
UC Irvine
ICS Technical Reports

Title
A LISP production system facility

Permalink
https://escholarship.org/uc/item/5bt7v6kn

Author
Brooks, Ruven

Publication Date
1977-02-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5bt7v6kn
https://escholarship.org
http://www.cdlib.org/

A ^ISP Production
System Facility

Ruven Brooks

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Technical Report #98

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

IfinsjeM eirlT ;&oijoH
bolauloiq ad vBrri
wsJ MghyaoO yd
(.O.a.UTr'eljiT)

^ Production System Facility

Ruven Brooks

This document describes a facility for programming in

production systems. The facility is implemented in UCI LISP

and the features available in it are based on a subset of

the options available in the PSG system (Newell, 1974)-

System Version 1.1

Documentation Updated February 12, 1977

Introduction

This manual is written with the assumption that users

know LISP and are somewhat familiar with production systems.

If this is not the case, then it is suggested that they

learn LISP by first reading A LISP Primer by Carl Weissman

and then looking through the Standford LISP 1•5 Manual and

LISP Manual to become familiar with the details of

the particular LISP system used here. Unfortunately, there

is, as yet, no good place to learn about production systems.

Matchinq and the Pattern

A production system, in the conventional use in theory

of automata, consists of a string chosen from an alphabet of

symbols and a set of re-write rules consisting of a left

half and a right half. When the symbols in the string match

the left half of some rule, then they are replaced by the

symbols in the right half. The system presented here

differs from this usage in three major respects:

1. The symbols appearing in the string are list structures

of arbitrary complexity rather than only atomic symbols.

For this reason, the term, STM, (taken from psychology

and standing for Short Term Memory) is used to refer to

this string.

2. The symbols appearing on the left-hand, conditions side

of a rule are not matched identically against the

contents of STM, but are, instead, considered to be

patterns stated in a pattern language described later in

this document. This pattern language permits

wild-carding with local variable assignment and one-level

logical combination of disjunction and negation

conditions.

3. The right hand side of each rule is considered to be a

set of actions to be carried out, rather than just a set

of replacements for items in the string. These actions

may be of arbitrary complexity and may affect other

structures than the STM.

Matching Procedure

In the system described here, the productions are

assumed to be arranged in an ordered list. An attempt is

made to match the conditions of each of the productions

against the contents of the STM. If the match succeeds,

then the associated actions are carried out. If failure

occurs, then the matching procedure is applied to the next

production in the list until either a production is found

which does match or until all the productions have failed.

After one production has been fired off, the search for the

next production to fire begins again at the beginning of the

list.

Within the conditions for a given production, matching

proceeds from left to right. Matches are made by taking

each pattern and comparing it one by one with each of the

items in the STM. As soon as a match is found, an attempt

is made to match the next pattern. The matching is done

without replacement so that if an item in STM is matched by

one pattern, it cannot be used to match any of the other

patterns. Note that the order in which patterns appear in

the conditions and the order in which matching items occur

in STM need not be the same. With the exception of special

disjunction and negation conditions (to be described later),

a production fires only if a match can be found for all of

the patterns in its invoking conditions. Thus, if the STM

contained

((A) (B) (C) (D))

a production with the invoking conditions.

((A) (D) (C)

would be fired off, while one with invoking conditions.

((A)(C) (F))

would not.

The Pattern Language

The matching procdure just described is that of a

context-free grammer; however, because of the pattern

language used in the matching procedure the system is

effectively a scattered context grammer. This pattern

language is interpreted by a function, MATCH, which takes a

pattern and an item and indicates whether the pattern

matches the item. Both patterns and items can be any legal

LISP lists, not atoms. In addition, patterns can contain

special expressions of the form.

(specialtoken argl argn)

Six special tokens are provided:

(*ATOM* argl

If this token appears in a special expression, the

match succeeds at this point if the corresponding position

in the item contains any atom. The first argument, if

present, must evaluate to an atom; if the match succeeds,

the atom is set to whatever atom in the item matched the

pattern. (Repeat; The argument must evaluate to an atom; it

need not be an atom itself.) Additional arguments are

ignored.

(*LIST* argl)

Identical to the preceeding, except that any list, but

not an atom, is matched.

(*AN^* argl)

Identical to the preceeding, except that any

s-expression is matched.

(*REST* argl)

Identical to the preceeding, except that it matches the

entire tail (CDR) of the string at that point in the

structure.

(*£VAL* argl)

The argument following this special token is presumed

to evaluate to an atom (i.e., a name). If the value of this

atom is equal to the s-expression at the corresponding

position in the item, then the match succeeds. This is

useful for matching against a variable that has been set

through the use of special tokens in some prior part of the

matching process.

CLASS argl arg2)

The argument following this special token is assumed to

evaluate to a list. If the s-expression at the

corresponding position in the item is a MEMBER of the list,

then the match succeeds. Note that since the matching

against the list is done by testing whether things are

EQUAL, the items in the list cannot be patterns but can only

be ordinary s-expression. If a second argument is present,

it must evaluate to the name of a variable. Whichever

member of the list matched is bound to that variable.

(*FN* function-name arg2 arg3)

This token is used to provide an extensibility feature

to the matcher. The first argument is presumed to evaluate

to the name of a function. When the special expression is

encountered in matching, the function is called with two

arguments: The first is the remainder of the pattern (after

the special expression), and the second is the remainder of

tne item. Whatever value the function returns is presumed

to be the value of the match for those portions of the

pattern and item. Thus, if the function is intended to

match only the next element of the target item, it must call

MATCH recursively to complete the match on the tail of the

item. If the function returns a non-NIL value, the match

succeeds; otherwise failure occurs.

