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ABSTRACT OF THE DISSERTATION

Modeling Almost Periodicity in Point Processes

by
Nan Shao

Doctor of Philosophy, Graduate Program in Applied Stassti
University of California, Riverside, December 2010
Dr. Keh-Shin Lii, Chairperson

We propose a model for the analysis of non-stationary paiotgsses with almost periodic
rate of occurrence. The model deals with the arrivals of ®vermich are unequally spaced
and show a pattern of periodicity or almost periodicity, rs@s the rate of financial transac-
tions or customer/phone calls arrivals. The concept of atrperiodicity is described and the
purely periodic process is just a special case of the almasbglic process. We consider a
non-homogeneous Poisson process and model its rate ofreacaras the sum of sinusoidal
functions plus a base line. Given the number of sinusoidattfans which is denoted ds, a
set of simple and consistent estimates of frequencieseplasl amplitudes which form the si-
nusoidal functions are constructed mainly by the Bartletiquiogram. The estimates are shown
to be asymptotically normally distributed. Computatioisslues are discussed and it is shown
that the frequency estimates have to be resolved with @ider!) to guarantee the asymptotic
unbiasedness and consistency of the estimates of phasesngfitlides, wher& is the length

of the observation period. The prediction of the next o@nee is also discussed. The proposed
model is a finite approximation of the almost periodic predegerms of a finite value ok'. In
practice, the value of is usually unknown, and we suggest to use the model selectimia

to determineX. Two criteria AIC and BIC are reviewed and discussed in thenfs work of our

Vi



model. Simulation and real data examples are used to dliesthe theoretical results and the

utility of the model.
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Chapter 1

Introduction

This thesis presents a general model for the point proceskieh show certain pattern
of periodicity. In Chapter 1, we introduce the basic conagppoint processes, including its
definition, intensity function, finite Fourier transformdathe periodogram of a point process.
The thesis is on the modeling of almost periodic point preessand the motivation of studying
such processes and the concept of almost periodicity aredinted in Chapter 2. The new
model is presented and studied in Chapter 2 and Chapter 3prboedures to implement the
proposed methodology in the data analysis are summarizkdrasented in Chapter 3, section

3.4. A discussion of potential future research directians iChapter 4.

1.1 Basic concept of point processes

Point processes are very common in daily life. A temporahpprocess is the random
occurrence of a series of events. So the arrivals of cus®imex restaurant, the initiations of
phone calls made to a customer service center, the timesaK stansactions, and the occur-
rences of earthquakes in certain area are all temporal poicesses. There are also spatial

point processes which are the random locations where theswéinterest occur, such as the



location of the wild fire. In this dissertation, we only cahesi temporal point processes, and use
temporal point processes and point processes interchalggea

Studying point processes is meaningful, as it helps us statat the structure of the pro-
cess which enables us to forecast. For example, the rateaf tsansactions carries information
about the market which influences the stock market value ahune of shares as well as other
financial products. In this case, it is natural to model thartg of transactions. Moreover, a
rigorous understanding of how the market moves providesstors with vital information to
help them make financially wise investments. Moreover, endtudy of phone calls made to a
customer service center, a good understanding of the paitgrhone call arrivals is important
to the scheduling of operators and thus could increase ficieety of the call center.

Point processes have been extensively studied in thetlitess such as Bartlett (1957,
1963, 1967, 1978), Brillinger (1972, 1978, 1982, 1983, 2(®8), Cox and Lewis (1966),
Lewis (1970, 1972), Cox and Isham (1980), Imoto et al. (1998)e-Jones (1982), Vere-Jones
and Ozaki (1982), and Hassan and Lii (2006). The researahiff processes usually focuses on
three aspects, namely, the counting processes which ieeneay to express point processes,
the intensity and/or the spectral of point processes, amuhthr-arrival times of point processes.
The concept of counting processes and intensity will beeved later in this section. There are
also literatures in the random sampling of a continuoughststic process, such as Lii and Masry
(1994).

In the research the point process is defined on the half re@Rli- for convenience. One
specification of the point process is from its event timed.{tg j = 1,2, - - - } be a sequence of
nonnegative random variables with< ¢; < ¢;, 1, then the sequendg; } is thepoint process
on [0, 00). If there is no multiple occurrence, namely,< t;, for any j, the process is called
asimple point process We will restrict our consideration to simple point proass

The point process can also be specified by the counting déeg where N(t) repre-
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sents the total number of points or “events” that have oecliup to timet (¢ > 0), so the
counting proces#V (t) must satisfy:

(i) N(t) > 0.

(i) N(t) is integer valued.

(i) If s <t,thenN(s) < N(t).

(iv) For s < t, N(t) — N(s) equals the number of events that have occurred in the iiterva
(s,t].

A counting process is said to possé@sdependent incrementsif the numbers of events
that occur in disjoint time intervals are independent. Thagans, for example, the number of
events that occur by tim&) and between times0 and 15 must be independent. Considering
customer arrivals, ifV(¢) is the number of customers who enter a particular store atior jo
time ¢, then N (¢) is a counting process, and it would be reasonable to asswahéhthnumber
of customers who enter the store during one period of timadspendent of the number of
customers who enter the store during another disjoint gexidime.

A counting process is said to possstationary incrementsif the distribution of the num-
ber of events that occur in any interval of time depends onlyhe length of the time interval.
In other words, the process has stationary increments ihtimsber of events in the interval
(s,s+t) has the same distribution for all A point process with stationary increments is called
a stationary point process. There are other mathematiaiittins of a stationary stochastic
process, and we refer to Priestley (1981) for more inforomatin this dissertation, the processes
we consider are not stationary, and they are non-homogserfeaigson processes which will be
discussed in the next section.

The definition and properties of the counting process abowéram Ross (2007) Chapter

In point processes, the only observations are the pointtheooccurrence time of events.



We can describe the pattern of occurrence as how frequémlgwents occur, and it is the idea
of the intensity function. Thintensity function \(¢) of a point process, also called the jumping

rate, or the mean rate of occurrence in Cox and Isham (19806gfined as
P{N(t,t +0) > 0}

6—0+ )

E{N(t,t+ )}

5—0+ 0

SOE{dN(t)} = A\(t)dt with dN(t) = N(t+dt) — N(t). The integral of the intensity function

over a time periods, ], that is,fst A(t)dt, is the expected number of events which would occur
n (s,t]. And thus the intensity function describes the first-ordenrent property of the un-
conditional counting measure. When the intensity is lange period of time, we should expect
more events to occur during that period of time, and viceardrsaddition, it is easy to see that
if the process is stationary, the intensity function is ¢anssince a stationary process will have
the same expected number of events in any time intervalstidtisame interval length.

The intensity function is an important concept in point @eges, and this thesis is on the
modeling of the intensity function of a non-homogeneouss&mi process. We introduce the

Poisson process in the next section.

1.2 Poisson processes

Poisson processes are the most commonly used point predaegs@actice. It is defined as

follows:

Definition 1 The counting proces§N (¢),¢ > 0} is said to be aPoisson process having rate
or the intensity functior\(¢) with A(¢) > 0, if

(i) N(0) = 0.

(if) The process has independent increments.

(i) P{N(t +h) — N(t) > 2} = o(h).



(iv) P{N(t +h) — N(t) = 1} = A(t)h + o(h).

We state the following result and refer the proof to Ross 7200
The number of events in the intenv@l, ¢] is Poisson distributed with mea{(t) = fg A(s)ds.

That is, for allt > 0,

PN = n} = AOAD g

n! "’

Note that when the intensity function is constant, thak{g) = A\ > 0, the Poisson process
is called the homogeneous Poisson process and it is statiddtherwise, the process is called
the non-homogeneous Poisson process, and it is not stigtiona

For a homogeneous Poisson process with intensitys inter-arrival times{z; : z; =
tj —tj_1,if j > 2,21 = t1}, are independent and identically distributed (i.i.d.) @xgntial
random variables having medr\. So to generate a homogeneous Poisson process, we just
need to generate a series of i.i.d. exponential randomblasgx;} with meanl/\, and the
data points or event times afe; = >/ 2, j > 1ty = 0}.

Denote the time to stop taking observationsTassume we always taking observations
start at timeD). In the point process literatures, the sample size N(T') is usually regarded

as a random quantity for mathematical convenience, andibereation length” is fixed.

1.3 Simulation of a non-homogeneous Poisson process

If the intensity function is bounded, that i&(¢t) < A forallt > 0 (A > 0), a non-
homogeneous Poisson process can be generated by thinnimgdhfleewis and Shedler (1979)).
The procedures are as follows:

(i) For eachj > 1, generate an exponential random variabJewith rate1/\, andz; is

independent of the previously generated, i < j}. Denotet; = > 1 z;, S0{t1,ts,...} isa

homogeneous Poisson process with pate



(i) Generate an uniformly distributed random variablgs~ U (0, 1), andu; is indepen-

dent of the homogeneous Poisson prodessis, . . . } and the previously generatéd,,i < j}.

If u; < A(ij ), keept,, otherwise, delete;.

(iif) Repeat step (ii) until the desired observation lengttof the “thinned” sequence is
obtained.

Denote the “thinned” sequence{ig}, then it is a non-homogeneous Poisson process with

the intensity functiom\(¢).

1.4 Finite Fourier transform and periodogram of point processes

Thefinite Fourier transform of a point process is defined by Bartlett (1963) as

dp(w TWEAN(t),

1 T
= — e
) \2rT /O
and theperiodogram of a point process is defined by the squared norm of the finitei€io
transform
1 4 —iwt 2

1 —iwt
- 27TT‘ Z € ’

t; <T

2

)

whereT is the observation length. Again, we consideas a fixed quantity and the sample size
n = N(T) as a random number.

Periodogram can be calculated directly from the daga j = 1,2,...,t; < T'}.

The intensity function of a point process is unobservableweéter, as illustrated by Fig-
ures 1.1 and 1.2 and the discussion afterwards, the peraahag closely related to the intensity
function when the point process follows a hon-homogeneaissBn process and the intensity

function takes the form

K
A(t) = Ay cos(wit + ¢x) + B,
k=1



whereA(t) > 0andA, > 0andwy, >0,k =1,..., K.
Figures 1.1 and 1.2 show an example of the intensity funaf@non-homogeneous Pois-
son process and the corresponding periodogram calculeted dne realization of the non-

homogeneous Poisson process.

3.0

25

2.0

intensity
15

1.0

0.5

0.0
1

T
0 20 40 60 80 100

Figure 1.1: Intensity function of a non-homogeneous Poigg@cess\(t) = cos(—Z=t) +

0.5 cos(g%t + %) + L.6.

The location of the two largest peaks of the periodogramespaond to the two frequen-
ciesﬁ/5 andg% in the intensity function, and the height of the peaks isallpselated to the
magnitude of the two cosine functions in the intensity fiorct This relationship between peri-
odogram and the intensity function of a non-homogeneoussBoiprocess will be investigated
in more details in Chapter 2.

The properties of the periodogram are studied by Bartl&®38) when the periodogram is
derived from a stationary process. Brillinger (1972) stddihe spectral analysis of stationary

interval functions and gives the asymptotic distributidrtr® periodogram. We refer to these
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periodogram

|

Figure 1.2: The periodogram of a non-homogeneous Poissmegs with the aforementioned

intensity function\(t) = cos(ﬁ\/gt) + 0.5 cos(ﬁﬁt + %) + 1.6. The process consists 778

observations with observation length= 500.



two references for further discussion of the periodogramthis dissertation, our main interest

is in the non-homogeneous Poisson process, and the pregestsstationary.



Chapter 2

Almost Periodic Poisson Processes

2.1 Introduction

The main objective of this chapter is to present a model far-lmmmogeneous Poisson
processes with periodic or aperiodic but almost periodie cd occurrence. The work in this
chapter has been summarized in the paper ‘Modelling nonelgemeous Poisson processes with
almost periodic intensity functions’ which will appearJournal of the Royal Statistical Soci-
ety Series Band now can be downloaded at http://onlinelibrary.wilesnédoi/10.1111/j.1467-
9868.2010.00758.x/pdf. This chapter and Appendix A previdore details than the paper,
especially in the proof.

There are many real life examples of point processes whiatv shpattern of periodicity,
such as higher volume of customers coming to a restauramgdkriday night and weekend
than weekdays, stock transaction with high activity at tkgitiing and the end of the day
(Engle (2000)), more phone calls made to a customer sereiceicon Monday morning than
Friday evening, and even in seismicity where periodic patbé earthquakes has been observed
in certain area (Vere-Jones and Ozaki (1982) and Imoto €t@99)). Many applications arise in

areas such as healthcare and medical sciences (Lewis I®72), and Kuhl et al. (1995)), me-
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teorology (Lee et al. (1991)), and some others are noted iméts et al. (2003) and references
therein.

As introduced in Chapter 1, the rate of occurrence is aldeatéhe intensity function, and
more events in a certain period of time is equivalent to lavgéue of intensity function during
that time period. So when a point process shows a patternriofdigty, its intensity function
is modeled as a periodic function. Many references haveisisd the modeling of periodic in-
tensity functions of Poisson processes, such as Lewis (1972), Vere-Jones (1982), Helmers
et al. (2003, 2005), but none of them is in the almost periodittext. The novelty of our work
is in the presentation of constructing a much more generaleinahich includes the purely
periodic Poisson processes as a special case. The con¢aptast periodicity’ and our model
will be introduced in the next section. We will give a liteweg review on the parametric and
non-parametric approaches of modeling periodic Poissocess as follows.

Point processes with single or multiple periodicities ofieththe corresponding frequen-
cies are integer multiples of a fundamental frequency haea lstudied in the parametric con-
text. Lewis (1970, 1972) established the estimation andatien of a cyclic varying rate of
a non-homogeneous Poisson process when the frequencyvis lkenpriori. The rate function
took the form

A(t) = Aexp{pcos(wt + ¢)} (2.1)

which would lead to simple results based on sufficient stesignd guarantee the positivity of
the intensity function. Vere-Jones (1982) considered atabéished the asymptotic properties
of a consistent estimate for the unknown frequesadnp (2.1), which is based on the maximum
of the Bartlett periodogram (Bartlett (1963)) over certia@guency range and coincides with the

maximum likelihood estimate. As introduced in Chapter &, periodogram of a point process
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is defined as

T
Ir(w) = (%T)*l( /0 e AN (t) g (%T)*l‘ Z e Wt 2, (2.2)

t;<T

where (0, 7)) is the observation intervaly(¢) is the counting process which is the number of
events by time t, andlt; : ¢; < 7'} are the random occurrences of events. However, (2.1) is lim-
ited in its parametric form, that is within each cycle theemgity function has a sharp peak and
a flat trough, and the model may not perform well when the tntenisity function departs from
this parametric form, such as a flat peak and a steep trougévera peaks in one cycle. Kuhl
(1994) and Kuhl et al. (1995, 1997) extended Lewis’'s modadetihe rate of Poisson processes
was an exponential function with the sum of several sindichctions plus a baseline constant
in the exponent. An approximated likelihood was used inudating the parameter estimates
numerically, but this approximated likelihood may diffeorin the true likelihood severely when
the baseline in the exponent is relatively small comparetheéoamplitudes of the sinusoidal
functions in the exponent. In addition, there is no justtfamaof the goodness of the initial val-
ues of the frequencies which is usually of most interesttimeistatistical properties of the final
parameter estimates. A series of paper by J. Garrido and Walza proposed and investigated
several parametric doubly periodic Poisson models and/applmodels to the hurricane data
to include the EI Nifio and La Nifa effect. We refer to Lu anarlo (2005) and the reference
therein. The intensity function is expressed as a produt@periodic functions that represent
short-term and long-term trend. In their paper, both shemtd long-term periods are assumed
to be known and the long-term period is an integer multipl¢hef short-term period, so this
doubly periodic Poisson model is a special case of the ppesiypdic Poisson model.

