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Abstract
Making Sense of Number, Bit-by-Bit
by
Samuel J. Cheyette
Doctor of Philosophy in Psychology
University of California, Berkeley

Assistant Professor Steven T. Piantadosi, Chair

Numerosity perception has been studied for at least 150 years and its psychophysics
have been well characterized by experimental work. However, the origins of many
of its key properties remain obscure. For instance, people estimate the numeros-
ity of small sets (up to four) much more rapidly and accurately than larger sets;
people tend to underestimate larger numerosities; estimation precision and accu-
racy increase with exposure duration. Standard models of numerical estimation
do not account for these wide ranging phenomena, with large number estimation
typically characterized as a draw from Gaussian(n,w - n), where w is a person’s
“Weber fraction,” and exact small number perception characterized separately,
the result of an independent object-file system. Furthermore, the inherently per-
ceptual nature of estimation is largely ignored in many accounts of individual
differences, which are often considered evidence of disparities in innate mathe-
matical cognition. In my dissertation, I present studies of human behavior and
computational models aimed at clarifying the visual mechanisms underlying nu-
merical estimation. Our findings help to understand, and unify, key properties of
number psychophysics which have previously been explained in terms of indepen-
dent mechanisms or with ad hoc modifications to existing theories. For instance,
we show how the psychophysics of both small and large number estimation can be
unified into a single framework with a common mechanistic origin, and in fact how
myriad properties of both (including estimation precision, bias, effects of time)



can be understood as downstream consequences of bounded-optimal perceptual
inference.
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Introduction

1.1 Background

The human visual system rapidly computes and represents myriad summary
statistics about groups of objects (Whitney & Yamanashi Leib, 2018). The work
presented in this thesis is a humble attempt to understand the cognitive mecha-
nisms underlying just one such summary statistic: the numerosity of a set. Our
visual system can quickly determine the number of objects in a scene without the
aid of serial counting, though only approximately, a capacity that emerges early
in infancy (e.g. Dehaene, 2011} Hyde et al., 2010; McCrink & Wynn, [2007; Wynn,
1992a; Xu & Spelke, 2000) and is shared with evolutionary ancestors as distant
as cephalopods (Yang & Chiao, 2016). The emergence of measurable numerical
discrimination ability so early in development, along with the capacity to do ap-
proximate arithmetic (Wynn, |1992a)), suggest that being able to assess and reason
about quantities is functionally quite important to many facets of life — an idea
with obvious intuitive appeal to the modern numerate person. The ubiquity of
innate numerical abilities across the animal kingdom aligns with this intuition as
well: most animals will want to move toward the most abundant source of food,
whatever that food may be; and, conversely, most animals will want to flee from
the more numerous pack of predators, whomever those predators are.
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The first estimation experiment

Scientific investigation into human quantity estimation ability was first motivated
as an attempt to understand the limits of the human mind in representing multiple
objects simultaneously — a subject of interest to philosophers for some time.
Citing the musings of various 18th century scholars in his Lectures on Metaphysics
and Logic (Vol. 1), Sir William Hamilton (1859) wrote,

Supposing that the mind is not limited to the simultaneous consid-
eration of a single object, a question arises: how many objects can
it embrace at once? [...] I find this problem stated and differently
answered by different philosophers, and apparently without a knowl-
edge of each other. By Charles Bonnet, the mind is allowed to have
a distinct notion of six objects at once; by Abraham Tucker the num-
ber is limited to four; while Destutt Tracy again amplifies it to six.
The opinion of the first and last of these philosophers appears to me
correct. You can easily make the experiment for yourselves, but you
must must beware of grouping the objects into classes. If you throw
a handful of marbles on the floor, you will find it difficult to view at

once more than six, or seven at most, without confusion.

It is not entirely clear what specifically Hamilton proposed to measure here or
if Hamilton actually conducted any experiment at all — if he did, he did not
provide details or data. That task was instead taken up a decade later by the
logician and economist William Stanley Jevons (1871) who, citing this passage as
motivation, remarked that “the subject seemed to me worthy of more systematic
investigation, and it is one of the very few points which can, as far as we yet
see, be submitted to experiment.” In addition to its significance as the first
scientific investigation into numerosity perception, Jevons’ paper is remarkable
for its clarity of writing, insight, and anticipation of cognitive psychology in using
rigorous methods to test latent properties of the human mind.