If a second argument is present, it is assumed to

evaluate to an atom, and whatever value the function

returned is assigned to it. If a third argument is present,

it is passed unaltered to the function as a third argument.

If this argument is to be used, the function must be defined

to accept three arguments. (This may seem weird, but it s

useful for passing parameters to the function.)

Some examples of the beast at work are:

Pattern:

(A B (*ATOM*))

Item:

(A B ORANGE)

Succeeds.

Pattern:

(A B (*ATOM*))

Item:

(A B (ORANGE))

B'ails.

Pattern:

(ABC (D (*LIST* @DUMMY)))

Item:

(ABC (D (E F)))

Succeeds and sets DUMMY to (E F).

Pattern:

(ABC (*REST* @DUMMy))

Item:

(A B C D E F)

Succeeds and sets DUMMY to (D E F)

Pattern:

(A B (*EVAL* @DUMMY) G)

Item:

(A B (D E F) G)

If DUMMY was set to (D E F) by the previous match, then
this succeeds.

Pattern:

(A (B (*REST* laDUMMY)))
Item:

(A B C D)

Fails.

Pattern:

(A B (*FM* @IS-A-K @WHATKWAS))

Item:

(A B K)

If IS-A-K is a function which checks whether its argument is

the letter, K, then this function will be called with (K) as

its argument. Whatever it returns will be assigned to

WHATKWAS.

Pattern:

(A (*ATOM* @V1) B (*LIST*) C (D (*REST*)))

Item:

(A D B (THIS IS IT) C (D E (F G)))

Succeeds and sets VI to D.

Item:

(A F B G C (D R))

Fails.

In addition to the special expressions within patterns,

the way in which the patterns are to be combined can also be

specified. Normally, the combination is done conjuctively;

if all the patterns match, the production fires off.

Sometimes, it's nice to be able to specify that a production

should fire if a pattern cannot be matched in the STM. This

can be done by preceeding the pattern with the atom,

♦ABSENT*. For example, if the invoking conditions of the

production are:

1. (A)
2. (B)
3. *ABSENT* (C)

Then the associated actions will be executed only if (C) is

not present in the STM.

\

Another situation which occurs frequently is a

production is to be fired if any one of a set of patterns

can be matched. This capability is provided by preceeding a

1ist of productions with the atom, *0R*. Thus, a production

with the invoking conditions.

1. (A)
2. *0R* ((C) (D))

will fire if (A) and (C) or (D) is present in the STM

Production Actions

In addition to the pattern language and matcher, this

system provides built-in functions for performing the most

common actions. (In fact, any LISP function can appear as

the action side of a production, but the user should be

aware of the internals of the system before writing

functions which alter the contents of the STM or which

modify the productions.) These functions are given below.

REPLACE

This EXPR takes two arguments; an item in the STM and

its replacement. It replaces the first by the second in the

same position. If the first argument is not found in STM,

an error occurs.

PUSHON

This function evaluates its argument and pushes it onto

the front of STM, increasing the length of STM by one.

SHOVE

This function evaluates its argument and shoves it on

to the front of STM, losing an element off the end of STM,

so that STM stays the same size.

REHEARSE

This EXPR function takes as its argument an item which

is present in the STM. It moves that item to the head of

the list and pushes all the other items down. If the item

is not in STM, an error break occurs.

PDREMOVE

This EXPR function evaluates its argument and attempts

to remove it from STM. If the argument is not present in

STM, an error occurs.

MATCH-ITEM

Sometimes it is desirable on the action side of a

production to refer to one of the items that invoked the

production. Evaluating (MATCH-ITEM n) returns the thing

which matched the nth invoking condition. Thus, (REHEARSE

(MATCH-ITEM 4)) will rehearse the thing which matched the

4th invoking condition.

STMSWTCfl

One of the capabilities of this system is to use

mulitple, different STMs, though only one is STM is used at

a given time to fire productions. This function takes one

argument, the name of an STM and makes that STM be the

current one for firing productions. This function can

appear anywhere on the action side of a production, but,

after it is executed, any further actions which affect STM

will refer to this new STM, not the old one. Thus, if the

actions are:

((PUSHON @(A)) (STMSWTCH @STM2) (PUSHON @(A)))

the first PUSHON will act on the STM used to fire this

production, while the second one will act on the new STM,

STM2.

PDSWTCH

Another capability of the system is to switch which

particular production system is being used. While it can be

shown that a single, large production system can be

constructed which combines two smaller ones, keeping the

smaller systems separate is often convenient. This function

makes it possible to do so by allowing the user to

dynamically switch to a new production system as an action

of a prior one. It takes one argument, the name of the new

system. After it is executed, all future productions will

be fired from the new system.

XACUTE

here it is backward-chaining freaks! This EXPR takes

one argument which should evaluate to the name of a

production. The production must be defined, but it need not

be inserted in the production list. As its name hints,

XACOTE tries to fire the named production if its conditions

are met. If the attempt is successful, XACUTE returns the

name of the production, NIL otherwise. To backward chain,

simply maintain a list of productions in some useful place,

say, as part of an element in STM, and then call XACUTE on

them one by one.

NEWPD

The intent of this function is to permit production

systems to dynamically add to themselves. It is an EXPR

which takes four arguments:

1. Conditions of a new production in the form of a single

1 ist.

