects the continuity of the objects and the physics of the flow

simulation is not straightforward.

Another difficulty is posed in cases where a very finely discretized subdomain (often referred to as mesh

object) is adjacent to a subdomain that does not require fine discretization. In the confluence (contact) of

these two subdomains, a problem will arise because the Voronoi mesh generation algorithm connects each

of the coarse grid points with tens or hundreds of neighboring points on the refined object. If this is

allowed to occur, it can result in a significantly less sparse Jacobian matrix at simulation time, which may

lead to poor solver performance.

A standard technique for improving mesh smoothness in unstructured meshes is Lloyd’s (1982) iteration.

The Lloyd iteration is a method for smoothing highly anisotropic Voronoi grids by shifting the generator

points of the Voronoi cells to the centroids of the Voronoi cells, and then recomputing the Voronoi

tesselation based on the new generator points. In the extreme case, this iteration is continued until ever

Voronoi cell’s centroid coincides with its generator point. This degree of smoothing would nullify any

local refinement, so it is not appropriate for our purposes. In MeshVoro, we provide an option to select

the number of desired Lloyd iterations to be performed. MeshVoro provides an additional option to attach

special flags to particular points or regions of points designating them as ‘movable,’ where by default the

generator points will not be updated. This allows selective smoothing of particular regions of the mesh.

We determined that this technique comes with drawbacks that can restrict (potentially severely) its

application. Primarily, in all of the applications we discuss in this study, there are numerous ‘fixed’

objects such as wells, boundary layers, and insulators that are effectively destroyed by applying Lloyd’s

iteration to them. Applying Lloyd smoothing to the points surrounding or between refined objects can

also yield inconsistent results. We discuss the approach to alleviate these problems in the next section.

2.4 Simulated Potential Field

In response to the failure of the Lloyd (1982) smoothing to address the need to refine the mesh

dynamically around required intersecting objects (such as wells intersected by fractures at an angle, or

fractures intersecting geological layers), we developed a module which treats the mesh points as particles

subject to a potential field that is defined with respect to the required mesh objects. The mesh objects (e.g.

wells, fractures, geologic layers) were included in the code as virtual geometric objects influencing the

global potential field. The mesh volume is initially populated by a random distribution of particles. Then

the positions of the particles are iteratively shifted in the direction of the gradient of the global potential

field until the energy of the system is minimized. The process must be iterative because the potential field

changes as each particle’s position changes. Generally speaking, the configuration of particles possessing

minimal energy corresponds to a smoothed mesh respecting the specified geometric restrictions. Taking

inspiration from the Lennard-Jones (1924) potential used in molecular dynamics simulations (which is

itself an approximation of the ‘true’ potential field of molecular interactions), we implemented the

following simple potential equation


























rr
VP


3

 .. (1)

where VP is the potential in Joules, is the potential well depth in Joules, is the equilibrium distance

between particles in meters and r is the distance between two particles in meters. The global potential of

the system is the sum over all pairs of particle interactions, plus all interactions between particles and the

fields imposed by geometric objects.

The potential fields associated with geometric mesh objects such as wells (cylinders) and fractures

(planes) will possess a slightly different functional form from that of inter-particle interactions. There is

no radius between particles, since the mesh object is not itself a particle, but there is still a characteristic

distance. For a fracture, the relevant parameter is the distance between the fracture face and the particle,

so a subroutine computes the distance between the particle and the nearest point on the specified plane

surface. For a well, the relevant parameter is the distance between the centerline of the well and the

particle, so a subroutine computes the distance between the particle and the nearest point on the line

representing the well centerline. This distance is used in lieu of the radius between particles in the

potential computations. Figure 2 depicts the results of solving for the low-energy point cloud for a

cylinder (well) intersected by a plane (fracture.)

