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Abstract

This paper presents a class of statistical models that integrate two statistical modeling
paradigms in the literature: I). Descriptive methods, such as Markov random fields and
minimax entropy learning [41], and II). Generative methods, such as principal component
analysis, independent component analysis [2], transformed component analysis [11], wavelet
coding [27, 5], and sparse coding [30, 24]. In this paper, we demonstrate the integrated
framework by constructing a class of hierarchical models for texton patterns (the term “tex-
ton” was coined by psychologist Julesz in the early 80s). At the bottom level of the model,
we assume that an observed texture image is generated by multiple hidden “texton maps”,
and textons on each map are translated, scaled, stretched, and oriented versions of a win-
dow function, like mini-templates or wavelet bases. The texton maps generate the observed
image by occlusion or linear superposition. This bottom level of the model is generative in
nature. At the top level of the model, the spatial arrangements of the textons in the texton
maps are characterized by minimax entropy principle, which leads to embellished versions
of Gibbs point process models [34]. The top level of the model is descriptive in nature. We
demonstrate the integrated model by a set of experiments.

Keywords: Descriptive models, Generative models, Gibbs point processes, Markov chain
Monte Carlo, Markov random fields, Minimax entropy learning, Perceptual organization,
Texton models, Visual learning.



1 Introduction

What a vision algorithm can accomplish depends crucially upon how much it knows about
the contents of the visual scenes, and the knowledge can be mathematically represented by
general and parsimonious models that can realistically characterize visual patterns in the
ensemble of images. Due to the variations of the patterns across scenes and the richness of
details within each scene, the models are often statistical in nature. Existing methods for
statistical modeling can be generally divided into two categories. In this paper, we call one

category the descriptive methods and the other category the generative methods.'

Descriptive methods construct the model for a visual pattern by imposing statistical
constraints on features extracted from signals. Descriptive methods include Markov random
fields, minimax entropy learning [41], deformable models, etc. For example, recent methods
on texture modeling all fall into this category [17, 41, 7, 32]. These models are built on pixel
intensities or some deterministic transforms of the original signals, such as linear filtering.
The shortcomings of descriptive methods are two-fold. First, they do not capture high level
semantics in visual patterns, which are often very important in human perception. For
example, a descriptive model of texture can realize a cheetah skin pattern with impressive
synthesis results but it does not have explicit notion of individual blobs. Second, as descriptive
models are built directly on the original signals, the resulting probability densities are often
of very high dimensions and the sampling and inference are computationally expensive. It
is desirable to have dimension reduction or sparse representation so that the models can be
built in a low dimensional space that often better reflects the intrinsic complexity of the

pattern.

In contrast to descriptive methods, generative methods postulate hidden variables as the
causes for the complicated dependencies in raw signals, and thus the models are hierarchical.
Generative methods are widely used in vision and image analysis. For example, principle

component analysis (PCA), independent component analysis (ICA) [2], transformed compo-

!There is a third category of methods that can be called discriminative. The goal of discriminative methods
is not for modeling visual patterns explicitly but for approximating the posterior probabilities directly, for
example, pattern recognition, feed-forward neural networks and classification trees, etc. Thus we choose not to
discuss it because our focus is on statistical modeling. See, however, Tu and Zhu (2002) [36] that incorporates

the discriminative methods in Markov chain Monte Carlo posterior sampling.



nent analysis (TCA) [11], wavelet image representation [27, 5], sparse coding [30, 24], and
the random collage model for generic natural images [21]. The hidden variables employed to
represent or generate the observed image usually follow very simple models. However, exist-
ing generative models appear to suffer from an over-simplified assumption that the hidden
variables are independent and identically distributed.? As a result, they are not sophisticated
enough to model realistic visual patterns. For example, a wavelet image coding model can
easily reconstruct an observed image, but it cannot synthesize a texture pattern through inde-
pendent random sampling because the spatial relationships between the wavelet coefficients

are not captured.

The two modeling paradigms were developed almost independently by somewhat disjoint
communities working on different problems, and their relationship has yet to be explored.
In this paper, we present a class of probabilistic models that integrate both descriptive and

generative methods, as well as the algorithm for computational inference.

The proposed method can be viewed from the following four perspectives:

Figure 1 Two examples of natural patterns with layered structures. We not only perceive the texture
impression in terms of pixel intensities, but also the repeated texture elements.

First, it combines the advantages of both descriptive and generative methods, and pro-
vides a general scheme for modeling sophisticated visual patterns. In computer vision, a

fundamental observation, stated in Marr’s primal sketch paradigm [28], is that natural visual

Interested readers are referred to a recent paper [31] for discussion of the problem with existing generative

models.



patterns consist of multiple layers of stochastic processes. For example, Figure 1 displays
two natural images. When we look at the ivy-wall image, we perceive not only the texture
“impression” in terms of pixel intensities, but we also see the repeated elements in the ivy
and bricks. To capture the hierarchical notion, we propose a multi-layer generative model
as shown in Figure 2. Inspired by the seminal work of Olshausen and Field [30], we assume
that an image is generated by a few layers of stochastic processes and each layer consists of
a finite number of distinct but similar elements, called “textons” (following the terminology
of Julesz). In our experiments, each texton covers more than 100 pixels on average, so the
layered representation achieves nearly 100-fold dimension reduction or sparsity. With sparse
representation, the next step should be the modeling of the spatial arrangements based on
geometric features. In particular, the textons at each layer are characterized by Markov
random field (MRF) models through the minimax entropy learning [41], and previous MRF
texture models can be considered special cases where the models have only one layer and each
“texton” is just a pixel. See also a recent paper of ours [38] that is directly built on the work
of Olshausen and Field [30], where the geometry of the elongate linear bases is characterized
by a causal sketch model. We feel that the integrated model is a natural next step for the

linear superposition models in wavelet and sparse coding.
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Figure 2 A generative model for an image | consists of multiple layers of texton maps I(T;; ¥,),/=1,..., L
superimposed with occlusion plus a background texture image n.

