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Abstract

BACKGROUND: Despite rising prevalence of autistic spectrum disorder (ASD) its brain bases 

remain uncertain. Abnormal levels of N-acetyl-compounds (NAA), glutamate+glutamine (Glx), 

creatine+phosphocreatine (Cr), or choline-compounds (Cho) measured by proton magnetic 

resonance spectroscopy (MRS) suggest that neuron or glial density, mitochondrial energetic 

metabolism, and/or inflammation contribute to ASD neuropathology. The neuroanatomic 

distribution of these metabolites could help evaluate leading theories of ASD. But most prior MRS 

studies had small samples (all n < 60, most n < 20), interrogated only a small fraction of brain, and 

avoided assessing effects of age, sex, and IQ.
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METHODS: We acquired near-whole-brain MRS of NAA, Glx, Cr, and Cho in 78 ASD and 96 

typically developing (TD) children and adults, rigorously evaluating effects of diagnosis and 

severity on metabolites, as moderated by age, sex, and IQ.

RESULTS: Effects of ASD and its severity included reduced levels of multiple metabolites in 

white matter and perisylvian cortex and elevated levels in posterior cingulate, consistent with 

white-matter and social-brain theories of ASD. Regionally, both slower and faster decreases of 

metabolites with age were observed in ASD vs. TD. Male-female metabolite differences were 

widely smaller in ASD than TD. ASD-specific decreases in metabolites with decreasing IQ 

occurred in several brain areas.

CONCLUSIONS: Results support multifocal abnormal neuron or glial density, mitochondrial 

energetics, or neuroinflammation in ASD, alongside widespread starkly atypical moderating 

effects of age, sex, and IQ. These findings help parse the neurometabolic signature for ASD by 

phenotypic heterogeneity.

Keywords

Autism; Age; Sex; Intelligence; Symptom domains; Magnetic resonance spectroscopy

The ever-surging prevalence of autistic spectrum disorder (ASD) constitutes a public health 

crisis (1), underscoring the urgency of improved understanding of the neural bases of ASD 

to inform prevention and treatment. Leading models (mirror neurons, social brain, theory-of-

mind,…) ascribe ASD to disturbances throughout the brain (in perisylvian cortex, cingulate, 

white matter, amygdala,…). These loci can be probed--and models thereby tested--for 

neurochemical dysfunction using proton magnetic resonance spectroscopy (MRS). MRS 

assays metabolites such as N-acetyl-compounds (NAA), glutamate+glutamine (Glx), 

creatine+phosphocreatine (Cr), and choline-compounds (Cho). MRS findings in ASD (2,3) 

have resembled model predictions in being neuroanatomically dispersed, but findings have 

been variable and poorly replicated, likely because of differences in methods and inadequate 

accounting for the heterogeneity of ASD (in symptoms, age, sex, IQ,…) To address this 

heterogeneity, the present study examined a large, well-characterized sample of ASD and 

typically developing (TD) children and adults that permitted assessment of between-group 

differences and modifying effects of age, sex, IQ, and ASD symptoms on MRS metabolites 

using state-of-the-art acquisition and analysis with multiplanar chemical shift imaging 

(MPCSI). Unlike single-voxel MRS, MPCSI does not readily permit use of short echo-time 

(TE) and water-referenced quantitation, but it does enable simultaneous wide sampling of 

brain regions implicated in ASD at high spatial-resolution (~1 cc) in tolerable scantimes.

MATERIALS AND METHODS

Participants

For recruitment, diagnosis, and inclusion/exclusion see (4) and Supplemental Methods. 

Briefly, 78 individuals with ASD (DSM-IV autistic disorder, Asperger disorder, or pervasive 

developmental disorder) aged 5–60 (Table 1) participated. The institutional review board of 

the New York State Psychiatric Institute approved the study and written informed consent 

was obtained. Assessments included the Autism Diagnostic Interview–Revised (ADI-R)(5) 
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and, in 66 ASD participants, the Autism Diagnostic Observation Schedule (ADOS)(6). The 

ADOS returned a Total Score and subscores for Restricted and Repetitive Behaviors and 

Social Affect symptoms. In 62 ASD and 67 TD participants, ASD symptoms were evaluated 

with the Social Responsiveness Scale (SRS)(7) yielding a Total Score and subscores for 

Social Awareness, Social Cognition, Social Communication, Social Motivation, and 

Restricted Behaviors. Participants with genetic or metabolic abnormalities, history of 

neurologic injury, recent seizures, contraindications to MRI, or inability to comply with 

procedures were excluded. In the ASD sample, 26 participants were taking one or more 

psychotropic medications (Table 1), 52 were taking no medication.

