
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Consistent Query Answering Of Conjunctive Queries Under Primary Key Constraints

Permalink
https://escholarship.org/uc/item/5c0087q4

Author
Pema, Enela

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5c0087q4
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

CONSISTENT QUERY ANSWERING OF CONJUNCTIVE
QUERIES UNDER PRIMARY KEY CONSTRAINTS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Enela Pema

March 2014

The Dissertation of Enela Pema
is approved:

Professor Phokion G. Kolaitis, Co-chair

Professor Wang-Chiew Tan, Co-chair

Professor Jef Wijsen

Dean Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

Enela Pema

2014

Table of Contents

List of Figures v

List of Tables vii

Abstract viii

Acknowledgments xi

1 Introduction 1
1.1 Motivation and Related Work . 1

1.1.1 Consistent Query Answering Framework 3
1.1.2 Problem Statement and Motivation 7

1.2 Contributions . 15
1.3 Organization of the Dissertation . 18

2 Basic Notions 20

3 EQUIP: A System for Consistent Query Answering 27
3.1 Preliminaries . 28
3.2 Modeling Consistent Query Answering with Binary Integer Programming 29

3.2.1 Consistent Answers of Boolean Conjunctive Queries 30
3.2.2 Consistent Answers of non-Boolean Conjunctive Queries 32

3.3 An Algorithm for Consistent Query Answers using Binary Integer Pro-
gramming . 37

3.4 Architecture of EQUIP . 42
3.5 Experimental Evaluation . 54

3.5.1 Experimental Setting . 54
3.5.2 Experimental Results and Comparisons 59

4 Data Complexity of Consistent Query Answering 78
4.1 Preliminaries . 79
4.2 A Dichotomy for Conjunctive Queries with Two Atoms 82

iii

4.2.1 The Intractability Side of the Dichotomy 86
4.2.2 The Tractability Side of the Dichotomy 94

4.3 Sufficient Condition for Intractability . 102
4.4 Sufficient Condition for Tractability . 110
4.5 General Dichotomy: Conjecture . 119

4.5.1 A Conjecture on the Dichotomy of Consistent Query Answering
for Acyclic and Self-Join Free Conjunctive Queries. 119

4.5.2 Evidence to the Dichotomy Conjecture 121

5 Combined Complexity of Consistent Query Answering 128
5.1 Conjunctive Queries and Primary Key Constraints 129
5.2 Better Heuristics for Consistent Answers of Acyclic Conjunctive Queries 134

5.2.1 Acyclic and Self-Join Free Boolean Conjunctive Queries 134
5.2.2 Acyclic and Self-Join Free non-Boolean Conjunctive Queries . . . 137
5.2.3 Acyclic Conjunctive Queries Containing Self-Joins 140
5.2.4 Algorithm for Consistent Answers of Acyclic Conjunctive Queries 144
5.2.5 Implementation . 149

5.3 Experimental Evaluation . 152
5.3.1 Experimental Setting . 152
5.3.2 Experimental Results . 155

6 Consistent Query Answering with Linear Programming 163

7 Conclusions and Future Work 170

Bibliography 173

A Detailed Algorithms for Phase 1 of EQUIP and EQUIP-AC 181
A.1 Description of Phase 1 of EQUIP . 181
A.2 Description of Phase 1 of EQUIP-AC 185

B List of TPCH Queries Used to Evaluate EQUIP 187

C Complexity of certainty(q) for Specific Queries 189
C.1 PTIME algorithm for q() : −R1(x, y), R2(z, x, y), R3(y, z) 189
C.2 coNP-hardness proof for Q22(v) : −R5(x, y, z), R6(x′, y, z), R11(x, x′, v) . 192

iv

List of Figures

1.1 Repairs of Employee w.r.t. the primary key SSN → {name, salary} . . 4

2.1 Intersection graphs for queries q1, q2 . 24

3.1 Algorithm for computing the consistent query answers using BIP. 39
3.2 Architecture of EQUIP . 44
3.3 Description of Phase 1 . 48
3.4 Comparison of EQUIP with ConsEx. 60
3.5 Evaluation time and overhead of EQUIP for computing consistent an-

swers of coNP-hard queries Q1 to Q7. 62
3.6 Evaluation and overhead of EQUIP for computing consistent answers of

PTIME, but not-first-order rewritable queries Q8 to Q14. 64
3.7 Evaluation and overhead of EQUIP for computing consistent answers of

first-order rewritable queries Q15 to Q21. 66
3.8 Comparison of EQUIP with ConQuer on queries Q15 to Q18, over the

database with 1 million tuples/relation. 67
3.9 Evaluation times of the simplified TPC-H queries over “as-is” query eval-

uation, EQUIP, and ConQuer. 68
3.10 Evaluation time for Phase 1, Phase 2, and Phase 3 of EQUIP over a

database with 1 million tuples/relation. 69
3.11 Performance of EQUIP with and without pre-computing the consistent

answers from the consistent part of the database, over a database with 1
million tuples/relation. 70

3.12 Evaluation time of EQUIP over databases with 1 million tuples per re-
lation and different degrees of inconsistency. 72

3.13 Evaluation time of EQUIP over databases with 1 million tuples per re-
lation, degree of inconsistency 10%, and different sizes of key-equal groups. 73

3.14 Performance of EQUIP in the presence of indices, over a database with
1 million tuples/relation. 74

3.15 Performance of EQUIP in on queries Q22 and Q23. 75

v

4.1 Attack graphs of queries q1() : −R1(x, y), R2(y, z), q2() : −R1(x, y), R2(y, x),
and q3() : −R1(x, y), R2(x′, y) . 81

4.2 The conflict-join graph HI,q2 for the query and instance of Example 6.
Edges drawn as continuous lines connect pairs of facts that conflict; edges
drawn as dashed lines connect facts that together satisfy q. 96

4.3 The claw graph K1,3 . 98
4.4 Top: Database instance I. Bottom left: A join tree τ for query q() :

−R1(x, y), R2(y, x), R3(x, y, z), R4(z, x, y). Bottom right: Conflict-join
graph HI,q,τ . 112

4.5 Algorithm for constructing a maximal independent set from a repair that
falsifies the query. 114

4.6 Graph of query q() : −R(x, y), S(y, z), T c(y, v) 124

5.1 Algorithm for computing the consistent query answers to acyclic conjunc-
tive queries by eliminating potential answers. 146

5.2 Description of Phase 1 for acyclic conjunctive queries. 151
5.3 Performance of EQUIP-AC vs. EQUIP on a database with 100K tu-

ples/relation, 10% of the tuples involved in violations, and join multiplicity
equal to 5. Top: Performance on queries Q1 to Q5; Bottom: Performance
on queries Q6 to Q10. 156

5.4 Evaluation times split by phase, of queries Q1 to Q5 (top) and Q6 to Q10

(bottom), over a database with 100K tuples/relation, and join multiplicity
equal to 5. 158

5.5 Performance of EQUIP-AC and EQUIP over a database with 100K
tuples/relation, 10% of the tuples involved in violations, and varying
values of join multiplicity from 1 to 5. Top: Evaluation of query Q5;
Bottom: Evaluation of query Q10 . 160

5.6 Performance of EQUIP-AC on databases with 100K to 1 million tuples
per relation, and join multiplicity equal to 5. 161

A.1 Description of Phase 1 of EQUIP . 184
A.2 Description of Phase 1 of EQUIP-AC 186

vi

List of Tables

3.3 Benchmark queries used in our experiments 56
3.4 Sizes of BIP programs over a database with 1 million tuples per relation. 71
3.5 A cyclic query and a query with self-join used in our experiments. . . . 74
3.6 Performance of DLV and EQUIP at evaluating the consistent answers of

queries Q1 to Q21 . 77

5.1 Benchmark queries used to evaluate EQUIP-AC against EQUIP . . . 154
5.2 Sizes of BIP programs generated in the experiment of Figure 5.3. 159

vii

Abstract

Consistent Query Answering of Conjunctive Queries Under Primary Key

Constraints

by

Enela Pema

Integrity constraints are rules that express semantic conditions that a database

should satisfy in order to be an accurate representation of the real world. Relational

Database Management Systems are typically equipped with built-in mechanisms for

enforcing integrity constraints on the data. Thus, ideally, every database should satisfy

its integrity constraints. Yet, in reality violations of integrity constraints arise frequently

under several different circumstances. For example, when integrating data from multiple

heterogeneous sources into one common target schema, it is often the case that the

data will violate the constraints of the target schema due to the mutually incompatible

constraints of the sources. In other settings, integrity checking may be too expensive,

and updates that might be causing violations to occur are nevertheless allowed to go

through. A database that violates one or more of its integrity constraints is referred

to as an inconsistent database. Inconsistent databases have long posed the challenge

to develop suitable tools for meaningful query answering. The traditional approach for

answering queries over inconsistent databases is data cleaning. This approach resolves

violations of the integrity constraints by changing the database (e.g., by adding tuples,

removing tuples, etc.) until it is transformed to a consistent one, which is then used

viii

to answer queries. Data cleaning algorithms typically rely on statistical and clustering

techniques, which often entail making arbitrary decisions on what information to omit,

add, or change. Such ad hoc nature of data cleaning can result in information loss.

An alternative, less intrusive, and more principled approach is the consistent

query answering framework. In contrast to the data cleaning approach, the inconsistent

database is left as-is. Instead, inconsistencies are handled at query time by considering

all possible repairs of the inconsistent database, where a repair of a database I is a

database r that is consistent with respect to the integrity constraints, and differs from

I in a “minimal” way. Then, the consistent answers of q on I are the tuples that lie in

the intersection of the results of q applied on each repair of I.

In this dissertation, we study the problem of computing the consistent answers

to conjunctive queries over databases that may violate primary key constraints. For

this class, the problem can be coNP-complete in data complexity. We study heuristics

for efficiently computing the consistent answers in practice, regardless of the theoretical

computational complexity. We develop EQUIP, a system that represents a fundamental

departure from existing approaches. At the heart of EQUIP is a technique based on

Binary Integer Programming (BIP). We use BIP to model the problem of computing

the consistent answers, and rely on existing fast BIP solvers to efficiently compute the

consistent answers. We carry out an extensive experimental investigation that validates

the effectiveness of our approach, and shows that EQUIP scales well to large databases.

In addition, we study the data complexity of consistent query answering, aim-

ing to delineate the boundary between tractability and intractability of the problem. We

ix

establish a dichotomy on the data complexity of consistent query answering for queries

with two atoms, by giving a syntactic condition based on which, one can precisely deter-

mine the complexity as being either in PTIME, or coNP-complete. We provide sufficient

conditions for tractability and intractability of consistent query answering for the class

of acyclic and self-join free conjunctive queries. For this class of problems, we conjecture

that there exists a dichotomy, and give a criterion for determining the complexity of

each instance of the class.

Finally, we study the combined complexity of consistent query answering,

where both the database instance and the query are part of the input. We show that,

while consistent query answering can be ΠP
2 -complete in combined complexity for con-

junctive queries, it is coNP-complete for acyclic conjunctive queries. We leverage this

advantage of acyclic conjunctive queries to explore alternative heuristics for consistent

answers using Binary Integer Programming, which scale well on complex queries with

many atoms. We implement EQUIP-AC, a module of EQUIP specialized to handle

acyclic conjunctive queries, and show experimentally that EQUIP-AC is significantly

more efficient than EQUIP in evaluating queries with a large number of atoms.

x

Acknowledgments

I would like to express my deepest gratitude to my advisers, Wang-Chiew Tan and

Phokion Kolaitis, for their devoted guidance and encouragement throughout my PhD

studies. I feel truly blessed to have been mentored by two amazing researchers and

professors. I am thankful for every effort they have made to teach me how to become

a good researcher. Without their intellectual and moral support, this work would not

have been possible.

I am thankful to Jef Wijsen for serving as the external member of my disser-

tation committee. I appreciate the time and effort he put into thoroughly reading my

dissertation and providing detailed feed-back on my work. I particularly enjoyed my

visit at the University of Mons, as well as our collaboration during and after my visit.

I would like to also thank Anastasios Kementsietsidis for his mentorship during

my internship at IBM Research. Our continuous collaboration has been a valuable and

pleasant learning experience for me.

A special appreciation goes to all of the members of the Database Lab, who

have made my life as a PhD student so enjoyable.

Last but not least, I am grateful to my family, for believing in me and for

continuously supporting me in all my endeavors.

xi

Chapter 1

Introduction

1.1 Motivation and Related Work

A fundamental issue in data management is assessing data quality. The im-

mense importance of data quality is well understood, as it has a direct impact on the

reliability of data analysis, and consequently, on any critical business decision making

process. A key aspect of data quality is data consistency, which refers to the data being

free of any discrepancies and in alignment with certain domain-specific constraints that

capture semantic properties of the data. Typically, data consistency is dictated by a set

of rules, commonly referred to as data dependencies or integrity constraints. Any tradi-

tional Database Management System is equipped with built-in mechanisms that impose

integrity constraints on the data. Unfortunately, under several different circumstances,

real-life data may become dirty or, inconsistent. To mention one typical scenario where

data may frequently become inconsistent, consider a data integration setting. Data from

1

different autonomous sources is combined into one global target schema. Even though

the independent sources may be consistent, inconsistencies may arise during the data

integration process due to potential disagreement between the integrity constraints of

the source schemas and the target schema. In other settings, integrity checking may

be so expensive that resolving violations in real-time would introduce intolerable laten-

cies; hence, the application is forced to allow violations to arise. These motivational

examples point to the need for inconsistency management systems that provide the nec-

essary tools to interpret inconsistent information and answer queries in a meaningful

way. While inconsistency management is a problem relevant to all data models (see

[23] for a survey on general data quality issues), this dissertation focuses on the rela-

tional data model and on managing databases that may violate one or more integrity

constraints, commonly referred to as inconsistent databases.

A popular approach for managing inconsistent databases is data cleaning.

There is a large body of work on data cleaning, aiming to make meaningful sense of

an inconsistent database (see [18, 22, 33] for a survey). In data cleaning, the approach

taken is to first bring the database to a consistent state by resolving all conflicts that

exist in the database, then use the cleansed database to answer queries. While data

cleaning makes it possible to derive one consistent state of the database, this process

usually relies on statistical and clustering techniques, which entail making decisions on

what information to omit, add, or change; quite often, these decisions are of an ad hoc

nature. Numerous cleaning strategies have been devised seeking to identify the “best”

cleansed version of an inconsistent database. However, their effectiveness may vary from

2

one application domain to another. Finally, data cleaning is a complex, time-consuming

process that needs to be carried out on a regular basis as the data changes.

1.1.1 Consistent Query Answering Framework

An alternative, less intrusive, and more principled approach to handling incon-

sistent databases is the framework of consistent query answering, introduced by Arenas,

Bertossi, and Chomicki in 1999 [4]. In contrast to the data cleaning approach, which

modifies the database, the proposed approach suggests that the inconsistent database is

left as-is. Instead, inconsistencies are handled at query time by examining all possible

repairs of the inconsistent database, where a repair of an inconsistent database I is a

database r that is consistent with respect to the integrity constraints, and differs from I

in a “minimal” way. The minimality criterion captures the idea that a repair should be

“as close as possible” to the original inconsistent database. Then, a consistent answer of

a query q on a database I is a tuple that belongs to the set
⋂
{q(r) : r is a repair of I}.

In other words, the consistent answers of q on I are the tuples that lie in the intersec-

tion of the results of q applied on each repair of I. The intuition behind the proposed

framework is that in reality, there are many reasonable ways of repairing an inconsistent

database; thus, more meaningful query answers can be derived by taking into account

all of these possible repairs. We illustrate the notions of repairs and consistent query

answers with Example 1.

Example 1 Consider the instance of the relation Employee(SSN, name, salary) shown

in Figure 1.1. The attribute Employee.SSN is a primary key, meaning that no two dis-

3

tinct employees can have the same SSN. The tuples (112, John, 20K) and (112, John,

30K) together violate the primary key because they agree on the SSN value. Simi-

larly, the tuples (412, Anna, 34K) and (412, Ann, 34K) together violate the primary

key constraint. One natural way to repair this database is to delete tuples until there

are no more violations of the primary key. There are four possible repairs that can be

constructed this way, as shown in Figure 1.1.

Employee

SSN name salary

112 John 20K
112 John 30K
412 Anna 34K
412 Ann 34K

repair r1

SSN name salary

112 John 20K
412 Anna 34K

repair r3

SSN name salary

112 John 30K
412 Anna 34K

repair r2

SSN name salary

112 John 20K
412 Ann 34K

repair r4

SSN name salary

112 John 30K
412 Ann 34K

Figure 1.1: Repairs of Employee w.r.t. the primary key SSN → {name, salary}

Let q be the query q(y) : −Employee(x, y, z). On the given database, “Anna”

is not a consistent answer because it is not an answer on the repairs r2 and r4; whereas,

“John” is a consistent answer because it appears in the answers of q on every repair.

In Example 1, the repairs are subsets of the inconsistent database since we

derived them via tuple deletions only. Also, they are maximal with respect to set

inclusion. In Example 1, repairing the inconsistent database by removing tuples seems

natural since a violation of the primary key is witnessed by the presence of two or

more tuples with the same key. In a variety of different settings, alternative repair

4

semantics may be more suitable. For example, depending on the integrity constraints,

a database could be repaired not only by deleting tuples, but also by introducing new

tuples or modifying attribute values. Moreover, one may adopt a different notion of

maximality of a repair. For instance, if a repair is obtained by removing or adding

tuples, the “distance” between the repair and the inconsistent database can be better

captured by the symmetric difference between the two databases. What makes a repair

semantics more desirable than others, is typically an issue closely related to the class of

integrity constraints at hand. Initially, the repair semantics proposed by Arenas et al.

was symmetric-difference repairs [4]. We refer the reader to [2, 11] for an overview of

different repair semantics that have been studied in the literature.

The consistent query answering framework has been well-received from the

database research community as a principled approach to model and interpret incon-

sistent databases. Unfortunately, it was early observed that the number of possible

repairs associated with a given inconsistent database can be exponential in the size of

the database [4]. In Example 1, we only needed to examine a small number of repairs.

However, even in this simple example with one relation and a primary key, it is easy to

see that the number of repairs can be exponential. Clearly, a naive approach to compute

the consistent answers by materializing all possible repairs and evaluating the query in

every repair can be tremendously expensive and impractical. Therefore, research in

consistent query answering has focused on discovering, when possible, polynomial-time

algorithms for restricted classes of queries and constraints, and developing heuristics for

efficient computation of consistent query answers.

5

Computational complexity of the framework A substantial amount of work has

focused on analyzing the complexity of the framework of consistent query answering.

Two main computational problems have been studied in the literature:

• Repair checking : For a fixed set of integrity constraints Σ, given instances I and

r over the same database schema, is r a repair of I with respect to Σ?

• Consistent query answering: For a fixed query q and integrity constraints Σ over

the same database schema, given a database I and a tuple t, is t a certain answer

of q with respect to Σ?

The two decision problems formulated above capture data complexity: the

set of integrity constraints and the query are assumed to be fixed, and complexity is

expressed in terms of the database size only. The complexity of repair checking and

consistent query answering can vary widely depending on the class of queries and con-

straints in consideration, as well as on the repair semantics. For subset-based repairing

with respect to the very general class of universal constraints, the complexity of the

repair checking problem can be as high as coNP-complete, and the complexity of con-

sistent query answering can be as high as ΠP
2 -complete for first-order queries [15]. These

early results gave rise to an extensive, on-going study of the computational complexity

under restricted classes of queries and constraints. Unfortunately, even when the much

simpler classes of conjunctive queries and primary key constraints are considered, while

the subset repair checking problem becomes tractable, computing the consistent query

answers remains intractable; more precisely, it can be coNP-complete [15].

6

It is not our goal to give a detailed account of all literature in the consistent

query answering area. In the following section, we will summarize some of the most

influential work in consistent query answering that is related, and serves as a motivation

for the work that will be presented in this dissertation. For a systematic and thorough

survey of the problem of consistent query answering, we refer the reader to [11].

1.1.2 Problem Statement and Motivation

In this dissertation, we study the problem of consistent query answering for

the class of conjunctive queries and primary key constraints. Conjunctive queries form

a broad class of queries, widely used in practice. Primary key constraints are one of

the most basic classes of integrity constraints, currently supported by any RDBMS.

The subset repair semantics has been proposed as a suitable repair semantics in the

presence of primary key constraints [15], as it is natural to resolve violations of pri-

mary key constraints by removing tuples from the database. In this dissertation, we

are concerned with subset repairs only. As previously pointed out, the problem of

computing the consistent query answers to conjunctive queries with respect to a set of

primary key constraints can be coNP-complete in data complexity. The study of this

class of queries and constraints has been a main theme in consistent query answering

research over the past decade (see [63] for a survey). This work has focused on the

computational complexity analysis of consistent query answering, and on developing

approaches for computing the consistent answers in practice. In this dissertation, our

main contributions are in both directions: (i) we study the computational complexity of

7

consistent query answering, aiming to advance the knowledge on the boundary between

tractability and intractability; and (ii) we study heuristics for efficiently evaluating the

consistent answers. In the remainder of this section we elaborate into more detail on

the two problems stated above.

(i) Data complexity of consistent query answering It was early established that

in the presence of primary key constraints, the repair checking problem can be solved in

polynomial time, and computing the consistent query answers to conjunctive queries can

be coNP-complete. Observe that, under primary key constraints, to check if r is a subset

repair of I, it suffices to check that r satisfies the primary key constraints, and that for

every tuple t in I−r, the instance r∪{t} violates the constraints. Thus, repair checking

can be done in polynomial time. Then, the complement of consistent query answering

is in NP because one can guess a repair of the database and check if the query is false

on that repair. Thus, consistent query answering is in coNP. In [15], coNP-hardness

was established for a conjunctive query with repeated relation names and primary key

constraints. Later on, more coNP-hard examples of conjunctive queries with primary

keys were provided, even without repeated relation names in [29]. Much of the pursuit

of tractable cases of consistent query answering for conjunctive queries under primary

key constraints has focused on the first-order expressibility technique, initially proposed

in [4], and further studied by Fuxman et al. [29, 30, 32], and Wijsen [57, 58, 61].

The technique amounts to taking the original query q, together with the constraints

Σ, and constructing a first-order query q′ such that the usual evaluation of q′ on the

8

inconsistent database I returns exactly the consistent answers to q on I with respect

to Σ. If such a query q′ exists, we say that the consistent answers of q are first-order

expressible, or, that q is first-order rewritable. Fuxman et al. investigated the first-

order expressibility approach and identified a subclass, called C forest, of self-join free

conjunctive queries that are first-order rewritable under primary key constraints. While

C forest is a broad class of conjunctive queries, many first-order rewritable conjunctive

queries outside C forest are known to exist. Major progress in this direction was made by

Wijsen [61], who gave a necessary and sufficient condition for first-order expressibility

of the consistent answers to a query q, provided q is a boolean acyclic conjunctive

query without self-joins. The class C forest and Wijsen’s class of first-order expressible

queries are incomparable, in the sense that, there exist queries that belong to one class

but not the other. Unfortunately, the approach has its limitations as it may be the

case that the consistent query answers of some query are not first-order expressible;

however, they can be computed in polynomial time using some other algorithm. Such

examples have been identified that are as simple as involving only two different binary

relations. Concretely, Wijsen [60] showed that the consistent answers of the conjunctive

query q() : −R1(x, y), R2(y, x), where the first attribute of R1 and R2 is a key, are

polynomial-time computable, but the query is not first-order expressible. Therefore,

most recent study of the consistent query answering problem for conjunctive queries

and primary key constraints has focused on determining the computational complexity

when first-order expressibility is not an option [46, 60, 62]. Consistent query answering

under primary keys raises a challenging complexity classification problem. Depending

9

on the primary keys and the query, the actual complexity of consistent query answering

may vary widely, as illustrated by the following three examples in which the underlined

variables indicate that the corresponding attribute is the primary key constraint:

• If q1 is the query q1() : −R1(x, y), R2(y, z), then the consistent query answers are

first-order expressible [32, 61]. Hence, computing the consistent answers to q1 is

in P; actually, it is in the much lower class AC0.

• If q2 is the query q2() : −R1(x, y), R2(y, x), then the consistent query answers can

be computed in polynomial time, but are not first-order expressible [60].

• If q3 is the query q3() : −R1(x, y), R2(x′, y), then computing the consistent answers

is coNP-complete [32].

How can these differences in complexity be explained? More precisely, are

there efficiently checkable criteria that can be used to pinpoint the exact complexity of

consistent query answering? It has been conjectured (e.g., in [2, 46, 61]) that a dichotomy

theorem holds for the complexity of consistent query answering, namely, either the

problem is in P or it is coNP-complete. The existence of a dichotomy in this class has

been recognized as an intriguing question [2, 11, 45, 46, 51]. A dichotomy is an important

theoretical result that, for a class of NP problems, it precisely determines the complexity

of each instance of the problem as being either NP-complete or in P. To appreciate the

point of this conjecture and the significance of a dichotomy theorem, recall that Ladner

[47] has shown that if P 6= NP, then there are decision problems that are in NP, but are

neither in P nor are NP-complete; thus, the existence of a dichotomy theorem for a class

10

of decision problems cannot be taken for granted a priori. Furthermore, a dichotomy

theorem would have important implications in practice. Assuming that the dichotomy

criterion is efficiently checkable, the dichotomy theorem could be used to determine, for

any given instance of the problem, if a system should use some polynomial algorithm

to compute the consistent answers, or heuristics when the problem is intractable. This

dissertation makes a contribution in this direction by investigating the existence of

a dichotomy for acyclic conjunctive queries without repeated relation names, in the

presence of primary key constraints. The class of acyclic conjunctive queries is a broad

class of queries, well-known for their good properties. Many hard problems in databases

can be solved in polynomial time for acyclic conjunctive queries. For conjunctive queries

with self-joins, other problems, very similar in spirit to the problem of consistent query

answering, are difficult, e.g., getting a dichotomy for query evaluation on probabilistic

databases [56]. Furthermore, obtaining a dichotomy for richer classes of constraints and

queries is outside the reach at this point.

(ii) Heuristics for consistent query answering Another important direction of

work in consistent query answering, which has been developed in parallel with the com-

putational complexity study of the problem, has focused on building systems for solving

the problem in practice. A few prototypes have implemented polynomial algorithms for

restricted classes of queries and constraints; others have engineered heuristic-based ap-

proaches to efficiently handle more general classes of queries and constraints, regardless

of their theoretical complexity.

11

In the direction of developing polynomial algorithms for consistent query an-

swering, the most thoroughly studied technique is first-order rewriting. Fuxman et al.

developed a system, ConQuer [29, 30, 31, 32], that generates first-order rewritings for

the class C forest and evaluates them over an RDBMS to compute the consistent an-

swers. Through an extensive set of experiments, the authors present empirical evidence

for the efficiency of the first-order expressibility technique, even on large databases with

millions of tuples. However, ConQuer will reject any query not pertaining to the class

C forest, including several simple conjunctive queries with only two atoms. Such behav-

ior may be undesirable in practical situations. More recently, Decan et al. [19] have

implemented the first-order rewriting technique for acyclic and self-join free conjunctive

queries, based on the algorithm proposed by Wijsen [61]. The main shortcoming of the

first-order rewriting technique in general, is that it is limited to a sub-class of conjunc-

tive queries and primary key constraints. To broaden the application of the first-order

rewriting technique, recent work by Greco et al. [38] takes advantage of primary key

constraints that might happen to be satisfied by the database at hand, to determine if

consistent query answers can be obtained via a first-order rewriting. However, very sim-

ple queries are known to exist for which first-order rewriting cannot be used to compute

the consistent answers. Two such examples are queries q2 and q3 mentioned earlier,

which are boolean and involve only two atoms.

A different approach to tractable consistent query answering is the conflict-

hypergraph technique, introduced by Arenas et al. [6] and further studied by Chomicki

et al. [16, 17]. The conflict hypergraph is a graphical representation of the inconsistent

12

database in which nodes represent database facts, and hyperedges represent minimal

sets of facts that together give rise to a violation of the integrity constraints, where the

class of integrity constraints can be as broad as denial constraints. A nice property of

the conflict hypergraph is that its maximal independent sets are exactly the database

repairs. Chomicki et al. designed a polynomial-time algorithm that processes the con-

flict hypergraph to compute the consistent answers to projection-free queries that may

contain union and difference operators. This algorithm was implemented in a system

called Hippo [17]. While the class of constraints supported by Hippo goes well beyond

primary key constraints, the restriction to queries without projection limits its appli-

cability. In particular, for the class of conjunctive queries and primary key constraints,

this technique does not bring much to the table, as conjunctive queries that are self-join

free and projection-free belong to C forest.

In the direction of designing heuristics for consistent query answering, dis-

junctive logic programming and stable model semantics have been applied to arbitrary

first-order queries under broad classes of constraints such as universal constraints, which

include primary key constraints as a special case [5, 7, 21, 36, 37, 53]. For this, disjunc-

tive rules are used to model the process of repairing violations of constraints. These

rules form a disjunctive logic program, called the repair program, whose stable models

are tightly connected with the repairs of the inconsistent database (and in some cases

are in one-to-one correspondence with the repairs). For every fixed query, the query

program is formed by adding a rule on top of the repair program. Query programs can

be evaluated using engines, such as DLV [20], for computing the stable models of dis-

13

junctive logic programs, a problem known to be ΠP
2 -complete. Two systems that have

implemented this approach are Infomix [48] and ConsEx [13, 14]. The latter uses the

magic sets method [9] to eliminate unnecessary rules and generate more compact query

programs. Clearly, these systems can be used to compute the consistent answers of

conjunctive queries under primary key constraints, which are the object of our study in

this dissertation. The experimental evaluations with ConsEx show significant improve-

ment over previous DLV -based systems. However, their experiments are run over small

databases (about 10,000 tuples in total) and give little insight on what the overhead for

computing the consistent answers is, and how the system scales over larger datasets.

As we shall demonstrate in Section 3.5.1, ConsEx reveals a poor performance even on

databases with a few thousands of tuples.

In a different direction, Flesca at al. [24, 25, 26, 27] studied the problem of

repairing and querying databases with numerical attributes. To this effect, they used

Mixed Integer Linear Programming to model repairs based on a minimal number of

updates at the attribute level, and to extract consistent answers from inconsistent nu-

merical databases. Their approach is focused on numerical databases and on aggregate

constraints. In subsequent investigations [25, 27], they used Integer Linear Program-

ming to compute the consistent answers of Boolean aggregate queries, as well as the

range-consistent answers of SUM, MIN, and MAX queries, in this framework.

The limitations imposed by existing polynomial techniques and the poor per-

formance exhibited by approaches based on logic programming have served as motiva-

tion for us to investigate efficient and scalable heuristics for consistent query answering.

14

In this dissertation, we propose a new heuristic for computing consistent query answers

to all conjunctive queries under primary key constraints. Our heuristic builds on top of

Binary Integer Programming (BIP), and makes use of existing powerful BIP solvers to

support fast computation of consistent answers over large databases.

On top of the two main problems stated above, we also study combined com-

plexity of consistent query answer, where both the query and the database are part of

the input to the decision problem. Apart from some previous study of the combined

complexity concerning much broader classes than primary key constraints [12, 55], this

problem has received little attention. In our study, we leverage the good properties of

acyclic conjunctive queries in relation to combined complexity, to devise better heuris-

tics for computing the consistent answers with Binary Integer Programming. We im-

plement EQUIP-AC, a module of EQUIP specialized to handle acyclic conjunctive

queries, and show experimentally that EQUIP-AC is significantly more efficient than

EQUIP in evaluating queries with a large number of atoms.

1.2 Contributions

In this section, we summarize the main contributions of this dissertation.

Heuristics for consistent query answering We develop heuristics for efficiently

computing the consistent answers of conjunctive queries under primary key constraints.

We propose a new approach that leverages Binary Integer Programming to compute the

consistent answers to all conjunctive queries under primary key constraints. Our main

15

contributions in this part of the dissertation are:

• We give an explicit polynomial-time reduction from the complement of the consis-

tent answers of a conjunctive query under primary key constraints to the solvability

of a binary integer program. The binary integer program is of size polynomial in

the size of the database instance.

• We present an algorithm for computing the consistent answers of an arbitrary

conjunctive query by evaluating binary integer programs using any off-the-shelf

BIP solver. Our algorithm relies on the solutions of the binary integer program

to determine the query answers that are not consistent.

• We build a system, called EQUIP, that implements our BIP-based approach over

a relational database management system and a BIP solver.

• We conduct an extensive suite of experiments over both synthetic data and data

derived from TPC-H [10] to determine the feasibility and effectiveness of EQUIP.

Our experimental results show that EQUIP exhibits good performance with rea-

sonable overheads on a variety of queries. Furthermore, EQUIP performs signifi-

cantly better than existing systems, and also scales well.

Computational complexity analysis We investigate data complexity of computing

the consistent answers to acyclic and self-join free conjunctive queries under primary

key constraints. In this direction, we bring the following contributions:

• We establish a dichotomy on the data complexity of consistent query answering for

16

self-join free conjunctive queries with two atoms, under primary key constraints.

More specifically, we prove that for a given query and constraints in this class,

computing the consistent query answers is either coNP-complete, or in P.

• We give a sufficient condition for intractability of consistent query answering of

self-join free and acyclic conjunctive queries under primary key constraints.

• We give a sufficient condition for tractability of consistent query answering of self-

join free and acyclic conjunctive queries under primary key constraints. In proving

this result, we use a novel polynomial algorithm that translates the problem of

determining the consistent answer to a boolean query, into the problem of finding

a maximum-size independent set in a simple graph.

• We conjecture that the class of acyclic and self-join free conjunctive queries under

primary key constraints exhibits a dichotomy in the complexity of consistent query

answering, i.e., each instance is either solvable in PTIME or is coNP-complete.

We give a syntactic criterion, which we believe determines the boundary between

tractability and intractability, and show evidence that supports our conjecture.

Combined Complexity Our study in this part of the dissertation focuses on com-

bined complexity of consistent query answering. We obtain the following results:

• We determine that consistent query answering is ΠP
2 -complete in combined com-

plexity, for conjunctive queries and primary key constraints.

17

• We observe that for acyclic conjunctive queries, the problem has lower complexity;

it is coNP-complete.

• We explore a better reduction from the consistent answers of acyclic conjunc-

tive queries to BIP. This reduction consists in generating programs whose size is

polynomial in the size of the database and the query.