In his experiment, Jevons set a small paper box on a tray and repeatedly tossed
black beans in its direction. As soon as the beans came to rest, he immediately
estimated how many had landed in the box and then recorded his estimate along
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with the actual quantity. The procedure was repeated 1,027 times. As he wrote,
“the whole value of the experiment turns upon the rapidity of the estimation, for
if we can really count five or six by a single mental act, we ought to be able to
do it unerringly at the first momentary glance.” Though he only tested himself,
and though there are some dubious aspects of Jevons’ methodology like that he
himself threw the beans rather than another person, his essential findings have

stood the test of time and have since been replicated many dozens of times.
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Figure 1.1: Data from Jevons (1871)), courtesy of the R HistData package (Friendly, 2021).
Panel (a) shows the distribution of estimates (y-axis) for each actual quantity of beans thrown
(x-axis), with the size of the square proportional to how many times that number-estimate pair
occurred. Panel (b) shows the absolute error of his estimates as a function of quantity (i.e.
Ex [|n — k|] for quantities n and estimates k).

Figure provides data from Jevons’ experiment, re-plotted with tools un-
available in the 1800s (R Core Team, [2020)). The full distribution of estimates
as a function of the true number of beans thrown is presented in [I.Tj, with the
absolute error of estimates given in[I.Ip. Jevons drew two main conclusions from
these results: the answer to “how many objects can the mind embrace at once”
seems to be four — at least, for him — since he was completely unerring in his
estimation only when there were three or four beans but not beyond; beyond
four, the proportion of inaccurate trials, as well as the magnitude of (absolute)
error, grew in proportion with the true number of beans (shown in [I.Ip).
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Jevons fit a curve to determine how the magnitude of his errors grew with
quantity. Specifically, for a number of beans n, he found that the expected

absolute difference of his estimates k& was well-described by the function,

0, if n<4.5
El[ln — k|| = . (1.1)

k 0.12- (n —4.5), otherwise.
Jevons interpreted this function as saying that between four and five objects
(specifically 4.5) can be discerned at once, after which the magnitude of error

increases linearly. He wrote,

This is a purely empirical law, the meaning or value of which I cannot
undertake to explain. The most curious point is that it seems to con-
firm that my own power of estimating the number five is not perfect.
The limit of complete accuracy, if there were one, would be neither 4
nor 5 but half-way between them.

In fact, this result can be understood naturally as an informational capacity limit,
as Chapters 3 and 4 will explain. Jevons, of course, was writing without the
benefit of information theory or psychological theory regarding capacity limits,
and so his insightful remark that his limit of complete accuracy in numerosity
perception was “between 4 and 5”7 could not be expressed in those terms.
Jevons made one other observation worth noting here, which is that he tended
to slightly overestimate smaller quantities and significantly underestimate larger
quantities. This can be seen in Figure , which shows the average (signed)
error as a function of quantity. He made a connection between this tendency and
the frequency distribution of beans actually thrown into the bucket (shown in

Figure [1.2p), commenting:

There is a clear tendency to over-estimate small numbers and to
under-estimate large numbers. There is an evident inclination to-
ward those medium numbers which most frequently recurred: how
far this discredits the experiments I cannot undertake to say, but it
is an instance of that inevitable bias in mental experiments against

which it is impossible to take complete precautions.
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Figure 1.2: Data from Jevons (1871). Panel (a) shows the average (signed) error as a function
of the number of beans. Panel (b) shows the distribution of the true number of beans thrown.

This is an astonishingly prescient remark, and may be the first clearly interpreted
scientific evidence that our minds rationally adapt to the statistics of the envi-
ronment, even absent any conscious thought or deliberate intention. Though he
intended it as a potential limitation of his experiment, an extension of this basic
idea can help explain why estimation error is zero for small quantities and grows

linearly beyond — provided in Chapters 3 and 4.