It is our belief that descriptive models can be precursors of gemerative models and both

are ingredients of the integrated learning process. In visual learning, the model can be



initially built on image intensities via some features computed deterministically from the
image intensities. Then we can replace the features by hidden causes, and such a process
would incrementally discover more abstract elements or concepts such as textons, curves,
flows, and so on, where elements at the more abstract levels become causes for the elements
of lower abstractions. For instance, the flows generate curves, and the curves generate textons,
which in turn generate pixel intensities. At each stage, the elements at the most abstract level
have no further hidden causes and thus can be characterized by a descriptive model based
on some deterministic features, and such models can be derived by the minimax entropy
principle as demonstrated in [37]. When a new hidden level of elements is introduced, it
replaces the current descriptive model by a simplified one. The learning process evolves until
the descriptive model for the most abstract elements becomes simple enough for a certain
vision purpose.

Second, the integrated scheme provides a representational definition of “textons”. Texton
has been an important notion in texture perception and early vision. Unfortunately, it was
only expressed vaguely in psychology [19], and a precise definition of texton has yet to be
found. In this paper, we argue that a definition of “texton” is possible only in the context of
a generative model. In this paper, in contrast to the constraint-based clustering method by
Malik, Leung, etc. [22, 23, 26], textons are naturally embedded in a generative model and are
inferred as hidden variables of the generative model. This is consistent with the philosophy
of ICA [11], TCA [11] and sparse coding [30, 24]. In this paper, the textons are defined
in terms of image bases or window functions. In a related paper of ours [40], we explored
other definitions of textons, such as combinations of linear bases, local elements of shape and

shading, etc.

Third, we present a Gestalt ensemble to characterize the hidden texton maps as attributed
point processes. The Gestalt ensemble corresponds to the grand canonical ensemble in statis-
tical physics [4], and it differs from traditional Gibbs models by having an unknown number
of textons whose neighborhood changes dynamically. The relationships between neighboring

textons are captured by some Gestalt laws, such as proximity, continuity, etc.

Fourth, we adapt a stochastic gradient algorithm [16] for learning and inference. In

the algorithm, we simplify the original likelihood function and solve the simplified maximum



likelihood problem first. Starting from the initial solution, we then use the stochastic gradient

algorithm to find refined solutions.

We demonstrate the proposed modeling method on texture images. For an input texture

image, the learning algorithm can achieve the following four objectives:

1. Learning the appearance of textons for each stochastic process. Textons of the same
stochastic process are translated, scaled, stretched, and oriented versions of a window

function, like mini-templates or wavelet bases.

2. Inferring the hidden texton maps, each of which consists of an unknown number of

similar textons that are related to each other by affine transformations.

3. Learning the minimax entropy models for the stochastic processes that generate the

textons maps.

4. Verifying the learned window functions and generative models through stochastic sam-

pling.

Recently, a variety of texture synthesis techniques have been proposed, notably the suc-
cessful methods of Efros and Freeman [10] and Xu, Guo, and Shum [39], which are based
on rearranging local image patches. Our work, however, is more concerned with learning
parsimonious and sufficient models for texture patterns. Such models can be useful for image
understanding in computer vision, and it may also lead to more graphics applications because

the models may capture visually meaningful dimensions.

The paper is organized as follows. Section (2) introduces the background on both gener-
ative and descriptive methods. Section (3) discusses a hierarchical model for texture. Sec-
tion (4) studies Gestalt ensembles for modeling texton processes. Then section (5) presents
an integrated modeling scheme. Section (6) presents the algorithm for inferential computa-
tion. Some experiments are shown in Section (7). We conclude the paper with a discussion

in section (8).



2 Background on Descriptive and Generative Models

Given a set of images T = {I$™, ..., I3b} where I m = 1,..., M are considered realizations
of some underlying stochastic process governed by a frequency distribution f(I). The objec-
tive of visual learning is to estimate a parsimonious probabilistic model p(I) based on Z so

that p(I) approaches f(I) by minimizing a Kullback-Leibler divergence K L(f||p) from f to

p [6],

KL(fl) = [ (1) 10g a1 = B log (1)~ 5 log (0] )

In practice, the expectation Ey[logp(I)] is replaced by a sample average. Thus we have the

standard maximum likelihood estimator (MLE),

M
* = arg min KL A arg max log p(I°>), 2
p* = arg min KL(f||p) gpeﬂpmzzjl gp(I5") (2)

where (2, is the family of distributions where p* is searched for. One general procedure is to

search for p in a sequence of nested probability families of increasing complexities,
QUC91C"'CQK—>Qf9f,

where K indexes the dimensionality of the space. For example, K could be the number of
free parameters in a model. As K increases, the probability family should be general enough

to approach f to an arbitrary preset precision.
There are two choices of families for 2, in the literature.

The first choice is the exponential family, which can be derived by the descriptive method
through maximum entropy, and has its root in statistical mechanics [4]. A descriptive method
extracts a set of K feature statistics as deterministic transforms of an image I, denoted by
¢r(I),k =1,..., K. Then it constructs a model p by imposing descriptive constraints so that

p reproduces the observed statistics hzbs extracted from Z,

M
By (o] =0 = 3 Gu(l) ~ Bylpe(D] =y, k=1, K. @
m=1

One may consider hy as a projected statistics of f(I), thus when M is large enough, p and
f will have the same projected (marginal) statistics on the K chosen dimensions. By the

maximum entropy principle [18], this leads to the Gibbs model,

K
p(L; B) = exp{— > Bpdr(I)}.
k=1

1
Z(B)



The parameters 8 = (01, ..., fx ) are Lagrange multipliers and they are computed by solving
the constraint equations (3). The K features are chosen by a minimum entropy principle
[41].

The descriptive learning method augments the dimension of the space €2, by increasing

the number of feature statistics and generates a sequence of exponential families,
QcQic---Qk—=Qr>f.

This family includes all the MRF and minimax entropy models for texture [41]. For example,
a type of descriptive model for texture chooses ¢;(I) as the histograms of responses from

some Gabor filters.

The second choice is the mizture family, which can be derived by integration or summation

over some hidden variables W = (wq, ..., wg ),
p(T:0) = [ p(LW;O)aW = [ p(IW: W)p(W: ).