The period or, equivalently, frequency of the periodic Boisprocess has been studied
non-parametrically as well, we refer to Mangku (2001) andtiegton and Zitikis (2004). An

updated version of Mangku (2001) is Helmers and Mangku (200Be main idea in Helmers
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and Mangku (2003) is that if the intensity function is pertowaith periodr, then the counts of
events within each time interval of lengthshould share the same expected value, so one can
find out the estimate af by searching for the proper interval length which minimiessum of
squared difference between counts within each time intanéthe averaged counts. However,
this approach is flawed in the following sense: the expectddevof the number of counts in
a time interval is the integrated value of the intensity fiorcin that time interval, so if the
intensity function is periodic and the integrated intgnsiithin the first half period is the same
as the integrated intensity within the latter half peridee approach in Helmers and Mangku
(2003) would find a period estimate around half of the truéopkenot the complete true period.
An example for this case is that the intensity function\(s) = 0.1 + | cos(27t)| with period1
and it is symmetric within each period, so the integratedriaity in the first half period is the
same as the one in the second half period, and thus the approdelmers and Mangku (2003)
would estimate the period aroufd instead ofl. Follow a similar argument, a smaller divisor
of the period could be found as the period estimate if thegmatied intensities are the same
within each sub-divisor of the period. In addition, the sbarange for the period estimate is not
well defined, or relies on the prior knowledge of the lengthhaf period which is sometimes
unavailable in practice. Bebbington and Zitikis (2004) stouncted a family of non-parametric
estimators for the period of a cyclic Poisson process, apccandidate is the twice of the length
of the interval which maximizes the sum of squared diffeecsbetween counts in adjacent time
intervals. The authors generalized this estimator to al§aafinon-parametric estimators and
used simulations to demonstrate the utility of the resufsom the discussion in the paper,
the proposed estimator may find the period estimate to beofiaf even smaller divisor of
the true period. In addition, the asymptotic and statijicaperties of these non-parametric
estimators are not shown in the paper though the authors swade remarks on the derivation

of the asymptotic properties. One needs to pay attentiong@him made in Bebbington and
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Zitikis (2004) that the periodogram cannot handle multiedayycles, namely, multiple peaks in
one cycle. This is not true, and this claim is made solely thasethe simulation results without
theoretical proof. In fact, in their simulation, the perigglam estimator is searched too sparsely,
the searching grid may not be fine enough to have the les{@th') whereT is the observation
length. The computational issues on searching the perfadogstimator will be discussed in
this chapter.

There are a series of papers on non-parametric estimatitimedhtensity function of a
cyclic Poisson process. Helmers et al. (2003, 2005) cartsiuand investigated a consistent
kernel-type non-parametric estimator of the intensitycfiom, where the unknown period
is first estimated by periodogram-based estimator in Veneg (1982) or the non-parametric
estimator in Helmers and Mangku (2003), and then the intefsnction at times is estimated
by using the data points near+ k7, wherek is non-negative integer antlis the estimator
of 7. The idea in estimating the shape of the intensity functeedsentially similar as the
‘folding’ technique in Hall et al. (2000) although we beleethat it is a coincidence. Hall
et al. (2000) introduced a general framework of nonparamestimation of a periodic function
when observations were made at irregularly spaced time. ni&ie difference between the
estimation of general periodic function and the estimatbperiodic intensity function of a
Poisson process is that the value of the general periodatifumis observable (as the response),
but the intensity function of a point process is unobsemalihe only observations in a point
process are the points, or the occurrence time of the sdreagnts.

In addition, motivated by J. Garrido and Y. Lu’s work, Helmat al. (2007) constructed
and analyzed a non-parametric estimator for the doublypg@eriPoisson intensity function un-
der the same assumptions as in Lu and Garrido (2005). Sgadlgifibe long-term periodic func-
tion is modeled as a step function which takes positive eoisialue over the whole short-term

period. So within one long-term period, each short-terniooks effect is a constant multiples
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of the first short-term effect. This structure of long-teraripdic function is used in one of the
parametric models in Lu and Garrido (2005). The estimatidheshort-term periodic function
is in essence similar to the technigue in Helmers et al. (22035).

Moreover, the non-parametric prediction upper bound fartaré observation of a cyclic
Poisson process has been studied in Helmers and Mangku) (20@®e the period is assumed
to be known.

In the preceding non-parametric estimation and predicttba assumption of a purely
periodic intensity function is critical so that the integdiunction repeats itself exactly, and thus
can be extended to the future for prediction or produceditags’ of the process even when
there is only one realization of the process. For the casawhieintensity function is almost
periodic but not periodic then the intensity function doesnepeat itself exactly and in this case
it is difficult to implement the non-parametric technique éstimation and prediction by these
non-parametric methods. We will give more information an@st periodic function in the next
section.

The rest of this chapter is organized as follows. In secti@) ®e introduce the concept
of almost periodic function and our model. In section 2.3, meoduce the notations and
assumptions, and state the main results in estimating tlaengders in the intensity function. In
section 2.4, we discuss some computational issues in dstgrthe frequencies. Prediction of
the next occurrence is discussed in section 2.5. Simulatizfies are carried out in section 2.6
and a real life data set is analyzed in section 2.7. We coralith some further discussion in

section 2.8. Appendix A contains most of the proofs of theltes
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2.2 Our model

2.2.1 Almost periodic function

There are various different but equivalent definitions afi@t periodic function. We use

the definition in Corduneanu (1989).

Definition 2 A complex valued functiorfi(z) defined for—co < = < oo is called almost

periodic, if for anye > 0 there exists a trigonometric polynomia}(x), such that
|f(z) —Te(z)] <&, —oo<uz<o00,

where the trigonometric polynomial is in the formifofz) = 5 ) cpe"* andcy, are complex

numbers and\;, are real numbers.

Thus almost periodic functions are those functions definethe real line, which can be
uniformly approximated by trigonometric polynomials.

An equivalent definition of almost periodic function is givey Bohr (1947) as follows.

Definition 3 For anye > 0, if there exists a numbé(z) > 0 with the property that any interval

of lengthi(e) of the real line contains at least one point with abscigsauch that
[f(x+&) - f(x)l <&, —oo<z <o,
then f(x) is almost periodic.

We refer to Corduneanu (1989) for the proof of equivalencabaive two definitions and
more details of almost periodic functions.

From definition 2 it follows that any trigonometric polynaahis an almost periodic func-
tion. In addition, any periodic function which has a Fouseries representation, such as con-
tinuous periodic function, is also almost periodic, in atirds, such periodic functions are

just special cases of almost periodic functions.
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Figure 1.1 shows an almost periodic function. The functiaa bertain pattern of period-
icity, but there is no perioa such that the function at any tintehas exactly the same value as

itis at timet + 7. The function allows some deviation from the purely pericchse.

2.2.2 Almost periodic point processes

In practice, almost periodic process is much more genegal the periodic one, since
any particular configuration that occurs once may recur ratty, but within some level of
accuracy. And it is more reasonable to assume an almostieiigensity function when the
point process shows a patter of periodicity. In the pointpss case, the intensity function is
defined on the non-negative real line, and by definition 2 @ingtalmost periodic function can
be uniformly approximated by the trigonometric polynomjalve model the almost periodic

point process with the following intensity function,

K

A(t) = Z Ay, cos(wit + o) + B, (2.3)
k=1

where Ay, B, wy, ¢i are unknown parameters withy > Ay > -+ > A > 0, —7/2 < ¢, <
3r/2andwy > 0,k = 1,..., K. The baseling3 is a constant such thatt) is non-negative
for anyt > 0. A sufficient condition to guarantee the non-negativity\Qf) is B > Zszl Apg.

By Fourier expansion, the sum of sinusoidal functions cqoiura most of the variation of
a periodic function in any shape, and when the frequencesatrinteger multiples of a funda-
mental frequency, (2.3) is not periodic but almost perioditien (2006) first used this model
to test the existence of the periodic components when tiggémcies{w; : k =1,..., K} are
known. He also proposed a method of detection of hidden gieitg. There, Poisson process
assumption was relaxed, while the process is assumed tosteti@nary increment under null

hypothesis.
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2.3 Assumptions and Estimation

We consider simple point process in which at most one evanire@t any given time. We

also assume the point process is a non-homogeneous Poissasq

Assumption 4 N(t), t > 0, is a non-homogeneous Poisson process with a periodic costim
periodic intensity functiorf2.3), observed over the time interv@@, 7', and the number of peri-

odic componentg is given.

The estimation of< will be discussed in Chapter 3.

Inspired by Vere-Jones (1982), we construct the estimdted anknown parameters in
(2.3) mainly by the periodogram (2.2) for non-homogeneouo&sddn processes. The esti-
mates do not coincide with the maximum likelihood estimabes they can be very good ini-
tial values in finding the MLE’s. Denotes = (w1,...,wx) in (2.3). We determineb, =
(7, ...,wk,r) as the estimate ab which are frequencies corresponding to #ifelargest
local maxima of the periodogram (2.2) under a certain mimmaeparation condition that is
explained below. Analogous to the estimation of severahioaic components in the ordinary
time series analysis (Walker (1971)), a minimum separattomition on thes must be imposed
to keep thev, from being too close together and thus prevent the estinodteg angular fre-

guencies from converging to the same value in probabilitg.HAe the following assumption.
Assumption 5 T'minyzp (|w, — wyr|) = 00, @sT — oo.

The choice of minimum separation depends on the data léhgtid the rate of occurrence
A(t). If the number of observations is large, in other woffiss large and/on(t) is large, then
we should be able to estimate frequencies which are closado other.

In addition, the maxima of the periodogram (2.2) should kerdeed in an appropriate

range. For a fixed data set, the periodogram (2.2) is an alpwgidic function ofw, and
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it follows from the properties of almost periodic functiotigt, there will be arbitrarily large
values ofw for which the periodogram approaches within any given aamuiof its absolute
maximumN (T')2 /2T (Vere-Jones (1982)). So the maxima of the periodogram oeelarge

a range will be unrelated to the periodic effects. The ‘agerdNyquist frequencyr N (T')/T

is suggested to be the upper bound in Vere-Jones and Oza&&)(Mhile a wider condition is
shown in Vere-Jones (1982) that the upper bound only neddsrease sufficiently slowly with
T. As for the lower bound, a neighborhood ®has to be excluded to remove the peak of the
periodogram at the origin and the peaks near the origin ddugéeakage, so that the frequency

estimates will not converge to We have the following assumption on the search range.

Assumption 6

OT" N <w, <Qp, k=1,...,K,

where0 < ¢ < 1 and Qr is the upper bound, possibly determined by observationhen t

process in the interva(0, T') with E(Q7) = O(T'~°), § > 0.

There is another way to eliminate the peaks of the periogogu@und the origin by using

the centralized periodogram

T
(W) = (27TT)_1‘ /0 e~ [AN (t) — %dt]f, (2.4)

which has an asymptotically negligible effect at other frexacies. So if the frequency estimates
are determined by (2.4), the lower bound in the search raagebe0. In the following dis-
cussion, we use the unmaodified periodogram (2.2) to derigeatlymptotic results, but all the
results hold equally for the centralized periodogram (2.4)

In summary, to estimate the frequencies, we only consideal lmaxima of the peri-
odogram which occur in the range defined in Assumption 6, heaérresponding frequencies

are well separated where their shortest distance cannatecfaster tha@ (7—!) asT — oo.
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So for a given set of local maxima of the periodogram, to $efocthe next local maximum,
one has to exclude the peaks that occur in the neighborhddaitie drequencies which corre-
spond to the given local maxima, and the width of each neigtdmml isO(7~'*7) with v > 0.
Then frequencies corresponding to the largéstuch local maxima of the periodograip(w)
are defined to be the frequency estimates= (w1 7, ..., 0Kk ).

Vere-Jones (1982) confirmed that some detailed resulthéasymptotic behavior of the
periodogram-based frequency estimate in a periodic signahussian noise (Hannan (1973))

would at least have some counterpart in the point procegexidny using the decomposition
dN(t) = \(t)dt + dZ(t), (2.5)

where\(¢) is the intensity function, andZ(t) is a process with mea and independent but
non-stationary increments. In addition, €a¥ (t),dZ (7)) = var(dZ(t))d; - with é; , equals 1
if t = 7 and O otherwise, and V@Z(t)) = var(N(t)) = A(t)dt — \?(t)(dt)?. SodZ(t) is
mean-squared bounded.

The lemma and its variants in Vere-Jones (1982) play an itapbrole in showing the
similarities between results in ordinary time series witiu€sian noises and non-homogeneous

Poisson processes. We state a similar result here.

Lemma 7 Let N (t) be a Poisson process with a bounded intensity functigin observed over
the time interval0, 7], let Q7 be a frequency upper bound, determined possibly by obsengat

on the process in the intervé, T'), and set
dZ(t) = dN(t) — A(t)dt.
Then ifQ7 satisfies the condition in Assumption 6, for every> 1, asT — oo,

T
/tm‘le‘WtdZ(t) — 0 (almost surely.
0

T~ sup
0<w<Qp
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We refer to Vere-Jones (1982) for the original proof of theeza = 1. In the appendix we
correct the typo in the original proof and generalize it te tasen > 1.
Lemma 7 implies that in the decomposition

T
Jr(w) :=T"™ / t" e WIN ()
0

T T
S / e WA (bt + T / A0 (2.6)
0 0

= IV (w) + I (w),
J}Z) (w) converges td uniformly for w € (0, Q7] or, equivalently,J}A) (w) is the dominant
term inJp(w).
We use the above results to establish the asymptotic prep@ftthe parameter estimates,

starting with the ‘super-efficiency’ in the frequency esites.
Proposition 8 Under Assumptions 4, 5 and &y is a consistent estimate af, and
(1 —wp) =0o(T™h), (as), k=1,...,K. (2.7)

We leave the proof in the appendix. The result here is sindlghe ‘supper-efficiency’
of frequency estimates in the ordinary time series with ecgence rate(n—!) wheren is
the sample size. One may wonder why frequency estimatesr@esjch an accuracy which
is not only better tharO(7~'/2) but alsoO(T~!). Our intuitive answer is that most of the
time, the estimation of the amplitude of the sinusoid retinghe frequency estimates, and if
the estimated frequency is not within the desired precisifdhe true frequency, corresponding
amplitude estimate is not consistent. In the ordinary tierges literature, Rice and Rosenblatt
(1988) discussed the use of periodogram on frequency dgiimia ordinary time series with a
periodic signal in stationary noise sequence. They poiotedhat in order to determine the fre-
guency estimate which maximizes the periodogram, one wuoawd to sample the periodogram
deterministically by a grid mesh with the mesh length—!) wheren is the sample size. Oth-

erwise, if the distance between the frequency estimate lamdrae frequency is greater than
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o(n~1), the corresponding amplitude and phase estimates aresistamt. These results extend
when there are several harmonic components in the timesse8ach results have a counter
part in the point process case. We will give a detailed dsiomsabout computational issue on
frequency estimation in the framework of our model in setfa.