• We implement the new reduction for acyclic conjunctive queries in EQUIP-AC,

a specialized module built on top of EQUIP.

• We run experiments with a variety of queries containing up to 7 atoms, to show

that EQUIP-AC scales significantly better than EQUIP in evaluating queries

with larger number of atoms.

Finally, we establish a new result concerning tractability of consistent query

answering for a sub-class of acyclic and self-join free conjunctive queries via a reduction

to Linear Programming, a problem well known to be solvable in polynomial time. This

result gives rise to a new polynomial algorithm for consistent query answering based on

Linear Programming, which can be further explored in the future and compared against

existing polynomial approaches.

1.3 Organization of the Dissertation

In Chapter 2 we present background notions relevant to this dissertation. In

Chapter 3 we focus on conjunctive queries and primary key constraints, and present a

18

heuristic for computing the consistent query answers to this class using Binary Integer

Programming. We present EQUIP, a system that implements our BIP-based approach,

and describe the experiments we have conducted to validate its performance. In Chap-

ter 4 we present our analysis on the data complexity of consistent query answering for

acyclic and self-join free conjunctive queries under primary key constraints, and dis-

cuss the progress towards a dichotomy for consistent query answering. In Chapter 5

we discuss combined complexity of consistent query answering for conjunctive queries.

We describe the implementation of EQUIP-AC, as a specialized module of EQUIP for

evaluating acyclic conjunctive queries, and present experimental evaluations comparing

EQUIP-AC against EQUIP.

19

Chapter 2

Basic Notions

Here we formalize basic notions and introduce preliminary notation that will

be used throughout this dissertation.

Relational model A relational database schema is a finite collection R of relation

symbols R, each with an associated set of attributes, denoted Attr(R). The attributes

of a relation symbol R need not have names. Thus, if R is an n-ary relation symbol,

then its attributes can be identified with the positions 1, · · · , n, which means that the

set Attr(R) of the attributes of R coincides with the set {1, · · · , n}. The arity of a

relation symbol R is the number |Attr(R)|. An instance of a relation symbol R is a

set of tuples that have the same arity as R. An instance over the schema R is a set

of instances of the relational symbols of R. If R is a relation symbol in R and I is an

instance over R, then RI denotes the interpretation of R on I. In what follows, we will

often refer to the interpretation of R on I, as simply the relation R in I. A fact of an

20

instance I is an expression of the form RI(a1, . . . , an) such that the tuple (a1, . . . , an)

is in RI . If f is a fact of the form RI(a1, . . . , an), we also say that f is an R-fact.

Primary key constraints A key constraint of R is a subset X of Attr(R). A key is

said to be satisfied by an instance I if RI does not contain two distinct facts that agree

on all attributes of X. For example, if R(A,B,C) is a relation schema and X = {A,B}

is the key of R, then in any database instance over the schema of R, it cannot happen

that there are two facts R(a, b, c) and R(a, b′, c′), where b 6= b′ or c 6= c′. When there is

a unique key constraint defined over a relation schema, this key is called a primary key.

To express the fact that X is a key of R, we also use the notation X → Attr(R). In

what follows, we will assume that a relational schema R comes with a set Σ of primary

key constraints over the relation symbols of R. When a database instance satisfies a set

of constraints Σ, we write I |= Σ. Otherwise, we write I 6|= Σ.

Conjunctive queries A conjunctive query is a first-order formula built from atomic

formulas, conjunctions, and existential quantification. Thus, every conjunctive query is

logically equivalent to an expression of the form q(z) = ∃w.R1(x1)∧. . .∧Rm(xm), where

each xi is a tuple of variables and constants, z and w are disjoint tuples of variables

and each variable in x1, . . . ,xm appears in exactly one of z and w. We will often write

conjunctive queries as rules; specifically, the rule expressing the preceding conjunctive

query is q(z) : −R1(x1), . . . , Rm(xm). We refer to the conjuncts R1(x1), . . . , Rm(xm)

as the atoms of q. The arity of q is the number |z|. A boolean conjunctive query is

a conjunctive query in which all variables are existentially quantified; thus, when a

21

boolean conjunctive query q is written as a rule, the left-hand side of the rule is q(). A

conjunctive query that is not boolean is called non-boolean. If a conjunctive query has

repeated relation names, we say that it contains a self-join. We refer to queries that

do not contain self-joins as self-join free queries. In what follows, whenever we write a

conjunctive query, we underline in each atom the positions of attributes that belong to

the primary key of the relation symbol; such variables are called key variables, whereas,

variables that appear in positions of attributes that are not part of the key are called

non-key variables. For example, by writing q() : −R1(x, y), R2(y, x), we indicate that

the first attributes of R1 and R2 are, respectively, the keys of R1 and R2; furthermore, x

is a key variable of the atom R1(x, y) and y is a non-key variable of R1(x, y), while y and

x are, respectively, a key variable and a non-key variable of the atom R2(y, x). The same

variable can be at the same time a key variable and a non-key variable. For instance, in

the atom R(x, x), variable x is a key variable and a non-key variable. In general, when

a conjunctive query is presented in this form, we omit explicitly specifying the schema

and the primary key constraints, since they can be derived from the formulation of the

query itself.

Let q be a conjunctive query and let R(x,y) one of its atoms. We define

vars(R(x,y)) to be the set of variables appearing in the atom R(x,y). We define

key(R(x,y)) to be the set of key-variables in the atom R(x,y). Note that constants

may occur in x, but are not members of key(R(x,y)); in particular, key(R(x,y)) may

be the empty set. We define nkey(R(x,y)) to be the set of the non-key variables in the

atom R(x,y). Note that it is possible to have that key(R(x,y)) ∩ nkey(R(x,y)) 6= ∅.

22

For simplicity, given a self-join free conjunctive query without self-joins, an atom R(x,y)

will be denoted by its relation name R. Thus, we write vars(R) instead of vars(R(x,y)),

and key(R) instead of key(R(x,y)).

Acyclic conjunctive queries are a well-known class of conjunctive queries that

were introduced in [8]. Several equivalent syntactic characterizations of acyclicity have

appeared in the literature [8, 35, 50]. One such characterization is given next.

Definition 1 Let q be a conjunctive query with atoms F1, · · · , Fi, · · · , Fn.

• The complete intersection graph of q is a labeled graph that has the atoms of q

as vertices, and an edge between every two distinct atoms Fi and Fj , labeled by

Li,j , where Li,j is the set of variables that Fi and Fj share.

• An intersection tree of q is a spanning tree of the complete intersection graph of q.

• A join tree for q is an intersection tree that satisfies the following connectedness

condition: whenever the same variable x occurs in two atoms Fi and Fj , then x

occurs in every atom on the unique path linking Fi and Fj .

• We say that q is acyclic if it has a join tree.

We illustrate the notion of acyclicity of conjunctive queries in Example 2.

Example 2 Let q1 be the query q1() : −R1(x, y, z), R2(x, y, v), R3(y, v, u). Since this

query is self-join free, we use the relation names to refer to the atoms. Figure 2.1a shows

the complete intersection graph of q1. Figure 2.1b is a join tree for q1 because the only

variable that atoms R1 and R3 share, which is y, appears also in the atom R2. Let q2

23

R1(x, y, z)

R2(x, y, v)

R3(y, v, u)
{y}

{x, y} {y, v}

(a) Intersection graph of q1

R1(x, y, z)

R2(x, y, v)

R3(y, v, u)
{y}

{x, y} {y, v}

(b) Join tree of q1

R1(x, y)

R2(y, z)

R3(z, x)
{z}

{x} {y}

(c) Intersection graph of q2

Figure 2.1: Intersection graphs for queries q1, q2

be the query q2() : −R1(x, y), R2(y, z), R3(z, x). The complete intersection tree of q2 is

shown in Figure 2.1c. This query has no join tree; hence, it is cyclic.

Consistent Query Answering framework In this dissertation we focus on sub-

set repairs, which are repairs that are obtained via deletions of entire tuples from the

database. Next, we give precise definitions of the subset repairs, consistent query an-

swers, and the decision problem of consistent query answering, certainty(q):

Definition 2 Let R be a relational database schema and Σ a set of integrity constraints

over R.

• Let I be an instance of R. An instance r of R is a subset repair or, simply, a

repair of I w.r.t. Σ if r is a maximal sub-instance of I that satisfies Σ, i.e., r |= Σ

and there is no instance r′ such that r′ |= Σ and r ⊂ r′ ⊆ I.

• Let q be a query and I an instance. We say that a tuple t is a consistent answer

of q if for every repair r of I w.r.t Σ, we have t ∈ q(r).

• Let q be a boolean query.

24

– If I is an instance, then the notation I |=Σ q denotes that q is true in every

repair of I w.r.t. Σ, whereas the notation I 6|=Σ q denotes that q is false in at

least one repair of I w.r.t. Σ.

– certainty(q) is the following decision problem: given an instance I, does it

hold that I |=Σ q ?

In the notation certainty(q), we omit Σ (i.e., we write certainty(q) instead

of certainty(q,Σ)) under the assumption that the primary key constraints can be

inferred from the underlined positions in the atoms of q.

We say that two facts RI(a1, . . . , an) and RI(b1, . . . , bn) are key-equal if they

have the same relation name and agree on all attributes of the primary key. Two distinct

key-equal facts RI(a1, . . . , an) and RI(b1, . . . , bn) are said to form a conflict. A key-equal

group of facts in a database I is a maximal set of key-equal facts, i.e., it is a set K of

facts from I such that every two facts from K are key-equal, and no fact from K is

key-equal to some fact from I \K.

Complexity classes In this dissertation, we consider the following complexity classes:

• PTIME: decision problems solvable in polynomial time by deterministic Turing

machines;

• NP: decision problems solvable in polynomial time by nondeterministic Turing

machines;

• coNP: decision problems whose complements are in NP;

25

• ΣP
2 : decision problems solvable in polynomial time by nondeterministic Turing

machines with an NP oracle;

• ΠP
2 : decision problems whose complements are in Σp

2;

26

Chapter 3

EQUIP: A System for Consistent Query

Answering

In this chapter, we describe our proposed approach for using Binary Integer

Programming to compute the consistent answers to conjunctive queries under primary

key constraints [44]. First, we will introduce some preliminary notions. Next, we will

provide an explicit reduction from certainty(q) to Binary Integer Programming, based

on which we devise an algorithm for computing the consistent answers. We will dis-

cuss the architecture of EQUIP the prototype system that implements our BIP-based

algorithm, and we will present extensive experimental evaluations with synthetic and

TPC-H data. All of the results presented in this chapter have been published in [44].

27

3.1 Preliminaries

Integer Linear Programming Integer Linear Programs (ILP) are optimization prob-

lems of the form max {cTx | Ax ≤ b;x ∈ Z∗} (or, in the dual form min {bTy | ATy ≥

c; y ∈ Z∗}), where b and c are vectors of integer coefficients, bT and cT are the transpose

of, respectively, b and c, A is a matrix of integer coefficients and x (or, y) is a vector of

variables, ranging over the set Z∗ of the non-negative integers. The function cTx (or,

bTy) is called the objective function. The system of inequalities Ax ≤ b (or, ATy ≥ c)

are the constraints to the program. Binary Integer Programming is the special case

of Integer Linear Programming in which the variables must take values from the set

{0, 1}. A solution to an integer program is an assignment of non-negative integers to

the variables of the program that satisfies the constraints. An optimal solution to the

integer program is a solution that yields the optimal value of the objective function.

If x is the vector of variables in the program, we will use the notation x̂ to denote a

solution of the integer program, and the notation x∗ to denote an optimal solution.

The decision problem underlying ILP is: Given a system Ax ≤ b of linear

inequalities with integer coefficients, does it have a solution? Similarly, the decision

problem underlying Binary Integer Programming is: Given a system Ax ≤ b of linear

inequalities with integer coefficients, does it have a solution consisting of 0’s and 1’s?

It is well known that both these decision problems are NP-complete (see [34]). In what

follows, we will use the term ILP to refer to both the optimization problem and the

underlying decision problem; similarly for BIP.

28

Let q be a non-boolean conjunctive query and let Σ be the set of primary

key constraints in q. Since q is a monotone query and since the repairs of a database

instance I are sub-instances of I, we have that the consistent answers of q on I form a

subset of q(I). Thus, every tuple in q(I) is a candidate for being a consistent answer

to q on I w.r.t. Σ. We refer to the tuples in q(I) as the potential consistent answers

to q on I w.r.t. Σ, or, simply, the potential answers to q on I w.r.t. Σ. In the case in

which q is boolean, if q(I) is false, then the consistent answer to q is also false. If q(I)

is true, then true is the potential answer to q on I. The consistent part of I is the the

sub-instance of I consisting of all facts of I that are not involved in any conflict; more

precisely, facts that are not key-equal with any other fact in the database. Clearly, the

consistent part of a database I is the intersection of all repairs of I. It is also the union

of all singleton key-equal groups. Given a database I, we will use the notation IC to

refer to the consistent part of I.

3.2 Modeling Consistent Query Answering with Binary

Integer Programming

Let q be a conjunctive query. Since certainty(q) is in coNP and since Binary

Integer Programming is NP-complete, there is a polynomial-time reduction from the

complement of certainty(q) to Binary Integer Programming. In this section, we will

give explicit natural reductions of certainty(q) to Binary Integer Programming.

29

3.2.1 Consistent Answers of Boolean Conjunctive Queries

We focus first on boolean conjunctive queries and show how one can model

certainty(q), where q is a boolean conjunctive query, as the problem of checking if a

set of linear equalities and inequalities with integer coefficients is satisfiable. In what

follows, we will make use of the notion of a minimal witness to a conjunctive query on

a database instance. Let I be a database instance and S a sub-instance of I. We say

that S is a minimal witness to a boolean conjunctive query q if q is true on S and for

every proper subset S′ of S, we have that q is false on S′.

Theorem 1 Let q be a boolean conjunctive query. Given a database instance I over the

same schema as q, we construct in polynomial time the following system of linear equal-

ities and inequalities with binary variables xf1 , · · · , xfi , · · · , xfn, where each variable xfi

is associated with a fact fi of I.

System (1):

(a)
∑
fi∈K

xfi = 1, for every key-equal group K of I.

(b)
∑
fi∈S

xfi ≤ |S| − 1, for every minimal witness S to q on I.

Then the following statements are equivalent:

• There is a repair r of I in which q is false.

• System (1) has a solution.

Proof. Intuitively, the constraints (a) express the fact that from every key-equal group

of facts, exactly one fact must appear in a repair. Therefore, every solution is associated

30

with a repair. The constraints (b) express the fact that for every minimal witness S to

q, not every fact of S should appear in a repair. There is a one-to-one mapping between

the repairs in which q is false and the solutions to the set of constraints (a) and (b).

Given a repair r of I on which q is false, one can construct a solution x̂ by assigning

x̂fi = 1 if and only if fi is a fact in r. In the other direction, given a solution x̂ to the

constraints (a) and (b), one can construct a repair r of I in which q is false by adding

to r precisely the facts fi such that x̂fi = 1. Let x̂ be a solution to System (1). The

instance r = {fi ∈ I : x̂fi = 1} is a repair because the constraints (a) are satisfied

(constraints (a) guarantee that from every key-equal group, exactly one fact is chosen).

Moreover, r does not satisfy q because the constraints (b) are satisfied. In the opposite

direction let r be a repair that does not satisfy q. Then, we claim that the vector x̂ such

that x̂i = 1 if fi ∈ r and x̂i = 0 otherwise, is in fact a solution. Because r is a repair, the

constraints (a) are satisfied. In addition, because r 6|= q, from every minimal witness S,

at least one fact from S is not in r; Hence, the constraints (b) are also satisfied.

It remains to show that System (1) can be constructed in polynomial time.

The size of System (1) is polynomial in the size of the database I (however, the degree

of the polynomial depends on the fixed query q). Indeed, there are |I| different variables,

that is, as many variables as facts in I. One equality constraint is introduced for every

key-equal group. Since every database fact belongs to exactly one key-equal group, the

number of constraints in (a) is at most |I|. One inequality constraint is introduced for

every minimal witness. If q has k atoms, then there are at most |I|k different minimal

witnesses. Thus, there are polynomially many constraints of type (b). �

31

We illustrate Theorem 1 with Example 3 next.

Example 3 Let q be the query q() : −R1(x, y, z), R2(x′, y). Let I be the displayed

R1

A B C
f1 a b1 c1

f2 a b2 c1

f3 e b1 c2

R2

D E
f4 d b1

f5 d b2

database, where f1, · · · , f5 are names used to identify database facts. For every fact fi,

we introduce a boolean variable xfi . Since {f1, f2} forms a key-equal group of facts,

we create the constraint xf1 + xf2 = 1. Doing the same for all the key-equal groups,

we obtain the equalities (a). The sets of facts that are minimal witnesses to q on I are

{f1, f4}, {f2, f5}, and {f3, f4}. From these minimal witnesses, we obtain inequalities (b).

(a)

xf1 + xf2 = 1

xf3 = 1

xf4 + xf5 = 1

(b)

xf1 + xf4 ≤ 1

xf2 + xf5 ≤ 1

xf3 + xf4 ≤ 1

It is easy to check that the consistent answer to q is false, because q is false on the

repair r = {f1, f3, f5}. This gives rise to a solution to the system of the constraints (a)

and (b) by assigning value 1 to a variable xfi if and only if fi ∈ r. Thus, we obtain the

solution (xf1 , xf2 , xf3 , xf4 , xf5) = (1, 0, 1, 0, 1). �

3.2.2 Consistent Answers of non-Boolean Conjunctive Queries

Theorem 1 gives rise to a technique for computing the consistent answers of

a boolean conjunctive query under primary key constraints using a BIP solver. This

32

technique can be extended to non-boolean queries as follows. Let q be a conjunctive

query of arity k, for some k ≥ 1. If I is a database instance and t is a k-tuple with

values from the active domain of I, then t is a consistent answer of q on I if and only

if for every repair r of I, we have that t is in q(r). This is the same as the boolean

query q[t] being true in every repair r of I, where q[t] is the query obtained from q

by substituting variables from the head of q (i.e., variables that are not existentially

quantified) with corresponding constants from t. Thus, for every potential answer a to

q, we can use Theorem 1 to check if q[t] is true in every repair.

The preceding approach for computing the consistent answers of a non-boolean

query q on some database instance I requires that we solve as many instances of BIP

as the number of potential answers of q on I. Even though the number of potential

answers is a polynomial in the size of the database, if the database itself is large, it

is conceivable that evaluating even hundreds of such programs may be expensive in

practice. Furthermore, evaluating a BIP instance for every potential answer could be

an overkill, as the different BIP instances share many constraints in common. For

this reason, we explore a different technique for handling non-boolean queries that

avoids constructing and evaluating a binary integer program for every potential answer.

We will present this technique in two steps. First, we give a reduction that, given a

database instance I, constructs a system of linear equalities and inequalities such that

one can reason about all the potential answers to q by exploring the set of solutions to

the system. This result, which is stated in Theorem 2, serves as a building block for

Algorithm EliminatePotentialAnswers, which is presented later in Section 3.3.

33

Theorem 2 Let q be a conjunctive query. Given a database instance I over the same

schema as q, we construct in polynomial time the following system of linear equalities

and inequalities:

System (2):

Variables:
x∈
fi
{0, 1} for every database fact f

ua ∈ {0, 1}for every a ∈ q(I)

Constraints:

(a)
∑
fi∈K

xfi = 1, for every key-equal group K of I.

(b) (
∑
fi∈S

xfi)− ua ≤ |S| − 1, for every a ∈ q(I) and minimal witness S of
q[a] on I.

Then, for every potential answer a to q on I, the following statements are equivalent:

• There is a repair r of I in which q[a] is false.

• System (2) has a solution (x̂, û) such that ûa = 0.

Proof. If r is a repair of I such that a is not an answer to q on r, we can construct

a solution (x̂, û) by assigning x̂fi = 1 if and only if fi is a fact in r, and by assigning

ûa = 0, and ûb = 1 for every other variable ub, where b 6= a. Because r is a repair, it is

easy to see that (x̂, û) is a solution to the constraints (a). Every constraint of type (b)

that does not involve ua is trivially satisfied as a result of ûb being assigned 1 for every

other ub such that b 6= a. Moreover, from r 6|= q[a] it follows that constraints of type

(b) that does involve ua are satisfied as well. In the other direction, given a solution

(x̂, û) such that ûa = 0, we can construct a repair r to I that does not satisfy q[a] by

34

adding to r precisely the facts fi such that x̂fi = 1. The fact that (x̂, û) satisfies the

constraints (a) directly implies that r is a repair. Assume towards a contradiction that

there exists a minimal witness S of q[a] in r. Then,
∑

fi∈S xfi = |S|. Because ûa = 0,

the constraint
∑

fi∈S xfi − ua ≤ |S| − 1 cannot be satisfied.

The size of the system of constraints is polynomial in the size of the database

instance |I|. Indeed, the number of variables is equal to the number |I| of facts in I

plus the number |q(I)| of potential answers. If the query q has k atoms, then |q(I)| is at

most |I|k. The number of equality constraints is at most |I|. Finally, for every potential

answer there are at most |I|k inequality constraints. �

Observe that for every solution to System (2), there is a database repair that

corresponds to the solution, and vice-versa. Furthermore, it is straightforward to verify

that if only the constraints (a) are considered, then the solutions (to the constraints

(a)) are in one-to-one correspondence with the repairs of I.

We illustrate Theorem 2 with Example 4.

Example 4 Consider the query q(z) : −R1(x, y, z), R2(x′, y). Let I be the following

database:

R1

A B C
f1 a b1 c1

f2 a b2 c1

f3 e b1 c2

f4 g b1 c3

f5 h b2 c3

R2

D E
f6 d b1

f7 d b2

35

The key-equal groups give rise to equations in (a). The potential answers to q

are c1, c2 and c3. To represent each of these potential answers, we use variables uc1 , uc2

and uc3 , respectively. Since {f1, f6} is a minimal witness to potential answer c1, we

generate the inequality xf1 + xf6 − uc1 ≤ 1. The set {f2, f7} is also a minimal witness

to c1. Hence, we generate the inequality xf2 + xf7 − uc1 ≤ 1. Doing the same for every

minimal witness to every potential answer, we create the set of inequalities in (b):

(a)

xf1 + xf2 = 1

xf3 = 1

xf4 = 1

xf5 = 1

xf6 + xf7 = 1

(b)

xf1 + xf6 − uc1 ≤ 1

xf2 + xf7 − uc1 ≤ 1

xf3 + xf6 − uc2 ≤ 1

xf4 + xf6 − uc3 ≤ 1

xf5 + xf7 − uc3 ≤ 1

The vector (x̂, û) with x̂ = (0, 1, 1, 1, 1, 1, 0) and û = (0, 1, 1) is a solution of the

system (a) and (b). It is easy to check that the database instance r = {fi ∈ I | x̂fi = 1}

is a repair of I in which c1 is not an answer to q. Hence, c1 is not a consistent answer.

Similarly, x̂ = (0, 1, 1, 1, 1, 0, 1) and û = (1, 0, 1) form a solution of the system. The

instance r = {fi ∈ I | x̂fi = 1} is a repair of I in which c2 is not an the answer to q.

As Theorem 2 states, it is not a coincidence that ûc1 = 0. On the other hand, c3 is a

consistent answer of q. Indeed, since in every solution of the above system it must hold

that x̂f4 = 1 and x̂f5 = 1, and one of x̂f6 or x̂f7 must be assigned value 1, it follows

that in order to satisfy both inequalities xf4 +xf6 −uc3 ≤ 1 and xf5 +xf7 −uc3 ≤ 1 the

variable uc3 must always take value 1. �

36

The system of constraints in Theorem 2 can be viewed as a compact representa-

tion of the repairs, since, as mentioned earlier, the solutions to the program encapsulate

all repairs of the database. The conflict hypergraph and logic programming techniques,

which were discussed in Section 1.1.2, can also be viewed as compact representations

of all repairs. Specifically, in the case of the conflict hypergraph, the repairs are rep-

resented by the maximal independent sets, while in the case of logic programming, the

repairs are represented by the stable models of the repair program.

3.3 An Algorithm for Consistent Query Answers using Bi-

nary Integer Programming

Theorem 2 gives rise to the following technique for computing the consistent

query answers to a conjunctive query q: Given a database instance I, construct System

(2), find all its solutions, and examine each of these solutions to determine which po-

tential answers are not consistent. This technique avoids building a separate system of

constraints for every potential answer, unlike the earlier technique based on Theorem

1. However, it still has to examine all possible solutions of System (2). Obviously, the

number of solutions can be as large as the number of repairs of the database. Thus, it

is not a priori obvious how these two techniques would compare in practice. In what

follows in this chapter, we will demonstrate the advantage that Theorem 2 brings.

Algorithm EliminatePotentialAnswers In a sense, the solutions of System (2)

form a compact representation of all repairs together with information about which

37

potential answers are not found as an answer in each repair. For a given solution of Sys-

tem (2), let a1, · · · ,an be all potential answers such that ua1 = ua2 = · · · = uan = 0.

The repair r encoded by this solution (because of equations of type (a)) shows that

none of the ai’s is a consistent answer. We will say that such a solution eliminates,

or filters out, the potential answers ai for (1 ≤ i ≤ n). The encoding of repairs as

solutions allows us to explore the space of solutions in an efficient manner, so that we

can quickly filter out potential answers that are not consistent answers. It also pro-

vides the intuition behind our algorithm EliminatePotentialAnswers that we will

describe next. EliminatePotentialAnswers is based on two main observations.

First, one can differentiate among the solutions to System (2) according to the number

of potential answers that they provide evidence for filtering out. Intuitively, a solution

can be thought of as being better than another if it makes it possible to filter out a

larger number of potential answers than the second one does. Thus, it is reasonable to

examine first the solution that allows to filter out the most potential answers. We can

model this idea by building a binary integer program that minimizes the sum of all vari-

ables uaj
. Second, some solutions may provide redundant information about potential

answers that are not consistent answers as, in practice it often happens that the same

potential answer is not found as a query answer in more than one repair. The algorithm

EliminatePotentialAnswers, presented in Figure 3.1, is an iterative process that

in each iteration evaluates a binary integer program, uses the optimal solution to elimi-

nate potential answers that are not consistent answers, incorporates this knowledge into

the binary integer program by adjusting the constraints, and re-evaluates the tweaked

38

binary integer program to filter out more potential answers. This process continues

until no more potential answers can be filtered out, and have remained unfiltered are

automatically returned as consistent answers.

Algorithm EliminatePotentialAnswers

1. Input
q : conjunctive query
I : database over the same schema as q
C: the set of constraints constructed from q, I as described in Theorem 2.
{a1, · · · ,ap}: the set of potential answers to q on I

2. let Consistent be a boolean array with subscripts 1, . . . , p Consistent[j]
represents the element aj and every entry is initialized to true.
3. let i := 1
4. let filter:=true
5. let C1 := C
6. while (filter=true)
7. let Pi = min{

∑
j∈[1..p] uaj

|subject to Ci}
8. Evaluate Pi using BIP engine
9. let (x∗, u∗) be an optimal solution for Pi

10. let Ci+1 := Ci
11. let filter:=false
12. for j := 1 to p
13. if u∗aj

= 0 then

14. let Consistent[j]:=false
15. Add to system Ci+1 the equality (uaj

= 1)

16. let filter:=true
17. let i := i+ 1
18. for j := 1 to p
19. if Consistent[j] = true
20. return aj

Figure 3.1: Algorithm for computing the consistent query answers using BIP.

39

In Algorithm EliminatePotentialAnswers, the optimal solution (x∗, u∗)

returned is the one that contains the largest number of 0s in u∗, because the binary

integer program minimizes the sum
∑

j∈[1..p] uaj
. This allows us to filter out right away

many potential answers that are not consistent answers. The reason for adding the new

constraints at the end of each iteration (line 15) is to trivially satisfy the constraints of

type (b) related to potential answers that are already determined not to be consistent

answers. Each time that we modify the program and re-evaluate it, we filter out more

and more potential answers. In theory, the worst case scenario is encountered when

we have to modify and re-evaluate the program once for every potential answer. This

scenario is very unlikely to encounter in practice, especially when the number of potential

answers is large. In Section 3.5, we show experimentally that even over databases with

hundreds of thousands of tuples, two to four iterations will suffice to filter out all the

potential answers that are not consistent answers. Note that if q is a boolean conjunctive

query, then the only potential answer is true.

Theorem 3 Let q be a conjunctive query and I a database instance. Then, Algorithm

EliminatePotentialAnswers computes exactly the consistent answers to q on I.

Proof. The proof uses the following two loop invariants:

1. At the i-th iteration, every optimal solution of Pi is a solution to constraints C.

2. At the end of the i-th iteration, if filter is true then the number of elements in

consistent that are false is at least i.

40

The first loop invariant follows easily from the fact that Ci contains all the

constraints of C. The second loop invariant is proved by induction on i. Assume that

at the end of the i-th iteration, the number of false elements in consistent is greater

than or equal to i. For every j ∈ [1..p] such that consistent[j] is false, there must

exist a constraint uaj
= 1 in Ci. We will show that at the termination of iteration i+ 1,

if filter is true, then the number of elements in consistent that are false is greater

than or equal to i + 1. Since filter is true, the BIP engine has returned an optimal

solution (x∗, u∗) to Pi+1 such that u∗aj
= 0 for at least some j ∈ [1..p]. Notice that it is

not possible that at some previous iteration, consistent[j] has been assigned false. If

that were the case, then the constraint uaj
= 1 would be in Ci+1, and (x∗, u∗) would not

be a solution of Ci+1. Therefore, at iteration i+ 1, at least one element in consistent

that has value true is changed to false.

We show that the algorithm always terminates. The second loop invariant im-

plies in a straightforward manner that the algorithm terminates in at most p iterations.

Next, we show that for any m ∈ [1..p], a potential answer am is a consistent answer if

and only if consistent[m] = 1 at termination. In one direction, if am is a consistent

answer, then Theorem 2 implies that for every solution (x̂, û) to the constraints C, it

always holds that ûam = 1. Since for every i ∈ [1..p], every optimal solution to Pi is

also a solution to C, we have that the algorithm will never execute line 14 for j = m.

Hence, the value of consistent[m] will always remain true.

In the other direction, if consistent[m] is true after the algorithm has ter-

minated, then assume towards a contradiction that am is not a consistent answer. If

41

the algorithm terminates at the i-th iteration, then every solution to Pi is such that

it assigns value 1 to every variable uaj
, for j ∈ [1..p]. So, the minimal value that the

objective function of Pi can take is p. If am were not a consistent answer, we know

from Theorem 2 that there must be a solution (x̂, û) to C such that ûam = 0. We will

reach a contradiction by showing that we can construct from (x̂, û) a solution (x∗, u∗)

to Pi such that
∑

j∈[1..p] u
∗
aj
< p. The vectors x̂, û are defined as follows: x∗ = x̂,

u∗am
= ûam and u∗aj

= 1 for j 6= m. Because the equality constraints (a) in Ci and in C

are the same, we have that x∗ will satisfy the constraints (a) in Ci. For j 6= m and since

u∗aj
= 1, all inequalities in (b) that involve u∗aj

, where j 6= t, are trivially satisfied. In

addition, the left-hand-side of every inequality in the constraints (b) that involves u∗am

will evaluate to the same value under (x̂, û) and (x∗, u∗) (this follows directly from the

fact that x∗ = x̂ and u∗am
= ûam). Finally, all equality constraint that may have been

added to C during previous iterations are satisfied since u∗aj
= 1 for j 6= m, and the

equality u∗am
= 1 cannot be in Ci. Now, it is clear that (x∗, u∗) is a solution to Pi such

that
∑

j∈[1..p] u
∗
aj

= p− 1. This contradicts the assumption that all solutions to Pi yield

minimal value p of the objective function. �

3.4 Architecture of EQUIP

We have developed a system, called EQUIP, for computing the consistent

query answers to conjunctive queries under primary key constraints. Our system, at

its core, implements Algorithm EliminatePotentialAnswers. Our strategy in the

42

implementation of EQUIP has been to push as much processing as possible to the

RDBMS. This strategy is motivated by two main reasons. First, SQL queries can be

efficiently evaluated by the underlying database system, whereas large BIP programs

could potentially take a long time to evaluate given the inherent hardness of Binary In-

teger Programming. Secondly, by partly relying on the database system to compute the

consistent query answers, we can take advantage of RDBMS features such as database

statistics and indexes for query optimization.

EQUIP executes in three phases (see Figure 3.2), corresponding to the mod-

ules: 1) database pre-processor, 2) constraints builder, and 3) consistent query answers

(CQA) evaluator.

• Phase 1: Compute answers of the query from the consistent part of the database

and extract database facts that may be relevant for computing the additional

answers to the query.

• Phase 2: Construct the set of constraints based on Theorem 2 with the set of

database facts retrieved in Phase 1.

• Phase 3: Run Algorithm EliminatePotentialAnswers to eliminate the po-

tential answers that are not consistent answers.

Phase 1: The database pre-processor performs two main tasks in phase 1 as an attempt

to optimize subsequent phases: (i) it retrieves answers of q from the consistent part of

the database, and (ii) it retrieves the database facts that are relevant for computing

additional consistent answers of q on I. We describe these two steps next.

43

Figure 3.2: Architecture of EQUIP

(i) Given an inconsistent database, it is reasonable to assume that there are

facts in the database that do not participate in any violations. In fact, we expect that

in most real-life inconsistent databases the majority of the facts are not involved in

conflicts. Let IC we the subset of the facts of I that are not involved in any conflict.

Then, as a preliminary optimization step, we compute a portion of the consistent answers

by evaluating q on IC . It is easy to see that the result of q over the consistent part of

the database IC is a subset of the consistent query answers of q on I. Computing the

answers of q on IC does not necessarily require that we materialize IC and then evaluate

q on top of IC . In fact, the answers to q on IC can be computed using SQL queries.

(ii) After having computed q(IC), every tuple in q(I)− q(IC) is an additional

potential answer which may or may not be a consistent answer. For a given potential

answer a, not all facts in the database are needed to check if a is a consistent answer

or not. For instance, if K is a key-equal group of facts such that none of the facts of

K participates in a minimal witness of q[a], then repairs of this violation have no effect

44

whatsoever on whether a is a consistent answer or not. This observation suggests that

it is enough to focus on only a subset of the facts in I in order to check the additional

potential answers. The notion of relevant database facts is formalized in Definition 3:

Definition 3 Let q be a boolean conjunctive query and let I be a database. A fact f in

I is relevant to q if there exists a fact g that is key-equal with f , and a minimal witness

S of q on I such that g ∈ S.

