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Abstract – Detailed analysis of the compact antenna array patterns and the internal 
signal processing within the MUSIC algorithm leads to a goodness-of-fit quality metric 
for the output radial current velocities and bearings produced by the HF RADAR system.  
To achieve this, some theory behind the MUSIC direction finding algorithm, describing 
its Direction of Arrival (DOA) metric, is first presented.  MATLAB simulations are 
conducted and statistics are collected on the DOA metrics.  The magnitudes of these 
metrics are directly related to the quality of the bearings produced by the MUSIC 
algorithm. This research provides HF RADAR users with a practical quality metric for 
the radial current velocities and their associated bearings produced by the HF RADAR 
system.  Eliminating data with low DOA metrics can decrease the RMS error (by an 
average of 2.33 cm/s) in up to 70% of the spatial RADAR grid, however comes at a cost 
of an increase the RMS error(by an average 1.08 cm/s) in 20% of the same grid.   

Quality of measured antenna patterns is paramount to the accuracy of the MUSIC 
algorithm bearing output.  Ambiguities, as well as other aspects of the measured antenna 
patterns that are detrimental to quality, are discussed.  MUSIC results over land 
bearings are explained, as well as the clustering of radials along the edges of the antenna 
patterns near land.  Best practices are presented to eliminate all of these effects. 
 
Criteria (“MUSIC parameters”) for deciding whether a given MUSIC radial velocity 
originates from one or two bearings are defined and discussed.  Varying the MUSIC 
parameters can decrease error depending on the expected current being measured.  A 
current that generates a majority of radial velocities from only one bearing should have 
the MUSIC parameters set to favor single bearing solutions, and vice-versa.  Simulation 
results are provided in the Appendices.   

1. Introduction 
Perhaps the single most important aspect of determining ocean currents using a compact 
array HF RADAR is the definition of the three antenna patterns as a function of azimuth 
(bearing) angle.  Theoretically, these antenna patterns define an antenna manifold in M-
space (in most cases M=3).  It is the job of the MUSIC algorithm to: 1) determine a 
signal space by diagonalization of a covariance matrix formed from the measured signals 
on each antenna, and 2) determine the most likely signal bearing by projecting all the 



points (bearings) of the antenna manifold onto that signal space.  The signal space that 
the MUSIC algorithm determines is a K-dimensional (K < M-1) subspace of the M-
space.  The points of the antenna manifold are taken bearing by bearing (usually in 5 
degree increments) and projected onto the signal space, and the point in the manifold that 
has the largest projection onto the signal space determines the bearing(s) from which the 
signal(s) came.  The projection, or how “close” the antenna manifold is to the signal 
space, can be analyzed to determine a goodness-of-fit metric.  This provides quality 
metrics for MUSIC algorithm solutions that can lead to better definition of overall data 
accuracy. 

2. Ideal Antenna Patterns 
The MUSIC algorithm depends greatly on the sensors, or antenna gain and phase 
patterns.  The compact array consists of two dipoles (Antenna 1 and Antenna 2), and one 
monopole (Antenna 3).  The ideal Antenna 3 pattern has unity gain and zero phase in all 
directions, so the received signal is passed directly through to the receiver with no 
amplitude or phase distortion.   The ideal antenna patterns of the compact array dipoles 
are generated by (1) picking a pointing angle for maximum gain, and (2) using the cosine 
of bearing relative to that angle to generate the full antenna pattern.  For example, if we 
assume we are operating on the Pacific coast of the U.S., the coastline runs north-south, 
and the Pacific Ocean lies between the bearings of 180 and 360.  For Antenna 1, we pick 
a pointing angle of 225 degrees.  For Antenna 2, we pick a pointing angle of 315 degrees.  
The three ideal antenna patterns are shown in Figure 1. 

 
Figure 1 – Ideal Compact Array Antenna Patterns 



  
One can see by the patterns, which are defined in 5 degree bearing increments, that at a 
given bearing (θ) each antenna has a given magnitude (gain) and phase response.  In 
order to develop the mathematical theory, each antenna response is represented as a 
complex number 
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And the three responses are grouped together to form a point on the antenna manifold 
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In the case of the ideal patterns, the complex numbers can be represented by purely real 
numbers (as in the “Response” plots in Figure 1) since the phase of all the antennas only 
take on values of 0 or π.  For the bearing angles with antenna phases of 0 or π, the 
exponentials are evaluated as a positive or negative one, and multiply the gain patterns to 
give real valued antenna responses.  In general, with actual measured antenna patterns, 
this is not the case, which will be discussed in the next section.  

2.1 The Antenna Manifold Using Ideal Antenna Patterns 
In the idealized antenna pattern case used herein, each antenna pattern gives rise to an 
orthogonal axis in and M dimensional vector space.  In our case, M=3.  The antenna 
patterns are indeed orthogonal to each other with respect to bearing angle.  This can be 
shown by pair wise correlation of the patterns over bearing 
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These antenna patterns form an orthogonal basis for a 3 dimensional vector space, with 
each axis representing the response of each antenna.  Furthermore, if we parameterize the 
three individual antenna responses as a function of bearing angle, 3 dimensional vectors 
are formed using each bearing, and an antenna manifold is created over all bearings, 
shown in Figure 2. 



 
Figure 2 – Ideal Antenna Manifold in a 3-Dimensional Vector Space 

 
This antenna manifold produced from ideal antenna patterns can be displayed in 3 
dimensions since all of the antenna responses are real numbers.  In practice, the response 
of each antenna at each bearing is a complex number, with magnitude and phase; hence 
the antenna manifold is comprised of 3-dimensional vectors with each component being 
complex, which cannot be plotted so easily. 

3. The Covariance Matrix, and its M-dimensional Basis 
Given M sensors (antennas) an MxM covariance matrix of the received antenna voltages 
is generated.  512 point complex sample vectors are taken from each antenna, and 
complex FFTs are performed on each (generating 512 frequency bins).  The resulting 
complex spectra are auto and cross multiplied bin by bin and averaged (for full details see 
Appendix).  Each resulting frequency bin gives rise to a 3x3 covariance matrix of the 
measured signals at that frequency 
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The covariance matrix represents one Doppler cell of the averaged cross spectra of the 
three received signals.  The inherent problem is that the signals in each Doppler cell (the 
frequency of which is a combination of Bragg scatter plus Doppler due radial current 
velocity) are really summations of signals from all bearings (plus noise), hitting each 
antenna.  The bearing angle from which the received signal comes is still unknown.  To 
figure out the bearing angle, first the covariance matrix must go though eigenvalue 
decomposition (diagonalization) to estimate a signal subspace and the noise subspace.  
But first, let’s try and visualize what dimension and shape the subspaces have. 



3.1 Signal Subspace 
As a graphical example of the signal subspace with ideal antenna patterns, Figure 3 
analyzes a signal emanating from a point source at a bearing of 225 degrees.  This signal 
will give rise to 3-tuple of voltages on the three antennas, S1 = αA(225), a linear multiple 
of the antenna responses at that bearing (note that α can be a complex constant).  Given 
antenna 3 has unity gain, the actual magnitude and phase of the signal will be received 
there.  While on antennas 1 and 2, the magnitude and phase of the signal will be modified 
depending on the bearing and the antenna patterns at that bearing.   This is represented in 
M-space as vector S1, from the origin, going through the antenna manifold at the bearing 
from where it came.  The magnitude and phase of this signal can change with time, but 
(given that the source of the signal is stationary) the bearing cannot.  This signal vector 
lies in a one dimensional signal subspace.  Any signal from that one bearing lies in that 1-
dimensional subspace, a line.  Figure 3 shows the S1 signal vector sticking out of the 
page along the positive A1 axis, also shown is the location on the manifold from a zero 
degree bearing input. 
 

 
Figure 3 - Signal S1 from Bearing 225 along a 1-Dimensional Signal Subspace 

 
Now consider a signal S2 = βA(270) with the same characteristics (in our case, the same 
Doppler shift, from the same radial current velocity) emanating from a second bearing 
270. This signal can likewise be represented by a vector from the origin through the 
antenna manifold at a bearing of 270.  These two vectors, S1 and S2, lie in a 2-
dimensional signal subspace, or plane.  Figure 4 shows the S1 and S2 signal vectors in 
the signal subspace plane (a higher elevation viewpoint of the manifold helps with the 
visualization).   



