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ABSTRACT OF THE DISSERTATION

Modeling Almost Periodicity in Point Processes

by

Nan Shao

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, December 2010

Dr. Keh-Shin Lii, Chairperson

We propose a model for the analysis of non-stationary point processes with almost periodic

rate of occurrence. The model deals with the arrivals of events which are unequally spaced

and show a pattern of periodicity or almost periodicity, such as the rate of financial transac-

tions or customer/phone calls arrivals. The concept of almost periodicity is described and the

purely periodic process is just a special case of the almost periodic process. We consider a

non-homogeneous Poisson process and model its rate of occurrence as the sum of sinusoidal

functions plus a base line. Given the number of sinusoidal functions which is denoted asK, a

set of simple and consistent estimates of frequencies, phases and amplitudes which form the si-

nusoidal functions are constructed mainly by the Bartlett periodogram. The estimates are shown

to be asymptotically normally distributed. Computationalissues are discussed and it is shown

that the frequency estimates have to be resolved with ordero(T−1) to guarantee the asymptotic

unbiasedness and consistency of the estimates of phases andamplitudes, whereT is the length

of the observation period. The prediction of the next occurrence is also discussed. The proposed

model is a finite approximation of the almost periodic process in terms of a finite value ofK. In

practice, the value ofK is usually unknown, and we suggest to use the model selectioncriteria

to determineK. Two criteria AIC and BIC are reviewed and discussed in the frame work of our
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model. Simulation and real data examples are used to illustrate the theoretical results and the

utility of the model.
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Chapter 1

Introduction

This thesis presents a general model for the point processeswhich show certain pattern

of periodicity. In Chapter 1, we introduce the basic conceptof point processes, including its

definition, intensity function, finite Fourier transform and the periodogram of a point process.

The thesis is on the modeling of almost periodic point processes, and the motivation of studying

such processes and the concept of almost periodicity are introduced in Chapter 2. The new

model is presented and studied in Chapter 2 and Chapter 3. Theprocedures to implement the

proposed methodology in the data analysis are summarized and presented in Chapter 3, section

3.4. A discussion of potential future research directions is in Chapter 4.

1.1 Basic concept of point processes

Point processes are very common in daily life. A temporal point process is the random

occurrence of a series of events. So the arrivals of customers in a restaurant, the initiations of

phone calls made to a customer service center, the times of stock transactions, and the occur-

rences of earthquakes in certain area are all temporal pointprocesses. There are also spatial

point processes which are the random locations where the events of interest occur, such as the

1



location of the wild fire. In this dissertation, we only consider temporal point processes, and use

temporal point processes and point processes interchangeably.

Studying point processes is meaningful, as it helps us understand the structure of the pro-

cess which enables us to forecast. For example, the rate of stock transactions carries information

about the market which influences the stock market value and volume of shares as well as other

financial products. In this case, it is natural to model the timing of transactions. Moreover, a

rigorous understanding of how the market moves provides investors with vital information to

help them make financially wise investments. Moreover, in the study of phone calls made to a

customer service center, a good understanding of the pattern of phone call arrivals is important

to the scheduling of operators and thus could increase the efficiency of the call center.

Point processes have been extensively studied in the literatures, such as Bartlett (1957,

1963, 1967, 1978), Brillinger (1972, 1978, 1982, 1983, 2003, 2008), Cox and Lewis (1966),

Lewis (1970, 1972), Cox and Isham (1980), Imoto et al. (1999), Vere-Jones (1982), Vere-Jones

and Ozaki (1982), and Hassan and Lii (2006). The research of point processes usually focuses on

three aspects, namely, the counting processes which is another way to express point processes,

the intensity and/or the spectral of point processes, and the inter-arrival times of point processes.

The concept of counting processes and intensity will be reviewed later in this section. There are

also literatures in the random sampling of a continuous stochastic process, such as Lii and Masry

(1994).

In the research the point process is defined on the half real lineR+ for convenience. One

specification of the point process is from its event times. Let {tj , j = 1, 2, · · · } be a sequence of

nonnegative random variables with0 ≤ tj ≤ tj+1, then the sequence{tj} is thepoint process

on [0,∞). If there is no multiple occurrence, namely,tj < tj+1 for anyj, the process is called

asimple point process. We will restrict our consideration to simple point processes.

The point process can also be specified by the counting processN(t) whereN(t) repre-
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sents the total number of points or “events” that have occurred up to timet (t ≥ 0), so the

counting processN(t) must satisfy:

(i) N(t) ≥ 0.

(ii) N(t) is integer valued.

(iii) If s < t, thenN(s) ≤ N(t).

(iv) For s < t,N(t)−N(s) equals the number of events that have occurred in the interval

(s, t].

A counting process is said to possessindependent incrementsif the numbers of events

that occur in disjoint time intervals are independent. Thatmeans, for example, the number of

events that occur by time10 and between times10 and15 must be independent. Considering

customer arrivals, ifN(t) is the number of customers who enter a particular store at or prior to

time t, thenN(t) is a counting process, and it would be reasonable to assume that the number

of customers who enter the store during one period of time is independent of the number of

customers who enter the store during another disjoint period of time.

A counting process is said to possessstationary incrementsif the distribution of the num-

ber of events that occur in any interval of time depends only on the length of the time interval.

In other words, the process has stationary increments if thenumber of events in the interval

(s, s+ t) has the same distribution for alls. A point process with stationary increments is called

a stationary point process. There are other mathematical definitions of a stationary stochastic

process, and we refer to Priestley (1981) for more information. In this dissertation, the processes

we consider are not stationary, and they are non-homogeneous Poisson processes which will be

discussed in the next section.

The definition and properties of the counting process above are from Ross (2007) Chapter

5.

In point processes, the only observations are the points, orthe occurrence time of events.
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We can describe the pattern of occurrence as how frequently the events occur, and it is the idea

of the intensity function. Theintensity function λ(t) of a point process, also called the jumping

rate, or the mean rate of occurrence in Cox and Isham (1980), is defined as

λ(t) = lim
δ→0+

P{N(t, t+ δ) > 0}
δ

= lim
δ→0+

E{N(t, t + δ)}
δ

.

SoE{dN(t)} = λ(t)dt with dN(t) = N(t+ dt)−N(t). The integral of the intensity function

over a time period(s, t], that is,
∫ t
s λ(t)dt, is the expected number of events which would occur

in (s, t]. And thus the intensity function describes the first-order moment property of the un-

conditional counting measure. When the intensity is large in a period of time, we should expect

more events to occur during that period of time, and vice versa. In addition, it is easy to see that

if the process is stationary, the intensity function is constant since a stationary process will have

the same expected number of events in any time intervals withthe same interval length.

The intensity function is an important concept in point processes, and this thesis is on the

modeling of the intensity function of a non-homogeneous Poisson process. We introduce the

Poisson process in the next section.

1.2 Poisson processes

Poisson processes are the most commonly used point processes in practice. It is defined as

follows:

Definition 1 The counting process{N(t), t ≥ 0} is said to be aPoisson process having rate

or the intensity functionλ(t) with λ(t) ≥ 0, if

(i) N(0) = 0.

(ii) The process has independent increments.

(iii) P{N(t+ h)−N(t) ≥ 2} = o(h).
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(iv) P{N(t+ h)−N(t) = 1} = λ(t)h+ o(h).

We state the following result and refer the proof to Ross (2007).

The number of events in the interval(0, t] is Poisson distributed with meanΛ(t) =
∫ t
0 λ(s)ds.

That is, for allt > 0,

P{N(t) = n} = eΛ(t)
Λn(t)

n!
, n = 0, 1, . . .

Note that when the intensity function is constant, that is,λ(t) = λ > 0, the Poisson process

is called the homogeneous Poisson process and it is stationary. Otherwise, the process is called

the non-homogeneous Poisson process, and it is not stationary.

For a homogeneous Poisson process with intensityλ, its inter-arrival times,{xj : xj =

tj − tj−1, if j ≥ 2;x1 = t1}, are independent and identically distributed (i.i.d.) exponential

random variables having mean1/λ. So to generate a homogeneous Poisson process, we just

need to generate a series of i.i.d. exponential random variables{xj} with mean1/λ, and the

data points or event times are{tj =
∑j

1 xi, j ≥ 1 t0 = 0}.

Denote the time to stop taking observations asT (assume we always taking observations

start at time0). In the point process literatures, the sample sizen = N(T ) is usually regarded

as a random quantity for mathematical convenience, and the observation lengthT is fixed.

1.3 Simulation of a non-homogeneous Poisson process

If the intensity function is bounded, that is,λ(t) ≤ λ for all t ≥ 0 (λ > 0), a non-

homogeneous Poisson process can be generated by thinning method (Lewis and Shedler (1979)).

The procedures are as follows:

(i) For eachj ≥ 1, generate an exponential random variablexj with rate1/λ, andxj is

independent of the previously generated{xi, i < j}. Denotetj =
∑j

1 xi, so{t1, t2, . . .} is a

homogeneous Poisson process with rateλ.
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(ii) Generate an uniformly distributed random variablesuj ∼ U(0, 1), anduj is indepen-

dent of the homogeneous Poisson process{t1, t2, . . .} and the previously generated{ui, i < j}.

If uj ≤ λ(tj )
λ , keeptj, otherwise, deletetj .

(iii) Repeat step (ii) until the desired observation lengthT of the “thinned” sequence is

obtained.

Denote the “thinned” sequence as{t∗j}, then it is a non-homogeneous Poisson process with

the intensity functionλ(t).

1.4 Finite Fourier transform and periodogram of point processes

Thefinite Fourier transform of a point process is defined by Bartlett (1963) as

dT (ω) =
1√
2πT

∫ T

0
e−iωtdN(t),

and theperiodogram of a point process is defined by the squared norm of the finite Fourier

transform

IT (ω) =
1

2πT

∣

∣

∣

∫ T

0
e−iωtdN(t)

∣

∣

∣

2

=
1

2πT

∣

∣

∣

∑

tj≤T

e−iωtj
∣

∣

∣

2
,

whereT is the observation length. Again, we considerT as a fixed quantity and the sample size

n = N(T ) as a random number.

Periodogram can be calculated directly from the data{tj : j = 1, 2, . . . , tj ≤ T}.

The intensity function of a point process is unobservable. However, as illustrated by Fig-

ures 1.1 and 1.2 and the discussion afterwards, the periodogram is closely related to the intensity

function when the point process follows a non-homogeneous Poisson process and the intensity

function takes the form

λ(t) =

K
∑

k=1

Ak cos(ωkt+ φk) +B,
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whereλ(t) ≥ 0 andAk > 0 andωk > 0, k = 1, . . . ,K.

Figures 1.1 and 1.2 show an example of the intensity functionof a non-homogeneous Pois-

son process and the corresponding periodogram calculated from one realization of the non-

homogeneous Poisson process.
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Figure 1.1: Intensity function of a non-homogeneous Poisson processλ(t) = cos( π
4
√
3
t) +

0.5 cos( π
3
√
2
t+ π

4 ) + 1.6.

The location of the two largest peaks of the periodogram correspond to the two frequen-

cies π
4
√
3

and π
3
√
2

in the intensity function, and the height of the peaks is closely related to the

magnitude of the two cosine functions in the intensity function. This relationship between peri-

odogram and the intensity function of a non-homogeneous Poisson process will be investigated

in more details in Chapter 2.

The properties of the periodogram are studied by Bartlett (1963) when the periodogram is

derived from a stationary process. Brillinger (1972) studied the spectral analysis of stationary

interval functions and gives the asymptotic distribution of the periodogram. We refer to these
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Figure 1.2: The periodogram of a non-homogeneous Poisson process with the aforementioned

intensity functionλ(t) = cos( π
4
√
3
t) + 0.5 cos( π

3
√
2
t + π

4 ) + 1.6. The process consists 778

observations with observation lengthT = 500.
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two references for further discussion of the periodogram. In this dissertation, our main interest

is in the non-homogeneous Poisson process, and the process is not stationary.
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Chapter 2

Almost Periodic Poisson Processes

2.1 Introduction

The main objective of this chapter is to present a model for non-homogeneous Poisson

processes with periodic or aperiodic but almost periodic rate of occurrence. The work in this

chapter has been summarized in the paper ‘Modelling non-homogeneous Poisson processes with

almost periodic intensity functions’ which will appear inJournal of the Royal Statistical Soci-

ety Series Band now can be downloaded at http://onlinelibrary.wiley.com/doi/10.1111/j.1467-

9868.2010.00758.x/pdf. This chapter and Appendix A provide more details than the paper,

especially in the proof.

There are many real life examples of point processes which show a pattern of periodicity,

such as higher volume of customers coming to a restaurant during Friday night and weekend

than weekdays, stock transaction with high activity at the beginning and the end of the day

(Engle (2000)), more phone calls made to a customer service center on Monday morning than

Friday evening, and even in seismicity where periodic pattern of earthquakes has been observed

in certain area (Vere-Jones and Ozaki (1982) and Imoto et al.(1999)). Many applications arise in

areas such as healthcare and medical sciences (Lewis (1970,1972) and Kuhl et al. (1995)), me-
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teorology (Lee et al. (1991)), and some others are noted in Helmers et al. (2003) and references

therein.

As introduced in Chapter 1, the rate of occurrence is also called the intensity function, and

more events in a certain period of time is equivalent to larger value of intensity function during

that time period. So when a point process shows a pattern of periodicity, its intensity function

is modeled as a periodic function. Many references have discussed the modeling of periodic in-

tensity functions of Poisson processes, such as Lewis (1970, 1972), Vere-Jones (1982), Helmers

et al. (2003, 2005), but none of them is in the almost periodiccontext. The novelty of our work

is in the presentation of constructing a much more general model which includes the purely

periodic Poisson processes as a special case. The concept of‘almost periodicity’ and our model

will be introduced in the next section. We will give a literature review on the parametric and

non-parametric approaches of modeling periodic Poisson process as follows.

Point processes with single or multiple periodicities of which the corresponding frequen-

cies are integer multiples of a fundamental frequency have been studied in the parametric con-

text. Lewis (1970, 1972) established the estimation and detection of a cyclic varying rate of

a non-homogeneous Poisson process when the frequency is known a priori. The rate function

took the form

λ(t) = A exp{ρ cos(ωt+ φ)} (2.1)

which would lead to simple results based on sufficient statistics and guarantee the positivity of

the intensity function. Vere-Jones (1982) considered and established the asymptotic properties

of a consistent estimate for the unknown frequencyω in (2.1), which is based on the maximum

of the Bartlett periodogram (Bartlett (1963)) over certainfrequency range and coincides with the

maximum likelihood estimate. As introduced in Chapter 1, the periodogram of a point process
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is defined as

IT (ω) = (2πT )−1
∣

∣

∣

∫ T

0
e−iωtdN(t)

∣

∣

∣

2
= (2πT )−1

∣

∣

∣

∑

tj≤T

e−iωtj
∣

∣

∣

2
, (2.2)

where(0, T ) is the observation interval,N(t) is the counting process which is the number of

events by time t, and{tj : tj ≤ T} are the random occurrences of events. However, (2.1) is lim-

ited in its parametric form, that is within each cycle the intensity function has a sharp peak and

a flat trough, and the model may not perform well when the true intensity function departs from

this parametric form, such as a flat peak and a steep trough or several peaks in one cycle. Kuhl

(1994) and Kuhl et al. (1995, 1997) extended Lewis’s model where the rate of Poisson processes

was an exponential function with the sum of several sinusoidal functions plus a baseline constant

in the exponent. An approximated likelihood was used in calculating the parameter estimates

numerically, but this approximated likelihood may differ from the true likelihood severely when

the baseline in the exponent is relatively small compared tothe amplitudes of the sinusoidal

functions in the exponent. In addition, there is no justification of the goodness of the initial val-

ues of the frequencies which is usually of most interest, northe statistical properties of the final

parameter estimates. A series of paper by J. Garrido and Y. Luhave proposed and investigated

several parametric doubly periodic Poisson models and apply the models to the hurricane data

to include the El Niño and La Niña effect. We refer to Lu and Garrido (2005) and the reference

therein. The intensity function is expressed as a product oftwo periodic functions that represent

short-term and long-term trend. In their paper, both short-and long-term periods are assumed

to be known and the long-term period is an integer multiple ofthe short-term period, so this

doubly periodic Poisson model is a special case of the purelyperiodic Poisson model.

The period or, equivalently, frequency of the periodic Poisson process has been studied

non-parametrically as well, we refer to Mangku (2001) and Bebbington and Zitikis (2004). An

updated version of Mangku (2001) is Helmers and Mangku (2003). The main idea in Helmers

12



and Mangku (2003) is that if the intensity function is periodic with periodτ , then the counts of

events within each time interval of lengthτ should share the same expected value, so one can

find out the estimate ofτ by searching for the proper interval length which minimizesthe sum of

squared difference between counts within each time interval and the averaged counts. However,

this approach is flawed in the following sense: the expected value of the number of counts in

a time interval is the integrated value of the intensity function in that time interval, so if the

intensity function is periodic and the integrated intensity within the first half period is the same

as the integrated intensity within the latter half period, the approach in Helmers and Mangku

(2003) would find a period estimate around half of the true period, not the complete true period.

An example for this case is that the intensity function isλ(t) = 0.1 + | cos(2πt)| with period1

and it is symmetric within each period, so the integrated intensity in the first half period is the

same as the one in the second half period, and thus the approach in Helmers and Mangku (2003)

would estimate the period around0.5 instead of1. Follow a similar argument, a smaller divisor

of the period could be found as the period estimate if the integrated intensities are the same

within each sub-divisor of the period. In addition, the search range for the period estimate is not

well defined, or relies on the prior knowledge of the length ofthe period which is sometimes

unavailable in practice. Bebbington and Zitikis (2004) constructed a family of non-parametric

estimators for the period of a cyclic Poisson process, and one candidate is the twice of the length

of the interval which maximizes the sum of squared difference between counts in adjacent time

intervals. The authors generalized this estimator to a family of non-parametric estimators and

used simulations to demonstrate the utility of the results.From the discussion in the paper,

the proposed estimator may find the period estimate to be halfof or even smaller divisor of

the true period. In addition, the asymptotic and statistical properties of these non-parametric

estimators are not shown in the paper though the authors madesome remarks on the derivation

of the asymptotic properties. One needs to pay attention to the claim made in Bebbington and
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Zitikis (2004) that the periodogram cannot handle multimodal cycles, namely, multiple peaks in

one cycle. This is not true, and this claim is made solely based on the simulation results without

theoretical proof. In fact, in their simulation, the periodogram estimator is searched too sparsely,

the searching grid may not be fine enough to have the lengtho(T−1) whereT is the observation

length. The computational issues on searching the periodogram estimator will be discussed in

this chapter.