The parameters of a generative model include two parts ©® = (¥,3). It assumes a joint
probability distribution p(I, W;©), and that W generates I through a conditional model
p(I|W; ¥) with parameters ¥. The hidden variables are characterized by a model p(W; 3). W
should be inferred from I in a probabilistic manner, and this is in contrast to the deterministic
features ¢ (I),k = 1,..., K in descriptive models. The generative method incrementally adds

hidden variables to augment the space €2, and thus generates a sequence of mixture families,
WcHc - -c—Qr>f

For example, principal component analysis, wavelet image coding [27, 5], and sparse
coding [30, 24] all assume a linear additive model where an image I is the result of linear
superposition of some window functions ¥,k = 1,..., K, plus a Gaussian noise process n.

K
I= Z oV + n,
k=1
where ag, k = 1,..., K are the coefficients, U are the eigen vectors in PCA, wavelet bases
in image coding, or over-complete basis for sparse coding. The hidden variables are the K

coefficients of bases plus the noise, so W = (a1, ...,ax,n).> The coefficients are assumed to

3In PCA, since the bases are orthogonal, a; can be computed as transform, but for over-complete basis,

the a, have to be inferred.



be independently and identically distributed,

1
ag Np(ak:) = Eexp{_ko|ak|p}> k= ]-7 "'7K7

where Z is a normalizing factor. The norm p = 1 for sparse coding [30, 24] and basis pursuit

[5], and p = 2 for principal component analysis. Thus we have a simple distribution for W,

k 2
1 n-(x,y
p(W:8) = = T exp{-Aolax} [T expf~""120)y.
7 20
k=1 (2,y) ©
In this example, the parameters are the K bases plus the parameters in p(W;3), © =
{U1,..., ¥k, Ao, 00}. There are also occlusion models with randomly positioned discs called

random collage or deadleaf models (see [21] and refs. therein).

In this model p(W; B) is from the exponential family. However, in the literature, hidden
variables ag, k = 1, ..., K are assumed to be iid Gaussian or Laplacian distributed. Thus the

concept of descriptive models are trivialized.

3 A Multi-layered Generative Model for Texture

Figure 3 Texture images with texton processes. Each texton is represented by a rectangle window.

We focus on a multi-layer generative model for texture images and we believe that the
same modeling method can be applied to other patterns such as object shapes. An image
I is assumed to be generated by L layers of stochastic processes, and each layer consists
of a finite number of distinct but similar elements, called “textons”. Figure 3 shows three
typical examples of texture images, and each texton is represented by a rectangular window.

A layered model is shown in Figure 2.



Textons at layer [ are image patches transformed from a square template ¥;. The j-th
texton in layer [ is identified by six transformation variables,
tiy = (@15, Y15, 015, 115, 015, Aij), (4)

where (z;5,y;;) represents the texton center location, oy; the scale (or size), 7;; the “stretch”
(aspect ratio of height versus width), 6;; the orientation, and A;; for photometric transforms
such as lighting variability. t;; defines an affine transform denoted by G[t;;], and the pixels

covered by a texton #;; is denoted by D;;. Thus the image patch Ip,; of a texton #;; is
IDU = G[tl]] ® \Illa V.]a VIa

where ® denotes the transformation operator. Texton examples of a circular template at

different scales, stretches, and orientations are shown in Figure 4.

2) b). o). d).

Figure 4 A template W and its three transformed copies. a). template W; b). scaled copy; c). stretched
copy; d). scaled/stretched/rotated copy.

We define the collection of all textons in layer [ as a texton map,
T = (n,{tij,j=1...m}),l=1...L,

where n; is the number of textons in layer /.

In each layer, the texton map T; and the template ¥; generate an image I, = I(T; ¥))
deterministically. If several texton patches overlap at site (x,y) in I;, the pixel value is taken

as average, n
Z]lzl 5(($> y) € Dl])ID“ (I, y)
YiLio((z,y) € Dy) 7

where §(e) = 1 if e is true, otherwise d(e) = 0. In image I;, pixels not covered by any texton

Il(xay) =

patches are transparent. The image I is generated in the following way,
I[(T; V) =I(T;¥;) © [(Ty;¥s) ©---0 I(Tr;¥z), and I =I(T;¥) + n. (5)

10



The symbol @ denotes occlusion (or linear addition), i.e. Iy @Iy means I occludes I. I(T; V)
is called a reconstructed image and n is assumed to be Gaussian noise process n(z,y) ~
N(0,02),¥(z,y), although in general it should be a stochastic texture. Thus pixel value at
site (x,y) in the image I is the same as the top layer image at that point, while uncovered

pixels are only modeled by noises.

In this generative model, the hidden variables are
T = (L,{(Ty,d)):l=1,...,L}, n),

where d; indexes the order (or relative depth) of the [-th layer.

To simplify computation, we assume that L = 2 and the two stochastic layers are called
“background” and “foreground” respectively. The two texton process T, = 1,2 are assumed
to be independent of each other. This assumption seems okay for simple texture patterns
studied in this paper, but for more sophisticated patterns, it is certainly necessary to have

more levels and to consider the dependencies among these levels.
Thus the likelihood for an observable image I can be computed
p(I:6) = [ pIIT:W)p(T: B)aT, (5
= /p(I|T1,T2;‘1/) ﬁp(Tl;ﬁzo,ﬁz)dTlde, (7)
I=1
where U = (U, ¥y) be texton templates and 8 = (010,81, B20,B5) the parameters for the

two texton processes which we shall discuss in the next section, and o2 the variance of the

noise. The generative part of the model is a conditional probability p(I|Ty, Te; ¥),

Iobs — 1("_[‘1,"1?2;\11)H2

202 ’

p(I°"| Ty, T2; ¥) ox exp

(8)

where I(T4, T9; ¥) is the reconstructed image from the two hidden layers without noise (see
eq. (5)). As the generative model is very simple, the texture pattern should be captured by
the spatial arrangements of textons in models p(Ty; B0, 8;),! = 1,2, which are in much lower
dimensional spaces and are more semantically meaningful than previous Gibbs models on

pixels [41].

In the next section, we discuss the model p(Ty; B0, 8;),! = 1,2 for the texton processes.

11



4 A Descriptive Model of Texton Processes

As the texton processes T; are not generated by further hidden layers in the model?, they
can be characterized by descriptive models in exponential families. In this section, we first
review some background on three physical ensembles, and then introduce a Gestalt ensemble

for texton process. Finally we show some experiments for realizing the texton processes.