Note that the above definition does not require that f and g are distinct.

Every fact is key-equal with itself. Therefore, a fact f that is not key-equal with any

other fact in the database, may still be a relevant fact as long is it participates in a

minimal witness of the query. Obviously, all facts involved in some minimal witness are

considered relevant.

Next, in Proposition 1, we show that to compute the consistent answers, it

suffices to focus on the relevant facts.

Proposition 1 Let q be a boolean conjunctive query, and let I be a database instance.

Let IR,q be the set of facts in I that are relevant to q. Then, q is false on some repair

of I if and only if q is false on some repair of IR,q.

Proof. First, we make the following observation about I and IR,q: for every repair r

of I, there exists a repair r1 of IR,q and a repair r2 of I − IR,q such that r = r1 ∪ r2; and

vice-versa. It follows directly from the definition of IR,q, that for every two key-equal

facts f and g, either they are both in IR,q, or neither of them is in IR,q. Therefore, every

repair r of I can be obtained by combining a repair of IR,q with a repair of I − IR,q.

45

In one direction, because IR,q is a subset of I, it is obvious that if q is false on

some repair of I then it is also false on some repair of IR,q.

In the other direction, assume there exists r1, a repair of IR,q such that q is

false on r. Let r2 be any repair of IR,q, and let r = r1 ∪ r2. We will argue that r is a

repair of I such that r 6|= q. From the observation made above, it follows that r is a

repair of I. Assume towards a contradiction that r |= q. then, there exists a minimal

witness S of q on IR,q. Note that no fact in I − IR,q participates in a minimal witness

of q on I. Then, it can only happen that S ⊆ r1, thus, contradicting the assumption

that r1 6|= q. �

It follows from Proposition 3, that to check if a tuple a is a consistent answer

of a non-boolean query q, it suffices to check only the repairs of IR,q[a].

In Figure 3.3 we describe at a high level the main steps followed in phase 1.

A more detailed description of phase 1 is provided in Appendix A.1. Steps 1 and 2

compute the consistent answers from the consistent part of the database, IC . While

there are many different ways of computing q(IC), the strategy we follow in our im-

plementation of phase 1 is to first compute the key-values associated with key-equal

groups of size greater than 1, and then compute the answers to q on I that are obtained

from minimal witnesses that involve only facts whose key-values are not found in the

previous step. This is achieved in step 1 and step 2 in Figure 3.3. More specifically, for

every relation Ri mentioned in q, we create a view KEYS Ri that holds all key-values

that are not unique in Ri. The view ANS FROM CON holds all tuples in q(IC), and it

46

can be computed by selecting all tuples in q(I) that can be obtained via some minimal

witness S, where every Ri-fact in S is such that its key value is not found in KEYS Ri.

The set ANS FROM CON is immediately returned as part of the consistent answers of

q on I (see bottom of Figure 3.2). The computation of the relevant database facts is

described in step 3 and step 4 of Figure 3.3. In step 3, we compute all minimal witnesses

to the potential answers into a new relation called WITNESSES. This is achieved by

evaluating a query on top of I that selects all facts that together form a witness to some

potential answer a, where a is not in ANS FROM CON. Finally, for every relation Ri

that is mentioned in q, we compute the relevant Ri-facts into a relation RELEVANT Ri.

Again, we use an SQL query to achieve this.

47

Phase 1: Database pre-processing

Input: R : Schema with relation names {R1, · · · , Ri, · · · , Rl}
q(z) : −Rp1(x1,y1), · · · , Rpj (xj,yj), · · · , Rpk(xk,yk) for j ∈ [1..k] and 1 ≤ pj ≤ l
I : database over R

1. for all Ri, 1 ≤ i ≤ l
create view KEYS Ri that contains all primary key values d s.t. there exists more
than one fact of the form Ri(d,) in I

2. create view ANS FROM CON that contains all tuples t s.t.
- t ∈ q(I), and
- there exists a minimal witness S for q(t), and s.t. no fact Ri(d,) ∈ S has its

key-value d in KEYS Ri

3. create view WITNESSES that contains all tuples (tp1 , · · · , tpj
, · · · , tpk

) s.t.

- Rpj (tpj
) ∈ I for 1 ≤ j ≤ k, and

- the set S = {Rpj (tpj
) : 1 ≤ j ≤ k} forms a minimal witness for q(a), where a

is a potential answer that is not in ANS FROM CON

4. for all Ri, 1 ≤ i ≤ l
create view RELEVANT Ri that contains all tuples t s.t.

- Ri(t) ∈ I, and
- there exists an atom Rpj (xj,yj) in q such that pj = i and there exists a tuple

(tp1 , · · · , tpj
, · · · , tpk

) in WITNESSES s.t. Rpj (tpj
) and Ri(t) are key-equal

Figure 3.3: Description of Phase 1

Example 5 illustrates Phase 1 and all of the above mentioned optimizations.

Example 5 Let q(z) : −R1(x, y, z), R2(x′, y, w) be a query over the schema {R1(A1, B1, C1),

R2(A2, B2, C2)}. The following views will be generated in Phase 1:

KEYS R1(A1): select A1 from R1 group by A1 having count(*)>1

48

KEYS R2(A2): select A2 from R2 group by A2 having count(*)>1

ANS FROM CON(C1):

select R1.C1

from R1 inner join R2 on R1.B1=R2.B2

where R1.A1 not in (select * from KEYS R1) and

R2.A2 not in (select * from KEYS R2)

WITNESSES(A1, B1, C1, A2, B2, C2):

select A1,B1,C1,A2,B2,C2

from R1 inner join R2 on R1.B1=R2.B2

where R1.C1 not in (select * from ANS FROM CON)

RELEVANT R1(A1): select * from R1 inner join WITNESSES on

R1.A1=WITNESSES.A1

RELEVANT R2(A2): select * from R2 inner join WITNESSES on

R2.A2=WITNESSES.A2 �

Finally, an additional optimization is implemented in each of the steps of

Phase 1, which is not accounted for in Figure 3.3, but can be found in the detailed

description of this phase in Appendix A.2. This optimization consists in identifying the

relevant variables and subsequently, the relevant attributes for computing the consistent

answers of a given query q. The intuition behind this optimization is the following: If

x is an existentially quantified variable that occurs only once in q, and such that the

only occurrence of x is at a non-key position, then it is not important to know the exact

49

values that occur at the position of x in the database. More specifically, if two key-equal

facts f and g disagree only on the the value in the position of x, then keeping f or g in a

repair, has no effect on the query answers on that repair. Thus, repairing such violation

is irrelevant w.r.t. the computation of the consistent answers. We elaborate further on

this optimization.

Definition 4 Let q be a boolean conjunctive query over a database schema R. Let R

be a relation symbol mentioned in some atom in q, and let A be an attribute of R. The

attribute A is relevant for q if at least one of the following conditions holds:

• A is in the primary key of R.

• There exists an atom R(x) in q such that the variable x that appears in x in the

position of A, occurs more than once in q.

Otherwise, A is irrelevant.

Notice that in general, because the query may contain repeated relation names,

if A is an attribute of a relation R, it could happen that different variables appear in the

position of A in different atoms that mention R. For instance, if q()− : R(x, x), R(x, y),

where the schema of R is R(A1, A2), then x appears in the position of A2 in the atom

R(x, x), and y appears in the position of A2 in the atom R(x, y). In this example, it is

obvious that A1 is a relevant attribute. Also, A2 is a relevant attribute as well because

in atom R(x, x), the variable x, which is mentioned more than once, appears in the

position of A2. Given a boolean conjunctive query q, a variable v ∈ vars(q) is called

50

relevant if it appears in some atom of q in the position of a relevant attribute. Next, we

will show that given any boolean conjunctive query q over a schema R, we can “ignore”

the irrelevant attributes of the database when reasoning about certainty(q). This

idea is formalized in Proposition 2.

Proposition 2 Let q be a boolean conjunctive query. Let q′ be the query formed by

removing from q the irrelevant variables. Then, there is a first-order reduction from

certainty(q) to certainty(q′).

Proof. We make the following trivial observations about q and q′:

Observation 1: If R(x) is an atom in q and R(x′) is an atom in q′ such that the

variables in x′ are the relevant variables of q in x, then key(R(x)) = key(R(x′)).

Observation 2: If Ri(xi,yi), Rj(xj,yj) are two distinct atoms in q (the relation sym-

bols Ri and Rj need not be different), and Ri(x
′
i,y
′
i), Rj(x

′
j,y
′
j) are atoms in q′ such

that the variables in x′i,y
′
i,x
′
j,y
′
j are the relevant variables of q in Ri(xi,yi), Rj(xj,yj),

then vars(Ri(xi,yi)) ∩ vars(Rj(xj,yi)) = vars(Ri(x
′
i,y
′
i)) ∩ vars(Rj(x′j,y′j)).

Observations 1 and 2 follow trivially from the definition of relevant variables.

Let I be a database over the schema of q. We construct a database I ′ over the

schema of q′ as follows: for every fact f = Ri(t) in I, we generate a fact g = Ri(s) in I ′

such that t and s agree in the positions of the relevant variables of R. In other words,

we copy from t to s only the values that appear in the positions of relevant variables.

To denote that f has generated g, we write f ⇒ g. Next, we argue that there is a repair

r of I that falsifies q if and only if there is a repair r′ of I ′ that falsifies q′.

51

The vice-versa is also true, i.e., if g1 and g2 are not key-equal and f1 ⇒ g1,

f2 ⇒ g2, then f1 and f2 are not key-equal.

(⇒) In this direction, we assume that there exists a repair r of I such that

r 6|= q. Let r′ be the instance that contains all facts g such that f ⇒ g for some fact

f ∈ r. We show that r′ is a repair of I ′ and r′ 6|= q′. From Observation 1, it follows that

r′ is a repair. Assume towards a contradiction that r′ |= q′. Then, r′ contains a minimal

witness S′ of q′. Let S be the set of facts {f : f ∈ r and exists g ∈ S′ s.t. f ⇒ g}.

From Observation 2 it follows that S is a minimal witness for q.

(⇐) Assume that there exists a repair r′ of I ′ such that r′ 6|= q′. Let r be an

instance constructed by choosing from every key-equal group of facts, a single fact f

such that f ⇒ g, for some g ∈ r′. Notice that there could be multiple facts from I that

have generated the same fact g in I ′. The construction of r from r′ demands that we

arbitrarily pick only one of these facts. Again, from Observation 1 it follows that r is a

repair. Assume towards a contradiction that r |= q. Then, r contains a minimal witness

S of q. Let S′ be the set of facts {g : g ∈ r′ and exists f ∈ S s.t. f ⇒ g}. From

Observation 2 it follows that S′ is a minimal witness for q′.

It is easy to see that the reduction is first-order, since the database I ′ can

be computed from I by simply doing a projection over each relation R of I, on those

attributes of R that are relevant to q. �

Proposition 2 can be easily adapted for non-boolean q, if in addition, we con-

sider the free variables in the query to be relevant variables.

52

Phase 2: This phase uses the temporary tables created in Phase 1 to build the set of

constraints, as described in Theorem 2. Every tuple in RELEVANT Ri is represented

by a variable in the integer program. From every group of facts in RELEVANT Ri that

have the same values in the positions of the key attributes of Ri, we add a constraint of

type (a) as described in Theorem 2. Every tuple in WITNESSES represents a minimal

witness to a potential answer to the query. So, from every tuple in WITNESSES we

construct a constraint of the type (b) as described in Theorem 2.

Phase 3: In this phase, the additional potential answers are first retrieved by simply

taking a projection over the view WITNESSES on the attributes that appear in the

head of the query q. With this input, the set of constraints built in Phase 2, and the

database instance, we run Algorithm EliminatePotentialAnswers next. In the

first iteration, we start with a binary integer program whose objective function is the

sum of all variables uaj
, where each uaj

represents a distinct potential answer aj, and

whose constraints are those from Phase 2. In every iteration, the program is evaluated

using a BIP solver. The first optimal solution that is returned by the optimizer is used

to filter out potential answers that are not consistent answers. In each iteration, the

integer program is augmented with more constraints. As the added constraints make

some of the existing constraints of type (b) (see Theorem 2) trivially satisfiable, this

results in a program (in the next iteration) that is simpler to evaluate than the one

evaluated in the current iteration.

53

3.5 Experimental Evaluation

We have conducted an extensive set of experiments with EQUIP. Our goal is

to analyze the performance of EQUIP on conjunctive queries whose consistent answers

have varying complexity and on databases of varying size and of varying degree of

inconsistency (i.e., the percentage of tuples involved in conflicts). We also seek to

understand how EQUIP compares with earlier consistent query answering systems,

such as ConQuer and ConsEx.

3.5.1 Experimental Setting

Our experiments have been carried out on a machine running on a Dual Intel

Xeon 3.4GHz Linux workstation with 4GB of RAM. We use the 64 bit Ubuntu v11.04,

DB2 Express C v10.1 as the underlying DBMS, and IBM’s ILOG CPLEX v12.3 [1] for

solving the binary integer programs. Our system is implemented in Java v1.6.

No established benchmark for consistent query answering exists. Moreover, as

noted in [29], conjunctive queries obtained from TPC-H queries after removing aggre-

gates, grouping, and subqueries are first-order rewritable and, in fact, most of them

are in the class C forest, hence their consistent answers can be computed using the Con-

Quer system. We have conducted experiments using such queries and data derived from

TPC-H to compare EQUIP with ConQuer. However, since we are interested in under-

standing the performance of EQUIP on conjunctive queries whose consistent answers

are of varying complexity (from first-order rewritable to coNP-complete), we compiled

54

a list of queries of varying complexity and generated synthetic inconsistent databases

for our experiments. We now discuss this experimental setting in some detail.

Benchmark queries Table 3.3 contains the list of queries we compiled. The queries

vary according to the number of atoms, the number of free variables, and the compu-

tational complexity of consistent query answering, which can be: first-order rewritable;

in PTIME but not first-order rewritable; coNP-complete. Queries Q1 to Q14 are shown

not to be first-order rewritable based on the characterization of first-order expressibility

provided in [61]. For the two-atom queries Q1, Q2, Q3, Q8, Q9, Q10, their complexity

(coNP-hard or PTIME) can be immediately derived from our dichotomy for two-atom

queries [42], which we will present in Section 4.2. The complexity of the three-atom

queries Q4 to Q7, and Q11 to Q14 can be derived from the sufficient conditions for

intractability and tractability that we will present later in Section 4.3. First-order

rewritability of queries Q15 to Q21 can be shown using the results in [61]. Moreover,

queries Q15 to Q18 are also in the class C forest [32], which provides another proof that

they are first-order rewritable.

55

Complexity: coNP-complete
Q1() : −R5(x, y, z), R6(x′, y, w)
Q2(z) : −R5(x, y, z), R6(x′, y, w)
Q3(z, w) : −R5(x, y, z), R6(x′, y, w)
Q4() : −R5(x, y, z), R6(x′, y, y), R7(y, u, d)

Q5(z) : −R5(x, y, z), R6(x′, y, y), R7(y, u, d)

Q6(z, w) : −R5(x, y, z), R6(x′, y, w), R7(y, u, d)

Q7(z, w, d) : −R5(x, y, z), R6(x′, y, w), R7(y, u, d)

Complexity: PTIME, not first-order rewritable
Q8() : −R3(x, y, z), R4(y, x, w)

Q9(z) : −R3(x, y, z), R4(y, x, w)

Q10(z, w) : −R3(x, y, z), R4(y, x, w)

Q11() : −R3(x, y, z), R4(y, x, w), R7(y, u, d)

Q12(z) : −R3(x, y, z), R4(y, x, w), R7(y, u, d)

Q13(z, w) : −R3(x, y, z), R4(y, x, w), R7(y, u, d)

Q14(z, w, d) : −R3(x, y, z), R4(y, x, w), R7(y, u, d)

Complexity: First-order rewritable
Q15(z) : −R1(x, y, z), R2(y, v, w)

Q16(z, w) : −R1(x, y, z), R2(y, v, w)

Q17(z) : −R1(x, y, z), R2(y, v), R7(v, u, d)

Q18(z, w) : −R1(x, y, z), R2(y, v), R7(v, u, d)

Q19(z) : −R1(x, y, z), R8(y, v, w)

Q20(z) : −R5(x, y, z), R6(x′, y, w), R9(x, y, d)
Q21(z) : −R3(x, y, z), R4(y, x, w), R10(x, y, d)

Table 3.3: Benchmark queries used in our experiments

Database generation In our experiments with the above queries, we use synthetic

databases, which we generate in two steps: (a) generate a consistent database; and

(b) generate an inconsistent database from the consistent database by inserting tuples

that would violate some key constraints. Instead of using available database generators,

such as datagen in TPC-H for (a), we have generated our own databases, because it

is difficult to express over the TPC-H schema a variety of meaningful queries that are

56

not first-order rewritable. This difficulty arises because the meaningful joins one can

perform between two tables in the TPC-H schema, are joins between attributes that are

related via a foreign key constraint. As a result, all meaningful conjunctive queries one

might express over the TPC-H schema are first-order rewritable.

a) Generation of the consistent databases Each relation in the generated con-

sistent database has the same number (denoted as r size) of facts. The values of the

non-key attributes are generated so that for every two atoms Ri, Rj that share variables

in any of the queries, approximately 25% of the facts in Ri join with some fact in Rj ,

and vice-versa. The third attribute in all of the ternary relations, which is sometimes

projected out and never used as a join attribute in Table 3.3, takes values from a uniform

distribution in the range [1, r size/10]. Hence, in each relation, there are approximately

r size/10 distinct values in the third attribute, each value appearing approximately 10

times. The choice of the distributions is made with the purpose to simulate reasonably

high selectivities of the joins and large numbers of potential answers.

b) Generation of the inconsistent databases From the consistent database,

an inconsistent database is obtained by adding, for each relation, tuples that violate

some key constraints. The inconsistency generator takes as input a consistent relation

and two additional parameters: (a) nr conflicts: the total number of violations to be

added to the consistent relation; and (b) c size: the size of each key-equal group. The

inconsistent version of a consistent relation r is obtained by repeatedly adding tuples

that violate some key value. Specifically, a key value from the key values of the tuples

57

in r, where the number of violations for the key value is less than c size - 1, is first

selected. Subsequently, additional distinct tuples with the same key value are added,

so that there is a total of c size distinct tuples with the same key value. The non-key

attributes of these newly generated tuples are obtained by using the non-key attributes

of some randomly selected tuples in r. The purpose of reusing the non-key attributes

is to preserve the existing data distributions as we augment r with new tuples. This

process is repeated until a total of nr conflicts is obtained. In fact, the inconsistency

generator that we have just described is similar to the one used in ConQuer [32], except

that we have added the parameter c size to control the sizes of the key-equal groups.

Other experimental parameters Unless otherwise stated, our experiments use

databases with 10% conflicts in which each key-equal group contains two facts. The

evaluation time of a consistent query answering system is the time between receiving

the query to the time it takes for the system to return the last consistent answer to

the query. We always generate five random databases with the same parameters, i.e.,

with the same size, the same degree of inconsistency, and the same number of facts per

key-equal group. For each database, we run each query five times and take the average

of the last three runs, and finally, we take the averages of the query evaluation times

over the five databases. One of the CPLEX parameters that can be varied is the rela-

tive GAP parameter. This parameter is used to specify the level of “tolerance” on the

optimality of the solution that is found. The GAP parameter can be set to allow the

optimizer to return a less-than-optimal, but “good enough” solution. In other words,

58

the solution that is returned may not be optimal, but will have an estimated gap from

the optimal solution that is within the tolerance limit given by the GAP parameter.

Having a large GAP parameter usually allows the optimizer to find a solution much

earlier. Since Algorithm 3.1 remains correct if suboptimal solutions are returned, we

have set the GAP parameter to 0.1. In this way, CPLEX may avoid the long running

times that may otherwise be incurred by searching for an optimal solution. Finally, to

make sure vectors of exact integer (0/1) solutions are returned, we set parameter EpInt

to 0, where EpInt is the tolerance for integral solutions.

3.5.2 Experimental Results and Comparisons

Our first goal was to determine how the EQUIP system compares against

existing systems that are capable of computing the consistent answers of conjunctive

queries that are not first-order rewritable. The only other systems that have this ca-

pability are the ones that rely on the logic programming technique, such as Infomix

and ConsEx. Since ConsEx is the latest system in this category and additionally, it

implements an important optimization based on magic sets, we have compared EQUIP

against ConsEx.

Comparison with ConsEx Our findings, depicted in Figure 3.4, show that EQUIP

outperforms ConsEx by a significant margin, especially on larger datasets and even on

small queries whose consistent answers are coNP-hard (i.e., queries Q1 and Q2), as well

as on the small queries whose consistent answers are in PTIME, but not first-order

59

rewritable (i.e., queries Q8 and Q9).

10 20 30 40 50

0

500

1000

1500

Query Q1
E

va
lu

a
ti
o

n
 t

im
e
 (

s
e

c
)

ConsEx
EQUIP

10 20 30 40 50

Query Q8

10 20 30 40 50

0

2hr+

Query Q2

Number of tuples per

E
va

lu
a
ti
o
n
 t
im

e
 (

s
e
c
)

ConsEx
EQUIP

10 20 30 40 50

Query Q9

relation (in thousands)

Figure 3.4: Comparison of EQUIP with ConsEx.

Our second goal was to investigate the total evaluation time and the overhead

of EQUIP on conjunctive queries whose consistent answers have varying complexity.

Evaluation time for coNP-hard queries In Figure 3.5a, we show the total evalua-

tion time in seconds, using EQUIP, of each query Q1−Q7 as the size of the inconsistent

database is varied. In Figure 3.5b, we show the overhead of computing the consistent

answers, relative to the time for evaluating the query over the inconsistent database

60

(i.e., the time for evaluating the potential answers). More precisely, if t1 is the time

needed to evaluate q on I, and t2 is the time needed to compute the consistent answers

to q on I, the overhead is defined as t2
t1

.

Figure 3.5a shows a sub-linear behavior of the evaluation of consistent query

answers, as we increase the database size. Note that the overhead for computing consis-

tent answers is rather constant and no more than 5 times the time for usual evaluation.

In particular, the boolean queries Q1 and Q4 incur noticeably less overhead than the

rest of the queries. The reason is that these queries happen to evaluate to true over the

consistent part of the constructed databases, and hence, since there are no additional

potential answers to check, no binary integer program is constructed and solved.

61

100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

35

Size of inconsistent relation (in thousands of tuples)

E
va

lu
a
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Q1

Q2

Q3

Q4

Q5

Q6

Q7

(a)

100 200 300 400 500 600 700 800 900 1000

0x

1x

2x

3x

4x

5x

6x

7x

Size of inconsistent relation (in thousands of tuples)

O
ve

rh
e
a
d

Q1

Q2

Q3

Q4

Q5

Q6

Q7

(b)

Figure 3.5: Evaluation time and overhead of EQUIP for computing consistent answers

of coNP-hard queries Q1 to Q7.

62

Evaluation time for PTIME, not first-order rewritable queries In Figure 3.6,

we show the performance of EQUIP on conjunctive queries whose consistent answers

are in PTIME, but are not first-order rewritable. Since EQUIP is based on Binary

Integer Programming, which is an NP-complete problem, we do not expect EQUIP

to perform better on such queries as compared to queries that are coNP-hard. Indeed,

Figure 3.5 and Figure 3.6 show that the performance of EQUIP on the tractable queries

Q8 to Q14 is comparable to the performance of EQUIP on the queries Q1 to Q7 that

are intractable.

63

100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

35

Size of inconsistent relation (in thousands of tuples)

E
va

lu
a
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Q8

Q9

Q10

Q11

Q12

Q13

Q14

(a)

100 200 300 400 500 600 700 800 900 1000

0x

1x

2x

3x

4x

5x

6x

7x

Size of inconsistent relation (in thousands of tuples)

O
ve

rh
e
a
d

Q8

Q9

Q10

Q11

Q12

Q13

Q14

(b)

Figure 3.6: Evaluation and overhead of EQUIP for computing consistent answers of

PTIME, but not-first-order rewritable queries Q8 to Q14.

64

Evaluation time for first-order rewritable queries Next, we evaluate EQUIP

on first-order rewritable queries. As Figure 3.7 shows, the performance of EQUIP on

such queries is comparable to that on queries in the other classes (see Figure 3.5 and

Figure 3.6).

We also compare EQUIP with ConQuer on queries Q15 to Q18, since these

queries are in C forest, hence their consistent answers can be computed using ConQuer.

The results of this comparison are shown in Figure 3.8. ConQuer performs better than

EQUIP on each of the queries Q15 to Q18. This is not surprising, because EQUIP

is agnostic to the complexity of the query and “blindly” reduces queries into binary

integer programs to be solved by CPLEX. This reduction is exponential in the size

of the query and instance, even though these queries are first-order rewritable. These

findings suggest that ConQuer is preferred whenever the query is in C forest.

65

100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

35

Size of inconsistent relation (in thousands of tuples)

E
va

lu
a
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Q15

Q16

Q17

Q18

Q19

Q20

Q21

(a)

100 200 300 400 500 600 700 800 900 1000

0x

1x

2x

3x

4x

5x

6x

7x

Size of inconsistent relation (in thousands of tuples)

O
ve

rh
e
a
d

Q15

Q16

Q17

Q18

Q19

Q20

Q21

(b)

Figure 3.7: Evaluation and overhead of EQUIP for computing consistent answers of

first-order rewritable queries Q15 to Q21.

66

100 300 500 700 900

0

5

10

15

20

Query Q15

E
va

lu
a

ti
o
n
 t

im
e

 (
s
e
c
) ConQuer

EQUIP

100 300 500 700 900

Query Q16

100 300 500 700 900

0

5

10

15

20

Query Q17

Number of tuples per

E
va

lu
a

ti
o
n
 t
im

e
 (

s
e
c
) ConQuer

EQUIP

100 300 500 700 900

Query Q18

relation (in thousands)

Figure 3.8: Comparison of EQUIP with ConQuer on queries Q15 to Q18, over the

database with 1 million tuples/relation.

Experiments with data and queries derived from the TPC-H benchmark

We used the data generator of the TPC-H benchmark to generate a consistent database

of size 1GB. From this database we created an inconsistent database with 10% conflicts,

where each key equal group has size 2. The experiments use queries derived from existing

TPC-H queries Q2, Q3, Q4, Q10, Q11, Q20, Q21 by removing aggregates, grouping, and

sub-queries. The exact queries we ran, can be found in Appendix B. Also, to avoid

naming conflicts with our benchmark queries in Table 3.3, we shall henceforth denote

67

Q’3 Q’10 Q’21

0

20

40

60

80

100

120 Usual Evaluation

EQUIP

Conquer

E
va

lu
a
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Q’2 Q’4 Q’11 Q’20

0

5

10

15

Usual Evaluation

EQUIP

Conquer

Figure 3.9: Evaluation times of the simplified TPC-H queries over “as-is” query evalu-

ation, EQUIP, and ConQuer.

these queries as Q′2, Q′3, Q′4, Q′10, Q′11, Q′20, and Q′21.

Figure 3.9 shows the comparison between EQUIP and ConQuer on the more

expensive queries Q′3, Q′10, Q′21, and the less expensive queries Q′2, Q
′
4, Q′11, Q′20. Due to

a bug, ConQuer could not evaluate query Q′21. The overheads incurred by EQUIP on

experiments with data derived from TPC-H are approximately in the same range as the

overheads we observed when evaluating the system with our own benchmark queries,

and we omit the graphs here. As expected, ConQuer performs better than EQUIP,

about twice as fast as EQUIP. These results reinforce our earlier findings for first-order

rewritable synthetic queries and synthetic data.

Evaluation time per phase Figure 3.10 shows the evaluation times for queries

Q1 − Q21, split into the three phases: Phase 1, Phase 2, and Phase 3. The results

68

show that Phase 1, the pre-processing step executed over DB2, dominates the overall

evaluation time. The results also show that the construction and evaluation times of

the integer program takes more time for non-boolean queries. Moreover, by looking at

Q6, Q7,Q13, Q14, we see that Phase 2 and Phase 3 take more time for queries that

have more variables in the head of the query. In contrast, for the boolean queries, the

BIP solver is not even invoked.

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q17 Q19 Q21

0

5

10

15

20

25

30

35

Phase 3

Phase 2

Phase 1

E
va

lu
a
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Figure 3.10: Evaluation time for Phase 1, Phase 2, and Phase 3 of EQUIP over a

database with 1 million tuples/relation.

Pre-computation from the consistent part of the database Since we have ap-

proximately 10% of the database involved in conflicts, it is natural to expect that a sig-

nificant portion of the consistent answers can be computed from the consistent part of

the database. Hence, we expect that the optimization we have implemented in Phase 1

for computing some of the consistent answers from the consistent part of the database

to play a role in reducing the overall evaluation time. Figure 3.11 shows the evalu-

ation times of EQUIP, where part of the consistent answers are computed from the

69

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q17 Q19 Q21

0

10

20

30

40

50

60

70

Without pre−compute from clean part

With pre−compute from clean part
E

va
lu

a
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Figure 3.11: Performance of EQUIP with and without pre-computing the consistent

answers from the consistent part of the database, over a database with 1 million tu-

ples/relation.

consistent part of the database and additional answers are computed using Algorithm

EliminatePotentialAnswers, versus the evaluation time when all of the consistent

answers are computed using Algorithm EliminatePotentialAnswers. Our exper-

iments show that the latter technique (without optimization), on 12 of the queries it

is between 1.1 and 1.5 times slower; on 6 of the queries it is between 1.6 and 2 times

slower; on 2 queries it is over 2 times slower; and only on one query it is slightly faster.

Sizes of the binary integer programs In Table 3.4, we tabulate the sizes of the

binary integer programs that were constructed from a database with 1 million tuples

per relation. As this table indicates, for some of the queries, large binary integer pro-

grams containing over 100,000 variables and constraints are solved. Observe that the

number of variables is much smaller than the number of tuples. The reason is that the

70

binary integer programs are built only from facts relevant to computing the additional

consistent query answers. Recall that Phase 1 retrieves only the relevant facts. The

boolean queries Q1, Q4, Q8 and Q11 evaluate to true over the consistent part of the

databases used for these experiments; hence, there are no relevant facts, and no integer

program is constructed. So far, we have not run into the potential limitation that the

binary integer program generated may be too large to fit into main memory. This is

true even for experiments conducted with data derived from TPC-H. In general, instead

of building a single program for checking all the potential answers at once, we can, in

fact, partition the set of potential answers into buckets and construct a “smaller” binary

integer program for each bucket. As part of future work, we plan to further investigate

this technique.

Query Number of
variables

Number of
constraints

Query Number of
variables

Number of
constraints

Q1, Q4, Q8, Q11 0 0 Q13 148K 126K
Q2 13K 12K Q14 170K 137K
Q3 89K 71K Q15 9K 8K
Q5 26K 26K Q16 109K 86K
Q6 141K 124K Q17 31K 28K
Q7 160K 138K Q18 53K 45K
Q9 11K 9K Q19 20K 18K
Q10 86K 64K Q20 19K 17K
Q12 22K 120K Q21 16K 17K

Table 3.4: Sizes of BIP programs over a database with 1 million tuples per relation.

Varying the degree of inconsistency Figure 3.12 shows the effect of varying the

degree of inconsistency (10%, 15%, 20%) with a database with 1 million tuples per rela-

tion. Our results indicate that in the worst case, the evaluation time increases linearly

71

with the degree of inconsistency. This is not unexpected as EQUIP has to manage a

larger number of relevant tuples as the degree of inconsistency increases. Not surpris-

ingly, the degree of inconsistency affects the percentage of consistent answers out of all

the potential answers. Specifically, when the degree of inconsistency is 10%, the per-

centage of consistent answers, depending on the query, ranges from 80% (for Q7, Q14)

to 99% (for Q15). When the degree of inconsistency is increased to 20%, the percentage

of consistent answers ranges from 63% to 97%.

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q17 Q19 Q21

0

10

20

30

40

50

60

10% inconsistent

15% inconsistent

20% inconsistent

E
va

lu
a
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Figure 3.12: Evaluation time of EQUIP over databases with 1 million tuples per relation

and different degrees of inconsistency.

Varying the size of key-equal groups In Figure 3.13 we show the effect of increas-

ing the size of key-equal groups from 2 to 5, on a database with 1 million tuples per

relation and 10% of tuples involved in violations. Figure 3.13 does not reveal any par-

ticular behavior of EQUIP with respect to the size of key-equal groups. As we increase

the size of the key-equal groups, Phase 1 becomes slightly less expensive, because there

are fewer duplicated key-values that need to be materialized. Moreover, the BIP pro-

72

gram contains the same number of variables but fewer constraints. On the other hand,

when the key-equal groups have larger size, the constraints become more involved. The

combined effect of these different factors, results in stable performance of EQUIP with

respect to the size of key-equal groups.

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q17 Q19 Q21

0

10

20

30

40

50

60

group size 2

group size 3

group size 4

group size 5

E
va

lu
a
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Figure 3.13: Evaluation time of EQUIP over databases with 1 million tuples per rela-

tion, degree of inconsistency 10%, and different sizes of key-equal groups.

The use of indices We have found out that the majority of the time for computing

the consistent query answers goes to Phase 1. Since Phase 1 consists of evaluating

SQL queries on top of the underlying DBMS, it is natural to consider making use of

DBMS features, such as indices. For this reason, we also conducted experiments in

which we added a number of indices. For every relation, we have created a clustered

index on the key attributes. Figure 3.14 shows the evaluation of EQUIP in the presence

of indices. The improved performance from using indices is clear, as for all the queries

the evaluation time has decreased significantly. One may also be able to obtain better

performance by using a different configuration of indices, or by a better tuning of DBMS

73

parameters.

Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15 Q17 Q19 Q21

0

5

10

15

20

25

30

35

without indexes

with indexes

E
va

lu
a
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Figure 3.14: Performance of EQUIP in the presence of indices, over a database with 1

million tuples/relation.