There are a series of papers on non-parametric estimation ofthe intensity function of a

cyclic Poisson process. Helmers et al. (2003, 2005) constructed and investigated a consistent

kernel-type non-parametric estimator of the intensity function, where the unknown periodτ

is first estimated by periodogram-based estimator in Vere-Jones (1982) or the non-parametric

estimator in Helmers and Mangku (2003), and then the intensity function at times is estimated

by using the data points nears + kτ̂ , wherek is non-negative integer and̂τ is the estimator

of τ . The idea in estimating the shape of the intensity function is essentially similar as the

‘folding’ technique in Hall et al. (2000) although we believe that it is a coincidence. Hall

et al. (2000) introduced a general framework of nonparametric estimation of a periodic function

when observations were made at irregularly spaced time. Themain difference between the

estimation of general periodic function and the estimationof periodic intensity function of a

Poisson process is that the value of the general periodic function is observable (as the response),

but the intensity function of a point process is unobservable. The only observations in a point

process are the points, or the occurrence time of the series of events.

In addition, motivated by J. Garrido and Y. Lu’s work, Helmers et al. (2007) constructed

and analyzed a non-parametric estimator for the doubly periodic Poisson intensity function un-

der the same assumptions as in Lu and Garrido (2005). Specifically, the long-term periodic func-

tion is modeled as a step function which takes positive constant value over the whole short-term

period. So within one long-term period, each short-term periodic effect is a constant multiples
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of the first short-term effect. This structure of long-term periodic function is used in one of the

parametric models in Lu and Garrido (2005). The estimation of the short-term periodic function

is in essence similar to the technique in Helmers et al. (2003, 2005).

Moreover, the non-parametric prediction upper bound for a future observation of a cyclic

Poisson process has been studied in Helmers and Mangku (2009) where the period is assumed

to be known.

In the preceding non-parametric estimation and prediction, the assumption of a purely

periodic intensity function is critical so that the intensity function repeats itself exactly, and thus

can be extended to the future for prediction or produces ‘replicates’ of the process even when

there is only one realization of the process. For the case when the intensity function is almost

periodic but not periodic then the intensity function does not repeat itself exactly and in this case

it is difficult to implement the non-parametric technique for estimation and prediction by these

non-parametric methods. We will give more information on almost periodic function in the next

section.

The rest of this chapter is organized as follows. In section 2.2, we introduce the concept

of almost periodic function and our model. In section 2.3, weintroduce the notations and

assumptions, and state the main results in estimating the parameters in the intensity function. In

section 2.4, we discuss some computational issues in estimating the frequencies. Prediction of

the next occurrence is discussed in section 2.5. Simulationstudies are carried out in section 2.6

and a real life data set is analyzed in section 2.7. We conclude with some further discussion in

section 2.8. Appendix A contains most of the proofs of the results.
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2.2 Our model

2.2.1 Almost periodic function

There are various different but equivalent definitions of almost periodic function. We use

the definition in Corduneanu (1989).

Definition 2 A complex valued functionf(x) defined for−∞ < x < ∞ is called almost

periodic, if for anyε > 0 there exists a trigonometric polynomialTε(x), such that

|f(x)− Tε(x)| < ε, −∞ < x <∞,

where the trigonometric polynomial is in the form ofT (x) =
∑n

k=1 cke
iλkx, andck are complex

numbers andλk are real numbers.

Thus almost periodic functions are those functions defined on the real line, which can be

uniformly approximated by trigonometric polynomials.

An equivalent definition of almost periodic function is given by Bohr (1947) as follows.

Definition 3 For anyε > 0, if there exists a numberl(ε) > 0 with the property that any interval

of lengthl(ε) of the real line contains at least one point with abscissaξ, such that

|f(x+ ξ)− f(x)| < ε, −∞ < x <∞,

thenf(x) is almost periodic.

We refer to Corduneanu (1989) for the proof of equivalence ofabove two definitions and

more details of almost periodic functions.

From definition 2 it follows that any trigonometric polynomial is an almost periodic func-

tion. In addition, any periodic function which has a Fourierseries representation, such as con-

tinuous periodic function, is also almost periodic, in other words, such periodic functions are

just special cases of almost periodic functions.
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Figure 1.1 shows an almost periodic function. The function has certain pattern of period-

icity, but there is no periodτ such that the function at any timet has exactly the same value as

it is at timet+ τ . The function allows some deviation from the purely periodic case.

2.2.2 Almost periodic point processes

In practice, almost periodic process is much more general than the periodic one, since

any particular configuration that occurs once may recur not exactly, but within some level of

accuracy. And it is more reasonable to assume an almost periodic intensity function when the

point process shows a patter of periodicity. In the point process case, the intensity function is

defined on the non-negative real line, and by definition 2 thatany almost periodic function can

be uniformly approximated by the trigonometric polynomials, we model the almost periodic

point process with the following intensity function,

λ(t) =

K
∑

k=1

Ak cos(ωkt+ φk) +B, (2.3)

whereAk, B, ωk, φk are unknown parameters withA1 > A2 > · · · > AK > 0, −π/2 ≤ φk <

3π/2 andωk > 0, k = 1, . . . ,K. The baselineB is a constant such thatλ(t) is non-negative

for anyt > 0. A sufficient condition to guarantee the non-negativity ofλ(t) isB ≥
∑K

k=1Ak.

By Fourier expansion, the sum of sinusoidal functions can capture most of the variation of

a periodic function in any shape, and when the frequencies are not integer multiples of a funda-

mental frequency, (2.3) is not periodic but almost periodic. Chen (2006) first used this model

to test the existence of the periodic components when the frequencies{ωk : k = 1, . . . ,K} are

known. He also proposed a method of detection of hidden periodicity. There, Poisson process

assumption was relaxed, while the process is assumed to havestationary increment under null

hypothesis.
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2.3 Assumptions and Estimation

We consider simple point process in which at most one event occurs at any given time. We

also assume the point process is a non-homogeneous Poisson process.

Assumption 4 N(t), t ≥ 0, is a non-homogeneous Poisson process with a periodic or almost

periodic intensity function(2.3), observed over the time interval[0, T ], and the number of peri-

odic componentsK is given.

The estimation ofK will be discussed in Chapter 3.

Inspired by Vere-Jones (1982), we construct the estimates of all unknown parameters in

(2.3) mainly by the periodogram (2.2) for non-homogeneous Poisson processes. The esti-

mates do not coincide with the maximum likelihood estimates, but they can be very good ini-

tial values in finding the MLE’s. Denoteω = (ω1, . . . , ωK)′ in (2.3). We determinêωT =

(ω̂1,T , . . . , ω̂K,T ) as the estimate ofω which are frequencies corresponding to theK largest

local maxima of the periodogram (2.2) under a certain minimum separation condition that is

explained below. Analogous to the estimation of several harmonic components in the ordinary

time series analysis (Walker (1971)), a minimum separationcondition on theω must be imposed

to keep theωk from being too close together and thus prevent the estimatesof two angular fre-

quencies from converging to the same value in probability. We have the following assumption.

Assumption 5 T mink 6=k′(|ωk − ωk′ |) → ∞, asT → ∞.

The choice of minimum separation depends on the data lengthT and the rate of occurrence

λ(t). If the number of observations is large, in other words,T is large and/orλ(t) is large, then

we should be able to estimate frequencies which are closer toeach other.

In addition, the maxima of the periodogram (2.2) should be searched in an appropriate

range. For a fixed data set, the periodogram (2.2) is an almostperiodic function ofω, and
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it follows from the properties of almost periodic functionsthat, there will be arbitrarily large

values ofω for which the periodogram approaches within any given accuracy of its absolute

maximumN(T )2/2πT (Vere-Jones (1982)). So the maxima of the periodogram over too large

a range will be unrelated to the periodic effects. The ‘average’ Nyquist frequencyπN(T )/T

is suggested to be the upper bound in Vere-Jones and Ozaki (1982), while a wider condition is

shown in Vere-Jones (1982) that the upper bound only needs toincrease sufficiently slowly with

T . As for the lower bound, a neighborhood of0 has to be excluded to remove the peak of the

periodogram at the origin and the peaks near the origin caused by leakage, so that the frequency

estimates will not converge to0. We have the following assumption on the search range.

Assumption 6

O(T δ′−1) ≤ ωk ≤ ΩT , k = 1, . . . ,K,

where0 < δ′ < 1 andΩT is the upper bound, possibly determined by observations on the

process in the interval(0, T ) with E(ΩT ) = O(T 1−δ), δ > 0.

There is another way to eliminate the peaks of the periodogram around the origin by using

the centralized periodogram

I∗T (ω) = (2πT )−1
∣

∣

∣

∫ T

0
e−iωt

[

dN(t)− N(T )

T
dt
]

∣

∣

∣

2
, (2.4)

which has an asymptotically negligible effect at other frequencies. So if the frequency estimates

are determined by (2.4), the lower bound in the search range can be0. In the following dis-

cussion, we use the unmodified periodogram (2.2) to derive the asymptotic results, but all the

results hold equally for the centralized periodogram (2.4).

In summary, to estimate the frequencies, we only consider local maxima of the peri-

odogram which occur in the range defined in Assumption 6, and the corresponding frequencies

are well separated where their shortest distance cannot decrease faster thanO(T−1) asT → ∞.
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So for a given set of local maxima of the periodogram, to search for the next local maximum,

one has to exclude the peaks that occur in the neighborhoods of the frequencies which corre-

spond to the given local maxima, and the width of each neighborhood isO(T−1+γ) with γ > 0.

Then frequencies corresponding to the largestK such local maxima of the periodogramIT (ω)

are defined to be the frequency estimatesω̂T = (ω̂1,T , . . . , ω̂K,T ).

Vere-Jones (1982) confirmed that some detailed results for the asymptotic behavior of the

periodogram-based frequency estimate in a periodic signalin Gaussian noise (Hannan (1973))

would at least have some counterpart in the point process context by using the decomposition

dN(t) = λ(t)dt+ dZ(t), (2.5)

whereλ(t) is the intensity function, anddZ(t) is a process with mean0, and independent but

non-stationary increments. In addition, cov(dZ(t), dZ(τ)) = var(dZ(t))δt,τ with δt,τ equals 1

if t = τ and 0 otherwise, and var(dZ(t)) = var(N(t)) = λ(t)dt − λ2(t)(dt)2. SodZ(t) is

mean-squared bounded.

The lemma and its variants in Vere-Jones (1982) play an important role in showing the

similarities between results in ordinary time series with Gaussian noises and non-homogeneous

Poisson processes. We state a similar result here.

Lemma 7 LetN(t) be a Poisson process with a bounded intensity functionλ(t), observed over

the time interval[0, T ], letΩT be a frequency upper bound, determined possibly by observations

on the process in the interval(0, T ), and set

dZ(t) = dN(t)− λ(t)dt.

Then ifΩT satisfies the condition in Assumption 6, for everym ≥ 1, asT → ∞,

T−m sup
0≤ω≤ΩT

∣

∣

∣

∫ T

0
tm−1e−iωtdZ(t)

∣

∣

∣ → 0 (almost surely).
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We refer to Vere-Jones (1982) for the original proof of the casem = 1. In the appendix we

correct the typo in the original proof and generalize it to the casem ≥ 1.

Lemma 7 implies that in the decomposition

JT (ω) := T−m

∫ T

0
tm−1e−iωtdN(t)

= T−m

∫ T

0
tm−1e−iωtλ(t)dt+ T−m

∫ T

0
tm−1e−iωtdZ(t)

= J
(λ)
T (ω) + J

(Z)
T (ω),

(2.6)

J
(Z)
T (ω) converges to0 uniformly for ω ∈ (0,ΩT ] or, equivalently,J (λ)

T (ω) is the dominant

term inJT (ω).

We use the above results to establish the asymptotic properties of the parameter estimates,

starting with the ‘super-efficiency’ in the frequency estimates.

Proposition 8 Under Assumptions 4, 5 and 6,ω̂T is a consistent estimate ofω, and

(ω̂k,T − ωk) = o(T−1), (a.s.), k = 1, . . . ,K. (2.7)

We leave the proof in the appendix. The result here is similarto the ‘supper-efficiency’

of frequency estimates in the ordinary time series with convergence rateo(n−1) wheren is

the sample size. One may wonder why frequency estimates require such an accuracy which

is not only better thanO(T−1/2) but alsoO(T−1). Our intuitive answer is that most of the

time, the estimation of the amplitude of the sinusoid relieson the frequency estimates, and if

the estimated frequency is not within the desired precisionof the true frequency, corresponding

amplitude estimate is not consistent. In the ordinary time series literature, Rice and Rosenblatt

(1988) discussed the use of periodogram on frequency estimation in ordinary time series with a

periodic signal in stationary noise sequence. They pointedout that in order to determine the fre-

quency estimate which maximizes the periodogram, one wouldhave to sample the periodogram

deterministically by a grid mesh with the mesh lengtho(n−1) wheren is the sample size. Oth-

erwise, if the distance between the frequency estimate and the true frequency is greater than
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o(n−1), the corresponding amplitude and phase estimates are inconsistent. These results extend

when there are several harmonic components in the time series. Such results have a counter

part in the point process case. We will give a detailed discussion about computational issue on

frequency estimation in the framework of our model in section 2.3.

To investigate the asymptotic behavior of the parameter estimates, we define the following

random variables

U := T− 1

2

∫ T

0
dZ(t),

Vk := T− 1

2

∫ T

0
cos(ωkt)dZ(t), Wk := T− 1

2

∫ T

0
sin(ωkt)dZ(t)

Xk := T− 3

2

∫ T

0
t cos(ωkt)dZ(t), Yk := T− 3

2

∫ T

0
t sin(ωkt)dZ(t),

k = 1, . . . ,K.

(2.8)

For simplicity, we use the following notations

δk,k′ = I{ωk = ωk′}, δj,k+k′ = I{ωj = ωk + ωk′},

δj,k−k′ = I{ωj = ωk − ωk′}, δj,k′−k = I{ωj = ωk′ − ωk},

whereI{.} is the indicator function.

From the bounded variance and independent increment property of the processdZ(t), a

central limit theorem can be applied in determining the asymptotic distribution of the variables

defined in (2.8). The proof is in the Appendix.

Proposition 9 Under Assumptions 4 and 5,(U, V1, . . . , VK ,W1, . . . ,WK ,X1, . . . ,XK , Y1, . . . , YK)′

is asymptotically normally distributed asT → ∞, with mean0, and variance-covariance
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lim
T→∞

cov[(U, Vk,Wk,Xk, Yk)
′, (U, Vk′ ,Wk′ ,Xk′ , Yk′)

′] =

































B (Ak′/2) cos(φk′) −(Ak′/2) sin(φk′) (Ak′/4) cos(φk′) −(Ak′/4) sin(φk′)

(Ak/2) cos(φk) E1(k, k
′) E3(k, k

′) 1
2E1(k, k

′) 1
2E3(k, k

′)

−(Ak/2) sin(φk) E3(k
′, k) E2(k, k

′) 1
2E3(k

′, k) 1
2E2(k, k

′)

(Ak/4) cos(φk)
1
2E1(k

′, k) 1
2E3(k, k

′) 1
3E1(k, k

′) 1
3E3(k, k

′)

−(Ak/4) sin(φk)
1
2E3(k

′, k) 1
2E2(k

′, k) 1
3E3(k

′, k) 1
3E2(k, k

′)

































where

E1(k, k
′) := lim

T→∞
cov(Vk, Vk′) =

K
∑

j=1

Aj

4
cos(φj)(δj,k+k′ + δj,k−k′ + δj,k′−k) +

B

2
δk,k′,

E2(k, k
′) := lim

T→∞
cov(Wk,Wk′) =

K
∑

j=1

Aj

4
cos(φj)(−δj,k+k′ + δj,k−k′ + δj,k′−k) +

B

2
δk,k′ ,

E3(k, k
′) := lim

T→∞
cov(Vk,Wk′) =

K
∑

j=1

Aj

4
sin(φj)(−δj,k+k′ + δj,k−k′ − δj,k′−k),

k, k′ = 1, . . . ,K. The rows of the matrix correspond to random variables with subscriptk and

the columns correspond to random variables with subscriptk′. Other covariance in the matrix

amongVk′ ,Wk′ ,Xk,Xk′ , Yk andYk′ are given similarly.

Now we show the asymptotic behavior ofω̂T.

Since the periodogram is a twice continuously differentiable function ofωk, andω̂k,T is

thekth largest local maximum, a Taylor series expansion aboutω̂k,T yields

I ′T (ωk) = I ′T (ω̂k,T ) + (ωk − ω̂k,T )I
′′
T (ω̄k,T ) = (ωk − ω̂k,T )I

′′
T (ω̄k,T ),

where0 ≤ |ω̄k,T − ωk| ≤ |ω̂k,T − ωk|. So

T
3

2 (ω̂k,T − ωk) = −2πT− 3

2 I ′T (ωk)/2πT
−3I ′′T (ω̄k,T ). (2.9)
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The results in Proposition 9 will help describe the asymptotic behavior of the numerator

and denominator of (2.9), starting with the decomposition of IT (ω)

(2πT )IT (ω) =
[

∫ T

0
sin(ωt)dN(t)

]2
+

[

∫ T

0
cos(ωt)dN(t)

]2

=
[

∫ T

0
sin(ωt)λ(t)dt +

∫ T

0
sin(ωt)dZ(t)

]2
+
[

∫ T

0
cos(ωt)λ(t)dt+

∫ T

0
cos(ωt)dZ(t)

]2
.

(2.10)

We call the integralZ-integral if it is with respect todZ(t), andλ-integral if the integral is with

respect toλ(t)dt.

