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Abstract

The behavior of an HF molecule iﬁ an intense laser field is investi-
gated with both classical trajectories and quantum dynamics. Vibration-
rotation transition probabilities and energy absorption as a function of
laser pulse time are calculated for the diatomic initially in its ground
state. For comparison, results are also reported for a model non-rotating
HF molecule. It is found that classicél mechanics does not predict the
correct time behavior of the system, nor does it predict the correct rota-
tional state distributions; Classical mechanics does, however, predict
pulse time averaged quantities to be the correct order of magnitudei
There is also a correct general trend of increased multiphoton excitation
for laser frequencies red-shifted from the one-photon resonance, although

multiphoton resonance peaks are not observed in the classical results and

far too little multiphoton excitation is predicted, The effect of laser

_phase has also been investigated and shown to be relatively unimportant

in both the classical and quantum. dynamics,



I. Introduction

With the develbpment-of high powered infrared lasers, much interest
has been focused on the interaction of molecular systems with intense in-
frared radiation.l To understand theoretically how molecules absorb energy
under such conditions requires a nonperturbative analysis. Because of the
many degrees of freedom in even small polyatomic ‘molecules, an accurate
soiution of the time-dependent Schrodinger equation is not, at present,
possible for most molecules of experimental interest. Classical trajectory
models, however, can be.éonStructed and solved for model polyatomics intér-
acting with radiation,2 although there remain serious difficulties in defin-
ing_accurate potential surfaces and in numericallyAintegrating }arge numbers
of coupled, nonlinear equationé over the relevant time scale for absorption;
It is therefore important to understand the limitations and accuracy_of
ciassical models,.

The Simplest;'realistic system to st#dy is a diatomié molecule inter-
acting with a laser. Accurate, numerical classical and quantum solutions
may be obtained for this problem. Because of the small number of quantum
states invoived, this represents a particularly severe test of classical -
mechanics. Previously, Walker and Preston3 have performed.botthuantﬁm and
classitgl calculations for a model, non~rotating HF molecule. Their results,.
with laser intensities 2> 10 TW/cm2 (1TW .= lO]"2 Watts); indicated good agree~
ment between classical and quantum predictions of energy absorption averaged
over laser pulse times, except near multiphoton resonances. Various other
aspects of the problem of.a diatomic interacting with avlaser have been

. .. . 4 5
examined using either classical or quantum” models.
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This paper examines the detailed behavior of a vibrating and rotating
diatomic molecule in an intense laser field, and investigates the validity
of classical mechanics to describe this problem. The élassical and quantum
equations of motion are solved numerically for both rotating and, for com-
parison,non-rotating quels of HF; initially in its ground state. Laser:
intensities of 1.0 and 2.5ATW/'cm2 are used, with frequencies in the region
of the fundamental transition. Energy absorption and transition probabilities
are calculated as a function of pulse.time,'as well as the pulselaveraged
absofption° Most of the work is for maximum pulse lengths between 0.9_aﬁd
2.0 picoseconds (betﬁeén V100 and 250 optical.cycles),'although it was
necessary to integrate the quantum solutions near multiphoton resonances
for much longer times. It is found that classical'meChanics‘does_not cor-
rectly describe the time behavior of the system. 'Furthermore, classical
rotational state distributioﬁs are com@letely incorrect. Classical mechanics,
however, does give the correct magnitude of pulse avexaged energy absorption.v
In addition, classical mechanics-corréctly indicates the presence of increased
multiphoton absorptién for frequencies lower than the one-photon resonance;
although, in agreement with Walker and Preston's non-rotating results,
specific resonance peaks are not resolved and qniy a small amount of multi-
photon absorption is seen. The effect of laser phasé,vwhich is then neg-
lected, is also étudied and found to Be.only a small effect on the quantum

results and little or no effect on the classical results. .




II. Methods

A. Classical Mechanics

The Hamiltonian for a vibrating and rotating diatomic molecule, with

reduced mass M, in spherical coordinates r, 8 and ¢ is

2
P
o _ 't 1. 2 .- 2 : _
H = e +';;;§ (pe + Py /sinze)'+ v(r) R II-1

where P> Py and p¢ are momenta canonically conjugate to r, 6 and ¢,and V(r)
is the Born-Qppenheimer potential function. A Morse function is used to

approximate the potential. In the absence of external fields, there are

h
three conserved quantities which are the v1bratlonal actlon N = ~ §'+ ——-f P dr,

P42
the rotational angular momentum J = (pe -ﬁL——O“, and the z pro-
A ' ' sin 6
p¢. If an osc1llat;ng electrlc field

jection of the angular momentum M
of frequency.m,’z polarization and phase § is introduced, the,Hamlltonian
becomes

H=H -d(r) cos 8 E sin (wt +§) ,  1I-2

where d(r) is the molecular dipole functioo aod Eo is the field strength,
which is related to the intensity by6 Eo = (SwI/c)%. Eq. II-2 is valid in
the limit of high_photon‘density which is certainly true.for.theuprésent
study. For“very,low'intensities, the classical formalism dereloped.by
Miiler7 could-be used. | |