To investigate the asymptotic behavior of the parameténasts, we define the following

random variables

U::T—%/TdZ()

T T
:Té/ cos(wgt)dZ (1), =T é/ sin(wgt)dZ(t)
0 0 2
. - (2.8)
/ t cos(wyt)dZ(t), / tsin(wit)dZ(t),
0 0
k=1,...,K.

For simplicity, we use the following notations

Op = Hwr =wp},  0jpqw = Hwj = wp +wir },
Oy = H{wj =wp —wi}, Ok = H{wj = wp — wi},
wherel{.} is the indicator function.
From the bounded variance and independent increment pyoplethe processlZ(t), a
central limit theorem can be applied in determining the gstic distribution of the variables

defined in (2.8). The proof is in the Appendix.

Proposition 9 Under Assumptions4and @8/, Vy,..., Vg, W1,... , Wk, X1,..., Xk, Y1,...,Yg)

is asymptotically normally distributed & — oo, with mear0, and variance-covariance
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Tlim co(U, Vie, Wi, X, Vi)', (U, Vi, Wi, X, Y3 )] =
— 00

B (Aw /2) cos(¢rr)  —(A/2)sin(dps)  (Ap/4) cos(dr)  —(Ap/4) sin(¢w)
(Ax/2) cos(dr) Ey(k, k) Es(k, k') sEr(k k') 5Bs(k, k')
—(Ar/2)sin(¢r)  Es(k,k) Ey(k, k') s Es(k' k) 5Bk, k')
(Ay/4) cos(op) TE(K k) TEs(k, k') LB (kK TEs(k, k)
—(Ag/4) sin(¢y) sEs(K k) SE> (K k) $Es(K k) TEo(k, k)

where

K
. A
Ey(k,K') :zq}gr;ocoka,vk/ E =0 08(0;) (0 kthr + O k—tr + O ur—k) + = 5kk’
j=

4
Wy B
Ba(k, ) = lim co W, Wie) =3 5 cos Ojkeths + Ok + Ojhr—k) + 5 Ok
j=1
K4,
Ey(k, k') = lim cou(Vi, We) =3 _ ! sin 8j ks + O k—kr = O k),
7j=1
k,k' =1,..., K. The rows of the matrix correspond to random variables withsgript & and

the columns correspond to random variables with subsdripOther covariance in the matrix

amongVy, Wy, X, X3, Yy, andYy, are given similarly.

Now we show the asymptotic behavior®f.
Since the periodogram is a twice continuously differerégonction ofwy,, andwy, 7 is

the kth largest local maximum, a Taylor series expansion abguyt yields
Ir(wr) = Ip(@r1) + (Wi — Or,r) 17 (k1) = (Wb — Q1) I7 (@8, 7),
where( < |(IJ,1€’T - wk| < |d]k;,T - wk|. So

T% (k. — wi) = =203 Tp(wi) /20T > Tk 1)- (2.9)
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The results in Proposition 9 will help describe the asymptbehavior of the numerator

and denominator of (2.9), starting with the decompositibii;dw)

2

2rT)Ip(w) = [/OT sin(wt)dN(t)] ’ + [/OT cos(wt)dN(t)}

T T 9 T T 2
= {/0 sin(wt)A(t)dt +/0 sin(wt)dZ(t)] + {/0 cos(wt)A(t)dt + /0 cos(wt)dZ(t)
(2.10)
We call the integralZ-integral if it is with respect taZ(t), andA-integral if the integral is with
respect to\(¢)dt.

In the first derivative of 27 T") I (w) in (2.10) atw = wy, the products of-integrals in
the expansion with\(¢) given in (2.3) areD(T?) plus someD(T?) terms, but the) (T3) terms
are canceled out eventually, and the productg-afitegrals areD(7?) in distribution according
to Proposition 9. Meanwhile, the products of onntegral and oneZ-integral areO(7°/2) in
distribution, so they are the leading terms. ExpressingZhetegrals in terms of the random

variables defined in (2.8) and evaluating théntegrals by (A.1) in the Appendix, we find
1 1
2n T2 I (wy,) = Al 5 Vi sin(dr)+5 Wi cos(¢x) = X sin(gp) —Yi cos(dr)}+o(1), k=1,..., K.

As for the denominator of (2.9), break it in the similar wayl tArms involving Z-integrals
uniformly (in w) converge td) (a.s.) by Lemma 7, and the leading terms are the products of
A-integrals. The resulto, + — wx| = o(T~!) implied by Proposition 8 is needed in evaluating

the limiting value ofA-integrals by (A.1) and (A.2). We find that
1
2T 3 I (@pr) — —ﬂAz, almostsurely k=1,...,K. (2.11)
So

T3 (@ —wi) = %{%Vk Sin((bk)‘f‘%wk cos(¢p)— X, sin(¢y,)— Yy cos(dp) }+o(1), k=1,...,K.
(2.12)

Now we obtain the asymptotic behavior ®f- which is shown in Theorem 10.

24



Theorem 10 Propositions 8 and 9 imply that a8 — oo, T%(GJT — w) is asymptotically

normally distributed, with meaf, and variance-covariance

12
lim CO\/(T2 (wk T — wk) T% (L:J]g/j — w;))

T—o0 AkAk/ [QB(Sk Wt Z A 8

J=1

( cos(¢j — Gk — Qrr)0j kyk + €OS(Pj — Pp + Opr )05 k—ir + €OS(Pj + P — Prr ) Sk — k)}

wherek, k' =1, ..., K. In particular, the variance is
3
lim var(7T'?2 — (23 A; -2 )
Tgréo ( 2 (wk T wk) Z COS ¢k) . k+k

We proceed to definék,T andqﬁhT as the estimates of;, and¢,, respectively. We denote
(1) and(ii), by
T T
(i) = —T! / sin(wy pt)dN(t), and(ii)y = 7! / cos (W, 7t)dN (1),
0 0
wherek = 1,..., K. Then defined, - and¢y, 1 by
AL p = A7 + @)F) = /T)Ir(@xr),  S0ARr = \/ A2 1,

and

tan g = (0)/ (i), if (i) # 0,

7

arctan tan ng,T, if (ii), > 0,
and¢r,r = < arctan tan (ﬁk,T + 7, if (i), <0,
m/2sgn((i)g), if (i1)r =0,

\
wherek =1,... K.

To establish the asymptotic propertyAi o» We use the following representation

MIH

TH(AL r— A}) = —(8m)T % [ Ir(wp) = Ir(@p) | +TF | (87/T)Ir(wy) - A7

= —%Tﬁé (wk — Wy, T) IT(wk T) + 4Ak{Vk COS(¢k) W sin(¢k)} + 0(1)

= 4Ap{ Vi cos(¢r) — Wisin(¢p)} + o(1),

(2.13)
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wherewy, 7 in the second last equation satisfies: |wy, 7 — wi| < |k, — wgl|. The first term
in the second last equation is obtained by taking Tayloesegkpansion ofr(w) aboutwy, 7,
and sincel’.(w, 1) is O(T?) by (2.11), andwy, — @, 1)? is O(T~3) in distribution by Theorem
10, this term isO(T*%) and converges t0 asT — oo. The second term in the second last
equation is obtained by the decomposition in (2.10) andesgingZ-integral in terms of the
random variables defined in (2.8). Following Propositionth@, last equation in (2.13) implies
the asymptotic normality o'z (A%,T — A?). And 5-method yields the asymptotic normality of
Ar.

Turning totan ¢y, we first discuss the case whep # 7/2 or —7/2, thencos(¢y) # 0.
Splitting (é¢) into the sum of one\-integral and one&Z-integral as in (2.5), Lemma 7 implies
that the leading term iui);, is the A-integral and it iS(Ax/2) cos(¢) # 0 by (A.1), so(ii) is

not 0 asymptotically. We break'> (tan g%kj — tan ¢ ) as follows,

1

T%(tan QZA)]CVT — tan qbk) = -T2 [

e T ST sinfwrt)d all)
(i) -1 ST cos(wit)dN(¢)
L 7 [_ T-! fo sin(wgt)dN (t)

T-1 fOT cos(wgt)dN (t)

~ tan @J = (iid)p, + (i0)p.
In addition, in the decomposition of the first derivative(0f, / (ii);, atwy, 7 (0 < |wi 7 — wi| <
|wr, 7 — wi), the leading term is the products dintegrals, and it i)(7") in distribution. By

making use of (A.1), a Taylor series expansior{#f); aboutwy, yields

d <T1 S sin(wt)dN (t)

(i) = -1 [ T-1 fOT cos(wt)dN(t)) ‘w:wk,Ti| S

dw
_ 1 1+ 0(1) ~ _
=T [TQ cos?(¢p + 0(1))] (@r,r = wk)
12

_m{%vk sin(¢y) + %Wk cos(¢py) — Xp sin(dy) — Yy cos(dx)} + o(1),

where the last equation follows by (2.12). Now we turrjdo),, and break integrals in a similar

way; we find that

2
Ay, cos?(¢p, + o(1))

(iv) = — {Vi sin(¢r) + Wy cos(¢r)} + o(1).
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So

4

Ay o () {2V}, sin(¢x ) +2W), cos(¢ ) —3 X, sin(¢y ) —3Y}, cos(dy) H+o(1),

T (tan ¢,z —tan ¢g) = —
(2.14)
and we obtain the asymptotic normality @‘é(tan ékj — tan ¢y) by Proposition 9. Again,
5-method yields the asymptotic normality @f wheng;, # /2 0r —m/2.
Consider the case when, = 7/2 or —7 /2. Itis easy to see thati), — 0asT — oo and

(D) — (Ag/2)sin(¢r) = (Ar/2)sgn{sin(¢x)} by Lemma 7 and (A.1). So @& — oo and
¢ — /2, ¢ = arctan tan ¢y, 7 = arctan|(i)y/(ii)x] — 7/2, and a similar result applies
to o, — —7m/2. So&kj is a consistent estimate of, when¢, = +7/2 and the asymptotic

normality ofg?)k,T obtained above extends to the case whgna= +7/2.

The cross-covariance ofr and¢ will be given in Theorem 13.

Theorem 11 Propositions 8 and 9 imply that, & — oo, T2 (A — A) and T (¢r — ¢) are

asymptotically normally distributed, with me@nand variance-covariance

K
lim coT2(Apr — Ap), T2 (Apr — Ap)) = 2B + Y Ajx

T—o0 =
(COS(¢j — O — Opr )0 vk + €OS(Pj — Di + O )0j k—ir + c08(Pj + P — Pry )k — )

1. 7l 4
I T3 (i — o), T (i ) = :
Jm coMT? (G = 61), T2 (G = 60)) = 4= (285 + ;A X

( cos(pj — Ok — i )0 i + €o8(@j — D+ O )0j j—pr + c0s(Pj + G — G )0k — k)}

wherek, k' = 1,..., K. In particular, the variances are
) )

. l
jl;r{iovar( 2 (Ak r—Ag)) =2B+ Z;A cos(pj — 201)0; k+k,
J

Jim var(T T2 (br — dr) = (23 ZA cos(¢; — 2x) jk-l—k)
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Now we consider the estimate Bf SinceB represents the mean occurrence ratél’) /T

should be a good estimate. Defifg as

It is shown in the Appendix thaty(t) = A(t) + O(T~2), so, for largeT’, Ap(t) is asymptot-
ically non-negative. In practice, for a finite sample, théneate By = N(T)/T may lead to
negativeS\T(t) at some, so, if one is willing to make the assumption thiat> Zszl Ay, then
Br = max(ZkK:1 AhT,N(T)/T) is a good choice, and in this case, such an estimat@ of
is asymptotically equal t&v(7")/T. Otherwise, this latter estimate &f might have a positive
bias. For simplicity, in the simulation study later, we uke tatter estimate of8. However,
we note that the difference in using either estimatd3ak small in the simulation examples.
There are other ways to guarantee the non-negativity ofstimated intensity function, such

~

ashr(t) = max(0, Ar(t)).

Theorem 12 Proposition 9 implies that a& — oo, T%(BT — B) is asymptotically normally

distributed, with mean, and varianceB.
The correlation of all above estimates are given in the ¥ahg theorem.

Theorem 13 It follows from Propositions 9 and 8 that 85— oo, T (o —w), T3 (Ar—A),

Tz (édr — ¢), andT2(Br — B) are jointly normally distributed, with mea, and variance-
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covariance
K

1 6
lim coM(T2 (&7 — wi), T2 (o 7 — b)) = A AL > Ajx
j=1

T—o00

(COb(¢ Ok — O )0k kr — €08(@f — Qp + D)0kt — cOS(Pj + P — Ppr )0 — k)
K
S COT2 (A7 — Ap), T (dpr 7 — di)) = Aik/ ; Ajx

(Sln(¢> O — Ok)0j kv ke — SIN(@j — Pp + ur )0 k—pr + Sin(Ps + dp — dpr ) pr— k:)
im COMT2 (A — Ay), T2 (Br — B)) = B,

lim coT'2 (&rr — wi), T2 (Apr — Ap)) =
T—o00

(Br—B)) =0,

NI

lim CO\/(T2 (k1 — wg), T

T—00
lim cOMT (¢.r — éi), T? (Br — B)) = 0.
T—o00

wherek, k' =1,... K.

2.4 Computational issues

Given the similarities between results on frequency egtonan ordinary time series and
point processes, one should expect similar concern in ubmgperiodogram as discussed in
Rice and Rosenblatt (1988) for ordinary time series. Thezerany local maxima and minima
in the periodogram, and the usual optimization algorithnesret suitable in searching for the
K largest local maxima under Assumption 5 unless very godainialues are given and the
search range for each local maximum is greatly narrowed d@®woposition 8 suggests that if
we wish to determine th& largest local maxima effectively under Assumption 5, we ldou
have to sample the periodogram more finely thy" 1) or, namelyo(T~1).

We will first discuss what happens to the amplitude and phstsma&tes when the frequency
estimates are not within(7—!) from the corresponding true frequencies. For simplicitd an

economy, we assumiE = 1, and denote the true frequencywas The following results extend
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whenKk > 1.
Suppose that we had obtained an estimiaté w, and the estimates ofy and¢g (pg #

+7/2) are based o, so
_ N T T
A? = (87/T)Ir (@), andtang = —T ! / sin(@t)dN (t) /T*1 / cos(@t)dN (t).
0 0

The discussion of (2.13) implies thatdf is consistent thef™' I (&) — T~ I (wp) — 0
asT — oo. Assuming thalw — wo| = ¢TI~ ! for ¢ # 0, it then follows from Lemma 7
with m = 1 that the leading terms i~ 11 (&) and T~ I (wp) are thel-integrals. Further

calculation by (A.1) shows that

2

T (@) — T Hp(wo) = 8‘:22 (2 — 2cos(c) — c®) + o(1). (2.15)

Since2 — 2cos(c) — 2 <2 —2—c? < 0for ¢ # 0, so the leading term on the right-hand side
of (2.15) is always negative and is of ord@(1) for ¢ # 0. SoA? is not a consistent estimate

of A3. Likewise, since

T [y sin@t)dN() T [ sin(wet)dN (1)
7=t [T cos(@t)dN(t) T [ cos(wot)dN (t)
_sin(¢p) sin(c) — cos(¢o)(1 —cos(c)) +o(1)  sin(¢o) + o(1)

~ sin(¢pg)(1 — cos(c)) + cos(dg) sin(c) +o(1)  cos(¢g) + o(1)’

where the leading term is a cyclic function@ivith period2, and it takes valué only atc = 0

and is of order of)(1) elsewhere for: € (—m, 7], sotan ¢ is not consistent either.