In the first derivative of(2πT )IT (ω) in (2.10) atω = ωk, the products ofλ-integrals in

the expansion withλ(t) given in (2.3) areO(T 3) plus someO(T 2) terms, but theO(T 3) terms

are canceled out eventually, and the products ofZ-integrals areO(T 2) in distribution according

to Proposition 9. Meanwhile, the products of oneλ-integral and oneZ-integral areO(T 5/2) in

distribution, so they are the leading terms. Expressing theZ-integrals in terms of the random

variables defined in (2.8) and evaluating theλ-integrals by (A.1) in the Appendix, we find

2πT− 3

2 I ′T (ωk) = Ak{
1

2
Vk sin(φk)+

1

2
Wk cos(φk)−Xk sin(φk)−Yk cos(φk)}+o(1), k = 1, . . . ,K.

As for the denominator of (2.9), break it in the similar way. All terms involvingZ-integrals

uniformly (in ω) converge to0 (a.s.) by Lemma 7, and the leading terms are the products of

λ-integrals. The result|ω̄k,T − ωk| = o(T−1) implied by Proposition 8 is needed in evaluating

the limiting value ofλ-integrals by (A.1) and (A.2). We find that

2πT−3I ′′T (ω̄k,T ) → − 1

24
A2

k, almost surely, k = 1, . . . ,K. (2.11)

So

T
3

2 (ω̂k,T−ωk) =
24

Ak
{1
2
Vk sin(φk)+

1

2
Wk cos(φk)−Xk sin(φk)−Yk cos(φk)}+o(1), k = 1, . . . ,K.

(2.12)

Now we obtain the asymptotic behavior ofω̂T which is shown in Theorem 10.
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Theorem 10 Propositions 8 and 9 imply that asT → ∞, T
3

2 (ω̂T − ω) is asymptotically

normally distributed, with mean0, and variance-covariance

lim
T→∞

cov(T
3

2 (ω̂k,T − ωk), T
3

2 (ω̂k′,T − ω′
k)) =

12

AkAk′

[

2Bδk,k′ +

K
∑

j=1

Aj×

(

− cos(φj − φk − φk′)δj,k+k′ + cos(φj − φk + φk′)δj,k−k′ + cos(φj + φk − φk′)δj,k′−k

)]

,

wherek, k′ = 1, . . . ,K. In particular, the variance is

lim
T→∞

var(T
3

2 (ω̂k,T − ωk)) =
12

A2
k

(

2B −
K
∑

j=1

Aj cos(φj − 2φk)δj,k+k

)

.

We proceed to definêAk,T andφ̂k,T as the estimates ofAk andφk, respectively. We denote

(i)k and(ii)k by

(i)k := −T−1

∫ T

0
sin(ω̂k,T t)dN(t), and(ii)k := T−1

∫ T

0
cos(ω̂k,T t)dN(t),

wherek = 1, . . . ,K. Then defineÂk,T andφ̂k,T by

Â2
k,T = 4[(i)2k + (ii)2k] = (8π/T )IT (ω̂k,T ), soÂk,T =

√

Â2
k,T ,

and

tan φ̂k,T = (i)k/(ii)k , if (ii)k 6= 0,

andφ̂k,T =











































arctan tan φ̂k,T , if (ii)k > 0,

arctan tan φ̂k,T + π, if (ii)k < 0,

π/2 sgn((i)k), if (ii)k = 0,

wherek = 1, . . . ,K.

To establish the asymptotic property ofÂ2
k,T , we use the following representation

T
1

2 (Â2
k,T −A2

k) = −(8π)T− 1

2

[

IT (ωk)− IT (ω̂k,T )
]

+ T
1

2

[

(8π/T )IT (ωk)−A2
k

]

= −8π

2
T− 1

2 (ωk − ω̂k,T )
2I ′′T (ω̄k,T ) + 4Ak{Vk cos(φk)−Wk sin(φk)}+ o(1)

= 4Ak{Vk cos(φk)−Wk sin(φk)}+ o(1),

(2.13)
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whereω̄k,T in the second last equation satisfies0 ≤ |ω̄k,T − ωk| ≤ |ω̂k,T − ωk|. The first term

in the second last equation is obtained by taking Taylor series expansion ofIT (ω) aboutω̂k,T ,

and sinceI ′′T (ω̄k,T ) isO(T 3) by (2.11), and(ωk− ω̂k,T )
2 isO(T−3) in distribution by Theorem

10, this term isO(T− 1

2 ) and converges to0 asT → ∞. The second term in the second last

equation is obtained by the decomposition in (2.10) and expressingZ-integral in terms of the

random variables defined in (2.8). Following Proposition 9,the last equation in (2.13) implies

the asymptotic normality ofT
1

2 (Â2
k,T −A2

k). And δ-method yields the asymptotic normality of

ÂT .

Turning totan φk, we first discuss the case whenφk 6= π/2 or −π/2, thencos(φk) 6= 0.

Splitting (ii)k into the sum of oneλ-integral and oneZ-integral as in (2.5), Lemma 7 implies

that the leading term in(ii)k is theλ-integral and it is(Ak/2) cos(φk) 6= 0 by (A.1), so(ii)k is

not0 asymptotically. We breakT
1

2 (tan φ̂k,T − tan φk) as follows,

T
1

2 (tan φ̂k,T − tan φk) = −T 1

2

[ (i)k
(ii)k

− T−1
∫ T
0 sin(ωkt)dN(t)

T−1
∫ T
0 cos(ωkt)dN(t)

]

+ T
1

2

[

−T−1
∫ T
0 sin(ωkt)dN(t)

T−1
∫ T
0 cos(ωkt)dN(t)

− tanφk

]

= (iii)k + (iv)k.

In addition, in the decomposition of the first derivative of(i)k/(ii)k at ω̄k,T (0 ≤ |ω̄k,T −ωk| ≤

|ω̂k,T − ωk|), the leading term is the products ofλ-integrals, and it isO(T ) in distribution. By

making use of (A.1), a Taylor series expansion of(iii)k aboutωk yields

(iii)k = −T 1

2

[ d

dω

(T−1
∫ T
0 sin(ωt)dN(t)

T−1
∫ T
0 cos(ωt)dN(t)

)∣

∣

∣

ω=ω̄k,T

]

(ω̂k,T − ωk)

= −T 1

2

[

T
1 + o(1)

2 cos2(φk + o(1))

]

(ω̂k,T − ωk)

= − 12

Ak cos2(φk)
{1
2
Vk sin(φk) +

1

2
Wk cos(φk)−Xk sin(φk)− Yk cos(φk)}+ o(1),

where the last equation follows by (2.12). Now we turn to(iv)k and break integrals in a similar

way; we find that

(iv)k = − 2

Ak cos2(φk + o(1))
{Vk sin(φk) +Wk cos(φk)}+ o(1).
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So

T
1

2 (tan φ̂k,T−tan φk) = − 4

Ak cos2(φk)
{2Vk sin(φk)+2Wk cos(φk)−3Xk sin(φk)−3Yk cos(φk)}+o(1),

(2.14)

and we obtain the asymptotic normality ofT
1

2 (tan φ̂k,T − tan φk) by Proposition 9. Again,

δ-method yields the asymptotic normality of̂φT whenφk 6= π/2 or−π/2.

Consider the case whenφk = π/2 or−π/2. It is easy to see that(ii)k → 0 asT → ∞ and

(i)k → (Ak/2) sin(φk) = (Ak/2) sgn{sin(φk)} by Lemma 7 and (A.1). So asT → ∞ and

φk → π/2, φ̂k,T = arctan tan φ̂k,T = arctan[(i)k/(ii)k ] → π/2, and a similar result applies

to φk → −π/2. So φ̂k,T is a consistent estimate ofφk whenφk = ±π/2 and the asymptotic

normality of φ̂k,T obtained above extends to the case whenφk = ±π/2.

The cross-covariance of̂AT andφ̂T will be given in Theorem 13.

Theorem 11 Propositions 8 and 9 imply that, asT → ∞, T
1

2 (ÂT −A) andT
1

2 (φ̂T −φ) are

asymptotically normally distributed, with mean0, and variance-covariance

lim
T→∞

cov(T
1

2 (Âk,T −Ak), T
1

2 (Âk′,T −Ak′)) = 2Bδk,k′ +

K
∑

j=1

Aj×

(

cos(φj − φk − φk′)δj,k+k′ + cos(φj − φk + φk′)δj,k−k′ + cos(φj + φk − φk′)δj,k′−k

)

,

lim
T→∞

cov(T
1

2 (φ̂k,T − φk), T
1

2 (φ̂k′,T − φk′)) =
4

AkAk′

[

2Bδk,k′ +

K
∑

j=1

Aj×

(

− cos(φj − φk − φk′)δj,k+k′ + cos(φj − φk + φk′)δj,k−k′ + cos(φj + φk − φk′)δj,k′−k

)]

.

wherek, k′ = 1, . . . ,K. In particular, the variances are

lim
T→∞

var(T
1

2 (Âk,T −Ak)) = 2B +
K
∑

j=1

Aj cos(φj − 2φk)δj,k+k,

lim
T→∞

var(T
1

2 (φ̂k,T − φk)) =
4

A2
k

(

2B −
K
∑

j=1

Aj cos(φj − 2φk)δj,k+k

)

.
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Now we consider the estimate ofB. SinceB represents the mean occurrence rate,N(T )/T

should be a good estimate. DefineB̂T as

B̂T = N(T )/T.

It is shown in the Appendix that̂λT (t) = λ(t) + O(T− 1

2 ), so, for largeT , λ̂T (t) is asymptot-

ically non-negative. In practice, for a finite sample, the estimateB̂T = N(T )/T may lead to

negativêλT (t) at somet, so, if one is willing to make the assumption thatB ≥ ∑K
k=1Ak, then

B̂T = max(
∑K

k=1 Âk,T , N(T )/T ) is a good choice, and in this case, such an estimate ofB

is asymptotically equal toN(T )/T . Otherwise, this latter estimate ofB might have a positive

bias. For simplicity, in the simulation study later, we use the latter estimate ofB. However,

we note that the difference in using either estimate ofB is small in the simulation examples.

There are other ways to guarantee the non-negativity of the estimated intensity function, such

asλ̃T (t) = max(0, λ̂T (t)).

Theorem 12 Proposition 9 implies that asT → ∞, T
1

2 (B̂T − B) is asymptotically normally

distributed, with mean0, and varianceB.

The correlation of all above estimates are given in the following theorem.

Theorem 13 It follows from Propositions 9 and 8 that asT → ∞, T
3

2 (ω̂T −ω), T
1

2 (ÂT −A),

T
1

2 (φ̂T − φ), andT
1

2 (B̂T − B) are jointly normally distributed, with mean0, and variance-
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covariance

lim
T→∞

cov(T
3

2 (ω̂k,T − ωk), T
1

2 (φ̂k′,T − φk′)) =
6

AkAk′

K
∑

j=1

Aj×

(

cos(φj − φk − φk′)δj,k+k′ − cos(φj − φk + φk′)δj,k−k′ − cos(φj + φk − φk′)δj,k′−k

)

,

lim
T→∞

cov(T
1

2 (Âk,T −Ak), T
1

2 (φ̂k′,T − φk′)) =
1

Ak′

K
∑

j=1

Aj×

(

sin(φj − φk − φk′)δj,k+k′ − sin(φj − φk + φk′)δj,k−k′ + sin(φj + φk − φk′)δj,k′−k

)

,

lim
T→∞

cov(T
1

2 (Âk,T −Ak), T
1

2 (B̂T −B)) = B,

lim
T→∞

cov(T
3

2 (ω̂k,T − ωk), T
1

2 (Âk′,T −Ak′)) = 0,

lim
T→∞

cov(T
3

2 (ω̂k,T − ωk), T
1

2 (B̂T −B)) = 0,

lim
T→∞

cov(T
1

2 (φ̂k,T − φk), T
1

2 (B̂T −B)) = 0.

wherek, k′ = 1, . . . ,K.

2.4 Computational issues

Given the similarities between results on frequency estimation in ordinary time series and

point processes, one should expect similar concern in usingthe periodogram as discussed in

Rice and Rosenblatt (1988) for ordinary time series. There are many local maxima and minima

in the periodogram, and the usual optimization algorithms are not suitable in searching for the

K largest local maxima under Assumption 5 unless very good initial values are given and the

search range for each local maximum is greatly narrowed down. Proposition 8 suggests that if

we wish to determine theK largest local maxima effectively under Assumption 5, we would

have to sample the periodogram more finely thanO(T−1) or, namely,o(T−1).

We will first discuss what happens to the amplitude and phase estimates when the frequency

estimates are not withino(T−1) from the corresponding true frequencies. For simplicity and

economy, we assumeK = 1, and denote the true frequency asω0. The following results extend
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whenK > 1.

Suppose that we had obtained an estimateω̃ of ω0, and the estimates ofA0 andφ0 (φ0 6=

±π/2) are based oñω, so

Ã2 = (8π/T )IT (ω̃), and tan φ̃ = −T−1

∫ T

0
sin(ω̃t)dN(t)

/

T−1

∫ T

0
cos(ω̃t)dN(t).

The discussion of (2.13) implies that if̃A2 is consistent thenT−1IT (ω̃)−T−1IT (ω0) → 0

asT → ∞. Assuming that|ω̃ − ω0| = cT−1 for c 6= 0, it then follows from Lemma 7

with m = 1 that the leading terms inT−1IT (ω̃) andT−1IT (ω0) are theλ-integrals. Further

calculation by (A.1) shows that

T−1IT (ω̃)− T−1IT (ω0) =
A2

0

8πc2
(2− 2 cos(c)− c2) + o(1). (2.15)

Since2− 2 cos(c)− c2 ≤ 2− 2− c2 < 0 for c 6= 0, so the leading term on the right-hand side

of (2.15) is always negative and is of orderO(1) for c 6= 0. SoÃ2 is not a consistent estimate

of A2
0. Likewise, since

T−1
∫ T
0 sin(ω̃t)dN(t)

T−1
∫ T
0 cos(ω̃t)dN(t)

− T−1
∫ T
0 sin(ω0t)dN(t)

T−1
∫ T
0 cos(ω0t)dN(t)

=
sin(φ0) sin(c) − cos(φ0)(1 − cos(c)) + o(1)

sin(φ0)(1 − cos(c)) + cos(φ0) sin(c) + o(1)
− sin(φ0) + o(1)

cos(φ0) + o(1)
,

where the leading term is a cyclic function ofc with period2π, and it takes value0 only atc = 0

and is of order ofO(1) elsewhere forc ∈ (−π, π], sotan φ̃ is not consistent either.

If |ω̃ − ω0| = cT−1+γ , for γ > 0, c 6= 0, thenT−1IT (ω̃) is of order ofo(1), soÃ2 is not

consistent. As fortan φ̃, its numerator and denominator are both of order ofo(1), and it may

not even have a limiting value asT → ∞, so it is not consistent.

We thus see that if the frequency estimates are not withino(T−1) of the corresponding true

frequencies, the amplitude and phase estimates are not consistent. Note that the fast Fourier

transform cannot be used in calculating the periodogram of apoint process because the points

{tj : tj ≤ T} are not equally spaced.
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So for a given data set, we should search the periodogram on a grid mesh with the mesh

lengtho(T−1), such as2πT−3/2, and determine the initial values corresponding to theK largest

ordinates subject to the minimum separation condition, andthen do a more refined search in the

neighborhood of the initial values. Problems would arise inchoosing the minimum separation

for a particular set of data and in determining the neighborhood of the initial values in the more

refined search. We discuss these two problems as follows.

The choice of minimum separation isO(T−1+β) with β > 0. Practically, we may use

O(T−1/2), but it might be too wide to exclude frequencies with distance larger thanO(T−1)

but smaller thanO(T−1/2). As indicated in (2.15), if we set̃ω = ωk + cT−1 andω0 = ωk,

then we see that the leading term in(8π/T )IT (ω) atω = ωk + cT−1 is A2
k(2 − 2 cos(c))/c2,

which is around 0 when|c| > 6π andAk is not too large, so the periodogramIT (ω) may go

down to the noise level when it is outside[ωk−6π/T, ωk+6π/T ]. So in practice, we determine

ω̂1,T by maximizing the periodogram, and may determineω̂2,T by maximizing the periodogram

outside[ω̂1,T − 6π/T, ω̂1,T + 6π/T ], and so on. The suggestion of6π/T here is the smallest

or the most aggressive choice since we assume that the true frequencies are well separated with

minimum distance greater thanO(T−1). The minimum separation can also be determined by

prior knowledge of how far apart the frequencies are. Note that when the amplitudeAk is large

and the periodogram has a large dynamic range, the choice of6π/T is too small. Since the order

of Ak may be unknown for a given data set, it is safer to exclude a neighborhood that is wider

than12π/T . With the above discussion, there is always the issue of detecting a small signal in

the midst of a strong signal, i.e., the ratioA1/Ak is very large with a finite sample size.

As for the second problem regarding the neighborhood of the initial values in the more

refined search, since the random fluctuation ofIT (ω) generated byZ-integrals is at most of

order ofO(T 1/2) following a similar discussion to that in the proof of Proposition 9, we need

to find the smallesth > 0, denoted ash0, such that for everyω outside[ωk − h, ωk + h], the
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deterministic part ofIT (ω), namely theλ-integral, drops byO(T 1/2+γ) (for anyγ > 0) from

its local maximum atω = ωk, and thus the random fluctuation will not cause a local maximum

that is of the same order asIT (ω̂k,T ). In this case, the neighborhood of the initial value in the

more refined search can have a width with the same order ash0.

For everyω = ωk+h (h 6= 0), it is easy to show that the leading term inI ′T (ω) is the prod-

ucts ofλ-integrals with orderO(T 2), and it isT 2A2
k(−2 + 2 cos(hT ) + hT sin(hT ))/2(hT )3

which is positive if−2π/T ≤ h < 0 and negative if0 < h ≤ 2π/T . Moreover, the leading

term inI ′′T (ω) is the products ofλ-integrals with orderO(T 3), and it isT 3A2
k(6− 6 cos(hT )−

4hT sin(hT ) + (hT )2 cos(hT ))/2(hT )4 which is negative for−1/T ≤ h ≤ 1/T . So the

deterministic part of the periodogramIT (ω) has only one maximum atω = ωk and no local

minimum in [ωk − 2π/T, ωk + 2π/T ]. Therefore the neighborhood of the initial value for

ω̂k,T , [(initial value) − 2π/T, (initial value) + 2π/T ], must contain the true frequencyωk since

this initial value forω̂k,T is resolved with ordero(T−1). In addition, theλ-integral part or the

deterministic part ofIT (ω) is TA2
k(2− 2 cos(hT ))/(8πh2T 2), which drops by

A2
k

8π
T
[

1− 2− 2 cos(hT )

(hT )2

]

=
A2

k

8π
T
(hT )2 − 2 + 2[1− (hT )2

2! +
∑∞

n=2(−1)n (hT )2n

(2n)! ]

(hT )2

=
A2

k

8π
T
[ 1

12
(hT )2 +

∞
∑

n=3

(−1)n
(hT )2n−2

(2n)!