Ninety-six unmedicated TD controls participated after a clinical interview including the 

Kiddie Schedule for Affective Disorders and Schizophrenia for children or the Structured 

Clinical Interview for DSM-IV Axis I Disorders for adults. Individuals with current or 

previous psychiatric or neurologic disorder were excluded. All controls scored below 

threshold for ASD on the SRS. The full-scale intelligence quotient (FSIQ) was assessed (68 

ASD, 93 TD) using the Wechsler Abbreviated Scale of Intelligence. ASD and TD samples 

did not differ significantly in sex, age, or socioeconomic status (Table 1), but mean FSIQ 

was 5.9% lower in ASD (p = 0.046). We opted not to balance groups for IQ since low IQ is a 

frequent, and very high IQ an occasional, feature of ASD and a broad IQ range was desired. 

By design, SRS scores were higher in the ASD sample (p < 10−6).

MR Acquisition

MRI and proton MRS were acquired as described (4, also see Supplemental Methods). 

Briefly, data were collected at 3T (GE Signa) with an 8-channel surface coil. Whole-brain 

T1-weighted MRI was obtained using 3D spoiled gradient-recall with 0.98×0.98×1.0 mm3 

voxels. The T1 was used to prescribe MPCSI and to segment the brain into gray and white 

matter. An in-plane high-resolution “localizer” MRI was acquired in register with MPCSI 

with voxels 0.98×0.98×10 mm3. The localizer was used to normalize MPCSI data into a 

common template brain space. MRS was acquired in 6 axial-oblique slabs parallel to the 

anterior commissure-posterior commissure plane (AC-PC): one slab below, one containing 

and four above the AC-PC (Figure 1). We acquired water-suppressed MPCSI with TR/

TE=2800/144 ms, voxels 10×10×10 mm3 and outer-volume lipid suppression.

MR Post-Processing

MR data were processed as described (4,8–9 and Supplemental Methods). Briefly, the brain 

was extracted from the T1-volume, warped into a cross-participant template and segmented 

into gray and white matter. After time-domain preprocessing, MPCSI data were Fourier-

transformed and loaded into the inhouse 3DiCSI software package which identified brain-

internal MPCSI voxels. Spectra were fit for NAA, Glx, Cr, Cho, and lipids using Gaussian-

Lorentzian curves and least-squares. Areas under the curves estimated metabolite 

concentrations in each voxel. We quality controlled the data by inspecting each spectrum, 

rejecting spectra with lipid contamination, insufficient water suppression, lack of separation 

between Cr and Cho, or linewidth >12 Hz. We computed background noise as the standard 

deviation of the part of the real spectrum free from metabolite signal. We generated a 
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spectroscopic image for each metabolite as the ratio of peak area to noise for each voxel, 

accounting for variations in receiver and transmitter gain.

We corrected each voxel of each participant’s spectroscopic images for partial-voluming 

(variable gray-vs. white-matter content across MPCSI voxels) and for the MPCSI point-

spread function (dispersion of MR signal into neighboring voxels). For each MPCSI voxel 

and metabolite we used linear regression to estimate the concentration of that metabolite in 

gray and white matter using the levels in neighboring voxels and their proportions of gray 

and white matter. We resampled metabolite levels from low-resolution MPCSI to the high-

resolution T1 during spatial normalization. This entailed warping the MPCSI volume for 

each participant onto the T1 template. We then coregistered each metabolite image onto the 

template using the T1 and the localizer.

Statistical Analyses

For all metabolite-level analyses we conducted hypothesis testing in each voxel. To control 

for false positives we applied False Discovery Rate (FDR) at FDR = 0.05; p-values surviving 

FDR were color-coded on statistical parametric maps on the T1-template. Effects of 

diagnosis on metabolites were evaluated across the combined sample with a multiple linear-

regression model that included age, sex, and FSIQ. Effects of symptom severity on 

metabolites were assessed in the ASD sample using a model that included age and sex. This 

was done for ADOS and SRS Total Scores and for each subscale. Effects of age on 

metabolites were evaluated in the combined sample with a model that included age, sex, 

diagnosis, and an age-by-diagnosis interaction. The interaction was evaluated to identify 

where in the brain diagnosis effects differed by age. In follow-up analysis, we assessed 

effects of age separately in the ASD and TD samples using a model that included sex. 