Number psychophysics

Nearly 80 years after Jevons’ paper, Kaufman et al. (1949)) delineated three dis-
tinct modes of enumeration: counting, subitizing, and estimating. Counting, of
course, is a learned, serial procedure for exactly determining how many objects
are in a set of arbitary size. Subitizing and estimation, on the other hand, are
distinguished from counting as innate processes of enumeration that can oper-
ate in parallel over a visual field. Subitizing, a term they coined from the Latin

9

word subitare meaning “to arrive suddenly,” is the fast and accurate mode of
apprehending small quantities. They considered the quantity of sets with six or

fewer members to be “subitized” rather than “estimated.” Estimation, on the
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other hand, is a less accurate and somewhat slower mode of determining the nu-
merosity of larger sets. They speculated, based on data regarding participants’
reaction times, accuracy, and confidence in quantity estimation, that there is

some mechanistic distinction between subitizing and estimation. They wrote,

The two terms differ in meaning, because to produce the process of
estimating we present more than 6 dots; to produce subitizing we
present 6 or less. This difference is surely an identifiable difference
in operations. It might be a trivial difference, but the results tell us
that it is not. If no discontinuities had appeared in the results, no
distinction between subitizing and estimating could have been drawn.

Though the subitizing range is now considered to be four rather than sixl] —
which really should have been the limit Kaufman et al. (1949) chose based on
their data and that of Jevons (1871)E| — the idea that there are two operational
modes of determining a set’s quantity (other than counting) is widely accepted.
Furthermore, Kaufman et al’s suggestion that these modes reflect different un-
derlying cognitive mechanisms has gained widespread support as well. On one
prominent account, we have two innate systems that allow us to represent nu-
merical information (Dehaene, [1997; Feigenson et al., 2004; Trick & Pylyshyn,
1994). The first is the “parallel individuation” system, which allows us to attend
to and track up to four objects. This slot-like tracking mechanism is what allows
for rapid, exact enumeration of small quantities. The second is the “approximate

Y

number system,” which is a noisy, analog system for representing numerosity in
sets when their size exceeds the limits of the parallel individuation system.

The psychophysics of estimation resulting from the parallel individuation sys-
tem and the approximate number system are illustrated in Figure [1.3] Each line
represents the probability density Q(k | n) over estimates (k) given a number of
objects presented (n). Given n = 1...4 objects, the parallel individuation system
exactly tracks them and thus estimation will be perfectly accurate, illustrated by

the delta function probability density curves in Figure|l.3h. However, it is unable

Tt is interesting that the debate has always been whether four or six is the limit, never five.
2Curiously, Kaufman et al. (1949) did not cite Jevons (1871).
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Figure 1.3: Distributions Q(k|n) of responses (k) given a number of objects presented (n) under
three models. Probabilities (y-axis) of estimates (x-axis) are shown for numerosities 1-9 (colors).
Panel (a) shows the form of a precise estimation system, panel (b) shows the form of a scale
variable estimation system, and panel (c) shows them combined.

to represent sets beyond n = 4. The approximate number system (exemplified by
1.3b), on the other hand, is analog, continuous, and unbounded but represents
each subsequent numerosity with decreasing precision. A popular model of the

approximate number system assumes that estimates are drawn from,

ke~ N (n,w-n). (1.2)

This model of large number estimation has the standard deviation of estimates
increasing at a rate w per object shown. This constant, w, is called a person’s
“Weber fraction.”

Is subitizing consistent with Weber’s law?

Weber’s law, from which the term “Weber fraction” derives, states that the dis-
criminability of two sensory stimuli is governed by their ratio (Weber, [1834),
and it has been found to approximately hold for many sensory stimuli, such as
brightness, loudness, and length, among others (e.g. M. Treisman, [1964). A con-
sequence of Weber’s law is that as the magnitude of a stimulus s increases, it
becomes increasingly difficult to distinguish it from the magnitude s + 4, since
the ratio s/(s+ d) approaches 1 as s increases. Instead, a fractional change in s,
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w - 8, results in constant discriminability, since the ratio s/(w - s) is constant. For
this reason, is a model of numerosity perception consistent with Weber’s
law. Figure illustrates the probability that a person would choose be able to
determine that a stimulus ns is greater than another stimulus n; as a function of

the ratio ny/n; and that person’s Weber fraction.