With the interaction present, the vibrational action Nv and rotational
angular momentum J are no longer conserved. However, with the present choice
of polarization, M is still conserved since H has no ¢ dependente. The com—
plete classical solution involves specification of the appropriate initial

conditions and solution of Hamilton's equations:
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»  H_ 1 .2 2 9V, ad .
pr_-a—r_ur3 (pe +p¢ /s-in 6) “5r T ar cseE sin (wt + 8) B
. OH 2 _ 3 :
Pg = =38 = Py /urzsinBB d () sin 0 Eo sin (wt + §8)
- > II-3

r = BH/ap = pr/u

r
. _ S

Approximate analytic orbits have been obtained8 for a rotating Morse
oscillator with no external field, and these are used to determine diatomic
initial conditions (see Appendix A for details). This approximation is
excellent for the ?ibration-;otation levels of importance here. The laser
phase § is also averaged over in most cases (i.e., each trajectory has §
chosen randomly between O -and 27m), although it will be shown to be unimportant.

" The eniergy absorbed as a function of pulse length is defined by

B>y =5 5L H 6 t0p,1 0,1 0,610,850 - B 114

is the initial molecular energy,

where N is the number of trajectories and El

which in the present study is the ground sgate (v = O, j = 0) energy. The

final vibrational action,Nv after a pulse of length t is also calculated

with the rotating Morse oscillat-or8 approximation. Appendik»A shows that-

this is an excellent approximation for the states of interest here. J is
2 2 2

calculated directly from J(J+1) h™ = pé +'p¢v/sin26' (Note: p¢

present study since J=0 initially.) With h=1, NV and J are boxed according

= 0 in the

to the nearest integers v,j such that.v—l/2§NV§y+l/2 and j—l/?iqu+l/2, which
is the usual quasiclassical quantization procedure. The transition probability

into a particular v,j state, as a function of pulse length is



—6—

P L)y = | (/N 1I-5
v,] - v,]

where ij(t) is the number of trajectories with final actions in-the v,j
box.

Of course, a single trajectory integrated.out to some large pulse
length T contributes to all intermediate pulse time results. Similiar to
Walker and Preston,3 the pulse averaged energy as a function of laser fre-

quency W is defined as

T |
E, W) =% { <E(t)>CL dt ) . 1I-6
(o]

For comparison, non-~rotating calculations were also performed. These
. . .- 3
calculations were done in the same manner as described by Walker and Preston.

For technical details of the numerical calculations, see sec. II-C.

B. Quantum Mgchanicg

P

-Althqugh Leasure, Milfeld and Wyatt5 have developed an efficient and
elegapt means of determining theblqng time solutionm, the time scale of in-
terest here is shért enough (< 20ps) that direct integration of the coupled
quantum eqﬁations is possible. | |

The total wave function is expanded as
Wm(r,eﬂp, t) = ZV,jV Cij(t)Xij (I', 6,¢) II—7

with

ijm~(r,8,¢) = Rv(r) ij(6,¢)/r

The ij are spherical harmonics and RV are Morse_eigenfunctions.9 Strictly
speaking, Rv should also depend on j, but in the present problem, with only

small values of j being.important, such rotational corrections should be
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small. As iﬁ classical mechanics, the z componeht of the angular momentum (mh)
is conserved. Since the'present study involvgs j=0 initially, m is zero through-
out. In all subsequent equations m is understood to be zero. If the molecule
had j#0 initially, it would be necessary to average .over transition probabilities

for all integer values of m such that -j<m<j.

Inserting eq. II-7 into the time-dependent Schrodinger equation results

in the coupled equations

Toe . [o] .
i h'cvj(t) = Evj Cvj + Zv'j' Dv'j'Vj Cv'jf Eo sin(wt + §) , I1-8

A

o . .
where the E . are eigenvalues of H and the D ,., . are matrix elements
vj o v'j'vj

) [ G+1) ] it =3+ 1

D 4.1 .="'f'R . d (r) R dr X% (25 + 1) (25 + 3) '

v']v] [e} v v J . ]2 "'=j>—l
[(Zj'f_l) (25.+ L) '

I1-9

it will bé sthn'1ater, as with the classical results, that ﬁhe laser phase
'§ does not appreciably effect the results, For efficiency, the majority |
of the quantum calculatioﬁs are made with a fixed § of m/2. The coefficients
CVj of eq. I1I-8 must be complex. Thus, writing CVj = ij + i'ij, one

obtains the coupled real equations

-%Y  =E%X . +%,.,D ,.,.% ., E sin (wt + &)
vi o v Tvi o V'3 v'i'vi Tt o - :
' ' II-10
hX . =E°Y . +Z%,.,D,.,.Y,.,E sin (wt + &)
V] V] VJ v-] v'] v] v J O :

For comparison with'the classical results, we will also be interested

in the transition probabilities

p Mey = | c_. (B l2 , o | II-11
vj vj

the energy absorption
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P My £ °-g II-12

where El’ the initial energy is taken to be the ground state energy, and

the pulse length averaged energy absorptionm,
1 F |
== t . II-1
Ege @ =7 {(E(t))QMd I-13

We also study the non-rotating case in a similiar fashion. One may
obtain the non-rotating equations by omitting all factors that include j
and m in eqs. II-7 - II-12.

For technical details of the numerical calculations, see sec. II~C.