Extensive testing indicated that Eq. 1 is very effective in causing the grid generator points to move into

continuous sheets surrounding specified geometric objects. A single-shelled configuration may be useful

for some purposes, so the option to employ Eq. 1 was retained. However, a multi-layered shell of points is

needed in order to give the mesh the desired space-filling smoothness. Toward this end, we developed the

following potential function:

   
2
2

2
2

2
1

2
1

2
2

2
1

c

rb

c

rb

GP eaeamrV


 ... (2)

where VGP is the potential in Joules, m is the mass of the particle in kg, a1, a2, b1, b2, c1 and c2 are

dimensionless tuning parameters, and r is the distance between the two particles in meters. Eq. 2 is the

sum of two Gaussians plus a linear potential term. Again, the global potential is the sum over all pairs of

particle interactions. The tuning parameters (a1, a2, b1, b2, c1 and c2) provide control over the locations of

the potential energy troughs, and over the distance between (i) the points and their neighbors, and (ii) the

points and the virtual geometric constraints.

Parameter Value

a1 -1.0

b1 0.2

c1 0.07

a2 -1

b2 0.5

c2 0.07
m 0.5

Table 1 — Example tuning parameter values giving good mesh smoothness in a case involving a
well intersected by a fracture plane.

We found that using a1 = a2 and c1 = c2 and only varying b1 and b2 provides sufficient control over the

mesh behavior. Near a relatively narrow object such as a well, the values described in Table 1 yielded

good performance. We obtained good results using the following simulated force function based on Eq. 2:

       
dr

rdV

c

rb
ea

c

rb
eamF GPc

rb

c

rb

GP

)(
2
2

12
22

1

12
1

2
2

2
2

2
1

2
1










 ... (3)

where FGP is the force in Newtons. Eq. 3 is the derivative Eq. 2 with respect to r, as force is the gradient

of potential energy. Force is converted into a scaled force vector by multiplying force by the normal of the

vector between points i and j,

GP

ji

ji
GP F

XX

XX
F


















 




 ... (4)

where vectors Xi and Xj are the positions of the two points for which the force vector is computed. The

total force vector felt by a given point is the sum of all force vectors computed for all pairwise particle

interactions. The positions of the particles are updated at each iteration by

GPkiki FXX


 ,1, ... (5)

where the index k refers to the iteration and  is a dimensionless parameter which specifies the step size. 

should be tuned by the user, and will vary depending on the length scale of the mesh. Eq. 5 is meant to

conceptually reflect the notion that the force field is moving the positions of the particles as a function of

time (as in a molecular dynamics simulation), but this is merely a conceptual shortcut, not a physical

representation. The most important drawback of the simulated potential field method is that the number of

operations executed in the algorithm in a given iteration is roughly O(n2) in the number of grid points, so

solving the minimal-energy point cloud for a large geometry may require a prohibitively long time.

Figure 2 — The system is initialized with a random cloud of points. Figures 2.a and 2.c depict the
point cloud which is arrived at after 100 iterations of the potential field technique. The
MeshVoro tool then generates a Voronoi mesh from these points. Figures 2.b and 2.d
depict cutaway views of the resulting generated mesh for a cylinder intersecting a plane,
representing a well intersecting a fracture.

2.5 Strategies for Mesh Object Integrity

If the techniques of the Lloyd (1982) smoothing and potential field minimization cannot be applied, the

default option for preserving the geometric integrity of specific mesh objects (subdomains) - such as wells

and fault planes - is to carefully hand-code a purpose-built algorithm which places points exactly where

they are needed, so as to conform to the geometric requirements of all the objects involved in the mesh.

This can be extremely time-consuming and the solutions that are programmed in this way are typically not

re-usable in other contexts, owing to the intricacy of fitting together multiple three-dimensional objects in

the same region of space.

The general strategy behind implementing specific mesh objects in this fashion is to approximate the

desired geometric shapes using regular point clouds. For example, a well consists of stacked discs of

points. A fracture, depending on the desired configuration, consists of layers of regular 2D grids of points.

Multiple layers in all dimensions are needed to ensure adequate mesh smoothness. While technically a

well could be approximated with a cylinder consisting of a double-ring of points, this configuration would

be insufficiently smooth; the volume of the elements comprising the inside of the well would be vastly

smaller than the volume of adjacent elements in the mesh outside the well. The term used for this

transition region populated by increasingly widely spaced grid elements is the “fade zone.”

There are a number of heuristics that we determined in the course of developing many such tailor-made

meshing solutions. These heuristics are the result of numerous personal experiments and are provided in

the interest of avoiding pitfalls such as insufficiently smooth meshes, inconsistent behavior, or over-

discretization resulting in numerical problems.

