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Abstract. Theoretical and practical approaches associated with conservation biogeography, including 

ecological niche modeling, have been applied to the difficult task of determining how to incorporate 

climate change into conservation prioritization methodologies. Most studies have focused on identifying 

species that are most at risk from climate change, but here we asked which areas within a species’ range 

climate change threatens the most. Here we explore methods for incorporating climate change within 

the Wildlife Conservation Society’s (WCS) Range-Wide Priority Setting (RWPS) framework. We used eco-

logical niche models to estimate exposure to climate change and incorporated these estimates into 

habitat quality scores for re-prioritization of high-priority areas for conservation. Methods such as these 

are needed to guide prioritization of geographically specific actions for conservation across a species’ 

range. 

Keywords. bioclimate envelope, climate change, conservation planning, ecological niche modeling, 

Panthera onca, species distribution modeling 

Introduction 

The growing field of conservation biogeography 

uses theories, principles, and analyses to address 

problems related to the conservation of biodiver-

sity (Ladle and Whittaker 2011). A key focus of the 

field has been the problem of climate change, 

which presents a potentially important threat to 

biodiversity (Parmesan and Yohe 2003, Thomas et 

al. 2004). In particular, climate change is expected 

to cause some areas to become less suitable for 

species’ survival, while other areas become more 

suitable, resulting in shifts in species’ distributions 

(e.g., Raxworthy et al. 2008) and increasing the 

likelihood of local and global extinctions 

(Parmesan et al. 1999, Pounds et al. 1999). Most 

studies to date have focused on documenting ob-

served impacts on species’ distributions, abun-

dance, phenology, and body size (e.g., Rosenzweig 

et al. 2008) or predicting future impacts including 

extinction risk (e.g., Thomas et al. 2004). How-

ever, there is now a pressing need to develop 

practical methods for incorporating climate 

change within conservation planning (Mawdsley 

et al. 2009, Ackerly et al. 2010, Boutin 2010, Car-

valho et al. 2011, Crossman et al. 2012) and con-

servation organizations are beginning to develop 

prioritization approaches that take climate change 

into account (e.g., Foden et al. 2008, CCWAPWG 

2009). 

 Here we explore how frameworks focused 

on spatial priority setting across a species’ range, 

such as the International Union for the Conserva-

tion of Nature’s Species Conservation Strategy 

planning framework (IUCN/SSC 2008) or the Wild-

life Conservation Society’s (WCS) Range-Wide Pri-

ority Setting (RWPS; Medellin et al. 2001, Sander-

son et al. 2002), could incorporate climate change. 

Under these frameworks, conservation organiza-

tions or national governments have already priori-

tized species for conservation, using a range of 

criteria (SEMARNAT 2001, WCS 20111, IUCN 

20122). The task at hand is therefore not to iden-

tify which species are most vulnerable, but rather 

to identify which areas within a priority species’ 

1. http://www.wcs.org/saving-wildlife.aspx accessed 24 October 2012 
2. http://www.iucnredlist.org/ accessed 24 October 2012 
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range are the most important for long-term sur-

vival. 

 We present a case study in which we used 

ecological niche models (ENMs, or ‘species distri-

bution models’; Franklin 2009, Peterson et al. 

2011) to incorporate climate change into the 

range-wide conservation planning process under 

the RWPS framework. Although we explored 

methods within the framework of RWPS, compa-

rable analyses could utilize planning tools such as 

Marxan (Ball et al. 2009) and Zonation (Carroll et 

al. 2010). We took as an example species the jag-

uar (Panthera onca), which is the best docu-

mented case study for RWPS and for which data 

concerning the species’ known range, conserva-

tion units, and scoring from a previous assessment 

are available (Medellin et al. 2001, Sanderson et 

al. 2002, Zeller 2007). However, our focus is on 

developing a methodological approach that could 

be applied to a wide variety of species, rather 

than on jaguar conservation, and to emphasize 

this we refer to a generic case-study ‘species’ 

rather than the jaguar. We used ENMs to estimate 

exposure to climate change across the species’ 

range and incorporated these estimates into 

scores to define the highest-priority areas for con-

servation. Range-wide conservation planning 

frameworks such as RWPS often incorporate a 

wide variety of threats, including habitat destruc-

tion and disappearance of prey species, but data 

are seldom available to include information on 

future threats such as climate change. Finding a 

practical way to incorporate future threats into 

these frameworks will be critical to increasing the 

likelihood of long-term survival for many threat-

ened species. The exercise we undertook here 

was exploratory in nature and we present it not so 

much as a proposed final methodology but rather 

as illustrative of a straightforward way that cli-

mate change may be incorporated rapidly into on-

the-ground conservation planning using existing 

frameworks and tools. 