C. Computational Details

: ‘Ol(r-re)' 2
A Morse potential, V = D(1 - e : )~, was used for HF, with para-

meters3 D = Q.22509, & = 1.1741, and re = 1.7329 a.u, Since relatively low

v states are involved, a linear approximation to the dipole function is

59 = 0.310 a.u. (1 Debye =

4¢

satisfactory, d(r) = do + dl(r-re) with d0v= 0,716 and d

1

0.39343 a.u.) Some work, in fact, was done with a quadratic form for d(x),
and that did not significantly affect our results.
Laser intensities of 1.0 and 2.5 TW/cm2 were used, which correspond

to field stréngths Eo of 0.005338 and 0.008440 a.u., respectively. (1 V/cm =

10

1.9447 X 10 ~a:u.) The matrix elements Dv'j'vj of eq. II-9 were evaluated numerically

1100 = 0.022, D

although analytical forms do exist.9 Some typical elements are D 2211

=.0.028, gnd D2011 = 0.032 a.u.
For the classical rotating HF calculations, 1000 trajectories with
random initial conditions (see Appendix A) were run for most frequencies.

Monte Carlo errors in the quantities of interest were between 10 and 15%:

For the non~rotating.calculations, 50 trajectories were.run for each



frequency. 1In this case it is more efficient to increment the vibrational
angle variable in a step—wisé fashion between O and 2w than to piékvit ran-
domly. The classical eﬁuations of motion were integrated with a standard
predictor-corrector algorithm10 to either 0.9 or 1.5 ps. The trajectories
were back-integrable to four significant figures in all variables. Inﬁegra—
tion of the classical equations of motion befond about 1.5 ps is extremely
difficult due to the accumulation of error. The integration of oscillatory
nonlinear differential equations ovér long time periods-is still a current
p;oblem in numerical analysis.ll

' ByAbetweeh'OL9 and 1.5’ps,‘the pulse averaged energy absbrptiOn; eq.
I11-6, appears to be converging, but has not yet fully converged. However,
reasonable estimates of the converged'EéL (w) can be obtained, since (E(ﬁ);EL
has either reasonably leveled off or oscillates with aismall amplitude. “
Thus, either the approximate lgveléd off value or the average of the oscil-

lations in LE(t);EL is taken to be E. (w).

CL _ ,
The 'quantum equations of motion, eqs,'II—IO, were integrated with the
same predictor-corrector algorithm used in the classical claculations. “An
adequate basis for ﬁF with the intensities and ;ime scale of interest con-
vsisted'of the first five v and first five j states, i.e. a 25 term expénsion.
The non-rotating quantum solutions were obtained in an analogous fashion,
using the first five vibrational states in the wavefugction expansion. The
solutions were stable to the addition of more basis functions and probability
-was conserved to at. least nine significant figures. Most of the quantum |
solutions were integrated to 2 ps, although when theblaSer frequency was
near a multiphoton resonance, it was nécessary to ihtegrate ﬁo times in the
10-20 ps range; - Interestingly, because the quantuﬁ éqﬁations are linear,

it is possible to integrate 50 coupled quantum equationé‘to times exceeding
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20 ps, which is much longer than it is practical to integrate only four
nonlinear classical equationms.
The quantum pulse averaged energy absorption, eq. II-13, was obtained

by numerical integration. (w) was found to converge within 15% with

Eou
maximum pulse lengths of 2 ps, except near the two multiphoton resonances

CG = w/2mc = 3937 and 3879 ém_l for rotéting and 3879 cm—1 for non-rotating
HF) where maximum pulse lengths between 10 and 20 ps were required for con-
vergence. Note that it was-éometimes necessary to average over small oscil-
lations that wefe apparent in EéM as a function of pulée length T to obtain
the-best estimate. |

To aid in the interpretation of the results, Table I gives the relevant

, : 8
E ? levels for HF, calculated with the rotating Morse oscillator formula.
vi - s

III. Results and Discussion

A. Energy Absorption Spectra

The quantum and classical pulse time averaged energy absorption spectra
are plotted in'Fig; la for non—roeating and Fig. 1b for rotating HF, with
laser intensity 1.0 TW/cmz. The plot fof‘nonfrotating HF is similiar
to plots of Walker and Preston3 for higher intensities (2 iO TW/cmz). At
1.0 TW/cmz, though, the  quantum structure is more resolved. The major. fea~:
tures are a narrow two-photonvresonance_at_;f= 3879 cm—l (i.e., the vi= 0
to v = 2 absorption),; and a broad one-photon resonance. at 3966 cm_l (the
v =-0 to v =1 absorption). The classipal‘speétrum'shows just one very
' broad peak with a maximum at about v = 3940 cm_l. While the classical
spectrum does not have any of the quantum structure, examination of the
classical state distribution does show the presence of a small émount of