10 10| ————
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Figure 1.4: Weber’s law states that the ability to discriminate between two sensations depends
on their ratio rather than the difference between them. The Weber fraction is a person- and
sensation-specific constant, w, which governs how easily discriminable magnitudes are at a given
ratio. Panel (a) shows the probability that a person can accurately discriminate two magnitudes
as a function of their ratio, given a Weber fraction w (each line); panel (b) gives the probability
a person could reliably distinguish between quantities n and n + 1 for n = 1...10.

It is widely accepted that discrimination of large quantities follows Weber’s
lawf’] — though as Testolin and McClelland (2021)) point out, this is only approx-
imately true. However, one difficulty in empirically determining whether small
number discrimination is consistent with Weber’s law is peculiar to the domain
of number: because the cardinality of a set is a discrete quantity, there is no way
to fully dissociate ratios from magnitudes. This is a particular problem for small
quantities, since the a ratio of 2:1 is the smallest that one can test against sets of

cardinality 1. For this reason, the question of whether people’s near-exact estima-

3This does not hold for very large quantities, which seem to be perceived in terms of their
texture density (Anobile et al.,|[2016; Ross & Burr, [2012)). In fact, very large quantities follow
different psychophysics, consistent with square-root scaling of internal noise rather than a linear
scaling.
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tion of small quantities is consistent with Weber’s law was not definitively settled
until recently. Figure illustrates the difficulty: even if Weber’s law holds in
the small-number regime, small quantities can be distinguished with near-exact
precision given low enough w.

However, Revkin et al. (2008)) performed a particularly well-controlled study
definitively showing that the psychophysics of small-quantity estimation differs
from that of large-quantity estimation. They ran a quantity estimation task with
two conditions. In the first condition, only 1-8 items were shown on each trial;
in the second condition, 10-80 items were shown, but only the deciles (10, 20,
30...). In both conditions, participants were informed of the possible quantities
involved in advance, and could only respond by pressing 1-8 on their keyboard in
both conditions (1 corresponding to 10, 2 to 20, etc... in the second condition).
The reason this is such a nice experiment is that the numerical ratios involved are
matched — the only difference between the two conditions is the actual quantities.
To the extent that the necessarily large ratios between small quantities is the
reason why they are easy to estimate and discriminate, then, there should be
no difference in performance between the two conditions. However, they found
that there was in fact a large difference between the two conditions in the 1-
4 and 10-40 ranges: people could estimate 1-4 with near-exact precision but
not 10-40. This study therefore shows that small-quantity psychophysics differ
fundamentally from large-quantity psychophysics.

How should we interpret these distinct psychophysical modes? In their final
paragraph, Revkin et al. (2008) wrote,

In conclusion, although our study provides evidence against estima-
tion as the underlying mechanism of subitizing, the question remains
open as to whether subitizing relies on a domain-specific numerical
process or on a domain-general cognitive process. One hundred years
after the discovery of subitizing, its mechanisms remain as mysterious
as ever — but it is now clear that they are not based on a Weberian

estimation process.

One interesting thing to note about this statement is, as in Kaufman et al. (1949)),

the finding of a dissociation in performance between small- and large-quantities
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is taken as evidence of distinct mechanisms. However, differences in empirically
measured psychophysical properties do not necessarily imply differences in mech-
anisms — this is actually an inductive leap. Chapters 3 and 4 describe why such

an inference, while intuitively appealing, is not justified.

Number as a primary perceptual attribute

The study of numerosity perception, while quite old by the standards of psy-
chology, has retained substantial interest in recent decades. There are several
reasons for this, including: 1) that basic numerical abilities seem to be present
even in uncomplicated animals and are observed early in human development; 2)
that number psychophysics are unique in showing a discontinuity; and 3) that
number seems to be a primary perceptual attribute (Burr & Ross, 2008; Ross &
Burr, [2010). Number can be considered a primary perceptual attribute because
it can be estimated even when holding correlated dimensions constant (e.g. the
density and total area of objects) and because numerical percepts are susceptible
to adaptation.

