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ABSTRACT OF THE DISSERTATION

Modeling and Control of Power Flow in Electrical Energy Storage and
Delivery Systems

by

Xin Zhao

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2016

Professor Raymond A. de Callafon, Chair

In order to meet emerging requirements for better utilization of electrical en-

ergy, some novel modeling and control approaches for battery systems and electric

grids are proposed and validated in this dissertation.

To better utilize a single battery system, the energy delivery capability and

available energy stored in the battery needs to be understood first. A battery model-

ing approach is proposed to characterize power delivery dynamics, given charge and

discharge demand as an input, and also estimate the state-of-charge of a battery,

not only in normal operating range, but also in extreme cases, such as battery over-

xv



charging. The model is composed of separated voltage and current models. Several

non-linear models, including Hammerstein model, open-circuit voltage characteristics,

and Takacs hysteresis model, are combined in the voltage and the current model, re-

spectively. The state-of-charge of the battery is estimated in a recursive optimization

fashion. The parameterization and estimation methods of the model are described

and validated on experimental data from a lithium iron phosphate cell.

Several individual battery systems are usually connected in parallel to expand

the total capacity of a network. To coordinate the output of each battery system,

three current scheduling strategies are proposed. Besides simultaneous and sequen-

tial discharge scheduling algorithms, a hybrid algorithm is formulated by solving a

Quadratic Programming problem. The simulation results indicate the feasibility of

the proposed scheduling algorithms and motivate the use of parallel connected bat-

tery modules despite changes in battery operating parameters. The simultaneous

and sequential discharge scheduling algorithms are extended to power scheduling. A

complete modular battery system for an experimental Electric Vehicle with the same

topology is developed for future experimental validation and research.

Integrating inverters in battery systems or other DC sources is required when

connecting to electric girds. To maintain the stability of the grid, disturbance rejection

control aiming to mitigate fluctuations in AC power flow is studied based on an

experimental setup created to mimic a local electric grid. Through demodulating real

power oscillations, modeling of actuator and disturbance, and implementing controller

designed by combining the internal model principle and optimal control, the feasibility

of proposed control method is validated.

xvi



Chapter 1

Introduction

1.1 Electrical Energy Storage and Delivery Sys-

tem (EESDS)

In physics, energy is the capacity of an object to perform work. It is a property

of objects which can be transferred to other objects or converted into different forms,

but cannot be created or destroyed. As stated in the law of conservation of energy,

the total energy of an isolated system is conserved over time. More importantly, it

is pointed out by the second law of thermodynamics that the entropy of an isolated

system always increases over time in a natural process. Therefore, it has been an ever-

lasting challenge for human beings to “manually” utilize the energy, which means to

discover existing natural processes of energy conversion and then organize all of them

in a certain pattern so as to work for humans.

The development of human society highly depends on the capability of con-

verting and utilizing energy. Energy exists everywhere in the nature, but in different

1
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forms. Most energy forms cannot be applied directly to human’s activities, therefore

a medium is required. For instance, a human body is not able to perform photosyn-

thesis to convert light energy into chemical energy that sustains organisms’ activities,

but can complete the process through digesting plants. Here, the plant is a medium.

In energetics, the concepts of primary energy and energy carrier, which is also

referred to secondary energy, are proposed to better categorize and distinguish differ-

ent energy forms in a process of energy utilization [1]. Primary energy is an energy

form found in nature that has not been subjected to any conversion or transformation

process; while secondary energy is an energy form which has been transformed from

primary energy source.

A typical process of energy utilization is depicted as in Fig. 1.1. Energy gener-

ation, energy consumption, and energy storage are all processes of energy conversion.

They are distinguished by their roles in the system: Energy generation converts pri-

mary energy to the secondary energy form utilized in the system; energy consumption

converts the secondary energy to other energy forms that can work for humans; and

energy storage buffers the gap between energy generation and energy consumption

at a given time through the capability of storing extra energy and supplementing

demanded energy when required. Energy storage can represent any process that has

bidirectional energy conversion.

To better utilize energy, it is crucial to find an energy form that can be handled

by humans. Since the fundamental principles of electricity generation were discovered

by the British scientist Micheal Faraday during the 1820s and early 1830s [2], electrical

energy is widely applied as a secondary energy till today due to its capability of being

converted to other forms such as heat, light, motion, etc..
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Energy
Generation

Energy
Storage

Energy
Consumption

Primary
Energy

Secondary
Energy

Figure 1.1: Diagram of an energy utilization process including energy gen-
eration, energy consumption, and energy storage.

For instance, an electric grid shown as in Fig. 1.2 is composed by all the

components in an electrical energy utilization [3]. A Photo-Voltaic (PV) system acts

as energy generation and converts solar energy to electrical energy. The generated

electrical energy supplies eletrical loads such as households, factories, etc.. An energy

storage system, which is usually a battery system or capacitor banks, buffers the

energy gap with the supplement from the main grid. If the energy storage system is

scaled well, then such local electrical energy system can be islanded from the main

grid and form a stand-alone micro-grid [4].

PV System

Main Grid

Energy Storage Electrical Load

Micro-Grid

Figure 1.2: Diagram of a micro-grid including power generation via a Photo-
Voltaic (PV) system, energy storage, and load.
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Transportation is another application field of electrical energy. As shown in

Fig. 1.3, the powertrain of a Battery Electric Vehicle (BEV) is composed by bat-

tery and electric drive [5, 6]. Electrical energy is provided by a charger, which is

an interface to the electrical energy generation, and stored in a battery. When driv-

ing, the powertrain is disconnected from the charger, and then electric drive system

transforms the electrical energy provided by battery to mechanical motion.

Charger
Battery

Powertrain

Electric Drive

Figure 1.3: Diagram of the powertrain of a Battery Electric Vehicle.

Although each component in an electrical energy system is worth researching,

in this dissertation an Electrical Energy Storage and Delivery System (EESDS) is of

interest, which includes the storage and delivery process of electrical energy.

1.2 Motivating Problems

Electrification was one of significant marks of the Second Industrial Revolution

in the final third of the 19th century and the beginning of the 20th. It used to be

the cutting edge of research and engineering development back then. However, the

well-established power industry, which is one of the main achievements in that period,

has become more conservative over time due to stability concerns. After tremendous

development of energy storage, power electronics, and communication technologies
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[7, 8, 9, 10, 11], a requirement for reconstruction of the way of utilizing electrical

energy arises at different levels from battery cells to an electric grid [12, 13]. A

systematic view and solution is based on advanced control technology. After decades

of development of modern control theory, the up-to-date control technology is ready

to reshape the field of application of electrical energy.

In this dissertation, the modeling of a battery system is motivated by exploring

the possibility of a modeling approach from a control prospective, which is different

from conventional modeling approaches. The challenge aims at characterizing the

power delivery capability of a battery system and also understanding the available

energy remained in the system.

When connecting individual battery systems in parallel in a network, chal-

lenges arises for coordinating/scheduling the power output of each system especially

when batteries may have different operating parameters such as state-of-charge (SoC),

open-circuit voltage (OCV), internal resistance or battery chemistry.

By integrating inverters into a battery system or other DC sources, DC power

flows are transformed to AC power flows in electric grids. To merge and distribute

these flows smoothly, special care should be taken. Stability is required for different

levels of electric network, therefore any feedback control aiming to mitigate or stabilize

the power flow is of interest in research.

1.3 Summary of Contributions

In the dissertation, the research is dedicated to apply system identification

technology, optimization algorithms, and optimal control methodology for better uti-

lization of electrical energy in battery systems and electric grids. Several novel mod-
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eling approaches and control strategies are proposed for battery modeling, current

scheduling, and disturbance rejection control. Three sets of experimental setup are

created for validating the proposed approaches and strategies, respectively. The fol-

lowing is a summary of the main contributions.

• Battery Modeling: A battery modeling approach is proposed aiming to pre-

dict power delivery dynamics, given charge and discharge demand as a control

input, which is a different approaches from the conventional equivalent circuit

models and electrochemical models. The state-of-charge of the battery can also

be estimated in a recursive optimization fashion by the model. The model is

composed of separated voltage and current models. Several non-linear models,

including Hammerstein model, non-linear open-circuit voltage characteristics,

and Takacs hysteresis model are combined in the voltage and the current model,

respectively, to allow the model valid not only in normal operating range of

batteries, but also in extreme cases, such as battery over-charging. The pa-

rameterization and estimation methods of the model are described and also

demonstrated on experimental data from a lithium iron phosphate cell.

• Current Scheduling: Three current scheduling strategies are proposed for

a parallel connection of battery modules integrating buck regulators in each

module. Besides simultaneous and sequential discharge scheduling algorithms,

a hybrid algorithm is formulated by solving a Quadratic Programming (QP)

problem. The simulation results indicate the feasibility of the scheduling al-

gorithms and motivate the use of parallel connected battery modules despite

changes in battery operating parameters. It also motivates future research on

applying optimization algorithms to scheduling of power flow.
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• Development of Modular Battery System: A complete modular battery

system for Electric Vehicle is developed. Each battery module integrates a

Battery Management System (BMS) for real-time monitoring and charge bal-

ancing, and a buck regulator for controlling the power output. To execute

real-time feedback control, a 2.4GHz wireless star network is integrated in the

system with a base station collecting real-time information from each battery

module and coordinating the output of each module. The developed system is

the instrument for future research on battery modeling and power scheduling.

• Disturbance Rejection Control: A disturbance rejection control to mitigate

the fluctuation of AC power flow by modulating (real) power via a controllable

DC to AC inverter is demonstrated through implementation in an experimen-

tal setup. The experimental setup integrates a controllable grid-tied inverter

(GTI), a three-phase Resistor-Inductor-Capacitor (RLC) network, sensors and

an embedded controller. The created experimental setup is the instrument for

future research on implementation of advanced control for power flow.

1.4 Organization

The remainder of the dissertation is organized as follows: Chapter 2 presents

power definitions in DC power system, single-phase AC system, and three-phase AC

system, which form the fundamental variables of interest in modeling and control of

power flow. A real-time real power analysis is also given for demodulating real power

oscillations; Chapter 3 proposes and validates a modeling approach for a single battery

system as an Electrical Energy Storage System to predict power delivery dynamics
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and to estimate state-of-charge of it; Chapter 4 proposes and simulates three current

scheduling strategies for a parallel-connected battery systems to coordinate the output

of each individual system, and shows the design of such a battery system called M-

BEAM for an experimental Electric Vehicle; Chapter 5 proposes and validates a

disturbance rejection control to mitigate the fluctuation of AC power flow; Chapter

6 concludes this thesis and provides suggestions on future research.



Chapter 2

Power Definitions and Power Flow

In power engineering, electric power is defined based on voltage and current.

Voltage is the difference in electric potential between two points in an electrical sys-

tem. Current is a flow of electric charge.

Conventionally, explaining the flow of electrical energy from source to load

also relies on the flow of electric charges. It is usually visualized by the movement

of a large amount of particles, which is also seen in the explanation of fluid flow in

fluid dynamics. A major drawback of this model becomes apparent when we try to

explain the situations where the energy is stored in, or transferred through, dielectrics

immersed in alternating electromagnetic fields [14].

Engineers dealing with antennae, microwaves, and other high frequency appli-

cations utilize a more advanced explanation based on the representation of the rate

of flow of the energy density at any point in space by means of Poynting vector

−→
P =

−→
E ×

−→
H, (2.1)

9
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where
−→
E and

−→
H are the electric and magnetic field vectors at the considered point.

As stated in Section 1.2, this dissertation aims to solve some problems from

a control perspective. It means that the definitions presented in this chapter are only

used to form the variable/signal of interest in a modeling or control problem. There-

fore, some commonly-used power definitions in power engineering are summarized

in order to form the fundamental for the problems to be solved in the rest of the

dissertation.

2.1 DC Power Flow

In a Direct Current (DC) system, the instantaneous power is defined as

pDC(t) = vDC(t) · iDC(t). (2.2)

Since the polarity of voltage vDC(t) is invariant, the direction of DC power flow, which

is usually indicated by the sign of pDC(t), only depends on the direction of current

iDC(t).

2.2 AC Power Flow

In an Alternating Current (AC) system, the power definition becomes more

complicated. In this section, the power definitions mainly follow IEEE Std. 1459-2010

[15]. In the standard, the power definitions are categorized into three components:

apparent power, active power, and non-active power. One may refer to [14] for more

background introduction and discussions about the standard. In the power definition
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for three-phase AC system, the instantaneous reactive power p-q theory is introduced,

since it provides an alternative to explain the physical mechanism of power flow in

this case.

2.2.1 Single-Phase AC Power

Single-Phase Sinusoidal Case

A sinusoidal voltage source

v =
√

2V sin(ωt) (2.3)

supplying a linear load will produce a sinusoidal current (assumed lagging the voltage)

of

i =
√

2I sin(ωt− θ), (2.4)

where

V is the root-mean-square (RMS) value of the voltage (V);

I is the RMS value of the current (A);

ω is the angular frequency 2πf (rad/s);

f is the fundamental power system frequency (Hz);

θ is the phase angle between the current and the voltage (rad);

t is the time (s).

Then the active power is defined as

P = V I cos θ. (2.5)
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The reactive power is defined as

Q = V I sin θ. (2.6)

The apparent power is defined as

S = V I. (2.7)

Moreover, the complex power is a complex quantity in which the active power

is the real part and the reactive power is the imaginary part

S = P + jQ = ~V~I∗, (2.8)

where

~V is the voltage phasor;

~I∗ is the complex conjugate of the current phasor.

In particular, the voltage phasor for (2.3) is

v(t) =
√

2V sin(ωt) =
√

2V cos(ωt− π

2
)

⇔ ~V = V ej·(−
π
2

) = V [cos(−π
2

) + j sin(−π
2

)],

(2.9)

and the current phasor for (2.4) is

i(t) =
√

2I sin(ωt− θ) =
√

2I cos(ωt− π

2
− θ)

⇔ ~I = Iej·(−
π
2
−θ) = V [cos(−π

2
− θ) + j sin(−π

2
− θ)].

(2.10)

One may refer to [16] for more details about the phasor representation and its appli-
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cation in electric grids.

Single-Phase Nonsinusoidal Case

For steady-state conditions, a nonsinusoidal periodical instantaneous voltage

or current has two distinct components: the power system frequency components v1

and i1 and the remaining term vH and iH , respectively.

v = v1 + vH ,

i = i1 + iH ,

(2.11)

where

v1 =
√

2V1 sin(ωtα1);

i1 =
√

2I1 sin(ωtβ1);

vH = V0 +
√

2
∑
h6=1

Vh sin(hωt− αh);

iH = I0 +
√

2
∑
h6=1

Ih sin(hωt− βh).

(2.12)

The corresponding RMS values squared are as follows:

V 2 = V 2
1 + V 2

H ,

I2 = I2
1 + I2

H ,

(2.13)

where

V 2
H = V 2

0 +
∑
h6=1

V 2
H ,

I2
H = I2

0 +
∑
h6=1

I2
H ,

(2.14)
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are the squares of the RMS values of vH and iH , respectively.