2. Actions of a new production in a single list.

3. Name of the new production.

4. Position in the existing list of productions.

The position at which the new production is to be inserted

can be specified in one of two ways. If a digit is given,

the new production will be inserted before that ordinal

position in the list, i.e. if the argument is 4, then the

new production will be inserted after the 3rd one in the

existing list. An argument of 0 will cause the new

production to be placed before any of the old ones.

Alternately, the position can be specified by giving the

name of an existing production. In this case, the new

production is inserted before it.

KILLPD

This EXPR takes an argument which must evaluate to the

name of an existing production in the list. It makes the

production go away entirely. All kinds of obscure errors

occur if the named production is not in the list.

A few examples of productions are given below:

Conditions:

1. (SYMBOL X)
2. (GOAL (FIND X))

Actions:

1. (REPLACE (MATCH-ITEM 1) (LIST @OLD-SYMBOL @X))
2. (PDREMOVE (MATCH-ITEM 2))

Conditions:

1. (SENTENCE (*ANY* @NOUN) ((*CLASS* @VERBS
eVERBl))

2. (CONTEXT (SPEAKERl JOHN){SPEAKER2 BILL))

Actions:

1. (PUSHON (LIST ©ACTION VERBl))
2. (PDREMOVE (MATCH-ITEM 2))

For a more extended example of a production system, see

Appendix 1.

The Production System Environment

The top level tor the production facility is called

PDTOP. It replaces the normal top level of LISP and can be

used to define, edit, run, and trace productions. It has

it's own prompt character, Everything typed to the >

prompt is interpreted by PDTOP.

(To invoke it, load in all the functions. Then do:

(INITFN 0PDTOP)

(PDTOP)

You are now typing to PDTOP.)

Using PDTOP

PDTOP differs from the normal EVAL loop in one major

respect: Typing an atom name does not cause that atom to be

evaluated; instead, they are assumed to be commands relevant

to the production system. List expressions are evaluated in

the usual manner.

PDTOP allows the user to string several command

together on a line, but if a command takes arguements, they

must follow it on the same line. Errors are treated the

same way as they are by the LISP editor; a message gets

printed and the rest of the line is ignored. Some of the

more frequently used commands can be abbreviated to only two

letters.

For PDTOP, every production system has a name and a

definition. The definition is a set of productions. In

turn, each production also has a name and a definition.

STMs are considered to have names and contents.

At any given time, several different production systems

may be defined. There may also be several STMs, each with

different contents. The system is set up to keep track of

which production system and which STM is to be used when

productions are run. The user may use the INIT command,

described below, to switch among productions systems and

STMs. (Alternatively, it is possible to write production

systems which call other production systems or switch STMs.

See the System Architecture section for details.)

In the following sections, underlining is used to

indicate information typed in by the user.

Commanas That Run Productions

FIMDPD

FINDPD, which invokes the function, FINDPD, finds the

first production in the current production system which is

"true" for the current contents of the STM. It prints the

name of this production or NIL if no production is true. It

also sets a global variable, PDFOUND, to the production

itself (i.e., to the value, not the name) and two other

variables, CONDITIONS and ACTIONS, to the conditions and

actions of the production respectively. Note that it just

finds the production; it doesn't run it.

Example:

>FINDPD

(TREE-17)
>

APPLYPD

This command uses the function, APPLYPD, to execute the

production last found by the FINDPD function. To do this,

it looks at the contents of PDFOUND.

Example:

>FINDPD

(PD-1)
>APPLYPD

>

RUNPD

This command uses the RUNPD function to find and run

productions. The number of productions that will be run is

determined by the CYCLES command described below. If the

CYCLES command is not given, just one prodction is run. To

run productions until some condition is met, see the

definition of the RUNPD function. Note that RUNPD produces

no printed indication that a production has been run; to do

that, the TRACE command must be used.

Example:

>RUNPD

>

CYCLES

This command takes one argument, the number of

productions to be run the next time a RUNPD command is

given. It must be given again for each RUNPD command;

otherwise, only a single production will be run. The value

of CYCLES is the number of productions that will be run on

next RUNPD command.

Example:

>CYCLES

>RUNPD

>

This would cause 10 productions to be found and run.

TRACE , lUNTRACE

TRACE can take as its argument either an atom or an

expression. If it is an atom, then it is presumed to be the

name of something to be printed out each time a production

is run. Currently, the names that are recognized are

NAME NUMBER STM SIZE

NAME and NUMBER stand, respectively, for the name and number

in the list of the production that was just run. STM causes

the contents of STM, in numbered format, to be printed out

each time a production is run. SIZE causes the size of STM

to be printed out each time-

Giving an expression as the argument to TRACE causes

the expression to be evaluated after each production is run.

This allows the user to create arbitrary traces of his or

her own choosing. For example, to keep a count of the

number of productions run since a certain point, do TRACE

(SETQ NCOUNT (ADDl NCOUNT)), where NCOUNT is the name of the
counter. TRACE commands are cumulative; to trace several

things at once, simply give several trace commands.

To stop all tracing, type lUNTRACE. (In the future,

the capability will be added to selectively stop tracing.)