If |& — wo| = T4, fory > 0, ¢ # 0, thenT~'I1() is of order ofo(1), so A? is not
consistent. As fotan ¢3 its numerator and denominator are both of ordes(df), and it may
not even have a limiting value 88— oo, so it is not consistent.

We thus see that if the frequency estimates are not witfii ') of the corresponding true
frequencies, the amplitude and phase estimates are nasteois Note that the fast Fourier
transform cannot be used in calculating the periodogramputfiiat process because the points
{t; : t; < T} are not equally spaced.
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So for a given data set, we should search the periodogram ad angsh with the mesh
lengtho(T~'), such a@xT~3/2, and determine the initial values corresponding toihkargest
ordinates subject to the minimum separation condition,thad do a more refined search in the
neighborhood of the initial values. Problems would arisetinosing the minimum separation
for a particular set of data and in determining the neighbodhof the initial values in the more
refined search. We discuss these two problems as follows.

The choice of minimum separation @(7—'+7) with 3 > 0. Practically, we may use
O(T~'/?), but it might be too wide to exclude frequencies with distatarger tharO(7-1)
but smaller tharO(7~'/2). As indicated in (2.15), if we seb = wy 4+ ¢TI~ ! andwy = wy,
then we see that the leading term(br /7)) I (w) atw = wy + Tt is A2(2 — 2cos(c))/c?,
which is around 0 wheix| > 67 and Ay, is not too large, so the periodograi(w) may go
down to the noise level when it is outsifle, — 67 /T, wy + 67 /7). So in practice, we determine
w1, by maximizing the periodogram, and may determing- by maximizing the periodogram
outside(w, 7 — 67 /T, &1 7 + 67/T], and so on. The suggestion @f/T" here is the smallest
or the most aggressive choice since we assume that the équeeficies are well separated with
minimum distance greater than(7~!). The minimum separation can also be determined by
prior knowledge of how far apart the frequencies are. Naaéwhen the amplitudely, is large
and the periodogram has a large dynamic range, the chofize/@f is too small. Since the order
of A; may be unknown for a given data set, it is safer to exclude ghbberhood that is wider
than127/T. With the above discussion, there is always the issue ottie¢ea small signal in
the midst of a strong signal, i.e., the ratlg /Ay, is very large with a finite sample size.

As for the second problem regarding the neighborhood of rifigli values in the more
refined search, since the random fluctuationpfw) generated byZ-integrals is at most of
order ofO(Tl/Q) following a similar discussion to that in the proof of Projias 9, we need

to find the smallest > 0, denoted a%, such that for everyw outside|wy — h,wy + h], the
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deterministic part of (w), namely thex-integral, drops byD(T"/2+7) (for any~ > 0) from
its local maximum atv = w;,, and thus the random fluctuation will not cause a local marimu
that is of the same order dg(w; ). In this case, the neighborhood of the initial value in the
more refined search can have a width with the same ordey.as

For everyw = wy, +h (h # 0), it is easy to show that the leading term/ip(w) is the prod-
ucts of \-integrals with ordeO(72), and it isT?A%(—2 + 2cos(hT) + hT sin(hT))/2(hT)?
which is positive if—27 /T < h < 0 and negative i) < h < 27/T. Moreover, the leading
term inI.(w) is the products of-integrals with orde(7%), and it isT® A% (6 — 6 cos(hT') —
4hT sin(hT) + (hT)?cos(hT))/2(hT)* which is negative for-1/T < h < 1/T. So the
deterministic part of the periodograf-(w) has only one maximum at = w; and no local
minimum in [wy, — 27/T,wy, + 27/T]. Therefore the neighborhood of the initial value for
Wk, [(initial value) — 27 /T, (initial value) + 27 /T, must contain the true frequeney, since
this initial value foray, 1 is resolved with ordeo(7—1). In addition, theX-integral part or the

deterministic part of 7 (w) is TA2(2 — 2 cos(hT))/(8mh*T?), which drops by

2n
A_gT[l C2- zcosm)} Ay (WTP 2201 - O+ Y (-

87 (hT)? T (hT)
AQ 1 hT 2n—2
Y {12 hT + Z ’

from its local maximum obtained at = wy with value A7T'/(87). Setting this equation to
O(T'/?), we have(hT)? = O(T~1/?), soh = O(T~5/*). Any further departure fror;, than
O(T~5/*) will bring down the deterministic part af-(w) by more tharO(7"/2), sohq men-
tioned above i€)(7~>/*). And the search range in the more refined searckfor is (initial
valug + O(T~°/*). In practice, we may usenitial value) + 7-%/*log T as a conservative

choice for the more refined search range.
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2.5 Prediction

In this section, we investigate the problem of predicting lext occurrence conditional on
the current observations. The number of observatigg) = n is given in the condition.

Denote

It is easy to see thak(t) is a non-decreasing function. The following theorem presidhe

point forecast and its standard error for the next occugenc

Theorem 14 Under Assumption 4, the one-step predict[ﬁ,ml is defined to minimize the

mean-squared error (MSE), and is given by

Tn-l—l = E(Tn—i—l’Tn =tpy..., 11 = tl)
N (2.16)
=t, —|—/ e M)At gg 1 > 1,
tn

and its MSEv,, without considering the uncertainty brought by the paramestimates is given

by

Up = E(Tn—l—l - Tn—i—l)2

—Er, [ /T T o(s = T )eAEHAT) g { / * ~AE)FAT) ds}Q]’ n> 1.

n

(2.17)

Since N (t) follows a Poisson distribution with meajﬁ A(s)ds = A(t), the marginal

distribution ofT,, is

an(tn) = _%P(Tn > tn) = _aitnP(N(tn) < n)
0 =AY a,
= ot JZO [T e
_ A

At )e M) ¢
(TL B 1)| ( )6 ) > Oa
soA(T,,) follows a Gamma distribution withh = n, 5 = 1.

The calculation of (2.17) is carried out by Monte Carlo im&gpn with the following two

steps.
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1. Generate a large sample ®f, = A(7},,) ~ Gammda = n, = 1). Solve forT,,
namely,t,, as the root of\(¢,,) — ¢, = 0.

2. Calculate? [;°(s — t,)e M TAIn)gs — [ [ e M)TAUIR)gs5]2, and average ovet,.
We obtainy,,.

Suppose we predidt, 1 by a homogeneous Poisson process With B whereas the true
model is given by Assumption 4. Such a predictiorfpf. ; is denoted by}, ; and is given by

1/B. The improvement in the prediction in terms of the reductbthe MSE is

- . o 112
Hn = E(TnJrl - Tn+1)2 - E(TnJrl - Tn+1)2 = ETn [/ e_A(S)+A(tn)d5 - E] >
tn

and it can be calculated by Monte Carlo integration with pthoes similar to those discussed
before.

It is easy to see that the improvement is 0 if and only if all A;'s are zero, namely, the
true model is a homogeneous Poisson process.

We note that with the functional form of the intensity fuioctj one can also easily obtain
the prediction bounds, i.e., the interval which includes arrival of the next event with certain
probability. For example, a00(1 — «)% upper prediction bound is defined by P{7,, 1 <
a|l,, =tp,..., Ty =t1} =1 —a, wherea > t,, and100(1 — «)% is the confidence level . The
conditional distribution off}, 1 given the past events is given by (A.4) in the Appendix, and by

using (A.4) we can obtain as the solution té\(a) = A(t,) — log(a).

2.6 Simulation study

In this section, we show the simulation results in evalgatire performance of our model.

We consider four different periodic or almost periodic gty functions of non-homogeneous
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Poisson processes. They are respectively,

T T T
Case 1. A\(t) =1.6 4+ cos| —=t) +0.5cos({ —=t + — |,
() b<4\/§> (3\/5 4)
T
Case 2. A\(t) =,/3.1 +3cos|{—=t),
0=/ (355¢)

Case 3: A(t) = 0.1 + 0.5Mod][t, 27],

Case4: A\(t) =1.3 exp{cos(glﬁt + %) }

The intensity function in Case 1 is almost periodic but naiquic since the ratio of the
two frequencieSr/4\/§ andwr /3\/5 is not rational, and the function never repeats itself dyact
The intensity function in Case 2, 3 and 4 are periodic fumstjaand they are not, but can be
approximated by the sum of sinusoidal functions. In paldiGuCase 4 has the same function
form as (2.1) which has been discussed in Lewis (1970, 19%®2)are-Jones (1982) and so on.

We generate the non-homogeneous Poisson processes aghoralid there are 100 inde-
pendent replicates in each case with the observation lefigth500, and approximate 700 to
900 data points are used for the estimation in each replivd¢eestimate the intensity function
in the framewaork of our model, and compare the estimateditiefunction with the true inten-
sity function. In each of the following figures, plot (a) days the true intensity function (solid
line) and one estimated intensity function from a singlédicape (dashed line), and plot (b)
displays the true intensity function (dark solid line) artf) estimated intensity function from
100 replicates (light solid lines), and it gives a rough ideahsd tlistribution of the estimated
intensity function at time. Figure 2.1 presents Case 1. The fitting is quite good bedhese
intensity function takes the same function form as our mo&@ure 2.2, 2.3 and 2.4 present
Case 2, 3 and 4, respectively. We take two sinusoidal termsrimodel ¢ = 2) to estimate the
intensity function in Case 2, and the estimated intensitiction captures the shape precisely
with steep troughs and relatively flat peaks. Case 3 has ardinoous intensity function which

is usually difficult to estimate; but our model witki = 3 sinusoidal terms captures the sharp
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jumps at the discontinuous points and the general shapedfub intensity function. Case 4
takes the same functional form as (2.1), and our model With= 2 sinusoidal terms does a
good approximation.

We also conduct the ‘out-of-sample’ one-step-ahead ptiedicising the estimated inten-
sity function, and compare the MSE with the MSE under the hgeneous Poisson process
model by taking their ratio, namely; 1% (¢ — 4, 1)? /155 S50 (., — T4 ,1)?, where
t! .1 is the(n + 1)th time point in theith replicate, and? , ; and{ , , are the ‘out-of-sample’
one-step-ahead prediction tj:[+1 under our model and under homogeneous Poisson process
model respectively. Here the intensity function of the hger@eous Poisson process model is
estimated byV (7")/T. Plot (c) in each figure shows the ratio, and the predictiaraisied out
for the901st to 950th data points§01 < n + 1 < 950); the dashed line represents ratios equal
to 1. Asymptotically, the ratio is expected to be belavior everyn > 1. The few peaks in
the ratio plots which are greater tharare caused by random variation of the processes. On
average, the reduction in MSE by using our model is 19.1% ieCa 11.2% in Case 2, 9.6%
in Case 3 and 20.7% in Case 4.

Notice that the choice of( is subjective in above simulations, and it will be discussed
in Chapter 3. Overall, the simulation demonstrates thatnoodel is very general and it can
capture most variations in the intensity function of anyiguic or aperiodic but almost periodic
non-homogeneous Poisson process.

We also calculate the sample means and standard errors pathmeter estimates from
the 100 replicates in Case 1 and show them in Table 2.1. Ttosvierify the theoretical results
in section 2.3. We see that the sample means are close tauth@drameter values, and the

sample standard deviations are close to the asymptotidastéudeviations and so are the sample
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covariances.

Table 2.1: The means and standard errors of the parameteat=s from the 100 replicates in

Case 1

w1 wo Ay Ay o1 ®2 B

true value 0.45345| 0.74048 1 0.5 0 0.78540| 1.6

sample mean| 0.45374| 0.74116| 1.01223| 0.50671| -0.07806| 0.59168| 1.60616

asymptotic sd| 0.00055| 0.00111| 0.08000| 0.08000| 0.16000 | 0.32000| 0.05657

sample sd 0.00052| 0.00112| 0.07507| 0.07838| 0.16499 | 0.33445| 0.05613

2.7 IBM stock transaction example

Stock transactions are unequally spaced and the occuinrgdf the transactions is a
point process. Since there are usually many transactionisgdilhhe opening and closing time
and much less during lunch time, and this pattern repeaty eiag, there must be a day-effect
in the stock transaction process. We studied the times afromuce of IBM stock transaction
over a 4 week period beginning November 26, 1990 and endirgieer 21, 1990 (measured
in second). The NYSE opens at 9:30am and closes at 4:00pm but there &reratBactions
occurred after 4:00pm and no transaction before 9:30anmselbleservations were deleted from
the analysis and there are 17077 data points in the analykis.overnight waiting time was
ignored and the observation length is 468000 seconds onZOvdéh 6.5 hours each day. There

are 1401 distinct transaction time with multiple transas$i, and 1264 of them have 2 simulta-

The data is available from the NYSE as the TORQ database wsiahds for Trades, Orders Re-
ports, and Quotes. The TORQ database is distributed fremlya¢éademic study. The IBM data we used
here is part of the data set which has been used in Engle (200%) it also can be downloaded at
http://faculty.chicagobooth.edu/ruey.tsay/teacHisg/ibm.txt.
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neous transactions with possibly different volume. Fohsmansactions which occurred at the
same time, we assume that it is because the precision ofd¢bedirg is 1 second and the actual
transaction time is the recorded time plus some infinitektimee. So for simultaneous trans-
action time we replace them (while keeping the first transadime) by adding 0.05 second
to the previous transaction time. In this way, we do not losginformation in the counting
process and approximately keep the same intensity funofitite point process.

Since our observation length is 4 weeks, we assume the targssrvable long trend period
is not longer than 2 weeks or 234000 seconds. And we assulni¢hshortest financial cycle
in the transaction process is no less than one hour or 36@hdgcso the search range for
periodicity is[27/234000, 27 /3600]. The intensity function of the stock transaction process is
estimated by using our model withik = 5, and the centralized periodogram (2.4) is used in
finding the estimates of the parameters. Figure 2.5 dispglaysentralized periodogram in the
search rangé2m /234000, 27 /3600], and the peaks corresponding to the frequency estimates
w1,...,ws are marked by the solid dots. The peak to the left of the firsti<loot included
because it is too close to the first dot with distance less éaafT’. If the observation length
were longer than 4 weeks and more data points were includibe imnalysis, the peak to the left
of the first dot should stand out and should be consideredtima&tng the frequencw. The

estimates of the parameters are given by
W = (w1, ws,ws, wy,ws) = 1074(2.6775,0.5772, 8.0805, 1.2024, 5.3790),
A = (Ay, Ay, A3, Ay, As) = 1072(1.043,0.667,0.489, 0.442, 0.438),
(2.18)

& = (b1, b2, b3, da, d5) = (—0.0209, 0.2773, —0.9046, 0.9588, 0.2861),

andB = 0.03649.
The periods corresponding to the frequencies are calculat@r /w, and they are 6.52

hours, 30.24 hours or almost one week (4.65 days), 2.16 h&drS2 hours and 3.24 hours
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respectively. Sau; represents the day-effect and represents the week-effect in the stock
transaction process. In additia andws are multiples ofv;, andw, is almost twice ofus.

We also estimate the intensity function by using model (f1l)ewis (1970, 1972) and
Vere-Jones (1982). This model can capture only one singledganamely, the day-effect in the

transaction process. The estimated intensity functiondiyguthis model is
A(t) = 0.03574 exp{0.2888 cos (0.00026775¢t — 0.0209)},

where the frequency and phase estimates are the sameaasl¢; in (2.18).