The active power is then defined as

P = P1 + PH , (2.15)

where

the fundamental active power P1 = V1I1 cos θ1;

the harmonic active power PH = V0I0 + Σh6=1(VhIh cos θh).

The fundamental reactive power is defined as

Q1 = V1I1 sin θ1. (2.16)

The apparent power is defined as

S = V I. (2.17)

2.2.2 Three-Phase AC Power

The complicated case scenarios, e.g. three-phase nonsinusoidal and unbalanced

case, are out of scope of this dissertation. Therefore only the simplest case, i.e. three-

phase sinusoidal balanced case, is presented in this section.
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Three-Phase Sinusoidal Balanced Case

In this case assuming a counterclockwise rotating positive-sequence system, a,

b, c, the line-to-neutral voltages are as follows:

va =
√

2V sin(ωt);

vb =
√

2V sin(ωt− 120◦);

vc =
√

2V sin(ωt+ 120◦).

(2.18)

The line currents have similar expressions, and they are as follows:

ia =
√

2I sin(ωt− θ);

ib =
√

2I sin(ωt− θ − 120◦);

ic =
√

2I sin(ωt− θ + 120◦).

(2.19)

Then the active power is defined as

P = 3V I cos θ =
√

3VllI cos θ, (2.20)

where

V is line-to-neutral RMS voltage in a four-wire system;

Vll is line-to-line RMS voltage in a three-wire system.

The reactive power is defined as

Q = 3V I sin θ =
√

3VllI sin θ. (2.21)
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The apparent power is defined as

P = 3V I =
√

3VllI. (2.22)

Instantaneous Reactive Power p-q Theory

In 1982, Akagi et al. proposed the concept of instantaneous active and reactive

power [17]. Later it is formulated into a comprehensive instantaneous power theory,

which is usually called ”p-q Theory”, and widely applied in power conditioning [18].

The p-q Theory is based on a set of instantaneous power defined in the time

domain. No restrictions are imposed on the voltage or current waveforms, and it

can be applied to three-phase systems with or without a neutral wire for three-phase

generic voltage and current waveforms. Thus, it is not only in the steady state, but

also in the transient state. The significant difference of the p-q Theory from other

traditional concepts of power is that it treats the three-phase system as a whole, not

a superposition or sum of three single-phase circuits.

For different power systems, the definition of the instantaneous power is slightly

different with respect to voltage and current components. Here the p-q Theory ap-

plied in three-phase, four-wire systems is given as an example to illustrate a typical

procedure of obtaining instantaneous power components.

First, the three-phase instantaneous voltages in the abc phases, va, vb, and vc,

are mapped into the instantaneous voltages on the αβ0-axes, vα, vβ, and v0, via the
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αβ0 transformation, or so-called Clarke transformation:


v0

vα

vβ

 =

√
2

3


1√
2

1√
2

1√
2

1 −1
2
−1

2

0
√

3
2
−
√

3
2




va

vb

vc

 . (2.23)

Similarly, three-phase generic instantaneous line currents, ia, ib, and ic, can be

transformed on the αβ0 axes by


i0

iα

iβ

 =

√
2

3


1√
2

1√
2

1√
2

1 −1
2
−1

2

0
√

3
2
−
√

3
2




ia

ib

ic

 . (2.24)

Then three instantaneous powers, the instantaneous zero-sequence power p0,

the instantaneous real power p, and the instantaneous imaginary power q, are defined

from the instantaneous phase voltages and line currents on the αβ0 axes as


p0

p

q

 =


v0 0 0

0 vα vβ

0 vβ −vα




i0

iα

iβ

 . (2.25)

The three-phase instantaneous active power is defined as

p3φ = vaia + vbib + vcic = vαiα + vβiβ + v0i0 = p+ p0. (2.26)

The physical meaning of all the instantaneous powers is depicted in Fig. 2.1

and summarized as follows:
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Source Load
a
b
c
0

P + P0

ia
ib

ic
vc

vb

va

Figure 2.1: Physical meaning of the instantaneous powers defined in the
abc reference frame.

• Zero-sequence components in the fundamental voltage and current and/or in

the harmonics do not contribute to the real power p or to the imaginary power

q.

• The total instantaneous energy flow per time unit, that is, the three-phase

instantaneous active power, even in a distorted and unbalanced system, is always

equal to the sum of the real power and the zero-sequence power (p3φ = p+ p0),

and may contain average and oscillating parts.

• The imaginary power q, independent of the presence of harmonic or unbalances,

represents the energy quantity that is being exchanged between the phases of

the system. This means tht the imaginary power does not contribute to energy

transfer between the source and the load at any time.

Although the p-q Theory is not perfect in terms of interpretation of some

power phenomena, it is still very useful as long as it is applied for a control algorithm

[19]. This also indicates that control algorithm can be designed as long as a specific

set of power definitions is given as the control objective.
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2.3 Real-Time Real Power Analysis

For control or mitigation of real or complex power oscillations, special care

should be given to the time varying nature of the moving average values of the power

signals. In the following discussion, the time varying behavior of the power signals can

be derived as a multiplication of the AC grid frequency ω = 2πf , f = 60Hz and the

oscillations due to power fluctuations that may have a smaller oscillation frequency

fd < f . For real-time control, only the power oscillations with the frequency fd < f

are of interest and detection of these power oscillations requires a demodulation of

the power signals.

2.3.1 Analysis of Transient Effects

For the analysis of the transient effect, it is assumed that the three-phase

voltage signals are time synchronized according to

vA(t) = V cos(ωt) (2.27)

vB(t) = V cos(ωt− 2

3
π) (2.28)

vC(t) = V cos(ωt− 4

3
π). (2.29)

and higher order harmonics are ignored initially, to simplify the analysis. It will be

shown that low pass filtering is used to reduce the effect of higher harmonics on the

3 phase AC voltage and current signals.

A three-phase symmetric RLC circuit is used in this section to serve as a case

study for the power oscillations and is used in the derivation of the results. Based

on second order linear time-variant (LTI) dynamics of an RLC circuit, the transient
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effects in the current signals can be represented by

iA(t) = I cos(ωt− α) + IAd e
λt cos(ωdt− β)

IAd = Id cos(ωtd)

iB(t) = I cos(ωt− α− 2
3
π) + IBd e

λt cos(ωdt− β)

IBd = Id cos(ωtd − 2
3
π)

iC(t) = I cos(ωt− α− 4
3
π) + ICd e

λt cos(ωdt− β)

ICd = Id cos(ωtd − 4
3
π)

where ωd = 2πfd < ω is the (damped) oscillation frequency of the (power) transient

with a phase shift of β and an exponential decay λ < 0. It should be noted that

due to the three phase time synchronization, each current signal has a different initial

condition IAd , IBd and ICd .

Taking Phase A as an example, the instantaneous power pA(t) = vA(t)iA(t)

can now be written as

pA(t) = V I cos(ωt) cos(ωt− α)

+V Id cos(ωtd)e
λt cos(ωt) cos(ωdt− β)

= V I
2

cosα + V I
2

cos(2ωt− α)

+ V Id
2

cos(ωtd)e
λt cos((ω − ωd)t+ β)

+ V Id
2

cos(ωtd)e
λt cos((ω + ωd)t− β)

(2.30)

showing the mixed effects of both the AC frequency ω and the transient oscillation

frequency ωd. The AC frequency ω may be known, but the (damped) oscillation

frequency ωd < ω with its exponential decay λ may be unknown and need to be

observed from real-time measurements of the AC power for dynamic modeling and
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control purposes.

2.3.2 Demodulation of Single-Phase Real Power Oscillations

Modulating the instantaneous power of Phase A obtained from (2.30) with

cos(ωt) results in an expression for pA(t) cos(ωt) given by

V I
2

cosα cos(ωt)

+V I
2

cos(2ωt− α) cos(ωt)

+V Id
2

cos(ωtd)e
λt cos((ω − ωd)t+ β) cos(ωt)

+V Id
2

cos(ωtd)e
λt cos((ω + ωd)t− β) cos(ωt)

(2.31)

where cos(ωt) = v(t)/V can be obtained from (2.27). Using trigonometric identities,

the expression for pA(t) cos(ωt) in (2.31) can be reorganized to

V I
2

cosα cos(ωt)

+V I
4

cos(ωt− α) + V I
4

cos(3ωt− α)

+V Id
2

cos(ωtd)e
λt cos(ωdt− β)

+V Id
4

cos(ωtd)e
λt cos((2ω − ωd)t+ β)

+V Id
4

cos(ωtd)e
λt cos((2ω + ωd)t− β)

(2.32)

From (2.32) it is clear that by computing a moving average over a single period of 2π
ω

,

the first three cosine terms in (2.32) reduce to zero. Moving average filtering can be

implemented in real-time using a discrete-time Finite Impulse Response (FIR) filter

FFIR(q). The last two terms have a frequency 2ω±ωd and do not reduce to zero with

a moving average, but since 2ω±ωd > ωd, these terms can be reduced significantly by

a discrete-time low pass filter FLP (q) with a cut-off frequency just above ω. Low pass
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filtering will also reduce any higher harmonics that may be present on the 3 phase

voltage and current signals. Hence, through filtering and modulation, a power signal

PdA(t) = F (q)pA(t) cos(ωt) is obtained that can be approximated by

AF (ωd) ·
V Id

2
cos(ωtd)e

λt cos(ωdt− β + φ(ωd)) (2.33)

where F (q) = FFIR(q)FLP (q) is the discrete-time filter combination of the FIR filter

and a low-pass filter as described above, AF (ωd) and φ(ωd) are the gain and the phase

shift of filter F (q) at the frequency ωd, respectively. For the other two phases, the

same procedure can be applied to obtain the modulated real power PdB(t) for phase

B given by

AF (ωd) ·
V Id

2
cos(ωtd −

2

3
π)eλt cos(ωdt− β + φ(ωd)) (2.34)

and the modulated real power PdC(t) for phase C as

AF (ωd) ·
V Id

2
cos(ωtd −

4

3
π)eλt cos(ωdt− β + φ(ωd)) (2.35)

The modulated real power signals for each phase can now be used to compute the

three-phase real power oscillations.

2.3.3 Reconstruction of Three-Phase Real Power Oscillations

Applying the Clarke transformation to single-phase components obtained from

(2.33), (2.34) and (2.35), the phasors are projected onto a decoupled coordinate α−β
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given by Pα(t)

Pβ(t)

 = 2
3

1 −1
2
−1

2

0
√

3
2
−
√

3
2



PdA(t)

PdB(t)

PdC(t)

 =

AF (ωd) · V Id2
eλt cos(ωdt− β + φ(ωd))

cos(ωtd)

sin(ωtd)

 .
Then it can be seen that Pα(t)2 + Pβ(t)2 satisfies

[
AF (ωd) · V Id2

eλt cos(ωdt− β + φ(ωd))

]2

In practice, the direction of real power is usually a priori knowledge. As such,

the three-phase real power oscillation can be reconstructed from the demodulated

single-phase components.
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Chapter 3

Modeling of Battery System

3.1 Introduction

Electrical energy storage system (EESS) is fundamental and crucial in an

electric power system [9]. Since the generated electrical energy is hardly equal to the

energy consumed at a given time, an EESS is needed to buffer gaps in energy delivery.

With the proliferation of distributed renewable energy resources such as photo-voltaic

(PV) plants, more intermittent power is produced [20]. An EESS is utilized to store

extra energy generated by a PV power plant and then supplement the demand from

electric loads as required, as depicted in Fig. 1.2.

The power flow scheduling of EESS can be controlled by controllable inverters,

as shown in Fig. 3.1. A local power system can be islanded and become a micro-grid

when the energy capacity and power storage/delivery capability of local EESS are

scaled properly to eliminate the power demand from the main electrical grid [21, 13].

Battery banks are often utilized as an EESS to store and supply extra energy.

When a battery system is operating, the available peak power at a given time, which

24
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Figure 3.1: The functionality of the battery model is to predict power
delivery dynamics and estimate SOC given charge and discharge demand.

is also called state of power (SOP), is monitored to evaluate the maximum charge

and discharge capability of the battery [22, 23]. The increasing demand of batteries

and more efficient usage of battery systems requires to not only passively monitor the

status, but also actively, dynamically control the storage and delivery processes of

EESS. Particularly, the dynamic power output capability of a battery system given

power demand is of interest in terms of the performance optimization [24, 25, 26].

Therefore, it is necessary to have a dynamic power storage and delivery model of

battery.

A battery is a complicated system due to its internal electrochemical processes,

which behave significant nonlinear dynamics. Major modeling approaches used to

describe nonlinear dynamics of batteries can be categorized in electrochemical models
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and equivalent circuit models (ECM).

The electrochemical modeling approaches of batteries are based on first prin-

ciples. In electrochemical models, a system of partial differential equations describes

the internal physical and chemical processes of batteries. A well-known electrochem-

ical model for Li-ion batteries is developed by Doyle, Fuller, and Newman (DFN)

[27, 28]. Forman et al. identified the full set of DFN model parameters from cy-

cling data using a genetic algorithm (GA) [29]. Though accurate estimation can be

obtained, electrochemical models are difficult to be implemented, especially in appli-

cations that require a battery management system (BMS) or real-time control due to

the complexity. To overcome such obstacle, simplified electrochemical models such

as single particle model (SPM) have been studied in the literature [30, 31]. However,

the required computational effort still makes simplified electrochemical models not

easy to be implemented in low-cost BMS for online estimation [32].

The ECM eases the implementation difficulty of a battery model. An ECM

aims to model a battery system originating from its electric characteristics, which

results in a lumped model consisting of a resistance-capacitance (RC) network, static

open-circuit voltage (OCV), and hysteresis [33].

The RC network in an ECM describes the diffusion impedance, which can also

be interpreted as the linear dynamics of a battery. First-order and second-order RC

models are usually utilized in practice [33, 34, 35], although essentially infinite RC

ladder elements are required to obtain an accurate model [36]. A feasible approach

to bypass high-order RC network is to integrate a fractional-order model into ECM

[37, 38].

The behavior of OCV is commonly utilized to describe the remaining non-
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linear dynamics of a battery. The measured OCV characteristics through off-line tests

can be either applied through a look-up table [33], or described by mathematical forms

[39]. Since OCV highly depends on the state of charge (SOC) of a battery, it is crucial

to estimate SOC in real-time applications. Extensive research has been conducted to

SOC estimation of batteries and the reader may refer to [40] for a survey. A single

model can be employed for SOC estimation [41, 42], and multiple-models can also be

utilized by fusing the estimation of each one to achieve accurate results [43, 44].