1. It is advisable, in order to achieve consistent smoothness, to provide a fade zone surrounding any

refined object (typically a fracture or well), with a thickness greater than twice the distance

between the points representing the refined object in the least refined dimension.

2. Treating the inside of a wellbore as a ring of points rather than a single central point results in

significant numerical overhead and provides no additional physical insight; thus, single central

points for wells are to be used.

3. When creating complex objects involving well-fracture continua (such as wells intersected by

transverse fractures), it is recommended to use a radial geometry to represent the fracture near the

wellbore, and to transition to a rectilinear geometry at a radius greater than twice the distance

between the well rings.

4. A relatively reliable method to ensure that the continuity of geological layers in the mesh is not

marred by stray points belonging to nearby mesh objects is to ‘mirror’ all the points that are

closest to one side of the plane which defines the layer interface (i.e., in the first “stratum” of

such points) onto the other side of that plane, normal to the plane in both directions. This cannot

be applied if any other mesh objects (subdomains) intersect the geological layer at a non-right

angle.

5. Attempting to blend one mesh object fade zone into another by ‘feathering’ the two fade zones

(i.e., by allowing the fade zones to sparsely intermingle) is strongly discouraged. Hard cutoffs

between fade zone interfaces are recommended.

3 Methods and Applications of MeshVoro

The Voro++ (Rycroft 2009) library possesses a large variety of features not used for the purposes of this

work. We primarily rely on the capability of the library to import large numbers of grid points or cell

centers, and to rapidly compute the Voronoi tessellation (1908) that conforms to these generator points.

Furthermore, the Voro++ library enables direct access to all the relevant details of the Voronoi cells

computed from these grid points, such as volumes, surface areas, reference indices of neighboring cells,

and distances from each point to each surface. This information is sufficient to produce a valid (finite

volume) TOUGH mesh in the appropriate format.

Prior to the development of MeshVoro, there was no straightforward method to transform a complex

geological model (such as one obtained from seismic inversion) into a TOUGH mesh. With MeshVoro,

the geological model can be directly converted into a TOUGH mesh that respects the cell centers of the

original geological data points.

3.1 Application to a Complex Hydrate Problem

We applied the MeshVoro code to the geophysically-obtained geological model in a project involving the

study of gas production from offshore gas hydrate deposits. The geological model was received as a field

of points in space associated with geophysical data. In addition to creating a TOUGH mesh from the

provided geological model, we also needed to represent a horizontal well that was to be positioned at an

appropriate location in the system.

The appropriate location for the horizontal well was determined by using a search algorithm to find the

longest continuous interval of hydrate-bearing media possessing adequate gross thickness in the entire

domain. This was done with the aim of maximizing the productivity of the well.

The points lying within a 250 m radius of the desired horizontal well location were removed from the

mesh. The region was then repopulated with a cylindrically refined region of points, with radially

logarithmic grid spacing, to optimize smoothness, increasing from a few centimeters near the wellbore to

the spacing of the background mesh at the extent of the cylindrical region. In the axis of the horizontal

well’s penetration (the y-axis) the discretization used was the original discretization of the background

geologic mesh. The points in this cylindrically refined subdomain inherited their geological material

designation and initial state from the computed nearest-neighbor point in the original geologic data (See

Fig. 3).

Figure 3 — The geological model of 2,264,000 elements shown here was transformed directly into a
Voronoi mesh using MeshVoro. This is the largest grid ever developed for any TOUGH
simulation up to the time of preparation of this paper.

Figure 4 — A horizontal well is inserted into the geological model of Figure 4. The properties of the
‘fade zone’ (the green region) around the horizontal well are inherited from the
properties of the nearest-neighbor points in the original grid.

This mesh is the largest grid ever generated for a TOUGH simulation up to the time of preparation of this

paper, involving 2,264,000 elements and requiring the solution of over 9,000,000 simultaneous coupled

equations.

The code modules developed for visualizing very large meshes (see discussion in Section 2.2) were

written specifically for this highly refined field-scale hydrate mesh. Visualizing the results of the

simulation proved more difficult (in terms of algorithmic complexity and data processing requirements)

than generating the simulation mesh had been in the first place.