Example:

>TRACE NAME

>RUNPD

(PD-1)
>

Commands for Creating and Editing Production Systems

This command is used to initialize a new production

system. PDTOP responds to it by prompting for the name of

the production system and the name of the STM that is to be

used with it. If the productionsystem and the STM

both already exist, then they become the ones which are

used. If the STW does not already exist, then the user is

prompted tor an initial list of items to be used as the

initial contents for the STM. If the production system does

not already exist, it is defined to have a single production

called DUMMY in it. (Be sure to remove this dummy

production before actually attempting to run the system.)

PDTOP also has a set of commands which allow definition

and editing of productions. In many of these commands, it

is assumed that PDTOPs attention is "focused" on a given

production. When a new production system is initialized,

this attention is directed to the first production, and

other commands may be used to move this attention.

Example:

>IN1T

PRODUCTION SYSTEM NAME>DEMO-PD

STM NAME>Sj.
INITIAL VALUE FOR STM>((A)(B)(C))
>

This command defines a new production, but does not

place it into the production system. It prompts for the

name of the new production, the invoking conditions, and the

actions. Conditions and actions are are prompted for, one

at a time. Each condition or action must be a list, and an

error message will be given if it is not. Reading is done

by the LINEREAD function, so that each condition or action

must be typed in its entirety before giving a carriage

return. To terminate prompting for the next item, type NIL.

If the name of an existing production is given, an error

message will be given.

Example:

>NEvv

NAME?TEST-1

ENTER CONDITIONS:

3. NIL

ENTER ACTIONS:

1. (PDREMOVE (MATCH-ITEM 1))

2. (PUSHON @(FIRST LETTER))
NIL

The INSERT command takes a defined production and

inserts it into the production system. The command takes 2

arguments which must follow it on the command line. The

first of these is the name of the production to be inserted;

the second is the position at which it is to be added. The

position may be specified in one of two ways. If it is

given by a number, then the new production is inserted after

the nth production. (i.e. if 5 is the number, then the new

production is stuck in at position 6, pushing everything

after it down one position) A zero is used to indicate that

the new production is to be added at the beginning of the

list. Alternately, the position for the new production can

be specified by giving the name of a production already in

tne system. The new production will then be inserted after

it. In either case, the inserted production is made the

current attention focus.

Example:

>INSERT PD-7 3

>INSERT PD-7 PD-3

REMOVE

This command removes the production that is the current

focus of the editor's attention from the production system.

The production is still "defined" however, so that it may

still be inserted again later on.

>REMOVE PD-1

>

MOVE

This command takes two arguments, a production name and

a position. The production is removed from its current

location and is moved to the new position. The position can

be specified in the same way as for the INSERT command.

Example:

>MOVE PD-1 8

>

KILL

This command takes one argument, the name of a

production to be killed. Once a production has been killed,

the name is available for redefinition and will not cause an

error message from the NEW command. Only productions that

are not in the production list can be killed; if a

production to be killed has already been inserted in the

list, it is necessary to REMOVE it before KILLing it.

Example:

>KILL PD-3

>

This command pretty-prints the editor's attention

focus.

Example:

>PP

CONDITIONS:

(A)

(B)
ACTIONS:

(PDREMOVE (MATCH-ITEM 1))
(PUSHON @(FIRST LETTER))

Prints the current focus without indenting, wrapping it

around to successive lines as necessary.

Example:

(((A)(B))((PDREMOVE (MATCH-ITEM 1))(PUSHON @(FIRST
LETTER))))

Prints the current focus but only to a depth of 3.
"Deeper" expressions are indicated by &.

({(A) (B{C(& &)))) (PUSHOM @(A)))

NEXT

Moves the focus of the editor's attention to the next

production in sequence.

Example:

>NEXT

>

BACK

Moves the focus of the editor's attention back to the

previous production.

Example;

>BACK

>

This command moves the focus of the editor's attention

to the location specified by the next thing on the command

line. The location may be specified by either a number or

the name of a production. Thus, TO 5 will change the focus

to tne 5th production in the set.

Example:

>1^ 5
>

FIND

FIMD takes a single argument which must follow it on

the command line. The argument is a pattern, and the

production system is searched until a production is found

which contains the pattern. This production then becomes

the editor's attention focus. Patterns can contain any of

the wildcard constructions that the LISP edtior F commands

use. They can match any part or all of the whole production

or of the conditions or actions. If the pattern cannot be

found, an error message will be printed, and the old focus

will not be changed.

Example:

>FliND (PDREMOVE {MATCH-ITEM 1))
>

EDA,EDO

The LISP editor is called on the conditions or actions

respectively of the production which is at the editor's

focus. (Warning: Don't call the LISP editor with (EDITF

BLAH), where BLAH is the name of a production; it messes up

the quick matching routines.)

Example:

>EDA

EDIT

«
>

EDITA,EDITC

Ihese commands take as an argument the name of a

production and call the LISP editor on the conditions or

actions respectively.

Example:

>EDITA PD-1

EDIT

#

NEWSTM

This command takes one argument which must follow it on

the command line. The argument is evaluated, and the

current STM is set to the value.

Example:

>NEWSTM @((A)(B)(C))
>

PIXSTM

This command calls the LISP editor on the current STM,

permitting the user to alter its contents as he or she

1 ikes.

Example:

>Fixsa-M

EDIT

#

Prints the current contents of STM, stringing it out

across lines if necessary.

Example:

>s™

((A) (B) (C) (C) (£))
>

Prints the contents of STM, numbering each element and

pretty-printing it.

Example:

>NSTM

1. (A)
2. (B)
3. (C)
4. (C)
5. (E)

PDNAMES

Prints the names of all the productions in the

production system. To print just a section of the names,

use the function call from of this command described below.