4.1 Background: The physics foundation for visual modeling

There are two main differences between a texton process T; and a conventional texture defined

on a lattice A C Z2.

e A texton process has an unknown number of elements and each element has several
attributes #;;, while a texture image has a fixed number of pixels and each pixel has

only one variable for intensity.

e The neighborhood of a texton can change depending on their relative positions, scales,

and orientations, while pixels always have fixed neighborhoods.

Although a texton process is more complicated than a texture image, they share a common
property that they all have large number of elements and global patterns arise from simple
local interactions between elements. Thus a well-suited theory for studying these patterns is
statistical physics — a subject studying macroscopic properties of a system involving a huge

number of elements [4].

EV.N eg. N=16° N,=10° Ng+Ny=N=10%, E,+Ei=E Ng+ N;=N=10% Eg+E; =E
bath E o
60 ee T % oo Moo ROEN e
o o o o o o o o o o P - ,9
o o o o o o o ° o ° °
o ° ° o ° o o
o %5 o ° o ° ° o ° “, ., 7 EnT { o -°
R R . °o ° ° o R . EiN1 ° 4 d; EiN1 4 ’p: 4
° ° o ° AP B P 4
o o o ° o ° o °® ’p o ~ ’}3
S e e o e "o o ° 4Ty
o ° o o °© ° ° o o ° o o © ° ° o S o‘ ~ P
a). micro-canonical ensemble b). canonical ensemble ¢). grand-canonical ensemble

Figure 5 Three typical ensembles in statistical mechanics.

*We may introduce additional layers of hidden variables for curve processes that render the textons. But

our model stops at the texton level in this paper.
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To understand the intuitive ideas behind various texture and texton models, we find it

revealing to discuss three physical ensembles which are shown in Figure 5.

1). Micro-canonical ensemble. Figure 5.a) is an insulated system of N elements. The
elements could be atoms or molecules in systems such as solid ferro-magnetic material, fluid,
or gas. N is nearly infinity, say N = 1023. The system is decided by a configuration
S = (x, m"), where xV describes the coordinates of the N elements and m” their momenta.
The system is subject to some global constraints h, = (N, E,V). That is, the number of
elements NN, the total system energy FE, and total volume V are fixed. When it reaches

equilibrium, this insulated system is characterized by a so-called micro-canonical ensemble,
Qmen = {5 : h(S) = h,, f(S;hy) = 1/|Qmenl}-

S is a microscopic state or instance, and h(S) is the macroscopic summary of the system.
The state S is assumed to be uniformly distributed within £2,,,,, thus it is associated with a

uniform probability f(S;h,). The system is identified by h,,.

2). Canonical ensemble. Figure 5.b) illustrates a small subsystem embedded in a micro-
canonical ensemble. The subsystem has n << N elements, fixed volume v << V and
energy e. It can exchanges energy through the wall with the remaining elements which is
called the “heat bath” or “reservoir”. At thermodynamic equilibrium, the microscopic state

s = (x",m") for the small system is characterized by a canonical ensemble with a Gibbs
model p(s; B),

= {55 pls38) = 5 exp{~Be(s)}).

In our recent paper on texture modeling [37], the micro-canonical ensemble is mapped to
a Julesz ensemble where S = I is an infinite image on 2D plane Z2, and h, is a collection of
Gabor filtered histograms. The canonical ensemble is mapped to a FRAME model [41] with
s = I, being an image on a finite lattice A. Intuitively, s is a small patch of S viewed from
a window A. The intrinsic relationship between the two ensembles is that the Gibbs model
p(s;B) in Q¢ is derived as a conditional distribution of f(S;h,) in Q,,c,. There is a duality
between h, and 3 (see [37] and refs therein).

3). Grand-Canonical ensemble. Figure 5.c) illustrates a third system where the subsystem

is open and can exchange not only energy but also elements with the bath. So v is fixed,

13



but n and e may vary. This models liquid or gas materials. At equilibrium, the microscopic
state s for this small system is governed by a distribution p(s; 8,, 8) with 8, controlling the

density of elements in s. Thus a grand-canonical ensemble is

di = {3 = (n,xn’mn); p(s;BOaIB)}

The grand-canonical ensemble is a mathematical model for visual patterns with varying
numbers of elements, thus lays the foundation for modeling texton processes. In the next

subsection, we map the grand-canonical ensemble to a Gestalt ensemble in visual modeling.

4.2 The Gestalt ensemble

Without loss of generality, we represent a spatial pattern by a set of attributed elements
called textons as it was discussed in section (3). To simplify notation, we consider only one

texton layer on a lattice A,

T = (’I’L, {t] = (xjvyjagjaTjagjaAj)aj = ]-77”})

d baseline
/

I b -

e — = e Aot
baseline

Figure 6 Texton neighborhood. a). a texton has four neighbors; b). Four measurements between texton
t; and its neighbor >, d¢, dm, @, and 7.

For a texton map T, we define a neighborhood system 9(T).
J(T)={0t: teT,0tC T}

where 0t is a set of neighboring textons for each texton ¢. In this paper, we use the nearest
neighborhood. Because each texton covers a 15 x 15 patch on average, a pair of adjacent

textons captures image features at the scale of often more than 30 x 30 pixels.

14



There are a few different ways of defining d(T). One may treat each texton as a point, and
compute a Voronoi diagram or Delaunay triangularization which provides graph structures for
the neighborhood. For example, a Voronoi neighborhood was used in (Ahuja and Tuceryan
1989) [1] for grouping dot patterns. However, for textons, we need to consider other attributes
such as orientation in defining neighborhood. Figure 6.a) shows a texton ¢. The plane is
separated into four quadrants relative to the two axes of the rectangle. In each quadrant,
the nearest texton is considered as the neighbor texton. Unlike the Markov random field on

image lattice, the texton neighborhood is no longer translation invariant.

The above neighborhood is defined deterministically. In more general settings, 9(T) shall
be represented by a set of hidden variables that can be inferred from T. Thus a texton
may have a varying number of neighbors referenced by some indexing or address variables.
These address variables could be decided probabilistically depending on the relative positions,
orientations, and scales or intensities. This leads to the so-called mized Markov random field
and is beyond the scope of this paper. Mumford and Fridman discussed such cases in other

context (see [12]).

For a texton ¢; and its neighbor t2 € 0t, we measure five features shown in Figure 6.b,

which capture various Gestalt properties:

1. d.: Distance between two centers, which measures proximity.
2. dy: Gap between two textons, which measures connectedness and continuation.