 
Figure 4 - Signal S1 from Bearing 225 and S2 from Bearing 270 in a 2-Dimensional Signal Subspace 

 
Thus with ideal antenna patterns and no noise, the signal space picture is easy to define 
and visualize.  Under more realistic conditions, the antenna manifold has complex vector 
components, the signals are complex, and contain additive Gaussian noise.  Covariance 
matrix decomposition will determine the dimensionality and direction of the signal 
subspace, but first we define the noise subspace. 

3.2 Noise Subspace 
There are two sources of noise in a practical HF radar system: 
 

1. system (thermal) noise generated by the receiving equipment, and  
2. the spatial noise field (in our case, the combination of the wind wave noise 

and the current noise, both modeled as Gaussian). 
 

The system noise should be independent from antenna to antenna, so that if no signals 
were present, there would be no correlation between the samples taken from the three 
antennas.  Considering our vector of 512 samples at approximately 2 Hz, the system 
generates a 3-tuples of noise every sample 512,...2,1 , =nwn .  If we cross-correlate the 
noise samples from the individual sensors to form a covariance matrix 0Σ , this matrix 
would be diagonal, and would be given by I2

0 σ=Σ , where 2σ is the (zero mean) noise 
variance.   The received noise vectors nw  are of equal strength and random with respect 
to bearing, they have no direction with respect to the array manifold.  They can be 
visualized in the 3-dimensional vector space as occupying a sphere about the origin as 
shown in Figure 5. 



 
Figure 5 - Uncorrelated Noise Vectors are Non-directional with Respect to Bearing 

 
 
The assumption in the SeaSonde simulation is that the noise is uncorrelated with respect 
to bearing.  Again, covariance matrix decomposition will determine the dimensionality 
and direction of the noise subspace. 

3.3 Eigenvalue Decomposition 
To determine the signal and noise subspaces, the covariance matrix goes through 
eigenvalue decomposition.  This diagonalization produces 3 eigenvalues, ordered largest 
to smallest, and three corresponding eigenvectors.  The eigenvectors form a 3-
dimensional orthonormal basis. An estimate of the signal subspace comes from the 
eigenvectors corresponding to the largest eigenvalues.  First assuming that there is only 
one signal from one bearing present, the first eigenvector (largest eigenvalue) defines a 1-
dimensinonal signal subspace (ala S1).  The remaining two eigenvectors are then 
assumed to be associated with noise, and define a 2-dimensional noise subspace.  The 
signal and noise subspaces are orthogonal to each other.   
 
Additionally, if it is assumed that there are two signals from two different bearings, the 
first two eigenvectors define a 2-dimensional signal subspace (ala S1 and S2), and the 
remaining eigenvector defines a 1-dimensional noise subspace (again orthogonal).  
 
Now that the signal and noise subspaces have been estimated, the process of determining 
which part of the antenna manifold is a best fit to the estimated signal subspace is 
performed.  This in turn provides the best estimate of signal bearing, the final result.  



4. The Direction of Arrival (DOA) Function 

4.1 Antenna Manifold Projections 
The crux of the MUSIC algorithm is that not only is the signal subspace eigenvector 
orthogonal to the noise subspace eigenvectors, but also there is an antenna manifold 
vector (being a linear multiple of the signal) that is also orthogonal to the noise subspace 
eigenvectors.  Due to the noise incorporated in the covariance matrix, our estimate of the 
noise subspace will not be exactly orthogonal to the antenna manifold vector, but perhaps 
close.  Just how close needs to be determined.   In fact, the MUSIC algorithm takes each 
antenna manifold vector (one from each bearing) and projects it onto the estimated noise 
subspace.  If any of the antenna manifold vectors were truly orthogonal to the noise 
subspace, then the projection would be zero.  The bearing that produces the antenna 
manifold vector with the smallest projection onto the noise subspace is the best estimate 
of the signal bearing.    
 
Keeping with the previous single signal example S1, Figure 6 shows a small (real) noise 
vector N1 is added to produce a received signal plus noise vector R1.   

 
Figure 6 – Received signal plus noise vector R1 

 
This received signal might give rise to a covariance matrix similar to 
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with an eigenvalue decomposition. 
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The columns of E = [E1 E2 E3] are the eigenvectors of C, the diagonal elements of Λ are 
the eigenvalues.  The largest eigenvector from the largest eigenvalue (λ3) provides the 
estimate of the 1-dimensional signal subspace (E3) (dashed line).  The other two 
eigenvectors E1 and E2 form the 2-dimenesional noise subspace (yellow plane).  For 
illustration purposes the normalized real parts of the eigenvectors (unit length) are used in 
Figure 7 to plot out these subspaces.   

 
Figure 7 – Projections of antenna manifold point A(225) onto the estimated signal/noise subspaces 

Given that the eigenvectors above, and A(225) = (1, 0, 1), the magnitude of the 
projections (solid green lines) onto the signal and noise subspaces are 1.88 and 0.11 
respectively.  These are the maximum and minimum projections for the covariance 
matrix in this example; therefore it is assumed that the bearing angle associated with this 
signal is 225 degrees.   

One more hypothesis to consider is that the signal subspace is 2-dimensional and the 
noise subspace 1-dimensional.   In this case the shapes of the two subspaces are 
interchanged in Figure 7 and a different picture is produced.  Since it is now assumed that 
the signal subspace is 2-dimensional, the two smallest projections of the antenna 
manifold onto the 1-dimensional noise subspace are found, and the two bearings 
corresponding to those two minima are assumed to be the signal bearings. These bearings 
are 205 and 330, which give A(205) = (0.9397, 0.3420, 1) and A(330) = (-0.2588, -
0.9659, 1). 



Looking first at bearing 205, Figure 8(a) shows A(205) in blue, the signal subspace as a 
white plane (black outline), the perpendicular noise subspace as a dashed yellow line, and 
the projection of A(205) onto the noise subspace.  Figure 8(b) shows A(330) and it’s 
projection onto the noise subspace.  Both A(205) and A(330) nearly lie in the signal 
subspace plane, and their projections onto the perpendicular noise subspace are small 
values of  0.0011 and 0.0015 respectively.  They are difficult to see in Figure 8 and the 
axes in both plots have been rotated to give the best possible view.   
 

 

 
 
Figure 8 - (a) Projection of antenna manifold point A(205) onto the estimated noise subspace, and (b) 

projection of antenna manifold point A(330) onto the estimated noise subspace 



 

4.2 DOA functions for 1- and 2-Dimensional Signal Subspaces 
Since the eigenvectors that define the signal and noise subspaces have unit length, and as 
defined, the antenna manifold vectors are of length sqrt(2), then the squared magnitude of 
the projection of any antenna manifold vector onto the estimate of either subspace is 
within the interval [0, 2].  Rather than consider the signal space projections over all 
bearings and look for a maximum, the MUSIC algorithm considers all the noise subspace 
projections and looks for a minimum.  The direction of arrival (DOA) function is 
generated which provides the reciprocal of the squared magnitude of the projection onto 
the noise subspace 
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where En are the eigenvector(s) defining with the noise subspace 
          A(θ) and A(θ)* are the antenna vectors and conjugate transposes 
          m = 1, 2 is the assumed dimension of the noise subspace   

 
The noise subspace projection is in the denominator, therefore the DOA function goes to 
infinity when the projection is zero, or when the antenna manifold vector is exactly 
orthogonal to the noise subspace.  For the example, 10*log(DOA(θ)) under the 1-and 2-
dimensional signal space hypotheses are plotted in Figure 9.  
 

 
Figure 9 – DOA functions assuming (a) 1-dimensional signal space and (b) 2-dimensional signal space  
 



In Figure 9(a), the maximum of the DOA function is at bearing 225 and has a value of 
10*log(1/0.11) = 9.5 dB.  Other information on the plot includes the deterministic radial 
velocity associated with the Doppler cell (and this covariance matrix) of 18.92 cm s-1 and 
other signal metrics that will be examined later.   The label at the peak shows the bearing 
of 225 degrees, the maximum DOA metric of 9.5 dB, and the radial velocity of the input 
at that bearing of 28.28 cm s-1, which is roughly a 10 cm s-1 error for this output at 225 
degrees.  The asterisks show where there were input radial velocities near the Doppler 
cell radial velocity, closer to 210 degrees bearing.  So one can look at this error in two 
ways, either assume the bearing is correct and call it a 10 cm s-1 radial velocity error, or 
assume that the radial velocity is correct and call it a 15 degree bearing error.  Notice that 
there is another asterisk at 330 degrees, indicating another bearing where the radial 
current velocity input comes from in this Doppler cell. 
 