Effects of sex on metabolites were assessed in the combined sample using a model that 

included age, sex, diagnosis, and a sex-by-diagnosis interaction. The interaction identified 

where in the brain group differences varied by sex. In follow-up, we assessed sex effects on 

metabolites separately in the ASD and TD samples using a model that included age. Given 

the higher incidence of ASD in males than females, we compared metabolites between the 

ASD and TD groups using male participants only and a model that included age. Effects of 

FSIQ on metabolites were assessed in the combined sample using a model that included age, 

sex, diagnosis, and a FSIQ-by-diagnosis interaction. The interaction identified where in the 

brain group differences varied with FSIQ. In follow-up, we assessed effects of FSIQ on 

metabolites in ASD alone and TD alone using a model that included age and sex. Moreover, 

current use of any psychotropic medication (binary yes/no) was added to the model for all 

analyses that included ASD participants. All such analyses were repeated excluding ASD 

participants taking medication (for findings, see Supplemental Results). Findings are 

reported only for cases that were significant both when covarying for medication and when 

excluding medicated participants.
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RESULTS

Effects of Diagnosis and Symptoms

Various metabolites levels (Figures 2, S1A, S2A) were lower (p < 0.001–0.02) in ASD in 

bilateral anterior cingulate cortex (ACC; NAA, Cho), middle cingulate cortex (MCC; NAA, 

Cr, Cho) and left white matter (NAA), middle temporal gyrus (MTG; NAA, Cr, Cho), 

inferior frontal cortex (IFC; NAA), and insula (NAA). Metabolites were higher (p < 0.001–

0.02; Figures 2, S1A, S2A) in ASD vs. TD in bilateral posterior cingulate cortex (PCC; 

NAA, Glx) and mesial temporal lobe (MTL; Glx, Cr) and right internal capsule (IC; Glx, Cr, 

Cho).

Within ASD, multiple metabolites correlated inversely (p < 0.001–0.02) with ADOS Total 
score (Figures 2, S1B, S2B) bilaterally in several white-matter tracts (NAA, Glx, Cr, Cho), 

left precuneus (NAA, Glx, Cr) and right IFC (NAA, Cr, Cho). Multiple metabolites 

correlated positively with SRS Total score (Figures 2, S1C, S2C) in bilateral centrum 

semiovale, PCC and MCC (all p = 0.001; NAA, Glx, Cr, Cho) and in left caudate (p = 0.02; 

NAA, Glx). Glx, Cr, and Cho correlated inversely (p < 0.001–0.02) with the ADOS Social 
Affect subscore in white matter (Figures 3, S3). Several SRS subscores (Figures 3, S3–S7) 

correlated positively (p < 0.001–0.02) with metabolites in numerous regions. These included 

the SRS Social Awareness subscore (Figures 3, S4) in bilateral white matter, PCC, MCC 

(NAA, Glx, Cr, Cho) and precuneus (NAA, Cr, Cho) and right MTL (NAA, Glx), IFC 

(NAA, Glx, Cr), central opercular cortex (Cr, Cho), planum temporale (Cr, Cho) and ventral 

pallidum (NAA, Cr, Cho); the SRS Social Cognition subscore (Figures 3, S5) in bilateral 

white matter, PCC, MCC, precuneus (NAA, Glx, Cr, Cho), MTL (Cr, Cho), lenticular 

nucleus (Cr, Cho), ventral pallidum (Glx, Cho), right IFC (Cr, Cho), and planum temporale 

(Cr, Cho); the SRS Social Communication subscore (Figures 3, S6) in bilateral centrum 

semiovale, PCC, and precuneus (NAA, Glx, Cr, Cho); and the SRS Restricted Behavior 
subscore (Figures 3, S7) in bilateral white matter, PCC (NAA, Glx, Cr, Cho), MCC (Glx, Cr, 

Cho), and precuneus (Cr, Cho).

Age Effects

Bilateral positive age-by-diagnosis interactions were seen for metabolites in PCC (NAA, 

Cr), MCC (Cr), precuneus (NAA, Cr), and left MTG (NAA, Glx; Figures 4, S8A, S9A; p = 

0.001). Each of these interactions derived from stronger inverse correlations of age with 

concentration in TD than in ASD (Figures 4, S8BC, S9BC). Right-sided negative 

interactions were seen in IC, insula, and MTL (NAA, Glx, Cr, Cho; Figures S8A, S9A; p = 

0.001, except MTL p = 0.02) that derived from steeper inverse correlations of age with 

metabolite levels in ASD (Figures S9BC, S10BC).

Sex Effects

We detected a bilateral sex-by-diagnosis interaction in posterior thalamic radiations and a 

left-sided interaction in centrum semiovale (both p = 0.001, strongest for Glx and NAA) 

(Figures 4, S10–S11). In some regions, NAA and Glx were lower in males than females in 

TD, but higher in males than females in ASD. In other regions, ASD females had lower 

NAA and Glx, on a par with TD males, removing the normal pattern of lower metabolites in 
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males leading to the significant interaction. Lower metabolite levels were detected in male 

ASD compared to male TD (Figure S12) participants (p < 0.0001–0.02) in bilateral anterior 

corona radiata (ACR) and other white matter (NAA); bilateral ACC (NAA, Cr, Cho) and 

MCC (NAA, Cr, Cho); and left insula, MTG, and MTL (NAA, Cr, Cho). Higher levels (p = 

0.0001) were present in ASD in left superior corona radiata (SCR; NAA), right SCR (Cr) 

and lenticular nucleus (Glx, Cr).