3. a: Angle of a neighbor relative to the main axis of the reference texton. This is mostly
useful in quadrants I and III. «/d, measures the curvature of possible curves formed by

the textons, or co-linearity and co-circularity in the Gestalt language.

4. ~: Relative orientations between the two textons. This is mostly useful for neighbors

in quadrants II and IV and measures parallelism.

5. r: Size ratio which denotes the similarity of texton sizes. r is the width of o divided
by the width of ¢; for neighbors in quadrants I and III and r is length of ¢5 divided by
the length of ¢; for neighbors in quadrants II and IV.

Thus a total of 4 x5 = 20 pairwise features are computed for each texton plus two features

15



of each texton itself: The orientation €; and a two dimensional feature consisting of the scale
and stretch (oj,7;). Following the notation of descriptive models in section (2), we denote
these features by

o®)(t|ot), for k=1,...,22.

We compute 21 one dimensional marginal histograms and a two-dimensional histogram
for (o, 7;), averaged over all textons.
n
HW(2) =3 8(z — ¢®)(t5101))), V.
=1
We denote these histograms by

H(T) = (HO, ., H®))  and h(T) = ~H(T).

n

The vector length of h(T) is the total number of bins in all histograms. One may choose other
features and high order statistics as well. In the vision literature, (Steven, 1978) [33] was
perhaps the earliest attempt to characterize spatial patterns using histogram of attributes

(See [28] for some examples).

The distribution of T is characterized by a statistical ensemble in correspondence to the
grand-canonical ensemble in Figure 5.c. We call it a Gestalt ensemble on a finite lattice A as

it is the general representation for various Gestalt patterns,
A Gestalt ensemble = Qg = {T : p(T; 5,,8)}. 9)

The Gestalt ensemble is governed by a Gibbs distribution,

P(T; B, B) = 5 expl~fon— < B, H(T) >}, (10)

where Z is the partition function, and S, is a parameter controlling texton density. We can
rewrite the vector valued potential functions 8 as energy functions B(k)(), then we have

n K=22
P(T: 60, B) = Zexp{~Bon — 3" 3 BBGO (1107},
=1 k=1

This model provides a rigorous way for integrating multiple feature statistics into one prob-

ability model, and generalizes existing point processes [34].
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The probability p(T; f,, B) is derived in the Appendix from the Julesz ensemble (or micro-
canonical ensemble). We first define a close system with N >> n elements on a lattice A,
and we assume the density of textons is fixed

N
lim — =p, as N — oo, and A — Z2.
N—o0 |A|

Thus we obtain a Julesz ensemble on 7?2 [37],
A Julesz ensemble = 2, = {To : h(Tx) =hy, N = 00, f(Too; hy)},

where h, = (p,h) is the macroscopic summary of the system state T,,. On any finite
image, a texton process should be a conditional density of f(Tw;h,). There is a one-to-one

correspondence between h, = (p, h) and the parameters (3,,3) (See Appendix for details).

We can learn the parameters (5,,3) and select effective features #*) by the descriptive
method — the minimax entropy learning paradigm [41]. In the following subsection, we discuss
some computational issues as well as experiments for learning p(T; ,, 3), and simulating the

Gestalt ensembles.

4.3  Ezperiment I: Learning and sampling Gestalt ensembles

Suppose we have a set of texton maps, T,, on lattice A,,,,m = 1,..., M, which are assumed
to be independent realizations of the same texton processes. In this section, we assume these
texton maps are known and they are manually drawn by a human observer. In the next
section, the texton maps are estimated in a Bayesian inference step and thus the learning
of the descriptive models for the texton maps shall be integrated with the estimation of the
hidden texton maps. As long as the observation is large enough, i.e. E%zl |Am| is large
enough, we can estimate a texton model on a standard lattice A by the maximum likelihood

estimator (MLE),

M
(8o, B)" = arg max L(S,, B), L(Bo,B) = Z log p(Tm; B, B)- (11)

m=1

Thus by steepest ascent, let 7 be time steps, we have,

dB, _ OL _ Epn] _ Z%:l 'm

dr 0B, |A] Y=t Aml’
B oL 1 &
FEar T Ep[h(T)] — Mmz::lh(Tm)-
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Due to the concavity of the log-likelihood with respect to (5,, 3), the solution is unique under
mild regularity conditions. The expectation Ey,[n] and E,[h(T)] often have to be estimated

from Monte Carlo simulations as it is the case with texture learning [41].

uuowﬂma
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Figure 7 a). The observed image with textons illustrated by the rectangular windows. b)-f) are typical
texton maps sampled from a Gibbs model p(T;3,,(3) at various stages 7 = 0, ..., 234 of the learning
procedure.

There are two different methods for simulating a Gestalt ensemble due to the fundamental
link between the micro-canonical (Julesz) and grand-canonical (Gestalt) ensembles. In the
first method, one can simulate a Julesz ensemble with a fixed number of textons on a large
lattice. A Markov chain Monte Carlo (MCMC) algorithm for sampling a Julesz ensemble of
texture images was presented by (Zhu, et al. 2000) [43]. Then different patches of the large
synthesized texton map will be used as samples from p(T; 3,, 3). The second method samples
from p(T; 5,,3) directly and thus the Markov chain should have a death/birth dynamics to
adjust the number of textons. We choose the second method because we can learn the
parameter simultaneously as we draw samples from the model. Briefly stated, the Markov

chain process includes two types of dynamics

1. A death/birth process: This is simulated by a reversible jump [15] that deletes or adds

a texton.

2. A diffusion process: This updates the position, orientation, scale, and stretch of the
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Figure 8 The simulation of a regular grid pattern at various stages 7 = 0, ..., 147 of the learning procedure.

textons by Gibbs sampler [13].

We show four typical examples for learning and sampling p(T; 5,,3) in Figures 7-10. The
first example in Figure 7 is a cheetah skin pattern with textons (see the rectangles) being the
blobs. Figure 7.a) is the observed image with textons illustrated by the rectangular windows.
Figure 7.b)-f) are typical texton maps sampled from a Gibbs model p(T;f,,3) at various
stages of the learning procedure. At step 7 = 234, the synthesized texton map has statistics
close to the observed with < 5% error in histograms. The spatial arrangements of the cheetah

blobs are very random and this pattern is the easiest one among the four example.