Looking at Figure 9(b), the dual bearing DOA function shows maxima at 205 and 330 
degrees.  These MUSIC outputs are within 2 cm s-1 of the radial current velocity for this 
Doppler cell, and are a better result.  The two peaks have DOA metrics of 28.6 and 21.1 
dB respectively, which are much greater than the DOA metric for the single bearing 
solution (9.5 dB).  However, the dual bearing solution was not chosen in this case due to 
the other signal metrics previously mentioned.  These other metrics and their implications 
are discussed later. 

4.3 Statistics of the DOA function 
Given the magnitude of the error in the single bearing solution above, one would hope to 
modify the MUSIC algorithm parameters to choose the better dual bearing solution.  
Assuming for now that we’re stuck with the solution as it stands, what information can 
we glean from the DOA function that might provide a quality assessment of the result?  
Using the MATLAB simulation developed in (de Paolo and Terrill, 2007), with simulated 
eddy current shown in Figure 10(a), the radial projections shown in Figure 10(b), the 
MUSIC algorithm produces the radial results show in Figure 10(c).  These results are 
from 1 hour of simulated input data, or 6 “10-minute” cross-spectra.   
 
 
 



 

 



 
Figure 10 – (a) input eddy current, (b) input radial projection, and (c) MUSIC radial current velocity 

output 
 
Collecting DOA metrics for these MUSIC solutions (both single and dual bearing), 
statistics are gathered and shown in Figure 11.  A full set of statistics for many different 
input currents, input current noise levels, and wind directions is given in Appendix A. 
 
The second plot 11(a) show the distribution of the DOA metric values collected over the 
hour.  These values are the maxima of the DOA functions as shown in Figure 9.  Both the 
single and double bearing solution metrics are grouped together for this plot. The mean of 
the distribution is 23.77 dB, with a standard deviation of 10.96 dB.  A higher metric 
indicates a “better fit”, the projection of the received signal on to the estimated signal 
space is larger, “fitting” the antenna manifold well at the resultant bearing angle.  
Conversely, a lower metric indicates a “poor fit” of the received data to the antenna 
manifold.  Much higher DOA metrics are certainly better, however the DOA metrics 
around zero are certainly worse.  We will use the magnitude of the DOA metric for each 
result as a “goodness-of-fit” quality metric, and provide it with the radial data.   

 



 
Figure 11 – (a) statistical distribution of the DOA metric values, (b) spatial distribution of DOA 

metric values 
 
The second plot 11(b) shows the spatial distribution of the DOA metric.  This shows 
areas of potential poor data quality where the metrics are low (blue).  As expected, the 
DOA metrics get lower as range increases and SNR decreases.   There are isolated 
pockets at close range that also show a low DOA metric value. 

4.3.1 Definition of Errors 
We want to find if the DOA metric is a quality indicator for either radial velocity error or 
bearing error in the MUSIC solutions.  First we need to define some statistics related to 
quality: 
 

1. Radial velocity error is the RMS difference between the MUSIC radial velocity 
output and the simulated input for that (R, θ) cell 

 
2. Bearing error is computed as the difference in bearing (in 5 degree increments) to 

the nearest radial velocity input that is within +/-5 cm/s of the input radial velocity 
 
The tolerances for radial velocity and bearing errors were chosen to coincide with 
expectations of the HF RADAR community, they are up for debate.  For now, using these 
definitions of error, we can plot them vs. DOA metric value, shown in Figure 12.  Using 
an hours’ worth of data, one can see that the average radial velocity error and average 
bearing error both go down as DOA metric increases, validating the DOA metric’s 
usefulness as a measure of data quality. 
 



 
Figure 12 – (a) Radial velocity error vs. DOA metric, (b) bearing error vs. DOA metric, showing 

average decrease in both errors as DOA metric increases 

4.3.2 Definition of True/False Positive Results 
As additional statistics for use in determining the quality of MUSIC output, we define: 
  

1. A True Positive result is a radial velocity output within +/-5 cm/s of the simulated 
radial velocity input, for that (R, θ) cell OR its bearing neighbors (within +/-10 
degrees) 

 
2. A False Positive result is the set of results in the complement of the set of True 

Positive results, including all results over land 
 
The idea being that MUSIC output that is “close enough” to the radial current velocity 
input will be regarded as a “true positive” result. 
 

4.4 Effects of Eliminating Results with Low DOA Metrics 

4.4.1 Skill 
We can now start throwing away results with low DOA metrics and see how it affects 
various error statistics.  Eliminating any MUSIC result that has a DOA metric of less than 
10 dB and then comparing skill metrics for the results, we get Figure13. 



 
Figure 13 – Skill comparison using all MUSIC results (green) vs. only MUSIC results with DOA 

metrics of 10 dB or greater (red) 
 
One can see three effects in Figure 13: 
 

1. In general, slightly higher skill when low DOA metric results are eliminated 
2. Lower skill in some range cells (20-23 for example), even when eliminate low 

DOA metric results.  This shows that it is not always a good idea, however this is 
seen when the SNR is low, and results are more random in general. 

3. A reduction in range, since low DOA metrics tend to accompany low SNR, and 
are eliminated. 

 

4.4.2 True/False Positive Ratio (TP/FP) 
Perhaps a better effect of eliminating low DOA metric results is seen in the change in the 
number of False Positive and True Positive results in Table 1. 
 

DOA 
Minimum FP TP TP/FP 

0 1452 8795 6.06 
10 1102 8062 7.32 

 
Table 1 – Comparison of the number of False Positive Results vs. True Positive results when 

eliminating results with DOA metrics of 10 dB or less 
 
One can see a general reduction in the total number of results, as expected, however the 
ratio of True Positive to False Positive results go up.  This occurs in all tested current 
cases, which are summarized in Appendices A.1 and A.2. 



4.4.3 RMS Error and Coverage 
The best visualization of the effects of eliminating low DOA metric results is seen in the 
decrease of RMS error over the spatial field (which unfortunately is accompanied by a 
decrease in coverage) as seen in Figure 14.  Using a simulated uniform onshore current as 
input, radial velocity MUSIC results were eliminated under a range of DOA metric 
cutoffs, varying from 1 to 20, over 20 different runs.  That is, the first simulation run 
eliminated all results with DOA metrics of 1 dB and below, the second run eliminated all 
results with DOA metrics of 2 dB and below, etc.  Results were then tabulated for each 
(R, θ) cell in the spatial field.  When all DOA metrics are accepted, that represents 
“100%” coverage.  The x-axis is the DOA metric cutoff, and the y-axis is the percentage 
of (R, θ) cells that showed: 

1. a decrease in RMS error 
2. a increase in RMS error 
3. a decrease in coverage 

when compared to the “100%” coverage data (DOA cutoff of zero). 
 
One can see a steep rise (blue curve) in the percentage of (R, θ) cells that exhibit a 
decrease in RMS error.  This seems to peak around a DOA metric cutoff of 10 dB.  There 
is also a less steep rise (green curve) in the percentage of (R, θ) cells that exhibit an 
increase in RMS error after elimination of some results.  This shows that some MUSIC 
results with low DOA metrics are actually good results (true positives), but certainly a 
smaller percentage than those that are bad results (false positives).  Considering the 
elimination of all radial velocity results with DOA metrics of 10 dB and below, there is a 
70% increase of (R, θ) cells that have a lower RMS error (2.33 cm/s lower on average).  
This comes at a cost of a 19% increase in (R, θ) cells that have a higher RMS error (1.08 
cm/s on average), and a 2% reduction in coverage.     

 
Figure 14 – The effects of eliminating radial velocity results for a uniform onshore current over a 

range of DOA metric cut off values 



As a second example, the eddy current used previously (Figure 10) is used to generate 
Figure 15.   Results for a more complex current are less favorable that those for the 
uniform current above.  Once again examining at 10 dB DOA cutoff value, 
approximately 48% of (R, θ) cells experience a decrease of RMS error (1.87 cm/s lower 
on average), 32% have an increase in RMS error (1.8 cm/s higher on average), and the 
coverage is reduced to 95%. 