]

,

from its local maximum obtained atω = ωk with valueA2
kT/(8π). Setting this equation to

O(T 1/2), we have(hT )2 = O(T−1/2), soh = O(T−5/4). Any further departure fromωk than

O(T−5/4) will bring down the deterministic part ofIT (ω) by more thanO(T 1/2), soh0 men-

tioned above isO(T−5/4). And the search range in the more refined search forω̂k,T is (initial

value) ± O(T−5/4). In practice, we may use (initial value) ± T−5/4 log T as a conservative

choice for the more refined search range.
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2.5 Prediction

In this section, we investigate the problem of predicting the next occurrence conditional on

the current observations. The number of observationsN(T ) = n is given in the condition.

Denote

Λ(t) =

∫ t

0
λ(s)ds.

It is easy to see thatΛ(t) is a non-decreasing function. The following theorem provides the

point forecast and its standard error for the next occurrence.

Theorem 14 Under Assumption 4, the one-step predictionT̂n+1 is defined to minimize the

mean-squared error (MSE), and is given by

T̂n+1 = E(Tn+1|Tn = tn, . . . , T1 = t1)

= tn +

∫ ∞

tn

e−Λ(s)+Λ(tn)ds, n ≥ 1,

(2.16)

and its MSEνn without considering the uncertainty brought by the parameter estimates is given

by

νn = E(Tn+1 − T̂n+1)
2

= ETn

[

∫ ∞

Tn

2(s− Tn)e
−Λ(s)+Λ(Tn)ds−

{

∫ ∞

Tn

e−Λ(s)+Λ(Tn)ds
}2]

, n ≥ 1.

(2.17)

SinceN(t) follows a Poisson distribution with mean
∫ t
0 λ(s)ds = Λ(t), the marginal

distribution ofTn is

fTn(tn) = − ∂

∂tn
P (Tn > tn) = − ∂

∂tn
P (N(tn) < n)

= − ∂

∂tn

n−1
∑

j=0

[Λ(tn)]
j

j!
e−Λ(tn)

=
[Λ(tn)]

n−1

(n− 1)!
λ(tn)e

−Λ(tn), tn > 0,

soΛ(Tn) follows a Gamma distribution withα = n, β = 1.

The calculation of (2.17) is carried out by Monte Carlo integration with the following two

steps.
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1. Generate a large sample ofΨn = Λ(Tn) ∼ Gamma(α = n, β = 1). Solve forTn,

namely,tn as the root ofΛ(tn)− ψn = 0.

2. Calculate2
∫∞
tn

(s − tn)e
−Λ(s)+Λ(tn)ds − [

∫∞
tn
e−Λ(s)+Λ(tn)ds]2, and average overtn.

We obtainνn.

Suppose we predictTn+1 by a homogeneous Poisson process withλ = B whereas the true

model is given by Assumption 4. Such a prediction ofTn+1 is denoted bỹTn+1 and is given by

1/B. The improvement in the prediction in terms of the reductionof the MSE is

µn := E(Tn+1 − T̃n+1)
2 − E(Tn+1 − T̂n+1)

2 = ETn

[

∫ ∞

tn

e−Λ(s)+Λ(tn)ds− 1

B

]2
,

and it can be calculated by Monte Carlo integration with procedures similar to those discussed

before.

It is easy to see that the improvementµn is 0 if and only if all Ak ’s are zero, namely, the

true model is a homogeneous Poisson process.

We note that with the functional form of the intensity function, one can also easily obtain

the prediction bounds, i.e., the interval which includes the arrival of the next event with certain

probability. For example, a100(1 − α)% upper prediction bounda is defined by Pr{Tn+1 <

a|Tn = tn, . . . , T1 = t1} = 1−α, wherea > tn and100(1−α)% is the confidence level . The

conditional distribution ofTn+1 given the past events is given by (A.4) in the Appendix, and by

using (A.4) we can obtaina as the solution toΛ(a) = Λ(tn)− log(α).

2.6 Simulation study

In this section, we show the simulation results in evaluating the performance of our model.

We consider four different periodic or almost periodic intensity functions of non-homogeneous
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Poisson processes. They are respectively,

Case 1: λ(t) = 1.6 + cos
( π

4
√
3
t
)

+ 0.5 cos
( π

3
√
2
t+

π

4

)

,

Case 2: λ(t) =
√

3.1 + 3 cos
( π

3
√
2
t
)

,

Case 3: λ(t) = 0.1 + 0.5Mod[t, 2π],

Case 4: λ(t) = 1.3 exp
{

cos
( π

3
√
2
t+

π

4

)}

.

The intensity function in Case 1 is almost periodic but not periodic since the ratio of the

two frequenciesπ/4
√
3 andπ/3

√
2 is not rational, and the function never repeats itself exactly.

The intensity function in Case 2, 3 and 4 are periodic functions, and they are not, but can be

approximated by the sum of sinusoidal functions. In particular, Case 4 has the same function

form as (2.1) which has been discussed in Lewis (1970, 1972) and Vere-Jones (1982) and so on.

We generate the non-homogeneous Poisson processes accordingly, and there are 100 inde-

pendent replicates in each case with the observation lengthT = 500, and approximate 700 to

900 data points are used for the estimation in each replicate. We estimate the intensity function

in the framework of our model, and compare the estimated intensity function with the true inten-

sity function. In each of the following figures, plot (a) displays the true intensity function (solid

line) and one estimated intensity function from a single replicate (dashed line), and plot (b)

displays the true intensity function (dark solid line) and100 estimated intensity function from

100 replicates (light solid lines), and it gives a rough idea of the distribution of the estimated

intensity function at timet. Figure 2.1 presents Case 1. The fitting is quite good becausethe

intensity function takes the same function form as our model. Figure 2.2, 2.3 and 2.4 present

Case 2, 3 and 4, respectively. We take two sinusoidal terms inour model (K = 2) to estimate the

intensity function in Case 2, and the estimated intensity function captures the shape precisely

with steep troughs and relatively flat peaks. Case 3 has a discontinuous intensity function which

is usually difficult to estimate; but our model withK = 3 sinusoidal terms captures the sharp
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jumps at the discontinuous points and the general shape of the true intensity function. Case 4

takes the same functional form as (2.1), and our model withK = 2 sinusoidal terms does a

good approximation.

We also conduct the ‘out-of-sample’ one-step-ahead prediction using the estimated inten-

sity function, and compare the MSE with the MSE under the homogeneous Poisson process

model by taking their ratio, namely1100
∑100

i=1(t
i
n+1 − t̂in+1)

2/ 1
100

∑100
i=1(t

i
n+1 − t̃in+1)

2, where

tin+1 is the(n + 1)th time point in theith replicate, and̂tin+1 and t̃in+1 are the ‘out-of-sample’

one-step-ahead prediction oftin+1 under our model and under homogeneous Poisson process

model respectively. Here the intensity function of the homogeneous Poisson process model is

estimated byN(T )/T . Plot (c) in each figure shows the ratio, and the prediction iscarried out

for the901st to 950th data points (901 ≤ n+ 1 ≤ 950); the dashed line represents ratios equal

to 1. Asymptotically, the ratio is expected to be below1 for everyn ≥ 1. The few peaks in

the ratio plots which are greater than1 are caused by random variation of the processes. On

average, the reduction in MSE by using our model is 19.1% in Case 1, 11.2% in Case 2, 9.6%

in Case 3 and 20.7% in Case 4.

Notice that the choice ofK is subjective in above simulations, and it will be discussed

in Chapter 3. Overall, the simulation demonstrates that ourmodel is very general and it can

capture most variations in the intensity function of any periodic or aperiodic but almost periodic

non-homogeneous Poisson process.

We also calculate the sample means and standard errors of theparameter estimates from

the 100 replicates in Case 1 and show them in Table 2.1. This isto verify the theoretical results

in section 2.3. We see that the sample means are close to the true parameter values, and the

sample standard deviations are close to the asymptotic standard deviations and so are the sample
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(a) Solid line: true intensity function. Dashed line: esti-

mated intensity function from one replicate.
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(b) Dark solid line: true intensity function. Light solid

lines: estimated intensity function from 100 replicates.
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(c) Ratio of MSE under our model and MSE under the

homogeneous Poisson process model.

Figure 2.1: Case 1. The number of data points used for estimation in 100 replicates ranges from 717 to 866. The observationlengthT = 500. The

‘out-of-sample’ one-step-ahead prediction is carried outfor the901st to 950th data points.
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(a) Solid line: true intensity function. Dashed line: es-

timated intensity function from one replicate.
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(b) Dark solid line: true intensity function. Light solid line:

estimated intensity function from 100 replicates.
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mogeneous Poisson process model.

Figure 2.2: Case 2. The number of data points used for estimation in 100 replicates ranges from 749 to 872. The observationlengthT = 500. The

‘out-of-sample’ one-step-ahead prediction is carried outfor the901st to 950th data points.
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(b) Dark solid line: true intensity function. Light solid

line: estimated intensity function from 100 replicates.
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(c) Ratio of MSE under our model and MSE under the

homogeneous Poisson process model.

Figure 2.3: Case 3. The number of data points used for estimation in 100 replicates ranges from 733 to 906. The observationlengthT = 500. The

‘out-of-sample’ one-step-ahead prediction is carried outfor the901st to 950th data points.
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(a) Solid line: true intensity function. Dashed line: esti-
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(b) Dark solid line: true intensity function. Light solid line:

estimated intensity function from 100 replicates.
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(c) Ratio of MSE under our model and MSE under the

homogeneous Poisson process model.

Figure 2.4: Case 4. The number of data points used for estimation in 100 replicates ranges from 754 to 879. The observationlengthT = 500. The

‘out-of-sample’ one-step-ahead prediction is carried outfor the901st to 950th data points.
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covariances.

Table 2.1: The means and standard errors of the parameter estimates from the 100 replicates in

Case 1

ω1 ω2 A1 A2 φ1 φ2 B

true value 0.45345 0.74048 1 0.5 0 0.78540 1.6

sample mean 0.45374 0.74116 1.01223 0.50671 -0.07806 0.59168 1.60616

asymptotic sd 0.00055 0.00111 0.08000 0.08000 0.16000 0.32000 0.05657

sample sd 0.00052 0.00112 0.07507 0.07838 0.16499 0.33445 0.05613

2.7 IBM stock transaction example

Stock transactions are unequally spaced and the occurring time of the transactions is a

point process. Since there are usually many transactions during the opening and closing time

and much less during lunch time, and this pattern repeats every day, there must be a day-effect

in the stock transaction process. We studied the times of occurrence of IBM stock transaction

over a 4 week period beginning November 26, 1990 and ending December 21, 1990 (measured

in second)1. The NYSE opens at 9:30am and closes at 4:00pm but there are 135 transactions

occurred after 4:00pm and no transaction before 9:30am. These observations were deleted from

the analysis and there are 17077 data points in the analysis.The overnight waiting time was

ignored and the observation length is 468000 seconds or 20 days with 6.5 hours each day. There

are 1401 distinct transaction time with multiple transactions, and 1264 of them have 2 simulta-

1The data is available from the NYSE as the TORQ database whichstands for Trades, Orders Re-
ports, and Quotes. The TORQ database is distributed freely for academic study. The IBM data we used
here is part of the data set which has been used in Engle (2000), and it also can be downloaded at
http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts2/ibm.txt.
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neous transactions with possibly different volume. For such transactions which occurred at the

same time, we assume that it is because the precision of the recording is 1 second and the actual

transaction time is the recorded time plus some infinitesimal time. So for simultaneous trans-

action time we replace them (while keeping the first transaction time) by adding 0.05 second

to the previous transaction time. In this way, we do not lose much information in the counting

process and approximately keep the same intensity functionof the point process.

Since our observation length is 4 weeks, we assume the largest observable long trend period

is not longer than 2 weeks or 234000 seconds. And we assume that the shortest financial cycle

in the transaction process is no less than one hour or 3600 seconds, so the search range for

periodicity is[2π/234000, 2π/3600]. The intensity function of the stock transaction process is

estimated by using our model withK = 5, and the centralized periodogram (2.4) is used in

finding the estimates of the parameters. Figure 2.5 displaysthe centralized periodogram in the

search range[2π/234000, 2π/3600], and the peaks corresponding to the frequency estimates

ω̂1, . . . , ω̂5 are marked by the solid dots. The peak to the left of the first dot is not included

because it is too close to the first dot with distance less than6π/T . If the observation length

were longer than 4 weeks and more data points were included inthe analysis, the peak to the left

of the first dot should stand out and should be considered in estimating the frequencyω. The

estimates of the parameters are given by

ω = (ω1, ω2, ω3, ω4, ω5) = 10−4(2.6775, 0.5772, 8.0805, 1.2024, 5.3790),

A = (A1, A2, A3, A4, A5) = 10−2(1.043, 0.667, 0.489, 0.442, 0.438),

φ = (φ1, φ2, φ3, φ4, φ5) = (−0.0209, 0.2773,−0.9046, 0.9588, 0.2861),

andB = 0.03649.

(2.18)

The periods corresponding to the frequencies are calculated by 2π/ω, and they are 6.52

hours, 30.24 hours or almost one week (4.65 days), 2.16 hours, 14.52 hours and 3.24 hours
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respectively. Soω1 represents the day-effect andω2 represents the week-effect in the stock

transaction process. In additionω3 andω5 are multiples ofω1, andω4 is almost twice ofω2.

We also estimate the intensity function by using model (2.1)in Lewis (1970, 1972) and

Vere-Jones (1982). This model can capture only one single period, namely, the day-effect in the

transaction process. The estimated intensity function by using this model is

λ(t) = 0.03574 exp{0.2888 cos(0.00026775t − 0.0209)},

where the frequency and phase estimates are the same asω1 andφ1 in (2.18).

Non-parametric smoothing was used to provide a general ideaof the shape of the intensity

function in the transaction process for IBM. For a given timet, the non-parametric estimate of

the intensity function was given by
∑N(T )

i=1 g((t − ti)/h)/h, whereti are the data points and

g(.) is the kernel function. We use standardized normal density for the kernel function, and the

bin width h is taken to be 20 minutes. Figure 2.6 displays the non-parametric estimate of the

intensity function, the estimated intensity function by using our model (2.3), and the estimated

intensity function by using model (2.1) in four weeks. Comparing with the non-parametric

estimate of the intensity function, our model (2.3) captures the variation in the intensity function

very well except two spikes on Thursday in week 2, but model (2.1) does a poorer job and it

cannot capture the difference between weeks.

To obtain a quantitative comparison for the predictions of our model (2.3), model (2.1),

and the homogeneous Poisson model, we computed the ‘out-of-sample’ one-step-ahead predic-

tion squared errors for the day right after the 4-week observation period, namely, December

24, 1990. There are 324 transactions on this day so we have 324squared errors under each

model. The averaged squared errors are used for the comparison. They are 1.09240, 1.16546

and 1.20233 (min2) respectively, and the reductions in the averaged squared error compared to

the homogeneous Poisson model are 9.14% and 3.07% for our model (2.3) and model (2.1),
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respectively.

From this example, we see that our model (2.3) performed better in both capturing the

periodicity of the process and prediction than model (2.1) which seems to be the only widely

used parametric model for periodic non-homogeneous Poisson process.
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Figure 2.5: Solid line: the centralized periodogram of IBM transaction time from November 26,

1990 to December 21, 1990. The five solid dots are the peaks corresponding to five periodic

components in the model.

2.8 Discussion and Conclusion

In this chapter we have proposed a very general model for the rate of a non-homogeneous

Poisson process which can be almost periodic or periodic in any shape. We have illustrated the

usefulness of the proposed model in both simulation and realdata example, and the real data ex-

ample demonstrated that our model performed much better than the existing model in modeling
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(b) Week 2
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(c) Week 3
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(d) Week 4

Figure 2.6: Solid line: the non-parametric estimate of the intensity function. Long dashed line

(– – –): the estimated intensity function using our model (2.3). Dotdashed lines (· − ·−): the

estimated intensity function using model (2.1). The vertical light dashed lines separate days in

each week.
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periodic non-homogeneous Poisson process. The periodogram is used in the model parameter

estimation, and a detailed discussion on frequency estimation is provided. Other methods such

as maximum likelihood estimation can also be considered butmay be more computationally

intensive. The parameter estimates proposed in this paper can be used as very good initial val-

ues in other estimation method which requires iteration, such as MLE. The selection ofK, the

number of periodic components in the model, will be discussed in Chapter 3.
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Chapter 3

Determining K by Model Selection

Criteria

3.1 Introduction

In this chapter, we propose to use model selection criteria to determineK, the number of

sinusoidal components in the almost periodic intensity function of a non-homogeneous Poisson

process.

There are mainly two classes of model selection criteria (Burnham and Anderson (2002)):

(I) criteria that are estimates of Kullback-Leibler information or distance, such as Akaike in-

formation criterion (AIC), the bias corrected version of AIC when sample size is small (AICC)

(Hurvich and Tsai (1989)), and a generalized version of AIC derived by Takeuchi (1976) (TIC);

(II) criteria which are consistent estimators of the dimension of the model, such as Bayesian in-

formation criterion (BIC) derived by Schwarz (1978) and CAICF proposed by Bozdogan (1987)

(C denoting “consistent” and F denoting the use of the Fisherinformation matrix). The criteria

in the first class is usually not consistent, but they assume that the true data generating model
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is usually too complex to formulate, and one could only approximate the true model from a

given set of candidate models. For a given set of data and the sample size, such criteria select

the best finite-dimensional approximating model which has the shortest “information distance”

from the true model. As for the second class of model selection criteria, they are based on the

assumptions that a “true model” exists, and the model selection goal is to select the true model,

and the probability of selecting this true model approaches1 as sample size increases and thus

the model selection criteria are consistent.