Experiments with a cyclic query and a query with a self-join EQUIP can

handle arbitrary conjunctive queries, and in particular it can handle cyclic queries and

queries with self-joins, which are typically considered “problematic” with regard to the

computation of consistent answers. We evaluate the following two additional queries

with EQUIP:

Q22(v) : −R5(x, y, z), R6(x′, y, z), R11(x, x′, v)

Q23(z) : −R5(x, y, z), R5(x′, y, w)

Table 3.5: A cyclic query and a query with self-join used in our experiments.

In Table 3.5, query Q22 is cyclic, and query Q23 has a self-join. For both

queries, certainty(q) is coNP-hard. For query Q22, we provide a coNP-hardness proof

in Appendix C.2. For query Q23, later in Section 4.2 we establish that certainty(Q23)

is coNP-hard.

74

Figure 3.15 shows the performance of EQUIP on the queries Q22 and Q23.

While in theory, several difficulties are associated with computing the consistent answers

to cyclic queries or queries that have repeated relation names, in practice, EQUIP does

not exhibit any distinguishable characteristic in performance when evaluating these

queries. In fact, the evaluation times of Q22 are similar to the evaluation times of

other queries in our benchmark that have three atoms and one free variable. Also, the

evaluation times of query Q23 are about the same as the evaluation times of the very

similar query Q2. The reason for such behavior of EQUIP is because our reduction to

BIP is generic and treats all conjunctive queries in the same way.

100 200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

35

Size of inconsistent relation (in thousands of tuples)

E
va

lu
a
ti
o
n
 t
im

e
 (

in
 s

e
c
o
n
d
s
)

Q22

Q23

Figure 3.15: Performance of EQUIP in on queries Q22 and Q23.

Comparison with DLV The comparison with ConsEx in Figure 3.4 reveals that

EQUIP significantly outperforms ConsEx. We also pointed out that ConsEx can com-

pute the consistent query answers to broader classes of queries and constraints than

75

EQUIP. One may wonder if it is possible to build better logic programs by following

some strategy specific to conjunctive queries and primary key constraints, instead of the

more generic strategy that ConsEx follows. For this purpose, we evaluate with DLV a

different set of logic programs, generated independently from ConsEx. These programs

were provided to us by Leone et al. via personal communication [49]. These programs

also contain rules that internally implement our optimization for pre-computing consis-

tent answers from the clean part of the database. The results of our experiments are

summarized in Table 3.6. These programs are evaluated by DLV much more efficiently

than the programs generated by ConsEx. See for instance the query Q2 on which Con-

sEx does not terminate even with only 10,000 tuples per relation. Many of the queries

are evaluated by DLV within a few seconds. In fact, over the database with 10,000

tuples per relation, DLV is slightly faster than EQUIP (a few hundred milliseconds

faster). However, we should point out that the running times shown for DLV only in-

clude the time for evaluating the programs, but they do not include the time for parsing

the query and the constraints, nor the time for generating the programs. On the other

hand, the running times for EQUIP include every computation. As we go to 20,000

tuples per relation, EQUIP becomes much faster than DLV at evaluating the consistent

answers. On some of the queries (Q2, Q9, Q12, Q17, Q20, Q21), the performance of DLV

is particularly poor. Such behavior of DLV is in fact surprising since these queries are

not any more complex than the rest of the queries. This experiment provides further

evidence that as of now, our BIP-based approach for consistent query answering is far

more efficient, stable and scalable compared to a DLV-based approach.

76

Running time of DLV and EQUIP (in seconds)

10K 20K 30K 40K 50K

Query DLV EQUIP DLV EQUIP DLV EQUIP DLV EQUIP DLV EQUIP

Q1 1.4 2.0 3.8 2.1 4.7 2.1 6.0 2.2 7.3 2.4
Q2 1.5 1.9 46.6 2.2 2hr+ 2.2 2hr+ 2.4 2hr+ 2.5
Q3 1.7 2.0 5 2.3 6.6 2.3 8.6 2.7 10.8 3.1
Q4 1.4 2.1 4.6 2.1 5.7 2.3 7.3 2.5 8.8 2.8
Q5 1.7 2.1 5.0 2.3 6.5 2.4 8.3 2.7 10.2 3.3
Q6 2.1 2.5 5.8 2.6 7.8 2.7 10.2 2.9 12.7 3.9
Q7 2.3 2.3 6.3 2.7 8.6 2.7 11.2 3.4 14 3.5
Q8 1.4 2.1 4.2 2.2 4.7 2.2 6.1 2.3 7.1 2.5
Q9 233 2.1 873 2.1 2hr+ 2.2 2hr+ 2.4 2hr+ 2.6
Q10 1.6 2.1 4.8 2.2 6.2 2.3 8 2.7 9.6 3.1
Q11 1.3 2.3 4.6 2.3 5.6 2.4 7.2 2.5 8.7 2.8
Q12 225 2.4 925 2.4 2hr+ 2.5 2hr+ 2.8 2hr+ 2.9
Q13 1.9 2.3 5.5 2.5 7.2 2.7 9.4 3.1 11.5 3.4
Q14 2.1 2.3 6.0 2.4 8.0 2.6 10.2 3.1 12.7 3.5
Q15 1.4 2.1 4.3 2.1 5.3 2.1 6.7 2.2 8.3 2.4
Q16 1.6 2.1 4.8 2.3 6.1 2.5 7.9 2.7 9.8 2.9
Q17 2hr+ 2.3 2hr+ 2.3 2hr+ 2.4 2hr+ 2.7 2hr+ 3.1
Q18 1.9 2.2 5.5 2.4 7.2 2.4 9.2 2.7 11.6 3.1
Q19 1.3 2.3 3.4 2.4 3.7 2.4 4.5 2.4 8.9 2.7
Q20 2hr+ 2.5 2hr+ 2.6 2hr+ 2.7 2hr+ 2.9 2hr+ 3.1
Q21 2hr+ 2.5 2hr+ 2.6 2hr+ 2.6 2hr+ 2.7 2hr+ 2.8

Table 3.6: Performance of DLV and EQUIP at evaluating the consistent answers of

queries Q1 to Q21

77

Chapter 4

Data Complexity of Consistent Query

Answering

In this chapter, we present our analysis on the data complexity of consistent

query answering for acyclic and self-join free conjunctive queries under primary key

constraints. First, we introduce some preliminary notions that are relevant to this

chapter. Next, we will present a dichotomy in the complexity of certainty(q) where

q is a boolean conjunctive query with two atoms and without self-joins. Later, we will

present a sufficient condition for certainty(q) to be in P, and a sufficient condition for

certainty(q) to be coNP-complete, where q is an arbitrary boolean conjunctive query

that is acyclic and has no self-joins. Finally, we will state our conjecture for a dichotomy

theorem on the complexity of certainty(q) for the class of acyclic and self-join free

conjunctive queries and primary key constraints. Since our work towards a dichotomy

for the complexity of certainty(q) has developed in parallel with similar efforts by

78

Wijsen [62], and Koutris and Suciu [46], we review this related work, and show how it

compares to our results. In fact, we will argue that this related work serves as evidence

that supports our dichotomy conjecture.

4.1 Preliminaries

The results in this chapter concern acyclic and self-join free conjunctive queries.

Therefore, we will use the relation names to refer to the atoms in a query. Our com-

plexity analysis builds on top of Wijsen’s characterization of first-order expressibility

of acyclic and self-join free conjunctive queries in [61]. Hence, we give next a succinct

recount of this work. The necessary and sufficient condition for first-order expressibility

is formulated on top of a graph, called the attack graph, that is constructed from the

query and the constraints together.

Every atom R in a conjunctive query q gives rise to a functional dependency

among the variables occurring in R. For example, the atom R(x, y, z) gives rise to

{x, y} → z. As a special case, the atom R(a, x), where a is a constant, gives rise to the

functional dependency {} → x.

Definition 5 Let q be a boolean conjunctive query. Let vars(q) be the set of variables

occurring in q, and let Atoms(q) be the set of atoms of q.

• K(q) is the set of all functional dependencies that arise from the atoms of q. In

symbols, K(q) = {key(R)→ vars(R) : R ∈ q}.

• If R is an atom of q, then R+ denotes the attribute closure of the set key(R) w.r.t.

79

the set of all functional dependencies that arise in the atoms Atoms(q)−{R}. In

symbols, R+ = {x ∈ vars(q) : K(Atoms(q)− {R}) |= key(R)→ x}.

To illustrate Definition 5 with an example, let q() : −R1(x, y), R2(x, z, y′).

Then R+
1 = {x} and R+

2 = {x, z, y}. Notice that in R+
2 we include the variable y

because of the dependency {x} → y which holds in R1.

Definition 6 Let ρ be an intersection tree for a boolean conjunctive query q. The attack

graph of ρ is the directed graph whose vertices are the atoms of q, and there is a directed

edge from an atom R to an atom S if for every label L on the unique path from R to S

in ρ, we have that L 6⊆ R+.

We write R S to denote that there is a directed edge from R to S in the

attack graph, and we say that R attacks S. A cycle of length n in the attack graph is

a sequence of edges R0 R1 ... Rn−1 R0.

Figure 4.1 illustrates the construction of the attack graph for queries q1() :

−R1(x, y), R2(y, z), q2() : −R1(x, y), R2(y, x), and q3() : −R1(x, y), R2(x′, y) from the

Introduction. Because these queries have two atoms only, each of them has a unique

join-tree with a single edge. For q1, for instance, the variables shared between R1 and

R2 are L = {y}. Moreover, R+
1 = {x} and R+

2 = {y}. Since L 6⊆ R+
1 , there is an edge

from R1 to R2. However, there is no edge from R2 to R1 because L ⊆ R+
2 . One can

construct the attack graphs for q2 and q3 in a similar way.

We are now ready to formulate the main result in [61]:

80

R1(x, y) R2(y, z)

(a) Attack graph of query q1

R1(x, y) R2(y, x)

(b) Attack graph of query q2

R1(x, y) R2(x′, y)

(c) Attack graph of query q3

Figure 4.1: Attack graphs of queries q1() : −R1(x, y), R2(y, z), q2() : −R1(x, y), R2(y, x),

and q3() : −R1(x, y), R2(x′, y)

Theorem 4 ([61]) Let q be an acyclic self-join free boolean conjunctive query and let

τ be a join tree for q. Then the following two statements are equivalent:

1. certainty(q) is first-order expressible.

2. The attack graph of τ is acyclic.

To illustrate Theorem 4, query q1 in Figure 4.1 has an acyclic attack graph;

hence certainty(q1) is first-order expressible. On the other hand, q2 and q3 have cyclic

attack graphs; therefore, certainty(q2) and certainty(q3) is not first-order express-

ible. As mentioned in the Introduction, certainty(q2) is in P and certainty(q3) is

coNP-complete. However, their attack graphs look exactly the same.

It was shown in [61] that if the attack graph is cyclic then it contains some cycle

of length two. Hence, if the query is not first-order expressible, there is always a cycle

of length two in the attack graph. The construction of the attack graph, as presented

in [59], depends on the join-tree. Because a query can be described by different join-

trees, one may wonder how the attack graphs constructed from the different join-trees

compare with each-other. It is in fact the case, as it was proven in [61], that the attack

graph of a query is always the same, regardless of the join-tree.

81

The results that we present in this chapter apply to boolean self-join free

conjunctive queries that may contain constants. These results can be straightforwardly

extended to non-boolean queries as well. Specifically, let q be a query of arity k, for

some k ≥ 1, and let I be an instance. A k-tuple t with values from the active domain of

I is in the consistent answers of q on I if and only for every repair r of I, we have that

t is in q(r). This is the same as the boolean query q(t) being true in every repair r of I,

where q(t) is the query obtained from q by substituting the free variables of q (i.e., the

variables that are not existentially quantified) with corresponding constants from t.

4.2 A Dichotomy for Conjunctive Queries with Two Atoms

We have proven a dichotomy theorem for certainty(q), where q is a boolean

and self-join free conjunctive query with two atoms, such that certainty(q) is not

first-order expressible. Intermediate results were initially published in [43], and the

complete result was later published in [42]. The motivation for initially focusing on

this restricted class came from the fact that even for queries with two atoms, there

was no clear understanding or intuition regarding the complexity of certainty(q),

and the dichotomy was not trivial. The three examples in the Introduction involve

conjunctive queries with exactly two atoms; in fact, most of the conjunctive queries

analyzed in [32, 60] have exactly two atoms. Proving the dichotomy even for such

a restricted class, was an important step towards tackling the general dichotomy. In

fact, the proof techniques that we use to prove sufficient conditions for tractability and

82

intractability, which we will present in Section 4.3 and Section 4.4, are fundamentally

the same as the ones used to prove the dichotomy for queries with two atoms.

More precisely, we have proven the following result for certainty(q), where

q is a boolean conjunctive query with exactly two atoms1, without self-joins, and such

that certainty(q) is not first-order expressible.

Theorem 5 Let q be a self-join free boolean conjunctive query with two atoms R1 and

R2 such that certainty(q) is not first-order expressible. Then either certainty(q) is

in P or certainty(q) is coNP-complete. Moreover, the complexity of certainty(q) is

determined by the following criterion:

1. If key(R1) ∪ key(R2) ⊆ L, then certainty(q) is in P;

2. If key(R1) ∪ key(R2) 6⊆ L, then certainty(q) is coNP-complete,

where R1, R2 are the two atoms of q, and L is the set of variables shared by R1 and R2.

To illustrate Theorem 5, let us consider again the queries q2() : −R1(x, y), R2(y, x)

and q3() : −R1(x, y), R2(x′, y) from the Introduction. We know that certainty(q2) and

certainty(q3) is not first-order expressible. For the query q2() : −R1(x, y) ∧ R2(y, x),

we have that key(R1) = {x}, key(R2) = {y}, and L = {x, y}; since key(R1) ∪

key(R2) ⊆ L, it follows that certainty(q2) is in P. In contrast, for the query q3() :

−R1(x, y) ∧ R2(x′, y)), we have that key(R1) = {x}, key(R2) = {x′}, and L = {y};

since key(R1) ∪ key(R2) 6⊆ L, it follows that certainty(q3) is coNP-complete. If

1Every query with two atoms is trivially acyclic.

83

certainty(q) is first-order expressible, then certainty(q) is in P. Consequently, The-

orem 5 yields the following dichotomy theorem for self-join free boolean conjunctive

queries with exactly two atoms.

Corollary 1 If q is a self-join free boolean conjunctive query with exactly two atoms,

then either certainty(q) is in P or certainty(q) is coNP-complete.

Every self-join free conjunctive query with two atoms is acyclic and has only

one join tree, namely, a single edge that connects the two atoms. Therefore, if the

attack graph is cyclic, it is a cycle of length 2, which arises precisely when L 6⊆ R+
1 and

L 6⊆ R+
2 . Thus, Theorem 4 yields the following corollary.

Corollary 2 Let q be a self-join free Boolean conjunctive query with two atoms R1 and

R2, and let L be the set of variables shared by R1 and R2. Then the following two

statements are equivalent:

1. certainty(q) is first-order rewritable.

2. L ⊆ R+
1 or L ⊆ R+

2 .

Furthermore, by combining Theorem 5 with Corollary 2, we obtain the follow-

ing trichotomy result.

Corollary 3 Let q be a self-join free boolean conjunctive query with two atoms R1 and

R2, and let L be the set of variables shared by R1 and R2. Then, the following two

statements hold:

84

1. If L ⊆ R+
1 or L ⊆ R+

2 , then certainty(q) is first-order rewritable.

2. If L 6⊆ R+
1 , L 6⊆ R+

2 , and key(R1) ∪ key(R2) ⊆ L, then certainty(q) is in P but

is not first-order rewritable.

3. If L 6⊆ R+
1 , L 6⊆ R+

2 , and key(R1) ∪ key(R2) 6⊆ L, then certainty(q) is

coNP-complete.

Before embarking on the proof of Theorem 5, we describe briefly our strat-

egy. Let q be a self-join free boolean conjunctive query with two atoms such that

certainty(q) is not first-order expressible. In Section 4.2.1, we prove the intractabil-

ity side of the dichotomy, that is, we show that if the query q is such that key(R1) ∪

key(R2) 6⊆ L, then certainty(q) is coNP-hard. As a stepping stone, we show that

certainty(q′) is coNP-hard, where q′ is the query q′() : −S1(x, z, y), S2(y, x); this is

done via a polynomial-time reduction from Monotone SAT. After this, we show that

if q is a query such that key(R1)∪ key(R2) 6⊆ L, then certainty(q′) can be reduced in

polynomial time to certainty(q).

In Section 4.2.2, we prove the tractability side of the dichotomy, that is, we

show that if the query q is such that key(R1) ∪ key(R2) ⊆ L, then certainty(q)

is in P. To this extent, we introduce the notion of the conflict-join graph and show

that certainty(q) can be reduced in polynomial time to the problem of finding an

independent set of a certain size in a conflict-join graph. In the general case, the

problem of finding an independent set of a certain size in a given graph is NP-complete.

However, there are families of graphs on which this problem can be solved in polynomial

85

time. One such family is the class of all claw-free graphs. We show that the conflict-join

graph of queries with two atoms that satisfy the condition key(R1) ∪ key(R2) ⊆ L is

always claw-free.

4.2.1 The Intractability Side of the Dichotomy

We begin by observing that if q is a query such that certainty(q) is not first-

order rewritable and moreover, key(R1) ∪ key(R2) 6⊆ L, then the variables of q exhibit

a particular pattern.

Proposition 3 Let q be a self-join free boolean conjunctive query with two atoms such

that certainty(q) is not first-order rewritable. Let R1, R2 be the two atoms of q, and

let L be the set of variables shared by R1 and R2. Then the following hold:

1. There exist four variables u, v, w, w′ with the property that u ∈ key(R1)\key(R2),

v ∈ key(R2) \ key(R1), w ∈ L \ key(R1), and w′ ∈ L \ key(R2).

2. If, in addition, key(R1) ∪ key(R2) 6⊆ L, then u can be chosen to also satisfy

u ∈ key(R1) \ L or v can be chosen to also satisfy v ∈ key(R2) \ L.

Proof. Since certainty(q) is not first-order rewritable, Corollary 2 tells that L 6⊆ R+
1

and L 6⊆ R+
2 . We claim that key(R1) 6⊆ key(R2) and key(R2) 6⊆ key(R1). Indeed, if

key(R1) ⊆ key(R2), then key(R1) ⊆ R+
2 and also nkey(R1) ⊆ R+

2 . Consequently,

L ⊆ R+
2 , which contradicts the hypothesis. A similar argument shows that key(R2) 6⊆

key(R1). Thus, there are variables u and v such that u ∈ key(R1) \ key(R2) and

v ∈ key(R2) \ key(R1). Since L 6⊆ R+
1 and key(R1) ⊆ R+

1 , there is a variable w such

86

that w ∈ L \ key(R1). Similarly, since L 6⊆ R+
2 and key(R2) ⊆ R+

2 , there is a variable

w′ such that w′ ∈ L \ key(R2).

Assume that, in addition, key(R1) ∪ key(R2) 6⊆ L holds. This means that

key(R1) 6⊆ L or key(R2) 6⊆ L. In the first case, there exists a variable u ∈ key(R1) \ L

(hence, also u ∈ key(R1) \ key(R2)). In the second case, there exists a variable v ∈

key(R2) \ L (hence, also v ∈ key(R2) \ key(R1)). �

Let q′ be the query q′() : −S1(x, z, y), S2(y, x). Corollary 2 implies that

certainty(q) is not first-order rewritable. Moreover, we have that key(S1)∪key(S2) 6⊆

L. It is easy to verify directly that the variables of q′ exhibit the pattern described in

Proposition 3. Specifically, the role of u is played by z, the roles of both v and w are

played by y, and the role of w′ is played by x.

Lemma 1 Let q′ be the query q′() : −S1(x, z, y), S2(y, x). Then certainty(q′) is

coNP-hard.

Proof. We will reduce Monotone SAT to certainty(q′) in polynomial time. Let ϕ

be a boolean formula in conjunctive normal form such that each clause has either positive

literals only (positive clause) or negative literals only (negative clause); without loss of

generality, assume that each variable of ϕ occurs in some positive clause and in some

negative clause. Construct an instance I over the schema of q′ as follows:

• For every positive clause ci and variable p in it, generate a fact S1(1, ci, p) in I.

• For every negative clause cj and variable p in it, generate a fact S1(0, cj , p) in I.

87

• For every variable p, generate two facts S2(p, 0) and S2(p, 1) in I.

We will now prove that ϕ is satisfiable if and only if there is a repair of I that

does not satisfy q′.

(⇒) Assume first that there exists a satisfying assignment θ for ϕ. Construct

the following instance r:

• For every positive clause ci of ϕ, choose a variable p in ci such that θ(p) = 1. Add

the fact S1(1, ci, p) to r.

• For every negative clause cj of ϕ, choose a variable p in cj such that θ(p) = 0.

Add the fact S1(0, cj , p) to r.

• For every variable p of ϕ, if θ(p) = 1, then add the fact S2(p, 0) to r; otherwise,

add S2(p, 1) to r.

To see that r is a repair, notice that for every clause in ϕ we add a single

S1-fact in r, and for every variable p, we add a single S2-fact in r. For a variable p,

either θ(p) = 0 or θ(p) = 1. If θ(p) = 0 then in r there exists no fact of the form

S1(0, , p), and no fact S2(p, 0). If θ(p) = 1 then in r there exists no fact of the form

S1(1, , p), and no fact S2(p, 1). In either case, r 6|= q.

(⇐) Next, assume that r is a repair of I such that r 6|= q′. Let θ be the

following truth assignment.

• For every fact S1(1, ci, p) in r, set θ(p) = 1.

• For every fact S1(0, cj , p) in r, set θ(p) = 0.

88

• For every variable p for which there is no fact S1(, , p) in r, assign to p value 0

or value 1 arbitrarily.

From r 6|= q, it follows that there cannot exist two facts S1(1, ci, p) and

S1(0, cj , p). Therefore, θ is well-defined. Moreover, since r is a repair, every clause

is satisfied by θ because for every clause c there exists a fact S1(1, c, p). �

We will use the following terminology and notation. If a and b are constants,

then a · b is a new constant encoding the pair (a, b) in a unique way; in other words, the

function that maps every pair of constants (a, b) to a · b, is injective.

Lemma 2 Let q be a self-join free Boolean conjunctive query with two atoms such that

certainty(q) is not first-order expressible. Let R1, R2 be the two atoms of q, and

let L be the set of variables shared by R1 and R2. If key(R1) ∪ key(R2) 6⊆ L, then

certainty(q) is coNP-hard.

Proof. Let q′ be the query ∃x, y, z.S1(x, z, y)∧S2(y, x) of Lemma 1. We will show that

certainty(q′) can be reduced to certainty(q) in polynomial time. To this effect, given

an instance I ′ over the schema of q′, we will construct an instance I over the schema of

q such that there is a repair of I ′ on which q′ is false if and only if there is a repair of I

on which q is false.

Assume that the two atoms of q are R1(s1, . . . , sn) and R2(t1, . . . , tm), where

each si and each tj is a variable or a constant (clearly, these variables need not be

pairwise distinct). Let V be the set of variables occurring in q. From Proposition 3,

there are variables u, v, w,w′ such that u ∈ key(R1) \ key(R2), v ∈ key(R2) \ key(R1),

89

w ∈ L \ key(R1), w′ ∈ L \ key(R2). Moreover, u ∈ key(R1) \ L or v ∈ key(R2) \ L

holds. Assume that u ∈ key(R1) \ L (the other case is similar). Let P = {u, v, w,w′},

let Q = V \P , and c be a fixed constant. We are now ready to describe the construction

of the instance I from I ′. The intuition behind this construction is that the variable

u in q plays the role of the variable z in q′, the variable w′ in q plays the role of the

variable x in q′, while the variables v and w in q play the role of the variable y in q′.

Consider first the atom R1(s1, . . . , sn) of q. Every fact S1(a1, a3, a2) of I ′

generates a fact R1(b1, . . . , bn) of I, where each bi is defined as follows:

1. If si = u, then bi = a1 · a3.

2. If si = v, then bi = a2.

3. If si = w = w′, then bi = a1 · a2.

4. If si = w and w 6= w′, then bi = a2.

5. If si = w′ and w′ 6= w, then bi = a1.

6. If si is a constant, then bi = si.

7. In all other cases, bi = c.

Next, consider the atom R2(t1, . . . , tm) of q. Every fact S2(a2, a1) of I ′ gen-

erates a fact R2(b1, . . . , bm) of I, where each bi is defined by the preceding conditions

2 to 7 and with ti in place of si. Note that the first condition is not applicable be-

cause u ∈ key(R1) \ L, hence u cannot be among the variables occurring in the atom

R2(t1, . . . , tm).

90

In the preceding construction, each bi is defined in a unique way. The reason

is that u is different from v, w, and w′, and also v is different from w′; thus, no si can

meet two of the conditions 1 to 7 at the same time.

Let f be an Si-fact of I ′ and let g be an Ri-fact of I, i = 1, 2. We write

f ⇒ g to denote that g has been generated by f in the way described above. Thus,

I = {g : there is a fact f of I ′ such that f ⇒ g}. The preceding construction ensures

two important properties that we now state and prove.

Property 1 For i = 1, 2, let f1, f2 be Si-facts of I ′ and let g1, g2 be Ri-facts of I such

that f1 ⇒ g1 and f2 ⇒ g2. The following statements are equivalent.

1. The facts f1 and f2 are key-equal.

2. The facts g1 and g2 are key-equal.

To verify that Property 1 holds, assume first that f1, f2 are S1-facts and that

g1, g2 are R1-facts. Assume that g1 = R1(b1, . . . , bn) and g2 = R1(b′1, . . . , b
′
n). If f1

and f2 are key equal, then they must be of the form S1(a1, a3, a2) and S1(a1, a3, a
′
2),

respectively. The preceding construction implies that the values of the keys of R1-facts

depend only on the value of the variable u or only on the values of the variables u and

w′, provided w′ 6= w (if w′ = w, then w′ 6∈ key(R1)). If si = u, then, by construction,

we have that bi = a1 · a3 = b′i; furthermore, if w′ 6= w, then, by construction, we have

that bi = a1 = b′i. Consequently, g1 and g2 are key-equal facts. For the other direction,

assume that the facts g1 and g2 are key-equal. Assume that f1 = S1(a1, a3, a2) and

f2 = S1(a′1, a
′
3, a
′
2). Since u ∈ key(R1), there is some i such that u = si, hence bi = b′i.

91

Furthermore, by construction, we have that bi = a1 · a3 and b′i = a′1 · a′3. Consequently,

a1 · a3 = a′1 · a′3, which implies that a1 = a′1 and a3 = a′3. Thus, f1 and f2 are key-equal

facts. A similar argument shows that Property 1 holds also when f1, f2 are S2-facts and

g1, g2 are R2-facts.

Property 2 For i = 1, 2, if f1, f2 are Si-facts of I ′ and g is an Ri-fact of I such that

f1 ⇒ g and f2 ⇒ g, then f1 = f2.

To verify that Property 2 holds, assume first that f1 = S1(a1, a3, a2), f2 =

S1(a′1, a
′
3, a
′
2), and g = R1(b1, . . . , bn). By Property 1, the facts f1 and f2 are key-equal,

hence a1 = a′1 and a3 = a′3. Since w ∈ L, there is some i such that si = w. If w = w′,

then, by construction, a1 ·a2 = bi = a1 ·a′2, hence a2 = a′2. If w 6= w′, then a2 = bi = a′2.

In either case, we have that a2 = a′2 and so f1 = f2. A similar argument shows that

Property 2 holds also for the case in which f1, f2 are S2-facts and g is an R2-fact.

We continue with the proof of the lemma. We will show that there is a repair

of I ′ on which q′ is false if and only if there is a repair of I on which q is false.

Assume that r′ is a repair of I ′ such that r′ 6|= q′. Let r = {g ∈ I :

there is a fact f ∈ r′ such that f ⇒ g}. We claim that r is a repair of I such that r 6|= q.

Properties 1 and 2 imply that r is a repair of I. Indeed, to show that r is a

consistent instance, let g1, g2 be two key-equal facts of r. Let f1, f2 be two facts of r′

such that f1 ⇒ g1 and f2 ⇒ g2. Property 1 implies that the facts f1 and f2 are key

equal. Since r is a consistent instance, it follows that f1 = f2, hence g1 = g2. To show

that r is a maximal consistent subinstance of I, let g be a fact of I such that r ∪ {g} is

92

consistent. Let f be a fact of I ′ such that f ⇒ g. We claim that r′ ∪ {f} is consistent.

Indeed, assume that f ′ is a fact of r′ such that f and f ′ are key-equal, and let g′ ∈ r

be such that f ′ ⇒ g′. By Property 1, we have that g and g′ are key-equal facts, hence

(since r ∪ {g} is consistent) g = g′. Property 2 implies that f ′ = f , hence g ∈ r; this

completes the proof that r is a repair of I.

Next, we show that r does not satisfy q. Towards a contradiction, assume that

R1(b1, . . . , bn) and R2(b′1, . . . , b
′
m) are two facts of r that satisfy q. Let S1(a1, a3, a2) and

S2(a′2, a
′
1) be two facts of r′ such that S1(a1, a3, a2) ⇒ R1(b1, . . . , bn) and S2(a′2, a

′
1) ⇒

R2(b′1, . . . , b
′
m). Consider the variables w, w′ and recall that w ∈ L and w′ ∈ L. Let

i and j be such that si = w and tj = w. We distinguish two cases. If w = w′, then

bi = a1 ·a2 and b′j = a′1 ·a′2. Since the facts R1(b1, . . . , bn) and R2(b′1, . . . , b
′
m) satisfy q, we

have that bi = b′j , hence a1 = a′1 and a2 = a′2, which implies that the facts S1(a1, a3, a2)

and S2(a′2, a
′
1) satisfy q′, a contradiction. If w 6= w′, then bi = a1 and b′j = a′1. Since

bi = b′j , we have that a1 = a′1. Furthermore, let k and l be such that sk = w′ and

tl = w′. Then bk = a2 and b′l = a′2. Since bk = b′l, we have that a2 = a′2, which implies

that the facts S1(a1, a3, a2) and S2(a′2, a
′
1) satisfy q′, a contradiction.

In the other direction, assume that r is a repair of I such that r 6|= q. Let

r′ = {f ∈ I ′ : there is a fact g ∈ r such that f ⇒ g}. We claim that r′ is a repair of I ′

such that r′ 6|= q′.

As before, Properties 1 and 2 imply that r′ is a repair of I ′. Indeed, if f1 and f2

are two key-equal facts of r′, then, by Property 1, the facts g1 and g2 of r are key-equal,

where f1 ⇒ g1 and f2 ⇒ g2. It follows that g1 = g2 and so, by Property 2, we have

93

that f1 = f2. Similarly, if r′ ∪ {f} is consistent and f ⇒ g, then r ∪ {g} is consistent,

hence g ∈ r and so f ∈ r′. Finally, we show that r′ does not satisfy q′. Towards a

contradiction, assume that S1(a1, a3, a2) and S2(a2, a1) are two facts of r′ that satisfy

q′. Let g1 and g2 be the facts of r such that S1(a1, a3, a2) ⇒ g1 and S2(a2, a1) ⇒ g2.

By the construction of I from I ′, and because u 6∈ L, we have that the facts g1 and g2

of r agree on all values corresponding to variables in L. Consequently, the facts g1 and

g2 satisfy q, contrary to the hypothesis. This completes the proof of the lemma. �

As an illustration of Lemma 2, it follows that certainty(q3) is coNP-hard,

where q3() : −R1(x, y), R2(x′, y) is the query mentioned in the Introduction. In addition,

certainty(q) is coNP-hard if q is one of the following queries:

• q() : −R1(x, z, x′, y), R2(x′, x, y)

• q() : −R1(x,w, z, y), R2(x, z, y)

• q() : −R1(x, z, y, w), R2(y, x, w)

4.2.2 The Tractability Side of the Dichotomy

In this section, we introduce the notion of the conflict-join graph and use it to

study when certainty(q) is tractable, where q is a self-join free boolean conjunctive

query with two atoms. As before, we assume that there is one key constraint for each

relation symbol.

Definition 7 Let q be a self-join free boolean conjunctive query with two atoms. If I is

an instance, then the conflict-join graph HI,q = (V,E) is defined as follows:

94

• The set V of the nodes of HI,q consists of all facts of I.

• For every pair of key-equal facts, add an edge in E connecting these two facts.

• For every pair of facts that form a minimal witness to q, add an edge in E con-

necting these two facts.

For every fixed query q, the size of the conflict-join graph HI,q is polynomial

(in fact, quadratic) in the size of the instance I. If D is a set of pairwise key-equal facts

of I, then every two distinct elements of D are key-equal, which implies that D induces

a clique in HI,q. A maximal set of pairwise key-equal facts of I must contain all facts

that are key-equal to one of its members; moreover, if D and D′ are distinct key-equal

groups, then D ∩D′ = ∅. Consequently, the set V of nodes of HI,q can be partitioned

into pairwise disjoint sets V1, . . . , Vn such that each Vi is a maximal set of key-equal

facts of I. Also, by construction, the set E of edges of HI,q can be partitioned into two

disjoint sets E1 and E2, where E1 consists of all edges whose endpoints form a conflict

in I, and E2 consists of all edges whose endpoints join in the query q.

In what follows, we will establish a connection between the existence of a

maximum independent set of a particular size in the conflict-join graph HI,q and the

existence of a repair r of I such that r 6|= q. Recall that an independent set in a graph

G is a set of nodes with no edges between them. A maximum independent set is an

independent set of maximum cardinality. The independent set number α(G) of a graph

G is the cardinality of a maximum independent set of G.

95

We now focus on the independent set number α(HI,q) of the conflict-join graph

associated with an instance I. It is easy to see that α(HI,q) ≤ n, where n is the number

of the maximal sets V1, . . . , Vn of pairwise key-equal facts of I. Indeed, this holds because

each Vi induces a clique in HI,q, so an independent set in HI,q can contain at most one

node from each Vi, 1 ≤ i ≤ n.