two-photon absorption,. as the frequency is lowered: Details of this will
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be given later.
For rotating HF, the spectra (Fig. 1b) are qualitatively similiar to
the non-rotating case. There are three peaks in the.quantum spectrum:
one broad peak near v = 4006 cm.-1 (the (v,j) = (0,0) »~ (1,1) one-photon
resonance) with a full width at half maximum (FWHM) offh50cmfl, and two
narrow peaks near V = 3937 Cm‘l (the (0,0) - (2,2) two-photon resonance)
and 3879 cm'-1 (the (Q,O) + (2,0) two-photon resonance), each with a FWHM of’
< 10 cm—l; The claséical spectfum has one.very broad peak which peaks
near the (0,0) » (1,0) resonance at V = 3966 cm—l. Overall, the cias—
sical solution for rotating HF gives a.general idea of the absorptibn.
As in the non-rotating case, the classical result ﬁfedicts increased two-
photon abéorption for frequeﬁcies red-shifted from the one-photon resonance,
as yill be seen below in sec. IIIB. |
In Fig. 2, the rotating HF average energy absorption for I = 2.5 TW/cm2
is shown. Quélitétively, the quantum peaks become broadef and overlap more
than the 1,0 TW/cmz case. There appears to be a small'powef shifting of
the resonance peaks,7toward higher‘frequenciés,but it haé ndtvbeen resolved
(see ref. 5¢c for a discussion of power shifting). Ciassically, the absorp-
tion also broadens relative to 1.0 TW/cm2 and the peak maximum appears to

shift to lower frequencies, indicating more multiphoton absorption.
B. Transition Probabilities

In this section the approximate time averaged transition probabilities
into various statés are examined qualitatively to help show the relative
~ amounts of one and two photon absorptioﬁ. Looking at.the classical results,
if is clear that classical mechanics does ndt give the Cbrrecf rotational

state distribution.. Classically, there are - large probabilities for ending
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in the (0,1) and (1,0) states; which correspond to high order processes
in quantum mechanics. These transitions are not bbsef%ed to'any”iarge
extent in the quantum results. To get a meaningful comparisong'qnly the
probabilitieS'for_ending in a particular vibfational level will be con-
sidered, i.e., a sum is taken over rotational states within a vibrational
level.

Table II shows fhe quantuﬁ and classical time averaged probabilities
at various frequencies.for rotating and non-rotating HF, with I = 1.0 TW/cmz.
Each peak of the quantum solution can be seen to be either a ome or'a two
photon absorption, with both processes observed aﬁpreciably onlf where
peaks overlap. At higher intensities the peaks will broaden and errlap
more, but each peak wiii still correspond to a particular absorption. The
classical results do indicate;thé presence of some two photon absorption
as the frequency lS decreased. | But classically, there is a very gradual
change which_resulté in the very broad single peak in :he Spgctrum (Fig. 1),
rather than the abrupt changes in thg quantum‘tésults.'

To show some intensit& effeéts; average probébilities for rotating
HF at 2.5 TW/émz are given in'Table ILITI. For this larger intensity, both

classically and quantum mechanically, the excited states become more populated.

C. Time Behavior

The previous two séctions were concerned with average Quéntities. In
this section the energy absorption and transition probabilitieé as a func-~
tion.of time are examined. The quantum mechanical laser phase used in this
section was fixed at m/2. The effect of laser ﬁhase is examined in the
next section.

In Fig. 3, a comparison of classical and quantum energy absorption as
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a function of time is given for non-rotating HF at v = 3966 curl (the one
photon v=0 to v=1 resdnance). The quantum rgsults'show oscillations with
a period of about 0.75 ps with no sign of damping out to 1,5 éé. As this
frequency and intensity'(i.O TW/cmz) the solution is well approximated by

. , . 12a . T L
a two-level system (i.e., the Rabi model”™ ). In contrast, the classical result

’

oscillates with a frequency of about 0.4 ps and a smaller amplitude. Also,
it appears as though the'oscillations.may be damping.

Fig. 4 shows the classical and quantum time dependent energy absorp-
tion for rotating HF with vV = 4006 cm_l (one photon (0,0) + (1,1) resonance).
The "'results are similiar t6 those in Fig. 3 for non-rotating HF. In this
case, though, the classical result appeafé'to level off even faster. The
behavior of thevquantﬁm solutioﬁ is again weil'approximated by the two
level Rabi m_odel._lZa | The quéntum solution has been followed for up ﬁé
20 ps with no clear sign of damping.

The quantum result for the two-photon resonéncg at 3937‘cmf1 ((0;0) >
(2,2). resonance) is‘cOnsiAerably‘different (Fig. 5) iThé complicated nature
of the oscillations may be contrasted with the Rabi oscillations of Fig. 4.
From Fig SIit can be seen that the two—photon absorption is‘a‘iqng timg pro-
cess. The corresponding classical‘result (Fig. 6) a;so seems to show some
aspects of the slbwer growth in absorptioﬂ, although the solutjion is reason-
ably level by 0.9 ps. |

In Figs. 7, 8 and 9, plots are shown for some transition probabilities
as a function of time, again for I = 1.0 TW/cmz. Here, the élassiéal solu~
tion is actﬁally broken up into rotatibnal levels, so that the discrepancy
with quantum mechanics can be seen. The results for v = 4006 cm--l are given
in Fig. 7. The quantum solutions for P.. and P are not shown since they

01 10

) , o
are very small (< 10 7). Qualitatively, the probabilities show the same.
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behavior as the energy absorption as a function of time, i.e., the clas-
sical solutions tend to level off more and the quantum solutions appeaf
periodic. Note that in reality there are highvfrequency, small amplitude
oscillations that are superimposed on the quantum probabilities. These
oscillations have not been résoivéd in our graphs and thué give rise to
some roughness, particularly néar peak maxima.