Besides static OCV characteristics, prominent hysteretic phenomena is also

observed in nickel-metal-hydride (NiMH) and lithium iron phosphate (LiFePO4) bat-

teries [45]. The hysteresis of batteries depends on the latest short term history of

charge and discharge, SOC, and also SOH [46]. Simple hysteresis models of battery

can be achieved by curve fitting [47] or integrating a simple one-state hysteresis model

[48]. In addition, general hysteresis models, such as Preisach model and Takacs model,

have been applied in modeling of battery hysteresis to obtain more robust and precise

estimation. The Preisach model consists of a finite number of parallel-connected in-

dependent relay hysterons, which provides corresponding high degrees of freedom to

describe hysteretic effect. Tang et al. proposed a discrete Preisach model for NiMH

battery [49]. Zhu et al. employed a Preisach model for LiFePO4 with an adaptive es-

timation [50]. Another group of hysteresis models is developed by Takacs [51]. It was

successfully applied to describe hysteresis effect seen in magnetic field over materials

[52, 53]. The Takacs hysteresis model is especially useful when describing significant

hysteretic phenomena. For instance, Windarko and Choi employed it in the modeling

of NiMH battery’s major hysteresis loop [54]. However, [50] claimed that it was not

suitable to describe minor hysteresis loops using the Takacs model. One of the main
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contributions of this paper is that we are able to use the Takacs hysteresis model to

describe minor hysteresis loops seen during charging and discharging of a LiFePO4

battery.

The specific linear dynamics, static OCV characteristics, and non-linear hys-

teresis effects revealed by the battery models introduced above are crucial and funda-

mental for describing voltage and current characteristics seen in a battery. Different

modeling approaches of battery dynamics can be achieved or initialized by properly

integrating those dynamic models.

3.2 Problem Formulation

In this dissertation, a battery modeling approach is proposed from a control

system perspective. In particular, the power delivery dynamics of a battery system

with an input of charge and discharge demand is modeled. The proposed approach is

different from the conventional ECM or electrochemical models, as the power delivery

dynamics, not the current-voltage dynamics, is of interest. The model aims to not

only model how fast a battery can store and deliver energy as a function of time,

but also provide the potential of controlling a battery system as an electrical energy

storage and delivery system.

3.3 Experimental Setup

To validate and demonstrate the proposed modeling approach, an experimen-

tal setup is created where a charge/discharge demand signal can be applied while

measuring the voltage and the current of the battery in real time. The schematic is
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Figure 3.2: Schematic of the experimental setup.

shown as in Fig. 3.2.

In the main circuitry, the charge/discharge cycles are directed by the MOS-

FETs T1 and T2. Fast switching of the MOSFETS is driven by high-side and low-side

drivers with proper bias and signal isolation, respectively. These MOSFETs applied in

the tester are power MOSFETs with low drain-to-source on-resistance that is suitable

for high current flow. When T1 is turned on and T2 is off, the battery is connected

to the power supply and charged. While T1 is turned off and T2 is on, the battery

is disconnected with the power supply and discharged. The MOSFETs are switched

by the corresponding control signals sent from a National Instruments USB DAQ

device. The DAQ device is also employed to acquire the measured signals, and it

can communicate with the computer via USB cable. In the computer, a LabVIEW

program is developed to automatically load cycle signals from existing files and save

measured signals. Thus the test can be repeated using the same time sequence of

charge/discharge demand signals.
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Figure 3.3: Photograph of the experimental battery tester.

The electric load is composed by a parallel connection of load resistors that

behaves as a current limiter while the battery is charged, and it is the load when the

battery is discharged. By switching in and out different number of load resistors, the

charge/discharge can be at multiple levels.

In the measurement circuitry, the current sensor ACS714 has a bandwidth

of 80 kHZ with a typical total output error of 1.5% at TA = 25 ◦C. The absolute

accuracy of analog-to-digital channels of the DAQ device is 22.8 mV typically at 23

◦C in a range of ±10 V. Several low-order Butterworth low-pass filtering circuitries

are reserved to process the measured signals for aliasing effects if necessary.

The description of the experimental setup is completed by a photograph of

the experimental battery tester depicted in Fig. 3.3. The battery utilized in the test

is a 2.3 Ah - 3.3 V LiFePO4 battery cell ANR26650m1A from A123 Systems. The

maximum continuous discharge current of the cell is 70 A. The pulse discharge current
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can be 120 A. Hence the cell is suitable for transient high-power applications.

3.4 Preliminary Modeling Approach

3.4.1 Linear Model and Estimation

In building a dynamic model of a battery as a power storage and delivery

system, the power charge/discharge demand signal r(t) acts as an input signal, while

the voltage signal v(t) and the current signal i(t) of the battery act as observable

output signals. Multiplication of output signals leads to a power storage/delivery

signal p(t), as indicated in Fig. 3.4.

The preliminary modeling approach is done by linear models with an Auto-

Regression with eXogeneous variables (ARX) model structure [55] for separate dy-

namic models between r(t) as input and v(t) and i(t) as output, respectively. For

ARX models, one can then estimate the parameters by a least-squares method and

facilitate the use of a recursive implementation for real-time parameter estimation.

The procedure of building the ARX models between r(t) and v(t) or i(t) is the

same. For brevity, we only present the data-based modeling procedure for the voltage

model with the input r(t) and the output v(t). Specifically, the voltage model is in

the form

v(t) =
B(q, θ)

A(q, θ)
r(t) +

1

A(q, θ)
ε(t, θ) (3.1)

where

A(q, θ) = 1 + a1q
−1 + · · ·+ anaq

−na

B(q, θ) = b1q
−1 + · · ·+ bnbq

−nb
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Figure 3.4: Diagram of the power storage/delivery model

in which q is forward time-shift: qr(t) = r(t+ 1) and the parameter vector

θ =

[
a1 · · · ana b1 · · · bnb

]T
(3.2)

captures the unknown coefficients in the A(q, θ) and B(q, θ) polynomials.

To estimate the parameters, the error ε(t, θ) is written in a linear regression

form

ε(t, θ) = ϕT (t)θ (3.3)

where the regression vector

ϕ(t) = [−v(t− 1) · · · −v(t− na)

r(t− 1) · · · r(t− nb)]
T

(3.4)

consists of past voltage measurements v(s), s < t and past charge/discharge demand

signal r(s), s < t. We assume an inherent one-step time delay between the voltage

and the charge/dischrage demand signal.

Due to the linear regression, the parameters can be estimated by the least-
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squares method, which minimizes the least-squares criterion

VN(θ, ZN) =
1

N

N∑
t=1

1

2
[v(t)− ϕT (t)θ]2 (3.5)

The criterion can be minimized analytically, which gives the least-squares estimate

(LSE) [55]

θ̂LSN = arg minVN(θ, ZN) = R−1(N) · f(N) (3.6)

provided the inverse of R(N) exists, where

R(N) =
1

N

N∑
t=1

ϕ(t)ϕT (t), f(N) =
1

N

N∑
t=1

ϕ(t)v(t)

To quantify the output variation that is explained by the model, the k-step-

ahead predictor v̂(t|t− k) is introduced as

v̂(t|t− k) = Wk(q)G(q)r(t) + [1−Wk(q)]v(t) (3.7)

Wk(q) , H̄k(q)H
−1(q), H̄k(q) =

k−1∑
l=0

h(l)q−l (3.8)

where h(l) is the impulse response of H(q). For an ARX model, the filters G(q, θ)

and H(q, θ) are parametrized as

G(q, θ) =
B(q, θ)

A(q, θ)
, H(q, θ) =

1

A(q, θ)
(3.9)

Substituting (3.8) and (3.9) into (3.7), then the k-step-ahead predictor can be
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rewritten as (omitting the parameter θ dependency for brevity)

v̂(t|t− k) = H̄k(q)B(q)r(t) + [1− H̄k(q)A(q)]v(t) (3.10)

Finally, the model fit ratio is introduced:

αv = (1− ‖v̂(t|t− k)− v‖
‖v − v̄‖

)× 100% (3.11)

where v̄ is the mean value of output.

Following the same procedure, we can also get the estimated parameters θ̂LSN

for the current model and the k-step-ahead predictor î(t|t − k). Then we can define

the k-step-ahead predictor for the power storage and delivery model as

p̂(t|t− k) = v̂(t|t− k) · î(t|t− k) (3.12)

Thus we can also get the model fit ratios αi and αp to quantify the prediction

ability of the model.

In practice, if the number of data is large enough, then the data can be sepa-

rated into two sets, which are for estimation and validation respectively. Furthermore,

a few tests are taken to estimate the model order. With the model order increases,

there exists one that can achieve the best model fit. If the model performance does

not improve at higher orders, low-order models might fit the data equally well. The

process of determining the model order can be taken iteratively.
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3.4.2 Recursive Implementation

Recursive estimation of the parameter estimate θ̂LSt as a function of time t

allows real-time monitoring of the energy storage dynamics of the battery. Instead of

batch-wise estimation using N data points to obtain θ̂LSN given in (3.6), we compute

the parameter estimate as the data from the power demand signal r(t), the voltage

v(t) and current i(t) is measured.

To formulate a computational effective recursive estimation for θ̂LSt , we first

derive the relationship between R(t− 1) and R(t). With

R(t) =
1

t

t∑
τ=1

ϕ(τ)ϕT (τ)

we have

R(t) =
t− 1

t
R(t− 1) +

1

t
ϕ(t)ϕT (t) (3.13)

Note that matrix R(t) is directly related to the inverse of the covariance of

the parameter estimate θ̂t [55]. Similarly, we can also derive the relationship between

f(t− 1) and f(t)

f(t) =
t− 1

t
f(t− 1) +

1

t
ϕ(t)y(t) (3.14)

To allow for a recursive formulation of the parameter estimate θ̂LSt , we first

rewrite θ̂LSt = R−1(t)f(t) as

θ̂LSt = R−1(t)

[
t− 1

t
f(t− 1) +

1

t
ϕ(t)y(t)

]

To write this as a function of θ̂LSt−1, we now use the fact that θ̂LSt−1 = R−1(t −
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1)f(t− 1) or f(t− 1) = R(t− 1)θ̂LSt−1 and substitution yields

θ̂LSt = R−1(t)

[
t− 1

t
R(t− 1)θ̂LSt−1 +

1

t
ϕ(t)y(t)

]

Finally we use (3.13) to substitute

R(t− 1) =
t

t− 1
R(t)− 1

t− 1
ϕ(t)ϕT (t)

and we obtain

θ̂LSt = R−1(t)

[(
R(t)− 1

t
ϕ(t)ϕT (t)

)
θ̂LSt−1 +

1

t
ϕ(t)y(t)

]
= θ̂LSt−1 +

1

t
R(t)−1ϕ(t)[y(t)− ϕT (t)θ̂LSt−1] (3.15)

If we now define

ε(t, θ̂LSt−1) = y(t)− ϕT (t)θ̂LSt−1 (3.16)

as the a posteriori prediction error, we can formulate a recursive parameter update

by the order of (3.16), (3.13), and (3.15). In practice, the update of R(t) can also

be replaced by the update of the inverse of R(t) (covariance update) and combined

with the matrix inversion lemma to improve computational efficiency. Specifically,

introduce the covariance matrix

P (t) , [tR(t)]−1 =
1

t
R−1(t) (3.17)
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Apply the matrix inversion lemma (3.18) to (3.17).

[A+BCD]−1 = A−1 − A−1B[DA−1B + C−1]−1DA−1 (3.18)

With (3.13), taking A = (t − 1)R(t − 1) = P−1(t − 1), B = DT = ϕ(t), and

C = 1 gives

P (t) = [tR(t)]−1

= [(t− 1)R(t− 1) + ϕ(t)ϕT (t)]−1

= P (t− 1)− P (t− 1)ϕ(t)ϕT (t)P (t− 1)

ϕT (t)P (t− 1)ϕ(t) + 1

(3.19)

Thus, the recursive parameter update can be formulated by the following three

steps:

• a posteriori prediction error update

ε(t, θ̂LSt−1) = y(t)− ϕT (t)θ̂LSt−1 (3.20)

• covariance update

P (t) = P (t− 1)− P (t− 1)ϕ(t)ϕT (t)P (t− 1)

ϕT (t)P (t− 1)ϕ(t) + 1
(3.21)

• parameter update

θ̂LSt = θ̂LSt−1 + P (t)ϕ(t)ε(t, θ̂LSt−1) (3.22)

It should be noted that the above three steps at t = N gives the exact same

parameter value θ̂LSN as in (3.6), but the result is now written in terms of the previous
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parameter estimate θ̂LSt−1 in a recursive fashion.

Furthermore we see that

lim
t→∞

R(t) = lim
t→∞

1

t

t∑
τ=1

ϕ(τ)ϕT (τ)

= Σϕ,ϕ(0) w.p. 1

(3.23)

making R(t) converge to the zero delay auto covariance (matrix) Σ of the regressor

ϕ(t) as t→∞.

Provided Rϕ,ϕ(0) is non-singular, thus

lim
t→∞

P (t) = lim
t→∞

1

t
R−1(t) = 0 w.p. 1 (3.24)

which allows the recursive parameter update to converge to a stationary point θ? of

the recursion

lim
t→∞

θ̂LSt = lim
t→∞

θ̂LSt−1 = θ? w.p. 1 (3.25)

The convergence is desired when the parameter θ is not changing. However,

to account for changes in θ, we adjust the covariance update with the disturbance

factor λ to

P (t) = P (t− 1)− P (t− 1)ϕ(t)ϕT (t)P (t− 1)

ϕT (t)P (t− 1)ϕ(t) + 1
+ λI (3.26)

where 0 < λ� 1.

With the additional term λI, the convergence w.p. 1 of the parameter estimate

is sacrificed to allow parameter adaptation.
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Figure 3.5: Experimental results (cycle, voltage, current)

3.4.3 Modeling Results

The charge/discharge cycle shown in Fig. 3.5 is utilized in the test, where

the charge/discharge signal +1 represents charging and -1 represents discharging.

The cycle is created by a stretched pseudo-random binary signal (PRBS) of order 6.

Though the stretching leads to the loss of white-noise-like properties, the sequence

still contains all the possibilities of binary combinations of order 6.

The measured signals of voltage and current are also shown in Fig. 3.5. The

signals vary with the alternating between charge and discharge as expected. Due to

the design of the circuitry, the charge and discharge current is approximately at the

rate of 1C, which is 2.3A. As shown in Fig. 3.5, the dynamic model of the voltage

can be considered as a low-pass filter, while the dynamic model of the current can be

treated as a high-pass filter or a gain function.
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Experimental data-based modeling

For identification and model validation purposes, the data is separated into two

sets. The measured data of first 15 minutes is used to estimate the parameters, and the

rest of the data is applied to validate the models. Both a batch-wise estimation and

a recursive estimation is used on the first 15 minutes of experimental data. Following

the data-based modeling presented in the previous section, the batch-wise estimation

leads to the following linear voltage model and the linear current model respectively:

• Voltage Model

v(t) =
0.167q−1 − 0.08295q−2 − 0.08387q−3

1− 0.5031q−1 − 0.4969q−2
r(t)

+
1

1− 0.5031q−1 − 0.4969q−2
e(t)

• Current Model

i(t) =
2.09q−1

1− 0.03149q−1
r(t) +

1

1− 0.03149q−1
e(t)

To validate the model, the prediction quality of the model is tested. As men-

tioned above, the k-step-ahead predictor v̂(t|t−k), î(t|t−k), and p̂(t|t−k) is computed

from past data, including k-step-ahead outputs and up-to-now inputs. The 5-step-

ahead prediction of voltage and current is shown in Fig. 3.6, comparing with the

measured data. As shown in Fig. 3.6, the prediction of voltage and current is close

to the measured data. Combining two individual dynamic models obtained above,

the power storage/delivery model is built. The 5-step-ahead prediction of power is

shown in Fig. 3.7. The model fit ratios of the voltage model, the current model, and
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Figure 3.6: 5-step-ahead prediction of the voltage and current models

the power storage/delivery model are shown in Table 3.1.