In the biological and social sciences and medical sciences,Burnham and Anderson (2002)

argue that the first class of model selection criteria (AIC-type) are reasonable for the analysis

of empirical data since in these fields, the increased samplesize may stem from the addition

of new geographic field sites or laboratories, and thus the number of factors in the model may

also increase. In this case, the data-generating model may not remain fixed as the sample size

increases. As for the consistent criteria, they may be useful in some physical sciences where a

true model might exist and remain the same as sample size increases. Both classes of criteria

have good interpretation on the model they select: the modelbeing selected is either the “best”

model to approximate the true model in terms of “informationdistance” or the model which is

identified as true model with an asymptotic probability of1 if one believes that the true model

belongs to the set of candidate models.

The selection of K is similar to the selection of the order of ARMA process in time series:

there is no unique and “best” or “correct” selection method and practitioners usually consider

multiple model selection criteria. To fit the ARMA model to a time series data, after narrowing

down the model candidates to a few by the model selection criteria, we also exam the whiteness

of the residuals from different models, and/or exam the predictability of the model to determine

the best model for the data. Analogous to the time series analysis, we propose to consider

different model selection criteria to produce the candidates forK in the framework of our model,
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and then exam the model fitting and select the bestK. In this chapter, we will restrict our

attention to AIC and BIC since they are the representatives of the two classes of model selection

criteria.

We notice that in the almost periodic Poisson process,T → ∞ is used in the asymptotic

derivation instead ofn → ∞ as in the usual random sample setting whereT is the observation

length, and the convergence rate of the MLE of the frequency is ‘super-efficient’ which is similar

to the periodogram estimate, so the AIC and BIC need some modification in the framework of

our model.

In this chapter, the maximum likelihood estimate is denotedasθ̂, somewhat similar to the

notation of the periodogram estimates in chapter 2. But we donot discuss the periodogram

estimates in this chapter, so it should be easy for the readers to distinguish the notation of two

estimates. In addition, the true parameter is denoted asθ0.

The rest of this chapter is organized as follows. We give an overview of AIC and BIC

in section 3.2. Then we discuss the likelihood function and the MLE of the almost periodic

Poisson process and derive the AIC and BIC in the framework ofour model in section 3.3. In

section 3.4, we provide procedures on how to implement the proposed methodology. In section

3.5 and 3.6, we show the simulation results and re-analyze the IBM data used in Chapter 2.

3.2 An overview of AIC and BIC

3.2.1 Akaike information criterion

We give a review of Akaike information criterion (AIC) in this section based on the original

paper of Akaike (1973) and the book by Burnham and Anderson (2002). We refer to Burnham

and Anderson (2002) for more detailed discussion on the information-based model selection

criteria and their applications.
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Akaike (1973) proposed the use of Kullback-Leibler (K-L) distance as a fundamental basis

for model selection, where the K-L distance between the models f andg is defined for continu-

ous functions (discrete case can be defined similarly) as theintegral (usually multidimensional)

I(f, g) =

∫

f(x) log
( f(x)

g(x|θ)
)

dx

=

∫

f(x) log(f(x))dx−
∫

f(x) log(g(x|θ))dx

=

∫

f(x) log(f(x))dx− Ex[log(g(x|θ))].

(3.1)

The K-L distance relates to the “information” loss wheng is used to approximatef . Heref

is the true model which reflects the complex measuring or sampling process that generated the

observed data, and it might not even have parameters in a sense that would be analogous toθ

in a modeling framework. Sometimes it is useful to think off as full reality and let it have

conceptually an infinite number of parameters. On the other hand,g(x|θ) is a class of mod-

els that are used to approximate the truth; and among this class of models,g(x|θ0) minimizes

the K-L distance, and hence is the best model selected. In thelast line of (3.1), we see that

∫

f(x) log(f(x))dx is a constant (although unknown), so to minimize K-L distance is equiva-

lent to minimize−Ex[log(g(x|θ))], i.e.the relative K-L distance, over the candidate models.

However, even the relative K-L distance cannot be computed without full knowledge of

bothf and the parametersθ in each of the candidate modelsgi(x|θ). And in practice, the model

parameters must be estimated, and the difference between having θ or θ0 and having the estimate

θ̂ affects how we must use K-L distance as a basis for model selection. And that basically causes

us to change our model selection criterion to that of minimizing relativeexpectedestimated K-L

distance rather than minimizing known (relative) K-L distance over the set of models considered.

That is, we select the modelg to minimize

−EyEx[log(g(x|θ̂(y)))], (3.2)

wherex and y are independent random samples from the same distribution and θ̂(y) is the
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maximum likelihood estimate (MLE) ofθ based on the sampley. In addition, both statistical

expectations are taken with respect to truthf . So now the critical issue for getting an applied

K-L model selection criterion was to estimate (3.2). Akaike(1973) found out that under certain

conditions,− log(L(θ̂|data)) + p is an asymptotically unbiased estimate of the selection target

(3.2) wherelog(L(θ̂|data)) is the maximized log-likelihood for modelg given the data andp is

the number of parameters in the modelg. And thus the AIC criterion is given by multiplying

− log(L(θ̂|data)) + p by 2 (for some historical reason) as follows:

AIC = −2 log(L(θ̂|data)) + 2p.

The model which gives the smallest AIC value is the best modelto approximate the truthf

among the candidate models.

We now show how to get the unbiased estimate of (3.2). This is the critical part which

connects the relative expected K-L distance and the maximized log-likelihood.

The first step is the Taylor series expansion oflog(g(x|θ̂(y))) aroundθ0 for any given

x. Denoteθ̂(y) as θ̂. Sincex and y (vectors) are independent random samples, thenθ̂ is

independent ofx. Note that bothx andy are of sizen, andθ is ap−dimensional vector.

log(g(x|θ̂)) ≈ log(g(x|θ0)) +
[∂ log(g(x|θ0))

∂θ

]′
[θ̂ − θ0]

+
1

2
[θ̂ − θ0]

′
[∂2 log(g(x|θ0))

∂θ2

]

[θ̂ − θ0].

(3.3)

Truncation at the quadratic term entails an unknown degree of approximation, but it is an error

of approximation that goes to zero asn→ ∞. Here∂2 log(g(x|θ0))/∂θ2 is ap× p matrix. For

simplicity, we shall write the matrixθθ′ asθ2.

Take the expected value of (3.3) with respect tox:

Ex

[

log(g(x|θ̂))
]

≈Ex[log(g(x|θ0))] + Ex

[∂ log(g(x|θ0))
∂θ

]′
[θ̂ − θ0]

− 1

2
[θ̂ − θ0]

′
[

− Ex
∂2 log(g(x|θ0))

∂θ2

]

[θ̂ − θ0].

(3.4)
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The linear term above vanishes, because Ex

[

∂ log(g(x|θ0))
∂θ

]

= 0. The proof is as follows:

Sinceθ0 is the solution tominθ I(f, g) =
∫

f(x) log
(

f(x)
g(x|θ)

)

dx, then

∂

∂θ

∫

f(x) log
( f(x)

g(x|θ)
)∣

∣

∣

θ=θ0
dx = 0,

that is

∂

∂θ

∫

f(x) log(f(x))dx =
∂

∂θ

∫

f(x) log(g(x|θ))
∣

∣

θ=θ0
dx, (3.5)

Becauseθ is not involved inf(·), the first term of (3.5) is0. And under certain regularity

condition, the second term is

∫

f(x)
[ ∂

∂θ
log(g(x|θ))

]∣

∣

∣

θ=θ0
dx = Ex

[{ ∂

∂θ
log(g(x|θ))

}∣

∣

∣

θ=θ0

]

= 0.

Now we come back to (3.4), and again since the expectation is taken with respect tof , and

g andf may not be the same,−Ex
∂2 log(g(x|θ0))

∂θ2
is not exactly equal to the Fisher’s information

matrix I(θ0); however, Fisher’s information matrix is a good approximation to it if g is a good

approximation tof . And in fact, we can consider to take the expectation with respect tog as an

approximation to the case when the expectation is taken withrespect to the unknownf as long

asg is just a good model forf (Shibata (1989)). As for the situation wheng is too restrictive to

be good, the term−2 log(g(x|θ̂)) in the AIC will be much inflated, and then we will not select

that model.

Now equation (3.4) can be written as

Ex

[

log(g(x|θ̂))
]

≈ Ex[log(g(x|θ0))] −
1

2
[θ̂ − θ0]

′I(θ0)[θ̂ − θ0].

We take the expectation of the above equation with respect toθ̂ (i.e. with respect toy). Note

that Ex[log(g(x|θ0))] is a constant and can be written as Ey[log(g(y|θ0))]. So we have

EyEx

[

log(g(x|θ̂))
]

≈ Ey[log(g(y|θ0))]−
1

2
Ey{[θ̂ − θ0]

′I(θ0)[θ̂ − θ0]}

= Ey[log(g(y|θ̂))] + Ey[log(g(y|θ0))− log(g(y|θ̂))]

− 1

2
Ey{[θ̂ − θ0]

′I(θ0)[θ̂ − θ0]}.

(3.6)
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In (3.6), the term Ey[log(g(y|θ0))−log(g(y|θ̂))] can be approximated by Taylor series expansion

of log(g(y|θ0)) around θ̂, and again the truncation at the quadratic term entails an error of

approximation that goes to zero asn→ ∞.

Ey[log(g(y|θ0))− log(g(y|θ̂))]

≈Ey

{[∂ log(g(y|θ̂))
∂θ

]′
[θ̂ − θ0]

}

+
1

2
Ey

{

[θ̂ − θ0]
′
[∂2 log(g(y|θ̂))

∂θ2

]

[θ̂ − θ0]
}

=
1

2
Ey

{

[θ̂ − θ0]
′
[∂2 log(g(y|θ̂))

∂θ2

]

[θ̂ − θ0]
}

.

(3.7)

The linear term in (3.7) vanishes because the MLEθ̂ satisfies∂ log(g(y|θ̂))
∂θ = 0.

So now EyEx

[

log(g(x|θ̂))
]

is approximated by

EyEx

[

log(g(x|θ̂))
]

≈ Ey[log(g(y|θ0))]−
1

2
Ey

{

[θ̂ − θ0]
′
[

− ∂2 log(g(y|θ̂))
∂θ2

]

[θ̂ − θ0]
}

− 1

2
Ey{[θ̂ − θ0]

′I(θ0)[θ̂ − θ0]}.
(3.8)

Under certain regularity condition,[θ̂− θ0]
′
[

− ∂2 log(g(y|θ̂))
∂θ2

]

[θ̂− θ0] and[θ̂− θ0]
′I(θ0)[θ̂− θ0]

both asymptotically followχ2 distribution with degrees of freedomp, the dimension ofθ. We

refer to Roatgi and Saleh (2001) page 419 for the regularity conditions for the i.i.d. sample case.

Since Eχ2
p = p, then

−EyEx

[

log(g(x|θ̂))
]

≈ Ey[− log(g(y|θ0))] + p.

So − log(g(y|θ0)) + p is an asymptotically unbiased estimate of−EyEx

[

log(g(x|θ̂))
]

. We

complete the proof here.

In the point process case, the observation lengthT is fixed while the sample sizen is

random, but since the Poisson process has independent increment, the derivation of AIC in

the Poisson process case should be essentially similar as the derivation of AIC when we have

independent observations. We will give some insight of the AIC in the Poisson process case in

section 3.2.
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3.2.2 Bayesian information criterion

Bayesian information criterion (BIC) was established by Schwarz (1978). It is a consistent

model selection criterion which selects the true model withprobability1 when the sample size

n goes to infinity. That is because of the large penalty term in the criterion:

BIC = −2 log(L(θ̂|data)) + p log(n),

wherep is the dimension of the parameters, andL is the likelihood function of the data. The

procedure selects the model with the smallest BIC value.

In Schwarz (1978), BIC was originally established for the case of independent, identically

distributed observations, and linear models, with the assumption that the observations come

from a Koopman-Darmois family, i.e., relative to some fixed measure on the sample space they

possess a density of the form

f(x, θ) = exp(θ · y(x)− b(θ)),

wherey is the sufficientp-dimensional statistic. However, the density function does not nec-

essarily need to be in such form. We give a review of the general derivation of BIC based on

Schwarz (1978) and Burnham and Anderson (2002) Chapter 6. Werefer to Berger and Pericchi

(2001) for more discussion on the objective Bayesian methods for model selection.

It was evident that the assumptions and interpretations about prior probabilities are irrele-

vant in deriving the basic BIC result. It suffices to assume that the prior probability of thejth

model being the true one isαj , andπj(θ) is the conditional prior distribution ofθ given thejth

model. Via Bayes’ formula the posterior probability of thejth model being the true one is

gj(x, πj)αj
∑

r gr(x, πr)αr
,

wheregj(x, πj) is the marginal likelihood of thejth model withgj(x, πj) =
∫

gj(x|θ)πj(θ)dθ.

The prior probabilityαj will be bounded inn and thus being dropped from the penalty term in
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BIC, and it is sufficient to assume equal prior probability for each model. We refer to Schwarz

(1978) for more details. The Bayes solution consists of selecting the model that is a posteriori

most probable, that is, by dropping the indexj, we select the model which maximizes the

following quantity:
∫

g(x|θ)π(θ)dθ. (3.9)

The Laplace method is used to approximate the above integral(3.9). Thenlog(g(x|θ)) is

substituted by the following approximation:

log(g(x|θ)) ≈ log(g(x|θ̂))− 1

2
[θ − θ̂]′

[

− ∂2 log(g(y|θ̂))
∂θ2

]

[θ − θ̂].

So the needed integral (3.9) is approximately

∫

exp{log(g(x|θ̂))− 1

2
[θ − θ̂]′

[

− ∂2 log(g(y|θ̂))
∂θ2

]

[θ − θ̂]}dθ

=exp{log(g(x|θ̂))}
∫

exp{−1

2
[θ − θ̂]′

[

− ∂2 log(g(y|θ̂))
∂θ2

]

[θ − θ̂]}dθ

=exp{log(g(x|θ̂))}(2π)p/2 ‖ −∂
2 log(g(y|θ̂))

∂θ2
‖−1/2 .

(3.10)

where‖ · ‖ denotes the determinant of a matrix and the last line in (3.10) follows by the property

of multivariate normal density function

∫

(2π)−p/2 ‖ −∂
2 log(g(y|θ̂))

∂θ2
‖1/2 exp{−1

2
[θ − θ̂]′

[

− ∂2 log(g(y|θ̂))
∂θ2

]

[θ − θ̂]}dθ = 1.

Taking−2 times the log of the last equation in (3.10), we have

−2 log(g(x|θ̂)) + log
(

‖ −∂
2 log(g(y|θ̂))

∂θ2
‖
)

− p log(2π). (3.11)

When there aren independent random observations, and under general regularity conditions,

−∂2 log(g(y|θ̂))
∂θ2

≈ nΣ whereΣ−1 is the asymptotic variance-covariance matrix of the maximum

likelihood estimatêθ and its determinant is of size ofO(1). So by the property of determinant,

‖ −∂
2 log(g(y|θ̂))

∂θ2
‖≈ np ‖ Σ ‖, (3.12)
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expression (3.11) is approximately

−2 log(g(x|θ̂)) + p log(n) + log(‖ Σ ‖)− p log(2π).

Schwarz (1978) drops the last two terms of the expression above presumably because, asymp-

totically, they are dominated by the term of orderlog(n) as well as by the log-likelihood term.

Now we finish the derivation of BIC. Note that there is no mathematical requirement in the

derivation of BIC that the modelg be true, but the proof of the consistency property of BIC

requires the assumption of a true model in the candidate models.

3.3 AIC and BIC in the almost periodic Poisson processes context

We derive the AIC and BIC in the almost periodic Poisson processes in this section, start-

ing from the likelihood function and the maximum likelihoodestimates of the processes under

consideration.

3.3.1 Likelihood function of a Poisson process

Denote the intensity function of a Poisson processλ(t; θ) asλ(t). For 0 ≤ t1 < t2 <

· · · < tn, the likelihood of a Poisson process is

L(θ) = Pr(T1 = t1, T2 = t2, . . . , Tn = tn, tn ≤ T ) = λ(t1)λ(t2) · · ·λ(tn)e
∫ T

0
λ(s)ds,

whereT is the observation length.

So the log-likelihood function is

ℓ(θ) =

N(T )
∑

j=1

log λ(tj)−
∫ T

0
λ(t)dt.

If conditioning on the random sample sizen, then

Pr(T1 = t1, T2 = t2, . . . , Tn = tn|N(T ) = n) = λ(t1)λ(t2) · · · λ(tn)e
∫ tn
0

λ(s)ds.
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The above results can be derived from the property of Poissonprocesses that the number of

points in the time interval(0, t) follows a Poisson distribution with mean
∫ t
0 λ(s)ds. We refer

the details to Durrett (1999) page 137.

3.3.2 MLE of the almost periodic Poisson processes

In the derivation of AIC and BIC, we need the asymptotic normality of the maximum

likelihood estimates. We shall follow the usual approach, based on the asymptotic expansion of

the first derivative of the log-likelihood function about the true valueθ = θ0 of the parameters,

0 =
∂ℓ

∂θ

∣

∣

∣

θ=θ̂
=
∂ℓ

∂θ

∣

∣

∣

θ=θ0
+
∂2ℓ

∂θ2

∣

∣

∣

θ=θ̄
(θ̂ − θ0), (3.13)

whereθ̄ satisfies‖ θ̄ − θ0 ‖≤‖ θ̂ − θ0 ‖.

To justify this approach, we should first establish the asymptotic consistency and order of

convergence of the estimates, then check that the Taylor expansion can be sustained, and finally

determine the covariance matrix of the estimates.

We shall begin with the consistency of the estimates.

From the likelihood function of the Poisson processes in section 3.1.3, it is easy to see that

the observations{t1, t2, . . . , tn} are weakly dependent.

Pr(Tj+1 = t|Tj = tj, . . . , T1 = t1) = λ(t)e
−

∫ t

tj
λ(s)ds

= λ(t)e−Λ(t)+Λ(tj ), t > tj.