  
Figure 15 – The effects of eliminating radial velocity results for an eddy over a range of DOA metric 

cut off values 
 

5. Measured Antenna Patterns 
This section develops the effect of measured patterns on the DOA metric and the 
goodness-of-fit quality metric.  Inaccuracies in the measured pattern play a direct role in 
reducing the quality of the radial results.  Measured patterns are examined for ambiguities 
(a lack of diversity) at certain bearings and how they affect the quality metric. 

5.1 Analysis of San Diego Border Park (SDBP) HF RADAR 
As a case study, measured antenna patterns from the SDCOOS San Diego Border Park 
(SDBP) SeaSonde system are analyzed.  A problem with the SDBP system was first 
noticed by Sung Yong Kim while re-processing the cross spectra with both the measured 
antenna pattern and then again with ideal antenna patterns over many months.   Using 
different antenna manifolds will certainly produce different radial data output, however 
the general current flow should follow similar directions with similar velocities.   He 
noticed a large discrepancy in the radial velocity output for the bearing sector at 287 
degrees.  The sector in question can be plainly seen in red in Figure 16.   (There are also 
other areas around Point Loma that have large RMS differences which are under 
investigation.) 
 



 

Figure 16 - The root-mean-square difference of radial velocity vectors at SDBP, using measured 
beam patterns and ideal beam patterns during the month (a) Sep. 2003 (b) Oct. 2003 (c) Feb. 2005 (d) 

Mar. 2005  
 
To determine the cause of this difference, we first look at the radial velocity output the 
MUSIC algorithm for both measured and ideal patterns in Figure 17.   In general, one can 
see a positive radial current (toward the RADAR) from the northwest, and a negative 
radial current (away from the RADAR) toward the southwest.  The upper Figure 15(a) 
shows radial velocity vectors using the measured beam patterns.  In the zoomed in 
breakout on the left, the radials along bearing 287 are going contrary to the general flow 
around them at other bearings.  The lower Figure 15(b) shows radial velocity vectors 
using ideal beam patterns.  The zoomed in area now shows consistent flow with the 
neighboring bearing sectors.   Since the flow is more consistent with the ideal patterns, 
further investigation into the measure patterns is warranted. 



 

 
Figure 17 – SDBP radial velocity vector output for (a) measured antenna patterns, and (b) ideal 

antenna patterns showing opposite flows along bearing 287 
 

5.1.1 SDBP Antenna Patterns 
In order to dig deeper into the discrepancy, the SDBP measured antenna patterns are 
shown in Figure 18. 



 

 
 

Figure 18 – Relative (a) amplitudes and (b) phases (to the monopole) for the crossed loop antennas 
(A1, A2) at SDBP 

 
There are irregularities in both the dipole antenna patterns at 287 degrees, which appear 
as increases in the amplitudes, and there is also a visible phase shift for A1 at that 
bearing.  These irregularities in the measured patterns create a bearing ambiguity for the 
MUSIC algorithm.  That is, the antenna response at one bearing is very close to the 
antenna response at another.   As discussed in previous sections, the projection of the 
antenna manifold onto the noise subspace will be very similar for two separate bearings, 
making the DOA metric for both bearings close in value.  Subsequently, when searching 



for the maxima of the DOA function, either the incorrect single bearing will be chosen, or 
a dual bearing solution with an incorrect bearing will be produced.   

5.1.1.1 SDBP Antenna Pattern Ambiguity Plot 
As an indicator of potential antenna pattern ambiguity, we compute the inverse of the 
squared distance between all the antenna manifold points in signal space.  For each 
bearing in the manifold θi and each manifold point a(θi), the inverse of the distance to 
every other point in the manifold A(θ), is computed (in dB) using the vector equation 
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 where T indicates conjugate transpose. 
 
Every bearing θi  generates one row of the ambiguity plot, and the plots are symmetric 
across the diagonal.  When this equation computes the inverse of the distance between a 
point and itself, the result is infinity and therefore limited to an arbitrary value of 16 dB.  
Figure 19 shows a comparison of and ideal antenna pattern ambiguity plot along side the 
SDBP antenna pattern ambiguity plot. 

 
Figure 19 – (a) Ambiguity plot for ideal antenna patterns vs. (b) ambiguity plot for SDBP antenna 

patterns 
With ideal antenna patterns, the ambiguity plot shows a monotonically increasing 
distance between antenna manifold points as one moves away from the diagonal.  With 
the SDBP antenna patterns, one can see a few areas in the ambiguity plot where the 
distances between antenna manifold points remain relatively small.  This is obvious in 
our former region of interest around bearing 287 where the reddish region extends 
beyond the diagonal by roughly 15 degrees of bearing.   
 
These ambiguity plots can be useful in identifying any potential problematic regions in 
any measured antenna pattern.  Once a problematic region is identified, the ambiguities 
can be mitigated by either artificially smoothing the measured antenna patterns, or by re-
measurement.   Upon re-measurement of the SDBP antenna patterns, we found that the 
ambiguous region did not go away, indicating a problem with the antenna installation.  
As it turned out, metal fencing behind the antenna was to blame, and once removed, 
rectified the problem. 



5.1.2 SDBP DOA Functions 
Finally we look at the DOA functions using the SDBP measured antenna patterns in 
Figure 18.  In Figures 20(a,b), the radial velocity output is -16.55 cm s-1, and the single 
bearing solution is chosen (due to eigenvalue and signal power ratios) giving a bearing of 
287.  Note the double peak in the single bearing DOA function, this is due to the 
projection of the antenna manifold onto the noise subspace producing similar results for 
two different bearings.  The irregularity in the measured antenna pattern has made it 
ambiguous whether to choose bearing 287 or bearing 272 (which we believe to be more 
consistent with the general flow).  

 
Figure 20 – MUSIC DOA functions for (a,b) a single bearing solution at bearing 287, and (c,d) a dual 
bearing solution including bearing 287,  showing the effect of the irregular measured SDBP antenna 

pattern on radial velocity output 
In Figures 20(c,d), the radial velocity output is -44.93 cm s-1, and the dual bearing 
solution is chosen (due to eigenvalue and signal power ratios) giving bearings of 207 and 
287.  Note the smaller local maximum in the dual bearing DOA function, this is due to 
the irregularity in the antenna manifold at bearing 287.  The irregular increase in gain and 



shift in phase in the measured antenna pattern has made a second maximum producing an 
erroneous result.   Without the irregularity, the DOA function for the dual bearing result 
would have been monotonically decreasing from the highest maximum at 207, and only 
one bearing would have been output.  This also reveals the fact that under the dual 
bearing hypothesis, sometimes only one bearing is produced. 
 

5.1.3 DOA Metric Spatial Distribution 
Figure 21 shows the spatial distribution of the DOA metrics for one hour of cross spectra, 
there is a slight relative decrease in DOA metric magnitude at bearing 287.  More 
noticeable is the dramatic decrease in DOA metric magnitude to the south west at far 
range. 

 
 

Figure 21 – Spatial distribution of SDBP DOA metrics 

6. Edge Effects of the MUSIC Algorithm 

6.1 Radial Velocity Vectors Over Land Using Ideal Antenna 
Patterns 
Radial velocity vectors over land come from different sources, the two most common 
being:   1) use of incorrect phase responses in the antenna manifold, and 2) noise.  Land 
radials from the first source arise when the relative phase responses of the dipole 
antennas to the monopole antenna used by the MUSIC algorithm are incorrect.  An 
extreme example of this would be to invert (shift by 180 degrees) the phases of the 
dipoles when doing MUSIC processing.  In this case, using the simulation, all the radial 
velocity vectors that would rightfully be over sea would end up erroneously over land.  
Operational CODAR users may have encountered this when setting up a system and 



initially setting the antenna phase responses.  It is assumed that this source of land radials 
is eliminated by accurate antenna phase response measurements. 
 
The second source of land radials is noise, which can come from various sources (system, 
interference, targets, secondary scatter, etc.).   In the simulation, there is no interference, 
targets, or secondary scatter, which means that the land radials are all a product of the 
three simulated sources of AWGN (wind wave, current, and thermal).   
 
In the previous simulated eddy example, MUSIC results over land make up 6.05% of the 
results, and are erased and never used in the final radial output. 
 
Figure 22 shows some statistical results for single bearing results over land.  These can 
only occur if the antenna manifold is defined over land bearings, as is the case with the 
360 degree ideal patterns in use so far.   In this run, single results over land (174 results) 
make up 1.7% of the total results.  Figure 22(a) corresponds to the metrics for the single 
bearing MUSIC results over land.  Note that they are distributed lower than the overall 
metrics in Figure 11(a), with a mean 12.80 dB and a standard deviation of 6.74 dB.  
Applying a 10 dB minimum DOA metric threshold on all results will eliminate 62 of 
these results, leaving the contribution of single bearing results over land at 1.1% of the 
total results, a 0.6% reduction. 
 