Table 3.1: Model Fit Ratios α

Voltage Model αv 99.112%
Current Model αi 97.979%

Power Storage/Delivery Model αp 97.994%

The estimation results indicate that a fairly simple model created by the mul-

tiplication of two linear models in a signal setting from the charge/discharge demand

signal r(t) to the power storage and delivery signal p(t) = v(t) · i(t) is able to capture

the energy storage dynamics of the battery very well. The model has been validated

on data not used during the identification.
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Figure 3.7: 5-step-ahead prediction of the power storage/delivery model

Recursive implementation of parameter estimate

Applying the recursive parameter update procedure (3.20), (3.21), and (3.22),

we can get the recursive estimated parameters of linear voltage and current models

shown in Fig. 3.8. As expected, the estimated parameters indicated as solid lines

converge to the parameters estimated by (3.6) indicated as dashed lines. Hence the

recursive implementation can also estimate the parameters of the required linear

models of voltage and current.

When the disturbance factor λ is non-zero, the recursive estimated parameters

do not converge but become more sensitive to the latest measured signals as shown

in Fig. 3.9.
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Figure 3.8: Estimated parameters of voltage and current models (λ = 0)
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Figure 3.9: Estimated parameters of voltage and current models (λ = 0.005)

3.5 Non-linear Modeling Approach

The preliminary modeling approach introduced in the previous section is able

to capture linear dynamics of the system and predict the output 5-step ahead, which

can be applied for monitoring purposes. However, a complete model which can cap-

ture all the critical dynamics of the system is still of interest. As introduced in

Section 3.1, there exists non-linearities in a battery, such as the OCV characteristics

and hysteresis. Therefore, some research need to be conducted to obtain a completed

model which can not only capture linear dynamics, but also non-linear dynamics in
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a battery system.

3.5.1 Model Framework and Parameterization

The battery model proposed in this paper is composed by separated voltage

and current models as indicated in Fig. 3.10. The non-linearity generated by the

product of the voltage and current dynamics can be treated separately through such

modeling. The model input is the charge and discharge demand to the battery r(k),

and the output is the stored or delivered power of the battery

p(k) = v(k) · i(k), (3.27)

where v(k) is the terminal voltage of battery, and i(k) is the current.

In practice, r(k) can represent any applicable power demand or control signal

to a battery system, as long as it is monotonic with the power output. Therefore,

r(k) can even be unit-less.

Model Components

All the components inserted into the model framework are used to cover the

dynamic and non-linear behavior over a wider operating range of battery needs to be

handled. The motivation of the use of various model components can be explained

by taking a quick glance at a set of experimental data as indicated in Fig. 3.11. The

voltage dynamics w.r.t. charge/discharge demand in Region I and II, which is the

normal operating range of the battery, can be possibly captured by a linear model

with static non-linearity combining the OCV characteristics to adjust the offset along

the time. However, when the battery is operating in slightly over-charging scenario,
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Figure 3.10: Diagram of the proposed battery model composed of separated
voltage and current models.

i.e. Region III, the voltage dynamics may exhibit significant hysteresis phenomena.

Therefore a hysteresis model is added in order to handle a dynamic non-linearity in

such case.

Combing the above mentioned observations, the voltage model is built up by

the following model components: a Hammerstein model, the OCV characteristics,

and a hysteresis model. This results in a voltage model output

v(k) = v̄(k) + ṽ1(k) + ṽ2(k) + ev(k), (3.28)

where



46

0 1000 2000 3000 4000 5000
−4

−2

0

2

4

C
ha

rg
e/

D
is

ch
ar

ge
D

em
an

d REGION I REGION II REGION III

(a)

0 1000 2000 3000 4000 5000
3

4

5

V
ol

ta
ge

 [V
]

(b)

0 1000 2000 3000 4000 5000
−10

0

10

C
ur

re
nt

 [A
]

Time [s]

(c)

Figure 3.11: Experimental data of a battery system. (a) System input -
charge/discharge demand signal P dem

B ; (b) System output - battery terminal
voltage VB; (c) System output - battery current IB.

v̄(k) is the output of Hammerstein model;

ṽ1(k) is the OCV;

ṽ2(k) is the output of hysteresis model;

ev(k) is the voltage measurement noise.

In practice, each component is effective in a certain operating range of the

battery. For instance, the hysteresis model should be weighted more in the battery

over-charging scenario, while the OCV characteristics is able to sufficiently compen-

sate the non-linearity in most of normal operation range of the battery system. Some

further analysis in Section 3.5.3 explains these observations in more details.
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Since the static system non-linearity and hysteresis phenomena also exist in

the current output of the system, the current model structure is built up similar to

that of the voltage model, but without the necessity of compensation by the OCV

characteristics. Thus, the current model combines a Hammerstein model and a hys-

teresis model. The dynamic output of the current model is then given by

i(k) = ī(k) + ĩ(k) + ei(k), (3.29)

where

ī(k) is the output of Hammerstein model;

ĩ(k) is the output of hysteresis model;

ei(k) is the current measurement noise.

At first glance, the proposed battery model to capture static non-linearities,

linear dynamics, and hysteresis in both the voltage and current signal seems highly

complex, it is shown that each individual model component has only a finite number

of parameters that can be estimated from data. Moreover, as motivated earlier,

these three model components, static non-linearity, linear dynamics, and hysteresis,

are shown to be required to capture the full operating range of the battery in both

normal and possibly over/under-charging conditions. More details on the individual

model components now follow.

Voltage Model Parameterization

• Hammerstein Model

A Hammerstein model cascades a linear dynamic model with an static input
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non-linearity [55]:

v̄(k) = Gv(q, θ)fv(r(k)). (3.30)

It includes a static non-linearity and linear dynamics of the voltage model with

respect to charge and discharge demand input. Linear regression model struc-

ture can be applied to re-shape the model

v̄(k) = ϕTv (k)θv, (3.31)

where

θv is the parameter vector;

ϕv(k) is the regression matrix containing past inputs with static non-linearity

fv(r(k)), and past outputs v̄(k). In particular, the voltage regressor is given by

ϕv(k) =



fv(r(k − nb,v + 1))

fv(r(k − nb,v + 2))

...

fv(r(k))

v̄(k − na,v + 1)

v̄(k − na,v + 2)

...

v̄(k − 1)



, (3.32)

where nb,v and na,v determines the order of the model. To ensure that the model

is causal, nb,v ≤ na,v.

• OCV Characteristics
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Since lithium-ion batteries are of interest in this paper, and the Hammerstein

model introduced in Section 3.5.1 already includes linear dynamics, the OCV

model is obtained by modifying the proposed model in [39] to

ṽ1(k) = gocv(soc(k), i(k), sign(r(k))). (3.33)

In particular,

g+
ocv = E0 −K

Q

Q− soc(k)
soc(k)−K Q

Q− soc(k)
i(k)

+ A · e−B·soc(k);

g−ocv = E0 −K
Q

Q− soc(k)
soc(k)−K Q

soc(k)− 0.1 ·Q
i(k)

+ A · e−B·soc(k),

(3.34)

where

g+
ocv,v is the charge scenario;

g−ocv,v is the discharge scenario;

E0 is the battery constant voltage (V);

K is the polarization constant (V/(Ah)) or polarization resistance (Ω);

Q is the nominal battery capacity (Ah);

A is exponential zone amplitude (V);

B is exponential zone time constant inverse ((Ah)−1).

The charge and discharge is determined by sign(r(k)), where sign(r(k)) = 1

indicates the battery is charging; sign(r(k)) = −1 indicates the battery is dis-

charging.
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Figure 3.12: OCV characteristics of 1 C charge and discharge of the battery
under tests. The unit C indicates the current rate by which the battery can
be fully charged or discharged in one hour.

According to the specifications of the battery under tests, the OCV character-

istics can be determined. The OCV characteristics of one of the batteries under

1 C charge and discharge is given as an example in Fig. 3.12.

• Takacs Hysteresis Model

The hysteresis model is parameterized based on Takacs hysteresis model [51]:

ṽ2(k) = ghys,v(soc(k), ṽ0
2(k), sign(r(k))). (3.35)

In particular,

g+
hys,v(k) = tanh(soc(k) + a0)− bc + A0 · soc(k); (3.36)

g−hys,v(k) = tanh(soc(k)− a0) + bd + A0 · soc(k), (3.37)
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where

g+
hys,v represents the charge scenario;

g−hys,v is the discharge scenario.

Similarly, the charge and discharge is determined by sign(r(k)). Moreover, the

parameters

bc = b3 ·
tanh(−xm + d0 + a0)− tanh(soc(k) + a0)

tanh(−xm + d0 + a0)− tanh(xm + d0 + a0)

+ b4 ·
tanh(xm + d0 + a0)− tanh(soc(k) + a0)

tanh(xm + d0 + a0)− tanh(−xm + d0 + a0)
, (3.38)

bd = b3 ·
tanh(−xm + d0 − a0)

tanh(−xm + d0 − a0)− tanh(xm + d0 − a0)

+ b4 ·
tanh(xm + d0 − a0)− tanh(soc(k)− a0)

tanh(xm + d0 − a0)− tanh(−xm + d0 − a0)
. (3.39)

b3 and b4 are parameters to shift the crossover points xm and −xm by the

magnitude of d0:

b3 = [tanh(xm + d0 + a0)− tanh(xm + d0 − a0)]/2; (3.40)

b4 = [tanh(−xm + d0 + a0)− tanh(−xm + d0 − a0)]/2. (3.41)

ṽ0
2(k) denotes the initial voltage ṽ2 of the current continuous charge or discharge.

Since ṽ2 during charge and discharge is continuous, ṽ0
2(k) determines the par-

ticular hysteresis loop by which ṽ2(k) changes. As depicted in Fig. 3.13, ṽ0
2(k)

determines d0 in charge scenarios, while it determines a0 in discharge scenarios.
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Figure 3.13: Takacs hysteresis model for voltage and current models. (a)
charge scenario of voltage model; (b) discharge scenario of voltage model; (c)
charge scenario of current model; (d) discharge scenario of current model.

Current Model Parameterization

The parameterization of the current model is similar to that of the voltage

model. In particular, the Hammerstein model is parameterized by

ī(k) = Gi(q, θ)fi(r(k)) = ϕTi (k)θi, (3.42)
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where the current regressor

ϕi(k) =



fi(r(k − nb,i + 1))

fi(r(k − nb,i + 2))

...

fi(r(k))

ī(k − na,i + 1)

ī(k − na,i + 2)

...

ī(k − 1)



; (3.43)

and the hysteresis model is given by

ĩ(k) = ghys,i(soc(k), ĩ0(k), sign(r(k))), (3.44)

where

g+
hys,i(k) = −[tanh(soc(k) + a0)− bc + A0 · soc(k)]; (3.45)

g−hys,i(k) = −[tanh(soc(k)− a0) + bd + A0 · soc(k)]. (3.46)

The parameters bc, bd, b3, and b4 are defined as given by (3.38)–(3.41). Sim-

ilarly, ĩ0(k) determines d0 in charge scenarios, while it determines a0 in discharge

scenarios.
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3.5.2 Model Estimation Methods

As introduced in Section 3.1, the static OCV characteristics are usually mea-

sured and given through off-line tests. Therefore, identification of the rest of models,

including Hammerstein model, Takacs hysteresis model, and SOC estimation, is in-

troduced in details in this section.

Identification of Hammerstein Model

The identification methods of a Hammerstein model are developed extensively

[56]. In this paper, the static input non-linearity is a priori knowledge, therefore the

identification of the Hammerstein model is simplified to the parameter estimation

of the linear regression model given by (3.31) and (3.42). Particularly, the param-

eter estimation is achieved by Bootstrap Instrumental-Variable (BIV) method with

batch-wise data, which can be further applied as an on-line estimation in practical

applications.

• Bootstrap IV Method

When the regression matrix (3.32) and (3.43) is a priori knowledge, that is,

the order and the terms containing past inputs and past outputs are known,

the model is obtained once the parameter vectors θv and θi are estimated. For

simplicity, a general linear regression model with an output y(k) is given for the

description and further analysis:

ŷ(k|θ) = ϕT (k)θ, (3.47)

where ŷ(k|θ) denotes the estimated model output given a certain parameter
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vector θ. The regressor ϕ(k) consists of a set of delayed output values y(l),

l = k− nb + 1, k− nb + 2, · · · , k, and input values u(l), l = k− na + 1, k− na +

2, · · · , k − 1, which is similar to ϕv(k) in (3.32) and ϕi(k) in (3.43).

The objective of estimating parameters θ is to minimize the difference between

the actual system output y(k) and the estimated output ŷ(k|θ). A widely-

applied approach is the Least-Squares Estimate (LSE), which is a special case

under the prediction-error identification framework. Provided finite N samples,

the estimated parameter by LSE is found by minimizing

argmin
θ
‖ŷ(k|θ)− y(k)‖2

2 . (3.48)

The solution is given by

θ̂LSN =

[
1
N

N−1∑
k=0

ϕ(k)ϕT (k)

]−1 [
1
N

N−1∑
k=0

ϕ(k)y(k)

]
. (3.49)

However, the estimated parameter θ̂LSN through LSE will not tend to θ0 due to

the correlation between ϕ(t) and the noise in system v0(t) [55]. To eliminate

the noise effect, Instrumental-Variable (IV) method is introduced as follows:

θ̂IVN =

[
1
N

N−1∑
k=0

ζ(k)ϕT (k)

]−1 [
1
N

N−1∑
k=0

ζ(k)y(k)

]
. (3.50)

Notice that LSE is a special case of IV method. By properly designing the

instrument matrix ζ(k), θ̂IVN can tend to θ0 despite the correlation between the

regression matrix and noises.