Non-parametric smoothing was used to provide a generalofitee shape of the intensity
function in the transaction process for IBM. For a given tiitmthe non-parametric estimate of
the intensity function was given beV: (1T ) g((t —t;)/h)/h, wheret; are the data points and
g(.) is the kernel function. We use standardized normal densityhie kernel function, and the
bin width & is taken to be 20 minutes. Figure 2.6 displays the non-pdranestimate of the
intensity function, the estimated intensity function byngsour model (2.3), and the estimated
intensity function by using model (2.1) in four weeks. Compg with the non-parametric
estimate of the intensity function, our model (2.3) camule variation in the intensity function
very well except two spikes on Thursday in week 2, but moddl)(8oes a poorer job and it
cannot capture the difference between weeks.

To obtain a quantitative comparison for the predictions wf model (2.3), model (2.1),
and the homogeneous Poisson model, we computed the ‘@atrople’ one-step-ahead predic-
tion squared errors for the day right after the 4-week olagEnw period, namely, December
24, 1990. There are 324 transactions on this day so we have@&ted errors under each
model. The averaged squared errors are used for the compariifey are 1.09240, 1.16546
and 1.20233 (mif) respectively, and the reductions in the averaged squareda@mpared to

the homogeneous Poisson model are 9.14% and 3.07% for ol r(fd@) and model (2.1),
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respectively.
From this example, we see that our model (2.3) performecdeibettboth capturing the
periodicity of the process and prediction than model (2.thjctv seems to be the only widely

used parametric model for periodic non-homogeneous Ro@sTess.

15 2.0
1 1

Centralized Periodogram
1.0

0.5

T T T T
0.0000 0.0005 0.0010 0.0015
W

Figure 2.5: Solid line: the centralized periodogram of IBsaction time from November 26,
1990 to December 21, 1990. The five solid dots are the peakespamding to five periodic

components in the model.

2.8 Discussion and Conclusion

In this chapter we have proposed a very general model foratieeof a non-homogeneous
Poisson process which can be almost periodic or periodiayrshape. We have illustrated the
usefulness of the proposed model in both simulation andiiegalexample, and the real data ex-

ample demonstrated that our model performed much betterthigeexisting model in modeling
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Figure 2.6: Solid line: the non-parametric estimate of titensity function. Long dashed line
(——-): the estimated intensity function using our modeB)2Dotdashed lines ¢ -—): the
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each week.
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periodic non-homogeneous Poisson process. The periadagrased in the model parameter
estimation, and a detailed discussion on frequency estime provided. Other methods such
as maximum likelihood estimation can also be consideredhiayt be more computationally
intensive. The parameter estimates proposed in this papeoe used as very good initial val-
ues in other estimation method which requires iterationhsas MLE. The selection ok, the

number of periodic components in the model, will be discdseeChapter 3.
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Chapter 3

Determining K by Model Selection

Criteria

3.1 Introduction

In this chapter, we propose to use model selection criter@determinek’, the number of
sinusoidal components in the almost periodic intensitfiom of a non-homogeneous Poisson
process.

There are mainly two classes of model selection criteriariBam and Anderson (2002)):
() criteria that are estimates of Kullback-Leibler infaation or distance, such as Akaike in-
formation criterion (AIC), the bias corrected version ofAlvhen sample size is small (AICC)
(Hurvich and Tsai (1989)), and a generalized version of Aé@vebd by Takeuchi (1976) (TIC);
(1) criteria which are consistent estimators of the dimen®f the model, such as Bayesian in-
formation criterion (BIC) derived by Schwarz (1978) and CA&lproposed by Bozdogan (1987)
(C denoting “consistent” and F denoting the use of the Figifermation matrix). The criteria

in the first class is usually not consistent, but they assuraethe true data generating model
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is usually too complex to formulate, and one could only agipnate the true model from a
given set of candidate models. For a given set of data andatihels size, such criteria select
the best finite-dimensional approximating model which lhasshortest “information distance”
from the true model. As for the second class of model selediieria, they are based on the
assumptions that a “true model” exists, and the model setegbal is to select the true model,
and the probability of selecting this true model approadhas sample size increases and thus
the model selection criteria are consistent.

In the biological and social sciences and medical scie®@siham and Anderson (2002)
argue that the first class of model selection criteria (A¥@e) are reasonable for the analysis
of empirical data since in these fields, the increased sasiptemay stem from the addition
of new geographic field sites or laboratories, and thus tmelaun of factors in the model may
also increase. In this case, the data-generating model otaymain fixed as the sample size
increases. As for the consistent criteria, they may be ugeiome physical sciences where a
true model might exist and remain the same as sample sizeases. Both classes of criteria
have good interpretation on the model they select: the noglaly selected is either the “best”
model to approximate the true model in terms of “informatitistance” or the model which is
identified as true model with an asymptotic probabilityldf one believes that the true model
belongs to the set of candidate models.

The selection of K is similar to the selection of the order ®&MA process in time series:
there is no unique and “best” or “correct” selection methad practitioners usually consider
multiple model selection criteria. To fit the ARMA model toime series data, after narrowing
down the model candidates to a few by the model selectioer@jtwe also exam the whiteness
of the residuals from different models, and/or exam theiptakblility of the model to determine
the best model for the data. Analogous to the time series/sialwe propose to consider

different model selection criteria to produce the candiddbr K in the framework of our model,
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and then exam the model fitting and select the léstin this chapter, we will restrict our
attention to AIC and BIC since they are the representatiféseawo classes of model selection
criteria.

We notice that in the almost periodic Poisson procéss;> oo is used in the asymptotic
derivation instead of. — oo as in the usual random sample setting wHElie the observation
length, and the convergence rate of the MLE of the frequensuper-efficient’ which is similar
to the periodogram estimate, so the AIC and BIC need somefimatitin in the framework of
our model.

In this chapter, the maximum likelihood estimate is denatefl, somewhat similar to the
notation of the periodogram estimates in chapter 2. But waatodiscuss the periodogram
estimates in this chapter, so it should be easy for the readetistinguish the notation of two
estimates. In addition, the true parameter is denoteld.as

The rest of this chapter is organized as follows. We give amoew of AIC and BIC
in section 3.2. Then we discuss the likelihood function arel MLE of the almost periodic
Poisson process and derive the AIC and BIC in the framewoduoimodel in section 3.3. In
section 3.4, we provide procedures on how to implement thpgaed methodology. In section

3.5 and 3.6, we show the simulation results and re-analyz &t data used in Chapter 2.

3.2 Anoverview of AIC and BIC

3.2.1 Akaike information criterion

We give a review of Akaike information criterion (AIC) in thsection based on the original
paper of Akaike (1973) and the book by Burnham and Andersb@2R We refer to Burnham
and Anderson (2002) for more detailed discussion on thernmbdtion-based model selection

criteria and their applications.
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Akaike (1973) proposed the use of Kullback-Leibler (K-L3tdince as a fundamental basis
for model selection, where the K-L distance between the tsgiandg is defined for continu-

ous functions (discrete case can be defined similarly) amtegral (usually multidimensional)

107.9) = [ f(e)tog (%)dw
- / f () log(f (x))dx — / £(2) log(g(x)9))dx (3.)

_ / f (@) log(f (x))da — E,[log(g(x]6))].

The K-L distance relates to the “information” loss wheiis used to approximaté¢. Here f
is the true model which reflects the complex measuring or agiprocess that generated the
observed data, and it might not even have parameters in a seatswould be analogous &
in a modeling framework. Sometimes it is useful to think foas full reality and let it have
conceptually an infinite number of parameters. On the othedfy(x|0) is a class of mod-
els that are used to approximate the truth; and among ttés ofamodelsg(z|6y) minimizes
the K-L distance, and hence is the best model selected. lfaghdine of (3.1), we see that
[ f(z)log(f(z))dz is a constant (although unknown), so to minimize K-L distaieequiva-
lent to minimize—E, [log(g(x|0))], i.e.the relative K-L distance, over the candidate models.
However, even the relative K-L distance cannot be computitidowt full knowledge of
both f and the parametersin each of the candidate modeigx|0). And in practice, the model
parameters must be estimated, and the difference betweigdaor 6, and having the estimate
6 affects how we must use K-L distance as a basis for modeltggie@nd that basically causes
us to change our model selection criterion to that of miningzelativeexpectedestimated K-L
distance rather than minimizing known (relative) K-L dista over the set of models considered.

That is, we select the modglto minimize

—E,E.[log(g(z10(y)))], (3.2)

wherez andy are independent random samples from the same distributidré@) is the

50



maximum likelihood estimate (MLE) of based on the sample In addition, both statistical
expectations are taken with respect to triithSo now the critical issue for getting an applied
K-L model selection criterion was to estimate (3.2). Aka(k873) found out that under certain
conditions,— log(£(f|data)) + p is an asymptotically unbiased estimate of the selectiaretar
(3.2) wherelog(ﬁ(é|data)) is the maximized log-likelihood for modeglgiven the data angis
the number of parameters in the mogelAnd thus the AIC criterion is given by multiplying

—log(L(f|data)) + p by 2 (for some historical reason) as follows:
AIC = —2log(L(0|data)) + 2p.

The model which gives the smallest AIC value is the best maml@pproximate the truthf
among the candidate models.

We now show how to get the unbiased estimate of (3.2). Thisasctitical part which
connects the relative expected K-L distance and the magiiiizg-likelihood.

The first step is the Taylor series expansionl@f(g(x|6(y))) aroundd, for any given
T. Denoteé(y) asf. Sincexz andy (vectors) are independent random samples, thém

independent of. Note that both: andy are of sizen, andf is ap—dimensional vector.

los(g(x/9)) ~lox(a(eify)) + [ LN )G g s
n %[é o) [32 logéi(fwo))] [é — ).

Truncation at the quadratic term entails an unknown degrepmroximation, but it is an error
of approximation that goes to zeroms— occ. Hered? log(g(xz|6y))/06? is ap x p matrix. For
simplicity, we shall write the matrikd’ as6?.

Take the expected value of (3.3) with respectto

dlog(g(x[6o))
90
1 9% 1og(g(x|0o))

~ 51600 [ - EZET I G ).

E. [10g(9(21))] ~Ex[log(g(xl6o))] +Ex | |16 - o

(3.4)
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The linear term above vanishes, becaus g(g(gw\Go))} = 0. The proof is as follows:

Sinceb is the solution taning I(f,g) = [ f(z log( 2) >dx then

16)
0 x
%/f(“’“) ( (9(5\9)))‘9=90dx =0

that is

0 0
o5 | F@ostr@)ds = 5 [ @) 1oso(a6))] g, (35)
Because) is not involved inf(-), the first term of (3.5) i9). And under certain regularity

condition, the second term is

[0 G mtstam], = (G woam},_, ] <o

Now we come back to (3.4), and again since the expectati@kéntwith respect t@, and
g and f may not be the same; Ex% is not exactly equal to the Fisher’s information
matrix Z(6y); however, Fisher’s information matrix is a good approximto it if ¢ is a good
approximation tof. And in fact, we can consider to take the expectation withbeestog as an
approximation to the case when the expectation is takennegibect to the unknowyi as long
asg is just a good model fof (Shibata (1989)). As for the situation wheiis too restrictive to
be good, the term-21log(g(x|0)) in the AIC will be much inflated, and then we will not select
that model.

Now equation (3.4) can be written as

E. [log(9(a17))] ~ E log(a(al60))] — 310 — 0ol T(60)0 — 0o
We take the expectation of the above equation with respei(ite. with respect tgj). Note
that E,[log(g(|6))] is a constant and can be written agiBz (¢(y|60))]. So we have
E,E.[log(9(2(0))] =~ Ey[log(g(y/60))] - %Ey{[é — 60'Z(60)[0 — 60}
= E, [log(9(y10))] + E, [log(9(y|0o)) — log(g(y[0))]  (3:6)

B %Ey{[é — 60'Z(60)[0 — 6o}
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In (3.6), the term g[log(g(ywo))—log(g(y|é))] can be approximated by Taylor series expansion
of log(g(y|#y)) aroundd, and again the truncation at the quadratic term entails v ef

approximation that goes to zeromas— .

E, [log(g(yl00)) — log(g(y10))]
0 N7 A N 210 ) A
(O P ) o7

=5E {1000 [—82 10%092(?/’&))] 660}

The linear term in (3.7) vanishes because the I\@I;ﬁtisfies%e(mé” =0.
So now EE, [log(g(z|))] is approximated by

~ N 2 O ) )
E,E: [1og(9(x10))] ~ E,los(a(s100)] — 58,{10 — a0} [ - T 5G1D]1g  g,)) 38

— SEA10 — 00006 — o]}

Under certain regularity conditiofd — )’ [ — %&(ylé))] [0 — 00] and [0 — 0o)'Z(00)[0 — 6o]
both asymptotically followy? distribution with degrees of freedom the dimension of. We
refer to Roatgi and Saleh (2001) page 419 for the regulaoitglitions for the i.i.d. sample case.

Since B = p, then

—E,E, [log(g(x0))] ~ E,[—1log(g(y[60))] + p.

So —log(g(y|fo)) + p is an asymptotically unbiased estimate -6E,E, [ log(g(z|d))]. We
complete the proof here.

In the point process case, the observation lergtis fixed while the sample size is
random, but since the Poisson process has independenmigttethe derivation of AIC in
the Poisson process case should be essentially similaeatetivation of AIC when we have
independent observations. We will give some insight of theé # the Poisson process case in

section 3.2.
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3.2.2 Bayesian information criterion

Bayesian information criterion (BIC) was established bingarz (1978). It is a consistent
model selection criterion which selects the true model wittbability 1 when the sample size

n goes to infinity. That is because of the large penalty terrhéncriterion:
BIC = —2log(L(0]data)) + plog(n),

wherep is the dimension of the parameters, ahds the likelihood function of the data. The
procedure selects the model with the smallest BIC value.

In Schwarz (1978), BIC was originally established for theecaf independent, identically
distributed observations, and linear models, with the raggion that the observations come
from a Koopman-Darmois family, i.e., relative to some fixeeasure on the sample space they

possess a density of the form

f(,0) = exp(0 - y(x) — b(0)),

wherey is the sufficientp-dimensional statistic. However, the density functionsiaet nec-
essarily need to be in such form. We give a review of the gémendvation of BIC based on
Schwarz (1978) and Burnham and Anderson (2002) Chapter 8eféeto Berger and Pericchi
(2001) for more discussion on the objective Bayesian metiimdmodel selection.

It was evident that the assumptions and interpretationatgir@r probabilities are irrele-
vant in deriving the basic BIC result. It suffices to assuns the prior probability of theth
model being the true one is;, and;(¢) is the conditional prior distribution af given thejth

model. Via Bayes’ formula the posterior probability of tftt model being the true one is

gj(z,m;)a;

Zr gr(‘r’ﬂ-r)ar’
whereg; (x, 7;) is the marginal likelihood of thgth model withg; (x, 7;) = [ g,(x|0)m;(6)d6.