Figure 1. Occurrence points used to construct Panthera onca distribution models. Current points represent observa-
tions from 1989–1999 (a total of 731 points; Sanderson et al. 2002) and historical points (120) were randomly sam-
pled from the known historical range of P. onca. 



Methods 

Ecological niche models 

Many recent studies have used correlative ENMs 

to prioritize areas for conservation (e.g., Kremen 

et al. 2008). ENMs use associations between spe-

cies’ occurrence records and environmental vari-

ables to characterize the environments within 

which a species can exist. Locations that are cli-

matically suitable for the species can then be 

identified under both current and future climates 

(for an introduction to ENMs, see Pearson 20073). 

The advantages and disadvantages of these mod-

els have been widely discussed in the literature 

(e.g., Pearson and Dawson 2003, Dawson et al. 

2011). The framework we present could use either 

correlative or mechanistic models (Kearney and 

Porter 2009), although we use correlative ENMs 

here. ENMs can be used to identify the parts of a 

species’ range that are expected to experience 

large changes in temperature and precipitation, 

and can therefore be informative about a species’ 

exposure to climate change (Dawson et al. 2011). 

 Prior RWPS assessments of jaguar conserva-

tion (Medellin et al. 2001, Sanderson et al. 2002, 

Zeller 2007) resulted in the prioritization of 51 

high-priority areas for conservation. For our case 

study here, we term these simply Species Conser-

vation Units (SCUs). These SCUs fall within 36 Geo-

graphic Regions (GRs) defined by distinct habitat 

types and bioregions across the species’ historic 

range (Sanderson et al. 2002). The prior range-

wide planning process amassed a set of 731 spe-

cies’ occurrence records (Figure 1) from sightings 

spanning 1989–1999, which we used to calibrate 

and test our models. Since jaguars have been ex-

tirpated from part of their historical range 

(especially in the south) for reasons that are 

unlikely to be primarily climatic (Sanderson et al. 

2002), we included in our models 120 additional 

points that were randomly sampled from the 

known historical range, as defined in Sanderson et 

al. (2002). This number of additional points re-

sulted in a roughly comparable overall density of 

points across the current and historical ranges. 

We included points from the historic range since 

our goal was to capture the full bioclimate enve-

lope of the species (Pearson and Dawson 2003), 

rather than an envelope that is curtailed by non-

climatic factors. 

 We used temperature and precipitation 

predictor variables from the WorldClim dataset at 

two and a half arc-minute resolution (Hijmans et 

al. 2005). We used 18 out of 19 of the ‘bioclim’ 

variables, which represent annual trends (e.g., 

mean annual temperature and precipitation), sea-

sonality, extremes (e.g., temperature of the cold-

est month), and quarterly summaries. We ex-

cluded one of the 19 bioclim variables, tempera-

ture annual range, from the analysis because cor-

relations between variables meant we could not 

calculate Mahalanobis distances (see below) when 

this variable was included. We assembled the 18 

bioclim variables for the current climate and for 

eight future climate scenarios, generated from 

two General Circulation Models (GCMs: HadCM3 

and CCMA), two emissions scenarios (A2 and B2), 

and two time frames (2050s and 2080s). These 

scenarios are based on the IPCC’s third assess-

ment report4. The correlation patterns among cli-

mate variables in our study region were very simi-

lar between the current climate and the future 

climate scenarios, with the same pairs of variables 

showing relatively weak correlations (|r| < 0.8) 

and strong correlations (|r| > 0.9) across time 

frames. 

 We used two different ENM approaches: 

maximum entropy, as implemented in the soft-

ware Maxent (version 3.3.3; Phillips et al. 2006), 

and Mahalanobis typicalities, calculated using our 

own code, neither of which require species’ ab-

sence records. By incorporating predictions from 

two methods that are conceptually quite differ-

ent, we aimed to take into account the variability 

that can occur from the use of alternative models 

(Thuiller et al. 2004, Pearson et al. 2006).  