There are multiple kinds of IV methods, which can be categorized by the instru-
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ment variant design, e.g. four-step IV algorithm [55]. In this paper, one of these

methods named Bootstrap IV (BIV) method, is utilized within the parameter

estimation. A typical BIV is an iterative algorithm:

θ̂j+1
N =

[
1
N

N−1∑
k=0

ζ(k, θ̂j)ϕT (k)

]−1 [
1
N

N−1∑
k=0

ζ(k, θ̂j)y(k)

]
. (3.51)

where ζ(k, θ̂j) denotes either a voltage or current regressor. The main difference

between ζ(k, θ̂j) and the regressors ϕv(k) in (3.32) and ϕi(k) in (3.43) lies in

the fact that the measured (noisy) voltage measurement v̄(k) and current mea-

surement ī(k) are replaced by ”noise-free” (simulated) signals obtained from a

model Gv(q, θ̂
j) in (3.30) and Gi(q, θ̂

j) in (3.42) based on an initial or previous

parameter estimate θ̂j. More precisely,

ζv(k, θ̂
j) =



fv(r(k − nb,v + 1))

fv(r(k − nb,v + 2))

...

fv(r(k))

xv(k − na,v + 1)

xv(k − na,v + 2)

...

xv(k − 1)



, (3.52)

where

xv(k) = Gv(q, θ̂
j)fv(r(k)). (3.53)

A similar structure is for the regressor ζi(k, θ̂
j). The parameter set θ̂IVN (N − 1)
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is initialized by the LSE (3.49) provided the first data set of N samples, which

are data points at time index k = 0, 1, · · · , N − 1. Then for subsequent data

points at k > N − 1, the estimated parameter set is updated from θ̂IVN (k − 1).

• Convergence Analysis of Bootstrap IV Method

For simplicity, only a Single-Input-Single-Output (SISO) system is analyzed.

Let N →∞, (3.51) becomes

θ̂j+1 =

[
Eζ(k, θ̂j)ϕT (k)

]−1 [
Eζ(k, θ̂j)y(k)

]
. (3.54)

If θ̄ is an equilibrium point, then

Eζ(k, θ̄)

[
y(k)− ϕT (k)θ̄

]
= 0. (3.55)

Therefore through a linearization,

θ̂j+1 − θ̄ =

[
Eζ(k, θ̂j)ϕT (k)

]−1

Eζ(k, θ̂j)

[
y(k)− ϕT (k)θ̄

]
=

[
Eζ(k, θ̂j)ϕT (k)

]−1

E

[
∂ζ
∂θ

(k, θ)|θ=θ̄{y(k)− ϕT (k)θ̄}
]

· (θ̂j − θ̄) +
∥∥∥θ̂j − θ̄∥∥∥2

.

(3.56)

Thus, θ̂j is locally convergent to θ̄ provided the matrix

A =

[
Eζ(k, θ̂j)ϕT (k)

]−1

E

[
∂ζ
∂θ

(k, θ)|θ=θ̄{y(k)− ϕT (k)θ̄}
]

(3.57)

has all eigenvalues within the unit circle. A necessary condition for the matrix

Eζ(k, θ̂j)ϕT (k) to be nonsingular is that the input u(k) included in ϕ(k) is
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persistently exciting of order na + nb [57], that is, the auto-spectrum Φu(ω)

is different from zero on at least na + nb points in the interval −π 6 ω 6 π

[55]. Another obvious condition for non-singularity is the existence of a non-

zero correlation between the instrument ζ(k) and the original regressor ϕ(k),

i.e. the instrument cannot be chosen to be completely independent of the I/O

signals {u(k), y(k)} of the system. Both conditions are satisfied with the choice

of the instrument ζ(k) that consists of a combination of the measured noise-free

input u(k) = fv(r(k)) as in (3.32) and noise-free simulated outputs xv(k) =

Gv(q, θ̂
j)fv(r(k)) as in (3.53) obtained from the iterative parameter estimation

update.

• Initial Condition Estimate

A typical regression matrix ϕ(k) and instrument matrix ζ(k) consists of shifted

data. Given finite number N samples in a time interval [0, N −1], the unknown

initial conditions for k < 0 need to be dealt with. When N is sufficiently large,

which means the data set contains sufficient information, some data can be

truncated to ensure the estimation is taken only with known data.

When N is small, a second approach, which treats nic unknown initial conditions

as to-be-estimated parameters θic, is also a solution. For a causal system, the

current output depends only on past inputs and past outputs, therefore N

samples of input and output of system (3.47) can be reformed as

YN =

Φic I

Φ 0


 θ
θic

 (3.58)
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where

YN =

[
y(0) · · · y(nic) · · · y(N − 1)

]T
, (3.59)

Φ =

[
ϕ(nic + 1) ϕ(nic + 2) · · · ϕ(N − 1)

]T
, (3.60)

and Φic is the adjusted regression matrix excluding corresponding terms which

consist of unknown initial conditions.

SOC Estimation

There exist a large number of SOC estimation algorithms in the literature, as

introduced in Section 3.1. Those estimation approaches can be candidates for SOC es-

timation in the proposed model framework depicted in Fig. 3.10, given proper inputs.

In this paper, the SOC is estimated in a simple but effective recursive optimization

pattern, which can be easily integrated into the model framework.

At a given time T , the SOC can be calculated through coulomb-counting

soc(T ) = soc0 +
T−1∑
k=0

i(k) · Ts/Q. (3.61)

where Ts is the sampling time, Q is the nominal battery capacity.

Since i(k), k = 0, 1, · · · , T −1, is measured and given, the estimation of soc(T )

is then converted to the estimation of soc0, which is the constant initial SOC in a

continuous charge and discharge process of battery. The estimation of soc0 is obtained

in the voltage model by

ŝoc0(T ) = argmin
soc0

1

T

∥∥∥V̂T −VT

∥∥∥2

2
, (3.62)
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where

V̂T =

[
v̂(0) v̂(1) · · · v̂(T − 1)

]T
, (3.63)

VT =

[
v(0) v(1) · · · v(T − 1)

]T
, (3.64)

and

v̂(k) = ϕT (k)θ̂IVN (k) + gocv(ŝoc(k), i(k), sign(r(k))). (3.65)

Although V̂T is non-linear w.r.t. soc0(T ), ŝoc0(T ) can be achieved via a line

search for each parameter θ̂IVN (k) estimated, since soc0 ∈ R and bounded.

Identification of Takacs Hysteresis Model

In this section, the hysteresis phenomena occurring when the battery is in

large SOC is of interest, as depicted in Fig. 3.13. Take voltage hysteresis model for

example, the estimation is completed first by proper mapping, and then determining

parameters by

sign(r(k)) = 1 : d0(ṽ0
2(k)) = argmin

d0

1

n

∥∥∥ ̂̃Vn − Ṽn

∥∥∥2

2
; (3.66)

sign(r(k)) = −1 : a0(ṽ0
2(k)) = argmin

a0

1

n

∥∥∥ ̂̃Vn − Ṽn

∥∥∥2

2
, (3.67)

given n samples in a continuous charge and discharge.

̂̃Vn =

[
ˆ̃v2(0) ˆ̃v2(1) · · · ˆ̃v2(n− 1)

]T
, (3.68)

Ṽn =

[
ṽ2(0) ṽ2(1) · · · ṽ2(n− 1)

]T
, (3.69)
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where ˆ̃v2(k) is given by (3.36), (3.37); and

ṽ2(k) = v(k)− ϕT (k)θ̂IVN (k)− gocv(ŝoc(k), i(k), sign(r(k))). (3.70)

Similarly, the solution to d0(ṽ0
2(k)) and a0(ṽ0

2(k)) can also be achieved via line

search.

3.5.3 Modeling and Analysis

Extensive experiments are conducted with the experimental setup. A data

set of interest is selected to be applied as the data base for validation of the mod-

eling approach. The data set is already shown as in Fig. 3.11, where 3 regions of

charge/discharge demand levels are used to characterize the possible non-linear dy-

namics of the battery system being tested. The sampling rate is 10 Hz. In par-

ticular, three-levels of Pseudo Random Binary Sequence (PRBS) of input signal is

implemented. The presented charge/discharge cycle in the experimental data is typ-

ical of battery used for ancillary services in an electric grid to provide maximum

charge/discharge rates to store/deliver energy at desired moments to account for

load and/or energy production demands [24, 25].

For further analysis, the results are divided into Region I, II, and III according

to different levels of input excitation. In Region I and II, similar dynamics of voltage

and current is measured. However, significantly different dynamics are obtained in

Region III, since the battery is already over charged, which can be indicated by the

terminal voltage. In fact, the battery cell exploded due to over-charge in the end of

the experiment.
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Figure 3.14: Estimated parameters of linear model component in the volt-
age model. (a) denominator coefficients; (b) pole locations; (c) numerator
coefficients; (d) zero locations.

Applying the model framework proposed in Section 3.5.1 and the correspond-

ing estimation methods introduced in Section 3.5.2, a complete power delivery model

is obtained through the approaches described as follows.

Voltage Model

In the example, a moving time frame of N = 2000 data points is used for

parameter estimation at any given time k. Such implementation not only ensures the

persistent condition mentioned in Section 3.5.2 is fulfilled, but also demonstrates the
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Figure 3.15: A comparison between different identified model components
in the voltage model. (a) Hammerstein model; (b) Synthesizing Hammerstein
model and the OCV characteristics; (c) Synthesizing Hammerstein model,
the OCV characteristics, and hysteresis model.

feasibility of on-line recursive estimation of the model.

As indicated in Fig. 3.14, the estimated parameters of the linear regression

model varies little in Region I and II, while the variance becomes large in Region III.

In the estimation, no time delay is assumed, but the result b̂0, which is approximately

0 all the time, indicates that there is one time delay in the model. It also leads to the

duplicated zero locations. The pole locations indicate that there is one fast dynamic

phenomena and one slow dynamic phenomena.

The comparison given in Fig. 3.15 indicates the requirement of combining

Hammerstein model, OCV characteristics, and Hysteresis model. To quantize the
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Figure 3.16: SOC estimation results. (a) Estimate of initial SOC at t = 0;
(b) The minimum prediction error achieved via line search over soc0(T ).

performance of obtained models, define the standard estimate error

σest =
1√
N

∥∥∥Ŷ −Y
∥∥∥ , (3.71)

where Ŷ contains N model outputs, Y contains N measured outputs at the same

given time series.

The comparison of σest between different combinations for the voltage model

in Region III is summarized in Table 3.2.

With a single Hammerstein model, the simulate output is acceptable during

Region I and II. However, the extension of the linear model with the non-linear

OCV and hysteresis effect significantly improves the performance of the obtained

model, especially in Region III where both a high C-rate and overcharging of the
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Figure 3.17: A comparison between different identified model components
in the current model. (a) Hammerstein model; (b) Synthesizing Hammerstein
model and hysteresis model.

battery is observed in the data. It actually provides potential possibility to extend

the application range of a battery system, since the dynamic behavior can be predicted

sufficiently well for proper control.

The SOC estimation result is also obtained as shown in Fig. 3.16. The search

range with respect to initial SOC is restricted within [20%, 80%], which can be ad-

justed accordingly in practice. In Region I, the estimation is not reliable, since the

Table 3.2: σest in Region III of Voltage Model

v̄(k) 0.596V
v̄(k) + ṽ1(k) 24.047V
v̄(k) + ṽ1(k) + ṽ2(k) 0.080V
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Figure 3.18: The output of the completed estimated power model with the
charge/discharge demand as the input.

battery is operating in a range where the OCV is fairly flat as shown in Fig. 3.12. It

is a common problem observed in the application of LiFePO4 batteries. In the mid-

dle of Region II, the estimated initial SOC eventually converges to a certain value,

while the prediction error also decreases. It can be concluded that the simple SOC

estimation based on voltage dynamics performs better while operating in the region

where OCV changes more significantly due to changes of SOC.

Current Model

Similar to the identification of voltage model, the current model composed

by only Hammerstein model is sufficient for Region I and II, but failed to capture

the dynamics in Region III. Through the addition of the Takacs hysteresis model,
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Table 3.3: σest in Region III of Current Model

ī(k) 0.727A

ī(k) + ĩ(k) 0.139A

the current model is able to capture all dynamics through Region I, II, and III, as

shown in Fig. 3.17. Also Table 3.3 indicates a better fit with the compensation of the

hysteresis model, especially in Region III.

Power Model

By combining the output of voltage model and current model, a completed

power storage and delivery model with an input of charge/discharge demand is ob-

tained as shown in Fig. 3.18. The result validates that the estimated model is able to

capture non-linear power dynamics, even in Region III when battery is over-charged.

σest of the power model in Region III and all regions are 0.741 W and 0.477 W, re-

spectively. The result depicted in Fig. 3.18 is powerful: both voltage and current

data can be combined to reliably predict power dynamics.
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Chapter 4

Current Scheduling for

Parallel-Connected Electrical

Energy Storage System

4.1 Introduction

Electrical energy storage and delivery systems (EESDS) are important in in-

dustrial applications that include power grids, second life battery systems, and electric

vehicles [58, 59, 60] with intermittent power delivery demands. The development of

high-performance battery cells [7] and advanced battery management technologies

[30] make batteries critical components in enhancing the performance of EESDS.

As the bus voltage of an EESDS is typically constrained, a parallel connection

of battery modules is a solution to increase the energy storage capability and the

delivered power. For instance, in Battery Electric Vehicles (BEV), the power-train

is driven purely by electric power, thus a parallel battery architecture is especially

69
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needed to fulfil the capacity and power requirements to ensure an acceptable range

and the performance of vehicles [61]. Similar parallel connection of batteries with

different operating parameters can be found in second life applications to provide

ancillary grid services.

Currently, parallel battery modules are mostly formed as one compact pack,

which is applicable for small-scale applications such as portable devices. However, a

compact battery pack employed in the large-scale implementation results in a main-

tenance problem, that is, replacing a portion of the battery pack is either not feasible

or fairly complicated in practice. While the technology of fast charging battery cells

is evolving quickly [8], there still exists some significant challenges for fast charging

large-scale battery packs [62].

A battery architecture with exchangeable modular and parallel connected bat-

teries is a promising solution for increasing storage capacity. Instead of forming all

the battery cells into one pack, the pack is sectioned into several independent modules

that are designed to be exchangeable. Multiple such modules are connected in paral-

lel onto the bus, as shown in Fig. 4.1. With the implementation of such architecture,

the robustness of the battery system is enhanced significantly: when a cell or a mod-

ule failure occurs, a portion of the battery pack is exchangeable, which also reduces

the cost of maintenance. Furthermore, the possibility of rapidly exchanging battery

modules shortens the wait time to obtain a fully-charged battery system, which is a

critical requirement for the feasibility of long-distance travel with a BEV.

The exchangeable modular battery architecture poses several challenges for

the battery management system. By replacing one or multiple battery modules, each

module may have different SoCs, i.e., the ratio of the instantaneous battery capacity
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Figure 4.1: System diagram of parallel buck regulated battery modules.

over its nominal capacity. Furthermore, the cells of each module may be built with

different materials, thus have different electrochemical characteristics such as charging

and discharging profiles [63]. These challenges lead to scheduling issues when charging

or discharging battery modules. In addition, the internal impedance in each battery

module causes power loss, hence the control of these modules can also be formulated

as an optimization problem to minimize energy loss that can be solved by Quadratic

Programming (QP) [64, 65], Semidefinite Programming (SDP) [66], depending on the

constraints taken into consideration.