Figure 8 shows a very regular point pattern. It is much harder to simulate this pattern as
it is extremely “cold”. Thus a special annealing strategy is employed to sample this pattern.

In each picture, we show the 4 neighbors for one texton.

Strictly speaking, the wood pattern in Figure 9 and the crack pattern in Figure 10 are not
point processes. The textons form lines and curves for the trees and random graphs for the
cracks. Thus it is desirable to introduce another layer of representation. In this experiment,

we intend to demonstrate that such global curve and graph patterns can still be effectively
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Figure 9 Markov chain Monte Carlo simulation of a woods pattern at various stages 7 = 0, ..

learning procedure.
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Figure 10 Markov chain Monte Carlo simulation of a crack pattern at various stages 7 = 0, ..

learning procedure.
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characterized by the texton processes through Gestalt models.

The simulated patterns for woods and cracks in Figures 9 and 10 expose two drawbacks
of the current texton models. First, the rectangular window representation is too rigid and
often leaves some small gaps when two windows are supposed to be aligned seamlessly. To
solve this problem, we should introduce more sophisticated texton representation as a linear
superposition of wavelet bases. Second, the vertices and junctions in the crack pattern are
missing, because we assume all textons play the same role. To solve this problem, we will
have to label the textons as edge textons or vertex textons and then define neighborhood for

each type of textons respectively. We shall address the two problems in future research.

5 An Integrated Model

After discussing the descriptive models for the hidden texton layers, we now return to the

integrated framework presented in section (3).

The generative model for an observed image I°" is rewritten from equation (7),

2

p(IObs; @) — /p(IObS|T1, T2; \If) HP(TZ; Blm ,Bl)dTldT2. (12)
=1

We follow the ML-estimate in equation (2),
©* = arg max log p(I°>; ©).
0cnd.

The parameters O include the texton templates ¥;, the Lagrange multipliers (55, 3;), | = 1,2

for two Gestalt ensembles, and the variance of the Gaussian noise, o2,

0= (\117670-)7 U= (\1117\112)7 and B = (61076176207:82)'

To maximize the log-likelihood, we take the derivative with respect to ©, and set it to

zero. Let T = (T, Ts),
dlog p(I°*; ©)

00
_ / alogp(g)(;S,T;®)p(T|Iobs;®)dT
N / [310gp(;‘gs|T; 2 g W] p(T|I°*%; ©) dT

=1
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In the literature, there are two well-known methods for solving the above equation. One
is the EM algorithm [8], and the other is data augmentation [35] in the Bayesian context. We

propose to use a stochastic gradient algorithm [16] which is more effective for our problem.

A Stochastic Gradient Algorithm

— Step 0. Initialize the hidden texton maps T and the templates ¥ using a simplified

likelihood as discussed in the next section. Set 8 = 0.
Repeat steps I and IT below iteratively (like EM-algorithm).

— Step I. With the current © = (¥, 3,0), obtain a sample of texton maps from the
posterior probability

T3 ~ p(T[1°%% ©) o p(I°%*| Ty, Ta; ¥)p(T1; Bio, 81)P(T2; P20, Ba), m = 1,..., M. (13)

This is Bayesian inference. The sampling process is realized by a Monte Carlo Markov chain

which simulates a random walk with two types of dynamics.®

e La). A diffusion dynamics realized by a Gibbs sampler — sampling (relaxing) the
transform group for each texton. For example, move textons, update their scales and

rotate them, etc.

e Ib). A jump dynamics — adding or removing a texton (death/birth) by reversible
jumps [15].

— Step II. We treat T3, m = 1,..., M as “observations”, and estimate the integration
in eq. (13).
We learn © = (U, 8, o) of the texton templates and Gibbs models respectively by gradient

ascent:

e Il.a). Update the texton templates ¥ by maximizing 2%21 log p(I°P%|T$™: ¥); this is a

model fitting process. In our experiment, the texton templates Wi, ¥y are represented

6

by 15 x 15 windows and thus there are 2 x 225 unknowns.® The size of the windows

®This sampling process is almost identical to the simulation of the Gestalt ensemble in section (4.3), except

that a likelihood p(I°°*|T1, T2; ¥) is engaged in the posterior p(T[I°>; ©).
SEach point in the window can be transparent, and thus the shape of the texton can change during the

learning process.
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seem adequate for our experiments, but for textures with larger local structures, we
need to increase the window size. The transparency of the template is also learned.
For each pixel in the foreground template, there is a boolean variable which indicates
whether the pixel is transparent or not. Originally for all the pixels in the foreground
template the transparency indicator is equal to 0. If we set the transparency equal to
1 then that pixel is not used in composing the foreground. A Gibbs sampler is used to

decide the transparency indicators.

e IL.b). Update Sy, B;,1 = 1,2 by maximizing 2%21 log p(T$™;: B1, B;)- This is exactly
the maximum entropy learning process in the descriptive method (see eq. (11)) except

that the texton processes are given by step I.

e Il.c). Update o for the noise process.

In step I, we choose to sample M = 1 example each time. There are two reasons for this
choice. 1) The images are usually quite large and stationary, therefore, spatial averaging for
one image already has large sample effect. 2) The iterative algorithm is cumulative. If the
learning rate in steps II.a) and IL.b) is slow enough, then the long run behavior also exhibits
large sample effect. It has been proved in statistics [16] that such an algorithm converges to

the optimal © if the step size in step II satisfies some mild conditions.
The following are some useful observations.

1. Descriptive model is part of the integrated learning framework, in terms of both

representation and computing (Step IL.b)).

2. Bayesian vision inference is a sub-task (step I) of the integrated learning process. A
vision system, machine or biological, evolves by learning generative models p(I; ©) and makes
inference about the world T using the current imperfect knowledge © — the Bayesian view of
vision. What are missing in this learning paradigm are “discovery process” that introduces
new hidden variables.

In this paper, we separate the learning of the templates ® and the learning of 8 for
computational efficiency. That is, we iterate Steps I and II while fixing 5, = 2.0 and 3; = 0,
i.e., we only control the density of the textons. After that, we learn 3; based on the sampled

texton maps, while keeping the learned ® fixed.
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6 Effective Inference by Simplified Likelihood

In this section, we address some computational issues in the integrated model, and propose

a method for initializing the stochastic gradient algorithm (in step 0).