The classical probabilities for rotating HF at V= 3937 cm-l are
shown in Fig. 8. It can be seen that the v = 2 state éets significantly
populated, But the v = 1 state is alsb significantly populated. The quan-
tum'probabili;ies near the two phéfon resonance at v = 3937 cm.—l are shown
in Fig. 9. The fesonant'probability P22(t) displays a long period which
esgentially matches the. period of <E(t)>QM in Fig. 5. Another reasonably

significant probability is P,,, vhich is not shown, Pll(t) displays a

1
higher frequency oscillation and can reach a maximum of % 0,13. The other
tﬁq—phgtoh resonance, at §7= 3879 cmpl, is not plotted'ﬁére. Qualitatively,
the classical results for this frequency show much lesé-excita;iOn‘thén for
-3937 cm—l; There is a small amount of v = 1 excitation and no v =‘2 exci~
tation. Essentially no rotational -excitation.is seen in the classical re-
sults for thiS'freéuency. The quantum results for 3879 cm_l show somewhat
less excitation into the (1,1) state .than for 3937,cm_l, énd.again the res-

onant probability, displays a long period.

Pyo

D. Laser:PhaserEffect

Based on the classical and quantum equations of motion (eqs. II-3 and
II-8), without additional approximations, one would expect the solution to
be dependent on the choice of laser phase §. Without allowing for the

details of how the field is-turned on, a complete study should involve
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averaging over the laser phase to obtain the most meaningful resuits.13

The laser phase dependence, however, disappears from the quantum
equations in the rotating wave approximation,12 as shown -in Appendix B
for the two state model. However, forvsufficiently large field strengths
or de-tuning of w from resonance, the rotating wave approximation will
breakdown.12c Thus, for example, Moloney and Meafhl3;have shown the
laser phase dependehce of probabilities as a function of time for a two:
state model. They found increasing phase effects for}larger field strengths
and at multiphoton resonances.

The situation is not quite as ciear in the classical analysis. How-
ever, if only the relative difference'between laser and vibrational phases
is important, then it would be sufficient to average only over the vibrational
phase, without ave:aging over the laser phase, i.e,, the laser phase would
not matter.._The conditions for this to be true'probably-include that w
be close tq resonance. .

To access the effect.of laser phase § on the present problem, consider"
first non-rotating HF. For an intensity of 1.0 TW/cm2 and frequencies of
3966 aﬁd 3879 cm_l, the classical solutions were obtained for fixed & of
0 and m/2. 500 trajectoriesbwere run for each soluﬁion to ensure no stat-
istical error. Over the entire 1.5 ps range, <E(tx>CL for the two phases
agreed to between 2 and 4 significant figures. The quésiclassicél probabilities'also
were in excellent agreement. Similarly, the non-rotating quaﬁtum results
for the same conditions showed little phase dependence.

We also examined rotating HF at 1.0 'I'W/cm2 for the possibility of
phase effects. Within ﬁhe Monte Carlo érror (< 15%), no cléar phése effeét
can be distinguished in the classical results. Ho&ever, slight discrepan-

cies in the time-~dependent quantum solutions may be seen, since no



~16-

statistical error is present. Table IV lists some relévant probabilities
and (E(t))QM for § = 0 and /2, at v = 4006 cmfl. Other phases between 0
and T were also examined, but the largest differences were found between

§ =0 and § = 7/2. Despite G.being almost exactly on resonance, slight
differences may be noted, particularly in the probabilities. These dif-
ferences become.larger near peak maxima and can be as much as 4%. How-
ever, such diffe?ences are comparable in amplitude to the high frequency
os;illations that are éuperimposed on the Rabi oécillations and do not
appreciably effect the overall behavior. Notice that'<E(t)>bM is not
effected much by these differences, indicating that the other probabilities,
which are small and not listed, tend to Compensate. Table V presents sim-
ila; results for ;-= 3937 cm—l. Although this is a two-photon resonance,
the di;crepanciesvdue to laser phases“are comparable to. the w = 4006 cm_l
results. Thus, for intensities " 1.0 TW/cmz, and the present frequency -
range, the effect of laser phase is small and cén be neglected for most

practical purposes,
IV. Concluding Remarks

In summary, the detailed dynamics of both rotating and non-rotating
models for HF in an intense: laser has:been investigated with both classical.
and quantum»mechanics: The frequency range covered iqcluded one-photon as
‘welIHAS’two—photon resonances.

It is found that:classical mechanics does not predict the correct ro-
.tational state distributions. Also, the time behavior_of the classical
solution is qualitatively different from the quantum one. Classical mechan-
ics does give the correct magnitude of pulse time averaged quantities such

as the average energy absorption, but does not give the detailed resonance
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peaks for mhltiphptdn absorptions. Classical mechanics does correctly
indicate more multiphoton absorption as the frequéncy is redfshifted frqm
the one-photon resonance, but it predicts far too little such absorption.

The léséf phase has clearly beén-shown to be an unimportant effect
for the transi;ioné and intensities of interest here; althouéh it could
conceivably be importaﬁt for much higher intensities.