There exist several solutions to similar scheduling problems in the literature.

For instance, a thorough solution of a stand-alone energy storage system with paral-

lel battery architecture is proposed via on/off switching control in Kaiser’s [67]. The

approach in this paper, however, provides a new level of control by actively managing

the individual power flow of each module via Pulse-Width Modulation (PWM) con-

trol. In the paper, the battery system is first modeled for current scheduling. Then

the scheduling algorithms under constrained DC bus voltage are introduced, includ-

ing simultaneous, sequential, and hybrid algorithms for discharge scheduling. Finally,

the scheduling algorithms are simulated in a dynamic power demand simulation using
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a driving profile of a BEV.

4.2 Problem Formulation

4.2.1 Model Formulation

In this paper, the current scheduling of parallel battery modules is executed by

buck regulators, which is composed by a pulse-width modulated MOSFET, a fly-by

diode, and an inductor, as indicated in Fig. 4.1. In each battery module, the battery

cells are connected in series and then buck regulated. Several such battery modules

are connected in parallel by DC bus, which ultimately form a battery pack and is

connected to the electric load.

Notice that the number of modules n is arbitrary, which means that the battery

pack can be fully or partially loaded with battery modules. This feature further

enhances the flexibility of the application of such battery system.

For the derivation of the current scheduling algorithm, the system of parallel

buck regulated battery modules is approximated as a parallel connection of adjustable

power supplies, as indicated in Fig. 4.2. Specifically, each battery module with a

serial of multiple cells is modeled as two components in serial: an ideal battery with

an open-circuit voltage VOC,i and an internal resistance Ri [68], where i = 1, 2, . . . , n,

which essentially influences the current scheduling. The open-circuit voltage is buck

regulated to a lower voltage

Vi = Di · VOC,i

where Di is the PWM duty cycle of MOSFET, and Di ∈ [0, 1].
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Figure 4.2: Model for current scheduling.

4.2.2 Formulation of Constraints

With the formulated model, the system constraints can be derived. Applying

Kirchhoff’s laws yields

Vi −Ri · Ii +Ri+1 · Ii+1 − Vi+1 = 0 (4.1)

where i = 1, 2, . . . , n− 1, and

Vn −Rn · In − Vbus = 0 (4.2)

n∑
i=1

Ii = Ibus (4.3)

(4.1) - (4.3) formulate the fundamental equalities for the system. In addi-

tion, there exist inequality constraints in the system. Since Di ∈ [0, 1], the voltage

constraint for each battery module is:

0 6 Vi 6 VOC,i (4.4)
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Furthermore, there also exists the current constraint for each module due to

the limitations of the battery cells:

0 6 Ii 6 Imax
i (4.5)

Notice that the inequality constraints are intended to be independent for each

module, since the current scheduling is aimed to be applicable for implementation on

battery modules with different operating parameters such as SoC, internal resistance

and moreover, with different electrochemical features.

Accordingly, the current scheduling is generally to determine the feasible solu-

tion that is subject to (4.1) - (4.3) with the constraints (4.4) and (4.5). The constraints

are subject to change depending on the actual system design.

4.3 Current Scheduling Algorithms under

Constrained DC Bus Voltage

In some applications, the electric load imposes constraints on the DC bus

voltage:

V min
bus 6 Vbus 6 V max

bus (4.6)

In practice, the SoC of each module is evaluated and utilized as a crucial

reference [69, 70]. Therefore, the SoC of each module is taken into account while

determining the scheduling strategy. Furthermore, the real-time SoC and internal

resistance can be estimated and applied for control purpose [71], which enables the

implementation of on-line scheduling.
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4.3.1 Simultaneous Discharge (SimD) Scheduling

The SimD scheduling is defined by a current of each module scheduled accord-

ing to

Ii = αi · Ibus (4.7)

where the current scheduling ratio αi is given by

αi =
SoCi∑n
i=1 SoCi

. (4.8)

It means that the modules with higher SoC are scheduled to deliver more current,

while the ones with lower SoC can operate at a relatively low rate. Intuitively, all the

modules ultimately deplete completely at the same time. Clearly the SimD scheduling

causes a simultaneous and constant current delivery for each module when the bus

current is required to be constant.

By (4.1) and (4.2), once the current of each module Ii is determined, the buck

regulated voltage of each module Vi is essentially determined by Vbus:

Vi = Vbus +Ri · Ii (4.9)

where i ∈ {1, 2, . . . , n} and Vbus is constrained by (4.6).

Toggling the MOSFETs introduces undesirable parasitic power loss and de-

creases the module efficiency, hence at least one MOSFET should be set to operate

in the full duty cycle, that is, to find a feasible solution under the equality constraint

Vi = VOC,i, which is transformed from one of the inequality constraints (4.4).

The SimD scheduling is illustrated by a constant current demand simulation
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Figure 4.3: SimD scheduling for constant current demand with current in
each module in top figure and SoC in bottom figure. Dashed lines indicate
constraints.

as shown in Fig. 4.3. The desired bus current is 100A. Initially, the SoC of the

modules are 100%, 55%, 90%, and 45%, respectively in this illustration. Although

such different initial SoCs is not quite realistic in most operating conditions, it is easier

to distinguish for demonstration purposes. Moreover, such conditions may exist, for

instance, in second life applications for used EV battery modules.

The SoC threshold for discharge is set to 10%, hence the current of each

module is determined by (4.7) with available SoC. Furthermore, the OCV and internal

resistance of each module is assumed to vary linearly with the SoC in the simulation.

Specifically, the OCV decreases and the internal resistance increases as the battery

discharges. As expected, all the modules are completely discharged at the same

time, and the proportion of SoC between each module is the same along the battery

discharge.
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4.3.2 Sequential Discharge (SeqD) Scheduling

Battery modules do not necessarily have to be discharged in a simultaneous

pattern and an alternative SeqD scheduling can be used to discharge battery mod-

ules sequentially. Such algorithm aims to deplete the battery modules one by one.

Specifically, SeqD scheduling starts depleting the module with the lowest SoC. If the

output current of the module with the lowest SoC is lower than the required bus cur-

rent, then the modules are iteratively implemented one after another till the current

demand is fulfilled.

The SeqD scheduling is also demonstrated by a constant current demand sim-

ulation as shown in Fig. 4.4. The conditions of each module are the same as in the

simulation for SimD. The desired bus current is still 100A. Since the maximum out-

put current of the modules is set to 70A, one module is not able to fulfil the current

demand. Starting with the discharging of Module 4, the modules are discharged one

by one. For instance, at 350 seconds, Module 4 and Module 2 are discharged to the

minimum level of 10% SoC while Module 3 has relatively high SoC and Module 1 is

still fully-charged. Therefore, by replacing two out of four modules, a fully charged

battery pack is obtained, demonstrating the usefulness of the SeqD scheduling.

However, the number of functioning modules decreases as more modules are

completely discharged, which results in the infeasibility of fulfilling high current de-

mand. In the constant current demand simulation, three modules stop functioning

after approximately 680 seconds. Although the remaining module operates at the

maximum output current, the bus current demand cannot be achieved. Therefore

the operation of battery system is terminated. This is considered to be the drawback

of such scheduling algorithm, since it sacrifices the power capability, especially when
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Figure 4.4: SeqD scheduling for constant current demand with current in
each module in top figure and SoC in bottom figure. Dashed lines indicate
constraints.

a large portion of modules are out of service. But the SeqD algorithm is still useful for

some applications with relatively low power demand and the possibility of frequent

exchange of battery modules, such as the daily urban transportation by BEV, since

a fully-charged battery pack can be obtained by exchanging a portion of the modules

rather than all of them.

4.3.3 Hybrid Discharge (HybD) Scheduling

Since there exists power loss due to internal resistance:

Ploss =
∑
i

(I2
i Ri) (4.10)
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the current scheduling can take account of such power loss to motivate a scheduling

that aims to minimize the power loss in (4.10).

Introducing slack variables ui, li, w1, w2, (4.4), (4.5), and (4.6) can be rewritten

as:

Vi + ui = VOC,i, Vi > 0, ui > 0

Ii + li = Imax
i , Ii > 0, li > 0

Vbus + w1 = V max
bus , w1 > 0

Vbus − w2 = V min
bus , w2 > 0

where i ∈ {1, 2, . . . , n}. The unknowns can be grouped into x ∈ R4n+3: x =[
xT1 xT2 xT3 xT4 xT5

]T
, where

x1 =

[
V1 V2 · · · Vn

]T
, x2 =

[
I1 I2 · · · In

]T
x3 =

[
u1 u2 · · · un

]T
, x4 =

[
l1 l2 · · · ln

]T
x5 =

[
Vbus w1 w2

]T

Thus, all the equality and inequality constraints for the system can be formu-

lated into:

Ax = b, x > 0
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where A ∈ R(3n+3)×(4n+3):

A =



A1 A2 0 0 A3

I 0 I 0 0

0 I 0 I 0

0 0 0 0 A4


and

A1 =



1 −1 0 · · · 0

0 1 −1 · · · 0

...
...

. . . . . .
...

0 0 · · · 1 −1

0 0 · · · 0 1

0 0 · · · 0 0



A2 =



−R1 R2 0 · · · 0

0 −R2 R3 · · · 0

...
...

. . . . . .
...

0 0 · · · −Rn−1 Rn

0 0 · · · 0 −Rn

1 1 · · · 1 1



A3 =


0 · · · 0 −1 0

0 · · · · · · · · · 0

0 · · · · · · · · · 0


T
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A4 =

1 1 0

1 0 −1


The internal resistance of each module Ri ∈ R+, therefore it can be verified

that A has full rank. Furthermore, since Ri ∈ R+, Q is positive semidefinite, the

current scheduling can be formulated as a Quadratic Programming (QP) problem:

minimize q(x) =
1

2
Ploss =

1

2
xTQx

subject to Ax = b,

x > 0.

where Q ∈ S4n+3:

Q =



0

R

0

0

0


and

R =



R1 0 · · · 0

0 R2 · · · 0

...
...

. . .
...

0 0 · · · Rn


Due to the convexity of the QP, the minimization of (4.10) under constraints

is solvable by algorithms such as Path-Following algorithm, Potential-Reduction al-

gorithm [65], or Reflective Newton method [72].
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Figure 4.5: HybD scheduling for constant current demand with current in
each module in top figure and SoC in bottom figure. Dashed lines indicate
constraints.

The constant current demand simulation is executed with the scheduling intro-

duced above and results are shown in Fig. 4.5. It is observed that the battery modules

deplete in a sequential pattern and the range increases by 29% comparing with the

terminate time of SeqD scheduling. Such scheduling algorithm balances the range

and the depleting mode, hence it is called Hybrid Discharge (HybD) scheduling. On

the basis of all the constant current demand simulations, the total energy losses due

to internal resistance for the first 600 seconds are listed in Table 4.1. SeqD scheduling

results in the largest energy loss since at least one module is operating at the maxi-

mum output current at a time. The energy loss is decreased from SimD scheduling

to HybD scheduling. Considering that the internal resistance given in the simulation

is in the order of several mΩ, the decrease of approximately 7% is noteworthy.
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Table 4.1: Comparison of Energy Losses

Current Scheduling Algorithm Energy Loss (kJ)
SimD scheduling 177.67
SeqD scheduling 417.67
HybD scheduling 165.36

4.4 Dynamic Power Demand Simulation for Cur-

rent Scheduling Algorithms

In the previous section, a constant current demand test is utilized for demon-

stration of the different current scheduling algorithms. Even for dynamic current

demand cases, the three proposed algorithms are solvable. For that purpose, we

also consider applying these algorithms to dynamic power demand cases, which are

required in applications with intermittent power delivery demands such as BEVs.

The EPA Urban Dynamometer Driving Schedule (UDDS) is applied to demon-

strate the current scheduling for a variable power demand as indicated in Fig 4.6. The

driving schedule includes the vehicle speed information along a virtual urban route,

the derivative of which can be considered as the sum of vehicle accelerations driven

by powertrain and slope. Given the acceleration, the power demanded by the vehicle

can be calculated by the propulsion equation of vehicles:

Pdes = (M · a+ Cr ·M · g + Ca ·
A

21.15
· v2) · v (4.11)

where M is the mass of the vehicle, a is the required acceleration, Cr is the coefficient

of rolling, g is the gravity constant, Ca is the coefficient of air resistance, A is the

frontal area of the vehicle, v is the required velocity of the vehicle.
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Figure 4.6: Driving profile and power demand (UDDS).

The desired power demand is for the entire battery system, since Vbus and Ibus

are uncertain, we have:

Vbus · Ibus = Pbus = Pdes (4.12)

Due to the product of the unknown bus voltage and current, current scheduling

is more challenging, but can be solved for the SimD and SeqD scheduling trivially.

For SimD scheduling, by (4.2) and (4.7), assuming Vn = VOC,n yields:

VOC,n − αn ·Rn · Ibus = Vbus (4.13)

Combining (4.12) and (4.13), the bus current can be obtained by solving a

quadratic equation:

Ibus =
VOC,n ±

√
V 2
OC,n − 4 · Pdes · αn ·Rn

2 · αn ·Rn

(4.14)
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Figure 4.7: SimD Scheduling for Dynamic Power Demand.

Thus, the bus voltage Vbus can also be determined. If there exists no feasible

solution due to the inequality constraints (4.4) - (4.6), then it is assumed that other

modules operate at the full duty cycle and resolve (4.14) iteratively.

For SeqD scheduling, when one battery module with the lowest SoC cannot

fulfil the power demand, more modules can be iteratively implemented. For the

implemented modules, the current of each module can also be determined by (4.14).

The simulation results for the SimD and SeqD scheduling algorithms are sum-

merized in Fig 4.7 and Fig 4.8. The results indicate the feasibility of the scheduling

algorithms, where the SimD scheduling depletes all the modules at the same time,

while the SeqD scheduling discharges the modules in a sequential manner.
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Figure 4.8: SeqD Scheduling for Dynamic Power Demand.

4.5 Development of Parallel-Connected Modular

Battery System for Electric Vehicle

A parallel-connected modular battery system for Electric Vehicle (EV), named

Modular Battery Exchange and Active Management (M-BEAM) system, is developed

for experimental validation purposes of the proposed scheduling algorithms and future

research. As stated in its name, M-BEAM system is a battery system which is

composed by modular batteries [73]. The output power flow of each battery module

is controlled to optimize the entire system performance.

The circuit architecture of M-BEAM system is the same as the topology shown

in Fig. 4.1. In each module, 48 lithium iron phosphate cells are connected in series.

The specifications of a single cell and a module are summarized in Table 4.2. When

operating at its nominal voltage, a battery module can have a continuous power
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Table 4.2: Specifications of battery cell and module in M-BEAM system

Item Specification (Cell) Specification (Module)
Nominal Voltage 3.2V 153.6V
Internal Impedance 8mΩ 384mΩ
Max. Continuous Discharge Current 20A 20A
Max. Instant Discharge Current 50A 50A
Charge Cut-Off Voltage 3.65V 175.2V
Discharge Cut-Off Voltage 2.0V 96.0V

output up to 3kW and an instant power output up to 7.68kW.