Bar-Shalom (1971) and Crowder (1976) among others providedthe regularity conditions

to ensure the consistency and asymptotic normality of the maximum likelihood estimate from

dependent observations. The key idea is that if the dependency is weak, then the accumulated

information on the parameters from the sample increases indefinitely, and thus the MLE possess

desired statistical property such as consistency and asymptotic normality.
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The model we consider is a non-homogeneous Poisson process,with the following almost

periodic intensity function (this was previously introduced in Chapter 2):

λ(t; θ) =

K
∑

k=1

Ak cos(ωkt+ φk) +B, (3.14)

whereθ is the set of parameters, andAk, B, ωk, φk are unknown parameters withA1 > A2 >

· · · > AK > 0, −π/2 ≤ φk < 3π/2 andωk > 0, k = 1, . . . ,K. The baselineB is a constant

such thatλ(t) is positive for anyt > 0. A sufficient condition to guarantee the positivity of

λ(t) is B >
∑K

k=1Ak. For simplicity, we assumeλ(t) ≥ ε > 0 for any t > 0, since in the

likelihood functionλ(t) needs to be positive. This assumption is easy to be justified in practice,

for example, by removing the overnight waiting time in the stock transaction process, we can

take out the part thatλ(t) = 0. In addition, we assume that the intensity function is upper-

bounded in a suitable range and thus the parameter space of our model is compact. We state the

assumptions in proposition 15.

Following the discussion of the consistency of MLE in Severini (2000), we can easily prove

the consistency of the MLE in our model. Moreover, as shown inChapter 2, the convergence

rate of the periodogram estimate of the frequencies iso(T−1), and we should expect a similar

result for the MLE. As for the MLE of other parameters in the model, the convergence rate is

o(1). We state the results here and refer the proof to Appendix B.

Proposition 15 For a non-homogeneous Poisson process with an almost intensity function(3.14),

assume thatλ(t) ∈ [ε,M ] for any t > 0 whereM > ε > 0 andM = O(1), and the frequen-

cies{ωk, k = 1, . . . ,K} satisfy the assumption 6, then the maximum likelihood estimate ω̂k is

a consistent estimate ofωk with

(ω̂k − ωk) = o(T−1),

and the maximum likelihood estimates of other parameters,B̂, Âk and φ̂k, are also consistent,

wherek = 1, . . . ,K.
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One remark is needed that not all non-homogeneous Poisson processes have consistent

estimates for its parameters. Nayak et al. (2008) proved that for the type of non-homogeneous

Poisson process model that the expected number of events, such as software failures, is finite

in infinite observing time, the parameters of these models cannot be estimated consistently. In

other words, if the integral of the intensity function from0 to ∞ is finite, then the number of

events in the long run is finite on average, and the information from the process is limited and

cannot accrue steadily as observing time approaches infinity, and thus cannot provide consistent

estimates of the model parameters. In our model, this is not the case.

Let θ = (A1, . . . , AK , B, φ1, . . . , φK , ω1, . . . , ωK)′. Define the diagonal matrixDT as

DT =









T
1

2 I(2K+1)×(2K+1) 0

0 T
3

2 IK×K









,

whereI is the identity matrix.

The Taylor expansion (3.13) is easy to be justified;0 ≤‖ θ̄− θ0 ‖≤‖ θ̂ − θ0 ‖ is needed in

evaluating the limit value of the second derivative term andwe refer the details to Appendix B.

In fact, we have the results:

− lim
T→∞

D−1
T

∂2ℓ

∂θ2

∣

∣

∣

θ=θ̄
D−1

T = − lim
T→∞

D−1
T

∂2ℓ

∂θ2

∣

∣

∣

θ=θ0
D−1

T

= lim
T→∞

D−1
T var

(∂ℓ

∂θ

∣

∣

∣

θ=θ0

)

D−1
T = lim

T→∞
D−1

T

∫ T

0

1

λ(t)

(∂λ(t)

∂θ

)2∣
∣

∣

θ=θ0
dtD−1

T .

(3.15)

Denote the limiting value asΣ. We find the asymptotic normality of the parameter estimatesas

follows.

Proposition 16 In the non-homogeneous Poisson process with intensity function (3.14), and

under the assumptions stated in proposition 15,DT (θ̂−θ) is asymptotically normally distributed

with mean0, and variance-covariance matrixΣ−1.

It is difficult to obtain the explicit form ofΣ, butΣ can be calculated numerically. HereΣ

serves as the Fisher’s information matrix. The main purposeof deriving the asymptotic results
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of MLE is to show that MLEs of parameters in the almost periodic Poisson process model are

well behaved as i.i.d. random variables case, with a different normalizing factorD−1
T rather than

n−1/2 wheren is the sample size. The value ofΣ is of less importance in the derivation of AIC

and BIC.

3.3.3 AIC in the almost periodic Poisson processes

To carry over the general derivation of AIC in section 3.2.1 to the almost periodic Poisson

processes, there are two steps that need to be justified: first, in the Taylor series expansion of

the log-likelihood function, the truncation at the quadratic term entails an unknown degree of

approximation, but it is an error of approximation that goesto zero asT → ∞. We already

justified this in the discussion of the MLE of almost periodicPoisson processes in section 3.3.2.

The second step is that[θ̂ − θ0]
′
[

− ∂2 log(g(y|θ̂))
∂θ2

]

[θ̂ − θ0] and [θ̂ − θ0]
′I(θ0)[θ̂ − θ0] both

asymptotically followχ2 distribution with degrees of freedomp which is the dimension ofθ.

Here log(g(·)) is the log-likelihood function denoted asℓ(·) in section 3.3.2, andI(θ0) is the

Fisher’s information matrix forn observations. In the almost periodic Poisson processes, we

have

[θ̂ − θ0]
′I(θ0)[θ̂ − θ0] = [D−1

T (θ̂ − θ0)]
′
[

D−1
T

∂2ℓ

∂θ2

∣

∣

∣

θ=θ0
D−1

T

]

[D−1
T (θ̂ − θ0)].

It follows from proposition 16 thatD−1
T (θ̂ − θ) and is asymptotically normally distributed

with mean0, and variance-covariance matrixΣ−1. In addition, equation (3.15) shows that

D−1
T

∂2ℓ
∂θ2

∣

∣

∣

θ=θ0
D−1

T → Σ asT → ∞. So by the property of multivariate normal distribution,

[θ̂ − θ0]
′I(θ0)[θ̂ − θ0] in the almost periodic Poisson processes is asymptoticallyχ2 distributed

with degrees of freedom3K+1. Similarly, we can also proof that[θ̂−θ0]′
[

− ∂2 log(g(y|θ̂))
∂θ2

]

[θ̂−

θ0] behaves the same as[θ̂− θ0]
′I(θ0)[θ̂− θ0] in the almost periodic Poisson processes, so AIC
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in the almost periodic Poisson processes is

AIC = −2ℓ(θ̂) + 2(3K + 1).

3.3.4 BIC in the almost periodic Poisson processes

Consider the derivation of BIC in the almost periodic Poisson processes, we only need to

modify the determinant of the second derivative of the log-likelihood function in expression

(3.11) in section 3.2.2. The results (3.15) yields that

‖ −∂
2ℓ

∂θ2

∣

∣

∣

θ=θ̂
‖ ≈‖ DTΣDT ‖

=‖ D2
T ‖‖ Σ ‖= T 2{ 1

2
(2K+1)+ 3

2
K} ‖ Σ ‖,

whereΣ is defined after equation (3.15). In this case, the penalty term in BIC changes to

log(T (2K+1)+3K) = (5K + 1) log(T ). So BIC in the almost periodic Poisson processes is

BIC = −2ℓ(θ̂) + (5K + 1) log(T ).

The coefficient oflog(T ) is greater than the number of parameters3K+1 because of the super-

efficiency of the frequency estimates.

3.4 Summary and implementation of the proposed methodology

In this section, we summarize the procedures to implement the proposed methodology.

The use of AIC and BIC requires MLE, and the likelihood surface of the almost periodic

Poisson process has many local maxima and local minima and thus the usual optimization algo-

rithms such as Newton-Raphson method can be easily trapped by the local maxima or minima

unless good initial values are provided. So in the search of MLE of our model, we suggest to

use the periodogram estimates proposed in Chapter 2 as good initial values. The procedures to

implement the proposed methodology are described as follows.
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For a given set of data, considerK = 1, 2, . . . , K̃, whereK̃ is the largestK value under

consideration.

1. Compute the periodogram estimates of the parameters whenK = K̃.

2. For eachK value, set the corresponding periodogram estimates as initial values, and

search for MLE.

3. Calculate AIC and BIC values for eachK. SelectK based on these two criteria.

4. If two criteria select differentK, conduct the out-of-sample prediction and select the

model with smaller (averaged) squared prediction error.

3.5 Simulation

In this section, we consider the same almost periodic intensity functions in Chapter 2,

section 2.6:

Case 1: λ(t) = 1.6 + cos
( π

4
√
3
t
)

+ 0.5 cos
( π

3
√
2
t+

π

4

)

,

Case 2: λ(t) =
√

3.1 + 3 cos
( π

3
√
2
t
)

,

Case 3: λ(t) = 0.1 + 0.5Mod[t, 2π],

Case 4: λ(t) = 1.3 exp
{

cos
( π

3
√
2
t+

π

4

)}

.

We use the same simulated data set as described in section 2.6, that is, for each case, sim-

ulate 100 independent replicates, and cut off the process atT = 500 for model fitting, and

conduct out-of-sample prediction for 50 data points (901st to 950th data points). We perform

the analysis using the procedures described in section 3.4,and show that our model (AP) out-

performs the existing models, Vere-Jones (1982) and the homogeneous Poisson process model

(HPP), in terms of the out-of-sample predictability.

In Case 1, we know that the trueK is 2. Among 100 replicates, AIC and BIC select the

same model in 19 of them, 37 are in favor of AIC, that is, the models selected by AIC have
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smaller averaged squared prediction error, and 44 are in favor of BIC. Table 3.1 shows the

selection frequencies for differentK values in 100 replicates. In this table, the final selection

is done by comparing the averaged squared prediction errorsfrom models selected by AIC and

BIC. To clarify, there is no comparison between the last row and the first two rows. Take the

last number in the last row, 25, for example. It means that in 100 replicates, we chooseK = 4

25 times after comparing the models selected by AIC and BIC interms of smaller averaged

squared prediction error, and since AIC selectsK = 4 52 times in 100 replicates and BIC does

not select anyK = 4, then among those 52 replicates, only 25 are in favor of AIC.

Table 3.1: Selection frequencies for differentK values in 100 replicates using AIC and BIC, and

the final selection by comparing the averaged squared prediction errors from models selected by

AIC and BIC.

K 1 2 3 4

AIC 0 19 29 52

BIC 3 96 1 0

Final selection 0 62 13 25

Since BIC is consistent, so it selects the trueK (K = 2) most of the time. Note that

for a given set of data with finite sample size, the bestK for this data set may not be the true

K, and using the information distance as the criterion to measure the distance between model

candidates, theK values selected by AIC have larger variability.

Figure 3.1 shows the the ratios of MSE under our model and MSE under the existing

models. If the ratio is below1, then our model is better. MSE is calculated asMSE =

1
100

∑100
i=1(t

i
n+1 − t̂in+1)

2. The averaged reductions in MSE compare to Vere-Jones’s model
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Figure 3.1: Case 1: MSE ratios. Ratio less than 1 indicates that our model is better.

and homogeneous Poisson model are 8.9% and 21.8% , respectively.

In Case 2, 3, and 4, we do not know the true value ofK or the ‘true’K is infinity since

it takes infinite terms to express the intensity function in the form of our model by Fourier

expansion. With a finite sample size, we can only approximatethe true intensity function within

certain precision. It is expected that with increased sample size, the data should be able to

capture more and more sinusoidal terms to better approximate the true intensity function.

We do not compare AIC and BIC in the simulation. The main purpose of the simulation

is to implement the procedure in section 3.4 and show that ourmodel outperforms the existing

models. In Table 3.2, we show the selection frequencies for differentK values in 100 replicates

for Case 2, 3 and 4, respectively. And the ratios of MSE under our model and existing models

are shown in Figure 3.2, 3.3 and 3.4 for Case 2, 3 and 4, respectively. In Case 2, the averaged

reductions in MSE compare to Vere-Jones’s model and homogeneous Poisson model are 2.53%

and 14.6%. In Case 3, the averaged reductions are 3.73% and 12.6%, and in Case 4, the averaged

reductions are 1.4% and 23.9%. One interesting result here is that even Case 4 is in the same

function form of Vere-Jones (1982), and thus the MSE under Vere-Jones model is expected to

64



be smaller than the MSE under our model and the correspondingMSE ratios are expected to

be greater than 1, but in this simulation our model does even better than Vere-Jones model by

reducing the MSE by 1.4% on average. Although this result maybe by coincidence, it is an

evident that our model is much more flexible than the existingmodels.

Table 3.2: Selection frequencies for differentK values in 100 replicates

Case 2 Case 3 Case 4

K 1 2 3 4 1 2 3 4 5 1 2 3 4

AIC 1 3 30 66 0 3 30 28 39 5 22 33 40

BIC 99 1 0 0 10 70 19 1 0 81 19 0 0

Final selection 63 3 11 23 5 35 31 13 16 47 19 18 16
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Figure 3.2: Case 2: MSE ratios. Ratio less than 1 indicates that our model is better.

To complete the discussion of MLE in section 3.3.2, we calculate the sample means and

standard errors of the MLE from the 100 replicates in Case 1 and compare them to the peri-
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Figure 3.3: Case 3: MSE ratios. Ratio less than 1 indicates that our model is better.
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Figure 3.4: Case 4: MSE ratios. Ratio less than 1 indicates that our model is better.
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odogram estimates in Chapter 2. The results are shown in Table 3.3. We see that MLE only

slightly reduces the standard errors compared to the standard errors of the periodogram esti-

mates, but the computational complexity of MLE is much higher. So the periodogram estimates

may be enough to provide accurate information about the trueparameters.

Table 3.3: The means and standard errors of the MLE from the 100 replicates in Case 1 with

comparison to the periodogram estimates

ω1 ω2 A1 A2 φ1 φ2 B

true value 0.45345 0.74048 1 0.5 0 0.78540 1.6

MLE sample mean 0.45342 0.74051 1.00854 0.50322 -0.00420 0.77388 1.59834

MLE sample sd 0.00047 0.00097 0.07537 0.07709 0.16396 0.29610 0.05772

peri est sample mean0.45374 0.74116 1.01223 0.50671 -0.07806 0.59168 1.60616

peri est sample sd 0.00052 0.00112 0.07507 0.07838 0.16499 0.33445 0.05613

3.6 IBM example revisited

We use the same IBM data set as in Chapter 2, section 2.7. The first four weeks data

are used for model fitting and the day after the 4-week period is left out for out-of-sample

prediction. We first exam AIC and BIC forK = 1, 2, · · · , 20. The likelihood values differ a

lot for differentK values, and the order of AIC is dominated by the likelihood function. As

expected, the likelihood value increases as we include moreand more sinusoidal terms in the

model, and the smallest AIC occurs atK = 20. The penalty term in BIC is much larger than

AIC, and the smallest BIC occurs atK = 7. Figure 3.5 shows the AIC and BIC at differentK

values.
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Figure 3.5: IBM data analysis: AIC and BIC

Since BIC atK = 5, 6 and7 are very close to each other with difference less than3, we

include all of them as well asK = 20 into the model candidates and then select the bestK

value by comparing the averaged prediction errors. More sinusoidal terms may result in a better

approximation to the ‘true’ intensity function, but they also bring more uncertainty, that is, larger

variation, into the model fitting and thus result in larger out-of-sample prediction errors. It turns

out that after comparing the averaged prediction errors under K = 5, 6, 7 and20, the model

with K = 5 produces the smallest averaged prediction error. We reportthe estimation results

here:

ω = (ω1, ω2, ω3, ω4, ω5) = 10−4(2.6762, 0.5922, 8.0812, 1.2067, 5.3786),

A = (A1, A2, A3, A4, A5) = 10−2(1.070, 0.640, 0.462, 0.469, 0.411),

φ = (φ1, φ2, φ3, φ4, φ5) = (0.0305, 0.3577,−1.0143, 0.8374, 0.4087),

andB = 0.036334.

Note that these parameter estimates are maximum likelihoodestimates and they are slightly

different from the periodogram estimates in section 2.7. The estimated intensity function is very

similar to the one shown in Figure 2.6 since the maximum likelihood estimates do not differ a
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lot from the periodogram estimates. Figure 3.6 displays theresults.
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(d) Week 4

Figure 3.6: Solid line: the non-parametric estimate of the intensity function as described in

section 2.7. Long dashed line (– – –): the estimated intensity function using MLE. The vertical

light dashed lines separate days in each week.
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Chapter 4

Summary and Future Work

4.1 Summary

In this thesis, a very general model for the intensity function of a non-homogeneous Pois-

son process is proposed and investigated. The processes under consideration usually show a

pattern of periodicity, such as the timing of stock transactions with higher activity during the

opening and closing than the middle of the day. And such processes can be modeled as almost

periodic point processes. The proposed model is for the almost periodic Poisson process which

includes the purely periodic Poisson process as a special case, and it is much more general and

useful than the existing models. We demonstrate this by bothsimulations and real life data

analysis.

The basic concepts of point processes are introduced in Chapter 1. Readers with knowledge

in the general Poisson processes (both homogeneous and non-homogeneous Poisson processes)

may skip section 1.2 and section 1.3. We suggest reading section 1.4 since the periodogram

introduced there has a close relationship with the intensity function we proposed to use.

In Chapter 2, the model for the almost periodic Poisson processes is introduced. We give

a very detailed literature review on the study of purely periodic Poisson processes. We then
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show that almost periodic Poisson processes are much more general and they should be used

for processes with any pattern of periodicity. The concept of almost periodicity is introduced

in section 2.2. After that, we study the estimation of the model parameters, and propose a

class of simple, consistent, and asymptotically normal parameter estimates mainly based on the

periodogram. The computational issues in estimating the frequencies are discussed in section

2.4 and the prediction of the next occurrence using our modelis studied in section 2.5. Then we

use simulations and application to show the usefulness of the proposed model.

The model we studied is actually a class of models indexed byK which is the number of

sinusoidal terms in the intensity function. In Chapter 2, the parameter estimates are defined for

each fixedK. In the data analysis,K is usually unknown, and we need to select the bestK

so that the corresponding model can best approximate the unknown truth. So in Chapter 3, we

propose to use model selection criteria to determineK. We first review and give interpretation

of two representatives in the model selection: AIC and BIC; and show the general derivation of

these two criteria when there are i.i.d. observations. Thenwe derive AIC and BIC in the frame

work of our model. One thing we would like to point out is that we choose to regard the number

of points/observations to be random and the observation length to be fixed for mathematical

convenience. The implementation of proposed methodology in both Chapter 2 and Chapter 3

are summarized in section 3.4, and then we follow the procedures to re-analyze the simulated

data set and IBM data set in Chapter 2.