The prior probabilityc; will be bounded i and thus being dropped from the penalty term in
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BIC, and it is sufficient to assume equal prior probability éach model. We refer to Schwarz
(1978) for more details. The Bayes solution consists ofcsielg the model that is a posteriori
most probable, that is, by dropping the indgxwe select the model which maximizes the

following quantity:
/g(:v|9)77(9)d9. (3.9)

The Laplace method is used to approximate the above int&8l Thenlog(g(x|0)) is

substituted by the following approximation:

~ ~ 2 fo) ) ~
loa(g(#16)) ~ log(g(a10)) — 30 — ' [ - ZEIWDYy g

So the needed integral (3.9) is approximately

210 i X
[ exvtiosto(eld)) - 310 - ' [ - ZEELAD] g gjyap
062

0? log(g(y‘é)) H71/2
00? ’

216 5 .
= exp{log(g(el0)} [ expi—gi0 -0 [ - ELID g gpag (310)

= exp{log(g(x0))}(2m)** || -
where|| - || denotes the determinant of a matrix and the last line in {3dl@ws by the property

of multivariate normal density function

2lo ) . 210 ) .
[y ) ~ZREIIOD iz ey gp — gy [ - TEELAD gy — gyap =1

Taking —2 times the log of the last equation in (3.10), we have

~ 2 0 )
~21og(g(a19)) + og ( || - IO ) g am) (311)

When there arer independent random observations, and under general riéguanditions,
—% ~ nY wherexX ! is the asymptotic variance-covariance matrix of the maximu

likelihood estimate) and its determinant is of size 6f(1). So by the property of determinant,

0% lo 6
| - LB e 5, (312
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expression (3.11) is approximately

—2log(g(x]0)) + plog(n) +log(|| = ||) — plog(2r).

Schwarz (1978) drops the last two terms of the expressioneapeesumably because, asymp-
totically, they are dominated by the term of ordeg(n) as well as by the log-likelihood term.
Now we finish the derivation of BIC. Note that there is no mathécal requirement in the
derivation of BIC that the mode} be true, but the proof of the consistency property of BIC

requires the assumption of a true model in the candidate isode

3.3 AIC and BIC in the almost periodic Poisson processes cogxt

We derive the AIC and BIC in the almost periodic Poisson psees in this section, start-
ing from the likelihood function and the maximum likelihoedtimates of the processes under
consideration.

3.3.1 Likelihood function of a Poisson process

Denote the intensity function of a Poisson procg§s ) asA(t). For0 < t; < ty <

-+ < tp, the likelihood of a Poisson process is
T
LO)=Pr(Ty =t1,Ts =to, ..., Tp = tn, tn < T) = A(t1)A(t2) - -~ Aty )edo A9,

whereT is the observation length.

So the log-likelihood function is
N(T) T
() =3 togAlt;) - / At
j=1 0
If conditioning on the random sample sizethen

Pr(Ty =t1, Ty = tg,..., T = t|N(T) = n) = ANt1)A(t2) - - - Mtn)e 0" Als)ds.
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The above results can be derived from the property of Poipsocesses that the number of
points in the time interval0, ¢) follows a Poisson distribution with meafat A(s)ds. We refer

the details to Durrett (1999) page 137.

3.3.2 MLE of the almost periodic Poisson processes

In the derivation of AIC and BIC, we need the asymptotic ndityaf the maximum
likelihood estimates. We shall follow the usual approa@séda on the asymptotic expansion of

the first derivative of the log-likelihood function abouettrue valu¢) = 6, of the parameters,

00 o +6‘_Qf(
 O0le=6  O0lo=e, 002 lo—=0

(6 — 6y), (3.13)
whered satisfies| 6 — 0y ||<|| 6 — 6o |-

To justify this approach, we should first establish the agpitigpconsistency and order of
convergence of the estimates, then check that the Tayl@nsiqn can be sustained, and finally
determine the covariance matrix of the estimates.

We shall begin with the consistency of the estimates.

From the likelihood function of the Poisson processes iti@e8.1.3, it is easy to see that

the observation$ty, to, . .., t,} are weakly dependent.
— ¢ s)as
Pr(Tj+1 = t|Tj = tj, e ,T1 = tl) = )\(t)e ftj As)d = )\(t)eiA(t)JrA(tj), t> tj.

Bar-Shalom (1971) and Crowder (1976) among others providedegularity conditions
to ensure the consistency and asymptotic normality of theimmam likelihood estimate from
dependent observations. The key idea is that if the depegpdsnwveak, then the accumulated
information on the parameters from the sample increasesinigbly, and thus the MLE possess

desired statistical property such as consistency and asyimpormality.
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The model we consider is a non-homogeneous Poisson pregdsshe following almost

periodic intensity function (this was previously introgdcin Chapter 2):

K
A(t;0) =) Ap cos(wit + o) + B, (3.14)
k=1

whered is the set of parameters, and., B, wy, ¢;, are unknown parameters withy > A, >
o> A >0, —1/2 < ¢ < 3w/2andw, >0,k =1,..., K. The baseline3 is a constant
such that\(¢) is positive for anyt > 0. A sufficient condition to guarantee the positivity of
A(t)is B > ZleAk. For simplicity, we assumg(t) > ¢ > 0 for anyt > 0, since in the
likelihood functionA(¢) needs to be positive. This assumption is easy to be justifipdactice,
for example, by removing the overnight waiting time in thecgt transaction process, we can
take out the part thak(¢) = 0. In addition, we assume that the intensity function is upper
bounded in a suitable range and thus the parameter spacembaoel is compact. We state the
assumptions in proposition 15.

Following the discussion of the consistency of MLE in Sewig2000), we can easily prove
the consistency of the MLE in our model. Moreover, as showGlapter 2, the convergence
rate of the periodogram estimate of the frequencieg1s!), and we should expect a similar
result for the MLE. As for the MLE of other parameters in thedal the convergence rate is

o(1). We state the results here and refer the proof to Appendix B.

Proposition 15 For a non-homogeneous Poisson process with an almost ittdasction(3.14),
assume thal(¢) € [, M] for anyt > 0 whereM > ¢ > 0 and M = O(1), and the frequen-
cies{wk,k = 1,..., K} satisfy the assumption 6, then the maximum likelihood esgid), is

a consistent estimate af, with
(ufk — wk) = 0(T71)7

and the maximum likelihood estimates of other parametgrsi,. and ¢y, are also consistent,

wherek =1,..., K.
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One remark is needed that not all non-homogeneous Poissaegses have consistent
estimates for its parameters. Nayak et al. (2008) proveddhahe type of non-homogeneous
Poisson process model that the expected number of eventsasusoftware failures, is finite
in infinite observing time, the parameters of these modelsaibe estimated consistently. In
other words, if the integral of the intensity function frairto o is finite, then the number of
events in the long run is finite on average, and the informdtiom the process is limited and
cannot accrue steadily as observing time approaches ynfamitl thus cannot provide consistent
estimates of the model parameters. In our model, this isheotase.

Letd = (Ay,..., Ak, B, é1,...,¢0K,w1,...,wk) . Define the diagonal matrik; as

1
T2 loKg 11)x (2K+1) 0
DT = )
0 T3 Ik
wherel is the identity matrix.
The Taylor expansion (3.13) is easy to be justifiéds|| 6 — 6y ||<| 6 — 6 || is needed in
evaluating the limit value of the second derivative term esmdrefer the details to Appendix B.

In fact, we have the results:

-1

9t
D;' =~ lim D! -

0%/
o u
o 0—0 T=oo L 062 l0=0,

T 9p2

ol T 1 70M1t)\2

— lim D7lvar —‘ D7l = lim D7t [ — (&Y ( dtD7L.
T O Y <80 9:90) T TR TT ), )\(t)< Bl > o=00 L

Denote the limiting value as. We find the asymptotic normality of the parameter estimages

follows.

Proposition 16 In the non-homogeneous Poisson process with intensitytidumnS.14), and
under the assumptions stated in propositionﬂ?@(é—@) is asymptotically normally distributed

with mean0, and variance-covariance matrix 1.

It is difficult to obtain the explicit form o2, butX can be calculated numerically. Hexe

serves as the Fisher’s information matrix. The main purgdskeriving the asymptotic results
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of MLE is to show that MLEs of parameters in the almost pedeébisson process model are
well behaved as i.i.d. random variables case, with a difftemermalizing factorD;1 rather than
n~1/2 wheren is the sample size. The value Xfis of less importance in the derivation of AIC

and BIC.

3.3.3 AIC in the almost periodic Poisson processes

To carry over the general derivation of AIC in section 3.2.1he almost periodic Poisson
processes, there are two steps that need to be justified:ifitsie Taylor series expansion of
the log-likelihood function, the truncation at the quadraérm entails an unknown degree of
approximation, but it is an error of approximation that gtezero asl’ — oco. We already
justified this in the discussion of the MLE of almost perioBigisson processes in section 3.3.2.
The second step is théd — 6]’ | — %%(mé))] [0 — 6] and [ — 00]'Z(0y)[0 — 6] both
asymptotically followy? distribution with degrees of freedomwhich is the dimension of.
Herelog(g(+)) is the log-likelihood function denoted @$) in section 3.3.2, and () is the

Fisher’'s information matrix forn observations. In the almost periodic Poisson processes, we

have

_, 0% _ 1,2
Tlﬁ‘ezeoDTl} (D7 (0 = 6o)].

16— 60)'Z(60)16 — 60] = [D7" (8 — 60))'| D
It follows from proposition 16 thatD;l(é — 6) and is asymptotically normally distributed
with mean0, and variance-covariance matri'. In addition, equation (3.15) shows that
D;lg%f GZHOD; — Y asT — oo. So by the property of multivariate normal distribution,
[0 — 0] Z(05)[0 — 6] in the almost periodic Poisson processes is asymptotigallistributed

with degrees of freedoBiK + 1. Similarly, we can also proof thé — 6]’ [— %&(y‘é))} [0 —

0] behaves the same @s— 0y]'Z(6)[0 — 6] in the almost periodic Poisson processes, so AIC
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in the almost periodic Poisson processes is

AIC = —20(0) + 2(3K +1).

3.3.4 BIC in the almost periodic Poisson processes

Consider the derivation of BIC in the almost periodic Paispoocesses, we only need to
modify the determinant of the second derivative of the i&glihood function in expression
(3.11) in section 3.2.2. The results (3.15) yields that

0?0

| =55, I~ Dr=Dr |

=|| D I £ ||]= T2GRREDREY 5,
where Y is defined after equation (3.15). In this case, the penaty @ BIC changes to

log(T?KE+D+3KY — (5K 4 1)log(T'). So BIC in the almost periodic Poisson processes is
BIC = —20(0) + (5K + 1) log(T).

The coefficient ofog(T') is greater than the number of parames+ 1 because of the super-

efficiency of the frequency estimates.

3.4 Summary and implementation of the proposed methodology

In this section, we summarize the procedures to implemenptbposed methodology.

The use of AIC and BIC requires MLE, and the likelihood suefat the almost periodic
Poisson process has many local maxima and local minima asdtik usual optimization algo-
rithms such as Newton-Raphson method can be easily trapptt: hocal maxima or minima
unless good initial values are provided. So in the search loE Mf our model, we suggest to
use the periodogram estimates proposed in Chapter 2 as gitiabhvialues. The procedures to

implement the proposed methodology are described as fallow
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For a given set of data, considaf = 1,2,..., K, whereK is the largestx value under
consideration.

1. Compute the periodogram estimates of the parameters Whenk .

2. For eachK value, set the corresponding periodogram estimates &l walues, and
search for MLE.

3. Calculate AIC and BIC values for eaéh. SelectK based on these two criteria.

4. If two criteria select differenfs, conduct the out-of-sample prediction and select the

model with smaller (averaged) squared prediction error.

3.5 Simulation

In this section, we consider the same almost periodic iittefisnctions in Chapter 2,

section 2.6:

T T T
Casel: \(t)=1.6+ cos(—t) + 0.5 cos(—t + —>,
© 43 3v2 4

Case 2: () = \/3.1 n 3008<3Lﬁt>,

Case 3: A(t) = 0.1 + 0.5Mod][t, 27],

s

Case4: A\(t) =1.3 exp{cos<3\/§t + Z) }

We use the same simulated data set as described in sectjaha.®, for each case, sim-
ulate 100 independent replicates, and cut off the proce§s at 500 for model fitting, and
conduct out-of-sample prediction for 50 data poir¥i8l¢t to 950tk data points). We perform
the analysis using the procedures described in sectioraBdtshow that our model (AP) out-
performs the existing models, Vere-Jones (1982) and theogereous Poisson process model
(HPP), in terms of the out-of-sample predictability.

In Case 1, we know that the tru€ is 2. Among 100 replicates, AIC and BIC select the

same model in 19 of them, 37 are in favor of AIC, that is, the et®delected by AIC have
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smaller averaged squared prediction error, and 44 are or faivBIC. Table 3.1 shows the
selection frequencies for differeiif values in 100 replicates. In this table, the final selection
is done by comparing the averaged squared prediction drmsmsmodels selected by AIC and
BIC. To clarify, there is no comparison between the last row the first two rows. Take the
last number in the last row, 25, for example. It means thaDibreplicates, we chood€ = 4

25 times after comparing the models selected by AIC and Bliims of smaller averaged
squared prediction error, and since AIC seldgts= 4 52 times in 100 replicates and BIC does

not select any< = 4, then among those 52 replicates, only 25 are in favor of AIC.

Table 3.1: Selection frequencies for differdtitvalues in 100 replicates using AIC and BIC, and

the final selection by comparing the averaged squared pi@dierrors from models selected by

AIC and BIC.
K 1 2 3 4
AIC 0 19 29 52
BIC 3 96 1 O

Final selectionf 0 62 13 25

Since BIC is consistent, so it selects the tide(/X = 2) most of the time. Note that
for a given set of data with finite sample size, the bi€sfor this data set may not be the true
K, and using the information distance as the criterion to mreathe distance between model
candidates, th& values selected by AIC have larger variability.

Figure 3.1 shows the the ratios of MSE under our model and Mi&Eeuthe existing
models. If the ratio is belowt, then our model is better. MSE is calculated HSSE =

s S0t — £ 1)% The averaged reductions in MSE compare to Vere-Jones'®imod
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(a) AP vs Vere-Jones(1982) (b) AP vs HPP

Figure 3.1: Case 1. MSE ratios. Ratio less than 1 indicatsoilr model is better.

and homogeneous Poisson model are 8.9% and 21.8% , respectiv

In Case 2, 3, and 4, we do not know the true valugsobr the ‘true’ K is infinity since
it takes infinite terms to express the intensity functionhie form of our model by Fourier
expansion. With a finite sample size, we can only approxirtieerue intensity function within
certain precision. It is expected that with increased sarmsje, the data should be able to
capture more and more sinusoidal terms to better approgithattrue intensity function.

We do not compare AIC and BIC in the simulation. The main psepof the simulation
is to implement the procedure in section 3.4 and show thatrmgtel outperforms the existing
models. In Table 3.2, we show the selection frequenciesifi@reint A values in 100 replicates
for Case 2, 3 and 4, respectively. And the ratios of MSE undemuodel and existing models
are shown in Figure 3.2, 3.3 and 3.4 for Case 2, 3 and 4, regglgctin Case 2, the averaged
reductions in MSE compare to Vere-Jones’s model and honeagenPoisson model are 2.53%
and 14.6%. In Case 3, the averaged reductions are 3.73% &% ,1&nhd in Case 4, the averaged
reductions are 1.4% and 23.9%. One interesting result Bafreat even Case 4 is in the same

function form of Vere-Jones (1982), and thus the MSE undeeNJenes model is expected to
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be smaller than the MSE under our model and the corresporMBIg ratios are expected to
be greater than 1, but in this simulation our model does eetteibthan Vere-Jones model by
reducing the MSE by 1.4% on average. Although this result ey coincidence, it is an

evident that our model is much more flexible than the existaglels.