FSIQ Effects

FSIQ-by-diagnosis interactions (p < 0.001–0.02; Figures 5, S13–S14) were observed for 

metabolites bilaterally in white matter (NAA, Glx, Cr, Cho) and MCC (NAA, Cr), PCC 

(NAA, Glx, Cr), precuneus (NAA, Cr, Cho), insula (NAA, Glx, Cr, Cho), IFC (NAA, Glx, 

Cr, Cho), superior temporal cortex (STC; NAA, Glx, Cr, Cho), ventral pallidum (Cr), and 

thalamus (NAA). The interactions derived from lower metabolite levels with decreasing 

FSIQ in ASD, but either weak positive or inverse correlations of metabolites with FSIQ in 

TD.

DISCUSSION

This MRS study of ASD featured near whole-brain high-resolution coverage at high-field 

accounting for voxel-tissue composition, psychotropic medications, and multiple 

comparisons. The ASD and age-and sex-matched TD samples were larger than in most MRS 

studies and permitted evaluation of effects of diagnosis and symptom domains, and of age, 

sex, and IQ, on metabolites. Major findings were: 1) ASD was associated with below-TD 

NAA in white matter and perisylvian cortex, levels of all metabolites declining with 

symptom severity (ADOS Total Score and Social Affect subscore), and above-TD NAA and 

Glx in PCC increasing (along with Cr and Cho) with severity (SRS Total Score and 

subscores); 2) In certain brain regions (PCC, MCC, precuneus, MTG) NAA, Glx, or Cr 

decreased more slowly with age in ASD than in TD, and in a few regions (IC, insula, MTL) 

all metabolites decreased more rapidly; 3) Sex-differences in NAA and Glx were attenuated 

or reversed in ASD relative to TD, and male ASD compared to male TD participants had 

lower NAA, Cr, and Cho in multiple white-matter tracts; and 4) In numerous white-matter 

tracts and cortices, lower NAA, Glx, Cr, and Cho were associated with lower FSIQ in ASD, 

whereas lower levels of these metabolites were associated mostly with increasing FSIQ in 

TD. These findings underscore the need to account for sample heterogeneity in studies of 

ASD, but also indicate that heterogeneity in ASD has discrete underlying neurobiological 

determinants. Support is afforded for multiple theories of ASD as indicated below.

Effects of ASD Diagnosis and Symptoms

Metabolites (NAA, Cr, Cho) were lower in ASD than in TD and declined with increasing 

ADOS severity (NAA, Glx, Cr, Cho; Figures 2, S1B) in white matter and perisylvian cortex 

(IFC, insula). Few ASD MRS studies sampled IFC or insula (10–12), but other imaging 

modalities have implicated these regions in ASD (13–20), proposing deficits in the “mirror 

neuron system”, theory of mind, or social brain. One small study (11) of adult ASD found 

elevated Glx in auditory cortex, while we found no significant effects on Glx there. The 

shorter-TE and targeted sampling of auditory cortex in (11) may have facilitated their 
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detection of this effect. Several MRS studies of white matter in ASD reported lower NAA 

(10,21–22), Glx (23), or Cr (10). Consistent with these findings are MRI (24–25) and DTI 

(26) reports of widespread white-matter abnormalities and postmortem axonal pathology 

(fewer long and more short axons, thinner myelin)(27–28) in ASD, perhaps representing 

compromised axonal or oligodendroglial integrity and impaired neurotransmission. Axonal 

pathology and white-matter abnormalities have been cited to support theories that ASD 

symptoms derive from cortico-cortical underconnectivity and compensatory local 

overconnectivity (29).

In aMCC, NAA, Cr, and Cho were lower in ASD than in TD (Figs. S1A,S2A) while NAA, 

Glx, Cr, and Cho correlated positively with SRS Total Score (S1C,S2C) and Social 

Cognition subscore (S5A,S5B) in pMCC. This may appear contradictory but is not 

necessarily so. First, the findings are in different, if adjacent, cingulate subregions (aMCC, 

pMCC). Second, even if in the same subregion, the reductions in metabolite levels could 

represent symptom-lowering compensatory responses. This principle applies generally 

where a between-group difference is accompanied by a within-patient-group symptom 

correlation of opposite sign.