4.2 Future work

This thesis proposes a parametric model for the first order property (the intensity function)

of a point process. There are three directions for future research. The first one is to study the

almost periodic intensity function using non-parametric method. Many papers have investigated
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the non-parametric approach in the purely periodic Poissonprocesses, we refer to Chapter 2 for

a detailed literature review. Hall and Yin (2003) proposed non-parametric methods for decon-

volving multiperiodic functions where the periods are relatively irrational, and we may borrow

some ideas from this paper and apply to the point process case. The challenge is that in Hall and

Yin (2003) the value of the multiperiodic functions are observable (with errors), but in the point

process, the intensity function is unobservable.

The second direction is to consider higher order property ofthe point processes. Under

Poisson assumption, the process has independent increment. The question is whether this as-

sumption can be relaxed to conditions like weak dependency in the increment process. In ad-

dition, there is no paper studying almost periodically correlated point processes although many

papers have discussed the almost periodically correlated time series. There is still a lot of room

on this problem.

The third direction is in the estimation ofK in the proposed model. In this thesis, we

use model selection criteria and derive AIC and BIC in the framework of our model. How to

construct a criterion which is tailored for point process ischallenging.
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Appendix A

Proofs in Chapter 2

For the proofs, the following results will be useful.

Under Assumption 6, simple calculations yield that forω > 0 and constantc 6= 0, γ > 0,

T−1

∫ T

0
Be−iωtdt = B

exp(−iωT )− 1

−iωT =











































B + o(1), if ω = cT−1−γ = o(T−1),

B 1−e−ic

ic , if ω = cT−1,

o(1), if ω = cT−1+γ ,

T−1

∫ T

0
Ak cos(ωkt+ φk)e

−iωtdt

= T−1

∫ T

0
Ak

ei(ωkt+φk) + e−i(ωkt+φk)

2
e−iωtdt

= o(1) +
Ak

2
eiφkT−1

∫ T

0
e−i(ω−ωk)tdt

=











































Ak

2 {cos(φk) + i sin(φk)}+ o(1), if |ω − ωk| = cT−1−γ = o(T−1),

Ak

2 e
iφk 1−e−ic

ic + o(1), if |ω − ωk| = cT−1,

o(1), if |ω − ωk| = cT−1+γ .

(A.1)
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Moreover,

T−2

∫ T

0
Bte−iωtdt = o(1), if ω = cT−1+γ ,

T−2

∫ T

0
Ak cos(ωkt+ φk)te

−iωtdt

=











































Ak

4 {cos(φk) + i sin(φk)}+ o(1), if |ω − ωk| = cT−1−γ = o(T−1),

Ak

2 e
iφk −1+e−ic+ice−ic

c2
+ o(1), if |ω − ωk| = cT−1,

o(1), if |ω − ωk| = cT−1+γ .

T−3

∫ T

0
Bt2e−iωtdt = o(1), if ω = cT−1+γ ,

T−3

∫ T

0
Ak cos(ωkt+ φk)t

2e−iωtdt

=











































Ak

6 {cos(φk) + i sin(φk)}+ o(1), if |ω − ωk| = cT−1−γ = o(T−1),

Ak

2 e
iφk −2+2e−ic+2ice−ic−c2e−ic

ic3
+ o(1), if |ω − ωk| = cT−1,

o(1), if |ω − ωk| = cT−1+γ ,

(A.2)

wherek = 1, . . . ,K.

Proof of Lemma 7. The proof was originally provided by Vere-Jones (1982). We correct

the typo there and extend the case tom ≥ 1. First considerm = 1.

Let J > 0 be the upper bound ofλ(t), soλ(t) ≤ J .

Define

MT := sup
0≤ω≤ΩT

∣

∣

∣

∫ T

0
eiωtdZ(t)

∣

∣

∣.

Now letL denote a positive integer (to be fixed later), and consider a division of the interval
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[0, T ] into subintervals each of length∆ = T/L. We shall write

∫ T

0
eiωtdZ(t) =

L−1
∑

l=0

∫ (l+1)∆

l∆
(eiωl∆ + eiωl∆(eiω(t−l∆) − 1))dZ(t)

=
L−1
∑

l=0

eiωl∆Zl +
L−1
∑

l=0

eiωl∆
∫ ∆

0
(eiωu − 1)dZ(u+ l∆)

= S1(ω, T ) + S2(ω, T ),

(A.3)

where

Zl =

∫ (l+1)∆

l∆
dZ(t).

The first sumS1 has the same form as in the discrete case and can be handled by similar

methods:

|S1(ω, T )|2 =
∣

∣

∣

L−1
∑

r=−L+1

eiωr∆
L−|r|
∑

l=0

ZlZl+r

∣

∣

∣ ≤
L−1
∑

r=−L+1

∣

∣

∣

L−|r|
∑

l=0

ZlZl+r

∣

∣

∣,

so that

E
{

sup
ω

|S1(ω, T )|2
}

≤
L−1
∑

r=−L+1

E
{∣

∣

∣

L−|r|
∑

l=0

ZlZl+r

∣

∣

∣

}

.

The expectation on the right side of this expression can be estimated using the Schwarz inequal-

ity and the fact that theZl are uncorrelated. This leads to the estimate

E
{

sup
ω

|S1(ω, T )|2
}

≤
L
∑

l=0

E(Z2
l ) + 2

L−1
∑

r=1

{

L−|r|
∑

l=0

E(Z2
l )E(Z

2
l+r)

}
1

2

.

Since

E(Z2
l ) = E

{

∫ (l+1)∆

l∆

∫ (l+1)∆

l∆
dZ(τ)dZ(t)

}

=

∫ (l+1)∆

l∆
λ(t)dt ≤ J∆,

we have

E
{

sup
ω

|S1(ω, T )|2
}

≤ J∆
{

L+ 2

L−1
∑

r=0

r
1

2

}

≤ J1∆L
3

2

whereJ1 <∞ is a further constant.

To estimate the second sum in (A.3), observe that

d|Z(t)| ≤ |dZ(t)| ≤ λ(t)dt+ dN(t),
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so

E{d|Z(t)|} ≤ 2λ(t)dt ≤ 2Jdt.

Using this estimate and the inequalities

|eiωu − 1| ≤ |ωu| ≤ ΩTu (u ≥ 0)

we obtain

E{ sup
0≤ω≤ΩT

|S2(ω, T )|} ≤ E
{

sup
0≤ω≤ΩT

L−1
∑

l=0

∫ ∆

0
|eiωu − 1|d|Z(u+ l∆)|

}

≤ JL∆2E(ΩT ).

Combining estimates for both sums, and writingL = T/∆, we find

E(MT /T ) ≤ T−1
[

E
{

sup
0≤ω≤ΩT

|S1(ω, T )|2
}]1

2

+T−1E
{

sup
0≤ω≤ΩT

|S2(ω, T )|
}

≤ J
1

2

1 (T∆)−
1

4+J∆E(ΩT ),

where∆ is still at our disposal. Under Assumption 6 thatE(ΩT ) = O(T 1−δ) (δ > 0), and

taking∆ = O(T−ν), we find an optimum choice ofν is 1 − 4δ/5 by equating the order of

(T∆)−
1

4 and∆E(ΩT ). And this leads to E(MT /T ) = O(T−δ/5).

It remains to show that from this bound on the expectations wecan deduce the almost sure

convergence to 0 of the ratiosMT /T . Making use of Chebyshev’s inequality and the Borel-

Cantelli lemma, we can find a sequence of timesTk, Tk → ∞, and a sequence of positive num-

bersαk,αk → 0, such thatTk/Tk+1 → 1 and Pr(MTk
/Tk ≤ αk for all but a finite number of k) =

1. For example, the choice ofαk = k−β andTk = kγ , whereβ > 0 andγ > 5(1 + β)/δ, will

suffice since by Chebyshev’s inequality

Pr(MTk
/Tk ≤ αk) ≥ 1− E(MTk

/Tk)/αk = 1−O(T
−δ/5
k )/k−β = 1−O(k−γδ/5+β),

and−γδ/5 + β < −1, then

∞
∑

k=1

Pr(MTk
/Tk ≤ αk) = ∞,
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and thus

Pr(MTk
/Tk ≤ αk for all but a finite number of k) = 1.

With such a choice, it is clear thatMTk
/Tk → 0 (a.s.). For intervening values ofT , Tk < T ≤

Tk+1, we can write

MT /T ≤MTk
/Tk + (1/Tk) sup

ω

∣

∣

∣

∫ T

Tk

eiωtλ(t)dt
∣

∣

∣
+ (1/Tk) sup

ω

∣

∣

∣

∫ T

Tk

eiωtdN(t)
∣

∣

∣

The first term we already know tends to 0 almost surely, while for the second term we have

(1/Tk) sup
ω

∣

∣

∣

∫ T

Tk

eiωtλ(t)dt
∣

∣

∣ ≤ (1/Tk)J(T − Tk) → 0, (a.s.),

and for the last term we have, by the ergodic theorem and the assumptionTk+1/Tk → 1, that

(1/Tk) sup
ω

∣

∣

∣

∫ T

Tk

eiωtdN(t)
∣

∣

∣
≤ {N(Tk+1)−N(Tk)}/Tk

= {N(Tk+1)/Tk+1}{Tk+1/Tk} −N(Tk)/Tk → m′ −m′ = 0 (a.s.)

wherem′ is the mean rate of occurrence of points. HenceMT /T → 0 (almost surely), and this

completes the proof of the case whenm = 1.

Now considerm > 1. Since

T−m sup
0≤ω≤ΩT

∣

∣

∣

∫ T

0
tm−1e−iωtdZ(t)

∣

∣

∣
= T−1 sup

0≤ω≤ΩT

∣

∣

∣

∫ T

0
(
t

T
)m−1e−iωtdZ(t)

∣

∣

∣
,

and by adding( t
T )

m−1 in the integral in (A.3) and proceed the proof similarly, we should obtain

the result that

T−m sup
0≤ω≤ΩT

∣

∣

∣

∫ T

0
tm−1e−iωtdZ(t)

∣

∣

∣
→ 0, (a.s.).

Proof of Proposition 8. In the search range thatO(T δ′−1) ≤ ω ≤ ΩT , Lemma 7 implies

that J (Z)
T (ω) in (2.6) converges to0 uniformly, soJ (λ)

T (ω) is the dominant term inJT (ω).

Considerm = 1 in JT (ω). It follows from (A.1) thatJ (λ)
T (ω) converges to0 uniformly for
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ω ∈ {ω : |ω − ωk| ≥ cT−1+γ , c 6= 0,∀γ > 0 andO(T δ′−1) ≤ ω ≤ ΩT }, so the local maxima

of J (λ)
T (ω) as well as the periodogram must occur in the neighborhood ofωk where the width

of the neighborhood is at mostO(T−1) (k = 1, . . . ,K). Under Assumption 5 that the distance

of two frequencies should be wider than the order ofO(T−1), these neighborhoods ofωk’s are

disjoint for large T. Note that by the definition of local maxima of the periodogram that their

corresponding frequencies have to be well separated with distanceO(T−1+γ) (γ > 0), only one

maximum of the periodogram should be considered in each suchneighborhood ofωk. So the

K largest local maxima of the periodogram must occur in these neighborhoods ofω1, . . . , ωK ,

with each one capturing one local maximum, namely, the frequency estimatêωk,T is in such

neighborhood ofωk, k = 1, . . . ,K. Since these neighborhoods tend to0 asT → ∞, it follows

thatω̂T → ω (a.s.), asT → ∞, namely,ω̂T is a consistent estimate ofω.

Moreover,|JT (ω)| obtains itskth maximum at̂ωk,T while |Jλ
T (ω)| has itskth maximum at

ωk (k = 1, . . . ,K), so for

|JT (ω̂k,T )| ≥ |JT (ωk)| ≥ |J (λ)
T (ωk)| − |J (Z)

T (ωk)| = |J (λ)
T (ωk)|+R1(T ),

and

|J (λ)
T (ωk)| ≥ |J (λ)

T (ω̂k,T )| ≥ |J (λ)
T (ω̂k,T )+J

(Z)
T (ω̂k,T )|− |J (Z)

T (ω̂k,T )| ≥ |JT (ω̂k,T )|+R2(T ),

whereR1(T ) = −|J (Z)
T (ωk)| andR2(T ) = −|J (Z)

T (ω̂k,T )|, and they tend to0 almost surely.

So

lim
T→∞

|JT (ω̂k,T )| = lim
T→∞

|J (λ)
T (ωk)| = Ak/2,

where the second equality is determined by (A.1). On the other hand, the direct calculation of

|JT (ω̂k,T )| shows that

|JT (ω̂k,T )| =
Ak

2

∣

∣

∣

exp[−i(ωk − ω̂k,T )T ]− 1

−i(ωk − ω̂k,T )T

∣

∣

∣
+ o(1),
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so we have
∣

∣

∣

exp[−i(ω̂k,T − ωk)T ]− 1

−i(ω̂k,T − ωk)T

∣

∣

∣
→ 1, a.s.,

and thus

(ω̂k,T − ωk) = o(T−1), a.s..

Proof of Proposition 9. SincedZ(t) is a process with independent and bounded variance

increment, the random variables(U,V′,W′,X′,Y′)′ satisfy a central limit theorem. TakeU

for example. LetUl =
∫ l∆
(l−1)∆ dZ(t), l = 1, . . . , [T ], where[T ] is the largest integer which

does not exceedT , and∆ = T/[T ]. ThenUl’s are independent with mean0, and for anyε > 0,

[T ]
∑

l=1

Pr{|Ul| ≤ εsT } ≥
[T ]
∑

l=1

{1− var(Ul)/(ε
2s2T )} = [T ]− 1/ε2 → ∞, asT → ∞,

wheres2T =
∑[T ]

l=1 var(Ul) = Tvar(U) which tends to∞ asT → ∞. So

Pr{|Ul| ≤ εsT , for all but a finite number of l} = 1.

Sinces2T → ∞ asT → ∞, theLindeberg condition(Roatgi and Saleh (2001), p.298)

lim
T→∞

1

s2T

[T ]
∑

l=1

E(U2
l : |Ul| > εsT ) = 0

is satisfied. So
∑[T ]

l=1 Ul/sT = T 1/2U/{Tvar(U)}1/2 converges to the standard normal distribu-

tion asT → ∞. This central limit theorem easily extends to the random vector (U,V′,W′,X′,Y′)′.

We omit the proof here. The asymptotic variance-covariancematrix of above random vector can

be obtained by direct calculation. For example,

cov(Vk,Wk′) = T−1

∫ T

0

∫ T

0
cos(ωkt) sin(ωk′τ) cov(dZ(t), dZ(τ))

= T−1

∫ T

0
cos(ωkt) sin(ωk′t) λ(t)dt

→
K
∑

j=1

Aj

4
sin(φj) (−δj,k+k′ + δj,k−k′ − δj,k′−k) = E3(k, k

′), asT → ∞.
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Proof of Theorem 10. The main steps to obtain (2.12) are shown before Theorem 10.

The expansion of2πTI ′T (ω) atω = ωk is the summation of the two terms (a) and (b) as

follows,

(a) :=

2
{

∫ T

0
sin(ωkt) λ(t)dt+

∫ T

0
sin(ωkt) dZ(t)

}{

∫ T

0
t cos(ωkt) λ(t)dt+

∫ T

0
t cos(ωkt) dZ(t)

}

= 2{−1

2
TAk sin(φk) +O(1) + T

1

2Wk}{
1

4
T 2Ak cos(φk) +O(T ) + T

3

2Xk},

= −1

4
T 3A2

k sin(φk) cos(φk)− T
5

2AkXk sin(φk) +
1

2
T

5

2AkWk cos(φk) +O(T 2),

and

(b) :=

2
{

∫ T

0
cos(ωkt) λ(t)dt+

∫ T

0
cos(ωkt) dZ(t)

}{

−
∫ T

0
t sin(ωkt) λ(t)dt−

∫ T

0
t sin(ωkt) dZ(t)

}

= 2{1
2
TAk cos(φk) +O(1) + T

1

2Vk}{
1

4
T 2Ak sin(φk) +O(T )− T

3

2Yk}

=
1

4
T 3A2

k sin(φk) cos(φk)− T
5

2AkYk cos(φk) +
1

2
T

5

2AkVk sin(φk) +O(T 2).

We can see that the terms with orderO(T 3) in equation (a) and (b) are canceled out when

adding (a) and (b) together. And the terms with orderO(T 5/2) are the products of oneλ-

integral and oneZ-integral in the second equation of the expansion of (a) and (b), and they are

the leading terms. So by taking the summation of (a) and (b), we obtain the value of2πTI ′T (ω)

atω = ωk:

2πTI ′T (ωk) = T
5

2Ak{
1

2
Vk sin(φk) +

1

2
Wk cos(φk)−Xk sin(φk)− Yk cos(φk)}+ o(T

5

2 ).

Analogously, we can obtain (2.11) by breaking it intoλ-integrals andZ-integrals, All

terms involvingZ-integrals uniformly (inω) converge to0 (a.s.) by Lemma 7, and the leading

terms are the products ofλ-integrals. We omit the tedious calculation and just show the final
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calculation of the products ofλ-integrals here:

2πT−3I ′′T (ω̄k,T )

=2T−4
{(

∫ T

0
t sin(ω̄k,T t) λ(t)dt

)2
−

(

∫ T

0
cos(ω̄k,T t) λ(t)dt

)(

∫ T

0
t2 cos(ω̄k,T t) λ(t)dt

)

+
(

∫ T

0
t cos(ω̄k,T t) λ(t)dt

)2
−

(

∫ T

0
sin(ω̄k,T t) λ(t)dt

)(

∫ T

0
t2 sin(ω̄k,T t) λ(t)dt

)}

+ o(1).

By Proposition 8 we have|ω̄k,T − ωk| = o(T−1), and the results in the equations (A.1) and

(A.2) imply that in the above equations of the products ofλ-integrals, the limiting value will not

change ifω̄k,T is replaced byωk. So by direct calculation, we have

lim
T→∞

2πT−3I ′′T (ω̄k,T )

=A2
k{

1

8
sin2(φk)−

1

6
cos2(φk)}+A2

k{
1

8
cos2(φk)−

1

6
sin2(φk)}

=− 1

24
A2

k.