Figure 5 — A view of the tetrahedralization of the region surrounding the horizontal well, processed
selectively using the tools designed specifically for manipulating very large meshes.

3.2 Application to a Problem Involving Wells with Complex 3D Orientation

The next application of the MeshVoro code involves the relatively free-form generation of meshes

conforming to complex, yet somewhat idealized, geometries. For example, the creation of a TOUGH

mesh conforming to a system possessing two vertical wells and a horizontal well each passing through

multiple distinct geological layers would have been prohibitively difficult if we had attempted to use a

structured (standard finite difference) grid because of the requirement of high degrees of refinement in all

dimensions. With the MeshVoro tool, it becomes possible to straightforwardly construct objects such as

wells, fractures and layers from cylindrical and planar fields of points that are carefully assembled into a

point cloud. The point cloud is then transformed into a Voronoi mesh by the main MeshVoro code (See

Fig. 6).

MeshVoro attempts to address these issues with three options, the suitability and appropriateness of each

of which depend on the particular circumstances.

Figure 6 — A domain including two vertical wells and a horizontal well (with local refinement in
the vicinity around each well), in the midst of a larger more coarsely refined region.

3.3 Application to Meshing a Hydrate Core Sample

While TOUGH and similar codes for modeling fluid flow in porous media are normally used to simulate

large-scale processes in geologic media, the TOUGH codes can in fact render accurate results for a

domain of any size, so long as the underlying basic equations of flow in the available options (i.e., Darcy’s

law, the Forchheimer’s equation (1901), and the Barre and Conway (2004; 2007) equation) is valid. We

simulated the entire process of dissociation of methane hydrate in a hydrate-impregnated core sample that

had been scanned using Magnetic Resonance Imaging (MRI) in the study of Birkedal et al. (2011). Fig. 7

shows the saturation of liquid water in the core sample. The sample shown in Fig. 8a was subjected to

depressurization, causing dissociation of the methane hydrate, and the resulting change in the phase

saturations inside the core was monitored and measured (Figs 8b and 8c).

Figure 7 — A core sample saturated with gas hydrate was scanned using a Magnetic Resonance
Imaging (MRI). The MRI process generates useful data, including the saturation of
liquid water in the core, depicted here using high-resolution voxels. This MRI-derived
saturation data is then processed to generate the initial conditions of the TOUGH
simulation (Birkedal et al. 2011).

In order to (a) explore whether the hydrate dissociation in this experiment was an equilibrium or a kinetic

process, and (b) to determine the corresponding parameters, we simulated the behavior of the entire

system accounting for all the important conditions, properties and characteristics that defined it. To

accomplish this, we needed a refined simulation mesh capturing all of the data extracted from the MRI

scan and the surrounding experimental apparatus.

In describing the system geometry, the dissociation apparatus needed to be modeled accurately in order to

capture the heat transfers through the entire domain (including the boundaries). As depicted in Fig. 9, the

hydrate-bearing core was surrounded by an insulating Teflon sleeve and a very thin (micron-scale) gas

pocket (gap) along its cylindrical outer surface, and was fastened in place on each end by plastic spacers.

Accurately capturing the geometry of these elements, and accurately describing their thermal properties,

was vital to represent the heat flow into the core from the outer boundary (Fluorinert - a heat transfer fluid

– circulating at a monitored, nearly constant temperature).

Figure 8 — Schematic representation of the laboratory setup for the thermal dissociation of a
methane hydrate core. The dimensions of the illustration are skewed to clearly show the
very thin but important air pocket layer. The Fluorinert layer is an inert pad of gas
meant to thermally insulate the apparatus. PEEK refers to polyether ether ketone and
POM refers to polyoxymethylene; these are insulators.

Earlier attempts to capture the geometry of the dissociation system using a standard rectilinear grid has

indicated early-on the futility of this approach, as it would require a prohibitively large simulation grid to

capture the relevant details of the system at the needed detail. Application of the MeshVoro tool to this

geometry enabled very fine gridding where needed. More importantly, MeshVoro enabled a smooth

transition between rectilinear gridding inside the hydrate core and pseudo-radial gridding outside the core.

This transition is depicted in the cross-sectional in Fig. 9, where the MRI scan data exactly determined the

locations and properties of the grid cells inside the core (Fig. 10); a custom-made dynamic radial gridding

algorithm populated the mesh describing the rest of the laboratory apparatus.