Figure 22(b) shows a regular radial velocity distribution, indicating that radials over land 
can come from processing any Doppler cell, up to the radial velocity limit we impose on 
the simulation (50 cm/s in this case).   

 



 
Figure 22 – Single Bearing Results Over Land: (a) DOA Metrics, (b) Radial Velocity Distribution, (c) 

Bearing Distribution, (d) Spatial Distribution 
 

Figures 22(c,d) show the distributions of the land radials by bearing, where most of them 
fall on the bearings at the shore, with a scattered few at other bearings.  The presence of 
the results at the shore is further explained in the next section. 
 
Figure 23 corresponds to dual bearing MUSIC results with at least one bearing over land, 
and only those over land are shown.  In this run, the number dual results with both 
bearings over land (34 results) or at least one bearing over land (411 results) make up 
4.35% of the total results. These metrics form similar distribution to the overall DOA 
metric distribution in 11(a), with a mean of 21.45 dB and a standard deviation of 8.50 dB.  
Of these results, 419 of the DOA metrics are 10 dB or above, so applying the 10 dB 
minimum would only eliminate 26 of them, reducing the percentage to 4.10% of the total 
results, a 0.25% reduction.   
 
Upon closer scrutiny, certainly all the results over land are incorrect.  But if we consider 
the cases where one of the results is over land and one of them is over sea, we can then 
determine if the results over sea are True Positives or not. If the results over sea are 
compared to the corresponding (R,θ) inputs, 286 of them (64.3% of the dual results with 
at least one bearing over land) are True Positives.  Therefore if we choose to throw out 
any dual bearing result with at least one result over land we would eliminate 286 True 
Positive results and 125 False Positive results.  If we go one step further and enforce a 
minimum DOA metric threshold of 10 dB, 62.8% of the results are True Positives. 



 

 
Figure 23 – Dual Bearing Results Over Land: (a) DOA Metrics, (b) Radial Velocity Distribution, (c) 

Bearing Distribution, (d) Spatial Distribution  
 
So where does that lead us?  All of these radial velocity vectors over land bearings are 
bad output. Using only our goodness-of-fit metric, most of the single bearing results will 
have low quality and not pass the test, while the double bearing results will have 
relatively high quality and many will pass the test.   Fortunately, all of the results over 
land are thrown away by masking off all land results.  With the added rejection of all 
double bearing results when at least one is over land, we will only eliminate a small 
number of “good” results and eliminate many bad ones.   



6.2 Clustering of Radials at the Edge of Measured Antenna 
Patterns 
One commonly witnessed phenomenon when using measured antenna patterns is the 
clustering of radial velocity vectors on the edges of the antenna pattern, at the bearings 
where the patterns end.  For example, typical SDBP output is shown in Figure 24(a).  
Note the increase in the number of radials (as well as increased range) at the edges of the 
output, at bearings 202 and 337.  The number of radial velocity vectors seems to be 
tapering off right before those bearings, and yet there are many more vectors right at the 
edges of coverage.   This clustering of radials comes from determining the maxima of the 
DOA function with truncated antenna patterns.  The MUSIC algorithm only produces 
output for bearings where the antenna patterns are defined.  At times when the best 
MUSIC solution is actually beyond the antenna coverage, the maximum of the DOA 
function will be at the edge of coverage.   This can be seen in Figure 24(c), where a dual 
angle solution has been determined.   The DOA function is increasing toward the lower 
edge of coverage, and the bearing output is the exact edge of coverage (bearing 202) 
since that’s all the algorithm has to work with.   This may be the correct solution, 
however due to the clustering, it is evident that many of these solutions on the edge of 
coverage are due to better solutions beyond the edge. 
 
One way to get around the clustering of radials is to extrapolate the measured antenna 
patterns over land by 5 degrees.   We have already seen the existence of radial velocity 
output over land, and how it is erased before radial data is output.  By extending the 
measured patterns out by 5 degrees on each side, the clustering occurs over the land, and 
the cluster of radials is erased.  Having done this to the SDBP antenna patterns, the radial 
velocity vectors at the edges of coverage appear more consistent with the field near by, as 
seen in Figure 24(d). 
 

 



 

 

 
 
Figure 24 – (a) clustering of radial vectors on the edges of coverage, (b) single bearing DOA function, 
(c) a dual bearing DOA function producing output at one edge (bearing 202), and (d) radial velocity 
vector field produced after extrapolating the antenna patterns by 5 degrees over land 



7. MUSIC Single/Dual Bearing Parameters 
There are currently three parameters used in determining either single or dual bearing 
results from the MUSIC algorithm.  These are commonly known as “MUSIC parameters” 
and the default values are often listed [20, 10, 3].  The definitions are: 
 

1. Eigenvalue ratio (ER) – the ratio of the largest to the second largest eigenvalues 
from the covariance matrix diagonalization.  Given the diagonal eigenvalue 
matrix Λ: 
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If the ratio ER is less than 20, then a dual bearing solution is possible; the 
rationale being the larger the second eigenvalue, the higher probability that two 
signals exist in the covariance matrix. 

2. Signal power ratio (PR) – a 2x2 signal power matrix (S) for two hypothetical 
signals is computed and the diagonal elements are compared according to the 
following equations. Given that MUSIC has determined two potential bearings for 
two distinct signals (θ1 and θ2), the two corresponding antenna manifold vectors, 
and the two signal space eigenvectors: 
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If PR is less than 10, then a dual bearing solution is possible.  Again, the rationale 
is if there is enough power found in a second signal hypothesis (S11), the higher 
probability that two signals exist in the covariance matrix. 

3. Signal off diagonal power ratio (OD) – using the same equations in (2) above, 
covariance power is also computed for the two hypothetical signals.  If the ratio of 
the product of the two signal powers (diagonal elements) to the product of the 
covariance powers (off diagonal elements) is greater than 3, then a dual bearing 
solution is possible. 

2112

2211

SS
SSOD =  

The rationale here is that there will be high variance power in the numerator and 
low covariance power in the denominator if there are two signals, thus the ratio 
should be larger. 



 
All three of the above three conditions must be satisfied before a dual bearing solution is 
produced. 

7.2  Effects of Varying MUSIC Parameters on Simulated Currents 
The effects of varying the defined MUSIC parameters on varying simulated input 
currents (see de Paolo and Terrill, 2007) are now shown.  In general, if the input currents 
give rise to a higher percentage of dual bearing solutions, then varying the parameters to 
allow more dual bearing solutions benefits the MUSIC results statistically.  With respect 
to the three defined MUSIC parameters: 

1. Increasing/reducing the threshold on ER increases/reduces the number of dual 
bearing results 

2. Increasing/reducing the threshold on PR increases/reduces the number of dual 
bearing results 

3. Increasing/reducing the threshold on OD reduces/increases the number of dual 
bearing results (note this one has the opposite sense). 

7.2.1 Onshore Uniform Current 
An onshore uniform velocity current aimed directly at the HF RADAR, along with an 
onshore wind, provides the MUSIC algorithm with many dual bearing velocity inputs.  
Increasing the thresholds on ER, PR, and decreasing the threshold on OD, gives rise to 
more dual bearing results and better quality of MUSIC output.  In addition, results for a 
cross-shore wind are shown.  In this case the number of dual bearing results are far less, 
and therefore decreasing the threshold of ER, PR, and increasing the threshold on OD, 
has a positive effect.  To see the effects of changing the MUSIC parameters, look at the 
TP/FP column to the far right of each table.  This is summarized in Appendix A.3.  

7.2.2 Along-shore Uniform Current 
An along-shore uniform velocity current, under either wind bearing scenario, produces a 
majority of single bearing MUSIC results.  Therefore decreasing the threshold of ER, PR, 
and increasing the threshold on OD, has a positive effect.  To see the effects of changing 
the MUSIC parameters, look at the TP/FP column to the far right of each table.  This is 
summarized in Appendix A.4.  

7.2.3 Along-shore Shear Current 
An along-shore shear current, under either wind bearing scenario, produces a majority of 
single bearing MUSIC results.  Therefore decreasing the threshold of ER, PR, and 
increasing the threshold on OD, has a positive effect.  To see the effects of changing the 
MUSIC parameters, look at the TP/FP column to the far right of each table.  This is 
summarized in Appendix A.5.  