Example:

1. PD-1

2. FIRST-PD

3. HALT-7
4. TRY-AGAIN

PDPRINT

Prints out all the productions, showing name,

condtions, and actions for each one. To print juct a

section of the productions, use the function call from of

the command described below.

Example:

>PDPRINT

1,

NAME: PD-1

CONDITIONS:

(A)
(B)
(C)

ACTIONS:

(REHEARSE (MATCH-ITEM 1))
(PDREMOVE (MATCH-ITEM 2))

NAME: FUN-PD

CONDITIONS:

(HAVE A (*ATOM* @Vl) TIME)
(WHAT KIND OF TIME?)

ACTIONS:

(REPLACE (MATCH-ITEM 1) (LIST ISHAVE @A @FUN @TIME))
(PUSHON (LIST @BIG (CAR (MATCH-ITEM 1)))

DISPLAY

The one argument to this command must be the name of a

production. The command causes the conditions and actions

of the production to be pretty-printed.

Example:

>DISPLAY PD-1

CONDITIONS:

1. (A)
2. (B)

ACTIONS:

1. (PUSHON @(THIS IS IT))
2. (PDREMOVE (MATCH-ITEM 2))

READ-IN, WRITE-OUT

These commands read in and write out a production

system and STM onto a disk file. They both take one

argument, the name of the file to be used. If the file name

has an extention, the name and extension must be enclosed in

parentheses, as in (SAVEPD.LSP).

The file that is written will contain the contents of

the current STM and the definitions of the individual

productions. If the user desires to have additional things

saved, they can be included by putting them on a list called

PDSAVELIST; for example, to cause the value of the class

name, FLOOR-CLASS, to be saved, do (SETQ PDSAVELIST (CONS

@(FLOOR-CLASS) PDSAVELIST)). PDSAVELIST may also be edited

using the normal LISP editor.

Example;

>READ-IN (OLD.PD)

FORMATFILE

This commands takes as its argument the name of a file.

As usual, files with extentions must be enclosed in

parentheses. It causes the current contents of STM and the

current productions to be printed out in a readeable format.

Alternately, this command creates the production system

equivalent of a compiler listing file.

EXample:

>FORMATFILE (0 LDPD.LS T)

.PRINT OLDPD.LST

The next item on the command line after this command is

evaluated and the value printed. This provides a simple way

to evaluate atoms instead of having them treated as

commands.

Example:

>£ PEOPLE

(JOE JILL JOHN JACK) This list was the value of PEOPLE.

This command causes an exit from PDTOP and a return to

the normal LISP top level.

>9^
LEAVING PDTOP

The following two items are not commands, but must be called as functions

PDPRINT, PDNAMES, NSTM

Another nice thing to have is functions which display a

production system in a reasonable display format.

Evaluating (PDPRINT n m) causes the nth through mth

productions to be printed in numbered order with conditions

and actions separately labeled, numbered and GRINDEFed.

Omitting m causes the printing to run from the nth

production through the end, while omitting both m and n

causes all tne productions to be printed. PDNAMES works the

same way, but prints only the names of productions. NSTM

does the same thing for the contents of the STM, useful if

it contains a large number of items.

Example:

XPDPRINT 1 2)
1,

NAME: PD-1

CONDITIONS:

(A)
(B)
(C)

ACTIONS:

(REHEARSE (MATCH-ITEM 1))
(PDREMOVE (MATCH-ITEM 2))

2,

NAME: FUN-PD

CONDITIONS:

(HAVE A (*ATOM* @Vl) TIME)
(WHAT KIND OF TIME?)

ACTIONS:

(REPLACE (MATCH-ITEM 1)(LIST @HAVE @A @FUN @TIME))
(PUShON (LIST @BIG (CAR (MATCH-ITEM 1)))

SAVE,RESET,UNSAVE

Very often in debugging a production system, it is

desirable to return to some previous point, and try again.

These three commands provide a simple backtracking

capability for this purpose. Typing SAVE pushes a copy of

the current contents of STM onto a stack called

PDCONTEXTSTACK. Typing RESET followed by a number causes

the contents of STM to be set to the nth contents to be

saved: i.e., RESET 1 always causes things to be set to the

oldest context. UNSAVE causes the contents on the top of

the stack, the newest, to be deleted from the stack.

The function which do the context saving "know" the STM

name. Thus, if the user switches STMs, the proper

restoration will take place. As promised earlier, the user

can cause other things besides the STM to be saved. To do

this, make a list of the things whose VALUES are to be saved

be the value of the atom, CNTXTI (for CoNTeXT Items),

Example:

>SAVE

1

-other commands-
>SAVE

2

-more commands-

>RESET 1

CONTEXT RESTORED TO 1
>

Production Running and Tracing Functions

These are primarily of interest to the systems builder and

hack.

RUNPD

RUNPD is a global production-running function. It

takes two arguments; either the second argument or both

arguments may be omitted - i.e. if only one argument is

given it must be the first one. The first argument is a

list of forms to be evaluated each time a production is run.

The second argument is a list of conditions which are

evaluated before a production is run; if any of the

conditions ace true, then the production isnt run. If no

arguments are given, then an attempt is made to run just one

production; if no productions are true, an error break

occurs. The list of forms will usually include things like

forms to print out various things; if it is desired to run

more than one production at a time, a function can be

included to decrement a counter. The list of conditions to

be evaluated will include various reasonable terminating

conditions, such as the counter having reached zero, (In

fact, the "no arguments" situation is handled by adding a

form to the list of forms which CONSes a T onto the list of

conditions so that no further productions are run after the

first one.)