 The maximum entropy method (Phillips et 

al. 2006) estimates the unknown probability distri-

bution defining a species’ distribution from incom-
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plete information by finding the probability distri-

bution of maximum entropy (that which is closest 

to uniform), subject to constraints imposed by the 

known distribution of the species and environ-

mental conditions across the study area (Phillips 

et al. 2004, 2006). We set the regularization pa-

rameter (a variable selection method employed in 

Maxent to reduce the likelihood of overfitting) at 

one after testing a range of settings from one to 

ten and determining that a regularization of one 

resulted in the highest area under the receiver 

operating characteristic curve (AUC) values. Other 

parameterizations (convergence threshold, maxi-

mum number of iterations, and feature selection) 

followed recommendations by the model devel-

opers (Phillips et al. 2006, Phillips and Dudik 

2008). Maxent has been shown to perform well 

compared with other ENM approaches (Elith et al. 

2006). 

 Mahalanobis distance is a measure of dis-

similarity between a vector of independent vari-

ables and some representation of an ideal or opti-

mal condition (Clark et al. 1993). In this study, the 

optimal condition represents the species’ niche as 

described by the mean and variance of the 18 cli-

matic predictor variables associated with the oc-

currence points. The larger the Mahalanobis dis-

tance, the further the test vector is from the ideal 

condition, i.e., the centroid of the species’ niche 

as represented in multidimensional variable 

space. Other studies have shown that ENMs gen-

erated with Mahalanobis distances have good pre-

dictive performance for jaguars (Torres et al. 

2008, Rodríguez-Soto et al. 2011). We converted 

Mahalanobis distances to typicalities (Clark et al. 

1993), which scale distances from zero to one, 

with one being closest to the optimal condition or 

best representation of the species’ niche, and zero 

being the farthest away. 

 To evaluate the predictive ability of both 

Maxent and Mahalanobis models under current 

climate conditions, we carried out four-fold parti-

tioning and calculated the AUC and the omission 

rate with a binomial test of statistical significance 

under a threshold where 90% of calibration occur-

rences were predicted correctly (Peterson et al. 

2011). 

Predicted distributions under climate change 

We combined results from a suite of two ENMs, 

two GCMs, two emissions scenarios, and two time 

frames (total of 16 predictions) to provide a sum-

mary of predictions, focusing on the 51 SCUs iden-

tified by our case study RWPS (Sanderson et al. 

2002). 

 We first calculated the mean suitability pre-

diction within each SCU for the current climate 

data, and then for all 16 future projections. Sec-

ond, from the mean prediction values within each 

SCU, we calculated the percent change 

([(predicted value – current value) / current value] 

x 100) for each GCM, emissions scenario, and time 

frame (Figure 2). We consider that the change in 

mean suitability across a SCU is a more appropri-

ate measure than change on a per-cell basis be-

cause jaguar home ranges are much larger than 

our cell resolution (Rabinowitz and Nottingham 

1986, Cranshaw and Quigley 1991). To test 

whether taking the mean value across SCUs re-

sulted in the masking of contradictory results 

within a SCU, we chose three SCUs comprising a 

combination of highly suitably and unsuitable 

habitat and calculated proportional change for 

each grid cell within the SCU, instead of the mean 

value. For one of these SCUs, individual model 

predictions did vary considerably between the 

mean value and per-grid-cell approach, with the 

final consensus across models for this SCU chang-

ing from likely to stay the same to no clear signal 

(see category definitions below). However, using a 

per-grid-cell approach did not affect results in the 

other SCUs we tested. Also, given the large home 

ranges of jaguars and the fact that climate models 

do not realistically predict at very fine resolutions, 

doing the analysis on a per-grid-cell basis could 

introduce a degree of false precision. 