4.5.1 Battery Management System

In the operation of a battery system, several critical parameters, including cell

voltages, current, and temperatures, need to be monitored to ensure:

• Battery cells are not under-charged or over-charged;

• The charge or discharge rate of battery cells are within the nominal range;

• There is no thermal runaway occurring in the system.

These parameters can be monitored by a Battery Management System (BMS)

as shown in Fig. 4.9 in real-time. To decrease the tolerance requirement for drain-

to-source breakdown voltage of power switches, i.e. power MOSFETs, the battery

cells are grouped into two banks. Therefore a pair of master-slave microprocessors

is implemented to supervise the bottom and the upper bank, respectively. The cell

voltages are measured then fused through multiplexers to maximize the usage of finite

Analog-To-Digital (ADC) channels of microprocessors. Since all the battery cells in

the module is in series, only the current measurement at the terminal is required.
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Figure 4.9: Circuit diagram of M-BEAM battery management system
(BMS).

Monitor

Thermistor

Voltage
Current

Temperature
Pack Voltage

Balance

UPC

UPD

Vx

Tx

Ix

Discharge

Charge

RS232 Short Circuit
Protection

Power Control
(Active/Sleep)

RF BuzzerLED

Figure 4.10: Functions and signals of master microprocessor in BMS.

The temperature is measured by thermistors located between battery cells.

The BMS also integrates a balancing circuit to adjust the charge current

through individual cell so that the state-of-charge (SOC) of each cell can be bal-

anced.

The battery management algorithm is executed in the master microproces-

sor. As depicted in Fig. 4.10, the processor acquires real-time measurements of volt-

ages, current, and temperatures, then sends out charge and discharge control signals

through digital output ports and PWM outputs.

An assembled battery module is shown in Fig. 4.11. The BMS is separated

onto two boards for safety, quick assembly and design robustness.
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Figure 4.11: Photo of a M-BEAM battery module.

The BMS functionality and the performance of battery modules are tested

through discharge-charge cycles after calibration. Fig. 4.12 shows a group of test

results. The results indicate:

• All the cell voltages are close to each other in most of the SOC range, but

deviate in the low and high SOC range.

• The temperatures measured during the entire cycle are moderate. Although

the heat is accumulated during the discharge process, it is distributed evenly in

the module and doesn’t exceed 35◦C at any location. The temperatures slowly

converge to lower equilibrium along the charge process.

4.5.2 In-Vehicle Wireless Communication System

While several battery modules are connected, a communication network is

required for monitoring the entire system and further coordinating output of each
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Figure 4.12: The current, cell voltage, and temperature measurements of a
M-BEAM battery module in a discharge-charge cycle.

module. In M-BEAM system, wireless communication is introduced to enhance

the mobility of battery modules, since the physical wire connection for communi-

cation is eliminated. In particular, a star network based on IEEE 802.15.4 stan-

dard is developed to accommodate the cost. The transceiver employed can support

250kbps Offset-Quadrature Phase Shift Keying (O-QPSK) data transfer. To drive the

transceivers within the network, Simple Media Access Controller (SMAC) is utilized

in the firmware. Therefore each data packet has a maximum data length of 123 bytes.

Since the performance of in-vehicle wireless communication is crucial espe-

cially for coordinating distributed control, experiments are conducted on acquired

data during test drives. To achieve that, the M-BEAM system is integrated into a



91

Figure 4.13: Photo of M-BEAM system being integrated into a converted
EV.

converted EV as shown in Fig. 4.13.

To quantify the performance of wireless communication, the wireless data

transmission success rate (WDTSR) of a battery module is defined as

WDTSR =
Ns

Nt

, (4.15)

where Ns is the number of successfully delivered data packets, Nt is the number of

total data packets expected to be delivered.

As depicted in Fig. 4.14, although most of the battery modules achieve a

WDTSR above 85% at a low refreshing rate of 0.4Hz, some still suffer a low success

rate. For instance, Module # 6 has a WDTSR as low as 78% in Test Drive No. 2, 5,

and 6.
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Figure 4.14: WDTSR of 14 M-BEAM battery modules during 7 test drives.

4.6 Open Problems

Although extensive work has been conducted to develop the experimental

setup, the following research tasks are expected to be completed in the next phase.

• Power scheduling for parallel-connected battery systems, instead of only current

scheduling, needs to be addressed, since the entire energy transformation is

essentially of interest. In Section 4.4 two scheduling algorithms SimD and SeqD

have been extended to be applied for power scheduling. The HybD scheduling

needs to be re-formulated and solved by a different programming algorithm in

order to be applied for power scheduling.

• The feasibility and performance of executing the proposed scheduling algorithms

in an actual system with the given topology depends on proper control of the

actuator, which is done by the PWM signal applied to MOSFETs in buck
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regulation circuits of each module. As a typical control design cycle, first the

possibility of an open-loop control law needs to be addressed, then a closed-loop

control should be considered if either the open-loop control is unfeasible or the

control performance needs to be improved. Since the actuators in such system

are distributed, some issues such as synchronization in the controller design of

a distributed control system should be addressed. This can be done through

simulations first, then validation by bench tests on a small-scale experimental

setup, and finally in-vehicle tests.

• The wireless communication performance of the system needs to be improved.

It can be achieved by up-to-date wireless communication platforms and/or op-

timizing the physical locations of the base station and battery modules.
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Chapter 5

Control for Mitigation of AC

Power Flow Fluctuations

5.1 Motivation

As more renewable energy generation is added to the utility grid, less conven-

tional generation will be required to meet the power demand. Photovoltaics (PV),

the major way of converting sunlight into electricity, is a fast-growing technology

doubling its worldwide installed capacity every couple of years due to its scalability

from small, residential and commercial rooftop or building integrated installations,

to large utility-scale solar plants. Typically, solar energy generation uses (3 phase)

inverters that have fast dynamics and exhibit very little inertia in terms of power

delivery onto the utility grid.

Utilizing more renewable energy generation leads to inherent variability in

energy production. However, it also reduces the rotational inertia in the form of

spinning rotational mass from conventional generation that tends to stabilize and

94



95

maintain synchronous operation of the system [74]. This could result in increasing

instability and poorly damped oscillations in AC frequency and power, unless addi-

tional conventional generating sources are placed on-line or less renewable resources

are installed.

Such circumstances have been detected in practice and installation of Phasor

Masurement Units (PMU) facilitate real-time measurements of power quality and

power oscillations in an electricity grid. An example of such power oscillations can

be observed in Fig. 5.1, where oscillations in real power were observed in the 12kV

connections at the University of California during a particular load switching [75].
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Figure 5.1: Measured real power oscillation on the main 3 phase intercon-
nect of the UCSD Micro-Grid during a step-wise load demand change.

In general, electric power systems are subjected to power oscillations due to the

inherent inertia of generators and loads connected on the electric grid [74, 18]. Such

power oscillations are typically in the 0.2-3 Hz range, depending on the size of the
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(micro)grid and the characteristics of the interconnected power systems [76, 77]. De-

tecting fluctuations in power flow in an electric grid has been an active field of study to

improve the resiliency of electric networks. Power swing detectors that can detect un-

stable power swings in several milli-seconds are crucial for relay operation [78]. In case

of stable power oscillations, frequency and damping of electro-mechanical oscillations

can be performed with a ring down analysis or a normal operation analysis. Assuming

an unknown non-zero initial condition, eigenvalues or the frequency/damping of the

observed power oscillations can be computed using the Pronys method for ring down

analysis [79, 80, 81] assuming the power oscillation is a sum of sinusoids [82] or more

advanced methods using wavelet transforms [83]. In these methods, power oscillation

dynamics is found by fitting models on the free response of an observed stable power

oscillation.

The disturbance causing power oscillations can be a line switching, load switch-

ing, a fault or anything else that may have a large impact on the power flow through

the power system. As these disturbances are typically step disturbances, explicit in-

formation on the shape of the input signal that caused the power oscillation will be

beneficial, especially when multiple step signals occur in close proximity in time. Ex-

plicit use of input and observed output signals via a system identification procedure

[81, 84] will improve the quality of the models that capture the power oscillations.

Once disturbances occurred in the grid can be characterized by dynamic mod-

els, a feedback control can be designed and implemented to mitigate power oscillations

caused by those disturbances. In this chapter, based on an experimental setup created

to mimic a local grid network, a demonstrated feedback control design and implemen-

tation is completed through formulating control variables, characterizing components
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by open-loop tests, standard optimal controller design, and closed-loop experiments.

5.2 Experimental Setup

In a PV generation system, PV panels are connected to the grid via an in-

verter to convert the generated DC power to AC power. A grid-tied inverter is

usually applied to synchronize the output with the grid. According to such circuit

topology, an experimental setup is built as shown in Fig. 5.2. For testing purposes,

the PhotoVoltaic (PV) power source is temporarily replaced by a programmable DC

power source. An EMI filter to reduce AC ground coupling and a Grid-Tied Inverter

(GTI) to provide 3 phase AC power. The GTI is controlled by an external controller

that can control the four quadrant power flow through the GTI, while the controller

also digitally switches an auxiliary relay to switch in a three phase Resistor-Inductor-

Capacitor (RLC) circuit to initiate three phase power oscillations in the circuit. Three

phase voltage and current measurements (sensors) are processed by the controller to

compute real-time power oscillation in the circuit. The Grid Tied Inverter (GTI) is

a GTI3100A6208/3652IR-PQ manufactured by One-Cycle Control Incorporation. It

is a four-quadrant inverter, which is capable to accept external control signals for

implementation of feedback control to control or damped power oscillations. Addi-

tional EMI filters FN2200B are placed between the DC source and the inverter to

eliminate the effect of common AC mode currents due to the high frequency Pulse

Width Modulation (PWM) of the GTI. The output of the inverter is connected to

the grid through a three-phase switch and a circuit breaker to limit the current for

protection.

A three-phase RLC load circuit is designed and integrated into the testbed to
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Figure 5.2: Diagram of experimental setup.

act as a real power disturbance. As depicted in Fig. 5.2, each phase is composed by

a bypass resistor of 100Ω that is in parallel with a series connection of a capacitor

of 0.01F and an inductor of 0.1H. The Inductor-Capacitor (LC) circuit is to generate

a resonance; the bypass resistor is to consume real power and also discharge the LC

circuit while it is not energized. The circuit is connected to the output of the grid-tied

inverter through an overload protection relay.

A controller with National Instruments (NI) myRIO is integrated into the

testbed for data acquisition and controlling the grid-tied inverter. The three-phase

AC voltage and current signal of grid-tied inverter is measured, conditioned, and

sent into the controller. The controller can also send out control signals via signal

conditioning circuit to drive the grid-tied inverter and moreover, to switch in the load

circuit to the system by energizing the overload protection contactor via an auxiliary

relay.

The description of the testbed is completed by a photo as shown in Fig. 5.10.

The parts are aligned and mounted in a cabinet for safety consideration. In the RLC
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Figure 5.3: Front and side of the testbed housing the components for real-
time analysis and identification of real power oscillations.

load circuit, an array of AC capacitors is formed as a capacitive load.

The control diagram of the testbed is depicted in Fig. 5.4. The model G

represents the grid-tied inverter, while H is the dynamic model of the RLC load

circuit. The objective is to design a controller C which can mitigate fluctuations

observed in p(t).

5.3 Characterizing System Dynamics

5.3.1 Disturbance Dynamics

A key assumption that could be made when a power oscillation occurs is

to assume that the power oscillation is due to a step-wise change in load demand.
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Figure 5.4: Schematic diagram of feedback control configuration imple-
mented in the testbed for disturbance rejection control.

The size of the load demand may not be known, but the a priori knowledge of the

step-wise load demand can be exploited to formulate a low order state space model

to model the dynamics of any observed power oscillations. In particular, the low

order state space model can be realized on the basis of a real-time measurements of

three phase real power oscillations to accurately model frequency and damping of the

power oscillations. Although the approach is similar to the modal analysis approach

in [77], the proposed realization method in this paper allows the low order models to

be formulated directly on the basis of real-time measurements of power oscillations.

More details on the step-based realization algorithms in included below.

The Step-Based Realization Algorithm

Let {y(0), y(1), ..., y(N)} be a measured response of an LTI, single-input-multi-

output (SIMO) system to a unit-step input applied at t = 0 that is corrupted by

some possibly-colored measurement noise v(t). To estimate a state space model of

the system

x(t+ 1) = Ax(t) +Bu(t) (5.1)
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y(t) = Cx(t) +Du(t) + v(t), (5.2)

one may follow the following steps:

• Step I

Construct the block-Hankel data matrices

Y =



y(1) y(2) · · · y(l)

y(2) y(3) · · · y(l + 1)

...
...

...

y(r) y(r + 1) · · · y(N − 1)



Ȳ =



y(2) y(3) · · · y(l + 1)

y(3) y(4) · · · y(l + 2)

...
...

...

y(r + 1) y(r + 2) · · · y(N)


,

and matrices

M =



y(0) y(0) · · ·

y(1) y(1) · · ·
...

...

y(r − 1) y(r − 1) · · ·


, M̄ =



y(1) y(1) · · ·

y(2) y(2) · · ·
...

...

y(r) y(r) · · ·


.

• Step II

Construct matrices

R = Y −M

R̄ = Ȳ − M̄
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then take the singular value decomposition (SVD) of the matrix R:

R =

[
Un Us

]Σn 0

0 Σs

[Vn Vs

]
(5.3)

An appropriate system order n may be found from the range of the singular

values in (5.3).

• Step III

Estimate A as

Â = Σ−1/2
n UT

n R̄VnΣ−1/2
n .

C is estimated as

Ĉ = (UnΣ1/2
n )(1:ny ,:).

A possible estimate for B is

B̂ = (Σ1/2
n V T

n )(:,1),

then D is estimated as

D̂ = y(0).

Improved estimates of B and D may also be found via a least-squares mini-
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mization. Given estimates Â and Ĉ, let B̂ and D̂ be the solution of

B̂, D̂ = arg min ||y − ŷ||2

y =



y(0)

y(1)

...

y(N + i)


, ŷ =



ŷ(0)

ŷ(1)

...

ŷ(N + i)


where

ŷ(t) =

[∑t−1
k=0 ĈÂ

t−k−11

]
θ̂, θ̂ =

B̂
D̂



One is referred to [85] for additional details on the step realization method.

Identification of Disturbance Model

In the experimental verification of the real-time real power demodulation and

application of the step-based realization algorithm, power oscillations are induced by

step-wise excitation of the auxiliary relay depicted earlier in Fig. 5.2 to switch in a

three phase Resistor-Inductor-Capacitor (RLC) circuit to initiate three phase power

oscillations in the circuit. The input u(t) is used to denote the digital signal sent to

the auxiliary relay; the output y(t) is the real-time demodulated real power calculated

by the method described in Section 2.3.