Example:

(RUNPD @((SETQ N (PLUS N 1))) @((EQUAL N 5)))

If N is 0, then this call to RUNPD will cause 5 productions

to be run.

EVERY

EVERY is a function which evaluates a list of

s-expressions on every nth count of some counter; it's handy

for doing things on every nth cycle of a production system

or on every nth time a certain production fires. It is an

EXPt< with 3 arguments. The first is the current value of

the counter; the second is the interval to be used, and the

third is the list of forms to be evaluated. If PDCOUNT were

being used to count the cycles of a production system, then

including (EVERY PDCOUNT 5 @((PRINC STM))) in the list of

actions to be performed for each production, then STM would

be printed out on every 5th cycle of the production system.

Extension Functions for the Pattern Language

The following functions are handy extensions to the

pattern language when used in the *FN* construction.

EITHER

The optional third argument is presumed to evaluate to

a list of patterns or pieces of patterns. If the

corresponding part of the item matches any one of the

patterns, then the function CONSes that part of the item

onto whatever MATCH returns for the rest of the pattern and

the item. This function is intended to allow matching to a

number of alternatives at any point in the pattern.

Example:

If SI has the value, (A B C D), then (W X Y A Z) will

be matched by (W X Y (*FN* ^EITHER 0DUMMY @S1) Z) and DUMMY

will have the value, (A).

NOTMATCH

This function provides a negation condition within a

pattern. The optional third argument is presumed to

evaluate to a 1ist of pieces of patterns. If the part of

the item occuring in the same position as the *FN* construct

in the pattern is not a member of the list, the match

succeeds,

Example:

The pattern is (A (*FN* @NOTMATCH @DUMMY @(F) (G)(H))).

It will succeed when matched against (A E) but will fail

when matched against (A J). In either case, DUMMY will be

set to ML.

System Architecture

The following section is intended to give an understand

of system architecture to users who would like to either

modify it or push it to extremes.

The Matching Procedure

From the point of view of the user, the system appears

to go through the list of productions and to attempt, one at

a time, to match the invoking conditions of each production

against the contents of the STM until one of the matches

succeeds. In fact, the internals of the system proceed in

substantially the same way, but two techniques are used to

insure that the match takes place in the minimum amount of

time.

The first of these involves discovering whether the

condtions of a production and the STM contain elements with

the same atoms in them, whether or not the list structures

are the same. If the atoms used in the invoking conditions

are A,B, and C and the items in STM are built up out of G,

H, and I, the match can never succeed. If this can be

discovered before attempting the match, the system will run

faster. To perform this check efficiently, each time a

production is defined or altered, a "flattened" version of

it is also created by the function, PDSETFAST. This

flattened version is simply a list of all the atoms that

appear anywhere in the invoking conditions; thus, (GOAL

LEFT-LINK (SUBTREE (A))) and (PERFORM (SEARCH (TREE))) would

be flattened to (GOAL LEFT-LINK SUBTREE A PERFOMR SEARCH

TREE).

For this technique to be effective, some rapid way to

check these atoms against those in STM must be available.

The mehtod used here is to add a property, %STM, to each

atom used in an STM element. The value of this property is

the numoer of times that atom appears in STM. These

reference counts are created initially by PDUNREF and

PDIREF. Functions which alter the contents of STM, such as

PUSHON or PDREMOVE, update these reference counts- Checking

whether an atom is in STM is done simply by finding if (GET

TOKEN @%STM) returns a non-NIL value. This check is done by

the QCKMATCH function.

The second speed-up technique is applied if the first

technique shows that an atom correspondence does, indeed,

exist. It consists of converting the patterns that form the

invoking conditions from a passive into an active form; this

active form is then executed to determine whether a match

occurs. For example, (OBJECT RED (*ATOM*)) is converted to;

(AND (EQ (LENGTH STRING) 3)

(EQ (CAR STRING) ©OBJECT)

(EQ (CAR (SETQ STRING (CDR STRING))) ©RED)

(ATOM (CAR (SETQ STRING (CDR STRING))))

When this expression is evaluated, it returns T is the

original pattern would have matched. This compilation is

carried only one level deep; for more deeply nested

structures, a recursive matcher, MATCH, operates on the

passive pattern.

As with the list of atoms in the first technique, a

compiled version of a pattern is created when a production

is defined or edited. The function responsible for doing

this is PDCMPL, It calls MKMTCHP, MKMTCHl, MKMTCH2, and

PATP. The combined effect of this compilation technique and

the signiture technique described previously is to produce a

two-fold increase in speed over direct matching.

Data Structures

Internally, a production is the value of the production

name. It is organized as a 5-tuple. The elements of the

5-tuple are:

list of atoms used in the condition

compiled version of the conditions

uncompiled conditions

actions

production name

Note that since the production name is also part of its

value, it is possible to go either from the name to the

value or in the opposite direction. Because the user is not

required to know about the fast matching techniques, the

display functions show only the last 3 elements of the

5-tuple.

A production system is the value of a production system

name. It is organized as a dotted pair. The CAR of the

pair is a list of production names. The CDR of the pair is

a list of the values of the production names (hopefully) in

the same order as the names themselves.

STM is a simple list of items. Each item must be a

list. Items cannot be atoms.