Example 6 Let q2 be the query q2() : −R1(x, y), R2(y, x) from the Introduction. Con-

sider the instance I = {R1(a, b), R1(a, b′), R(a, b′′), R1(a′, b), R2(b, a), R2(b, a′)}. Fig-

ure 4.2 depicts the conflict-join graph HI,q2 . Note that HI,q2 is partitioned into three

key-equal groups. Note also that the set r = {R1(a, b′), R1(a′, b), R2(b, a)} has size three

and is a maximum independent set of HI,q2 . Furthermore, viewed as an instance, r is a

repair of I and r 6|= q2. The next lemma tells that this is no accident. �

R1(a, b′′)

R1(a, b′)

R1(a, b)

R1(a′, b)

R2(b, a′)

R2(b, a)

Figure 4.2: The conflict-join graph HI,q2 for the query and instance of Example 6. Edges

drawn as continuous lines connect pairs of facts that conflict; edges drawn as dashed

lines connect facts that together satisfy q.

Lemma 3 Assume that q is a self-join free boolean conjunctive query with two atoms

and I is an instance. Let HI,q be the conflict-join graph associated with I and q, let

96

α(HI,q) be the independent set number of HI,q, and let n be the number of key-equal

groups of facts in I. Then the following statements are equivalent:

1. There is a repair r of I such that r 6|= q.

2. α(HI,q) = n.

Proof. Assume first that r is a repair of I such that r 6|= q. Let M be the set of all facts

of r. We claim that M is an independent set in HI,q and has size n. To see that M is an

independent set in HI,q, consider two distinct facts f1 and f2 of r. If they involve the

same relation symbol, then they cannot be key-equal because r is a consistent instance,

hence there is no edge between them in HI,q. If they involve different relation symbols,

then they cannot join in q because r 6|= q; hence there is no edge between them in HI,q.

To see that M has size n, notice that, since r is a repair of I, it must contain one fact

of each different key value, which means that r must contain one fact from each of the

n key-equal groups of I. Since α(HI,q) ≤ n, it follows that α(HF,I,q) = n.

For the other direction, assume that M is an independent set of HI,q of size

n. Let r be the sub-instance of I formed by the facts of M . We claim that r is a repair

of I such that r 6|= q. Indeed, since M is an independent set of HI,q, we have that r is

consistent and also r 6|= q. Also, since M is of size n, we have that r must contain a fact

of each different key value, hence r is a maximal consistent sub-instance of I. �.

The proof of Lemma 3 actually establishes something stronger, namely, that

the repairs of I that falsify q are precisely the independent sets of HI,q of size n.

97

It is well known that the problem of computing the independent set number

of a given graph is NP-hard [34]. However, it is also known that there are restricted

classes of graphs for which this problem is solvable in polynomial time. In particular,

this holds true for claw-free graphs, chordal graphs, and perfect graphs. Claw-free

graphs will turn out to be of particular interest to us. A graph is claw-free if it does not

contain a claw as an induced subgraph, where the claw is the complete bipartite graph

K1,3 (see Figure 4.3). Equivalently, a graph is claw-free if no node has three pairwise

non-adjacent neighbors. Claw-free graphs form a broad class of graphs that enjoy good

algorithmic properties. In particular, a polynomial-time algorithm for computing the

independent set number on claw-free graphs was given by Minty [52].

Figure 4.3: The claw graph K1,3

Lemma 4 Assume that q is a self-join free Boolean conjunctive query with exactly two

atoms. Let R1, R2 be the two atoms of q, and let L be the set of variables shared by R1

and R2. If key(R1) ∪ key(R2) ⊆ L, then, for every instance I, the conflict-join graph

HI,q is claw-free. Consequently, if key(R1)∪key(R2)) ⊆ L, then certainty(q) is in P.

Proof. Let I be an instance. We first observe the following regarding the conflict-join

graph HI,q.

• If f1, f2, f3 are three facts of I such that (f1, f2) and (f1, f3) are edges in E1,

98

then (f2, f3) is also an edge in E1. Indeed, since (f1, f2) and (f1, f3) are in E1, it

follows that f1 is key-equal to both f2 and f3; hence, f2 is key-equal to f3, which

implies that (f1, f3) is an edge in E1.

• If f1, f2, f3 are three facts of I such that (f1, f2) and (f1, f3) are edges in E2,

then (f2, f3) is an edge in E1. To see this, we distinguish two cases, depending

on whether f1 is an R1-fact or an R2-fact. Assume first that f1 is an R1-fact.

Then, f2 and f3 must be R2-facts. Since f1 and f2 satisfy q, they must agree on

all values corresponding to variables in L. Given that key(R2) ⊆ L, we have that

f1 and f2 agree on all values corresponding to variables in key(R2). Similarly, f1

and f3 agree on all values corresponding to variables in key(R2). It follows that

f2 and f3 are key-equal. The argument in the case that f1 is an R2-fact is similar.

We now prove that the conflict-join graph HI,q is claw-free. Let f1, f2, f3, and f4 be

four facts of I such that (f1, f2), (f1, f3), (f1, f4) are edges in E. Then either at least

two of these three edges are in E1 or at least two of these three edges are in E2. If,

say, both (f1, f2) and (f1, f3) are in E1, then, by the first observation above, we have

that (f2, f3) is an edge in E1 (and hence in E). If, say, both (f1, f2) and (f1, f3) are in

E2, then, by the second observation above, we have that (f2, f3) is an edge in E1 (and

hence in E). Therefore, the nodes f1, f2, f3, and f4 do not induce a claw in HI,q.

Finally, assuming that (key(R1) ∪ key(R2)) ⊆ L, there is a polynomial-time

algorithm for certainty(q). Specifically, given an instance I, we first construct the

conflict-join graph HI,q in polynomial time in the size of I. Since HI,q is claw-free,

99

we can use Minty’s algorithm [52] to compute the independent set number α(HI,q) in

polynomial time in the size of HI,q and, hence, in polynomial time in the size of I. We

then compare α(HI,q) to the number n of distinct maximal sets of pairwise key-equal

facts of I, which can also be computed in polynomial time in the size of I. By Lemma 3,

we have that certainty(q) is true on I if and only if α(HI,q) < n. �

It should be noted that Arenas et al. [3] introduced the notion of the conflict

graph while studying the consistent answers of aggregate queries. The conflict graph is

constructed from the constraints and the instance, while our conflict-join graph takes

also the query into account. Arenas et al. used the tractability of the maximum in-

dependent set number on claw-free graphs to show that if a relational schema with

at most two functional dependencies is in Boyce-Codd Normal Form, then there is a

polynomial-time algorithm for computing the consistent answers of COUNT(*) queries

(see [3, Theorem 12]). The preceding Lemma 4 could also be obtained via a reduction

to the problem of computing the consistent answers of COUNT(*) queries and then

by appealing to Theorem 12 in [3]. The proof we gave here is direct and self-contained.

Lemma 4 gives a broad sufficient condition for the tractability of certainty(q)

for self-join free boolean conjunctive queries q with exactly two atoms. In particular, it

yields a unifying polynomial-time algorithm for certainty(q) that applies to several in-

teresting queries q for which certainty(q) is not first-order expressible. To begin with,

it implies that certainty(q2) is in P, where q2 is the query q2() : −R1(x, y), R2(y, x)

from the Introduction. Note that the sole focus of [60] was showing that certainty(q2)

100

is in P (using a different algorithm than ours) but is not first-order expressible. Also,

Lemma 4 implies that certainty(q) is in P, where q is one of the following three queries:

• q() : −R1(x, z, y), R2(y, x, z)

• q() : −R1(x, y, z), R2(y, x, z)

• q() : −R1(x, y, z), R2(x, z, y)

The proof of Theorem 5 can now be obtained by combining Lemma 2 with

Lemma 4. Thus, if q is a self-join free boolean conjunctive query with two atoms

such that certainty(q) is not first-order expressible, then either certainty(q) is in

P or certainty(q) is coNP-complete. Moreover, certainty(q) is in P if and only if

key(R1) ∪ key(R2) ⊆ L.

Note that, by Lemma 4, the condition key(R1)∪key(R2) ⊆ L is a sufficient con-

dition for tractability of certainty(q), even if certainty(q) is first-order expressible.

However, in general, this is not a necessary condition for tractability of certainty(q).

For example, consider again the query q1() : −R1(x, y), R2(y, z) from the Introduction.

Then key(R1) ∪ key(R2) = {x, y} 6⊆ L = {y}. However, as seen earlier, certainty(q1)

is first-order expressible. Similarly, if q is the query q() : −R1(x, y, z), R2(y, u, w),

then key(R1) ∪ key(R2) = {x, y, u} 6⊆ L = {y}, yet certainty(q) is in P, because

L ⊆ R+
1 = {x, y}, hence certainty(q) is first-order expressible.

101

4.3 Sufficient Condition for Intractability

For the general case when the query contains an arbitrary number of atoms, we

have found a sufficient condition for intractability. We will use the following terminology

and notation to present our result. If q is a conjunctive query, R(x) is an atom in q, f is

a fact of the form RI(t) and x is a variable in x, we use the notation t[x] = a to denote

the fact that the constant a appears in every position of variable x in t. If (x1, · · · , xk) is

a tuple of variables such that xi ∈ x for 1 ≤ i ≤ k, we write t[x1, · · · , xk] = (a1, · · · , ak)

to express that t[xi] = ai for 1 ≤ i ≤ k. Given two facts RI(t) and SI(t), where R and

S need not be different, and x a variable that appears in atoms R and S in q, we write

t[x] = s[x] to express that there exists a constant a such that t[x] = a and s[x] = a. If

a and b are constants, then a · b is a new constant formed by concatenating a and b.

Finally, we will make use of the notion of the attribute closure of an atom with respect

to the primary key constraints, defined next.

Definition 8 Let q be an acyclic and self-join free boolean conjunctive query. Let Σ be

a set of primary key constraints over the same schema as q. For every atom Ri in q,

we define vars(Ri)
+ to be the set vars(Ri)

+ = {v ∈ vars(q) | Σ |= (key(Ri)→ v)}.

For example, in the query q() : −R1(x, y), R2(x′, y), R3(y, x), we have that

vars(R1)+ = {x, y}, vars(R2)+ = {x′, y, x}, and vars(R3)+ = {y, x}.

We are now ready to present our sufficient condition for intractability of

certainty(q), in Theorem 6:

102

Theorem 6 Let q be a self-join free boolean acyclic conjunctive query with atoms

R1, · · · , Rn, and such that certainty(q) is not first-order expressible. If there are

two atoms Ri, Rj, 1 ≤ i, j ≤ n, i 6= j, such that:

• There is a cycle of length two between Ri, Rj in the attack graph, and

• key(Ri) 6⊆ (vars(Rj))
+ or key(Rj) 6⊆ (vars(Ri))

+,

Then certainty(q) is coNP-complete.

Proof. We will prove this theorem by showing that there is a polynomial reduction

from certainty(q′) to certainty(q), where q′ is the query q′() : −S1(x, y, x′), S2(x′, y).

W.l.o.g., we will assume that Ri is such that key(Ri) 6⊆ vars(Rj)+. Given an instance I ′

over the schema of q′, we will construct an instance I over the schema of q. To describe

the transformation of I ′ to I, we will make use of a function f that maps the variables

of q to variables of q′. Let Q be the set of variables of q, let P be the set of variables

of q′, i.e., P = {x, x′, y}, and let c be a fixed constant that is not in the domain of any

of the variables of Q and P . We define f to be a function of the form f : Q→ 2P∪{c}.

So, f maps every variable appearing in q to a subset of P ∪ {c}. We will first show

how to define this function, and then how to construct I from I ′. Function f is defined

recursively:

103

1. for every v ∈ vars(q), let f(v) = ∅

2. repeat until f does not change
3. for every Rk atom in q do

4. for every v ∈ vars(Rk) \ (vars(Rj))
+ set f(v) = f(v) ∪ {x}

5. for every v ∈ vars(Rk) \R+
i set f(v) = f(v) ∪ {x′}

6. for every v ∈ vars(Rk) \R+
j set f(v) = f(v) ∪ {y}

7. if f(v) is not defined for some v, then let f(v) = {c}

Next, we show how to construct the database instance I from I ′ using f :

• For every fact g1 = S1(a, b, a′) in I ′, for every Rp 6= Rj , generate a fact fp = Rp(tp)

in I such that for every v ∈ vars(Rp) we have that:

– tp[v] = a if f(v) = {x}

– tp[v] = b if f(v) = {y}

– tp[v] = a′ if f(v) = {x′}

– tp[v] = a · b if f(v) = {x, y}

– tp[v] = b · a′ if f(v) = {y, x′}

– tp[v] = a · a′ if f(v) = {x, x′}

– tp[v] = a · b · a′ if f(v) = {x, y, x′}

– tp[v] = c if f(v) = {c}

We use the notation g1 ⇒ {f1, · · · , fj−1, fj+1, · · · fn} to express that g1 generates

facts {f1, · · · , fj−1, fj+1, · · · fn}.

• For every fact g2 = S2(a′, b) in I ′, generate a fact fj = Rj(tj) in I such that for

every v ∈ vars(Rj) we have that:

104

– tj [v] = a′ if f(v) = {x′}

– tj [v] = b if f(v) = {y}

– tj [v] = b · a′ if f(v) = {y, x′}

– tj [v] = c if f(v) = {c}

We say that g2 ⇒ fj .

Next, we prove the following properties of the function f :

Property 1: {x, y} ⊆ f(key(Ri)) ⊆ {x, y, c} and {x′} ⊆ f(nkey(Ri)) ⊆ {x, x′, y}

Property 2: {x′} ⊆ f(key(Rj)) ⊆ {x′, c} and {x′, y} ⊆ f(nkey(Rj)) ⊆ {x′, y, c}

Proof of Property 1 and 2 Let τ be a join tree of q. In τ there must be a path

Ri, Ri+1, ...Rj−1, Rj between Ri and Rj . Because there is a cycle of length two in the

attack graph, it must happen that for 1 ≤ p < j − 1 we have that Lp,p+1 6⊆ R+
i and

Lp,p+1 6⊆ R+
j . Notice that key(Ri) 6⊆ R+

j , because otherwise, from key(Ri) ⊆ R+
j would

follow vars(Ri) ⊆ R+
j , and in particular Li,i+1 ⊆ R+

j . Similarly, we can reason that

key(Rj) 6⊆ R+
i . Since key(Ri) 6⊆ vars(Rj)

+ then, there is a variable u ∈ key(Ri) such

that u 6∈ vars(Rj)
+. Obviously, it cannot happen that u ∈ R+

j . Hence, {x, y} ⊆

f(key(Ri)). Moreover, from key(Ri) ⊆ R+
i it follows that x′ 6∈ f(key(Ri)). So far we

have that {x, y} ⊆ f(key(Ri)) ⊆ {x, y, c}. We also have that nkey(Ri) 6⊆ R+
i . Assume

nkey(Ri) ⊆ R+
i . Then, vars(Ri) ⊆ R+

i , and therefore, Li,i+1 ⊆ R+
i . This contradicts

the assumption. Hence, nkey(Ri) 6⊆ R+
i . Therefore, x′ ∈ f(nkey(Ri)). Both x and y are

allowed to appear in the f(nkey(Ri)). So, we have that {x′} ⊆ f(nkey(Ri)) ⊆ {x, x′, y}.

Because key(Rj) 6⊆ R+
i , it follows that there is a variable in the key of Rj that is mapped

105

by f to a set that contains x′. So, x′ ∈ f(key(Rj)). Because key(Rj) ⊆ R+
j and also

key(Rj) ⊆ vars(Rj)
+, we have that y 6∈ f(key(Rj)) and x 6∈ f(key(Rj))

+. So far,

we have established that {x′} ⊆ f(key(Rj)) ⊆ {x′, c}. Since nkey(Rj) ⊆ (vars(Rj))
+,

we have that x 6∈ f(nkey(Rj)). Assume nkey(Rj) ⊆ R+
j . Then, vars(Rj) ⊆ R+

j ,

and therefore, Lj−1,j ⊆ R+
j . This contradicts our assumption that every label in the

path between Ri and Rj is not included in R+
j . From nkey(Rj) 6⊆ R+

j it follows that

y ∈ f(nkey(Rj)). From nkey(Rj) ⊆ (vars(Rj))
+ it follows that x 6∈ f(nkey(Rj)).

Hence, {x′, y} ⊆ f(nkey(Rj)) ⊆ {x′, y, c}.

Next, we prove an important property of the construction of I from I ′:

Property 3: Every RIp for p 6= i, j, is a consistent relation.

Proof of Property 3 For a given set of variables S, we define f(S) to be the set

f(S) =
⋃
v∈S

f(v). Let Rp be any atom different from Ri, Rj .

• Case I) key(Rp) 6⊆ R+
i and key(Rp) 6⊆ R+

j

There is a variable v ∈ key(Rp) such that v 6∈ R+
i and there is a variable

w ∈ key(Rp) such that w 6∈ R+
j . Then, x′ ∈ f(v) and y ∈ f(w). So, {x′, y} ⊆

f(key(Rk)). If nkey(Rp) ⊆ (vars(Rj))
+, then x 6∈ f(nkey(Rp)). Hence, f(nkey(Rp)) ⊆

f(key(Rp)) ∪ {c}. If there is a variable v ∈ nkey(Rp) such that v ∈ (vars(Rj))
+

then, there must be a variable w ∈ key(Rp) such that w ∈ (vars(Rj))
+. Other-

wise, if key(Rp) ⊆ (vars(Rj))
+ then also w would be in vars(Rj)

+. Therefore,

{x, x′, y} ⊆ f(key(Rp)), and f(nkey(Rp)) ⊆ f(key(Rp))∪{c}. From f(nkey(Rp)) ⊆

f(key(Rp)) ∪ {c} it follows that in RIp there cannot exist two key-equal facts.

106

• Case II) key(Rp) ⊆ R+
i and key(Rp) 6⊆ R+

j

Since there is a variable v ∈ key(Rp) such that v 6∈ R+
j then, y ∈ f(v). So,

y ∈ f(key(Rp)). Since key(Rp) ⊆ R+
i , then vars(Rp) ⊆ R+

i . It follows that

x′ 6∈ f(key(Rp)) and x′ 6∈ f(nkey(Rp)). If nkey(Rk) ⊆ (vars(Rj))
+, then x 6∈

f(nkey(Rp)). Hence, f(nkey(Rp)) ⊆ f(key(Rp)) ∪ {c}. If there is a variable v ∈

nkey(Rp) such that v ∈ (vars(Rj))
+ then, there must be a variable w ∈ key(Rp)

such that w ∈ (vars(Rj))
+. Otherwise, if key(Rp) ⊆ (vars(Rj))

+ then also w

would be in vars(Rj)
+. Again we have that f(nkey(Rp)) ⊆ f(key(Rp)) ∪ {c}. In

RIp there cannot exist two key-equal facts.

• Case III) key(Rp) 6⊆ R+
i and key(Rp) ⊆ R+

j

Since there is a variable v ∈ key(Rp) such that v 6∈ R+
i then, x′ ∈ f(v). So, x′ ∈

f(key(Rk)). Since key(Rp) ⊆ R+
j , then vars(Rp) ⊆ R+

j . For every variable v in

R+
j we have that f(v) ⊆ {x′, c}. So, {x′} ⊆ f(key(Rp)) and f(nkey(Rp)) ⊆ {x′.c}.

In any case, f(nkey(Rp)) ⊆ f(key(Rp)) ∪ {c}, and therefore, RIp is consistent.

• Case IV) key(Rp) ⊆ R+
i and key(Rp) ⊆ R+

j

Here we have that key(Rp) ⊆ R+
i ∩ R

+
j . Then, also nkey(Rp) ⊆ R+

i ∩ R
+
j . A

variable v ∈ R+
i cannot contain x′. A variable v ∈ R+

j cannot contain y. Hence, a

variable v ∈ R+
i ∩ R

+
j cannot contain x′ or y. Since every variable v ∈ vars(Rk)

is in R+
j then, we also have that v is in (vars(Rj))

+. Hence, x 6∈ f(v). It remains

that for every v ∈ vars(Rp) we have that f(v) = {c}. Again, we have that

f(nkey(Rp)) ⊆ f(key(Rp)) ∪ {c} and RIp is a consistent relation.

107

(⇒) Next we prove that from each repair of I ′ on which q′ is false, we can

construct a repair of I on which q is false.

Let r′ be a repair of I ′ such that r′ 6|= q′. We construct r doing the following:

• for every fact g1 ∈ Sr
′

1 add to Rri the fact fi such that g1 ⇒ fi.

• for every fact g2 ∈ Sr
′

2 add to Rrj the fact fj such that g2 ⇒ fj .

• for every p such that 1 ≤ p ≤ n and p 6= i, j, add to Rrp every fact from RIp.

We show that r is a repair of I and that r 6|= q.

It is easy to argue that r is a repair. From Property 1 it follows that for every

key-equal pair of facts in S1 generates two key-equal facts in Ri. Similarly, it follows

from Property 2 that every pair of key-equal facts in S2 generates two key-equal facts

in Rj . From Property 3 we have that every other relation is consistent.

Next, we show that r does not satisfy q. Assume there is a minimal witness

{f1, ..., fi, ...fj , ..., fn} of q in r. Assume also that the path between Ri and Rj in τ

is Ri, Ri+1, · · · , Rj−1, Rj . We know that for every Lp,p+1 in the path between Ri and

Rj , where i ≤ p ≤ j − 1, we have that Lp,p+1 6⊆ R+
i and Lp,p+1 6⊆ R+

j . Hence, in

every Lp,p+1 there are variables m, l such that m 6∈ R+
i and l 6∈ R+

j . It follows that

{x′, y} ⊆ f(Lp,p+1). Then, the facts fi = Ri(ti) and fj = Rj(tj) are such that for every

v ∈ Li,j for which f(v) ⊆ {x′, y}, it holds that ti[v] = tj [v]. Let g1 = S1(w1) and

g2 = S2(w2) be the facts in r′ that generate, respectively, f1 and f2. Because S1 and

S2 share only the variables x′ and y, it is obvious now that the facts g1 and g2 form a

minimal witness of the query q′ on r′.

108

(⇐) In the other direction, let r be a repair of I such that r 6|= q. We construct

r′ doing the following:

• For every fact fi ∈ Rri add to Sr
′

1 the fact g1 such that g1 ⇒ {· · · , fi, · · · }

• For every fact fj ∈ Rrj add to Sr
′

2 the fact g2 such that g2 ⇒ {· · · , fj , · · · }

Again, it is easy to argue that r′ is a repair using Properties 1-3.

Next, we show that r′ does not satisfy q′. Assume there are facts g1 = S1(w1)

and g2 = S2(w2) in r′ that form a minimal witness for q′. Then, it must hold that

w1[x′] = w2[x′] and w1[y] = w2[y]. Let fi = Ri(ti) and fj = Rj(tj) be the facts

of r such that g1 ⇒ {f1 · · · , fi, · · · , fj−1, fj+1, · · · , fn}, g2 ⇒ fj . Notice that the set

{f1 · · · , fi, · · · fj−1, fj+1, · · · , fn} is a minimal witness of the query q\{Rj}. Since for all

p 6= i, j we have that Rrp = RIp, all of the facts {f1 · · · , fi, · · · , fj−1, fj , · · · , fn} appear

in r. For every relation Rp that joins with Rj , we have that Lp,j ⊆ (vars(Rj))
+. So,

it cannot happen that x 6∈ f(Lp,j). Therefore, f(Lp,j) ⊆ {x′, y, c}. From Property 2 we

know that x 6∈ f(vars(Rj)). It follows that for every relation Rp that joins with Rj ,

the fact fp will join with the fact fj . Hence, the set of facts f1, ..., fn forms a minimal

witness for q. This contradicts the assumption that r 6|= q. �

A few examples of queries that illustrate the application of Theorem 6 are:

• q() : −R1(x, y), R2(x′, y), R3(x′′, y)

• q() : −R1(x, z, y), R2(y, x), R3(x, y)

109

4.4 Sufficient Condition for Tractability

In Section 4.2.2 we showed how to reduce certainty(q), where q is a self-

join free and boolean conjunctive query with two atoms, to the problem of finding a

maximum independent set in a claw-free graph. We used simple edges in the conflict-

join graph to represent minimal witnesses of q, since every minimal witness involves

exactly two facts from the database. If we consider a query with an arbitrary number

of atoms, then each minimal witness of the query involves as many facts as there are

atoms in q. In this case, the edges in the conflict-join graph that represent minimal

witnesses, become hyper-edges, and the conflict-join graph becomes a hypergraph. The

problem of finding a maximum independent set of vertices in a hypergraph is even

more complicated compared to simple graphs. Little is known about tractability of this

problem in hypergraphs. However, for conjunctive queries that are acyclic and self-

join free, we show that one can still reduce certainty(q) to the problem of finding a

maximum independent set in a simple graph. In this section, we show how to generalize

the conflict-join graph construction to acyclic self-join free boolean conjunctive queries

with an arbitrary number of atoms. Then, we show that it suffices to solve the maximum

independent set problem on this graph in order to check certainty(q). Finally, we

provide a syntactic condition on the query, such that for every query that satisfies this

condition, the conflict-join graph is claw-free; hence, certainty(q) is in P.

In order to define the generalized version of the conflict-join graph, we will

need the following notation. Given a graph G and a vertex v in it, the set NG(v) is the

110

neighborhood of v in G, i.e., the set of all vertices that are adjacent with v in G. Given

a self-join free conjunctive query q, and Ri, Rj two atoms in q, the query q{Ri,Rj} is the

query formed by removing from q all atoms but Ri and Rj .

Definition 9 Let q be an acyclic Boolean conjunctive query without self-join, and with

atoms R1, R2, · · · , Rk. Let τ be a join tree for q. Let I be an instance over the same

schema as q. The conflict-join graph, denoted HI,q,τ , is the graph constructed as follows:

• for every key-equal group K in Ri, where 1 ≤ i ≤ k, add a clique with vertices

{fRj : f ∈ K and Rj ∈ Nτ (Ri)}

• for every two atoms Ri, Rj connected with an edge in τ , for every Ri-fact f and

Rj-fact g such that {f, g} |= q{Ri,Rj}, add an edge between fRj and gRi

Example 7 Let q() : −R1(x, y), R2(y, x), R3(x, y, z), R4(z, x, y). In Figure 4.4, on the

left we show an inconsistent database instance over the same schema as q, in the middle

we show a join tree τ for the query, and on the right we show the conflict-join graph

HI,q,τ . Notice that the fact R1(a, b) is represented by a single vertex R1(a, b)R3 , where

the superscript R3 is the name of R1’s only neighbor. On the other hand, the fact

R3(a, b, c) is represented by three different vertices, one for every neighbor of R3. Ob-

serve also that the facts R1(a, b) and R3(a, b, c) together satisfy qR1,R3 . Therefore, we

add an edge between R1(a, b)R3 and R3(a, b, c)R1 . �

For a fixed query and constraints, the size of HI,q,τ is polynomial in the size

of the database. Assume that q has k atoms, and assume that each relation in the

111

R1 A B

a b

R2 B A

b a

R3 A B C

a b c
a b d

R4 C A B

c a b
c a d

R1 R2

R3

R4

{x, y} {x, y}

{x, y, z}

R1(a, b)R3 R2(b, a)R3

R3(a, b, c)R1 R3(a, b, c)R2

R3(a, b, c)R4

R3(a, b, d)R1 R3(a, b, d)R2

R3(a, b, d)R4

R4(c, a, b)R3 R4(c, a, d)R3

Figure 4.4: Top: Database instance I. Bottom left: A join tree τ for query q() :

−R1(x, y), R2(y, x), R3(x, y, z), R4(z, x, y). Bottom right: Conflict-join graph HI,q,τ

database I contains at most n tuples. Observe that for every two atoms Ri and Rj that

are neighbors in τ , for every Ri-fact f there is a vertex fRj , and for every Rj-fact g

there is a vertex gRi . Therefore, for each edge in τ we generate at most 2× n vertices.

There are k − 1 edges in any join-tree τ . So, HI,q,τ has at most (k − 1)× 2n vertices.

The relationship between the existence of a repair in which q is false and

the existence of a maximum independent set of a particular size in HI,q,τ still holds.

For instance, in Figure 4.4 there are four key-equal groups in the database. Observe

that the set of vertices S = {R1(a, b)R3 , R2(b, a)R3 , R3(a, b, c)R4 , R4(c, a, d)R3} is a

112

maximum independent set with four vertices. This independent set can be mapped

into a database instance r = {R1(a, b), R2(b, a), R3(a, b, c), R4(c, a, d)}. Indeed, r is

a repair that does not satisfy q. On the other hand, if we consider the set T =

{R3(a, b, d)R1 , R2(b, a)R3 , R4(c, a, b)R3}, which is also an independent set, but of size

three, then the database instance r′ = {R3(a, b, d), R2(b, a), R4(c, a, b)}, while it does

not satisfy q, it is not a repair because it is possible to add R1(a, b) without violating

any primary key constraints. In Lemma 5 we formally prove the relationship between

α(HI,q,τ) and the number of key-equal groups n.

In what follows, we will make use of some additional notation and terminology.

Every key-equal group in I, generates a clique in HI,q,τ . So, the set of vertices of the

conflict-join graph can be partitioned into disjoint sets C1, C2, · · · , Cn, where each set

Ci, for 1 ≤ i ≤ n, induces a clique. We will refer to edges that appear in these cliques

as conflict edges. The rest of the edges are generated from pairs of facts that satisfy

some query qRi,Rj for Ri and Rj that are neighbors in τ . We will refer to these edges

by the name join edges.

Lemma 5 Let q be an acyclic Boolean conjunctive query without self-join, and with

atoms R1, R2, · · · , Rk. Let τ be a join tree for q. Given an instance I over the same

schema as q, the following are equivalent:

• There exists a repair r of I such that r 6|= q

• α(HI,q,τ) = n, where n is the number of key-equal groups in I

Proof. For the purpose of this proof, we will fix an atom to be the root of τ . After

113

fixing a root, we can infer child-parent relationships between atoms in τ . Assuming

we have fixed a root in τ , we will denote by qRi the conjunctive query with atoms

the descendants of Ri in τ . To simplify the presentation of the proof, we will use the

following terminology to refer to vertices from the set {fRj : Rj ∈ Nτ (Ri)}, where f is

an Ri-fact: the vertex fRp where Rp is the parent of Ri will be called the parent vertex

of f ; any of the other vertices will be called a child vertex of f .

(⇒) In one direction, assume there is a repair r such that r 6|= q. We will show

how to construct an independent set M of size n. To construct M we use the algorithm

in Figure 4.5.

Input: q, I, τ , HI,q,τ , a repair r of I such that r 6|= q

1. let M = ∅
2. let R1 be the root of τ
3. for every Ri in q
4. if Ri 6= R1 then let Rp be the parent of Ri in τ
5. let children(Ri) be the set of children of Ri in τ
6. for every Ri-fact f in r
7. if there exists a minimal witness S of qRi in r s.t. f ∈ S
8. if Ri 6= R1 then add fRp to M
9. else
10. let Rj ∈ children(Ri) be s.t. for every minimal witness

S of qRj , S ∪ {f} 6|= qRj ∪Ri
11. add fRj to M
12.return M

Figure 4.5: Algorithm for constructing a maximal independent set from a repair that

falsifies the query.

Next, we argue that the algorithm in Figure 4.5, indeed constructs a set of

vertices M that is independent and has size n. First, we argue that M is independent.

114

Assume instead that M induces some edge. If M induces a conflict edge, then the

two endpoints of this edge are of the form fRi and gRj , where f and g are key-equal.

Because for every fact f from r the algorithm picks a single vertex of the form fRi ,

where i ∈ {1, · · · , k}, then it is not possible that f = g. Moreover, f and g cannot

be distinct key-equal facts because r is consistent. If M induces a join edge, then the

endpoints of this edge must be of the form fRi and gRj , where Ri and Rj are neighbors

in τ , f is an Rj-fact, g is an Ri-fact and {f, g} |= qRi,Rj . Assume w.l.o.g. that Ri

is the parent of Rj . Then, the vertex fRi must have been added to M in line 8, and

therefore, there must exist in r a minimal witness S of qRj such that f ∈ S. But we

also know that {f, g} |= qRi,Rj . It follows that S ∪ {g} |= qRj ∪ Ri. Then Rj does

not satisfy the condition required by the algorithm in line 10. Therefore, gRj could not

have been added to M . So far, we have argued that M is independent. Next, we argue

that M has size n. It is easy to see that for every non-root relation Ri, the algorithm

adds a distinct vertex for each Ri-fact of r. On the other hand, it is not obvious that

this is the case for the root relation as well. Assume towards a contradiction that for

some R1-fact f in r, the algorithm failed to add in M a vertex of the form fRj , where

Rj ∈ children(R1). This means that no child of R1 satisfied the condition in line 10.

Then, for every Rj ∈ children(R1), there must exist a minimal witness Sj of qRj such

that S ∪ {f} |= (qRj ∪ R1). But the set S =
⋃

j:Rj∈children(R1)

Sj has the property that

S ∪ {f} |= q, which contradicts the assumption that r 6|= q.

(⇐) In the opposite direction, we will show how, given an independent set

M of size n, we can construct a repair r that falsifies q. We construct r by adding a

115

fact f to r if and only if there exists a vertex fRj in M , where j ∈ {1, · · · , k}. Every

key-equal group generates a clique in HI,q,τ . Thus, there are n such cliques in HI,q,τ ,

and exactly one vertex per clique must be in M . Therefore, r contains exactly one fact

from every key-equal group. We have so far argued that r is a repair. Next, we argue

that r 6|= q. Assume instead that there exists a minimal witness S of q in r. In our

argument towards a contradiction, we will make use of the following property of the

repair constructed from M :

Property * Let Ri be an atom such that Ri 6= R1 and r |= qRi . Let S be a minimal

subset of r with the property that it satisfies qRi . Then for every f ∈ S, the parent

vertex of f is in M .

Proof of Property * We will prove this property by structural induction on τ .

Base step: If Ri is a leaf node, then every Ri-fact f is represented by a single

vertex, which is the parent vertex.

Inductive step: Let Ri be a non-leaf node in τ , and assume S is a minimal

witness of qRi in r. Obviously, for every Rj ∈ children(Ri), it also holds that S |= Rj .

For every Rj ∈ children(Ri), let Sj be the minimal subset of S that satisfies qRj . By

induction hypothesis, for every Rj ∈ children(Ri), for every fact f ∈ Sj , the parent

vertex of f is in M . Let g be the Ri-fact in S. If Rj is a child of Ri, and f is the Rj-fact

in S, then in HI,q,τ there must be an edge between gRj and fRi . Notice that fRi , being

the parent vertex of f , it is in M . It follows that for every child Rj , if the vertex gRj

would be in M it would induce an edge. Therefore, the parent vertex of g has to be in

the set M .