Table 3.2: Selection frequencies for differdiitvalues in 100 replicates

Case 2 Case 3 Case 4
K 1 2 3 4}]1 2 3 4 51 2 3 4
AIC 1 3 30 66/ 0 3 30 28 39 5 22 33 40
BIC 9 1 0 0|10 70 19 1 08 19 0 O
Final selection| 63 3 11 23] 5 35 31 13 16/ 47 19 18 16
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Figure 3.2: Case 2: MSE ratios. Ratio less than 1 indicatsoilr model is better.

To complete the discussion of MLE in section 3.3.2, we calieuthe sample means and

standard errors of the MLE from the 100 replicates in Casedlcampare them to the peri-
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Figure 3.3: Case 3: MSE ratios. Ratio less than 1 indicatgsotlr model is better.
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(a) AP vs Vere-Jones(1982) (b) AP vs HPP

Figure 3.4: Case 4. MSE ratios. Ratio less than 1 indicaisoilr model is better.
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odogram estimates in Chapter 2. The results are shown ire BaBl We see that MLE only
slightly reduces the standard errors compared to the sthreteors of the periodogram esti-
mates, but the computational complexity of MLE is much higls® the periodogram estimates

may be enough to provide accurate information about thepganemeters.

Table 3.3: The means and standard errors of the MLE from tBerdglicates in Case 1 with

comparison to the periodogram estimates

w1 wo Ay Ay o1 o2 B

true value 0.45345| 0.74048 1 0.5 0 0.78540 1.6

MLE sample mean | 0.45342| 0.74051| 1.00854| 0.50322| -0.00420| 0.77388| 1.59834

MLE sample sd 0.00047| 0.00097| 0.07537| 0.07709| 0.16396 | 0.29610| 0.05772

peri est sample mean0.45374| 0.74116| 1.01223| 0.50671| -0.07806| 0.59168| 1.60616

peri est sample sd | 0.00052| 0.00112| 0.07507| 0.07838| 0.16499 | 0.33445| 0.05613

3.6 IBM example revisited

We use the same IBM data set as in Chapter 2, section 2.7. Ehddir weeks data
are used for model fitting and the day after the 4-week pesokbft out for out-of-sample
prediction. We first exam AIC and BIC fak’ = 1,2,--- ,20. The likelihood values differ a
lot for different K values, and the order of AIC is dominated by the likelihoodction. As
expected, the likelihood value increases as we include modemore sinusoidal terms in the
model, and the smallest AIC occurs/t= 20. The penalty term in BIC is much larger than
AIC, and the smallest BIC occurs &t = 7. Figure 3.5 shows the AIC and BIC at differekit

values.
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AIC
146000
L

include all of them as well a& = 20 into the model candidates and then select the Best
value by comparing the averaged prediction errors. Monessiidal terms may result in a better
approximation to the ‘true’ intensity function, but thegabring more uncertainty, that is, larger
variation, into the model fitting and thus result in larget-oftsample prediction errors. It turns
out that after comparing the averaged prediction erroreuhd = 5,6,7 and20, the model
with K = 5 produces the smallest averaged prediction error. We réperestimation results

here:

Note that these parameter estimates are maximum likelilestichates and they are slightly
different from the periodogram estimates in section 2. 7% @timated intensity function is very

similar to the one shown in Figure 2.6 since the maximumilikeld estimates do not differ a

146400
L

145600
L

o—o—,
o,
—o—yp

(a) AIC

BIC
146200 146300 146400 146500 146600
| | I | |

°o—o—g

10 15 20

(b) BIC

Figure 3.5: IBM data analysis: AIC and BIC

Since BIC atK = 5,6 and7 are very close to each other with difference less thane

w = (w1, wa, w3, wy, ws) = 1074(2.6762,0.5922, 8.0812, 1.2067, 5.3786),

A = (A1, Ay, Ag, Ay, As) = 1072(1.070, 0.640, 0.462, 0.469, 0.411),

& = (b1, b2, b3, ba, ¢5) = (0.0305,0.3577, —1.0143, 0.8374, 0.4087),

andB = 0.036334.
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lot from the periodogram estimates. Figure 3.6 displaysdkalts.
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Figure 3.6: Solid line: the non-parametric estimate of thtensity function as described in
section 2.7. Long dashed line (——-): the estimated intgfisitction using MLE. The vertical

light dashed lines separate days in each week.
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Chapter 4

Summary and Future Work

4.1 Summary

In this thesis, a very general model for the intensity fumttdf a non-homogeneous Pois-
son process is proposed and investigated. The processes aorsideration usually show a
pattern of periodicity, such as the timing of stock transexst with higher activity during the
opening and closing than the middle of the day. And such ps&Escan be modeled as almost
periodic point processes. The proposed model is for the stlperiodic Poisson process which
includes the purely periodic Poisson process as a speaia) aad it is much more general and
useful than the existing models. We demonstrate this by bintlulations and real life data
analysis.

The basic concepts of point processes are introduced int@hbReaders with knowledge
in the general Poisson processes (both homogeneous arftbnmgeneous Poisson processes)
may skip section 1.2 and section 1.3. We suggest readingpsec since the periodogram
introduced there has a close relationship with the interfigiiction we proposed to use.

In Chapter 2, the model for the almost periodic Poisson meeis introduced. We give

a very detailed literature review on the study of purely @dic Poisson processes. We then
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show that almost periodic Poisson processes are much moesaj@nd they should be used
for processes with any pattern of periodicity. The concdlimost periodicity is introduced
in section 2.2. After that, we study the estimation of the eiquhrameters, and propose a
class of simple, consistent, and asymptotically normahpater estimates mainly based on the
periodogram. The computational issues in estimating thguiencies are discussed in section
2.4 and the prediction of the next occurrence using our misdguidied in section 2.5. Then we
use simulations and application to show the usefulnessegbtbposed model.

The model we studied is actually a class of models indexeff which is the number of
sinusoidal terms in the intensity function. In Chapter 2, plarameter estimates are defined for
each fixedK. In the data analysigy is usually unknown, and we need to select the lF€st
so that the corresponding model can best approximate theownktruth. So in Chapter 3, we
propose to use model selection criteria to deterndiiné/\Ve first review and give interpretation
of two representatives in the model selection: AIC and Bl show the general derivation of
these two criteria when there are i.i.d. observations. Wemlerive AIC and BIC in the frame
work of our model. One thing we would like to point out is thag shoose to regard the number
of points/observations to be random and the observatiogtheto be fixed for mathematical
convenience. The implementation of proposed methodolodyoth Chapter 2 and Chapter 3
are summarized in section 3.4, and then we follow the proesdio re-analyze the simulated

data set and IBM data set in Chapter 2.

4.2 Future work

This thesis proposes a parametric model for the first ordgygsty (the intensity function)
of a point process. There are three directions for futureaneh. The first one is to study the

almost periodic intensity function using non-parametrigtihod. Many papers have investigated
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the non-parametric approach in the purely periodic Poigsocesses, we refer to Chapter 2 for
a detailed literature review. Hall and Yin (2003) proposed-parametric methods for decon-
volving multiperiodic functions where the periods are tigkly irrational, and we may borrow
some ideas from this paper and apply to the point process Thsechallenge is that in Hall and
Yin (2003) the value of the multiperiodic functions are alvable (with errors), but in the point
process, the intensity function is unobservable.

The second direction is to consider higher order propertthefpoint processes. Under
Poisson assumption, the process has independent increfftamiguestion is whether this as-
sumption can be relaxed to conditions like weak dependemdlyel increment process. In ad-
dition, there is no paper studying almost periodically etated point processes although many
papers have discussed the almost periodically correlatexigeries. There is still a lot of room
on this problem.

The third direction is in the estimation df in the proposed model. In this thesis, we
use model selection criteria and derive AIC and BIC in thenfeevork of our model. How to

construct a criterion which is tailored for point processhallenging.
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Appendix A

Proofs in Chapter 2

For the proofs, the following results will be useful.

Under Assumption 6, simple calculations yield thatdor- 0 and constant # 0, v > 0,

,

B+o(1), ifw= T~ 17 = O(T_l),
T .
1 —jwt exp(—sz) —1 —ic .
TLABQWMZB_fﬁﬁf_: Bl=—=, ifw=cT",
o(1), if w=cT"1,
T 4
Tl/ Ay, cos(wit + g )e “dt
0
T i (wWrt+or) —i(wrt+er)
:T_l/ 4 4-26 T ety (A1)
0

Ak iR —1 T —i(w—wp)t
= 0(1) + 76 T . e dt

A {cos(n) + isin(@)} + 0(1), i |w — wy = 77177 = o(TY),

=) B o), if |w — wi| = T,

o(1), if |w— wg| =T,

73



Moreover,
T
T_Q/ Bte™™dt = o(1),if w = T,
0
T .
T2 / Ay, cos(wyt + g )te” “tdt
0
%{COS((?}C) +isin(¢p)} +o(1), if jw—wp| =TT =0o(T1),

= %em 71+e*1°2+ice*ic +0o(1), if w — wy| = Tt

o(1), if |w — wg| = T4,
. (A.2)
T3/ Bt?e tdt = o(1),if w =T,
0

T
73 / Ay, cos(wyt + qﬁk)th*Mtdt
0
)

%{COS((?}C) +isin(¢g)} + o(1), if |w—wg| =cT177 =o(T7),

_ . —i "’ 2 —i .
= %el@c — 2142 Zc+22§e C—cte” ' + 0(1)’ if |w _Wk| _ CT_l,

ic

o(1), if jw— wg| =T,

wherek =1,..., K.

Proof of Lemma 7. The proof was originally provided by Vere-Jones (1982). \Glgact
the typo there and extend the caserto> 1. First considern = 1.

Let J > 0 be the upper bound of(t), soA(t) < J.

Define

My := sup
0<w<Qr

/0 ' ¢tdZ (1) (

Now let L denote a positive integer (to be fixed later), and considarisiah of the interval
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[0, T'] into subintervals each of length = 7'/ L. We shall write

T =LA . .
/ ezwtdz(t) _ Z/ (ezwlA + ezwlA(ezw(tflA) - 1))dZ(t)
0 = Jia

L—-1 ‘ L—-1 ‘ A
_ ezwlAZl + Z ezwlA/ (ezwu o 1)dZ(’LL + ZA) (A3)
1=0 1=0 0

- Sl(va) + SQ(W7T)7

where

(I+1)A
7, = / dZ(t).
LA

The first sumS; has the same form as in the discrete case and can be handledilay s

methods:

L-1 L—|r| -1 L—|r|
\S1(w,T)\2 = ‘ Z ezer Z ZlZlJrrr < Z ‘ Z ZlZlJrrr s
r=—L+1 =0 r=—L+1 (=0
so that
L—|r|
E{sup]Sl(w,T)IQ} {‘ Z AV }
“ rf—L 1

The expectation on the right side of this expression cantirm&®d using the Schwarz inequal-

ity and the fact that the; are uncorrelated. This leads to the estimate

L—1 L—|r|

1
E{sup]Sl(w, } ZE Z?) —1—22{2 ZHT)}2.
v r=1 [=0
Since
(+1)A  pI+DA
- E{ / / dZ(T)dZ(t)}
1A IA
(1+1)A
- / A)dt < JA
IA
we have

E{sup \51(w,T)]2} < JA{L +2 Z r%} < J1AL%
whereJ; < oo is a further constant.

To estimate the second sum in (A.3), observe that

d|Z(8)] < |dZ(t)] < A(t)dt + dN(2),
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SO

E{d|Z(t)|} < 2\(t)dt < 2Jdt.

Using this estimate and the inequalities
et — 1| < |wu| < Qru (u > 0)

we obtain

L-1 A
E{ sup |Sg(w,T)|}§E{ sup Z/ |ewu—1|d|2(u+m)|}
0

0<w<Qp 0<w<Qr 15
< JLAE(Q7).

Combining estimates for both sums, and writihg= 7'/ A, we find

1 1
E(Mr/T) < T [E{ sup |81 TP} +T €] sup (s, T} < JF (TA) T+IAE©r),
0<w<Qr 0<w<Qr

where A is still at our disposal. Under Assumption 6 thatQr) = O(T'~%) (§ > 0), and
taking A = O(T~"), we find an optimum choice of is 1 — 4§/5 by equating the order of

(TA)*ﬁ andAE(Qr). And this leads to EMp/T') = O(T—5/5),

It remains to show that from this bound on the expectationsamededuce the almost sure
convergence to O of the ratiag/r/T. Making use of Chebyshev’s inequality and the Borel-
Cantelli lemma, we can find a sequence of tifigsi; — oo, and a sequence of positive num-
bersay, a, — 0, suchthafl}, /T;,1 — 1and P(My, /T, < oy, for all but a finite number of k=
1. For example, the choice of, = k=% andT}, = k", where$ > 0 andy > 5(1 + )/, will

suffice since by Chebyshev’s inequality
Pr(Mrz, /Ty < o) > 1 — E(Mr, /Ti,) fay, = 1 — O(T, %) /=8 =1 — O(k—°/5+5),
and—vd/5 + B < —1, then

Z Pr(MTk/Tk < Ozk) = 00,
k=1
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and thus

Pr(Mr, /Ti, < oy for all but a finite number of k= 1.

With such a choice, itis clear that', /T}, — 0 (a.s.). For intervening values @f, 7}, < T <

T11, We can write
Mr/T < Mg, /Ty, + (1/Tk)sup‘ / em)\(t)dt‘ v (1/Tk)sup‘ / eWth(t)‘
w Tk w Tk

The first term we already know tends to 0 almost surely, wiiitdlie second term we have

(1/T}) sup

w

/T ei”t)\(t)dt‘ < (1T)J(T - Ty) =0, (as.)
Ty,

and for the last term we have, by the ergodic theorem and therggtionT} 1 /7 — 1, that
T .
(1/Toysup| [ €=1aN ()] < (N(Tips) = NI/
w k

= {N(Tes1)/ T s { D1 /Th} — N(Ti)) /T, = m' —m' =0 (as.)
wherem/ is the mean rate of occurrence of points. Heiég/T — 0 (almost surely), and this
completes the proof of the case when= 1.

Now considernn > 1. Since

7™ sup
0<w<Qp

T
/ tmlemldz(t)| =T~ sup
0

0<w<Qp

T(i)mfl fiwtdZ(t)
J, e o)

and by addinq%)m—1 in the integral in (A.3) and proceed the proof similarly, vii@sld obtain
the result that

7™ sup

T
/tmle“’tdZ(t) -0, (as.)
0<w<0r!Jo

Proof of Proposition 8. In the search range théI(T‘S/*l) <w < Qp, Lemma 7 implies
that J}Z)(w) in (2.6) converges t® uniformly, so J}k)(w) is the dominant term iy (w).