It is difficult to exténd these conclusions tolﬁolyatomic systems in
intense laser fields, which are of greater ihterest.m These results do
indicate, however, that care should bé»taken when classical mechanics is
applied to molecular systems. There is the real possibilitf, of course,
that the increased number of states in a polyatomic coﬁld make classical
mechanics a better approximation to quantum mechanics th#n-for the present
case ofva diatomic. Thé same may be true. for a diatomic initially in an
excited state, or in a more intense field, whexe more states may become

populated.
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Appendix A. Initial and final conditions for a diatomic molecule in the

rotating Morse oscillator approximation.

To clasically determine probabilities, it is necessary to average over
initial conditions. For an isolated diatomic molecule, one can change

variables to action-angle variables (Nv’ Qv)’ , QJ) and (M, QM) such that

.v = 3 = ﬁ = 0, with Nv being the vibrational action, J the rota;ional action
or angular momentum and M being the projection of the angular momentum onto
’the z axis. These‘variables allow a connection with quantum mechanical
states to be made—easily.8 The probability P of some event may be obtained

by averaging over the initial angle variables Qv’ QJ, QM for fixed Nv’ J

and M,

2T

2T _ 27 S
dq_, 1!’ dQ gf aQ,, XN, 7 u(QpQysQ) Al

p=0n” f
0
where x = 1 if the event occurs and Q if it ‘doesn't -occur for thé given
initial conditions. Usually, the angular momentum is randomly oriented in
space,.so an average may be taken over M:
J

— WJ B 1
P = dM P J = = da P . A-2
.-‘Jf 7, a Y 4 |
=-J )

-J

To do the Monte Carlo integration,14 the variables of integration are

> .
changed to §, with 0 f_gi < 1, such that

'2g1-1=M/J=>\

n
o

e
27 £3

21 g, =q, B | A-3

|
o
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Eq. A-2 then becomes

- .. 1N
P = 1lim N ZE

N > o

Xy gu & A4
v

That is, one averages X over N random evaluations of E (each component of
E is taken to be a pseudo—random number for a given evaluation).
Approximate relations between the action-angle variables and ordinary
- molecular coordinates have been given by Porter, Raff and Miller8 for a
rotating Morse oscillator. The orbits given by them for 6 and ¢ are not

strictly correct. The corrected orbits are

r. -2 {(2a)0b + b7 - 4ac sin (ug t + Q)] A-Sa

r(t) = o
6(t) = arccos [V1 - AZ ;os (wJ t + QJv+'sign (pr) JAJ)] A-5b
y A cot [B(t)] | |
¢(t) = Q, + sign (py) arccos < > A-5c
 t ot g i

where the formulae for a,b,c,wN,wJ'and AJ may be found in Ref. 8 and are not

repeated here. The errors in the angular orbits arose from omission of

8

a sign (pr) and.sign (pe)vfactor in the generators Wr and W, respectively
(egs.8a and 8b of ref. 8). Another slight error is in eqs. 30b and 30c
of ref. 8. Here, the factor rz should be replaced by the expansion for
r2 given by ;heir eq. 3. |
. Thus, to generate the.initial conditions for a diatomic we first pick
A, Q;,_QJ, and QM randomly according to eqs.‘A—3. Then, since the cal-
culatiqns are to be made in spherical coordinates, r, 6 and ¢ are ;alcu—
lated from eqé. A-5. P and Pg may be obtained by either conservation of
energy and angular momentum, or by differentiation of eqs. 30 of ref. 8.

This procedure is completely equivalent to randomly orienting the molecule

and its angular momentum vector and picking-
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only r and p_ from the action-angle variable formulae, which is the more
r .

S 14 ,
standard approach. Thus the present approach offers no technical advan~
tage over the ordinary approach for most applications, including the pre-
sent one, except when the rotational angle variables play an important
role, as in some semiclassical applications.

The vibrational action Nv is calculated at a time t from the approximate

formula of ref. 8§,

N =_ﬁ_+\/2_u( b _a> A-6

v 2 o \2/¢
and only depends on the molecular enérgy and angular momentum state J(J+l)h2 =
2 2, .2 | : __h 1
(Pe + P¢ /sin"0). NV was calculated numerically (NV ==3 + o £ prdr)

as a check on eq. A-6 and, for all NQ and_J with J £ 10, NV from eq. A-6
is accurate to three significant figures. Thus, essentially no error is

introduced by the use of eq. A-6 for Nv in the present study.
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Appendix B. Effect of laser phase on the two state model.

For a two state model with states labeled A and B, egqs. II-8 become (h=1)

L] o 3
= +
i CA CAEA + CBDABEo sin(wt + §) + CADAAEo sin (wt + &) \l
. B-1
LA o o . .
i CB CBEB + CADABEo sin(wt + &) + CBDBBEo sin (wt + 6).J’
If one now replaces CA and CB by SA and SB such that
-iE, %t
Ca=Sye |
-iE %t B2
C, =8, e B
B B
: — O )
one obtains (EAB = EA - EB )
: -i(E,tw)t -i§ -i(E,_-w)t id -i(wt+d)  i(wt+s)
S=%(sp Efe ¢ o A o l4sED [e - 1}
A 2 B AB o . Ao AA” )
- (B, ~w)t 18 i(E, )t 18 ~i(we+d)  i(weks) B3
Sp= 5-{SADABE°[e e -e 7 e ]+SBEODBB[e | -e 1}