116

Going back to the proof of the lemma, we will assume that S is a minimal

subset of r that satisfies q. Then, for every Rj ∈ children(R1), it also holds that

S |= qRj . Let f be the R1-fact in S. From Property * it follows that for every g ∈ S,

where g 6= f , the parent vertex of g must be in M . Then, none of the facts fRj can be

in M because it would induce an edge. This conclusion contradicts the fact that r was

taken to contain all and only those facts f such that there is some vertex of the form

fRj in M . �

Lemma 5 establishes that the largest independent set in HI,q,τ has size equal

to n if and only if q is false in some repair of I. Moreover, the repairs of I that falsify

q are precisely the independent sets of HI,q,τ of size n. We observe that for a subclass

of acyclic and self-join free conjunctive queries with primary key constraints, HI,q,τ is

always claw-free. Next, in Theorem 7 we state and prove our result concerning the

tractability of a sub-class of acyclic and self-join free conjunctive queries.

Theorem 7 Let q be an acyclic boolean conjunctive query without self-join, and with

atoms R1, R2, · · · , Rk. If q has a join tree τ such that for every pair of atoms Ri, Rj

connected with an edge in τ , it holds that key(Ri) ⊆ vars(Rj) and key(Rj) ⊆ vars(Ri),

then for every database I, the conflict-join graph HI,q,τ is claw-free. Consequently,

certainty(q) is in P .

Proof. Let e1, e2, e3 be three edges in HI,q,τ that are adjacent in the same vertex. Two

cases are possible for these edges:

Case 1: At least two are conflict edges.

117

Assume e1 and e2 are conflict edges. Each conflict edge appears in exactly one

clique induced by a set Ci, for some i ∈ {1, · · ·n}. Since e1 and e2 are adjacent,

then they must appear in the same clique. Therefore, in HI,q,τ there is an edge

from every endpoint of e1 to every endpoint of e2

Case 2: At least two are join edges

Assume e1 and e2 are join edges. Let e1 be an edge between fRi and gRj , where f

is an Rj-fact and g is an Ri-fact. Notice that fRi can connect via a join edge only

to vertices with the superscript Rj . Let e2 be an edge between fRi and hRj , where

h is an Ri-fact, and h 6= g. Because the key(Ri) ⊆ vars(Rj), then the variables

in key(Ri) are shared between the atoms Ri and Rj . Since {f, g} |= qRi,Rj and

{f, h} |= qRi,Rj then the facts g and h must have the same key value. �

A few examples of queries that illustrate the application of Theorem 7 are:

• q() : −R1(x, y, z), R2(x, z, y), R3(y, z, x)

• q() : −R1(x, y), R2(y, x, z), R3(z, y)

There is a simple generalization of our tractability result to a slightly broader

class of queries, using Proposition 2. Using Proposition 2 we get the following corollary

of Theorem 7.

Corollary 4 Let q be a self-join free, acyclic boolean conjunctive query. Let q′ be the

query formed from q by removing all variables that are irrelevant. If q′ has a join tree τ

118

with the property that for every pair Ri, Rj of neighbors in τ , (key(Ri)∪key(Rj)) ⊆ Li,j,

then HI,q,τ is claw-free. Consequently, certainty(q’) is in P.

Given a query q, it can happen that some join tree satisfies the condition

of Theorem 7, and some other join tree does not. For example, let q() : −R1(x, y),

R2(y, x, x′), R3(x′, x, y). One join tree for this query is the path 〈R1, R3, R2〉. In the

given join tree, the atoms R1, R3 are such that key(R3) 6⊆ vars(R1); hence, Theorem 7

does not apply. Another join tree for q is the path 〈R1, R2, R3〉. For this join tree,

we have that key(R1) ∈ vars(R2), key(R2) ∈ vars(R1) and key(R2) ∈ vars(R3) and

key(R3) ∈ vars(R2). So, the condition of Theorem 7 is satisfied.

Queries are known to exist for which certainty(q) is in P and not first-

order expressible, but the condition of Theorem 7 is not satisfied. One such query

is q() : −R1(x, y), R2(z, x, y), R3(y, z). For this query, we show in Appendix C that

certainty(q) is in P, via a rather special algorithm.

4.5 General Dichotomy: Conjecture

4.5.1 A Conjecture on the Dichotomy of Consistent Query Answering

for Acyclic and Self-Join Free Conjunctive Queries.

Based on the intuition we have acquired from the results presented in Section

4.3 and Section 4.4, we conjecture that there exists a dichotomy on the complexity of

certainty(q), where q is a self-join free acyclic boolean conjunctive query, and that

the complexity of certainty(q) can be classified by the following condition:

119

Conjecture 1 Let q be a boolean acyclic and self-join free conjunctive query with k

atoms. Let q be such that certainty(q) is not first-order expressible. The complexity

of certainty(q) is determined by the following criterion:

• If there are two atoms Ri, Rj such that:

1. There is a cycle of length two between Ri, Rj in the attack graph, and

2. key(Ri) 6⊆ (vars(Rj))
+ or key(Rj) 6⊆ (vars(Ri))

+, where the closures are

taken in Σ,

then certainty(q) is coNP-complete.

• Otherwise, certainty(q) is in P.

Observe that the necessary and sufficient condition for certainty(q) to be

coNP-complete, as stated by Conjecture 1, coincides with sufficient condition for in-

tractability proven in Theorem 6. Therefore, if our dichotomy conjecture is correct,

then Theorem 6 takes care of the intractability side of the dichotomy, and the gap re-

mains on the side of queries with more than two atoms for which certainty(q) is in P

but not first-order expressible. In fact, there are queries with more than two atoms for

which certainty(q) is not first-order expressible and certainty(q) is expected to be in

P according to Conjecture 1, but for which it has not been proven that certainty(q) is

in P. One such example is the query q() : −R1(x, y), R2(y, x), R3(x, v, w, y), R4(x, z, v).

120

4.5.2 Evidence to the Dichotomy Conjecture

As a first piece of evidence that our conjecture might be correct, observe that

the dichotomy for two-atom queries presented in Section 4.2, and the sufficient condi-

tions for tractability and intractability of certainty(q) presented in Section 4.3 and

Section 4.4 are implied by Conjecture 1. In fact, the sufficient conditions for tractability

and intractability imply our dichotomy for queries with two atoms, which we explicitly

proved in Section 4.2.

Interestingly, Wijsen, independently in [62], has conjectured a condition for the

dichotomy of acyclic and self-join free conjunctive queries under primary key constraints,

that coincides with our Conjecture 1. He proves a similar result as our Theorem 6. In

the tractability side of the dichotomy, he gives a sufficient condition for certainty(q) to

be in P. His tractability result can be briefly summarized as follows: An attack Ri Rj

in the attack graph of a given query is called strong if key(Rj) 6⊆ vars(Ri)+; it is called

weak otherwise. A directed cycle in the attack graph is a strong cycle if at least one

attack in the cycle is strong; it is called weak otherwise. A directed cycle in the attack

graph is called terminal if the attack graph contains no directed edge from a vertex

in the cycle to a vertex outside the cycle; it is nonterminal otherwise. Finally, Wijsen

proves that if all cycles in the attack graph of a given query q are weak and terminal,

then certainty(q) is in P. There are examples of queries whose attack graph contains

cycles that are all weak and terminal, but whose complexity cannot be determined by

Theorem 7. One such example is the query q() : −R1(x, z, y), R2(y, z, x), R3(u, z). The

121

attack graph of this query contains the attacks R1 R2, R2 R1, R3 R1 and

R3 R2. It is easy to check that the only cycle, the cycle between R1 and R2, is both

weak and terminal. On the other hand, this query does not satisfy the condition of

Theorem 7. It is also the case that some query satisfies the condition of Theorem 7 but

its attack graph may contain some weak cycle that is nonterminal. For example, the

query q() : −R1(x, y, z), R2(y, z, x), R3(x, z, y) is tractable based on Theorem 7, but its

attack graph contains weak cycles that are nonterminal. To see this, notice that the

attack graph of this query contains a weak cycle between every two atoms.

The sufficient conditions provided by Theorem 7 and by Wijsen in [62], do

not capture all acyclic and self-join free queries for which, based on our dichotomy

conjecture, certainty(q) is expected to be in P. One such example is the query q() :

−R1(x, y), R2(z, x, y), R3(y, z). The complexity of certainty(q) cannot be determined

by Theorem 7 for this query. Also, its attack graph contains weak cycles between every

two atoms in q; hence, every weak cycle of length two is nonterminal.

Koutris and Suciu [45, 46], present a proof of a dichotomy theorem on the

complexity of certainty(q), where q is a boolean self-join free conjunctive query, under

a set of simple key constraints. The class of simple key constraints is a special class of

primary key constraints that have the following form: in every atom, either the primary

key is a single attribute, or all attributes form the key. In addition, they assume that on

a given database, it might be the case that some relation does not violate its primary

key. If this is the case, the corresponding atom in the query is marked as consistent.

More precisely, if R is an atom in q and the primary key of R is satisfied in I, then the

122

atom R in the query is marked as Rc. It is interesting that for the class of acyclic and

self-join free conjunctive queries and simple key constraints, their dichotomy condition

coincides with Conjecture 1. This observation further strengthens our intuition on the

boundary between tractability and intractability of certainty(q) of acyclic and self-

join free conjunctive queries under primary key constraints. Next, we will present the

dichotomy theorem proven in [45, 46], and argue about its equivalence with Conjecture 1

for the case of acyclic and self-join free conjunctive queries with simple keys.

A Dichotomy for self-join free conjunctive queries and simple key constraints.

We present this dichotomy as stated in [45]. Initially, the authors show how to simplify

the structure of a given conjunctive query q that is self-join free, by transforming it

into another self-join free conjunctive query q′, such that q′ has only binary atoms and

single-attribute keys. They prove a fundamentally important relationship between q and

q′, which is, that there is a first-order reduction from certainty(q) to certainty(q′),

and vice-versa. Based on this result, it suffices to focus on queries with binary atoms

and single-attribute key constraints, and prove a dichotomy for this class only. Next,

they describe how to build a graph representation G[q′] for the transformed query q′,

and provide a criterion that can be efficiently checked on the graph to determine the

complexity of certainty(q′) as being either in P or coNP-complete.

We describe next the construction of the query graph of a self-join free con-

junctive query q with all binary atoms and single-attribute key constraints.

123

x
eR

y

z

eS

v

eT

Figure 4.6: Graph of query q() : −R(x, y), S(y, z), T c(y, v)

The graph G[q] is constructed as follows:

• The set of vertexes V (q) is the set of all variables in the query.

• For every atom R(uR, vR), where R may be inconsistent or not, add a directed

edge eR(uR, vR), where uR is the starting point and vR is the ending point.

Edges in G[q] that have been generated from inconsistent relations are drawn as

curly arrows in the graph. Edges that are generated from consistent relations are drawn

as simple arrows. Figure 4.6 shows the query graph of q() : −R(x, y), S(y, z), T c(y, v).

The notation x → y is used to denote the fact that there exists a directed

path from variable x to variable y such that all edges in the path are consistent edges.

Otherwise, the notation x y is used. The authors introduce the following important

notion: given a self-join free conjunctive query q, for every atom R in the query, fd(R)

is the set fd(R) = {v ∈ V (G) | uR v in G − {eR}}, where G is the graph of q.

Intuitively, fd(R) is the set of all variables that are reachable from uR in the graph,

through a directed path that avoids eR. An interesting observation is that the set fd(R)

is in fact the set R+ introduced by Wijsen in [61], and also explained in Section 4.1.

124

Next, two important notions are used to express the dichotomy condition:

• [source-disjoint edges] Two inconsistent edges eR(uR, vR) and eS(uS , vS) are source-

disjoint if uR and uS do not belong in the same strongly connected component

(SCC) of G.

• [Unsplittable] Two edges eR and eS are unsplittable if there exists an undirected

path PR between either endpoint of eR to either endpoint of eS such that V (PR)∩

fd(R) = ∅, and symmetrically a path PS such that V (PS) ∩ fd(R) = ∅ 2.

In Figure 4.6, edges eR and eS are source-disjoint because x and y cannot

appear in the same strongly connected component. Notice that there is no directed

path from y to x. Moreover, these edges are not unsplittable. It is easy to see that

fd(R) = {x} and fd(S) = {y}. The path PR = (y) is such that PR ∩ fd(R) = ∅. On

the other hand, every path from either endpoint of eR to either endpoint of eS contains

the node y, which is in fd(S).

Finally, the dichotomy is formulated as follows:

Theorem 8 ([45]) If there exists a pair of source-disjoint and unsplittable edges in

G[q], then certainty(q) is coNP-complete; Otherwise, certainty(q) is in P.

We argue that Conjecture 1 and the condition in Theorem 8 are equivalent for

any acyclic and self-join free conjunctive query q, under simple key constraints. Here

we provide a concise argument that this equivalence holds true for the case when q has

2V (PR) is the set of vertices mentioned in the path PR, and V (PS) is the set of vertices mentioned
in the path PS .

125

only binary atoms, each with a single attribute as a primary key. This argument can be

generalized to arbitrary acyclic and self-join free conjunctive queries and simple keys.

To prove the equivalence between Conjecture 1 and the condition in Theorem 8,

assuming that the result proven in [45] is correct, it is enough to show that the following

holds true:

Proposition 4 Let q be a boolean, self-join free and acyclic conjunctive query with all

binary atoms, each atom with a single attribute as a primary key. Let Σ be a set of

simple key constraints. If G[q] contains a pair of source-disjoint and unsplittable edges,

then there exist two atoms Ri and Rj in q such that:

• there is a cycle of length two between Ri and Rj in the attack graph of q, and

• key(Ri) 6⊆ vars(Rj)+ or key(Rj) 6⊆ vars(Ri)+

Proof. (Sketch) If eRi and eRj are two source-disjoint edges, then uRi and uRj do not

belong in the same strongly connected component. Then, there is no directed path from

uRi to uRj , or there is no directed path from uRj to uRi . It follows that Ri and Rj are

atoms in q such that key(Ri) 6⊆ vars(Rj)+ or key(Rj) 6⊆ vars(Ri)+.

Next, we argue that if eRi and eRj are unsplittable, then there is a cycle of

two between Ri and Rj in the attack graph. Let τ be a join-tree of q. If there exists an

undirected path PRi between either endpoint of eRi to either endpoint of eRj such that

V (PRi) ∩ fd(Ri) = ∅, then, it can be proven by induction that there is a path between

Ri and Rj in τ such that Ri Rk for every Rk in this path. Similarly, if there exists an

undirected path PRj between either endpoint of eRj to either endpoint of eRi such that

126

V (PRj) ∩ fd(Rj) = ∅, then, it can be proven by induction that there is a path between

Ri and Rj in τ such that Rj Rk for every Rk in this path. �

Our extensive study of the complexity of certainty(q), as well as the re-

lated work on proving a dichotomy for certainty(q), suggest that our Conjecture 1

might be correct. However, considering that even the proof for the case of simple

key constraints is quite complex [46], it could take considerable effort before one can

prove a more general result for acyclic and self-join free conjunctive queries. More re-

cently, Fontaine [28] has established several intriguing results relating the complexity of

certainty(q) to the constraint satisfaction problem (CSP). Dichotomies for different

classes of the Constraints Satisfaction Problem have been studied for quite a while, and

some of the established results involve highly complex proofs. Thus, the results in [28]

suggest that proving a dichotomy for certainty(q) could be as challenging, and that

it might require new proof techniques other than those investigated so far.

127

Chapter 5

Combined Complexity of Consistent

Query Answering

The work we have presented so far, in the previous chapters, concerns data

complexity of consistent query answering, where the database is the only input to the

complexity. Many problems in databases are typically studied with respect to data

complexity, as in reality, the size of the query and the constraints is much smaller

than the size of the database. Therefore, the size of the database is considered as the

dominant input parameter to the complexity. However, realistic database applications

nowadays employ rich schemas with several relations. Thus, queries involving many

atoms are quite common in practice. In the database literature, complexity expressed

with respect to the size of the instance and query, is typically referred to as combined

complexity. The analysis of combined complexity of consistent query answering for

conjunctive queries and primary keys is the focus of this chapter. Since we infer the

128

relational database schema and constraints from the given query, we define the combined

complexity of consistent query answering as having two input parameters: the size of

the database, and the size of the query. The size of the query is the number of atoms

in the query. The combined complexity of conjunctive consistent query answering is

formalized in Definition 10.

Definition 10 comb-certainty is the following decision problem: Given an instance

I, a conjunctive query q and a tuple t, is t a consistent answer of q on I?

When q is boolean, comb-certainty is the following decision problem: Given

an instance I and a conjunctive query q, is “true” the consistent answer to q on I?

Next, in Section 5.1 we provide a theoretical discussion of the combined com-

plexity of consistent query answering for conjunctive queries and primary keys.

5.1 Conjunctive Queries and Primary Key Constraints

In Section 3.2.2, in Theorem 2 we gave a reduction from the consistent answers

of any arbitrary conjunctive query, to Binary Integer Programming. We also analyzed

the size the BIP programs generated by Theorem 2, and argued that these programs

have always size polynomial in the size of the database instance. On the other hand,

our analysis reveals that the size of the programs is exponential in the number of atoms

of the conjunctive query. Note that in Theorem 2, we generate an inequality constraint

for every minimal witness, and the number of minimal witnesses is exponential in the

number of atoms in the query. The reduction of Theorem 2 is an exponential reduction

129

of comb-certainty to Binary Integer Programming. Thus, we do not expect EQUIP

to scale well on conjunctive queries with many atoms. This observation motivates

the following question: Is it possible to reduce comb-certainty to Binary Integer

Programming, in polynomial time? In fact, it is unlikely that a polynomial reduction

from comb-certainty to BIP exists, as the complexity of comb-certainty turns out

to be ΠP
2 -complete. We state and prove this result in Theorem 9.

Theorem 9 comb-certainty is Πp
2-complete.

Proof. Initially, we argue about membership in class Πp
2. Membership in Πp

2 is a

direct consequence of the following two facts: 1) repair checking is in polynomial time

for primary key constraints, and 2) given an instance r and a boolean conjunctive query

q, checking r |= q is in NP. We prove hardness via a reduction from Π3SAT
2 . For a

fixed relational schema R and constraints Σ, given a formula Ψ of the form ∀p1, · · · , pn,

∃pn+1, · · · , pm.Φ1 ∧ · · · ∧ Φk ∧ · · · ∧ Φs where each clause Φk has three literals, we

construct in polynomial time a boolean conjunctive query q and a database I such that

Ψ is satisfiable if and only if true is the consistent answer to q on I.

The relation schema R consists of a binary relation U and four ternary relations

R0, R1, R2, R3. The first attribute of U is a primary key. No primary keys are defined

on the other relations. Next, we will show how to construct I and q. We will assume

that in each clause, literals in negated form appear before literals in un-negated form.

a) Construct I as follows:

• For every universally quantified variable pi, add to I the facts U(pi, 0) and U(pi, 1)

130

• Let R0 = {0, 1}3 − {(0, 0, 0)}, R1 = {0, 1}3 − {(1, 0, 0)}, R2 = {0, 1}3 − {(1, 1, 0)},

and R3 = {0, 1}3−{(1, 1, 1)} where {0, 1}3 is the set of ternary tuples with values

from {0, 1}.

b) Construct boolean q as follows:

• For every universally quantified variable pi add atom U(“pi”, xi)

• For every clause Φk add an atom Fk = Rk(xh, xi, xj), where:

Rk = R0 when Φk = (ph ∨ pi ∨ pj),

Rk = R1 when Φk = (¬ph ∨ pi ∨ pj),

Rk = R2 when Φk = (¬ph ∨ ¬pi ∨ pj),

Rk = R3 when Φk = (¬ph ∨ ¬pi ∨ ¬pj)

We argue that Ψ is not satisfiable if and only if q is false in some repair of I.

(⇒) In this direction, we assume that Ψ is not satisfiable. Then, there exists

an assignment ν to the universally quantified variables p1, · · · , pn, such that there exists

no assignment θ to the existentially quantified variables pn+1, · · · pm so that ν, θ together

form a truth assignment for Ψ. From ν, we construct a repair r of I as follows: a) We

add to r all facts from relations R0 - R3, and b) We add to r all facts U(“pi”, ν(pi)), for

1 ≤ i ≤ n. We argue that r is a repair, and that q is false in r. It is easy to see that r is

a repair, since no constraints exist on R0-R3, and for every key-value in U exactly one

fact U(“pi”, ν(pi)) exists. Let us assume, towards a contradiction, that q is true on r.

Then there exists a mapping θ of variables x1, · · · , xm to {0, 1} such that: a) for every

131

atom Fk = Rk(xh, xi, xj) in q, where 0 ≤ k ≤ 3, the fact Rk(θ(xh), θ(xi), θ(xj)) is in r,

and b) for every atom U(“pi”, xi) in q, the fact U(“pi”, θ(xi)) is in r. It is easy to see

that θ is a truth assignment to Ψ in this case, and that for every universally quantified

variables p1, · · · , pi, · · · pn, we have that θ(xi) = ν(xi), for 1 ≤ i ≤ n. It is clear now

that we have violated the assumption.

(⇐) In the opposite direction, assume that r is a repair of I on which q is

false. Let ν be an assignment to the universally quantified variables p1, · · · , pn defined

as follows: ν(pi) = 1 if and only U(“pi”, 1) is in r. We argue that there exists no

assignment θ to the existentially quantified variables pn+1, · · · pm so that ν, θ together

form a truth assignment for Ψ. Assume towards a contradiction that such assignment

θ exists. Let S be a set of facts from r constructed as follows: a) S contains all U -facts

of r, and b) for every atom Fk = Rk(xh, xi, xj) in q, where 0 ≤ k ≤ 3, S contains the

fact Rk(θ(xh), θ(xi), θ(xj)). It is easy to see that the set S is a minimal witness to q on

R, thus contradicting the assumption that q is false in r. �

Theorem 9 tells us that there is little hope in finding a polynomial reduc-

tion from comb-certainty to BIP. However, one may wonder if such a polynomial

reduction is possible for a sub-class of conjunctive queries. Observe that Theorem 9

constructs from Ψ a conjunctive query that may be cyclic. For instance, let Ψ =

∀p1, p2, p3, ∃p4, p5, p6.(p4∨p5∨p1)∧(p̄4∨p6∨p2)∧(p̄5∨ p̄6∨p3). Then q is the query q =

U(“p1”, x1), U(“p2”, x2), U(“p3”, x3), R0(x4, x5, x6), R1(x4, x6, x2), R2(x5, x6, x3). It is

easy to check that the intersection graph of q contains a cycle between atoms R0, R1

132

and R2, which is not possible to break without violating the connectedness condition.

As mentioned earlier, acyclic conjunctive queries are a class of conjunctive

queries that possess several good properties, one of those being the fact that acyclic con-

junctive query evaluation can be done in PTIME combined complexity [8]. This result

can be used to argue that, for the class of acyclic conjunctive queries, comb-certainty

is coNP-complete. The formal argument is presented in Theorem 10. We denote by

ac certainty the decision problem comb-certainty for acyclic conjunctive queries.

Theorem 10 ac certainty is coNP-complete.

Proof. The coNP-hardness of ac certainty follows from the fact that we can get

coNP-hardness even when the query is fixed, i.e., from coNP-hardness of certainty(q).

To show membership in coNP, note that one can check that true is not the consistent

answer of q, by first guessing a repair r, and then checking if q(r) = false. Repair

checking can be done in polynomial time. Moreover, q(r) can be evaluated in polynomial

time w.r.t. the size of r and q. Hence, the complement of ac certainty is in NP. �

Theorem 10, shows that the good properties of acyclic conjunctive queries

carry over to the computation of the consistent answers as well, as the complexity of

ac certainty is in a lower complexity class than comb-certainty. It follows from

Theorem 10 that there must exist a polynomial reduction from ac certainty to BIP. In

the remainder of this chapter we investigate polynomial reductions from ac certainty

to BIP, and rely on them to implement an approach for consistent query answering that

scales well on queries with many atoms.

133

5.2 Better Heuristics for Consistent Answers of Acyclic

Conjunctive Queries

In this section, we present a new, alternative strategy for modeling the problem

ac certainty with BIP. Ultimately, we will show how, given an acyclic conjunctive

query and a database instance, one can construct a polynomial-size system of linear

equalities and inequalities, whose solutions represent all possible repairs (similarly as in

Theorem 2). Then, we will adapt Algorithm EliminatePotentialAnswers to use

this new system for the case in which the query is acyclic, instead of System (2) used

for arbitrary conjunctive queries. Before presenting formally the reduction, we explain

the intuition with a simple example.

5.2.1 Acyclic and Self-Join Free Boolean Conjunctive Queries

We first handle the case of acyclic conjunctive queries that contain no self-

joins. In Theorem 11 we will give an alternative reduction of ac certainty to BIP,

for the case when q is self-join free. Before we present this reduction formally, we

bring to the reader’s attention Lemma 5 of Section 4.4, where we gave a polynomial

reduction from certainty(q) of acyclic and self-join free conjunctive queries, to the

Maximum Independent Set problem. We also argued that the size of the conflict-join

graph is polynomial in the size of the database and query. Therefore, for self-join free

acyclic conjunctive queries, Lemma 5 is a polynomial reduction of ac certainty to the

Maximum Independent Set problem. The reduction to BIP that we will present next,

134

in essence, it models the Maximum Independent Set problem on the conflict-join graph

HI,q,τ , with Binary Integer Programming.

Theorem 11 Let q be a self-join free and acyclic boolean conjunctive query. Let τ be

a join tree of q. Given a database instance I over the same schema as q, we construct

in polynomial time the following system of linear equalities and inequalities.

System (3):

Variables:

x
Ri
f ∈ {0, 1} for every Rj-fact f , and Ri adjacent with Rj in τ

Constraints:

(a)
∑

f∈K; Ri∈Nτ (Rj)

xRif = 1, for every relation Rj in I and K a key-equal group
of Rj.

(b) xRif + x
Rj
g ≤ 1, for every edge (Rj , Ri) in τ and {f, g} a minimal

witness of q{Rj ,Ri}.

Then the following statements are equivalent:

• There is a repair r of I such that q is false on r.

• System (3) has a solution.

Proof. To show that System (3) has a solution if and only if there exists a repair on

which q is false, we will show that System (3) is an encoding of the problem of finding

an independent set on the conflict-join graph HI,q,τ , with size equal to the number of

key-equal groups in I. In Lemma 5, we have already proven that such an independent

set gives rise to a repair on which q is false, and vice-versa.

135

Let HI,q,τ be the conflict-join graph with vertex set V = K1 ∪ · · · ∪ Ks and

edge set E = Ec ∪ Ew, where: K1, · · · ,Ks are the sets of vertices generated from

key-equal groups; Ec is the set of edges between key-equal facts; and Ew is the set of

edges generated from minimal witnesses. We can use variables xRif in System (3) to

represent vertices fRi in HI,q,τ . Constraints (a) encode that exactly one vertex from

each Kp, 1 ≤ p ≤ s, appears in an independent set of size s. Constraints (b) encode

that from each minimal witness {f, g} of some q{Rj ,Ri}, not both of x
Rj
f and xRig are in

an independent set. We show that the following statements are equivalent:

1. There is a maximum independent set of HI,q,τ that has size equal to s.

2. System (3) has a solution.

The proof follows from the fact that there is a one-to-one correspondence

between each maximum independent set of size s and each solution of System (3).

In one direction, if M is an independent set of size s, let x̂ be the solution formed by

assigning x̂Rif = 1 if and only if fRi is in M . Because M is independent, then for every

edge (fRi , gRj) ∈ Ew, at most one of fRi , gRj is in M . Therefore, x̂Rif + x̂
Rj
g ≤ 1 is

satisfied. Also, since M is independent and it has size s, from each clique Kp, exactly

one vertex is in M . Therefore, constraints (a) are satisfied. In the opposite direction, if

x̂ is a solution of System (3), let M be the set of vertices such that fRi ∈M if and only

if x̂Rif = 1. Since the constraints (a) are satisfied, then for every Kp, exactly one vertex

is in M . Because constraints (b) are satisfied, then for every edge (fRi , gRj) ∈ Ew, at

most one of fRi , gRj is in M . Obviously, M is independent and has size equal to s. �

136

We illustrate Thoerem 11 with a simple example.

Example 8 Let us consider the query q() : −R1(x, y, z), R2(y, x, z), R3(z, x, y) and

database I = {f1 = R1(a, b, c), f2 = R1(a, b′, c), f3 = R2(b, a, c), f4 = R2(b, a, c′), f5 =

R3(c, a, b), f6 = R3(c, a, b′′)}. A join tree τ for q is the path 〈R1, R2, R3〉. We construct

the system of constraints as described in Theorem 11:

(a)

xR2
f1

+ xR2
f2

= 1

xR1
f3

+ xR1
f3

+ xR3
f4

+ xR3
f4

= 1

xR2
f5

+ xR2
f6

= 1

(b)
xR2
f1

+ xR1
f3
≤ 1

xR3
f3

+ xR2
f5
≤ 1

The instance r = {f2, f4, f5} is a repair of I that does not satisfy q. From r we

can assign values to the variables of the program as follows: xR1
f1

= 0, xR2
f2

= 1, xR1
f3

=

0, xR3
f3

= 0, xR1
f4

= 1, xR3
f4

= 0, xR2
f5

= 1, xR2
f6

= 0. It is easy to check that the assigned

values satisfy all of the constraints. �

5.2.2 Acyclic and Self-Join Free non-Boolean Conjunctive Queries

Next, we shift our attention to the case when q is non-boolean. Again, we

will follow a similar strategy as in Section 3.2.2, Theorem 2, to construct a single BIP

instance from q and I, where the solutions to the constraints model the repairs of the

database and provide information about the potential answers that are not found as

query answers in each repair.

Theorem 12 Let q be a self-join free, acyclic conjunctive query. Let τ be a join tree

of q. Given a database instance I over the same schema as q, we construct in polynomial

137

time the following system of linear equalities and inequalities:

System (4):

Variables:

x
Ri
f ∈ {0, 1} for every Rj-fact f , and Ri adjacent with Rj in τ
w
f,g
∈ {0, 1} for every (Ri, Rj) adjacent in τ , and {f, g} a minimal wit-

ness of qi,j = {Rj , Ri}
ua ∈ {0, 1} for every a ∈ q(I)

Constraints:

(a)
∑

f∈K; Ri∈Nτ (Rj)

xRif = 1, for every relation Rj in I and every key-equal
group K of Rj.

(b) xRif + x
Rj
g − wf,g ≤ 1, for every (Rj , Ri) edge in τ , and {f, g} minimal

witness of q{Rj ,Ri}.

(c)
∑

a∈Uf,g

ua ≥ |Uf,g| · wf,g, for every (Rj , Ri) edge in τ , and {f, g} a minimal
witness of q{Rj ,Ri}. Uf,g is the set {a : exists S ⊆
I s.t. q(S) = {a} and f, g ∈ S}.

Then the following statements are equivalent:

• There is a repair r of I such that q[a] is false on r.

• System (4) has a solution (x̂, ŵ, û) such that ûa = 0.

Proof. (⇒) In this direction we argue that if q[a] is false on some repair r, then System

(4) has a solution (x̂, ŵ, û) that assigns value 0 to ûa. Since q[a] is a boolean query,

then, System (3) of Theorem 11 has a solution x̂. Let û be such that ûa = 0 and ûb = 1

for every b ∈ q(I) such that b 6= a. Let ŵf,g = 0 if and only if f and g are two facts

that appear in some minimal witness S of q[a]. We will argue that (x̂, ŵ, û) is a solution

to System (4). Because the constraints (a) are identical in both systems, we need only

argue that constraints (b) and (c) are satisfied. From a pair of facts {f, g} that appear

together in a minimal witness of q, an inequality of type (b) and an inequality of type (c)

138

is generated. Let f be an Rj-fact and let g be an Ri-fact. One possibility is that there

exists a minimal witness S of q[a] that contains f and g. In this case, there must be an

inequality xRif + x
Rj
g ≤ 1 in System (3). Because x̂ satisfies this inequality, then (x̂, ŵ)

trivially satisfies the inequality xRif +x
Rj
g −wf,g ≤ 1. Moreover, since we have assigned 0

to ŵf,g, then
∑

a∈U ua ≥ |Uf,g| ·wf,g is trivially satisfied. The other possible scenario for

the pair {f, g} is that there exists no minimal witness of q[a] that contains both these

facts. In this scenario, it might happen that both x̂Rif and x̂
Rj
g are equal to 1. But,

since we have assigned 1 to ŵf,g in this case, then the inequality xRif + x
Rj
g − wf,g ≤ 1

is satisfied by (x̂, ŵ). The inequality of type (c) generated from the pair {f, g}, is such

that every variable in the left-hand side is different from ua. Since ûb = 1 for every

b 6= a, then the sum of terms in the left-hand side equals |Uf,g|. Because ŵf,g = 1, the

inequality is satisfied.

(⇐) In the opposite direction, we show that if (x̂, ŵ, û) is a solution such that

ûa = 0, then the potential answer a is not found as an answer to q on some repair.

Towards this goal, it is enough to show that (x̂, û) is a solution to System (3) generated

from q[a] and I. Obviously, x̂ satisfies the constraints (a) in System (3). Let f and g be

two facts that appear together in some minimal witness of q[a]. Assume f is an Rj-fact

and g is an Ri-fact. In System (4) there must exist an inequality xRif + x
Rj
g − wf,g ≤ 1

and an inequality
∑

a∈U ua ≥ |Uf,g| · wf,g. In the later, the variable ua must appear in

the left-hand side. Since ûa = 0, then ŵf,g must be 0 in order for this inequality to be

satisfied. Since ŵf,g = 0 and x̂Rif + x̂
Rj
g − ŵf,g ≤ 1, then it must be that x̂Rif + x̂

Rj
g ≤ 1.

It is obvious now that (x̂, û) satisfies the constraints (b) in System (3).

139

Finally, we argue that System (4) in Theorem 12 has size polynomial in the

size of the database and the size of the query. We assume that the arity of the query

is fixed and the size of the query is the number of atoms in it. Let n be the size of

a relation in a given database I. Let q be a query with arity s and with k atoms. If

τ is a join tree for q, then the number of edges in τ is k − 1 1. For every two atoms

Ri and Rj that are connected by an edge in τ , a distinct variable is used to represent

the Ri-facts and the Rj-facts. Since there are k − 1 edges in τ , there are 2n(k − 1)

variables in System (4) that represent database facts. The number of potential answers

to q is ns. So, there are ns variables of the form uaj
. The total number of variables is

2n(k− 1) + ns. Since s is fixed, the number of variables is polynomial in the size of the

database and the query. There is a constraint of type (a) for every key-equal group.