 We then placed the percent change in a 

category to summarize each model prediction: 

Large Increase = increase of +50% or more; In-

crease = +15 to +49%; Same = –14% to +14%; De-

crease = –15 to –49%; Large Decrease = –50% or 

more extreme. For each time frame (2050s, 

2080s), we then summarized the number of mod-

els predicted to change in each of the five catego-

ries for a given SCU: clearly decreasing = most 

climate change and conservation planning 
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models predict decreasing suitability, with only 

one or two models predicting suitability staying 

the same; likely to decrease = more than half of 

the models predict decreasing suitability; likely to 

stay the same = more than half of the models pre-

dict suitability staying the same; likely to increase 

= more than half of the models predict increasing 

suitability; clearly increasing = most models pre-

dict increasing suitability, with only one or two 

models predicting suitability staying the same. If 

none of the above categories applied to a SCU, we 

classified it as having no clear signal. 

 To explore the relative contribution of uncer-

tainty factors to variation in our model predictions, 

we performed two generalized linear models, one 

for each time frame (2050s or 2080s) with the per-

cent change values as the dependent variable and 

ENM, GCM, and emissions scenario as the inde-

pendent variables, which were all categorical with 

two levels each. The models were run using the glm 

function in the R statistical environment, specifying 

an identity link function and with a Gaussian distri-

bution of errors (R Development Core Team 2007). 

Re-Prioritization of Species’ Conservation 

Units 

The original prioritization of SCUs (Sanderson et 

al. 2002) was generated by scoring each SCU for 

six weighted factors: size, connectivity, habitat 

quality, hunting of jaguar, hunting of prey, and 

population status. Jaguar experts determined a 

weight for each factor to indicate the relative im-

portance of each variable to long-term survival 

and placed each SCU in one of three score catego-

ries (zero – low probability of long term survival, 

one – medium probability, or three – high prob-

ability) for each factor and then multiplied the 

score by the factor weight and summed to obtain 

the SCU prioritization score. The score categories 

skip over a score of two to give higher weight to 

SCUs with the highest probability of supporting 

long-term survival. 

 We incorporated the climate-change pre-

dictions into the ‘habitat quality’ factor. In cases 

where the SCU was predicted to increase in cli-

matic suitability across scenarios for a given time 

frame (2050s or 2080s), we shifted the habitat 

Figure 2. Flow diagram outlining our methodology for incorporating climate change predictions into Range Wide 
Priority Setting (RWPS).  
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Figure 3. Summary of model predictions for the 2050s (a) and 2080s (b). Pie charts show the details of individual 
model predictions averaged across SCUs as described in the methods. The color of the actual SCU polygons corre-
sponds to summary predictions across all models. 

quality score up one category. Conversely, for 

SCUs with a predicted decrease in climatic suit-

ability (clearly decreasing or likely to decrease), 

we shifted the habitat quality score down one 

category. For SCUs that were either likely to stay 

the same or had no clear signal in terms of 

changes in climatic suitability, the habitat quality 

score was left as originally assigned. Once we ad-

justed the habitat quality score to reflect expected 

changes in climatic suitability, we recalculated the 

prioritization score for the 2050s and the 2080s. 

We then ranked SCUs within Geographic Regions 

(GRs) according to their revised scores to ensure 

that priority areas were distributed across all sig-

nificant habitat types in the species’ range 

(following Sanderson et al. 2002). All SCUs that fell 

wholly or partially within a GR were ranked rela-

tive to other SCUs within the same GR. 

 

Results 

Maxent models overall showed strong ability to 

predict observed distributions: AUC = 0.770–

0.820; omission error = 0.090–0.152, P < 0.01 in all 

folds. Mahalanobis models also showed reason-

able predictive ability: AUC = 0.681–0.723; omis-

sion error = 0.099–0.160, P < 0.01 in all folds (see 

Supplementary Appendix for figures showing all 

predicted distributions5). 

 Out of 51 SCUs, model projections for the 

2050s show 12 SCUs clearly decreasing and 16 

likely to decrease in suitability, with nine likely 

staying the same in suitability and one likely to 

increase in suitability (Figure 3a). None of the 

SCUs was clearly increasing in suitability. The 

models provided no clear signal for 13 SCUs. 

Model projections for the 2080s were similar to 

those from the 2050s, though 19 SCUs shifted to 

categories representing greater confidence in a 

decrease in suitability (Figure 3b). 