These examples show the power of the MeshVoro application, and the strict control it allows for the

description of the details of a system over several spatial scales and in complex geometries.

Figure 9 — A cross-section of the simulation mesh for the hydrate core dissociation experiment,
color coded by material type. The inside of the hydrate core (red) uses rectilinear
gridding while the remainder of the grid uses pseudo-radial gridding.

Figure 10 — A cross-section of the simulation mesh for the dissociation experiment of the hydrate-
bearing core. The different colors depict differences in saturation of liquid water
determined from the MRI scans. The grid center points of the mesh and the properties
assigned to these points are inherited directly from the MRI scan data.

Figure 11 — An axial cross-section view of the simulation state of the hydrate core sample showing
liquid water saturation at its initial state, as determined from interpolation from the MRI
scan data.

Figure 12 — An axial cross-section view of the simulation state of the hydrate core sample showing
liquid water saturation at the end of the simulated depressurization.

4 Discussion

3D Voronoi cells can easily possess twelve or more connected neighbors with no structural regularity,

whereas a traditional 3D Cartesian or radial mesh can only have a maximum of six neighbors with

consistent orientation. Consequently, the Jacobian matrix developed by the TOUGH codes to compute the

solution of the flow equations originating from Voronoi meshes will be significantly less sparse, more ill-

conditioned, and with a less regular corresponding incidence matrix than those from Cartesian meshes.

This implies poorer solver performance for Voronoi meshes compared to that corresponding to Cartesian

meshes with a similar number of grid cells. Note that the reference to “poorer” solver performance does

Core length [cm]

C
or

e
di

am
et

er
 [c

m
]

Gas Hydrate Saturation [fraction]

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5

0

0.2

0.4

0.6

0.8

1

not mean deterioration in the accuracy of the solution, which is unaffected, as it is controlled exclusively

by the convergence criterion in the Newton-Raphson iterative process (Pruess et al., 1999); it means an

increased number of iterations to convergence and, consequently, smaller time-step sizes, a larger number

of time steps to cover the desired simulation period and a longer execution time. The solution

performance of problems involving Voronoi grids may be further aggravated by improper spatial

discretization, which would result in larger space discretization errors and correspondingly increased

convergence difficulty. We must emphasize that the purpose of Voronoi meshes is to represent geometries

that cannot be efficiently represented by Cartesian meshes, where the expected tradeoff in numerical

performance is warranted, and the additional execution time and larger memory requirements are not an

issue as there is practically no alternative. For simple, geometrically regular problems, Cartesian meshes

are sufficient and are almost certain to outperform Voronoi meshes in terms of speed and memory

requirements. Given the intensive labor requirements to construct them, Voronoi meshes should be used

where they are suited to the demands of the problem, such as in the irregular three-dimensional meshes

described above.

Another crucial property of the meshes generated by MeshVoro is that the Voronoi tessellations are not

required to be centroidal, meaning that the element generator points are not necessarily coincident with the

element centroids. The option to perform Lloyd’s (1982) iteration on the meshes is available, but we note

that the smoothing of very refined mesh regions such as wells and fractures can severely distort these

objects. Obtaining mesh “cendroidality” at the expense of the geometric integrity of crucial flow and

geometry features defeats the purpose of an unstructured locally-refined mesh. The Lloyd’s iteration

sacrifices some numerical accuracy for geometric resolution and flexibility, and in so doing opens up a

new range of problems.

Regarding visualization of simulation results in a three-dimensional fashion, we find no truly adequate

tools exist for creating publication-quality representations of complex three-dimensional data. The tools

we discuss and develop here may be used for qualitative illustration and for data exploration, but these

tools do not provide precise quantitative illustrations. Events of scientific interest may occur on a scale of

centimeters or kilometers, depending on the nature of the problem, and it is difficult to imbue static

graphical representations with sufficient context to unambiguously communicate the intent of any given

figure. Clearly representing complex three-dimensional geometries with printed two-dimensional figures

remains a challenge.