NAA and Glx were elevated in PCC in ASD and higher levels of all four metabolites in PCC 

were associated with more severe symptoms (SRS; Figures 2, S1). The PCC (and precuneus) 

are underexplored with MRS in ASD (30), but abnormalities have been reported in 

pathology (abnormal cytoarchitecture)(31) and in other MR modalities (13–14,32). The PCC 

lies in the “default mode network” and “social brain” (33), and is linked to mental operations 

impaired in ASD, including theory of mind (34), internally directed attention (35), body 

ownership (36), and self-localization and performance monitoring (37).

Additional regional ASD effects without significant symptom correlates included reduced 

levels of all four metabolites in ACC and MTG (Figures S2A, S11A) and elevated Glx and 

Cr in MTL (hippocampus, amygdala, rostral lingual gyrus). ACC abnormalities are 

frequently reported in neuroimaging (20–21,32,38–42) and postmortem studies (pachygyria, 

dysplasia, heteropia, and small, closely packed neurons)(43–44). The ACC subserves social 

and executive functions impaired by ASD (45–46). The lateral temporal lobe, including 

MTG, has been less explored with MRS in ASD (15), but abnormalities are reported in other 

neuroimaging (14,20,47) and postmortem studies (smaller, more numerous mini-columns)

(43). The MTG and STG are thought to be sites of ASD impairments in face processing 

(48), and theory of mind (49). MTL abnormalities, reported in metabolite (50–52) and 

volumetric (53) studies, are consistent with amygdalar and hippocampal theories of ASD 

(54).

In several regions, metabolites correlated with symptom severity in the absence of ASD 

main effects. Levels in white-matter of the IC (NAA, Glx), SLF (Glx, Cr), and PCR (Glx, 

Cr, Cho) correlated inversely with ADOS symptoms, indicating that widespread white-

matter metabolite reductions accompany more severe illness. Metabolite levels correlated 

positively with SRS in CSO (NAA, Cr, Cho), MCC (NAA, Glx, Cr, Cho), and caudate 

(NAA). MCC abnormalities have been reported in several prior MRS studies (10,30,55–56) 

and a postmortem study (smaller, more numerous neurons)(57) and this region is a possible 
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locus of social and cognitive impairments in ASD (45). Abnormal caudate metabolites 

(10,21), volumes (58–59), and cellularity (low interneuron density)(60–61) have been 

reported in ASD.

Age Effects

Positive age-by-diagnosis interactions were found in PCC (NAA, Cr), MCC (Cr), precuneus 

(NAA, Glx, Cr), and MTG (NAA) based on inverse correlations with age in TD controls, but 

no correlation in ASD. Inverse correlations with age were less significant and less spatially 

extensive in ASD than TD (Supplemental Figure S8A–D). In a few regions (IC, insula, 

MTL) steeper inverse correlations of all four metabolites with age were seen in ASD. Age 

interactions involving metabolites have occasionally been reported in ASD (52), but the 

topic is underexplored. MRI has revealed aberrant growth patterns for brain structures in 

ASD (62–63), suggesting anomalous developmental trajectories for regional 

neurometabolites, especially in cortex, for ASD as well.

Sex Effects

For the overall sample, in several regions TD had lower levels of one or more metabolites for 

males than females, while ASD had higher levels for males. In some regions, ASD females 

had lower metabolites comparable to those of TD males, violating the TD males lower than 

female pattern. This suggests that the ASD females were relatively akin to males in their 

spatial pattern of metabolite levels. We are unaware of prior reports of MRS sex differences 

in ASD. ASD affects males more frequently than females (1) leading to an “extreme male 

brain theory” of ASD (64). The diminished male-female metabolite differences presently 

seen modestly support this notion, but in most regions male-female metabolite differences 

were similar in ASD and TD, and effects for ASD vs. TD males largely resembled effects 

for the overall sample. Larger metabolite studies of females with ASD are needed to test this 

theory more rigorously.

FSIQ Effects

FSIQ moderated effects of diagnosis on metabolite levels in numerous brain regions (Figure 

5). Although there was much overlap in FSIQ between the ASD and TD samples, positive 

correlations in ASD indicated that one or more metabolite levels declined with decreasing 

FSIQ in white (SCR, ACR, PCR, CC, SLF) and gray matter (MCC, PCC, VP, Th, Ins, STC), 

whereas correlations with FSIQ were weaker or opposite in TD. These findings suggest that 

the general reductions in metabolite levels we detected as a main effect of ASD are larger in 

ASD participants with lower IQs. Metabolite correlates of IQ have been reported in some 

ASD studies (30,41,50), but most studies have excluded low-functioning participants, whom 

we included intentionally to assess IQ effects and to improve generalizability of findings. 