 Our generalized linear model showed that 

choice of ENM method accounted for the largest 

part of the variation in model projections, similar 

to other studies (e.g. Dormann et al. 2008, Buis-

son et al. 2010). For models for the 2050s, this 

difference accounted for 28.7% of variation in per-

cent-change values, while type of GCM accounted 

for 18.9%, and emissions scenario for 10.0%. For 

models for the 2080s, ENM accounted for 54.1% 

of the variation in percent change values, GCM for 

45.5% and emissions scenario for 2.57%. 

 When we updated the original prioritization 

results (Sanderson et al. 2002) to include the cli-

mate change predictions, the highest ranked SCU

(s) changed in five out of 36 GRs for the 2050s and 

four GRs for the 2080s (see Supplementary Table 

S15, which lists new prioritization scores and rank-

ings for all SCUs within each GR). 

http://dx.doi.org/10.5531/sd.cbc.1


Discussion 

This work demonstrates a practical approach for 

incorporating future climate scenarios into exist-

ing range-wide conservation planning frame-

works. In the light of the threat to biodiversity 

that climate change poses, there is a pressing 

need for this kind of relatively simple, index-based 

approach that can be applied rapidly to a wide 

variety of species in different parts of the world. 

 Although we might not expect climate 

change to be very important for jaguars compared 

with other non-climatic threats, such as hunting 

and habitat disturbance (because jaguar biology is 

less directly connected to temperature and pre-

cipitation than the biology of some other species), 

our results show that incorporating it can make a 

difference in spatial priority setting. For species 

that have more clear climatic constraints relating 

to their thermal physiology (Buckley et al. 2012), 

and that are therefore expected to show substan-

tial shifts in response to climate change (e.g., but-

terflies, birds, plants; Parmesan and Yohe 2003), 

or for species with limited dispersal abilities that 

may be at a distinct disadvantage in their capacity 

to respond to climate change, incorporating fu-

ture climate-change scenarios into the spatial pri-

ority setting process will be even more critical. 

 By including two different ENMs and several 

future climate scenarios, our approach recognizes 

that there are important sources of uncertainty 

inherent in using ENMs (e.g., Pearson et al. 2006, 

Beaumont et al. 2008). Future applications would 

benefit from incorporation of additional models 

(e.g., ensemble ENMs [Araújo and New 2007] and 

mechanistic models [Kearney and Porter 2009]) 

and new ways to quantify and understand uncer-

tainties (e.g., Elith et al. 2010, Carvalho et al. 

2011). However, such applications will require 

additional observations and perhaps experimental 

data. For example, for the development of mecha-

nistic models in wide-ranging species, data on re-

production and growth under food limitation, in-

dividual energy intake, and energy expenditure 

towards movement may be important (e.g. 

Molnar et al. 2010). Such data may only be avail-

able through long-term capture–recapture or 

monitoring studies of the focal species. Future 

implementations that are to be used in conserva-

tion planning should also use the most up-to-date 

climate scenarios available, such as those from 

the IPCC’s Fourth Assessment Report (see, for ex-

ample CCAFS Climate Layers6). Despite multiple 

uncertainties, we contend that ENMs can provide 

useful information for the planning process, not in 

predicting actual future distributions, but in estim-

ating parts of a species’ range that will be most 

exposed to climate change (c.f., Dawson et al. 

2011). 

 We conducted the work presented here 

after a range-wide conservation planning work-

shop, but our approach could be incorporated 

directly into an ongoing workshop for improved 

predictive ability. For example, several ENMs for 

the focal species could be presented at the work-

shop, with each ENM utilizing a different set of 

predictor variables tailored to the physiological 

and life history requirements of the focal species 

(as opposed to a generalized set; Synes and Os-

borne 2011). The modeled future scenarios could 

then be incorporated into the prioritization proc-

ess, either by adjusting the habitat quality score as 

we did here, or by taking a variety of alternative 

approaches that cater to the characteristics of a 

given species or situation, as discussed below.  