In addition to the production system and the STM, the

system makes use of 6 global variables. PDNAME has as its

value the name, not the value, of the current production

system. Most of the functions concerned with finding and

running productions look at the value of this variable to

know which production system to use. The value of this name

can be changed dynamically by the action of productions, so

that one production system can "call" another. Similarly,

STMNAME has as its value the name of the current STM.

Interesting effects can be achieved by changing the value of

STMNAME so that the STM that the productions are sensitive

to also changes.

The remaining 4 globals are used to store various

information about the most recent production found by the

matching process. When a production is found to be "true,"

CONDITIONS is set to the invoking conditions of that

production; ACTIONS is set to the ACTIONS, and PDFOUND is

set to the entire condition-action pair. ACTIONS is used by

the function which executes the action side of the

production, while CONDITIONS and PDFOUND are used by various

tracing routines. WHATMATCHED is set to the actual items

used to satisfy the conditions; it is looked at by the

MATCHilTEM function.

Flow of Control

FINDPD, a function of no arguments, is the basic

function for finding the next production to fire. It

evaluates STMNAME and PDNAME to find the current STM and

production system and then calls CMATCH to find a production

whose invoking conditions are met. FINDPD sets the

CONDITIONS, ACTIONS, and PDFOUND global variables to their

appropriate values, or NIL if no production has been found.

It returns the value of PDFOUND.

CMATC H

CMATCH takes two arguments, an STM and a production

system, and searches the production system to find one whose

conditions are met. It sets WHATMATCHED to the actual items

which were used to match the invoking conditions, and it

returns the production which it found "true." CMATCH calls

two internal functions, CMATCH*! and CMATCH*2, and the

general matching function, MATCH.

APPLYPD

APPLYPD is a function of no arguments which is

responsible for carrying out the action side of a

production. Its definition is simply (MAPCAR (FUNCTION

EVAL) ACTIONS), so that any legitimate LISP S-expression may

appear on the action side of a production. Note that the

production finder, FINDPD, and the production applier,

APPLYPD, communicate only through the global ACTIONS

variable. This means that, for debugging, it is possible to

do repeated production searches without firing a production,

or to fire a production repeatedly without searching for it.

RUNPD

RUNPD is a top level function to run and trace

productions. To actually run productions, it simply calls

FINDPD followed by APPLYPD. The other capabilities

described in the previous section are obtained simply by

evaluating lists of expressions before FINDPD and APPLYPD

are called.

System Cross Reference

The following section gives a list of the functions

used in the system and the calling heirarchy. Using the

LISP BREAK package, a backtrace of function calls can be

obtained if an error occurs. This section and the prior one

on system architecture will, hopefully, enable the user to

interpret this backtrace and find the cause of the problem.

Note that some of the functions can be called directly by

the user, as well as by the function listed in the table.

APPLYPD RUNPD,PDTOP

C MATCH FINDPD

CMATCH*1 CMATCH*2

CMATCH*2 C MATCH

FINDPD RUNPD,PDTOP

KSUBST REPLACE

MATCH

MATCH-ITEM PDREMOVE,REPLACE,SHOVE,PUSHON,REHEARSE,

user-written functions

MKMTCHl MKMTCHP

MKMTCH2 MKMTCHl

PATP MKMTCHl

PDCMPL PDTOP

PDFSVCNTX PDTOP

PDIREF PDTOP

PDREMOVE APPLYPD

PDRSET PDTOP

PDSETFAST PDTOP

PDSWTCH APPYPD

PDTOP

PDUNREF PDTOP

PDUNSVCNTX PDTOP

PUSHON APPLYPD

QCKMATCH CMATCH

REHEARSE APPLYPD

REPLACE APPLYPD

RUNPD PDTOP

SETFASTCK PDIREF,PDREMOVE,REPLACE, SHOVE, PUSHON

SETFASTLIST

SHOVE APPLYPD

STMSwTCH APPLYPD

UNCHECK PDREMOVE, REPLACE, SHOVE

UNZAP PDUNREF

The following functions are general utility functions that

get called by a variety of the functions in the system.

ALPH

APPENDVALUE

CAKNTH

DELASSOC

DO-UNTIL

DSET

GREAT

LESS

KWOTE

LPRINT

MAPO

MA POL

MAPS

MAPT

MAPTL

MASSOC

WKASSOCl

NEWNAME

MEWONE

NUMPRIMT

PRINCS

Appendix 1

The following production system does a preorder

traversal of a binary tree. The links in the tree are

themselves encoded as productions, that is, the fact that C

is the right descendant of A is encoded by a production

which stores that linkage.

Productions:

1.

NAME:START-1

CONDITIONS:

((AT (*ANy* (QUOTE VI))) *ABSENT* (VISITED (*ATOM*))
ABSENT (GO (*ATOM*)))

ACTIONS:

{(PUSKON (QUOTE (GO LEFT))))
2.

NAME:LINK-1

CONDITIONS:

((AT A) (GO LEFT) *ABSENT* (STACK B))
ACTIONS:

((PUSriON (QUOTE (STACK A))) (PUSHON (QUOTE (AT B)))
(PDREMOVE (MATCH-ITEM 1)) (PRINT (QUOTE A)) (TERPRI))

3.

NAME:LINK-2

CONDITIONS:

((AT B) (GO LEFT) *ABSENT* (VISITED D))
ACTIONS:

((PUSHON (QUOTE (STACK B))) (PUSHON (QUOTE (AT D)))
(PDREMOVE (MATCH-ITEM 1)) (PRINT (QUOTE B)) (TERPRI))

4.