There are at most n key-equal groups per relation. The number of constraints (a) is

kn. One inequality of type (b) and one inequality of type (c) is constructed for every

pair of facts f, g such that f ∈ RIj , g ∈ RIi , there is an edge (Rt, Rm) in τ and {f, s} is

a minimal witness of qRi,Rj . Therefore, there are at most (k − 1)n2 constraints of type

(b). The number of constraints in System (4) is obviously polynomial in the size of the

database and the size of the query. �

5.2.3 Acyclic Conjunctive Queries Containing Self-Joins

Theorem 12 applies to acyclic conjunctive queries that have no repeated rela-

tion names. Here, we show how to handle repeated relation names.

1the number of edges in a tree with k nodes is k − 1

140

So far, under the assumption that the query was self-join free we have used

relation names to refer to atoms in the query. In the presence of self-joins, we need

to distinguish between atoms and relations. Let R be a relation schema with relation

names {R1, · · · , Rm}. Given a conjunctive query q over the schema R, we will denote

atoms in q using F1, · · · , Fi, · · · , Fk, where each atom Fi is of the form Fi = Rpi(vi),

where 1 ≤ pi ≤ m. Note that the join tree of an acyclic conjunctive query has the atoms

of q as nodes. So, F1, · · · , Fk are the nodes of a join tree of q. Given a conjunctive query

q with atoms F1, · · · , Fk and a database instance I over the schema of q, we say that a

fact f is an Fi-fact if Fi is an atom Fi = Rpi(vi) in q and f is an Rpi-fact in I.

Next, we will show how to modify System (4) to handle queries that may

contain self-joins. The formulation of the constraints becomes quite involved in this case,

as we need to distinguish between atoms and relation names. However, the intuition is

quite simple. First, we construct constraints (a), (b) and (c) as in System (4), assuming

every relation name is distinct, i.e., assuming each occurrence of the same relation R

is conceptually referring to a different copy of R in the database. So far, a solution

to (a), (b) and (c) encodes a database instance that does not satisfy q, but that is

not necessarily a repair. The reason is because a solution to (a), (b) and (c) may be

encoding a repair on which key-equal facts f and g are selected from two independent

copies of the same relation. To avoid this scenario, we add more equality constraints

that guarantee that in each copy of the same relation, the same fact is chosen from a

key-equal group.

141

Theorem 13 Let R be a relation schema with relation names {R1, · · · , Rm}. Let q(z) :

−F1, · · · , Fk be a given acyclic conjunctive query with atoms F1, · · · , Fk, where each

atom Fj is of the form Fj = Rpj (vj), for 1 ≤ pj ≤ m. Let τ be an arbitrary join tree of

q. Let I be a given a database instance. We construct in polynomial time the following

system of linear equalities and inequalities:

System (5):

Variables:

x
Fi
f ∈ {0, 1} for every Fj-fact f , and Fi adjacent with Fj in τ
w
f,g
∈ {0, 1} for every (Fi, Fj) adjacent in τ , and {f, g} a minimal witness

of qi,j = {Fj , Fi}
ua ∈ {0, 1} for every a ∈ q(I)

Constraints:

(a)
∑
f∈K

Fi∈Nτ (Fj)

xFif = 1, for every atom Fj = Rpj (vj) and K a key-equal
group of Rpj .

(a’)
∑
f∈K

Fi∈Nτ (Fj)

xFif =
∑
f∈K

Fi∈Nτ (Ft)

xFif

for every Fj, Ft s.t. Fj = Rpj (vj), Ft = Rpt(vt)
and pj = pt, and for every key-equal group K in
Rpj (or, Rpt).

(b) x
Fi
f + xFj

g
− w

f,g
≤ 1, for every (Fj , Fi) adjacent in τ and {f, g} a min-

imal witness of qi,j = {Fj , Fi}.
(c)

∑
a∈Uf,g

ua ≥ |Uf,g| · wf,g for every (Fj , Fi) edge in τ , and {f, g} a minimal
witness of {Fj , Fi}, where Uf,g = {a : exists S a
minimal witness of q[a] s.t. f ∈ S and g ∈ S }

Then the following statements are equivalent:

• There is a repair r of I such that q[a] is false on r.

• System (5) has a solution (x̂, ŵ, û) such that ûa = 0.

Proof. System (5) is different from System (4), mainly because it contains constraints

(a’). We will prove this theorem using Theorem 12. From q, we construct a new self-join

142

free query q′ with atoms Fj(vj). i.e., we are using the atom names of q as relation names

of q′. Moreover, let I ′ be the database constructed from I by copying Fj-facts of I into

I ′. So, each relation of I is copied into I ′ as many times as the relation name appears

in q. We make the following observation about q and q′:

Observation 1: There exists a repair r on which q[a] is false, if and only if there exists

a repair r′ of I ′ on which a is not an answer to q′, and r′ is such that for every two facts

Fi(t) and Fj(s), if Fi and Fj mention the same relation name in q, then t = s.

Proof of Observation 1 Let r be a repair of I, on which a is not found as an answer

to q. We construct a repair r′ of I ′ by adding an Fj-fact to r′ for every Fj-fact of r.

Observe that r′ is such that, if Fi and Fj are atoms in q that mention the same relation

name, then the relations Fi and Fj in r′ have the same tuples. Assume towards a

contradiction that there exists a minimal witness S′ of q′[a] in r′. Construct S ⊆ I by

adding an Fi-fact if and only if there is an Fi-fact in r. Then, obviously, S is contained

in r and S is a minima witness of q[a]. In the opposite direction, let r′ be a repair of

I ′ on which q[a] is false, and such that Fi and Fj in r′ have the same tuples whenever

Fi and Fj are atoms in q that mention the same relation name. A repair r can be

constructed by adding to it an Fi-fact for every Fi-fact in r′. Again, if S is a minimal

witness of q[a], a minimal witness S′ of q′ can be constructed by adding to S′ an Fi-fact

for every Fi-fact in r.

To prove our theorem, after proving Observation 1, it suffices to show that

System (5) has a solution (x̂, ŵ, û) such that ûa = 0, if and only if there exists a repair

r′ of I ′ on which a is not an answer to q′, and r′ is such that for every two facts Fi(t) and

143

Fj(s), if Fi and Fj mention the same relation name in q, then t = s. In one direction,

from Theorem 12 we know that every repair r′ of I ′ can be mapped into a solution

(x̂, ŵ, û) to System (4). Obviously, (x̂, ŵ, û) is a solution to constraints (a), (b) and (c)

of System (5). Additionally, if r′ is such that t = s for every two facts Fi(t) and Fj(s),

where Fi and Fj mention the same relation name in q, then it follows straightforwardly

that constraints (a’) are also satisfied by (x̂, ŵ, û). In the other direction, a solution

(x̂, ŵ, û) to System (5), is obviously a solution to System (4) constructed for q′ and I ′.

Then, this solution can be mapped into a repair r′ of I ′ on which q[a] is false. Because

(x̂, ŵ, û) satisfies the constraints (a’), it follows that r′ has the property that for every

two facts Fi(t) and Fj(s), if Fi and Fj mention the same relation name in q, then t = s.

Finally, it is easy to see that number of constraints (a’) is polynomial in the

size of the database and query, since in the worst case, when all atoms mention the

same relation name, there will be quadratically many equalities of type (a’). �

5.2.4 Algorithm for Consistent Answers of Acyclic Conjunctive Queries

In Section 3.3, we gave an algorithm for computing the consistent answers

to conjunctive queries using BIP. In Algorithm EliminatePotentialAnswers, we

used the BIP program generated as described in Theorem 2 as a building block. The

System (5) generated as described in Theorem 13, is an alternative method of encod-

ing certainty(q) when q is acyclic. To be able to still apply the strategy of Al-

gorithm EliminatePotentialAnswers for iteratively filtering false potential an-

swers, we need to show that Algorithm EliminatePotentialAnswers correctly

144

computes the consistent answers, even if we use System (4) instead of System (3),

when the input query is acyclic and self-join free. In Figure 5.1 we present Algorithm

EliminatePotentialAnswers-AC, which uses Theorem 12 instead of Theorem 2 to

compute the consistent query answers to acyclic and self-join free conjunctive queries.

In Theorem 14 we prove correctness of the algorithm.

Theorem 14 Let q be an acyclic and self-join free conjunctive query and I a database

instance. Then, Algorithm EliminatePotentialAnswers-AC computes exactly the

consistent query answers to q on I.

Proof. The proof will make use of the following two loop invariants:

1. At the i-th iteration, every optimal solution to Pi is also a solution to the con-

straints C.

2. At the end of the i-th iteration, if filter is true then the number of elements in

consistent that are false is at least i.

The first loop invariant follows easily from the fact that Ci contains all the

constraints of C. The second loop invariant is proved by induction on i. Assume that

at the end of the i-th iteration, the number of false elements in consistent is greater

than or equal to i. For every j ∈ [1..p] such that consistent[j] is false, there must exist

a constraint uaj
= 1 in Ci. We will show that at the termination of iteration i + 1, if

filter is true, then the number of elements in consistent that are false is greater than

or equal to i + 1. Since filter is true, the BIP engine has returned an optimal solution

145

Algorithm EliminatePotentialAnswers-AC

1. Input
q : acyclic conjunctive query
I : database over the same schema as q
C: the set of constraints constructed from q, I as described in Theorem 13
{a1, · · · ,ap}: the set of potential answers to q on I

2. let Consistent be a boolean array with subscripts 1, . . . , p. Consistent[j]
represents the element aj and every entry is initialized to true.
3. let i := 1
4. let filter:=true
5. let C1 := C
6. while (filter=true)
7. let Pi = min{

∑
j∈[1..p] uaj

|subject to Ci}
8. Evaluate Pi using BIP engine
9. let (x∗, u∗) be an optimal solution for Pi

10. let Ci+1 := Ci
11. let filter:=false
12. for j := 1 to p
13. if u∗aj

= 0 then

14. let Consistent[j]:=false
15. Add to system Ci+1 the equality (uaj

= 1)

16. let filter:=true
17. let i := i+ 1

18. for j := 1 to p
19. if Consistent[j] = true
20. return aj

Figure 5.1: Algorithm for computing the consistent query answers to acyclic conjunctive

queries by eliminating potential answers.

146

(x∗, w∗, u∗) to Pi+1 such that u∗aj
= 0 for at least some j ∈ [1..p]. Notice that it is not

possible that at some previous iteration, consistent[j] has been assigned false. If that

were the case, then the constraint uaj
= 1 would be in Ci+1, and (x∗, w∗, u∗) would not

be a solution of Ci+1. Therefore, at iteration i+ 1, at least one element in consistent

that has value true is changed to false.

We will first argue that the algorithm always terminates. The second loop

invariant implies in a straightforward manner that the algorithm terminates in at most

p iterations.

Next, we show that for any m ∈ [1..p], a potential answer am is a consistent

answer if and only if consistent[m] = 1 at termination. In one direction, if am is

a consistent answer, then Theorem 13 implies that for every solution (x̂, ŵ, û) to the

constraints C, it always holds that ûam = 1. Since for every i ∈ [1..p], every optimal

solution to Pi is also a solution to C, we have that the algorithm will never execute line

14 for j = m. Hence, the value of consistent[m] will always remain true.

In the other direction, if consistent[m] is true after the algorithm has ter-

minated, then assume towards a contradiction that am is not a consistent answer. If

the algorithm terminates at the i-th iteration, then every solution to Pi is such that

it assigns value 1 to every variable uaj
, for j ∈ [1..p]. So, the minimal value that the

objective function of Pi can take is p. If am were not a consistent answer, we know

from Theorem 13 that there must be a solution (x̂, ŵ, û) to C such that ûam = 0. We

will reach a contradiction by showing that we can construct from (x̂, ŵ, û) a solution

(x∗, w∗, u∗) to Pi such that
∑

j∈[1..p] u
∗
aj
< p. The vectors x̂, ŵ, û are defined as follows:

147

x∗ = x̂; u∗am
= 0; u∗aj

= 1 for j 6= m; for every pair of facts f and g, if they both appear

in a minimal witness of q[am] in I, then let w∗f,g = 0, otherwise, let w∗f,g = 1. Because

the equality constraints (a) and (a’) in Ci and in C are the same, we have that x∗ will

satisfy the constraints (a) in Ci. For any given pair of facts f and g that together appear

in some minimal witness of q on I, there is one constraint (b) and one constraint (c).

Two scenarios are possible for f and g: They may or may not appear in some minimal

witness of q[am]. In case f and g do appear in some minimal witness of q[am], then we

know we have assigned w∗f,g = 0. In C there is an inequality xRkf + xRlg − uf,g ≤ 12 and

an inequality of the form · · ·+uam + · · · ≥ |U | ·wf,g. Both these inequalities are satisfied

by (x̂, ŵ, û). Since ûam = 0, then it must be that ŵf,g = 0. Subsequently, it must hold

that x̂Rkf + x̂Rlg ≤ 1. Since x̂ = x∗ then xRkf + xRlg − wf,g ≤ 1 is satisfied by x∗, w∗.

Moreover, since x∗am = 0 and w∗f,g = 0, it follows that · · ·+ u∗am + · · · ≥ |U | · w∗f,g holds

true. The other scenario for f and g is that they never participate in a minimal witness

to q[am] in I. In this case, w∗f,g is equal to 1. Hence, the inequality xRkf +xRlg −wf,g ≤ 1

is trivially satisfied by (x∗, w∗). Let us consider now the other constraint, which is,∑
a∈U ua ≥ |U | · wf,g. In this inequality, the variable uam does not appear. Since we

have that uaj = 1 for j 6= m, then the sum
∑

a∈U ua is equal to |U |. Since w∗f,g = 1,

then the inequality
∑

a∈U ua ≥ |U | · wf,g is satisfied as an equality. We have so far

argued that constraints (a), (a’), (b) and (c) in Ci are satisfied by (x∗, w∗, u∗). Finally,

all equality constraint that may have been added to C during previous iterations are

satisfied since u∗aj
= 1 for j 6= m, and the equality u∗am

= 1 cannot be in Ci. Now, it is

2Rk, Rl are the names of the relations in which, respectively, g and f exist.

148

clear that (x∗, w∗, u∗) is a solution to Pi such that
∑

j∈[1..p] u
∗
aj

= p−1. This contradicts

the assumption that solutions to Pi yield minimal value p of the objective function. �

5.2.5 Implementation

We use the name EQUIP-AC to refer to the implementation of EQUIP that

uses Theorem 13 for acyclic conjunctive queries. In Section 3.4 we described the archi-

tecture of EQUIP. In Phase 1, the database pre-processing module would compute the

minimal witnesses to the query and pass them to the module responsible for building the

constraints of the BIP program. In Theorem 2, the constraints are generated from the

key-equal groups and the minimal witnesses to the query. On the other hand, in Theo-

rem 13, the constraints are generated from the key-equal groups and minimal witnesses

to two-atom sub-queries, following an arbitrarily chosen join tree. Due to these differ-

ences, in order to use Algorithm EliminatePotentialAnswers-AC for the acyclic

and self-join free queries, we need to adapt Phase 1 and Phase 2. Observe that one

can avoid modifying Phase 1, by only modifying Phase 2 to build the constraints in

the fashion of Theorem 13 based on the minimal witnesses of the query. However, the

number of all minimal witnesses to a conjunctive query is exponential in the size of the

query. The advantage of the reduction for acyclic and self-join free queries lies precisely

on the fact that we avoid reasoning based on all minimal witnesses of a given query q,

and rather focus on minimal witnesses to two-atom sub-queries of q. Hence, computing

all minimal witnesses in Phase 1 goes against our purpose for developing an approach

that is polynomial in the size of the instance and query.

149

Next, in Figure 5.2 we describe the Phase 1 that EQUIP-AC executes prior

to running Algorithm EliminatePotentialAnswers-AC (see Appendix A.2 for a

more detailed description of Phase 1). In Phase 1, we still pre-compute a portion

of the consistent answers from the consistent part of the database. Then, based on a

chosen join-tree τ , we generate a view WITNESSES {Ri, Rj} for every two atoms that

are adjacent in τ . The view WITNESSES {Ri, Rj} holds all pairs of joining facts from

Ri and Rj , such that the two joining facts are part of a minimal witness to q that gives

rise to a potential answer that is not in ANS FROM CON. Finally, for every relation

Ri, we create a view RELEVANT Ri that holds (i) all Ri-facts that are part of a fact in

at least one of the views WITNESSES {Ri, Rj}, for 1 ≤ j ≤ l, and (ii) all Ri-facts that

are key-equal with some fact from the group of facts added to RELEVANT Ri in (a).

150

Phase 1: Database pre-processing (for acyclic conjunctive queries)

Input:
R : Schema with relation names {R1, · · · , Ri, · · · , Rl}
q(z) : −F1, · · · , Fj , · · · , Fk, where Fj = Rpj (xj,yj) for j ∈ [1..k] and 1 ≤ pj ≤ l
I : database over R

1. generate a join tree τ for q
2. for all Ri, 1 ≤ i ≤ l

create view KEYS Ri that contains all tuples d s.t. there exists more than one
fact of the form Ri(d,) in I
3. create view ANS FROM CON that contains all tuples t s.t.

- t ∈ q(I)
- there exists a minimal witness S for q(t), and s.t. no fact Ri(d,) ∈ S has its

key-value d in KEYS Ri

4. for all edges (Fi, Fj) in τ, 1 ≤ i ≤ l, 1 ≤ j ≤ l
create view WITNESSES {Fi, Fj} with tuples (ti, tj,a) s.t.

- Rpi(ti) ∈ I, Rpj (tj) ∈ I
- the set Si,j = {Rpi(tpi

), Rpj (tpj
)} forms a minimal witness for {Fi, Fj}

- there exists a minimal witness S for q[a] s.t. Si,j ∈ S and a is a potential
answer that is not in ANS FROM CON
5. for all Ri, 1 ≤ pi ≤ l
(a) create view RELEVANT Ri that contains all tuples t s.t.

- Ri(t) ∈ I, and
- there exists an edge (Fj , Fm) in τ , where pj = i, and
- there exists a tuple (t, ,) in WITNESSES {Fj , Fm}

(b) add to view RELEVANT Ri all tuples t′ s.t.
- Ri(t

′) ∈ I is a fact, key-equal with a fact in RELEVANT Ri

Figure 5.2: Description of Phase 1 for acyclic conjunctive queries.

After Phase 1 finishes executing, Phase 2 runs to construct the binary inte-

ger program using the relevant facts in views RELEVANT Ri, and witnesses in views

WITNESSES {Ri, Rj}. Subsequently, Phase 3 evaluates the program to iteratively

filter potential answers.

151

5.3 Experimental Evaluation

The main goal of our experiments has been to demonstrate the efficiency and

scalability of EQUIP-AC in computing the consistent answers to acyclic conjunctive

queries with several atoms, when compared to EQUIP. We evaluate both systems

on a variety of acyclic conjunctive queries with varying number of atoms atoms, over

synthetic databases generated with different parameters.

5.3.1 Experimental Setting

Our experiments have been carried out on an Amazon EC2 instance with 8GB

of RAM, running Ubuntu v12.10, DB2 Express C v10.1, and IBM’s ILOG CPLEX v12.6

for solving the binary integer programs. EQUIP-AC is implemented in Java.

In these experiments, we use synthetic inconsistent databases that are gener-

ated randomly, by varying several parameters in the generation of the data. We use

a different benchmark than the one we used to evaluate EQUIP, mainly because the

purpose of our experiments with EQUIP was to demonstrate its scalability w.r.t. the

database size, and the benchmark queries of Table 3.3 have at most 3 atoms. We

chose a set of conjunctive queries with up to 7 atoms, to compare the performance of

EQUIP-AC vs EQUIP with respect to the size of the query. Next, we discuss the

experimental queries and the generation of the inconsistent databases into more detail.

Benchmark queries Since the purpose of our experiments with EQUIP-AC is to

investigate the performance of computing the consistent answers subject to the size of

152

the queries, our experimental queries are chosen to have a large number of atoms, up

to 7 atoms (see Table 5.1). All of the queries in Table 5.1 are such that certainty(q)

and ac certainty are coNP-complete. Queries in Table 5.1 are similar, in the sense

that they involve joins on attributes that are not part of the key, but they have different

number of atoms and free variables. There are a few reasons that have influenced our

choice of the benchmark queries. One important reason is that the presence of nonkey-

to-nonkey joins, quite often, gives rise to coNP-hardness [42]. Intuitively, in practice,

nonkey-to-nonkey joins introduce higher complexity in reasoning about the consistent

answers. To understand this, consider a query q() : R(x, y), S(y, z), which involves a

nonkey-to-key join. To reason about the consistent answers of q on any given database

I, one need not consider the repairs of S in I, because every key-value of S appears in

every repair. Another motivation for using queries that involve the same type of join

is that, in order to analyze the behavior of the system with respect to the number of

atoms, it is important that we preserve certain “patterns” in the queries as we increase

the number of atoms. For instance, if you consider queries Q1 to Q5, they all have

one free attribute, only ternary atoms, and only nonkey-to-nonkey joins. A similar

observation can be made for queries Q6 to Q10.

Database generation Our synthetic inconsistent databases are generated in two

steps: a) generate a consistent database, and b) from the consistent database, generate

an inconsistent one by inserting tuples that violate some key constraints.

153

Q1(z) : −R1(x1, y, z), R2(x2, y, v), R3(x3, y)
Q2(z) : −R1(x1, y, z), R2(x2, y, v), R3(x3, y), R4(x4, y)
Q3(z) : −R1(x1, y, z), R2(x2, y, v), R3(x3, y), R4(x4, y), R5(x5, y),
Q4(z) : −R1(x1, y, z), R2(x2, y, v), R3(x3, y), R4(x4, y), R5(x5, y), R6(x6, y)
Q5(z) : −R1(x1, y, z), R2(x2, y, v), R3(x3, y), R4(x4, y), R5(x5, y), R6(x6, y), R7(x6, y)
Q6(z, v) : −R1(x1, y, z), R2(x2, y, v), R3(x3, y)
Q7(z, v) : −R1(x1, y, z), R2(x2, y, v), R3(x3, y), R4(x4, y)
Q8(z, v) : −R1(x1, y, z), R2(x2, y, v), R3(x3, y), R4(x4, y), R5(x5, y)
Q9(z, v) : −R1(x1, y, z), R2(x2, y, v), R3(x3, y), R4(x4, y), R5(x5, y), R6(x6, y)
Q10(z, v) : −R1(x1, y, z), R2(x2, y, v), R3(x3, y), R4(x4, y), R5(x5, y), R6(x6, y), R7(x6, y)

Table 5.1: Benchmark queries used to evaluate EQUIP-AC against EQUIP

a) Generation of the consistent databases The consistent databases are gener-

ated in a similar way as the ones we used for EQUIP. Apart from the parameter r size,

which determines the number of tuples per relation, we introduce two additional pa-

rameters. One parameter, α, determines for each relation Ri, the percentage of Ri-facts

that participate in a minimal witness of the query. In our experiments, we always fix

this parameter to 10%. The other parameter, which we call join multiplicity, determines

for each Ri, Rj that join in a query, the number of Ri-facts that join with a single Rj-

fact, and vice-versa. For example, if join multiplicity=5, and Ri, Rj are two atoms that

share a variable in any of the queries in Table 5.1, then 10% of the Ri-facts join with

some Rj-fact, and each such Ri-fact joins with five Rj-facts. Also, 10% of the Rj-facts

join with some Ri-fact, and each such Ri-fact joins with five Rj-facts. The role of the

join multiplicity parameter is to control the number of minimal witnesses to the queries

of Table 5.1, where higher join multiplicity means more minimal witnesses to the query.

The third attribute in all of the ternary relations, which is sometimes projected out

154

and never used as a join attribute in the queries of Table 5.1, takes values from a uni-

form distribution in the range [1, r size/10]. In each relation, there are approximately

r size/10 distinct values in the third attribute, each appearing approximately 10 times.

b) Generation of the inconsistent databases The generation of the inconsistent

databases is done exactly as we did for EQUIP, in Section 3.5.

Experimental Parameters Unless otherwise stated, our experiments use databases

with 10% of the tuples involved in conflicts, and each key-equal group containing two

facts. In our evaluations, we measure the time for computing the consistent answers as

the time between receiving the query and returning the last consistent answer to the

query, i.e., every processing step is accounted for in the total evaluation time. On each

database, we run each query five times and take the average. Again, we set the GAP

parameter to 0.1, and parameter EpInt to 0.

5.3.2 Experimental Results

Next, we present the results of our experiments with the queries of Table 5.1.

Initially, we focus on comparing the performance of EQUIP-AC against EQUIP.

Comparing EQUIP-AC against EQUIP Initially, we compare EQUIP-AC against

EQUIP on a database with 100K tuples per relation, and parameter join multiplicity

set to 5. Figure 5.3 shows the result of this comparison on queries Q1 to Q5. As ex-

pected, Figure 5.3 clearly shows that as we increase the number of atoms, EQUIP-AC

155

significantly outperforms EQUIP. In fact, EQUIP fails to evaluate query Q10 due to

the BIP solver running out of memory. The inconsistent dataset is generated in such

a way that the number of potential answers is about the same for all queries Q1 to

Q5 (also, for Q6 to Q10). Therefore, the increasing evaluation times from Q1 to Q5

(similarly, from Q6 to Q10) are due to the increasing number of atoms only.

Q5

Q4

Q3

Q2

Q1

0 50 100 150 200 250

EQUIP−AC

EQUIP

Evaluation time (in seconds)

Q10

Q9

Q8

Q7

Q6

0 50 100 150 200 250

EQUIP−AC

EQUIP

Evaluation time (in seconds)

Figure 5.3: Performance of EQUIP-AC vs. EQUIP on a database with 100K tu-

ples/relation, 10% of the tuples involved in violations, and join multiplicity equal to 5.

Top: Performance on queries Q1 to Q5; Bottom: Performance on queries Q6 to Q10.

156

To better explain Figure 5.3, we break down the total evaluation times into

three components, corresponding to each of the three phases of the computation of con-

sistent answers (see Figure 5.4). Because of the high evaluation times of Q5 and Q10 by

EQUIP, the large scale does not allow observing the break-down of the running times

for EQUIP-AC. Therefore, in Figure 5.4 we show the evaluation up to 30 seconds for

Q1 to Q5, and up to 70 seconds for Q6-Q10. This figure reveals that, as we increase

the number of atoms, EQUIP-AC becomes faster than EQUIP on each of the three

phases. This is explained as follows: In Phase 1, the pre-computation of the consistent

answers from the clean part of the database takes the exact same times in both systems,

as they both run the same SQL query to obtain these answers. The rest of Phase 1

is dominated by the computation of the minimal witnesses. EQUIP materializes all

minimal witnesses to the query. On the other hand, EQUIP-AC materializes mini-

mal witnesses to pairs of joining relations. As expected, when the number of atoms

is increased, the number of minimal witnesses that EQUIP materializes in Phase 1

becomes much larger than the minimal witnesses generated by EQUIP-AC. As a con-

sequence, Phase1 of EQUIP becomes significantly more expensive that Phase 1 of

EQUIP-AC. Obviously, the number of generated constraints depends on the number

of minimal witnesses. Thus, EQUIP generates a larger number of constraints than

EQUIP-AC, which explains why aslo Phase 2 & 3 become more expensive compared

to EQUIP-AC. We also observe that, in both systems, for the less expensive queries,

Q1 to Q5, the overall running times are dominated by Phase 1. On the other hand, for

queries Q6 to Q10, the time that goes to Phase 2 & 3 is more than 50% of the overall

157

running time. Queries Q6 to Q10 have a much larger number of additional potential

answers, and therefore, the BIP programs for these queries are larger.

Q1 Q2 Q3 Q4 Q5

0

5

10

15

20

25

30
Phase 3

Phase 2

Phase 1
E

va
lu

a
ti
o

n
 t

im
e

 (
in

 s
e

c
o
n

d
s
)

EQUIP−AC

Q1 Q2 Q3 Q4 Q5

0

5

10

15

20

25

30
Phase 3

Phase 2

Phase 1

E
va

lu
a

ti
o

n
 t

im
e

 (
in

 s
e

c
o
n

d
s
)

EQUIP

Q6 Q7 Q8 Q9 Q10

0

10

20

30

40

50

60

70

Phase 3

Phase 2

Phase 1

E
va

lu
a

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

EQUIP−AC

Q6 Q7 Q8 Q9 Q10

0

10

20

30

40

50

60

70

Phase 3

Phase 2

Phase 1

E
va

lu
a

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

EQUIP

Figure 5.4: Evaluation times split by phase, of queries Q1 to Q5 (top) and Q6 to Q10

(bottom), over a database with 100K tuples/relation, and join multiplicity equal to 5.

158

Sizes of BIP programs Next, we look closer at the sizes of the BIP programs

generated by both systems, which are shown in Table 5.2. The number of constraints

generated from the key-equal groups is the same for both systems. Therefore, the

relative difference in the number of constraints is due to the constraints generated

based on the minimal witnesses. Table 5.2 reveals that the queries on which EQUIP-AC

significantly outperforms EQUIP, are the ones for which EQUIP-AC generates a much

smaller number of constraints compared to EQUIP (see Q4, Q5, Q8, Q9, Q10). While the

number of constraints generated by EQUIP-AC is always between 0.5 and 2.5 times

as large as the number of variables, EQUIP generates programs with up to 700 times

more constraints than variables.

EQUIP-AC EQUIP

Constraints Variables Constraints Variables

Q1 9K 4K 9K 3K
Q2 16K 7K 37K 4K
Q3 23K 10K 187K 5K
Q4 31K 13K 990K 7K
Q5 39K 17K 5500K 8K
Q6 35K 24K 40K 16K
Q7 81K 54K 176K 20K
Q8 127K 84K 900K 25K
Q9 172K 113K 4600M 30K
Q10 217K 141K 24000M 34K

Table 5.2: Sizes of BIP programs generated in the experiment of Figure 5.3.

Varying parameter join multiplicity In Figure 5.5 we report the evaluation times

of both systems on queries Q4, Q5, Q9 and Q10, over 5 databases with 100K tuples per

relation, varying join multiplicity to take values from 1 to 5. Naturally, as we increase

159

join multiplicity, the number of minimal witnesses grows. As a consequence, the gap in

performance between the two systems also increases.

1 2 3 4 5

0

50

100

150

200

250
Query Q4

E
va

lu
a

ti
o

n
 t

im
e

 (
s
e

c
)

EQUIP−AC
EQUIP

1 2 3 4 5

Query Q5

EQUIP−AC
EQUIP

1 2 3 4 5

0

50

100

150

200

250
Query Q9

Join

E
va

lu
a

ti
o

n
 t

im
e

 (
s
e

c
)

EQUIP−AC
EQUIP

1 2 3 4 5

Query Q10

multiplicity

EQUIP−AC
EQUIP

Figure 5.5: Performance of EQUIP-AC and EQUIP over a database with 100K

tuples/relation, 10% of the tuples involved in violations, and varying values of

join multiplicity from 1 to 5. Top: Evaluation of query Q5; Bottom: Evaluation of

query Q10

Varying database size We analyze the behavior of EQUIP-AC with respect to

the database size. We generate ten inconsistent databases containing 100,000 up to 1

million tuples per relation, each database having 10% of the tuples involved in conflicts,

and parameter join multiplicity set to value 5. Figure 5.6 shows the evaluation times of

EQUIP-AC on these 10 databases. As the figure shows, the increase of the evaluation

160

times is quite gradual, becoming about 10x higher as we go from 100K to 1000K tuples

per relation.

0

10

20

30

40

50
E

va
lu

a
ti
o

n
 t

im
e

 (
s
e

c
)

Q1

Q2

Q3

Q4

Q5

100 200 300 400 500 600 700 800 900 1000

0

50

100

150

200

E
va

lu
a

ti
o

n
 t

im
e

 (
s
e

c
)

Number of tuples per relation

Q6

Q7

Q8

Q9

Q10

Figure 5.6: Performance of EQUIP-AC on databases with 100K to 1 million tuples per

relation, and join multiplicity equal to 5.

Our experiments in this section have demonstrated that EQUIP-AC signifi-

cantly outperforms EQUIP on queries with three or more atoms, even over databases

containing only 100K tuples per relation. As expected, our experiments show that as we

increase the number of atoms, EQUIP generates a significantly larger number of mini-

161

mal witnesses and BIP constraints compared to EQUIP-AC. In addition, EQUIP-AC

scales well over large databases containing up to 1 million tuples per relation (7 million

in total).

162

Chapter 6

Consistent Query Answering with

Linear Programming

In EQUIP we follow a generic approach for consistent query answering, that

uses the same strategy to model certainty(q) with binary Integer Programming, de-

spite of the actual complexity of certainty(q). Later, in Section 4.4, in Lemma 7

we gave a sufficient condition for certainty(q) to be tractable. We proved this result

by giving an algorithm that reduces certainty(q) to the problem of finding a max-

imum independent set in a claw-free graph. While a substantial amount of work has

been dedicated to building and optimizing systems for Binary Integer Programing, we

are not aware of any standard efficient tools for solving the maximum independent set

problem. Minty’s algorithm [52] is quite involved and an implementation of that al-

gorithm would require complex and expensive graph data structures. In this chapter,

we will show that alternatively, we can compute certainty(q) for the class of queries

163

of Lemma 7 using Linear Optimization. While solving integer programs is well-known

to be an NP-complete problem, evaluation of linear programs can be efficiently done

in polynomial time. Even though many real optimization problems can be naturally

modeled as integer programs, it may be the case that it is enough to solve the LP re-

laxation of the integer program, i.e., the program obtained by dropping the constraint

that the variables take only integer values. There are several well known techniques

for proving that the optimal solution of the LP relaxation of an integer program is

always integral, i.e., the assignments to the variables are integer values. We explore

this direction to provide an alternative proof of tractability for the class of queries in

Lemma 7. More specifically, for the same class of queries we give a new reduction from

certainty(q) to Binary Integer Programming. Then we show that this new reduction

generates programs whose LP relaxations has always optimal solutions consisting of all

integer assignments.