 The approach taken by experts at the origi-

nal jaguar RWPS workshop was to include factors 

that can be seen as both positive (habitat quality, 

large area of SCU, connectivity) and negative 

(hunting of jaguars, hunting of prey) in relation to 

jaguar conservation. Therefore, the final prioritiza-

tion score would be highest in the best areas for 

jaguar populations. Here, we followed the same 

approach for incorporating future climate change 

scenarios, scoring habitat quality as lower when 

climate change predictions showed a likely de-

crease in habitat suitability, leading to lower pri-

oritization scores for those SCUs. Our choice to 

quantify changes in climate suitability with a per-

cent change index reflects this approach because 

percent change assigns a higher weight to in-
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creases in suitability than to decreases; for exam-

ple, an increase from 0.1 to 0.9 represents a 

+800% change, while a decrease from 0.9 to 0.1 

represents a –88.9% change (Figure 4). As such, an 

area with currently high suitability must have a 

substantial reduction before being classified as 

decreasing, ultimately prioritizing areas with high 

long-term conservation value. 

 In practice, therefore, our method assigns 

higher conservation priority to SCUs in which cli-

mate change is expected to result in increases in 

habitat suitability, and lower priority to places 

expected to experience decreases in suitability. In 

cases where conservation actions can do little to 

reduce a future threat or mitigate its impacts, as is 

the case for climate change, this prioritization 

framework is appropriate. However, in cases 

where it is distinctly possible to prevent or miti-

gate the impacts of a future threat, such as poten-

tial deforestation, conservation practitioners may 

want to consider the opposite approach, prioritiz-

ing places where negative changes will occur 

unless conservation action is taken, and avoiding 

investment in places that will remain stable or 

improve even without conservation action. To ex-

plore this alternative approach, we reanalyzed our 

data prioritizing areas expected to experience the 

most change in climate suitability rather than the 

least change (see full results under “Option 2” in 

our Supplementary Table S15). Here, we increased 

the habitat factor score by one when climate 

change was expected to make an area less suit-

able, as opposed to decreasing the score by one 

as in our initial adjustment. With our data, this re-

prioritization did not result in changes in the rank-

ings of SCUs within geographic regions compared 

to the original rankings of Sanderson et al. (2002), 

but it might for another species with different 

characteristics. 

 Setting conservation priorities for species is 

conceptually difficult and can mean different 

things to different practitioners (Chadès et al. 

2008). One viewpoint is that priority should be 

given to the most threatened populations, while 

another viewpoint is that priority should be given 

to large or stable populations with low threats, 

such as the tiger source sites of Walston et al. 

(2010). The general approach that we explored 

here could easily be adjusted to reflect different 

criteria for prioritization, which, for example, 

might focus on areas that are most, rather than 

least, at risk. 

 Indeed, there is much flexibility within the 

approach we present for developing a scoring sys-

tem that is appropriate for the particular species 

and regions being assessed. For instance, work-

shop participants may choose to be more conser-

vative and only adjust the score in cases that are 

clearly increasing or decreasing, thus not weight-

ing cases that are likely to increase or decrease, in 

contrast to the approach we used here. Alterna-

tively, participants may choose to weight expo-

sure to climate change more heavily than we have 

done here, for example in the case of a species 

that is known to be very vulnerable to climate 

change. To explore this approach, we reanalyzed 

our data giving additional weight to the climate 

change-related factor (habitat quality; see full re-

sults under “Option 3” in our Supplementary Ta-

ble S15). Here, we increased the weighting multi-

plier of the habitat quality factor by ten (from 23 

to 33) and decreased the weighting multiplier of 

the other factors by two (for a discussion of 

weighting multipliers in RWPS, see Sanderson et 

al. 2002). This re-analysis resulted in new changes 

to the ranks in different GRs as compared to our 

initial adjustment, with the highest ranked SCU(s) 

changing in five out of 36 GRs for the 2050s and 

also for the 2080s (see Supplementary Table S15). 

Another prioritization option for species that are 

highly vulnerable to climate change would be to 

include exposure to climate change as a separate 

weighted factor instead of incorporating it into 

habitat quality as we have done here. 

 The RWPS framework has now been used 

by conservation organizations for a variety of spe-

cies including eastern chimpanzees (Plumptre et 

al. 2010), North American bison (Sanderson et al. 

2008) and American crocodile (Thorbjarnarson et 

al. 2006). Range-wide prioritization is typically an 

initial step in strategic planning to save a species. 

Following the prioritization process, experts iden-

tify objectives and strategic actions to reach the 

goals for the species, within the constraint of lim-
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ited funding. The kind of methodology that we 

have explored here shows potential for incorpo-

rating the threat of climate change into these con-

servation prioritization initiatives. 
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