The regional distribution of FSIQ effects in ASD corresponded closely to the distribution of 

SRS severity correlates (Figures 2–3, 5) but were statistically independent of them, 

suggesting that the same metabolic signature contributes to both lower IQ and more severe 

symptoms, which together are often considered “lower functioning” in ASD.
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Commonality of Effects Across Metabolites

Most effects involved multiple metabolites, in the same direction and anatomically 

overlapping. This has various possible explanations. Jointly depressed metabolites in ASD 

could represent reduced cellularity in those regions, either from reduced proliferation or 

differentiation of cells early in development or from altered plasticity later in development, 

consistent with postmortem studies (43–44,57) reporting smaller neurons in ASD. Second, 

disturbances in cell-energy metabolism in ASD could account for the commonality of 

observed effects. NAA levels correlate with glucose metabolic rate (65–66). Since NAA is 

synthesized in neuronal mitochondria (67) from the glycolysis product acetyl-CoA, NAA is 

thought to store substrate for longer-term energy expenditure (68). Moreover, NAA is 

catabolized by oligodendrocytes (69) to support myelin synthesis (68). Lower NAA in ASD 

therefore may indicate reduced long-term energy storage, from lower brain energetics or 

greater oligodendrocyte catabolism. Glutamatergic neurotransmission is a cell-energy sink, 

while glutamate and glutamine are Krebs cycle reactants and glutamine plays a role in 

recycling of glutamate. Lower Glx may reflect reduced neurotransmitter activity and, hence, 

reduced energetic demands. MRS Cr represents the creatine-phosphocreatine ATP buffer for 

short-term energy (70). Lower Cr may indicate reduced short-term energy storage, perhaps 

deriving from reduced glutamatergic neurotransmission. Choline-compounds are mostly 

bound in membrane phospholipids and therefore are invisible to 1H MRS (71). Cell 

membranes, however, undergo continuous remodeling and turnover, hydrolyzing 

phospholipids into water-soluble choline, phosphocholine, and glycerophosphocholine that 

MRS quantifies. Low MRS Cho could therefore reflect reduced membrane turnover (72). 

Low Cho could further imply that carbon substrate is being consumed to meet cell-energy 

demands, rather than built into cell membranes. Thus, any process that alters neuroenergetics 

will likely influence multiple MRS resonances. In particular, mitochondrial dysfunction 

disturbs multiple MRS metabolites (73); we previously reported MRS evidence for 

mitochondrial dysfunction in this sample (31). Finally, inflammatory processes affect 

multiple metabolites (74), and ASD may represent a neuroinflammatory condition (75).

Limitations

Medication was used by 26 of 78 ASD participants. Recruiting medication-free ASD 

samples is difficult, and curtails generalizability of findings. Moreover, we only reported 

effects that were significant both when covarying for medication and when excluding 

medicated participants. Participants varied widely in age, by design, as it allowed us to 

assess age effects directly. Mean IQ was slightly lower in the ASD than TD sample. After 

removing 1 ASD participant with FSIQ = 52 this difference was no longer significant, but 

metabolite findings were not altered. MPCSI was acquired at high-field, but long-TE, thus 

segregating Glu from Glx was not possible. Although some might question reporting Glx at 

all under these conditions, our Glx data survived the same rigorous quality control as the 

other metabolites. Long-TE acquisition (here TE144) is more stable than short-TE for 

MPCSI. Glx has been previously measured successfully at long-TE (76–78), and 

quantitation of Glx at TE144 has been deemed methodologically acceptable at 3 T (79). 

Nonetheless, TE144 is not optimal for Glx, so results merit replication at short-TE. Due to 

the challenges of measuring T2-values, metabolites levels were not corrected for T2-

relaxation, hence, abnormal T2 in ASD could underlie presently observed metabolite effects 
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(10). These weaknesses are counterbalanced by strengths of our study, including large 

sample, wide coverage, high spatial-resolution, accounting for tissue-composition, and 

assessing effects of age, sex, and IQ. Overall findings help parse the neurometabolic 

signature for ASD and cohere with ASD theories (18,24–25,33–34,54,64,75).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sagittal T1-weighted MRI of the brain (left) of a participant with autistic spectrum disorder 

(ASD) shows prescription of the 6 multiplanar chemical shift imaging (MPCSI; repetition-

time [TR]/echo-time [TE]=2800/144 ms) slabs (red blocks), each parallel to the anterior 

commissure–posterior commissure (AC-PC) plane. Each slab was 10 mm thick with 2-mm 

interslice gap. One slab passed through the AC-PC, one was just inferior to it, and 4 slices 

were superior to the AC-PC. In-plane, nominal MPCSI voxel size was 10×10 mm2. Lipid-

suppression was achieved by 8 extracranial saturation bands (not shown). Typical MPCSI 

spectrum from an individual 10×10 mm2 voxel (right) plotting radio-frequency signal 

intensity vs. chemical-shift in parts-per-million (ppm). Well-resolved resonances are seen for 