Theorem 15 Let q be a self-join free, acyclic boolean conjunctive query with atoms

R1, ..., Rk. Let τ be a join tree of q such that for every pair Rl, Rm that form an edge in

τ , it holds that key(Rl) ⊆ vars(Rm) and key(Rm) ⊆ vars(Rl). Let τ be a join tree of

q. Given a database instance I over the same schema as q, we construct in polynomial

time the following system of linear equalities and inequalities: System (6):

Variables:

x
Ri
f ∈ {0, 1} for every Rj-fact f , and Ri adjacent with Rj in τ
ua ∈ {0, 1} for every a ∈ q(I)

164

Constraints:

(a)
∑

f∈K; Ri∈Nτ (Rj)

xRif = 1, for every relation Rj in I and every key-equal
group K of Rj.

(b)
∑
f∈X

xRif +
∑
g∈X

x
Rj
g ≤ 1, for every edge (Rj , Ri) in τ , and for X a minimal

set of facts s.t. there exists {f, g} ⊆ X, where
{f, g} is a minimal witness of q{Rj ,Ri}, and every
minimal witness of the form {f, g′} or {f ′, g} is
in X.

Then the following statements are equivalent:

• There is a repair r of I such that q is false on r.

• System (6) has a solution.

Proof. To understand the construction of System (6), observe that it uses the same

variables as System (3) in Theorem 11, the constraints (a) are the same, but the con-

straints (b) are generated in a different fashion. The set X, based one which the

constraints (b) are generated, is computed as follows: if {f, g} is a minimal witness to

q{Rj ,Ri} then we put the facts f and g in X; we add to X every other Ri-fact g′ such

that {f, g′} is also a minimal witness of q{Rj ,Ri}; we add to X every other Rj-fact f ′

such that {f ′, g} is also a minimal witness of q{Rj ,Ri}. By construction, the set X is such

that every Ri-fact in X can be combined with every Rj-fact in X to obtain a minimal

witness of q{Rj ,Ri}.

To prove that a repair r of I such that q is false on r exists if and only if

System (6) has a solution, we will use Theorem 11. More specifically, we will prove that

every solution to System (6) is a solution to System (3).

(⇒) Assume that System (6) has a solution x∗. The constraints (a) in System

165

(3) are trivially satisfied by this solution. Moreover, to see that constraints (b) are also

satisfied by x∗, observe that for every minimal witness {f, g} to q{Rj ,Ri}, where (Rj , Ri)

is an edge in τ , there is a unique set X that contains f and g. Since x∗ satisfies the

constraints (b) in System (6) ,then xRif + x
Rj
g ≤ 1.

(⇐) In this opposite direction, assume that x∗ is a solution of System (3). The

constraints (a) in System (6) are trivially satisfied by x∗. To argue that constraints

(b) in System (6) are also satisfied by x∗ we will make use of the syntactic condition

of q. Let X be a set of facts computed as described in the formulation of System (6).

Let {f, g} and {f ′, g} be two minimal witnesses of q{Rj ,Ri} that exist in X. Because

key(Rj) ⊆ vars(Ri), it follows that f and f ′ are key-equal. Then, all Rj-facts in X

are key-equal. Subsequently, the inequality
∑
f∈X

xRif ≤ 1 is satisfied by x∗. Similarly, we

can derive that because key(Ri) ⊆ vars(Rj), the inequality
∑
g∈X

x
Rj
g ≤ 1 is also satisfied

by x∗. Since x∗ is a solution to System (3), then, for every Rj-fact f in X and every

Ri-fact g in X, the inequality xRif +x
Rj
g ≤ 1 is satisfied by x∗. Hence, it cannot happen

that both inequalities
∑
f∈X

xRif ≤ 1 and
∑
g∈X

x
Rj
g ≤ 1 are satisfied by x∗. It is obvious

now that
∑
f∈X

xRif +
∑
g∈X

x
Rj
g ≤ 1. �

Next, we will prove an important result about System (6). We will show that

solving System (6) without restricting the variables to take binary values, still yields

integral optimal solutions. More specifically, we will show that it is enough to solve the

LP relaxation of System (6) to obtain an integral solution. Since it is well known that

LP is in polynomial time, we will thus be giving an alternative proof of Lemma 7.

166

First, we will introduce some preliminary notions. Linear Programs (LP) are

optimization problems of the form max {cTx | Ax ≤ b;x ∈ Q}, where b and c are

vectors of integer coefficients, bT and cT are the transpose of, respectively, b and c, A

is a matrix of integer coefficients and x is a vector of variables, ranging over the set Q

of rational numbers. We will make use of several important notions and results from

polyhedral theory [54]. If max {cTx | Ax ≤ b;x ∈ Z∗} is an integer linear program,

then the LP relaxation of this program is the linear program taken by dropping the

constraints that the variables can take only integer values, i.e., the linear program

max {cTx | Ax ≤ b}. Clearly, max {cTx | Ax ≤ b;x ∈ Z∗} ≤ max {cTx | Ax ≤ b}.

The system of linear constraints Ax ≤ b defines the polyhedron P = {x|Ax ≤ b}. A

polyhedron is called integral if each of its vertices is an integer vector. Because the

optimal value of the objective function of a linear program is attained at some vertex

of the polyhedron, it is obvious that if P is integral then max {cTx | Ax ≤ b} has all

integer optimal solutions. Thus, max {cTx | Ax = b;x ∈ Z∗} = max {cTx | Ax ≤ b}.

A widely used technique for proving that a polyhedron is integer is by proving that the

matrix of constraints is totally unimodular.

Definition 11 ([54]) A matrix A is totally unimodular if each square submatrix of A

has determinant equal to 0,+1, or -1.

Theorem 16 ([54]) Let A be a totally unimodular m×n matrix and let b ∈ Zm. Then

each vertex of the polyhedron P = {x| Ax ≤ b} is an integer vector.

167

Our strategy for proving that for the class of queries that satisfy the conditions

of Theorem 15 there is a reduction to Linear Programming is to show that the matrix of

the coefficients of System (6) is totally unimodular. A few characterizations for totally

unimodularity have been given in the literature. One such characterization is given by

Heller and Tompkins [39, 40], and Hoffman and Gale [41].

Theorem 17 Let A be a {0,+1,−1}-matrix. Matrix A is totally unimodular if:

• there are at most two nonzero elements in each column.

• the rows of A can be split into two parts B and C such that for every column, if

there are two nonzero elements in the column that have the same sign they are in

different parts, otherwise, if they have oposite signs they are in the same part.

Theorem 18 Let q be a self-join free, acyclic boolean conjunctive query with atoms

R1, ..., Rk. Let τ be a join tree of q such that for every pair Rl, Rm that form an edge

in τ , it holds that key(Rl) ⊆ vars(Rm) and key(Rm) ⊆ vars(Rl). Let I be a database

instance. Then, the matrix of coefficients of System (6) is totally unimodular.

Proof. Let A be the matrix of coefficients of the constraints in System (6), where each

constraint is a linear combination of a row of A with the vector of variables x. We show

that A is totally unimodular. Let B be the matrix of coefficients of constraints (a). Let

C be the matrix of coefficients of constraints (b). Obviously, {B,C} is a partition of the

rows of A. Because every database fact appears in exactly one key-equal group, then

every variable xRif appears in exactly one constraint in (a). Hence, for every variable

168

xRif , in the corresponding column in A, there is a coefficient 1 which appears in a row

that belongs to B, and there is no other coefficient 1 appearing in another row of B.

From the construction of the constraints (b) it is easy to see that there is exactly one

inequality that mentions xRif . Hence, there is a single 1 which appears in a row of C.

Now, it is obvious that for every column in A there are no more than two nonzero

elements, they are both 1s, each appearing in a different part B or C. �

Finally, we get the following corollary:

Corollary 5 Let q be an acyclic boolean conjunctive query without self-joins, and with

atoms R1, R2, · · · , Rk. If q has a join tree τ such that for every pair of atoms Ri, Rj

connected with an edge in τ , it holds that key(Ri) ⊆ vars(Rj) and key(Rj) ⊆ vars(Ri),

then the LP relaxation of System (6) has {0, 1} solutions.

The LP-based technique we described in this chapter, for computing the consis-

tent answers to a sub-class of acyclic and self-join free conjunctive queries, only applies

to the case when the query is boolean. Of course, it is possible to use this technique to

check every potential answers of a non-boolean query, if it is a consistent answer or not.

However, as we argue in Section 3.2.2, we do not expect this technique to be efficient in

practice for the non-boolean queries. In the future, it would be interesting to come up

with a strategy for modeling certainty(q) of non-boolean q (for our class of tractable

queries), with a single linear program. However, the technique described in this chapter

is interesting as yet another polynomial algorithm for consistent query answering.

169

Chapter 7

Conclusions and Future Work

We developed EQUIP, a new system for computing the consistent answers of

conjunctive queries under primary key constraints. The main technique behind EQUIP

is the reduction of the problem of computing the consistent answers of conjunctive

queries under primary key constraints to binary integer programming, and the sys-

tematic use of efficient integer programming solvers, such as CPLEX. Our extensive

experimental evaluation suggests that EQUIP is promising in that it consistently ex-

hibits good performance even on relatively large databases. EQUIP is also, by far, the

best available system for evaluating the consistent query answers of queries that are

coNP-hard and of queries that are in PTIME but not first-order rewritable. but not in

the class C forest. For C forest queries, ConQuer demonstrates superior performance, but

is of limited applicability.

We also studied the complexity of consistent query answering for the class of

acyclic and self-join free conjunctive queries under primary key constraints. We conjec-

170

tured that a dichotomy on the complexity of certainty(q) exists. We proved sufficient

conditions for tractability and intractability. If our conjecture is correct, then the suffi-

cient condition for intractability of certainty(q) provides a proof for the intractability

side of the general dichotomy. Since we only have a sufficient condition for tractability

of certainty(q), a gap remains in the dichotomy, which we believe to contain only

queries that are in P but not first-order rewritable. As future work, it remains to fill

this gap by extending our existing algorithms, or exploring entirely novel algorithms

to evaluate the consistent answers in polynomial time. We have already presented two

alternative polynomial time algorithms, where one establishes a connection to the Max-

imum Independent Set problem for claw-free graphs, and the other consists in giving

a reduction to Linear Programming. It would be interesting to see if any of the two

approaches can be extended to a larger class.

Finally, we investigated the combined complexity of consistent query answering

for the class of conjunctive queries and primary key constraints. We showed that in gen-

eral, for this class, computing the consistent answers can be ΠP
2 -complete in combined

complexity. However, for the more restricted class of acyclic conjunctive queries, we

argue that the problem is coNP-complete. This result motivated us to find an explicit

polynomial reduction to BIP, where the BIP programs have size polynomial in the size

of the database instance and the query. We implemented this specialized reduction in

EQUIP-AC. Our experimental evaluations with EQUIP-AC and EQUIP on queries

with up to 7 atoms, demonstrate that, as expected, EQUIP-AC scales significantly

better than EQUIP w.r.t. the number of atoms in the query.

171

Our results in this thesis suggest that an “optimal” system for consistent query

answering is likely to rely not on a single technique, but, rather on a portfolio of tech-

niques. Such a system will first attempt to determine the computational complexity of

computing the consistent answers of the query at hand and then, based on this informa-

tion, will invoke the most appropriate technique for computing the consistent answers.

Developing such a system, however, will require further exploration and deeper under-

standing of the boundary between tractability and intractability of consistent query

answering. In addition, for future work, we also plan to investigate extensions of our

BIP-based technique to unions of conjunctive queries and broader classes of constraints,

such as functional dependencies and foreign key constraints.

172

Bibliography

[1] http://www-01.ibm.com/software/integration/optimization/cplex-optimizer.

[2] Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent databases:

algorithms and complexity. In ICDT, pages 31–41, 2009.

[3] M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad. Scalar

aggregation in inconsistent databases. Theoretical Computer Science. 296(3), 2003.

[4] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query answers

in inconsistent databases. In PODS, pages 68–79, 1999.

[5] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Answer sets for consis-

tent query answering in inconsistent databases. TPLP, 3(4-5):393–424, 2003.

[6] Marcelo Arenas, Leopoldo E. Bertossi, Jan Chomicki, Xin He, Vijay Raghavan, and

Jeremy Spinrad. Scalar aggregation in inconsistent databases. TCS, 296(3):405–

434, 2003.

[7] Pablo Barceló and Leopoldo E. Bertossi. Logic programs for querying inconsistent

databases. In PADL, pages 208–222, 2003.

173

[8] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desir-

ability of acyclic database schemes. J. ACM, 30(3):479–513, 1983.

[9] Catriel Beeri and Raghu Ramakrishnan. On the power of magic. In JLP, pages

269–283, 1987.

[10] TPCH Benchmark. http://www.tpc.org/tpch/.

[11] Leopoldo Bertossi. Database Repairing and Consistent Query Answering. Morgan

and Claypool Publishers, 2011.

[12] Andrea Cal̀ı, Domenico Lembo, and Riccardo Rosati. On the decidability and

complexity of query answering over inconsistent and incomplete databases. In

PODS, pages 260–271, 2003.

[13] Mónica Caniupán and Leopoldo E. Bertossi. The consistency extractor system:

Querying inconsistent databases using answer set programs. In SUM, pages 74–88,

2007.

[14] Mónica Caniupán and Leopoldo E. Bertossi. The consistency extractor system:

Answer set programs for consistent query answering in databases. DKE, 69(6):545–

572, 2010.

[15] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance

using tuple deletions. Inf. Comput., 197(1-2):90–121, 2005.

[16] Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. Computing consistent

query answers using conflict hypergraphs. In CIKM, pages 417–426, 2004.

174

[17] Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. Hippo: A system for

computing consistent answers to a class of sql queries. In EDBT, pages 841–844,

2004.

[18] Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining and Data

Cleaning. John Wiley, 2003.

[19] Alexandre Decan, Fabian Pijcke, and Jef Wijsen. Certain conjunctive query an-

swering in sql. In SUM, pages 154–167, 2012.

[20] Thomas Eiter, Wolfgang Faber, Christoph Koch, Nicola Leone, and Gerald Pfeifer.

Dlv - a system for declarative problem solving. CoRR, cs.AI/0003036, 2000.

[21] Thomas Eiter, Michael Fink, Gianluigi Greco, and Domenico Lembo. Efficient

evaluation of logic programs for querying data integration systems. In ICLP, pages

163–177, 2003.

[22] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Dupli-

cate record detection: A survey. IEEE TKDE, 19(1):1–16, 2007.

[23] Wenfei Fan and Floris Geerts. Foundations of Data Quality Management. Synthesis

Lectures on Data Management. Morgan & Claypool Publishers, 2012.

[24] Sergio Flesca, Filippo Furfaro, and Francesco Parisi. Consistent query answers on

numerical databases under aggregate constraints. In DBPL, pages 279–294, 2005.

[25] Sergio Flesca, Filippo Furfaro, and Francesco Parisi. Consistent answers to Boolean

aggregate queries under aggregate constraints. In DEXA (2), pages 285–299, 2010.

175

[26] Sergio Flesca, Filippo Furfaro, and Francesco Parisi. Querying and repairing in-

consistent numerical databases. ACM TODS, 35(2), 2010.

[27] Sergio Flesca, Filippo Furfaro, and Francesco Parisi. Range-consistent answers of

aggregate queries under aggregate constraints. In SUM, pages 163–176, 2010.

[28] Gaëlle Fontaine. Why is it hard to obtain a dichotomy for consistent query answer-

ing? In LICS, pages 550–559, 2013.

[29] Ariel Fuxman, Elham Fazli, and Renée J. Miller. ConQuer: Efficient management

of inconsistent databases. In SIGMOD, pages 155–166, 2005.

[30] Ariel Fuxman, Diego Fuxman, and Renée J. Miller. Conquer: A system for efficient

querying over inconsistent databases. In VLDB, pages 1354–1357, 2005.

[31] Ariel Fuxman and Renée J. Miller. First-order query rewriting for inconsistent

databases. In ICDT, pages 337–351, 2005.

[32] Ariel Fuxman and Renée J. Miller. First-order query rewriting for inconsistent

databases. JCSS, 73(4):610–635, 2007.

[33] Venkatesh Ganti and Anish Das Sarma. Data Cleaning: A Practical Perspective.

Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2013.

[34] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979.

176

[35] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions

and tractable queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

[36] Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logic programming approach

to the integration, repairing and querying of inconsistent databases. In ICLP, pages

348–364, 2001.

[37] Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logical framework for query-

ing and repairing inconsistent databases. IEEE TKDE, 15(6):1389–1408, 2003.

[38] Sergio Greco, Fabian Pijcke, and Jef Wijsen. Certain query answering in partially

consistent databases. PVLDB, 7(5):353–364, 2014.

[39] Isidore Heller. On linear systems with integral valued solutions. Pacific Journal of

Mathematics, 1957.

[40] Isidore Heller and C. B. Tompkins. An extension of a theorem of Dantzig’s. Annals

of Mathematical Studies, (38):247–252, 1956.

[41] Alan J. Hoffman and David Gale. Appendix [to the paper ”an extension of a

theorem of dantzig’s.” of heller and tompkins]. Annals of Mathematical Studies,

(38):252–254, 1956.

[42] Phokion G. Kolaitis and Enela Pema. A dichotomy in the complexity of consistent

query answering for queries with two atoms. Inf. Process. Lett., 112(3):77–85, 2012.

[43] Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. On the tractability and

177

intractability of consistent conjunctive query answering. In Proceedings of the 2011

Joint EDBT/ICDT Ph.D. Workshop, PhD ’11, pages 38–44, 2011.

[44] Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. Efficient querying of

inconsistent databases with binary integer programming. PVLDB, 6(6):397–408,

2013.

[45] Paraschos Koutris and Dan Suciu. A dichotomy on the complexity of consistent

query answering for atoms with simple keys. CoRR, abs/1212.6636, 2012.

[46] Paraschos Koutris and Dan Suciu. A dichotomy on the complexity of consistent

query answering for atoms with simple keys. In ICDT, pages 165–176, 2014.

[47] Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM,

22(1):155–171, 1975.

[48] Nicola Leone, Thomas Eiter, Wolfgang Faber, Michael Fink, Georg Gottlob, and

Gianluigi Greco. Boosting information integration: The INFOMIX system. In

SEBD, pages 55–66, 2005.

[49] Nicola Leone, Marco Manna, Francesco Ricca, and Giorgio Terracina. Private

communication.

[50] David Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[51] Dany Maslowski and Jef Wijsen. On counting database repairs. In LID, pages

15–22, 2011.

178

[52] George J. Minty. On maximal independent sets of vertices in claw-free graphs. J.

Comb. Theory, Ser. B, 28(3):284–304, 1980.

[53] Davy Van Nieuwenborgh and Dirk Vermeir. Preferred answer sets for ordered logic

programs. TPLP, 6(1-2):107–167, 2006.

[54] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. 2003.

[55] Slawomir Staworko and Jan Chomicki. Consistent query answers in the presence

of universal constraints. Inf. Syst., 35(1):1–22, 2010.

[56] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic

Databases. Synthesis Lectures on Data Management. Morgan & Claypool Pub-

lishers, 2011.

[57] Jef Wijsen. Consistent query answering under primary keys: a characterization of

tractable queries. In ICDT, pages 42–52, 2009.

[58] Jef Wijsen. On the consistent rewriting of conjunctive queries under primary key

constraints. Inf. Syst., 34(7):578–601, 2009.

[59] Jef Wijsen. On the first-order expressibility of computing certain answers to con-

junctive queries over uncertain databases. In PODS, pages 179–190, 2010.

[60] Jef Wijsen. A remark on the complexity of consistent conjunctive query answering

under primary key violations. IPL, 110(21):950–955, 2010.

179

[61] Jef Wijsen. Certain conjunctive query answering in first-order logic. ACM Trans.

Database Syst., 37(2):9, 2012.

[62] Jef Wijsen. Charting the tractability frontier of certain conjunctive query answer-

ing. In PODS, pages 189–200, 2013.

[63] Jef Wijsen. A survey of the data complexity of consistent query answering under

key constraints. In Christoph Beierle and Carlo Meghini, editors, Foundations of

Information and Knowledge Systems, volume 8367 of Lecture Notes in Computer

Science, pages 62–78. Springer International Publishing, 2014.

180

Appendix A

Detailed Algorithms for Phase 1 of

EQUIP and EQUIP-AC

A.1 Description of Phase 1 of EQUIP

Figure A.1 gives a more detailed description of the implementation of Phase

1 in EQUIP. Steps 1-4 show the actual SQL queries that are generated in each of the

steps 1-4 of Figure 3.3. Note that in step 4, each of the views RELEVANT Ri has an

attribute ID Ri in the view definition. This attribute is a unique identifier for every

tuple in RELEVANT Ri. Step 5 is not mentioned in Figure 3.3. In step 5 we create a

view WITNESSES* that holds the minimal witnesses and the corresponding potential

answers that the minimal witness give rise to, where the database facts that participate

in a minimal witness are represented by their unique identifier in RELEVANT Ri. The

reason for assigning unique identifiers to tuples in phase 1 is to simplify the imple-

181

mentation of phase 2. Subsequently, phase 2 can directly create an array of binary

variables for all facts in RELEVANT Ri, where the position of each fact in the array

corresponds to its unique identifier in RELEVANT Ri. This is done to avoid building

data structures in main memory to store the associations between variables in the pro-

grams and facts of relations RELEVANT Ri. When constraints are generated from the

minimal witnesses, it suffices to iterate over the tuples in WITNESSES*.

182

Phase 1: Database pre-processing

Input: R : Schema with relation names {R1, · · · , Ri, · · · , Rl}
q(z) : −Rp1(x1,y1), · · · , Rpj (xj,yj), · · · , Rpk(xk,yk) for j ∈ [1..k] and 1 ≤

pj ≤ l
I : database over R

Let:
< select attributes > be the list of attributes that correspond to free variables in

q
< key attr Ri > be the list of key attributes of Ri
< relev attr Ri > be the relevant attributes of Ri

1. for all Ri, 1 ≤ i ≤ l
create view KEYS Ri as:

Select Ri.< key attr Ri >
From Ri
Group By Ri.< key attr Ri >
Having count(*)>1

2. create view ANS FROM CON as:
Select < select attributes >
From R1 join R2 join · · · , join Rl
left outer join KEYS R1 on R1. < key attr R1 >= KEYS R1. <

key attr R1 > · · ·
left outer join KEYS Ri on Ri. < key attr Ri >= KEYS Ri. <

key attr Ri > · · ·
left outer join KEYS Rl on Rl. < key attr Rl >= KEYS Rl. < key attr Rl >
Where

KEYS R1. < key attr R1 > is null and · · ·
KEYS Ri. < key attr Ri > is null and · · ·
KEYS Rl. < key attr Rl > is null

3. create view WITNESSES as:
Select < relev attr R1 >, · · · < relev attr Ri >, · · · < relev attr Rl >
From R1 join R2 join · · · , join Rl
left outer join ANS FROM CON on

ANS FROM CON.< select attributes >=< select attributes >
Where ANS FROM CON.< select attributes > is null

4. for all Ri, 1 ≤ i ≤ l, create view RELEVANT Ri(ID Ri, < relev attr Ri >):
Select distinct < relev attr Ri >
From Ri inner join WITNESSES

on Ri. < key attr Ri >=WITNESSES. < key attr Ri >
Order by Ri. < key attr Ri >

183

5. create view WITNESSES* as:
Select distinct < select attributes >, ID R1, · · · , ID Ri, · · · , ID Rl
From WITNESSES, RELEVANT R1, · · · , RELEVANT Ri, · · · , RELE-

VANT Rl

Where RELEVANT R1. < relev attr R1 >= WITNESSES. <
relev attr R1 > · · ·

Where RELEVANT Ri. < relev attr Ri >= WITNESSES. <
relev attr Ri > · · ·

Where RELEVANT Rl. < relev attr Rl >= WITNESSES. <
relev attr Rl >

Figure A.1: Description of Phase 1 of EQUIP

184

A.2 Description of Phase 1 of EQUIP-AC

Phase 1: Database pre-processing

Input: R : Schema with relation names {R1, · · · , Ri, · · · , Rl}
q(z) : −Rp1(x1,y1), · · · , Rpj (xj,yj), · · · , Rpk(xk,yk) for j ∈ [1..k] and 1 ≤

pj ≤ l
I : database over R

Let: < select attributes > be the list of attributes that correspond to free variables
in q
< key attr Ri > be the list of key attributes of Ri
< relev attr Ri > be the relevant attributes of Ri

2. for all Ri, 1 ≤ i ≤ l
create view KEYS Ri as:

Select Ri.< key attr Ri >
From Ri
Group By Ri.< key attr Ri >
Having count(*)>1

3. create view ANS FROM CON as:
Select < select attributes >
From R1 join R2 join · · · , join Rl
left outer join KEYS R1 on R1. < key attr R1 >= KEYS R1. <

key attr R1 > · · ·
left outer join KEYS Ri on Ri. < key attr Ri >= KEYS Ri. <

key attr Ri > · · ·
left outer join KEYS Rl on Rl. < key attr Rl >= KEYS Rl. < key attr Rl >
Where

KEYS R1. < key attr R1 > is null and · · ·
KEYS Ri. < key attr Ri > is null and · · ·
KEYS Rl. < key attr Rl > is null

185

4. create view POTENTIAL(< select attributes >, POT ID) as:
Select distinct < select attributes >
From R1 join R2 join · · · , join Rl
left outer join KEYS R1 on R1. < key attr R1 >= KEYS R1. <

key attr R1 > · · ·
left outer join KEYS Ri on Ri. < key attr Ri >= KEYS Ri. <

key attr Ri > · · ·
left outer join KEYS Rl on Rl. < key attr Rl >= KEYS Rl. < key attr Rl >
Where

KEYS R1. < key attr R1 > is not null or · · ·
KEYS Ri. < key attr Ri > is not null or · · ·
KEYS Rl. < key attr Rl > is not null

for all edges (Ri, Rj) in τ
create view WITNESSES {Ri, Rj} as:

Select < relev attr R1 >, · · · < relev attr Ri >, · · · < relev attr Rl >
,POT ID

From R1 join R2 join · · · join Rl
join POTENTIAL on POTENTIAL.< select attributes >=<

select attributes >

5. for all Ri, 1 ≤ i ≤ l, create view RELEVANT Ri(ID Ri, < relev attr Ri >)
as:

Select distinct < relev attr Ri >
From Ri inner join WITNESSES Rj

on Ri. < key attr Ri >=WITNESSES {Ri, Rj}. < key attr Ri >
Order by Ri. < key attr Ri >

Figure A.2: Description of Phase 1 of EQUIP-AC

186

Appendix B

List of TPCH Queries Used to Evaluate

EQUIP

Here we provide the list of queries which we ran over the TPCH database with

EQUIP:

Q2:

select s acctbal,s name,n name,p partkey, p mfgr,s address,s phone,s comment,r name from

part,supplier,partsupp,nation,region

where p partkey=ps partkey and s suppkey=ps suppkey and s nationkey=n nationkey and

n regionkey=r regionkey and p size=15 and r name=’EUROPE’

Q3:

select l orderkey,o orderdate,o shippriority from customer,orders,lineitem

where l orderkey=o orderkey and o custkey=c custkey and c mktsegment=’BUILDING’ and

o orderdate<’1995-03-15’ and l shipdate≥’1995-03-15’

187

Q4:

select o orderpriority from orders where o orderdate≥’1993-07-01’ and o orderdate < ’1993-

10-01’

Q10:

select c custkey,c name,c acctbal,n name, c address,c phone,c comment

from customer,orders,lineitem,nation

where c custkey=o custkey and l orderkey=o orderkey and c nationkey=n nationkey and

l returnflag=’R’ and o orderdate≥’1993-10-01’ and o orderdate <’1994-01-01’

Q11:

select ps partkey from supplier,partsupp,nation

where ps suppkey=s suppkey and s nationkey=n nationkey and n name=’GERMANY’

Q20:

select s name,s address from supplier,nation

where s nationkey=n nationkey and n name=’CANADA’

Q21:

select s name from orders,lineitem,supplier,nation

where l orderkey=o orderkey and l suppkey=s suppkey and s nationkey=n nationkey and

o orderstatus=’F’ and l receiptdate>l commitdate and n name=’SAUDI ARABIA’

188

Appendix C

Complexity of certainty(q) for Specific

Queries

C.1 PTIME algorithm for q() : −R1(x, y), R2(z, x, y), R3(y, z)

The query q() : −R1(x, y), R2(z, x, y), R3(y, z) is such that certainty(q) is

not first-order expressible. It does not satisfy the sufficient condition of Theorem 6

for intractability of certainty(q). It also does not satisfy the sufficient condition of

Theorem 7 for tractability of certainty(q) because key(R2) 6⊆ vars(R1). However,

according to our Conjecture 1, certainty(q) should be in P. And indeed, we will

establish here that certainty(q) can be computed in polynomial time.

Lemma 6 Let q be the query q() : −R1(x, y), R2(z, x, y), R3(y, z). Then certainty(q)

is in P

Proof. We will prove that certainty(q) is in P by using a slightly different version

189

of the conflict-join graph. We will define the construction of a graph HI,q,τ∗ for this

query, where τ is the join tree with edges (R1, R2) and (R2, R3).

Let I be a database instance over the same schema as q. The conflict-join

graph HI,q,τ∗ is constructed as follows:

1. For every Ri-fact f , for every Rj ∈ Nτ (Ri) in τ , add a vertex fRj .

2. Add an edge between every two vertices fRi and gRj where f and g are key-equal

facts in I.

3. For every two atoms Ri and Rj that are neighbors in τ , for every {f, g} ∈ Ri×Rj

such that {f, g} is a minimal witness of q{Ri,Rj} in I, add an edge between vertices

fRj and gRi .

4. For every set X of facts from I that is minimal with the property that, (a) there

exists in X a minimal witness {f, g} of q{Ri,Rj} and (b) every other minimal

witness of the form {f, g′} or {f ′, g} is also in X, ad an edge between every two

vertices fRj and f ′Rj , and between every two vertices gRi and g′Ri . Let this set

of edges be named E∗.

Note that HI,q,τ∗ has more edges than HI,q,τ . Let s be the number of key-

equal groups in I. We will prove that there is an independent set M of HI,q,τ such that

|M | = s if and only if there is an independent set M∗ of HI,q,τ∗ such that |M ∗ | = s.

In one direction, it is obvious that if M∗ is an independent set of HI,q,τ∗ such

that |M ∗ | = s, then M∗ itself is an independent set of HI,q,τ .

190

In the opposite direction, assume that M is an independent set of HI,q,τ that

has size s. We will show how to construct M∗ from M :

• For every vertex fR2 in M , add fR2 to M∗.

• For every vertex fR3 in M , add fR3 to M∗.

• For every vertex fR1 in M , if there exists a vertex gR2 in M , where g is an R3−fact

and {f, g} is a minimal witness of q{R2,R3}, then add fR1 to M∗; otherwise, add

fR3 to M∗.

We will argue that M∗ is an independent set of HI,q,τ∗ of size s. First, from

the construction of M∗ it is obvious that it has size equal to |M |. Assume towards a

contradiction that M∗ is not independent. Let e be an edge induced by M∗. Then e

must be an edge in E∗. Because keys(R1) ⊆ vars(R2), then, if {f, g} and {f ′, } are

minimal witnesses of q{R1,R2}, the facts f and f ′ must be key-equal. Therefore, the

edge (fR2 , f ′R2) is in HI,q,τ . From the construction of M∗ and the fact that M is an

independent set, it follows that the edge e cannot be of the form (fR2 , f ′R2), where f

and f ′ are R1-facts. Similarly, because keys(R3) ⊆ vars(R2), the edge e cannot be of

the form (fR2 , f ′R2) where f and f ′ are R3-facts; and because keys(R2) ⊆ vars(R3),

the edge e cannot be of the form (fR3 , f ′R3) where f and f ′ are R2-facts. Then, it

could only happen that e is of the form (fR1 , f ′R1). By construction of M∗, it must be

that there exists a vertex gR2 in M such that g is an R3 − fact and {f, g} is a minimal

witness of q{R2,R3}; and there exists a vertex g′R2 in M , such that g is an R3− fact and

{f ′, g′} is a minimal witness of q{R2,R3}. Because e is in E∗, then both facts f, f ′ form

191

a minimal witness with some R1-fact h. Let f be a fact of the form R2(t) and let f ′

be a fact of the form R2(t′). Then, t[x, y] = t′[x, y] and t[z] 6= t′[z]. Let g be the fact

R3(d) and let g′ be the fact R3(d′). Then d[y] = t[y] and d′[y] = t′[y]. It follows that d

and d′ are such that d[y] = d′[y] and d[z] 6= d′[z]. Then g and g′ must be key-equal, and

consequently, the vertices gR2 and g′R2 must induce an edge in M . This contradicts the

assumption that M is independent. �

C.2 coNP-hardness proof for Q22(v) : −R5(x, y, z), R6(x
′, y, z),

R11(x, x
′, v)

We prove here that for the queryQ22(v) : −R5(x, y, z), R6(x′, y, z), R11(x, x′, v),

certainty(Q22) is coNP-hard.

Lemma 7 Let Q22(v) : −R5(x, y, z), R6(x′, y, z), R11(x, x′, v). Then certainty(Q22)

is coNP-hard

Proof. We prove that certainty(Q22) is coNP-hard by giving a polynomial reduc-

tion from certainty(q) where q is the query q() : −S5(x, y, z), S6(x′, y, z). It can be

established that certainty(q) is coNP-hard from the dichotomy for two-atom queries

presented in Section 4.2. Let I be a database over the schema of q. We construct a

database I ′ over the schema of Q22 by copying S5 to R5, copying S6 to R6, and gener-

ating a fact R11(a, a′, Na) from every minimal witness {f, g} of q, where f is a fact of

the form S5(a, ,), g is a fact of the form S6(a′, ,), and Na is a new generated value

(a labeled null). It is easy to see that R11 is consistent; hence, it appears in every repair

192

of I ′. Then, given any repair r of I, once can create a repair r′ of I ′ by copying Rr5 to

Sr
′

5 and Rr6 to Sr
′

6 . Similarly, given any repair r′ of I ′, once can create a repair r of I by

copying Sr
′

5 to Rr5 and Sr
′

6 to Rr6, and keeping the entire relation R11 in r. Obviously, if

r does not satisfy Q22, then r′ does not satisfy q, and vice-versa. �

193