In Fig. 5.5, u(t) stepped from 0 to 1 at t = 0, the upper plot shows the

demodulated real power of each phase; the bottom plot shows the demodulated three-

phase real power.

The step-based realization algorithm is applied to verify the proposed method

of real power demodulation. The RLC circuit depicted in Fig. 5.2 is a second-order
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Figure 5.5: Demodulated real power signal oscillations in each phase (top
figure) and three phase (bottom figure) of the RLC circuit induced by a
step-wise load change.

system. With L = 0.1H, C = 0.01F, we know that the (undamped) oscillation

frequency of such an RLC circuit is given by

f =
1

2π
√
LC

= 5.03Hz (5.4)

In practice, the contactor cannot be fully energized rapidly, thus it results in additional

dynamics in the system. This can be observed by the irregular oscillation from t = 0

to t = 0.15s in Fig. 5.5. To further verify this, the segment starting from t = 0.15s

is selected to estimate a model. With a second-order state space model, the step

response of the RLC circuit can be reconstructed. By comparison with the raw

demodulated real power as shown in Fig. 5.6a, it is verified that the model captures

very well the dynamics of the 3 phase RLC system. It also validates the proposed
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Figure 5.6: Comparison between measured and modeled/estimated real
power oscillations.

method of real-time demodulation of real power oscillation.

If the contactor dynamics is taken into account, a higher-order model can be

used to capture this dynamics. As shown in Fig. 5.6b, a third-order state space model

is realized. The dynamics of the three phase RLC system including the contactor are

both captured by the model.

Thus, the disturbance model H in the control diagram shown in Fig. 5.4 is

obtained.

5.3.2 Actuator Dynamics

The actuator of the feedback control in the system, which is the GTI, also can

be modeled from a step input response. In particular, an output-error (OE) model

is applied to characterize the GTI’s output. The obtained model G is shown as in

Fig. 5.7 compared with the actual step response.
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Figure 5.7: Comparison between measured and modeled GTI output.

5.4 Controller Design

Multiple controller design approaches can be applied to obtain a proper dis-

turbance rejection for the system. In this section, an approach combining the internal

model principle [86] and H2 optimal control [87, 88, 89] is introduced. The objective

of such approach is to obtain a controller that can not only reject known disturbances

but also balance the trade-off between minimizing the output fluctuation caused by

disturbance and required energy of control input. The diagram for controller design

is shown as in Fig. 5.8.

First, the system P is formulated into the transfer function matrix form


z1

z2

p

 =


H G ·H · F

0 γH · F

H G ·H · F


d
u

 (5.5)

Through proper realization and pole-zero cancellation, the plant described by



107

Figure 5.8: Diagram of the system configured for optimal controller design.

(5.5) can be converted to a standard state-space form

ẋ = Ax+B1d+B2u

z = C1x+D11d+D12u

p = C2x+D21d+D22u

(5.6)

where z =

[
z1 z2

]T
. The Bode plot of P is shown as in Fig. 5.9.

Then the controller K can be obtained through finding a stabilizing positivie-

feedback controller for the above system such that the H2-norm of the closed-loop

transfer function matrix Tz,d is minimized [87, 88, 89]:

min
K
||Tz,d||2 =min

K

(
1

π

∫ ∞
0

trace(T ∗z,d(jω)Tz,d(jω))dω

)
(5.7)

Finally, the feedback controller C in Fig. 5.4 can be obtained by

C = −K ·H (5.8)
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Figure 5.9: Bode plot of the Two-Input Three-Output plant P .

The frequency response of C is further verified as shown in Fig. 5.10a. And

the frequency response of the open-loop sensitivity H and the closed-loop sensitivity

H/(1 + GC) is given in Fig. 5.10b. From Fig. 5.10b, it can be observed that the

mitigation is achieved in the frequency range of 25–36 rad/s, i.e. approximately

4–5.7Hz.

The performance of the designed controller is as shown in Fig. 5.11. The step

response of the closed-loop system is mitigated by comparing with the open-loop

system’s response.

5.5 Experimental Results and Analysis

Experiments on implementing closed-loop controller in the system have been

conducted. A set of experimental results are shown in Fig. 5.12 by comparing system

output without feedback control (blue line) and with feedback control (green line).
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Figure 5.10: Frequency response of (a) controller C; (b) open-loop sensi-
tivity and closed-loop sensitivity.

The experimental result matches the simulated results given in Fig. 5.11. It can

be observed from Fig. 5.12 that the oscillation due to the switching of the inductive

load, normally results in a oscillation of around 5Hz that persists for several oscillation

periods. With damping control that only uses information of measurements of real

power in a feedback configuration reduces the oscillations down to only a single or

perhaps 2 periods. These results indicate that disturbance is rejected by about 15 %.

One remark must be given to the results depicted in Fig. 5.12. The real

power measurements are more noisy when the OCC-GTI is used to modulate real

power. The noisy behavior of the real power measurements are due to the high

frequency switching of the 42kW OCC-GTI that is only used over a very small range

to mitigate real power oscillations. Such noise is anticipated to become negligible
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Figure 5.11: Comparison between simulated open-loop and closed-loop re-
sponses to verify the control performance.

when the disturbance rejection control is performed on a larger scale where (multiple)

OCC-GTIs can be modulated for control over the full 42kW range.
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Chapter 6

Conclusions and Future Work

In order to meet emerging requirements for better utilization of electrical en-

ergy, systematic research on applying advanced modeling and control technology to

Electrical Energy Storage and Delivery System (EESDS) is required. In this disserta-

tion, three main problems are studied: a) modeling of a battery system; b) scheduling

of parallel-connected battery systems; c) mitigation of AC power flow fluctuations by

controllable inverter. The summary for completed and future work is as follows.

• Battery Modeling for Power Delivery Dynamics Prediction and SOC

Estimation: A battery modeling approach is proposed to characterize power

delivery dynamics, given charge and discharge demand as an input, and also to

estimate the state-of-charge of a battery, not only in normal operating range,

but also in extreme cases, such as battery over-charging. This is a control-

oriented modeling approach which is different from the conventional equivalent

circuit models and electrochemical models. In particular, the model is composed

of separated voltage and current models. Several non-linear models, including

Hammerstein model, open-circuit voltage characteristics, and Takacs hysteresis

112
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model are combined in the voltage and the current model, respectively. The

state-of-charge of the battery is estimated in a recursive optimization fashion.

The parameterization and estimation methods of the model are described and

also validated on experimental data from a lithium iron phosphate cell. By

utilizing the proposed model, the energy delivery capability and available energy

of a single battery system can be understood.

For future research, the proposed modeling approach is expected to be first

validated on experimental data from a larger-scale battery system, such as a

battery bank connected to electric grid. The parameterization and estimation

of the components in the formulated model framework needs to be further im-

proved. For instance, the static non-linearities included in Hammerstein models

can stem from the circuitry executing charge and discharge, therefore more ad-

vanced identification methods need to be applied for the estimation.

• Current Scheduling for Parallel-Connected Modular Batteries: Three

current scheduling strategies are proposed to coordinate the output of each

battery system in a parallel-connected network which is usually for expanding

the total capacity. Besides simultaneous and sequential discharge scheduling

algorithms, a hybrid algorithm is formulated by solving a Quadratic Program-

ming problem. The simulation results indicate the feasibility of the proposed

scheduling algorithms and motivate the use of parallel connected battery mod-

ules despite changes in battery operating parameters. The simultaneous and

sequential discharge scheduling algorithms are then extended to power schedul-

ing.

A complete modular battery system for Electric Vehicle with the same topol-
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ogy is developed for experimental validation. Each battery module integrates a

Battery Management System (BMS) for real-time monitoring and charge bal-

ancing, and a buck regulator for controlling the power output. To execute

real-time feedback control, a 2.4GHz wireless star network is integrated in the

system with a base station collecting real-time information from each battery

module and coordinating the output of each module.

In the future, power scheduling for parallel-connected battery systems, instead

of only current scheduling, needs to be addressed to optimize energy trans-

formation. The HybD scheduling needs to be re-formulated and solved by a

different programming algorithm in order to be applied for power scheduling.

Moreover, the feasibility and performance of executing the proposed scheduling

algorithms in practice depends on proper control of the actuator, which is done

by the PWM signal applied to MOSFETs in buck regulation circuits of each

module. As a typical control design cycle, first the possibility of an open-loop

control law needs to be addressed, then a closed-loop control should be con-

sidered if either the open-loop control is unfeasible or the control performance

needs to be improved. Since the actuators in such system are distributed, some

issues such as synchronization in the controller design of a distributed control

system should be also addressed. In order to achieve that, the WDTSR tests

introduced is one of the bench tests that need to be extensively conducted for

improving the wireless communication performance of the system. The im-

provement is expected to be achieved by up-to-date wireless communication

platforms.

• Disturbance Rejection Control for Mitigation of AC Power Flow Fluc-
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tuations: A disturbance rejection control law is designed to mitigate the fluc-

tuation of AC power flow in order to maintain the stability of the entire grid. An

experimental setup integrating grid-tied inverter (GTI), a three-phase Resistor-

Inductor-Capacitor (RLC) network, sensors and embedded controller is created.

Based on that, a complete control design process is done by demodulating real

power oscillations, modeling of actuator and disturbance, and controller design

by combining the internal model principle and H2 control.

In practice, different control objectives may be proposed for maintaining the

stability of an electric grid. But the design process demonstrated in this disser-

tation provides some references for future research. The created experimental

setup can be the fundamental for future research on implementation of advanced

control for power flow. The achieved experiences in the small-scale experiments

are then expected to be applied for a larger-scale system, such as a micro-grid,

in the future.
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equation observer for battery state-of-charge/state-of-health estimation via an
electrochemical model,” Journal of Dynamic Systems, Measurement, and Con-
trol, vol. 136, no. 1, p. 011015, 2014.

[32] W. Waag, C. Fleischer, and D. U. Sauer, “Critical review of the methods for
monitoring of lithium-ion batteries in electric and hybrid vehicles,” Journal of
Power Sources, vol. 258, pp. 321–339, Jul. 2014.

[33] X. Hu, S. Li, and H. Peng, “A comparative study of equivalent circuit models
for Li-ion batteries,” Journal of Power Sources, vol. 198, pp. 359–367, 2012.



119

[34] Z. Wei, T. M. Lim, M. Skyllas-Kazacos, N. Wai, and K. J. Tseng, “Online state
of charge and model parameter co-estimation based on a novel multi-timescale
estimator for vanadium redox flow battery,” Applied Energy, vol. 172, pp. 169–
179, Jun. 2016.

[35] Z. Chen, B. Xia, C. C. Mi, and R. Xiong, “Loss-minimization-based charging
strategy for lithium-ion battery,” Industry Applications, IEEE Transactions on,
vol. 51, no. 5, pp. 4121–4129, 2015.

[36] J. Lee, O. Nam, and B. H. Cho, “Li-ion battery SOC estimation method based
on the reduced order extended Kalman filtering,” Journal of Power Sources, vol.
174, no. 1, pp. 9–15, Nov. 2007.

[37] Y. Zou, S. E. Li, B. Shao, and B. Wang, “State-space model with non-integer
order derivatives for lithium-ion battery,” Applied Energy, vol. 161, pp. 330–336,
Jan. 2016.

[38] Y. Jiang, X. Zhao, A. Valibeygi, and R. A. de Callafon, “Dynamic prediction
of power storage and delivery by data-based fractional differential models of a
lithium iron phosphate battery,” Energies, vol. 9, no. 8, p. 590, Jul. 2016.

[39] O. Tremblay and L.-A. Dessaint, “Experimental validation of a battery dynamic
model for EV applications,” World Electric Vehicle Journal, vol. 3, no. 1, pp.
1–10, 2009.

[40] R. Xiong, F. Sun, Z. Chen, and H. He, “A data-driven multi-scale extended
Kalman filtering based parameter and state estimation approach of lithium-ion
olymer battery in electric vehicles,” Applied Energy, vol. 113, pp. 463–476, Jan.
2014.

[41] M. W. Verbrugge and P. Liu, “Electrochemical characterization of high-power
lithium ion batteries using triangular voltage and current excitation sources,”
Journal of Power Sources, vol. 174, no. 1, pp. 2–8, Nov. 2007.

[42] F. Yang, Y. Xing, D. Wang, and K.-L. Tsui, “A comparative study of three
model-based algorithms for estimating state-of-charge of lithium-ion batteries
under a new combined dynamic loading profile,” Applied Energy, vol. 164, pp.
387–399, Feb. 2016.

[43] H. Fang, X. Zhao, Y. Wang, Z. Sahinoglu, T. Wada, S. Hara, and R. A. de Calla-
fon, “Improved adaptive state-of-charge estimation for batteries using a multi-
model approach,” Journal of Power Sources, vol. 254, pp. 258–267, May 2014.

[44] C. Lin, H. Mu, R. Xiong, and W. Shen, “A novel multi-model probability bat-
tery state of charge estimation approach for electric vehicles using H-infinity
algorithm,” Applied Energy, vol. 166, pp. 76–83, Mar. 2016.



120

[45] M. A. Roscher, O. Bohlen, and J. Vetter, “OCV hysteresis in Li-ion batteries
including two-phase transition materials,” International Journal of Electrochem-
istry, vol. 2011, p. e984320, May 2011.

[46] A. Marongiu, F. G. W. Nußbaum, W. Waag, M. Garmendia, and D. U. Sauer,
“Comprehensive study of the influence of aging on the hysteresis behavior of
a lithium iron phosphate cathode-based lithium ion battery – An experimental
investigation of the hysteresis,” Applied Energy, vol. 171, pp. 629–645, Jun. 2016.

[47] H. Zhang and M.-Y. Chow, “On-line PHEV battery hysteresis effect dynam-
ics modeling,” in IECON 2010 - 36th Annual Conference on IEEE Industrial
Electronics Society, Nov. 2010, pp. 1844–1849.

[48] T. Kim, W. Qiao, and L. Qu, “Hysteresis modeling for model-based condition
monitoring of lithium-ion batteries,” in 2015 IEEE Energy Conversion Congress
and Exposition (ECCE), Sep. 2015, pp. 5068–5073.

[49] X. Tang, X. Zhang, B. Koch, and D. Frisch, “Modeling and estimation of Nickel
Metal Hydride battery hysteresis for SOC estimation,” in International Confer-
ence on Prognostics and Health Management, 2008. PHM 2008, Oct. 2008, pp.
1–12.

[50] L. Zhu, Z. Sun, H. Dai, and X. Wei, “A novel modeling methodology of open
circuit voltage hysteresis for LiFePO4 batteries based on an adaptive discrete
Preisach model,” Applied Energy, vol. 155, pp. 91–109, Oct. 2015.

[51] J. Takacs, Mathematics of Hysteretic Phenomena: The T(x) Model for the De-
scription of Hysteresis, Sep. 2003.

[52] K. Chwastek, “Modelling hysteresis loops in thick steel sheet with the dynamic
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