ACKNOWLEDGMENT

This study was supported by the U.S. Environmental Protection Agency, Office of Water, under an
Interagency Agreement with the U.S. Department of Energy at the Lawrence Berkeley National
Laboratory through Contract No. DE-AC02-05CH11231. The research described in this article has been
funded wholly (or in part) by the U.S. Environmental Protection Agency through Interagency Agreement
(DW-89-92235901-C) to the Lawrence Berkeley National Laboratory. The views expressed in this article
are those of the authors and do not necessarily reflect the views or policies of the EPA.

NOMENCLATURE

Variables:

F = Force, N

V = Potential, J

r = Radius from particle, m

m = Mass, kg

a = Tuning coefficient, dimensionless

b = Tuning coefficient, dimensionless

c = Tuning coefficient, dimensionless

X = Position vector, vector quantity, m



Greek Symbols:


 = Equilibrium distance, m

 = Potential well depth, J

 = Potential well depth, Joules

Subscripts:

P = Potential

GP = Gaussian potential

i = Current particle index

j = Reference particle index

REFERENCES

Barree R.D., Conway M.W.: Beyond beta factors: a complete model for Darcy, Forchheimer and
trans-Forchheimer flow in porous media. Paper SPE 89325 presented at the 2004 annual technical
conference and exhibition, Houston, Texas 26–29 Sept 2004

Barree R.D., Conway M.W.:Multuiphase non-Darcy flow in proppant packs. Paper SPE 109561, presented
at the 2007 annual technical conference and exhibition, Anaheim, CA, 11–14 Nov 2007

Birkedal, K.A., Ersland, G., Hauge, L.P.O., Graue, A., Hester, K., Stevens, J. and Howard, J. 2011.
Electrical Resistivity Measurements of CH4 Hydrate-Bearing Sandstone During Formation. Proceedings
of the 7th International Conference on Gas Hydrates held in Edinburgh, Scotland, July 17-21.

Chris H. Rycroft, Voro++: A three-dimensional Voronoi cell library in C++, Chaos 19, 041111 (2009)

Edwards, A.L. TRUMP: A Computer Program for Transient and Steady State Temperature
Distributions in Multidimensional Systems, National Technical Information Service, National
Bureau of Standards, Springfield, VA, 1972

Florack, L., Duits, R., and Jongbloed, G. 2012. Mathematical Methods for Signal and Image Analysis and
Representation. Springer. (105).

Forchheimer, P.: Wasserbewegung durch Bode. ZVDI (1901) 45 (1901)

Lloyd, Stuart P. (1982), "Least squares quantization in PCM", IEEE Transactions on Information
Theory 28 (2): 129–137, DOI: 10.1109/TIT.1982.1056489

Lennard-Jones, J. E. (1924), "On the Determination of Molecular Fields", Proc. R. Soc. Lond. A 106
(738): 463–477, doi:10.1098/rspa.1924.0082

Moridis, G.J., M. Kowalsky and K. Pruess. TOUGH+HYDRATE v1.0 User’s Manual. LBNL-161E,
Lawrence Berkeley National Laborotory, Berkeley, Calif., 2008.

Narasimhan, T.N. and P.A. Witherspoon. An Integrated Finite Difference Method for Analyzing Fluid
Flow in Porous Media, Water Resour. Res., Vol. 12, No. 1, pp. 57 – 64, 1976.

Narasimhan, T.N., P.A. Witherspoon and A.L. Edwards. Numerical Model for Saturated-Unsaturated
Flow in Deformable Porous Media, Part 2: The Algorithm, Water Resour. Res.,14 (2), 255-261, 1978.

Pruess, K., C. Oldenburg, and G. Moridis, TOUGH2 User’s Guide, Version 2.0, Report LBNL-43134,
Lawrence Berkeley National Laboratory, Berkeley, Calif., 1999.

Rycroft, C.H., Voro++: A three-dimensional Voronoi cell library in C++, Chaos 19, 041111 (2009).

Schroeder, W., Martin, K., and Lorensen, B. 1998. The Visualization Toolkit, An Object-Oriented
Approach to 3D Graphics. Prentice Hall.

Voronoi, Georgy (1908). "Nouvelles applications des paramètres continus à la théorie des formes
quadratiques". Journal für die Reine und Angewandte Mathematik 133: 97–178. DOI:10.1515/crll.
1908.133.97