7.2.4 Eddy Current 
An eddy current, under either wind bearing scenario, produces a majority of single 
bearing MUSIC results.  The eddy produces more dual bearing results than the last two 
scenarios, but less than the first scenario.  Still, decreasing the threshold of ER, PR, and 
increasing the threshold on OD, has a positive effect.  To see the effects of changing the 



MUSIC parameters, look at the TP/FP column to the far right of each table.  This is 
summarized in Appendix A.6.  
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A. Simulation Results 
Sets of simulation results are provided below.  Each column is defined by: 
 

• Run – simulation number 
• Type – spatial shape of input currents 
• U – east-west current velocity (cm/s) 
• V – north-south current velocity (cm/s) 
• R – radial current velocity (cm/s) 
• θ - angular current velocity (cm/s) 
• Wind – wind bearing (degrees) 
• ER – Eigenvalue ratio defined in Section 7 
• PR – Power ratio defined in Section 7 
• OD – Off-diagonal power ratio defined in Section 7 
• DOAmin – Minimum DOA metric allowed (dB)  
• Skill – overall skill, averaged over the spatial field 
• RMS – overall RMS error, averaged over the spatial field 
• σ - overall standard deviation, averaged over the spatial field 
• Single – number of MUSIC single bearing results 
• Dual – number of MUSIC dual bearing results 
• Land – number of MUSIC results over land 
• DOA μ - mean value of all DOA metrics (dB) 
• DOA σ - standard deviation of all DOA metrics (dB) 
• DG – of all dual bearing results with one result over land, the percentage of the   

other result in the pair that are true positives 
• FP – false positives 
• TP – true positives 
• TP/FP – ratio of true positives to false positives 



A.1 Minimum DOA Metric of 0dB 
Results with a DOA metric of 0 dB or higher are accepted (which is basically all of the 
results). 
 
Run Type U V R θ Wind Skill RMS σ Single Dual Land DOA μ DOA σ DG FP TP TP/FP

1 Uniform 40 0 0 0 270 0.69 6.88 2.32 2120 2031 334 21.96 12.41 0.38 1289 4893 3.80
2 Uniform 40 0 0 0 185 0.75 5.76 1.91 4045 525 228 20.74 7.82 0.55 437 4658 10.66
3 Uniform 0 40 0 0 270 0.73 6.38 2.23 7015 374 322 24.35 8.53 0.62 592 7171 12.11
4 Uniform 0 -40 0 0 185 0.73 6.23 2.16 6880 377 314 24.73 8.75 0.72 553 7081 12.80
5 Uniform 40 40 0 0 270 0.73 9.07 2.69 7364 752 511 24.81 10.15 0.49 1013 7855 7.75
6 Uniform 40 -40 0 0 185 0.74 8.31 2.42 6382 678 462 25.11 10.54 0.56 861 6877 7.99
7 Uniform -40 40 0 0 270 0.71 9.41 2.69 7355 717 426 24.85 10.12 0.57 912 7877 8.64
8 Uniform -40 -40 0 0 185 0.74 8.70 2.41 6587 674 399 25.18 10.49 0.55 775 7160 9.24
9 Shear 40 0 0 0 270 0.72 4.61 1.79 1210 1179 268 19.11 11.35 0.50 583 2985 5.12

10 Shear -40 0 0 0 185 0.72 4.60 1.54 2080 420 156 19.69 8.13 0.40 288 2632 9.14
11 Shear 0 40 0 0 270 0.70 5.20 1.77 3642 389 265 21.53 8.27 0.71 446 3974 8.91
12 Shear 0 -40 0 0 185 0.71 4.88 1.72 3584 377 222 21.87 8.46 0.71 423 3915 9.26
13 Shear 40 40 0 0 270 0.67 6.25 2.08 4358 670 422 22.23 8.65 0.55 834 4864 5.83
14 Shear 40 -40 0 0 185 0.68 5.86 2.00 4038 592 380 22.26 8.88 0.56 714 4508 6.31
15 Shear -40 40 0 0 270 0.68 5.71 2.01 4208 583 354 22.13 8.54 0.55 746 4628 6.20
16 Shear -40 -40 0 0 185 0.68 5.93 2.04 3905 628 329 22.26 8.80 0.53 739 4422 5.98
17 Eddy 40 0 20 200 270 0.57 6.54 3.09 4742 2478 539 21.79 12.26 0.55 1917 7781 4.06
18 Eddy -40 0 20 200 185 0.71 9.97 2.38 4391 786 412 19.42 8.31 0.60 985 4978 5.05
19 Eddy 0 40 20 200 270 0.63 8.92 2.75 6662 877 370 23.82 9.82 0.62 1126 7290 6.47
20 Eddy 0 -40 20 200 185 0.73 8.07 2.53 6051 498 305 24.95 9.81 0.68 617 6430 10.42
21 Eddy 40 40 20 200 270 0.68 9.61 3.14 7819 1214 615 23.61 10.95 0.51 1452 8795 6.06
22 Eddy 40 -40 20 200 185 0.69 8.86 3.11 8388 888 515 24.61 10.72 0.53 1184 8980 7.58
23 Eddy -40 40 20 200 270 0.69 10.87 2.77 6964 975 450 23.71 9.57 0.54 1249 7665 6.14
24 Eddy -40 -40 20 200 185 0.69 10.68 2.80 6374 612 424 24.17 9.79 0.58 875 6723 7.68
25 Eddy 40 0 20 -200 270 0.57 6.76 3.09 4610 2543 527 22.22 12.41 0.55 1869 7827 4.19
26 Eddy 0 40 20 -200 185 0.72 8.37 2.54 6144 485 314 24.97 9.84 0.70 602 6512 10.82
27 Eddy 40 40 20 -200 270 0.69 9.49 3.19 9540 1175 674 24.31 10.62 0.50 1507 10383 6.89
28 Eddy -40 -40 20 -200 185 0.67 11.97 2.87 6490 795 360 23.78 9.82 0.60 1088 6992 6.43
29 Eddy 40 0 -20 200 270 0.72 9.10 2.48 3499 1276 434 18.74 9.47 0.62 1113 4938 4.44
30 Eddy 0 40 -20 200 185 0.63 8.83 2.76 6146 720 305 24.00 10.01 0.63 1003 6583 6.56
31 Eddy 40 40 -20 200 270 0.66 12.16 2.85 7091 911 426 23.21 9.58 0.55 1318 7595 5.76
32 Eddy -40 -40 -20 200 185 0.70 8.77 3.14 8360 937 502 24.76 10.83 0.52 1195 9039 7.56  

 



A.2 Minimum DOA Metric of 10dB 
Results with DOA metrics of 10 dB or higher are accepted, eliminating results with low 
metrics. 
 
Run Type U V R θ Wind Skill RMS σ Single Dual Land DOA μ DOA σ DG FP TP TP/FP

1 Uniform 40 0 0 0 270 0.71 6.71 1.91 1033 1865 218 26.7 9.44 0.42 519 4244 8.18
2 Uniform 40 0 0 0 185 0.73 6.56 1.85 3882 394 198 21.83 6.94 0.26 320 4350 13.59
3 Uniform 0 40 0 0 270 0.72 6.45 2.03 6926 204 320 25.32 7.64 0.36 477 6857 14.38
4 Uniform 0 -40 0 0 185 0.71 6.51 2.02 6791 182 275 25.95 7.76 0.35 418 6737 16.12
5 Uniform 40 40 0 0 270 0.69 10.26 2.55 7135 523 445 26.13 9.11 0.31 760 7421 9.76
6 Uniform 40 -40 0 0 185 0.72 9.26 2.28 6223 512 378 26.85 9.71 0.31 622 6625 10.65
7 Uniform -40 40 0 0 270 0.71 9.35 2.35 7081 551 418 26.21 9.11 0.35 716 7467 10.43
8 Uniform -40 -40 0 0 185 0.71 9.28 2.34 6320 522 363 26.66 9.31 0.38 597 6767 11.34
9 Shear 40 0 0 0 270 0.71 4.89 1.5 477 995 170 24.2 8.15 0.51 281 2186 7.78