6.1 Initialization by likelihood simplification and clustering

The stochastic algorithm presented in the above section needs a long “burn-in” period if
it starts from an arbitrary condition. To accelerate the computation, we use a simplified
likelihood in step 0 of the stochastic gradient algorithm. Thus given an input image I°*, our
objective is to compute some good initial texton templates ¥, ¥5 and hidden texton maps

T, T9, before the iterative process in steps I and II.

A close examination reveals that the computational complexity is largely due to the
complex coupling between the textons in both the generative model p(I|Ty, To; ¥) and the
descriptive models p(T1;B1,,8;) and p(Ts; B2, B5). Thus we simplify both models by de-

coupling the textons.

Firstly, we decouple the textons in p(Ti;510,08;) and p(T2; B0, Bs). We fix the total
number of textons ni + mg to an excessive number, thus we do not need to simulate the
death-birth process. We set B, and B, to 0, therefore p(Ty;fj,, ;) becomes a uniform

distribution and the texton elements are decoupled from spatial interactions.

Secondly, we decouple the textons in p(Iys|T1, To; V). Instead of using the image gener-
ating model in eq. (5) which implicitly imposes couplings between texton elements through
eq. (8), we adopt a constraint-based model

2 ng
p(I™|T, ¥) o exp{—)_ > [[I5} — G[Ti;] © ¥4 [*/20%}, (14)
I=1j=1
where 105’5_ is the image patch of the domain D;; in the observed image. For pixels in Iobs
lj
not covered by any textons, a uniform distribution is assumed to introduce a penalty.

We run the stochastic gradient algorithm on the decoupled log-likelihood, which reduces to
a conventional clustering problem. We start with two random texton maps and the algorithm
iterates the following two steps.

I). Given ¥; and W¥s, the algorithm runs a Gibbs sampler to change each texton Ly

respectively, by moving, rotating, scaling and stretching the rectangle, and changing the
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cluster into which each texton falls according to the simplified model of eq. (14). Thus the
texton windows intend to cover the entire observed image, and at the same time try to form

tight clusters around V.

IT). Given T; and T, the algorithm updates the texton ¥; and ¥y by averaging

1
\I]l:n_lzail[ﬂ]]QIODblja =12,
j=1

where G'[T};] is the inverse transformation. The layer order d; and dy are not needed for

the simplified model.

This initialization algorithm for computing (T, T2, U1, Us) resembles the transformed
component analysis [11]. It is also inspired by a clustering algorithm by (Leung and Malik,
1999) [23], which did not engage hidden variables, and thus compute a variety of textons
U at different scales and orientations. See also the work of Miller (2002) [29]. We also
experimented with representing the texton template ¥ by a set of Gabor bases instead of a

15 x 15 window. However, the results were not as encouraging as in this generative model.

6.2 FExperiment II: Texton clustering

In this subsection, we present one experiment for initialization and clustering using the

method outlined in section (6.1).

Figure 11 shows an experiment on the initialization algorithm for a crack pattern. 1055
textons are used with the template size of 15 x 15. The number of textons is as twice as
necessary to cover the whole image. In optimizing the likelihood in eq. (14), an annealing
scheme is utilized with the temperature decreasing from 4 to 0.5. The sampling process

converges to a result shown in Figure 11.

Figure 11.a) is the input image; Figure 11.b) and Figure 11.d) are the texton maps T}
and T, respectively. Figure 11.c and Figure 11.e are the cluster centers ¥; and ¥y, shown
by rectangles respectively. Figure 11.f is the reconstructed image. The results demonstrate
that the clustering method provides a rough but reasonable starting solution for generative

modeling.
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a). Input image

f). Reconstructed image

Figure 11 Result of the initial clustering algorithm, which provides a rough but reasonable starting solution
for generative modeling. The initial clustering algorithm simplifies the models by decoupling the textons
to accelerate the computation.

7 Experiment III: Integrated learning and synthesis

In this section, we show some experimental results obtained by the integrated model. For an
input image, we first do a clustering step as section (6) showed. Then we run the stochastic

gradient algorithm on the full models to refine the clustering results.

Figure 12 shows the result for the crack image obtained by the stochastic gradient algo-
rithm, which took about 80 iterations of the two steps (Step I and Step II), following the
initial solution (Step 0) shown in Figure 11. Figure 12.b) and Figure 12.d) are the back-
ground and foreground texton maps T; and Ts respectively. Figure 12.c) and Figure 12.e)
are the learned textons Wy, Uy respectively. Figure 12.f) is the reconstructed image from
learned texton maps and templates. Compared to the results in Figure 11, the results in
Figure 12 have more precise texton maps and accurate texton templates due to an accurate
generative model. The foreground texton Wy is a bar, and one pixel at corner of the left-top

is transparent.

The integrated learning results for a cheetah skin image are shown in Figure 13. It can
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Figure 12 Generative model learning result for the crack image. a) input image, b) and d) are background
and foreground textons discovered by the generative model, c) and e) are the templates for the generative
model, f) is the reconstructed image from the generative model. Due to an accurate generative model,
the results after learning have more precise texton maps and accurate texton templates compared to the

initial results in Figure 11.
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be seen that in the foreground template, the surround pixels are learned as being transparent
and the blob is exactly computed as the texton. Figure 14 are the results for a brick image.

No point in the template is transparent for the gap lines between bricks.

Figure 15 shows the learning of another short crack patterns. Figure 16 displays a pine
corn pattern. The seeds and the black intervals are separated cleanly, and the reconstructed
image keeps most of the pine structures. However the pine corn seeds are learnt as the

background textons and the gaps between pine corns are treated as foreground textons.

We also do one experiment on a bark image (Figure 17). The result shows that the details
of the bark are not modeled well. For such patterns, the linear superposition of the templates

might do a better job. We shall investigate this issue in our future work.

We extend our model to three layers, i.e. L = 3 and do one experiment on a pattern of
text (Figure 18), which has white background and two type of letters as foreground. Figure 19
shows the learning process. Three templates - white background, letter ‘A’ and letter ‘B’

were inferred gradually.

i~ oa". 8

' etpemt =0 I

LR A .'n ;:.!dL ..-i"-i"v -?_.4 ] .
f). Reconstructed image d). Ferground textons Ty e we

Figure 13 Generative model learning result for a cheetah skin image. See Figure 12 caption for explanations.