N-acetyl-compounds (NAA), glutamate+glutamine (Glx), creatine+phosphocreatine (Cr), 

and choline-compounds (Cho). Note narrow bandwidth, high signal-to-noise ratio (SNR), 

and flat baseline uncontaminated by extracranial lipids, macromolecules, or unsuppressed 

water.
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Figure 2. 
Effects of autistic spectrum disorder (ASD) and its symptoms on N-acetyl-compounds 

(NAA) levels. Statistical parametric maps on axial brain template. NAA is higher (orange-

red) for 68 ASD than for 93 typically developing (TD) participants in dorsal posterior 

cingulate cortex (dPCC)(left upper); NAA is lower (cyan-blue) in centrum semiovale (CSO), 

forceps minor (FMn), superior corona radiata (SCR), posterior thalamic radiations (PTR), 

anterior middle cingulate cortex (aMCC), pregenual anterior cingulate cortex (pACC), 

inferior frontal cortex (IFC) and insula (Ins). (Covariates: age, sex, FSIQ and use of any 

psychotropic medication.) NAA (left middle) correlated inversely (cyan-blue) with 

symptoms (Autism Diagnostic Observation Schedule—ADOS--Total Score) in posterior 

corona radiata (PCR), internal capsule (IC) and IFC. (Covariates: age, sex, medication; 68 
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ASD.) NAA (left lower) correlated positively (orange-red) with symptoms (Social 

Responsiveness Scale—SRS--Total Score) in CSO, aMCC, dPCC, and left caudate (Cd). 

(Covariates: age, sex, medication; 62 ASD.) All results corrected for multiple comparisons 

using false discovery rate. For further results including similar effects for other anatomic 

sections and other metabolites see Supplemental Results.
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Figure 3. 
Glutamatergic neuroanatomic profile of social symptoms in 62 participants with autistic 

spectrum disorder (ASD). Statistical parametric maps on selected axial brain sections show 

significance of correlations (orange-red for positive; cyan-blue for negative) of magnetic 

resonance spectroscopy levels of glutamate+glutamine (Glx) with scores on multiple 

subscales (left) of the Social Responsiveness Scale (SRS) reflecting different types of social 

symptoms in ASD. SRS Social Awareness symptoms (left upper) increase with increasing 

Glx in anterior middle cingulate cortex (aMCC) and corpus callosum (CC). SRS Social 

Cognition symptoms (left middle) increase with increasing Glx in posterior middle cingulate 

cortex (pMCC), precuneus (pCu), and dorsal posterior cingulate cortex (dPCC). SRS Social 

Communication symptoms (left lower) increase with increasing Glx in dPCC, centrum 

semiovale (CSO), and pCu. For comparison (right upper), correlations of (non-social) SRS 

Restricted Behaviors symptoms with Glx. For further comparison (right middle), 

correlations of Glx with social symptoms of yet another type, captured by a different 

instrument, the Autism Diagnostic Observation Schedule (ADOS) Social Affect subscale. 

These symptoms decrease with increasing Glx in the posterior corona radiata (PCR). (For 

correlations elsewhere in the brain and with other metabolites see Supplemental Figures S3–

SS7.) All analyses covary for age, sex, FSIQ, and use of any psychotropic medication and 

are corrected for multiple comparisons using false discovery rate (FDR).
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Figure 4. 
Statistical parametric maps on selected axial brain sections show effects of age (left) on N-

acetyl-compounds (NAA) and effects of sex (right) on glutamate+glutamine (Glx) in autistic 

spectrum disorder (ASD) and typically developing (TD) participants (all analyses false 

discovery rate–FDR--corrected). Age-by-diagnosis interactions (left upper; orange-red 

positive; cyan-blue negative) for NAA covarying for sex, diagnosis, and use of any 

psychotropic medication. Interactions were seen in dorsal posterior cingulate cortex (dPCC), 

precuneus (pCu), and middle temporal gyrus (MTG). Correlations (left middle; orange-red 

positive; cyan-blue negative) of NAA with age in 78 ASD participants, covarying for sex 

and use of any psychotropic medication. NAA decreased with age at multiple sites, 

including anterior middle cingulate cortex (aMCC), superior corona radiata (SCR), superior 

longitudinal fasciculus (SLF), posterior corona radiata (PCR), anterior corona radiata 

(ACR), corpus callosum (CC), ventral posterior cingulate cortex (vPCC), inferior frontal 

cortex (IFC), insula (Ins), planum temporale (PT), lenticular nucleus (LN), internal capsule 

(IC), and thalamus (Th). Significant interaction sites in black. Correlations of NAA (left 

lower) with age in 96 TD participants, covarying for sex. Decreases of NAA with age were 

seen in many of the same areas. Sex-by-diagnosis interactions (right upper) for Glx 

covarying for age, diagnosis, and use of any psychotropic medication. Positive interactions 

were seen in centrum semiovale (CSO) and posterior thalamic radiations (PTR). Regions 

(right middle) where metabolites are higher (orange-red) or lower (cyan-blue) in male than 

female participants covarying for age and use of any psychotropic medication; 78 (63 

male/15 female) ASD participants. Sites with sex-by-diagnosis in black. Posterior middle 

cingulate cortex (pMCC). Regions (right lower) where metabolites are higher or lower in 
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male than female participants covarying for age; 96 (69 male/27 female) YD participants. 