10 Shear -40 0 0 0 185 0.73 4.58 1.47 1852 385 162 21.07 7.19 0.26 251 2371 9.45
11 Shear 0 40 0 0 270 0.68 5.53 1.69 3512 238 232 22.84 7.08 0.41 342 3646 10.66
12 Shear 0 -40 0 0 185 0.69 5.87 1.6 3488 272 223 23.19 7.31 0.41 385 3647 9.47
13 Shear 40 40 0 0 270 0.67 6.41 2.01 4210 506 399 23.63 7.44 0.37 689 4533 6.58
14 Shear 40 -40 0 0 185 0.67 6.47 1.84 3871 432 292 23.73 7.43 0.34 560 4175 7.46
15 Shear -40 40 0 0 270 0.64 6.93 1.98 4008 490 331 23.53 7.49 0.39 633 4355 6.88
16 Shear -40 -40 0 0 185 0.67 6.38 1.86 3714 470 289 23.79 7.65 0.35 544 4110 7.56
17 Eddy 40 0 20 200 270 0.58 5.94 2.72 3265 2284 396 26.13 10.08 0.41 1052 6781 6.45
18 Eddy -40 0 20 200 185 0.7 10.71 2.29 4004 515 335 21.38 6.89 0.34 632 4402 6.97
19 Eddy 0 40 20 200 270 0.6 9.63 2.74 6418 636 360 25.41 8.7 0.29 878 6812 7.76
20 Eddy 0 -40 20 200 185 0.71 8.23 2.41 5849 371 319 26.31 8.94 0.42 511 6080 11.90
21 Eddy 40 40 20 200 270 0.66 10.51 2.98 7266 949 534 25.73 9.73 0.28 1102 8062 7.32
22 Eddy 40 -40 20 200 185 0.67 9.54 3.04 7990 651 465 26.14 9.93 0.26 892 8400 9.42
23 Eddy -40 40 20 200 270 0.65 12.65 2.8 6635 720 346 25.14 8.4 0.32 948 7127 7.52
24 Eddy -40 -40 20 200 185 0.67 11.51 2.5 6133 407 375 25.87 8.74 0.37 661 6286 9.51
25 Eddy 40 0 20 -200 270 0.58 6.07 2.75 3288 2262 420 26.15 10.09 0.39 1098 6714 6.11
26 Eddy 0 40 20 -200 185 0.7 8.78 2.47 6104 336 265 26.22 8.72 0.41 473 6303 13.33
27 Eddy 40 40 20 -200 270 0.68 9.41 2.99 9218 881 570 25.88 9.72 0.29 1089 9891 9.08
28 Eddy -40 -40 20 -200 185 0.67 11.81 2.62 6201 571 348 25.24 8.67 0.29 850 6493 7.64
29 Eddy 40 0 -20 200 270 0.71 9.68 2.36 2823 1060 376 22.3 7.66 0.45 800 4143 5.18
30 Eddy 0 40 -20 200 185 0.62 8.99 2.61 5971 508 302 25.35 8.88 0.35 767 6220 8.11
31 Eddy 40 40 -20 200 270 0.67 11.93 2.71 6694 690 389 24.93 8.32 0.28 915 7159 7.82
32 Eddy -40 -40 -20 200 185 0.69 9.32 2.86 8077 656 436 26.23 9.87 0.28 851 8538 10.03  



A.3 Effects of Varying MUSIC Parameters on an Onshore 
Uniform Current 
Results are shown for varying values of ER, PR, and OD.  With an onshore wind (bearing 
270), there are many dual bearing results.  Increasing the thresholds on ER and PR, and 
decreasing the threshold on OD, produces more dual bearing results.  An increase in 
performance is seen in the TP/FP column on the far right.  In general, TP/FP goes up 
when more dual bearing results are produced.  With a cross-shore wind (bearing 185), 
there are more single and less dual bearing results.  Allowing for more single bearing 
results has a better effect in this case. 
 
Run Type U V R θ Wind ER PR OD Skill RMS σ Single Dual Land DOAμ DOAσ DG FP TP TP/FP

1 Uniform 40 0 0 0 270 40 10 3.0 0.69 6.95 2.39 2067 2083 396 22.15 12.70 0.39 1284 4949 3.85
2 Uniform 40 0 0 0 270 20 10 3.0 0.68 7.27 2.40 2142 1968 344 21.92 12.53 0.38 1245 4833 3.88
3 Uniform 40 0 0 0 270 10 10 3.0 0.67 7.59 2.43 2337 1778 323 21.01 12.52 0.40 1288 4605 3.58

4 Uniform 40 0 0 0 270 20 20 3.0 0.68 7.28 2.48 2093 2044 340 21.83 12.57 0.41 1251 4930 3.94
2 Uniform 40 0 0 0 270 20 10 3.0 0.68 7.27 2.40 2142 1968 344 21.92 12.53 0.38 1245 4833 3.88
5 Uniform 40 0 0 0 270 20 5 3.0 0.68 7.17 2.42 2333 1815 275 21.28 12.43 0.32 1203 4760 3.96

6 Uniform 40 0 0 0 270 20 10 6.0 0.66 7.67 2.50 2905 1194 303 18.26 12.92 0.24 1344 3949 2.94
2 Uniform 40 0 0 0 270 20 10 3.0 0.68 7.27 2.40 2142 1968 344 21.92 12.53 0.38 1245 4833 3.88
7 Uniform 40 0 0 0 270 20 10 1.5 0.72 6.38 2.19 1228 2915 388 25.33 10.95 0.55 1030 6028 5.85

8 Uniform 40 0 0 0 185 40 10 3.0 0.75 5.82 2.00 4012 597 227 21.12 8.23 0.50 444 4762 10.73
9 Uniform 40 0 0 0 185 20 10 3.0 0.74 6.16 1.86 4018 509 219 20.92 7.84 0.43 448 4588 10.24

10 Uniform 40 0 0 0 185 10 10 3.0 0.76 5.71 1.84 4325 303 241 20.02 7.21 0.43 411 4520 11.00

11 Uniform 40 0 0 0 185 20 20 3.0 0.75 5.78 1.88 3920 657 281 21.02 8.05 0.59 505 4729 9.36
9 Uniform 40 0 0 0 185 20 10 3.0 0.74 6.16 1.86 4018 509 219 20.92 7.84 0.43 448 4588 10.24

12 Uniform 40 0 0 0 185 20 5 3.0 0.75 5.79 1.90 4300 269 157 20.24 7.22 0.28 341 4497 13.19

13 Uniform 40 0 0 0 185 20 10 6.0 0.75 5.61 1.85 4289 275 183 20.22 7.36 0.35 346 4493 12.99
9 Uniform 40 0 0 0 185 20 10 3.0 0.74 6.16 1.86 4018 509 219 20.92 7.84 0.43 448 4588 10.24

14 Uniform 40 0 0 0 185 20 10 1.5 0.76 5.73 1.98 3895 717 291 21.27 8.05 0.53 523 4806 9.19  



A.4 Effects of Varying MUSIC Parameters on a Along-shore 
Uniform Current 
Results are shown for varying values of ER, PR, and OD.  Under both wind bearing 
scenarios, allowing for more single bearing results has a positive effect in the TP/FP 
column. 
 
Run Type U V R θ Wind ER PR OD Skill RMS σ Single Dual Land DOAμ DOAσ DG FP TP TP/FP

15 Uniform 0 40 0 0 270 40 10 3.0 0.72 6.70 2.19 6985 365 302 24.42 8.60 0.70 535 7180 13.42
16 Uniform 0 40 0 0 270 20 10 3.0 0.73 6.36 2.11 7035 386 337 24.21 8.63 0.75 540 7267 13.46
17 Uniform 0 40 0 0 270 10 10 3.0 0.74 5.94 2.01 7141 231 236 24.41 8.59 0.59 424 7179 16.93

18 Uniform 0 40 0 0 270 20 20 3.0 0.72 6.76 2.29 6808 495 425 24.14 8.69 0.74 685 7113 10.38
16 Uniform 0 40 0 0 270 20 10 3.0 0.73 6.36 2.11 7035 386 337 24.21 8.63 0.75 540 7267 13.46
19 Uniform 0 40 0 0 270 20 5 3.0 0.74 6.11 1.98 7234 168 150 24.45 8.40 0.51 354 7216 20.38