The rotating wave approximation12 involves omitting the highly oscillatory

ti(EAB+th +iwe
terms involving e and e . Thus
é = - ;-S D, _E e-l(EAB ) w)te o
A 2. B AB o .
i(E,. - w)t -i6 B-4
é = ins D..E e AB e
B 2 "AAB o

Within- this approximation, it can easily be shown that the effect of:

laser phase § is not important. To see this, the substitution SB' =-SBel(S
is made, so that B-4 becomes
-i(E,, - wt
S = - L S.'DE e AB
A 2 B "AB o
. 1 i(EAB - w)t B-3
S.'= =S D E e

B 2 A "AB o
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i.e., SA and SB"may be obtained by solving B-5 and the probabilities PA =
: ) | » »

'SAIZ and PB = ISBI2 = ISB'I have no phase dependence. Alternatively,
eq. B-4 can be expressed as a second order equation in which the radiation

phase does not appear.
One should note carefully that the rotating wave approximation is

and (ii) m>>DABEo,DAAE D_._E . The second condition

. cel2e oy
valid only if (1)w=E o’ BB o

AB

is often not stated, but is necessary if the'oscillatqry'terms are to be
unimportant. VConsider, for example, HF in a 1.0 TW/cm2 laser near the
one-photon resonance at 4006 c:m_1 with state A = (0,0) and B = (1,1).

Condition (i) is satisfied and, with E0 = 0.00534 a.u., ~ 0.022 a.u.,

Dy

Dyy = Dgg = 0, condition (ii) is 0.0182.>> 0.0001, which is reasonably

satisfied.
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Table.I. Relevant energy levels for HF, according to the rotating Morse

oscillator approximation.

E ",
Vv ] .
-1

v i a.u. C
0 0 0.0093309 2048
0 1 . 0.0095187 2089
0 2 0.0098941 2171
1 0 0.0274001 6014
1 1 0.0275819 6054
1 2 0.0279454 6133
2 0  0.0446793 9806
2 1 0.0448551 9845

2 2 0.0452065 9922
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Table II. Approximate time averaged probabilities for vibrational

2
transitions of HF in a 1.0 TW/cm laser.

non;r?iifing rotating .
Sen b FPO P, P, “r, J?l A
3850 0.88(QM) 0.08 0.04 0.99 ' 0.01 0.00
1.00(CL) 0.00 0.00 |

3879 0.47 0.08 0.45 0.53 0.03 0.44
0.88 0.12 0.00 0.99 - 0.01 0.00

3900 0.83 0.11 0.06 0.96 0.03 0.01

0.73 0.19 0.08 0.9 0.04 0.02

3937 0.69 0.28 0.03  0.47 - 0.07 0.46

| 0.69 0.24 0.06 0.67 - 0.27 0.06

3966 0.51 . 0.47 0.02 0.87 0.12 0.01

0.63 0.36 0.01 0.58 - 0.40 0.02

4006 0.69 0.30 0.01 0.50 0.49 0.01

0.68 0.32° 0.00 0.66 0.34 0.00

4085 0.93 0.07 0.00 0.95 0.05 0.00

0.90 6.10 0.00 0.88 0.12 0.00
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Table III. Approximate time averaged vibrational transition probabilities

(a)

. _ 9
for rotating HF in a 2.5 TW/cm laser.

G(cm-l) P0 P1 - P2
3879 0.51(Q) 0.07 0.42
| 0.88(CL) 0.07 0.05
3900 0.90 0.05 0.05
0.67 0.17 0.16
3937 0.48 0.10  0.42
0.50 0.31 0.19
3966 0.77 0.18  0.05
| 0.52 0.39  0.09
4006 0.52 0.45 0.03
© 0.61 0.37 0.02
4085  0.89 0.11 °~  0.00
0.78 0.20 0.00

(a)

The classical results shown for v = 3879 and 3937 cm—l were actually
run at 3870 and 3927 cm—{ respectively. The probabilities will not vary
much since the classical peak is broad. It was displayed in the table

this way to avoid confusion since -the overall trends are still clear.
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.TablevIV. -Quantum mechanical tramnsition probabilities and energy absorbed
as a function of pulse time for laser phases of 0 and ©/2 at

w = 4006 c:m-l and I = 1.0 TW/cmZ.

Poo P, E(t) gy(a-u.)

t(ps) 6 = 0 §=m/2 §=0 ssn2 8o sxan;
0.0 1.00 1.00 0.00 0.00 0.0000 0.0000
0.4 0.30 0.32 0.63 0.66 0.0125 0.0126
0.8 0.13 0.14 0.81 0.83 0.0156 0.0158
1.2 0.94 0.95 0.05 0.05 0.0010 0.0009
1.6 0.51 0.53 0.44 0.45 0.0084 0.0086
2.0 0.03 0.03 0.92 0.92 0.0177 0.0179
2.4 0.81 0.81 0.17 0.17 0.0034 0.0033
2.8 0.73 0.73 0.24 0.24 0.0047 0.0048
3.2 0.01 0.01 0.95 0.9 0.0180 ~  0.0182
3.6 0.62 0.62  0.36 0.36 0.0068 0.0069
4.0 0.88 0.90 0.09 0.09 0.0018 0.0017

4.4 0.08 0.09 0.87  0.88 0.0167 0.0169
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Table V. Quantum mechanical transition probabilities and energy absorbed
as a function of pulse times for laser phases of 0 and 7/2 at

w = 3937 cm.1 and I = 1.0 TW/cmz.