(For results elsewhere in brain and with other metabolites see Supplemental Figures S8–

S11.)
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Figure 5. 
Effects of full-scale intelligence quotient (FSIQ) on N-acetyl-compounds (NAA) levels in 

autistic spectrum disorder (ASD). FSIQ-by-diagnosis interactions (right upper; orange-red) 

were seen in SCR, aMCC, dPCC, ventral PCC (vPCC), Ins, ventral pallidum (VP), and 

thalamus (Th). (Covariates: age, sex, FSIQ, medication; 68 ASD, 93 TD.) NAA (right 

middle) correlated positively with FSIQ in IC, SCR, PCR, anterior corona radiata (ACR), 

superior longitudinal fasciculus (SLF), corpus callosum (CC), IC, aMCC, precuneus (pCu), 

dPCC, vPCC, Ins, frontal opercular cortex (FOC), superior temporal cortex (STC), VP, and 

Th. (Covarying age, sex, medication; 68 ASD.) For 93 TD, NAA (right lower) was little 

affected by FSIQ. (Covariates were age and sex. Elsewhere in brain NAA was unaffected by 

or correlated inversely with FSIQ; Supplemental Figure S14C.) All results corrected for 
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multiple comparisons using false discovery rate. For further findings including similar 

effects for other anatomic sections and other metabolites see Supplemental Results.
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Table 1.

Participant Characteristics

ASD (n = 78) TD (n = 96) ASD vs. TD

Mean (SD) Mean (SD) Statistic p

Age (Years) 22.5 (13.9) 22.3 (12.3) t = 0.05 0.908

Age Group (Child/Adult) 34/44 43/53 χ2 = 0.02 0.874

Sex (Female/Male) 15/63 27/69 χ2 =1.86 0.173

SES
a
 (Hollingshead Score) 49.2 (10.7) 51.8 (12.1) t = −0.11 0.195

FSIQ
b
 (points) 108.5 (25.6) 115.3 (12.4) t = −0.17 0.046

ADOS Total (points) 11.4 (4.1) -- -- --

 Social Awareness 9.5 (3.8) -- -- --

 Restricted and Repetitive Behaviors 1.9 (1.6) -- -- --

SRS Total (points) 87.8 (29.2) 20.1 (16.9) t = 1.45 <10−6

 Social Awareness 10.9 (3.7) 4.7 (3.1) t = 2.92 <10−6

 Social Cognition 16.3 (5.5) 3.1 (3.3) t = 1.48 <10−6

 Social Communication 29.7 (10.2) 6.1 (6.5) t = 1.40 <10−6

 Social Motivation 14.4 (5.9) 3.4 (3.1) t = 1.20 <10−6

 Restricted Behavior 17 (6.8) 2.9 (3.5) t = 1.34 <10−6

Psychotropic Usage

 None 52 96 --

 Any 26 0 --

  antipsychotics 8
c 0 --

  anticonvulsants 7
c 0 --

  other mood stabilizers 2
c 0 --

  SSRIs or SNRIs 11
c 0 --

  other antidepressants 2
c 0 --

  benzodiazepines 2
c 0 --

  stimulants 9
c 0 --

  dopaminergic agents 1
c 0 --

ADOS, Autism Diagnostic Observation Schedule (3); ASD, patients with autistic spectrum disorder; SNRI, serotonin–norepinephrine reuptake 
inhibitor; SRS, Social Responsiveness Scale (4); SSRI, selective serotonin-reuptake inhibitor; TD, typically developing control participants.

a
Socioeconomic status based on Hollingshead

b
Full-Scale Intelligence Quotient based on Wechsler

c
Numbers do not sum to 26 due to polypharmacy

Biol Psychiatry. Author manuscript; available in PMC 2021 January 15.


	Abstract
	MATERIALS AND METHODS
	Participants
	MR Acquisition
	MR Post-Processing
	Statistical Analyses

	RESULTS
	Effects of Diagnosis and Symptoms
	Age Effects
	Sex Effects
	FSIQ Effects

	DISCUSSION
	Effects of ASD Diagnosis and Symptoms
	Age Effects
	Sex Effects
	FSIQ Effects
	Commonality of Effects Across Metabolites
	Limitations

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.