20 Uniform 0 40 0 0 270 20 10 6.0 0.75 5.65 1.93 7204 198 203 24.36 8.55 0.68 358 7242 20.23
16 Uniform 0 40 0 0 270 20 10 3.0 0.73 6.36 2.11 7035 386 337 24.21 8.63 0.75 540 7267 13.46
21 Uniform 0 40 0 0 270 20 10 1.5 0.73 6.77 2.27 6827 469 386 24.36 8.43 0.70 657 7108 10.82

22 Uniform 0 40 0 0 185 40 10 3.0 0.72 6.35 2.12 6770 367 296 24.72 8.56 0.74 523 6981 13.35
23 Uniform 0 40 0 0 185 20 10 3.0 0.74 5.69 2.02 6639 322 277 24.60 8.48 0.71 478 6805 14.24
24 Uniform 0 40 0 0 185 10 10 3.0 0.74 5.85 1.85 6777 199 191 24.79 8.40 0.72 320 6855 21.42

25 Uniform 0 40 0 0 185 20 20 3.0 0.72 6.75 2.14 6624 421 338 24.72 8.49 0.78 572 6894 12.05
23 Uniform 0 40 0 0 185 20 10 3.0 0.74 5.69 2.02 6639 322 277 24.60 8.48 0.71 478 6805 14.24
26 Uniform 0 40 0 0 185 20 5 3.0 0.73 5.88 1.91 6905 164 122 24.99 8.26 0.66 316 6917 21.89

27 Uniform 0 40 0 0 185 20 10 6.0 0.72 6.03 1.92 6779 191 170 24.64 8.50 0.71 333 6828 20.50
23 Uniform 0 40 0 0 185 20 10 3.0 0.74 5.69 2.02 6639 322 277 24.60 8.48 0.71 478 6805 14.24
28 Uniform 0 40 0 0 185 20 10 1.5 0.72 6.95 2.23 6547 508 401 24.61 8.52 0.74 691 6872 9.95  



A.5 Effects of Varying MUSIC Parameters on a Along-shore 
Shear Current 
Results are shown for varying values of ER, PR, and OD.  Under both wind bearing 
scenarios, allowing for more single bearing results has a positive effect in the TP/FP 
column. 
 
Run Type U V R θ Wind ER PR OD Skill RMS σ Single Dual Land DOAμ DOAσ DG FP TP TP/FP

29 Shear 0 40 0 0 270 40 10 3.0 0.72 4.86 1.78 3528 489 293 22.24 8.67 0.72 479 4027 8.41
30 Shear 0 40 0 0 270 20 10 3.0 0.70 5.08 1.81 3648 361 234 21.66 8.26 0.65 440 3930 8.93
31 Shear 0 40 0 0 270 10 10 3.0 0.72 4.70 1.67 3793 218 194 21.05 7.73 0.61 341 3888 11.40

32 Shear 0 40 0 0 270 20 20 3.0 0.70 4.91 1.82 3575 450 349 21.28 8.25 0.71 522 3953 7.57
30 Shear 0 40 0 0 270 20 10 3.0 0.70 5.08 1.81 3648 361 234 21.66 8.26 0.65 440 3930 8.93
33 Shear 0 40 0 0 270 20 5 3.0 0.71 5.04 1.73 3751 242 183 21.44 8.07 0.51 338 3897 11.53

34 Shear 0 40 0 0 270 20 10 6.0 0.72 4.77 1.71 3811 225 173 21.28 8.08 0.57 332 3929 11.83
30 Shear 0 40 0 0 270 20 10 3.0 0.70 5.08 1.81 3648 361 234 21.66 8.26 0.65 440 3930 8.93
35 Shear 0 40 0 0 270 20 10 1.5 0.69 5.34 1.87 3545 490 329 21.87 8.22 0.64 563 3962 7.04

36 Shear 0 40 0 0 185 40 10 3.0 0.71 5.19 1.73 3476 476 225 22.56 8.88 0.76 456 3972 8.71
37 Shear 0 40 0 0 185 20 10 3.0 0.71 5.02 1.73 3552 411 254 22.03 8.30 0.73 481 3893 8.09
38 Shear 0 40 0 0 185 10 10 3.0 0.70 5.14 1.68 3803 239 194 21.38 7.94 0.69 371 3910 10.54

39 Shear 0 40 0 0 185 20 20 3.0 0.69 5.31 1.78 3546 435 276 21.84 8.32 0.82 458 3958 8.64
37 Shear 0 40 0 0 185 20 10 3.0 0.71 5.02 1.73 3552 411 254 22.03 8.30 0.73 481 3893 8.09
40 Shear 0 40 0 0 185 20 5 3.0 0.71 4.84 1.70 3715 289 156 21.84 8.19 0.67 360 3933 10.93

41 Shear 0 40 0 0 185 20 10 6.0 0.71 5.11 1.58 3700 249 164 21.68 8.21 0.71 340 3858 11.35
37 Shear 0 40 0 0 185 20 10 3.0 0.71 5.02 1.73 3552 411 254 22.03 8.30 0.73 481 3893 8.09
42 Shear 0 40 0 0 185 20 10 1.5 0.68 6.00 1.77 3491 524 309 22.34 8.40 0.76 554 3985 7.19  



A.6 Effects of Varying MUSIC Parameters on an Eddy Current 
Results are shown for varying values of ER, PR, and OD.  Under both wind bearing 
scenarios, allowing for more single bearing results has a positive effect in the TP/FP 
column, although not as dramatic as in the previous two sections, since the dual bearing 
results are more prevalent in an eddy. 
 
Run Type U V R θ Wind ER PR OD Skill RMS σ Single Dual Land DOAμ DOAσ DG FP TP TP/FP

43 Eddy 40 40 20 200 270 40 10 3.0 0.68 9.21 3.22 7644 1389 637 23.99 11.13 0.48 1583 8839 5.58
44 Eddy 40 40 20 200 270 20 10 3.0 0.66 9.86 3.30 7790 1268 624 23.96 10.97 0.46 1563 8763 5.61
45 Eddy 40 40 20 200 270 10 10 3.0 0.67 9.82 3.04 8112 785 465 23.24 10.65 0.43 1263 8419 6.67

46 Eddy 40 40 20 200 270 20 20 3.0 0.67 10.02 3.21 7585 1409 697 23.95 11.00 0.51 1599 8804 5.51
44 Eddy 40 40 20 200 270 20 10 3.0 0.66 9.86 3.30 7790 1268 624 23.96 10.97 0.46 1563 8763 5.61
47 Eddy 40 40 20 200 270 20 5 3.0 0.70 8.84 2.97 8220 815 431 23.63 10.78 0.31 1194 8656 7.25

48 Eddy 40 40 20 200 270 20 10 6.0 0.68 9.21 2.98 8333 716 449 23.19 10.88 0.40 1262 8503 6.74
44 Eddy 40 40 20 200 270 20 10 3.0 0.66 9.86 3.30 7790 1268 624 23.96 10.97 0.46 1563 8763 5.61
49 Eddy 40 40 20 200 270 20 10 1.5 0.66 10.46 3.24 7462 1585 681 24.49 10.83 0.46 1622 9010 5.55

50 Eddy 40 40 20 200 185 40 10 3.0 0.68 8.99 3.00 6782 1156 500 24.34 11.31 0.57 1259 7835 6.22
51 Eddy 40 40 20 200 185 20 10 3.0 0.68 8.93 2.96 6990 971 497 23.82 11.15 0.56 1264 7668 6.07
52 Eddy 40 40 20 200 185 10 10 3.0 0.68 8.70 2.97 7347 630 398 23.49 10.93 0.47 1103 7504 6.80

53 Eddy 40 40 20 200 185 20 20 3.0 0.66 9.52 3.10 6786 1135 607 23.96 11.18 0.58 1421 7635 5.37
51 Eddy 40 40 20 200 185 20 10 3.0 0.68 8.93 2.96 6990 971 497 23.82 11.15 0.56 1264 7668 6.07
54 Eddy 40 40 20 200 185 20 5 3.0 0.69 8.59 2.82 7423 601 356 23.76 11.07 0.41 982 7643 7.78

55 Eddy 40 40 20 200 185 20 10 6.0 0.69 8.70 2.92 7362 607 391 23.50 11.18 0.47 1032 7544 7.31
51 Eddy 40 40 20 200 185 20 10 3.0 0.68 8.93 2.96 6990 971 497 23.82 11.15 0.56 1264 7668 6.07
56 Eddy 40 40 20 200 185 20 10 1.5 0.66 9.83 3.11 6646 1303 592 24.57 11.00 0.60 1380 7872 5.70  