L Poy (E(t)>QM(a.u.)
—N —"—
t(ps) 6 =0 §=w/2 &=0 s=m2_ §=0 __8=mu/2
0.0 1.00 1.00 0.00 0.00 0.0000 0.0000
0.4 0.93 0.93 0.05 0.05 0.0021 0.0019
0.8 0.78  0.80 0.19 0.19 0.0072 . 0.0071
1.2 0.57 0.58 0.37 0.38  0.0142 0.0144
1.6 0.36 0.37 0.57 0.57 0.0218 0.0219
2.0 0.18 0.18 0.71 0.74 0.0282  0.0284
2.4 0.05 0.05 0.83 0.81 0.0320 0.0324
2.8 0.00 0.00 0.83 0.86 0.0333 0.0338
3.2 0.03 0.03 0.80 0.80 0.0322 0.0324
3.6 0.14  0.13 0.69 0.71 0.0283 0.0287
4.0 0.27 0.29 0.56 0.57 0.0231  0.0233

4.4 0.47 0.47 0.40 0.40 0.0169 0.0170
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Figure Captions .

Classical and quantum mechanical time averaged energy absorptionv
. | ) |

for HF in a 1.0 TW/cm laser. a) non-rotating HF, b) rotating HF.

Classiéal and quantum mechanical time averaged energy absorption

: _ 9
for rotating HF in a 2.5 TW/cm™ laser.

.  Time-dependent energy absorption for non-rotating HF with v =

3966 cm and I = 1.0 _TW/cmz.

Time~dependent energy absorption for rotating HF with Vv = 4006 cm_l
and I = 1.0 Tw/cmz.

Quantum mechanical time—dependent energf_absorption for rotating

HF with v = 3937 c:m—vl and I = 1.0 TW/cmz. Note that fhevjaggedness
is due to poor resolution of the higﬁ frequency oscillatioﬁs..
Classical time-dependentvenergy absorption for rotating HF with

v = 3937 et and I = 1.0 TW/em®.

Classical and Quantum mechanical probabilities ?vj for HF with

v = 4006 cm—l and I = 1.0 TW/cmz._ The jaggedﬁess of the quantﬁm
results.is due to poor resolution of the high frequency oscillations.
Classical prébabilities,ijvfor HF wit§'3'= 3937 em L and I =

1.0 TW/cmz.

Quantqm mechanical probabilities PO'o-and'jP22 for HF with v =

3937 cm-l and I = 1.0 TW/cmZ; The jaggedness is due to poor

resolution of the high frequency oscillationms.



-32-

0.020 T - r - l
| o ~(a)
I
I\ e Classical |
0.0 |.5 ~ pl‘ O Quantum
t
3 o
S 0010} i‘ _ i
w | § %
| I
0.005 K -

3900 4000
7 (cm™1)

Figure 13

4100

- XBL 822-8028




=33~

0.020 —

- 0 (b)
' 8 ,|| e Classical
0.0I5+ “ [l o Quantum -
|
> 0.010 i |
= U y
I I
1o
0.005 i
0 - | |
3800 | 3900 4000 4100

v(icm~ l) XBL 822-8029

,,,,,,

Figure 1b



~34-

0.020 I T T
s I * Classical
B 4 | o Quantum |
0.015 I
| | | (l)
| | |
0
A
.
/
3800 3900 4000 4100
v (Cm-') XBL 822-8030

Figure 2



-35-

1£08-228 19X

\ / ~ wnyuonp \

_/

_.mO0.0

10100

(n'o) (43I

G100

L 1 I

’0¢00

Figure 3



-36-

2£08-228 19X

60

|DI1SSD|)

G000

0100

16100

0200

——

(.r\,n

dHD,



-37-

£€08-228 18X

(sd) 4
02 Sl o] 0
| | A _O

i <100
\_\.W

- 200 &
)
c

I €00 ~

ly00

Figure 5



$£08-2¢8 19X

G|

(sd) |
O




-39~

1.0 N I v ! I
- | i
o8k \\Quantum —

\

B N P*ﬁIVV¥\\*\ ]
) lea" /“(/ ‘\\\ ]
P oel 7 >
L v B
0.4"" /// , | ' ” 1
_ 7 . : 7
0.2 - // . » - ]
_ - - | |
O - l M
) 03 0.6 - 09
t (ps) XBL 822-8027

Figure 7



~40-

l
N T

oV
| o
O O O !
_o»
1T 7 T T 17 7 T1T7

t (ps) XBL 822-8028

Figure 8



~41-

G£08-2¢28 18X

02 Gl Ol e @)
T __ 1 \.o
/ \ /
B \ \ | 120
\ , \
/ \ /
| ,_ ;| PO
[
/ \ , \ [
| | -.
B \\ , \ ﬂa ~ “ \\ N mw mu
/ \ \ | ﬂg | I
\ \ W~ __ ] N \
L, /\/. — " \a\f
, 22’ ' 00 N
B d d 0|
i i j e

Figure 9



This report was done with support from the
Department of Energy. Any conclusions or opinions

“expressed in this report represent solely those of the

author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

" Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.




~ foe 4 L

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

gl

o