After the parameters U and 8 of a generative model are estimated, new random samples

could be drawn from the generative model. This proceeds in three steps: First, texton maps
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Figure 15 Generative model learning result for a crack image. See Figure 12 caption for explanations.
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Figure 16 Generative model learning result for a pine corn image. See Figure 12 caption for explanations.

are sampled from the Gibbs models p(T1; 3;) and p(Ts; B5) respectively. Second, background
and foreground images are synthesized from the texton maps and texton templates. Third,

the final image is generated by combining these two images according to the occlusion model.

We show synthesis experiments on three patterns.

1. Figure 20 and Figure 21 are two synthesis examples of the two layered model for the

cheetah skin pattern. The templates used here are the learned results in Figure 13.
2. Figure 22 shows texture synthesis for the crack pattern computed in Figure 15.

3. Figure 23 displays texture synthesis for the brick pattern in Figure 14. To capture the
vertical and horizontal distances of the brick, we add four more neighbors in addition to
four nearest neighbors to the feature space. The new four neighbors are those nearest
neighbors which have the same orientation as the concerned texton. The T-junctions

are not captured because we do not have such feature statistics.

Note that, in these texture synthesis experiments, the Markov chain operates with mean-

ingful textons instead of pixels.
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Figure 17 Generative model learning result for a bark image. The details of the bark are not modeled well
by our current generative model.
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Figure 18 A text file with two foreground letters to test our model on three layers textons.

8 Discussion

In this paper, we present a class of statistical models for visual patterns. The models integrate

and extend descriptive and generative methods, and provide a mathematical definition for
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Figure 19 Generative model learning result for a text image. Six main steps are shown to illustrate the
improving of textons and templates with learning.

textons and their perceptual organizations. The hierarchical model can be considered as a
generalization of the hidden Markov model, and the hidden Markov structure is non-causal

in our model.

The model has some advantages over previous pure descriptive method with Markov ran-
dom fields on pixel intensities. First, from the representational perspective, the neighborhood
in the texton map are much smaller than the pixel neighborhood in FRAME model [41]. The
generative method captures more semantically meaningful elements on the texton maps. Sec-
ond, from the computational perspective, the Markov chain operating the texton maps can
move textons according to affine transforms and can add or delete a texton by death/birth
dynamics, thus it is much more effective than the Markov chain used in traditional Markov

random fields which flips one pixel intensity at a time.

We show that the integration of descriptive and generative methods is a natural path
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Figure 20 An example of a randomly synthesized cheetah skin image. a) and b) are the background and
foreground texton maps respectively sampled from p(T; 81, 3,); d) and e) are synthesized background
and foreground images from the texton map and templates in c); f) is the final random synthesized image

from the generative model.
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Figure 21 Second example of a randomly synthesized cheetah skin image.

for visual learning. We argue that a vision system could evolve by progressively replacing

descriptive models with generative models, which realizes a transition from empirical and

statistical models to physical and semantical models.
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Figure 22 An example of a randomly synthesized crack image. See Figure 20 notation for explanations.
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Figure 23 An example of a randomly synthesized brick image. See Figure 20 notation for explanations.

The following are important issues that should be addressed in future research.

First, the Gestalt model based on nearest neighbors is too simple for many spatial pat-
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terns. We need to introduce more descriptive feature statistics for descriptive modeling, or
replace it with more abstract concepts such as curves and graphs as another hierarchy of
generative model. We also need to explore more efficient inference and synthesis algorithms

for Gestalt model.

Second, the model for local textons based on image windows is quite limited. In a recent
paper [40], we explore combination of linear bases, and local shape and shading models. We
also explore motion elements. But there is still much work to be done in order to find good

local descriptors in term of generative models.

Third, some texture patterns (like foliage) are intrinsically complex (e.g., with a huge
number of leaves), so that there may not exist low dimensional sparse representation in
terms of textons. Such patterns may have to be modeled by the descriptive FRAME model
[41]. On the other hand, some patterns may contain clear textons amid stochastic background
(like twigs and straws), and in that case, the noise in the generative part of the model should

be replaced by FRAME model [41].
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Appendix: Deriving the Gibbs model for texton process.

A texton pattern on a large lattice A — Z is summarized by a Julesz ensemble (or micro-

canonical ensemble),
QA(N,H) = {Tp : N(Tp) = N,H(T)) = H}

where A is a large lattice (or more rigorously, A — Z), Tj is the texton map defined on
lattice A, with N(T,) being the number of textons on T,, and H(T,) the collection of
the 22 histograms of Gestalt features. N and H are two parameters that defines the Julesz

ensemble Qp (N, H).

Now, suppose we look at all the large texton maps Tp in the Julesz ensemble Q5 (N, H)
through a small window Ag C A, and we are interested in the frequency distribution of all
the small texton maps that we see from this window. This frequency distribution is called
the Gestalt ensemble (or the grand-canonical ensemble). In probabilistic language, let Ty
be a random texton map sampled from the uniform distribution over the Julesz ensemble
QA(N,H), and let Ty, be the part of the large T on the small lattice Ag, then we are
interested in the probability distribution of T, .

For a Ty € QA(N,H), if Tp, = Ty for a specific Ty, then N(Tx\p,) = N — N(Ty) and
H(Ta\,) = H—H(Ty), where A\ Ag is the rest of the lattice. Clearly, the number of large
texton maps in Q4 (N, H) with Tg on A is the same as the number of textons maps T\,

in Qa\p (N — N(Tp), H— H(Typ)). Therefore, the frequency of Ty
P(To) o< [Qa\ao (N — N(Typ), H - H(Ty))|,

A Taylor expansion of logp(Ty) at (IV,H) gives

dlog [Qp\p, (N, H)|
- AN N(Ty)

= C — ByN(Ty) — BH(Ty),

_ Olog [Q5\a, (N, H)|
OoH

logp(Ty) =C H(Ty)

where C is a constant, fy and B are identified with the derivatives of the log of the volumes
of the Julesz ensemble Q) (N, H) with respect to N and H. Therefore, the Gibbs form of the
p(Ty) is derived.
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