NAME:LINK-3

CONDITIONS:

((AT B) (STACK B) (GO RIGHT) *ABSENT* (STACK E))
ACTIONS:

((PDREMOVE (MATCH-ITEM 1))
(PDREMOVE (MATCH-ITEM 2))
(REPLACE (MATCH-ITEM 3) (QUOTE (GO LEFT)))
(PUSHON (QUOTE (AT E))))

5.

NAME:LINK-4

CONDITIONS:

((AT A) (STACK A) (GO RIGHT) *ABSENT* (STACK C))
ACTIONS:

((PDREMOVE (MATCH-ITEM 1))
(PDREMOVE (MATCH-ITEM 2))
(REPLACE (MATCH-ITEM 3) (QUOTE (GO LEFT)))
(PUSHON (QUOTE (AT C))))

6.

NAME:LINK-5
CONDITIONS:

((AT C) (GO LEFT) *ABSENT* (STACK F))
ACTIONS;

((PUSHON (QUOTE (STACK C))) (PUSHON (QUOTE (AT F)))
(PDREMOVE (MATCH-ITEM 1)) (PRINT (QUOTE C)) (TERPRI))

7.

NAME:TRY-RIGHT

CONDITIONS:

((FAIL) (GO LEFT) (AT (*ATOM*)))
ACTIONS:

({PDREMOVE (MATCH-ITEM 2))
(PDREMOVE (MATCH-ITEM 1))
(PUSHON (QUOTE (GO RIGHT)))
(PRINT (CADR (MATCH-ITEM 3)))
(TERPRI))

8.

NAML;FAIL-LINK

CONDITIONS:

((AT (*Aa'OM*)) *ABS£NT* (FAIL) (GO (*ATOM*)))
ACTIONS:

((PUSHON (QUOTE (FAIL))))
9.

NAME:BACK-UP

CONDITIONS:

((FAIL) (GO RIGHT) (AT {*ATOM* (QUOTE VI))) *ABSENT*
(STACK (*EVAL* (QUOTE VI))) (STACK (*ATOM* (QUOTE V2))))

ACTIONS:

((PDREMOVE (MATCH-ITEM 1)) (PDREMOVE (MATCH-ITEM 3))
(PUSHON (LIST (QUOTE AT) V2)))

10.

NAME:QUIT
CONDITIONS:

((FAIL) (GO RIGHT) (AT (*ATOM* (QUOTE VI))) (STACK (*EVAL*
(QUOTE VI))))

ACTIONS:

((PRINT (QUOTE " TREE TRAVERSED "))
(TERPRI)
(PDREMOVE (MATCH-ITEM 1))
(PDREMOVE (MATCH-ITEM 2))
(PDREMOVE (MATCH-ITEM 3))
(PDREMOVE (MATCH-ITEM 4)))

Trace of the production system.

The following is a trace of part of the production

system operation, consisting of the 6 through 10th

productions that were fired.

Production fired: (FAIL-LINK)

Stm:

1. (FAIL)
2. (GO RIGHT)
3. (AT D)
4. (STACK B)
5. (STACK A)

Production fired:(BACK-UP)

Stm:

1. (AT B)
2. (GO RIGHT)

3. (STACK B)
4. (STACK A)

Production fired:(LINK-3)

Stm:

1. (AT E)
2. (GO LEFT)
3. (STACK A)

Production fired: (FAIL-LINK)

Stm:

1. (FAIL)
2. (AT E)
3. (GO LEFT)
4. (STACK A)

Node printed out:E

Production fired: (TRY-RIGHT)

Stm:

1. (GO RIGHT)
2. (AT E)
3. (STACK A)

Index

lUNTRACE 20

ANy 6
♦ATOM* 5
♦CLASS* 7

EVAL 6
FN 7

♦LIST* 6
♦REST* 6

? command

APPLYPD . 19

BACK 26

CNTXTI 34

contexts, to save 33
CYCLES 20

defining productions 21
DISPLAY 30

DUMMY 22

E command 31

EDA 27

EDC 27

EDITA 27

EDITC 27

editing productions 21, 27
EITHER 36

evaluating atoms 31
EVERY function 35

FIND 26
FINDPD 18

FIXSTM 28

FORMATFILE 31

INIT . 18, 21
INSERT 23

KILL command 24

KILLPD 15

leaving PDTOP 32

MATCH-ITEM 12
MOVE command 24

NAME 20
NEM 22
new productions 22
NEWPD 14
NEWSTM 28
NEXT .26

NOTMATCH 37
NSTM 29
NSTM function . 32
NUMBER 20

OK command 32

P 25
PDNAMES command 29
PDNAMES function 32
PDPRINT command 29
PDPRINT function 32
PDREMOVE 12

PDSAVELIST 31
PDSWTCH 13
PDTOP 17
PDTOP commands 25
PP command 25
printing productions 29
production names 29
PUSHON 11

25, 26, 27, 28, 29, 30, 31, 32
25

READ-IN 30
REHEARSE 12
REMOVE command 24
REPLACE 11
RESET command 33
running productions 19
RUNPD command 19
RUNPD function 19, 34

SAVE command . . . •
save files
saving context items
saving productions .
SHOVE
SIZE
STM
STM command

STMSWTCH

33
30

34

30

11
20

2, 20

TO 26
TRACE 20
tracing 20

UNSAVE 33

tvRITE-OUT

XACUTE 13