Considerm = 1 in Jp(w). It follows from (A.1) thatJé’\) (w) converges td uniformly for
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wew: lw—wp| > T c#0,¥y >0 andO(T? ') < w < Qr}, so the local maxima
of Jg) (w) as well as the periodogram must occur in the neighborhoad, afhere the width
of the neighborhood is at mo&(7~ ') (k = 1, ..., K). Under Assumption 5 that the distance
of two frequencies should be wider than the orde©¢f’—!), these neighborhoods of,’s are
disjoint for large T. Note that by the definition of local mara of the periodogram that their
corresponding frequencies have to be well separated vétartieO(7~1*7) (y > 0), only one
maximum of the periodogram should be considered in each iseigfinborhood ofv;. So the
K largest local maxima of the periodogram must occur in thesghborhoods of, . .., wk,
with each one capturing one local maximum, namely, the &aqy estimatev;, r is in such
neighborhood ofu;, k = 1,..., K. Since these neighborhoods tendtasT — oo, it follows
thatwr — w (a.s.), ag’ — oo, namely,@ is a consistent estimate af.

Moreover,|J7(w)| obtains itskth maximum atv;, 7 while |J7(w)| has itskth maximum at

wp (k=1,...,K),sofor
Jr(@rm)] > [Tr(wr)] > 75 @i)] = 757 @)l = 175 (@e)] + Ba(T),
and
I wi)| = [ @er)| = I @) + 2 @)l = 157 @nr)| > 7@k )|+ Ra(T),

whereR(T) = —\J}Z)(wk)] andRy(T) = —\J}Z)(dzkj)\, and they tend t® almost surely.
So

Jim [T (@kr)] = lim [T5 ()] = Ak/2
where the second equality is determined by (A.1). On therdthad, the direct calculation of
|J7 (k. 7)| shows that

) Ay 1exp[—i(wgp —wpp)T] — 1
J == d 1
’ T(Wk’T)‘ 2 —i(wk — L:kaT)T * 0( )’
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so we have

and thus

Proof of Proposition 9. SincedZ(t) is a process with independent and bounded variance
increment, the random variablég, V', W’ X' Y')’ satisfy a central limit theorem. Také
for example. Let); = f(l HA = 1,...,[T], where[T] is the largest integer which

does not exceed, andA = T'/[T]. ThenU;’s are independent with me@nand for any > 0,

(7] (7]
Y P{|UI| <esr} > {1 —var(l)/(es7)} = [T] - 1/e* » 00, asT — o,

wheres? = Zgﬂ var(U;) = Tvar(U) which tends tax asT — co. So
PH{|U;| < est, for all but a finite number offl = 1.

Sinces2. — oo asT — oo, theLindeberg conditior(Roatgi and Saleh (2001), p.298)
. 1 2
lim _QZE(UZ 2|Ul| > esr) =0

is satisfied. 3(21@1 U, /st = T'/2U /{Tvar(U)}'/? converges to the standard normal distribu-
tion asT’ — oc. This central limit theorem easily extends to the randontordé’, V!, W', X' Y')'.
We omit the proof here. The asymptotic variance-covariana&ix of above random vector can

be obtained by direct calculation. For example,
T rT
Vi, W) = T / / cos(wpt) sin(wp ) COVdZ (L), dZ ()
0 0
T
= Tl/ cos(wyt) sin(wgt) A(t)dt
0
A

K
— Z I] sin (b] J E+k' T 5J k—k! — 5j,k’fk) = Es(k, k/), asT — oo.
7j=1
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Proof of Theorem 10. The main steps to obtain (2.12) are shown before Theorem 10.
The expansion o2 TI}.(w) atw = wy, is the summation of the two terms (a) and (b) as

follows,
@) :=

2{ /0 ' sin(wit) A(t)dt + /0

= 2{—%TA/§ sin(¢y) + O(1) + T%Wk}{iTQAk cos(¢x) + O(T) + T2 X},

T

sin(wit) dZ(t)}{ /0 thos(wkt) A(t)dt + /0 thos(wkt) dZ(t)}

1 1
= _ZT3A2 sin(¢y) cos(px) — T%Aka sin(¢x) + §T%Aka cos(¢r) + O(T?),
and

(b) :=

2{/0T cos(wit) A(t)dt + /0

= 2{%TA1< cos(d) + O(1) + T%Vk}{iTQAk sin(¢p) + O(T) — T3V}

T

cos(wyt) dZ(t)}{— /OTtsin(wkt) A(t)dt — /OTtsin(wkt) dZ(t)}

= iTBAi sin(¢y,) cos(r) — T3 ARY, cos(y) + %T%Akvk sin(¢) + O(T?).

We can see that the terms with orde(7™) in equation (a) and (b) are canceled out when
adding (a) and (b) together. And the terms with ordf’°/2) are the products of ona-
integral and on&-integral in the second equation of the expansion of (a) Bhdagd they are
the leading terms. So by taking the summation of (a) and (B)oltain the value drT'I’.(w)

atw = wy:
5 1 1 5
2rTIp(wp) = T2 Ap{5 Visin(dr) + 5 Wi cos(dr) — X sin(¢r) — Vi cos(dp)} + o(T).

Analogously, we can obtain (2.11) by breaking it iltdntegrals andZ-integrals, All
terms involvingZ-integrals uniformly (inw) converge td) (a.s.) by Lemma 7, and the leading

terms are the products ofintegrals. We omit the tedious calculation and just shosvfthal
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calculation of the products of-integrals here:
2T > I (k1)
T 9 T T
:2T—4{ ( / tsin (@ 1t) A(t)dt) - ( / cos(@g.rt) A(t)dt) ( / 12 cos(@p, 1) A(t)dt)
0 0 0
T 9 T T
+ ( / t cos(@p 1) )\(t)dt) - ( / sin (@ 1t) A(t)dt) ( / 12 sin (g, 7t) A(t)dt)}
0 0 0
+o(1).
By Proposition 8 we havéo, + — wi| = o(T '), and the results in the equations (A.1) and

(A.2) imply that in the above equations of the producta-afitegrals, the limiting value will not

change ifw, 7 is replaced byvy. So by direct calculation, we have

lim 2773 I} (@p.7)

T—o0
:Az{é sin2(q§k) — é COS2(¢k)} + Az{% cos2(¢k) — é sin2(¢k)}
_ L
=

Equation (2.12) follows from (2.9) and Slutsky’s theorenoéi®yi and Saleh (2001), page
270). Moreoverw is asymptotically normally distributed because of the gstytic normality
of the random variable§Vy, ..., Vi, Wh,..., Wk, X1,..., Xk, Y1,...,Yrg)" by Proposition

9. The variance-covariance &fr is obtained by direct calculatiorm

Proof of Theorem 11. The discussions of (2.13) and (2.14) and thereafter fornptbef

of the asymptotic normality ofi;- anddr. m
Proof of Theorem 12. Since N(T) = fOT dN(t) = fOT A(t)dt + fOT dZ(t), by the

definition of U, it follows that Tz (N (T) /T — B) = U + o(1) % N(0, B).

Now we show thanT(t) is asymptotically non-negative for amy> 0. For everyd < t <
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T, we find

K
Ar(t) = A(t) = [N(T)/T = Bl + Y _(Arr — Ar) cos(@r,rt + or.7)]
«
+ [ Arfeos(@ert + dr.r) — cos(wr + )}
k=1

On the right hand side of the above equation, the terms inntehfiio square brackets are both
O(T‘%) following Theorems 11 and 12, and a Taylor expansion of tteneofunction in the
third term together with Theorems 10 and 11 yield the resalt the third term is als@(T*% )
SoAr(t) = A(t)+O(T~2), and thus\(¢) is asymptotically non-negative given thet) > 0
[

Proof of Theorem 13. The results in Theorem 13 follow by expressing all the edia
as functions ot/, V, W, XY and using Proposition 9=

Proof of Theorem 14. Under Assumption 4 that the process is a non-homogeneous

Poisson process,
Pr(Toet = t|Ty = tns ... Th = t1) = A(t)e ™ Jn M08 — \(1)emAOHAE) 4 5 4 (A 4)

SoT,4, is easily obtained by (A.4) and taking integration by pafise mean squared erroy;

is obtained by (A.4) and using the fact that

v = Eq, [E{(Ths1 — Tn1)?|Tn}] = Ep {E(T2,4|T) — T2}
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Appendix B

Proofs in Chapter 3

Proof of Proposition 15. As shown in Severini (2000) on page 106, the MLE of the model
parametep is consistent if the two conditions are satisfied:

1. The parameter spaéeis a compact subset 8 whered is the dimension 0.

2. supgpee [N H(0) — v(0)] L 0asn — oo, where/(0) is the log-likelihood function
based om observations and(§) = n~'E{((6); 00 }.

In our model, we assun€ to be a fixed quantity for mathematical convenience, so the
regularity conditions for the consistency of MLE in our mbdesimilar as above conditions
with n replaced with7. Under the assumptions thatt) € [, M| for anyt > 0 where
M > ¢ > 0 andw;’s are bounded as in assumption 6, the parameter space inauel s
compact, and thus condition 1 is satisfied.

We now turn to the second condition. Denote the true intgrfgitction of a Poisson
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process as(t; y) = Ao(t), then the log-likelihood of a Poisson process at @iy

N(T) T
0(0) = ; log)\(tj)—/o A(t)dt

T T
— / log A(t)dN (t) — / At)dt
0 0

(B.1)
T T
:/ [Ao(t) log A(t) — A(t)]dt +/ log \(t)dZ (t)
0 0
= (i) + (44).
The second last equation is followed by the decomposition
dN(t) = No(t)dt + dZ(t), (B.2)

wheredZ(t) is a process with meaf, and independent but non-stationary increments. In
addition, dZ(t) is mean-squared bounded. So we hafg(B)} = E{(i) + (i)} = (7).
Since va((ii)) = fOT[log AP Ao(t)dt < MT max{(loge)?, (log M)?} = O(T), we have
(i3) < O(T'/?). So condition 2 is satisfied:

1 L. 1. .. P
blelp{ff(e) - ?(2)} = sgp ?(zz) =0, asT — oo.

And thus the MLE in our model is consistent. We now discusscibievergence rate of the
frequency estimates.

Notice that(i) obtains its maximum at = 6, and/(6) obtains its maximum at = 4. It
follows from condition 2 that:¢(9) — L (i)|g—g, 2,0, asT — oo. And that is, 4 (i)]p_g +
L(ii) g — 2(0)|o=g, —» 0, @sT — oc. SinceX(ii) 2+ 0 atanyd € ©, so{X(i)|,_; —

7(1)|o=0, } Iy 0, thatis

1 1

T(i)‘ezé - T(i)\ezeo
T T
[ oA = tog e - 1. [ A - (o ©3)

—(iii) + (iv) 20, asT — oc.
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Consider(iv). By direct calculation,

T
(iv) = —%/O (B — By)dt + o(1),

and since3 — By = 0 asT — oo, we have(iv) = 0.

Since(iii) + (iv) 2o by equation (B.3), an¢iv) o by the above discussion, we have
(7i1) L5 0. Now we will prove that in order to hav@iq) 0, the frequency estimates must
converge in the rate of(T—1).

It follows by a Taylor expansion dbg X(t) aroundd, that

(7i1)
1 T 1 6)\0(75) ~ 1 . ,82>\—02(t))\0(t) . (8>\0(t))2
T 2
/ 0 [ Yo 1[0 (5 -

+ / )\o(t)RT(H)dt,

0

N[ =

(B.4)

whereRr(0) is of smaller order of the second term in the Taylor expanefdog A(¢). Consider
0 = wy, in (B.4) while fixing other parameters. By using the resmm%(z) = —t A sin(wpt+

o) an and 220 X(Q) = —t? Ay, cos(wit+¢z), and by direct calculation, we ha&}e(wk W0 fo %) gy —

Wi Owy,

(W —wr,0) x O(1), and 4 (W, — wy0) OT 823%(1:) dt = (W —wr.0)% x O(T). In addition, since

1/A(t) € [1/M,1/¢], we have

T(wk wk70) /O )\0(75)< Dk ) dt = (wk wk70) T/O )\o(t)t Ak,O COS (wk70t + gf)k’o)dt

11 [T

€ [(wr, — wk,o)QTH 0 t2 A7, o cos® (wr,ot + ¢k 0)dt

. 11 (T
(wk — wk70)2fg / tzA%’O COS2((AJ]€’0t + gf)k;,o)dt].
0

By simple calculation thaf0 t2 cos? (wit + g )dt = fO (3 ‘m%gﬂ)dt = O(T?), we

2
have L (ui — wi0)® fy s (%gfﬁ) dt = (6 — wio)? x O(T?).
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To summarize the above discussion(éii) whenf = wy, we have

T
(1) = (e — wg) X O(1) + (@~ wr0)* x (O(T) +O(T%)) + 7 /O No(t) R (wy)dt.

Since(wy, —wr,0) = o(1), the firstterm in(izi) is o(1). In order to havégiii) — 0 in probability,
we need the sum of the last two terms to converdgitoprobability. Note thafir(wy) involves
with the product ob((&r — wi0)?) and higher order of derivatives aft) with respect tauy,
and the corresponding integral, namely, the third ternif), can be calculated similarly as
the second term ifiii). By direct calculation, we can show that the third ternfiiti), namely
=+ fOT Ao (t) Ry (wg), involves with terms such dsy, —wy. 0)* x O(T*). Since the second term in
(#44) involves with (&g, —wy.0)? x O(T?), if (g —wk0) = O(T 1) or (W —wg0) = O(T~1+9)
(0 < 6 < 1), the sum of the last two terms cannot converg® to probability. And thus we
prove that(@y, — wk) = o(T1).

[

Proof of Proposition 16. The main technique in showing the asymptotic normality of

is the Taylor expansion of the first derivative &§f)) in equation (3.13) and the decomposition

of the log-likelihood function (B.1). Note th%;%) o 0, we have
=bto
ol ol ol .
= — = — — 0—0
0 0016=0 00 1o=0, * 002 ‘0:5( 0)

(B.5)

o(i1) 0%(i)  02(ii) .
00 lo—a * ( 002 002 )‘9:9(9 — o),

where0 <|| 6 — 6y ||<|| § — 6, ||. In addition, the second derivative @1 is of higher order and

thus it is the leading term ig—zég(f)

i’ This can be verified by direct calculation. For example,

consider the derivative with respectag only, we have

2(i 2(; T
a&ui,%) ‘9:9’ - 8&5,3) ‘9:90 B _/0 %(%ﬁg?)z‘e:eodt = O(T?),

02 (1)

and = >~ has mear) and variance
k
02 (i) 02 (i) T 1 821og Ao (t)\ 2 i
= = ———5——) Xo(t)dt =O(T").
var |,y = vart S o o) /O ( B, ) Nolt)dt = O(1°)
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In above approximation) < |wy, — wyo| < |wp — wko|l = o(T~') is needed because of the

results in (A.1) and (A.2). The procedure to obtain the mtagle of above two equations are

similar to the procedures discussed in the proof of Projoosit5. So% i is of order
2 o

of O(T%) and it is smaller thar%%) s = O(T?). When the derivative is with respect to
k B

other parameters, the proof of the results that the secorightiee of (i) is the leading term

9%(0)

In 902

i can be obtained similarly. In addition, the value%gjé—) evaluated at = 0 is

approximately the same as the value evaluatéd-at,.

(i)
1700

In addition follows a central limit theorem anﬂ>51 agg) ,
0

, is asymptotically
0

normally distributed with meafi and variance-covariance matiixas shown in (3.15). Then

we obtain the asymptotic normality 6f— 6 by

o7 (0%

1 GQZ‘

DT(é — 90) == {DT @

0=6 } '
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