Equation (2.12) follows from (2.9) and Slutsky’s theorem (Roatgi and Saleh (2001), page

270). Moreover,̂ωT is asymptotically normally distributed because of the asymptotic normality

of the random variables(V1, . . . , VK ,W1, . . . ,WK ,X1, . . . ,XK , Y1, . . . , YK)′ by Proposition

9. The variance-covariance of̂ωT is obtained by direct calculation.

Proof of Theorem 11. The discussions of (2.13) and (2.14) and thereafter form theproof

of the asymptotic normality of̂AT andφ̂T .

Proof of Theorem 12. SinceN(T ) =
∫ T
0 dN(t) =

∫ T
0 λ(t)dt +

∫ T
0 dZ(t), by the

definition ofU , it follows thatT
1

2 (N(T )/T −B) = U + o(1)
d−→ N(0, B).

Now we show that̂λT (t) is asymptotically non-negative for anyt > 0. For every0 < t ≤
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T , we find

λ̂T (t)− λ(t) = [N(T )/T −B] + [

K
∑

k=1

(Âk,T −Ak) cos(ω̂k,T t+ φ̂k,T )]

+ [

K
∑

k=1

Ak{cos(ω̂k,T t+ φ̂k,T )− cos(ωk + φk)}].

On the right hand side of the above equation, the terms in the first two square brackets are both

O(T− 1

2 ) following Theorems 11 and 12, and a Taylor expansion of the cosine function in the

third term together with Theorems 10 and 11 yield the result that the third term is alsoO(T− 1

2 ).

Soλ̂T (t) = λ(t)+O(T− 1

2 ), and thuŝλT (t) is asymptotically non-negative given thatλ(t) ≥ 0.

Proof of Theorem 13. The results in Theorem 13 follow by expressing all the estimates

as functions ofU,V,W,X,Y and using Proposition 9.

Proof of Theorem 14. Under Assumption 4 that the process is a non-homogeneous

Poisson process,

Pr(Tn+1 = t|Tn = tn, . . . , T1 = t1) = λ(t)e−
∫ t

tn
λ(s)ds = λ(t)e−Λ(t)+Λ(tn), t > tn. (A.4)

SoT̂n+1 is easily obtained by (A.4) and taking integration by parts.The mean squared errorνn

is obtained by (A.4) and using the fact that

νn = ETn [E{(Tn+1 − T̂n+1)
2|Tn}] = ETn{E(T 2

n+1|Tn)− T̂ 2
n+1}.
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Appendix B

Proofs in Chapter 3

Proof of Proposition 15. As shown in Severini (2000) on page 106, the MLE of the model

parameterθ is consistent if the two conditions are satisfied:

1. The parameter spaceΘ is a compact subset ofℜd whered is the dimension ofΘ.

2. supθ∈Θ |n−1ℓ(θ) − γ(θ)| P−→ 0 asn → ∞, whereℓ(θ) is the log-likelihood function

based onn observations andγ(θ) = n−1E{ℓ(θ); θ0}.

In our model, we assumeT to be a fixed quantity for mathematical convenience, so the

regularity conditions for the consistency of MLE in our model is similar as above conditions

with n replaced withT . Under the assumptions thatλ(t) ∈ [ε,M ] for any t > 0 where

M > ε > 0 andωk ’s are bounded as in assumption 6, the parameter space in our model is

compact, and thus condition 1 is satisfied.

We now turn to the second condition. Denote the true intensity function of a Poisson
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process asλ(t; θ0) = λ0(t), then the log-likelihood of a Poisson process at anyθ is

ℓ(θ) =

N(T )
∑

j=1

log λ(tj)−
∫ T

0
λ(t)dt

=

∫ T

0
log λ(t)dN(t) −

∫ T

0
λ(t)dt

=

∫ T

0
[λ0(t) log λ(t)− λ(t)]dt+

∫ T

0
log λ(t)dZ(t)

= (i) + (ii).

(B.1)

The second last equation is followed by the decomposition

dN(t) = λ0(t)dt+ dZ(t), (B.2)

wheredZ(t) is a process with mean0, and independent but non-stationary increments. In

addition, dZ(t) is mean-squared bounded. So we have E{ℓ(θ)} = E{(i) + (ii)} = (i).

Since var((ii)) =
∫ T
0 [log λ(t)]2λ0(t)dt ≤ MT max{(log ε)2, (logM)2} = O(T ), we have

(ii) ≤ O(T 1/2). So condition 2 is satisfied:

sup
θ
{ 1
T
ℓ(θ)− 1

T
(i)} = sup

θ

1

T
(ii)

P−→ 0, asT → ∞.

And thus the MLE in our model is consistent. We now discuss theconvergence rate of the

frequency estimates.

Notice that(i) obtains its maximum atθ = θ0, andℓ(θ) obtains its maximum atθ = θ̂. It

follows from condition 2 that1T ℓ(θ̂) − 1
T (i)|θ=θ0

P−→ 0, asT → ∞. And that is, 1T (i)|θ=θ̂ +

1
T (ii)|θ=θ̂ − 1

T (i)|θ=θ0
P−→ 0, asT → ∞. Since 1

T (ii)
P−→ 0 at anyθ ∈ Θ, so{ 1

T (i)|θ=θ̂ −

1
T (i)|θ=θ0}

P−→ 0, that is

1

T
(i)|θ=θ̂ −

1

T
(i)|θ=θ0

=
1

T

∫ T

0
λ0(t)[log λ̂(t)− log λ0(t)]dt−

1

T

∫ T

0
[λ̂(t)− λ0(t)]dt

=(iii) + (iv)
P−→ 0, asT → ∞.

(B.3)
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Consider(iv). By direct calculation,

(iv) = − 1

T

∫ T

0
(B̂ −B0)dt+ o(1),

and sinceB̂ −B0
P−→ 0 asT → ∞, we have(iv)

P−→ 0.

Since(iii) + (iv)
P−→ 0 by equation (B.3), and(iv)

P−→ 0 by the above discussion, we have

(iii)
P−→ 0. Now we will prove that in order to have(iii)

P−→ 0, the frequency estimates must

converge in the rate ofo(T−1).

It follows by a Taylor expansion oflog λ̂(t) aroundθ0 that

(iii)

=
1

T

∫ T

0
λ0(t)

[ 1

λ0(t)

∂λ0(t)

∂θ
(θ̂ − θ0) +

1

2
(θ̂ − θ0)

′
∂2λ0(t)
∂θ2 λ0(t)−

(∂λ0(t)
∂θ

)2

λ20(t)
(θ̂ − θ0) +RT (θ)

]

dt

=
1

T

∫ T

0

∂λ0(t)

∂θ
(θ̂ − θ0)dt+

1

T

∫ T

0

1

2
(θ̂ − θ0)

′
[∂2λ0(t)

∂θ2
−

(∂λ0(t)

∂θ

)2 1

λ0(t)

]

(θ̂ − θ0)dt

+
1

T

∫ T

0
λ0(t)RT (θ)dt,

(B.4)

whereRT (θ) is of smaller order of the second term in the Taylor expansionof log λ̂(t). Consider

θ = ωk in (B.4) while fixing other parameters. By using the results that ∂λ(t)∂ωk
= −tAk sin(ωkt+

φk) and∂2λ(t)
∂ω2

k

= −t2Ak cos(ωkt+φk), and by direct calculation, we have1T (ω̂k−ωk,0)
∫ T
0

∂λ0(t)
∂ωk

dt =

(ω̂k−ωk,0)×O(1), and 1
T (ω̂k−ωk,0)

2
∫ T
0

∂2λ0(t)
∂ω2

k

dt = (ω̂k−ωk,0)
2×O(T ). In addition, since

1/λ(t) ∈ [1/M, 1/ε], we have

1

T
(ω̂k − ωk,0)

2

∫ T

0

1

λ0(t)

(∂λ0(t)

∂ωk

)2
dt = (ω̂k − ωk,0)

2 1

T

∫ T

0

1

λ0(t)
t2A2

k,0 cos
2(ωk,0t+ φk,0)dt

∈ [(ω̂k − ωk,0)
2 1

T

1

M

∫ T

0
t2A2

k,0 cos
2(ωk,0t+ φk,0)dt,

(ω̂k − ωk,0)
2 1

T

1

ε

∫ T

0
t2A2

k,0 cos
2(ωk,0t+ φk,0)dt].

By simple calculation that
∫ T
0 t2 cos2(ωkt+φk)dt =

∫ T
0 t2(12 +

cos(2ωkt+2φk)
2 )dt = O(T 3), we

have 1
T (ω̂k − ωk,0)

2
∫ T
0

1
λ0(t)

(

∂λ0(t)
∂ωk

)2
dt = (ω̂k − ωk,0)

2 ×O(T 2).
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To summarize the above discussion on(iii) whenθ = ωk, we have

(iii) = (ω̂k − ωk,0)×O(1) + (ω̂k − ωk,0)
2 × (O(T ) +O(T 2)) +

1

T

∫ T

0
λ0(t)RT (ωk)dt.

Since(ω̂k−ωk,0) = o(1), the first term in(iii) is o(1). In order to have(iii) → 0 in probability,

we need the sum of the last two terms to converge to0 in probability. Note thatRT (ωk) involves

with the product ofo((ω̂k − ωk,0)
2) and higher order of derivatives ofλ(t) with respect toωk,

and the corresponding integral, namely, the third term in(iii), can be calculated similarly as

the second term in(iii). By direct calculation, we can show that the third term in(iii), namely

1
T

∫ T
0 λ0(t)RT (ωk), involves with terms such as(ω̂k−ωk,0)

4×O(T 4). Since the second term in

(iii) involves with(ω̂k−ωk,0)
2×O(T 2), if (ω̂k−ωk,0) = O(T−1) or (ω̂k−ωk,0) = O(T−1+δ)

(0 < δ < 1), the sum of the last two terms cannot converge to0 in probability. And thus we

prove that(ω̂k − ωk,0) = o(T−1).

Proof of Proposition 16. The main technique in showing the asymptotic normality ofθ̂

is the Taylor expansion of the first derivative ofℓ(θ) in equation (3.13) and the decomposition

of the log-likelihood function (B.1). Note that∂(i)∂θ

∣

∣

∣

θ=θ0
= 0, we have

0 =
∂ℓ

∂θ

∣

∣

∣

θ=θ̂
=
∂ℓ

∂θ

∣

∣

∣

θ=θ0
+
∂2ℓ

∂θ2

∣

∣

∣

θ=θ̄
(θ̂ − θ0)

=
∂(ii)

∂θ

∣

∣

∣

θ=θ0
+

(∂2(i)

∂θ2
+
∂2(ii)

∂θ2

)∣

∣

∣

θ=θ̄
(θ̂ − θ0),

(B.5)

where0 ≤‖ θ̄− θ0 ‖≤‖ θ̂− θ0 ‖. In addition, the second derivative of(i) is of higher order and

thus it is the leading term in∂
2ℓ(θ)
∂θ2

∣

∣

∣

θ=θ̄
. This can be verified by direct calculation. For example,

consider the derivative with respect toωk only, we have

∂2(i)

∂ω2
k

∣

∣

∣

θ=θ̄
≃ ∂2(i)

∂ω2
k

∣

∣

∣

θ=θ0
= −

∫ T

0

1

λ(t)

(∂λ(t)

∂ωk

)2∣
∣

∣

θ=θ0
dt = O(T 3),

and ∂2(ii)
∂ω2

k

has mean0 and variance

var(
∂2(ii)

∂ω2
k

∣

∣

∣

θ=θ̄
) ≃ var(

∂2(ii)

∂ω2
k

∣

∣

∣

θ=θ0
) =

∫ T

0

(∂2 log λ0(t)

∂ω2
k,0

)2
λ0(t)dt = O(T 5).
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In above approximation,0 ≤ |ω̄k − ωk,0| ≤ |ωk − ωk,0| = o(T−1) is needed because of the

results in (A.1) and (A.2). The procedure to obtain the magnitude of above two equations are

similar to the procedures discussed in the proof of Proposition 15. So∂2(ii)
∂ω2

k

∣

∣

∣

θ=θ̄
is of order

of O(T
5

2 ) and it is smaller than∂
2(i)
∂ω2

k

∣

∣

∣

θ=θ̄
= O(T 3). When the derivative is with respect to

other parameters, the proof of the results that the second derivative of (i) is the leading term

in ∂2ℓ(θ)
∂θ2

∣

∣

∣

θ=θ̄
can be obtained similarly. In addition, the value of∂2(i)

∂θ2
evaluated atθ = θ̄ is

approximately the same as the value evaluated atθ = θ0.

In addition, ∂(ii)∂θ

∣

∣

∣

θ=θ0
follows a central limit theorem andD−1

T
∂(ii)
∂θ

∣

∣

∣

θ=θ0
is asymptotically

normally distributed with mean0 and variance-covariance matrixΣ as shown in (3.15). Then

we obtain the asymptotic normality ofθ̂ − θ by

DT (θ̂ − θ0) =
{

D−1
T

∂2ℓ

∂θ2

∣

∣

∣

θ=θ̄
D−1

T

}−1{

D−1
T

∂(ii)

∂θ

∣

∣

∣

θ=θ0

}

.
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Moore, M., Froda, S., Lẽger, C. (Eds.), Mathematical Statistics and Applications: Festschrift

for Constance van Eeden. Vol. 42 of Lecture Notes-MonographSeries. Institute of Mathe-

matical Statistics, pp. 345–356.

90



Helmers, R., Mangku, I. W., 2009. Predicting a cyclic poisson process. Report PNA-E0917,

Centre for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands.

Helmers, R., Mangku, I. W., Zitikis, R., 2003. Consistent estimation of the intensity function of

a cyclicPoisson process. Journal of Multivariate Analysis 84, 19–39.

Helmers, R., Mangku, I. W., Zitikis, R., 2005. Statistical properties of a kernel-type estimator of

the intensity function of a cyclicPoisson process. Journal of Multivariate Analysis 92, 1–23.

Helmers, R., Mangku, I. W., Zitikis, R., 2007. A non-parametric estimator for the doubly peri-

odic poisson intensity function. Statistical Methodology4, 481–492.

Hurvich, C. M., Tsai, C.-L., 1989. Regression and time series model selection in small samples.

Biometrika 76 (2), 297–307.

Imoto, M., Maeda, K., Yoshida, A., 1999. Use of statistical models to analyze periodic seis-

micity observed for clusters in theKantoRegion, centralJapan. Pure appl. geophys 155,

609–624.

Kuhl, M. E., 1994. Estimation and simulation of nonhomogeneousPoisson processes having

multiple periodicities. Master’s thesis, Department of Industrial Engineering and Graduate

Probgram in Operations Research, North Carolina State University, Raleigh, North Carolina.

Kuhl, M. E., Wilson, J. R., Johnson, M. A., 1995. Estimation and simulation of nonhomogneous

Poisson processes having multiple periodicities. In: C. Alexopoulos, K. Kang, W. L., Gold-

man, D. (Eds.), Proceedings of the 1995 Winter Simulation Conference. Institute of Electrical

and Electronics Engineers, Piscataway, NJ, pp. 374–383.

Kuhl, M. E., Wilson, J. R., Johnson, M. A., 1997. Estimating and simulatingPoisson processes

having trends or multiple periodicities. IIE Transactions29, 201–211.

91



Lee, S., Wilson, J. R., Crawford, M. M., 1991. Modeling and simulation of a nonhomogeneous

Poisson process having cyclic behavior. Communications in Statistics - Simulation and Com-

putation 20 (2/3), 77–809.

Lewis, P. A. W., 1970. Remarks on the theory, computation andapplication of the spectral

analysis of series of events. J. Sound Vib. 12 (3), 353–375.

Lewis, P. A. W., 1972. Recent results in the statistical analysis of univariate point processes. In:

Lewis, P. A. W. (Ed.), Stochastic point processes: statistical analysis, theory, and applications.

Wiley, New York, p. 1:54.

Lewis, P. A. W., Shedler, G. S., 1979. Simulation of nonhomogeneous poisson processes by

thinning. Naval Res. Logist. Quart. 26 (3), 403–413.

Lii, K.-S., Masry, E., 1994. Spectral estimation of continuous-time stationary processes from

random sampling. Stochastic Processes and Their Applications 52, 39–64.

Lu, Y., Garrido, J., 2005. Doubly periodic non-homogeneouspoisson models for hurricane data.

Statistical Methodology 2, 17–35.

Mangku, I. W., 2001. Estimating the intensity of a cyclicPoisson process. Ph.D. thesis, Univer-

sity of Amsterdam, Amsterdam.

Nayak, T. K., Bose, S., Kundu, S., 2008. On inconsistency of estimators of parameters of non-

homogeneous poisson process models for software reliability. Statistics and Probability Let-

ters 78, 2217–2221.

Priestley, M. B., 1981. Spectral Analysis and Time Series. Academic Press.

Rice, J. A., Rosenblatt, M., 1988. On frequency estimation.Biometrika 75 (3), 477–484.

92



Roatgi, V. K., Saleh, A. K. M. E., 2001. An introduction to probability and statistics, 2nd Edi-

tion. John Wiley and Sons, Inc.

Ross, S. M., 2007. Introduction to Probability Models, 9th Edition. Academic Press.

Schwarz, G., 1978. Estimating the dimension of a model. The Annals of Statistics 6 (2), 461–

464.

Severini, T., 2000. Likelihood methods in statistics. Oxford University Press, Oxford; New

York.

Shibata, R., 1989. Statistical aspects of model selection.In: Willems, J. (Ed.), From Data to

Model. Springer-Verlag, London, pp. 215–240.

Takeuchi, K., 1976. Distribution of informational statistics and a criterion of model fitting. Suri-

Kagaku (Mathematic Sciences) 153, 12–18, in Japanese.

Vere-Jones, D., 1982. On the estimation of frequency in point-process data. Journal of Applied

Probability 19, 383–394.

Vere-Jones, D., Ozaki, T., 1982. Some examples of statistical estimation applied to earthquake

data. Ann. Inst. Statist. Math 34, 189–207.

Walker, A. M., 1971. On the estimation of a harmonic component in a time series with stationary

independent residuals. Biometrika 58, 21–36.

93