Upon reflection, this is quite surprising given how far removed a set’s quantity
seems to be from direct sensory input. Specifically, computing the number of
objects in a scene would seem to require a map of individual items in space, which
by itself is a computationally complex problem involving image segmentation and
object detection. Yet, remarkably, people can determine the number of items
in an image given as little as 16 milliseconds of exposure (Inglis & Gilmore,
2013), albeit with low precision. Equally remarkable is that, as the adaptation
studies show, repeated exposure to large numerosities decreases one’s perception
of a novel set’s quantity (and vice-versa), even when holding other dimensions
constant (Anobile et al., [2014} 2016; Burr & Ross, 2008; Ross & Burr, [2010]) —
just as with much simpler perceptual attributes like luminance.

The abstractness of number has led naturally to skepticism that it could be a
primary quality of perception. Some researchers have maintained that perception
of numerosity is actually indirect, and that numerical estimates are actually the
product of extrapolation from less abstract continuous features that strongly
correlate with numerosity, such as surface area or texture density (Dakin et al.,

10
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2011; Durgin, 2008). Others posit the existence of a “general magnitude system”
in which the representations of density, area, and numerosity are all combined,
inseparably flattened onto common magnitude scale (Gebuis et al., 2016; Gebuis
& Reynvoet, 2012a; Lourenco & Longo, 2010; Sokolowski et al., [2017). Studies
have in fact found that numerical estimates are biased by the texture density and
total surface area of items in a display (Aulet & Lourenco, 2021; Dakin et al.,
2011; Gebuis & Reynvoet, 2012a; Lourenco & Longo, |2010), which has been taken
as evidence against numerosity as a primary perceptual attribute and in favor of
a “general magnitude system”.

However, the finding that numerical estimates are biased by other cues is
not at all surprising given the exceptionally high empirical correlation between
number, area, and density in natural scenes (e.g. Piantadosi & Cantlon, 2017) and
the visual system’s propensity for making efficient use of natural scene statistics in
general (Olshausen & Field, 1996; Simoncelli & Olshausen, |2001)) and correlated
dimensions in particular (Bates & Jacobs, 2020; Orhan & Jacobs, 2013). But
more importantly, there is by now overwhelming evidence that number, area, and
density can all be estimated independently without training (Anobile et al., 2018}
Anobile et al., 2014} Cicchini et al., 2016 Ferrigno et al., [2017; Yousif & Keil,
2019)); that from an early age numerosity specifically seems to be privileged in
salience over area and texture density (Anobile et al.,|2019; Ferrigno et al., 2017)
and represented with higher precision than either as well (Cicchini et al., 2016));
and that numerosity perception is susceptible to adaptation even controlling for
correlated dimensions (Arrighi et al., 2014; Burr & Ross, [2008; Fornaciai et al.,
2016; Ross & Burr, 2010).

The “number sense” idea

While many non-human animals have the capacity to approximately estimate, dis-
criminate, and manipulate quantities, humans are the only species to use exact,
symbolic systems for representing and manipulating numbers — a development
which has made possible the inventions of science, mass industry, and civilization
(see O’Shaughnessy et al. (2021]) for a review of the cultural origins of number

systems). However, innate numerical abilities have garnered attention from re-

11
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searchers interested in the historical origins of number knowledge and symbolic
mathematics, as well as the developmental trajectory of numeracy and mathemat-
ical understanding in children. The term “number sense” became a catchphrase
broadly connoting a link between innate and learned numerical abilities. It has
also been used frequently to suggest the more specific idea that inexact quantity
representations are a precursor to, and may play an important developmental
role in, acquiring mathematical knowledge. For instance, in his popular book
The Number Sense, Dehaene (1997) writes that,

The foundations of arithmetic lie in our ability to mentally represent
and manipulate numerosities on a mental ‘number line’, an analogical
representation of number; and that this representation has a long
evolutionary history and a specific cerebral substrate.

The origins of the (often somewhat vague) supposition that counting and arith-
metic have their “foundation” in non-verbal, innate quantity representations can
be traced to theories developed by Rochel Gelman and Charles Gallistel in the
mid-1970s. On their early account of the relationship between pre-verbal number
representations and symbolic number systems, people are actually born with an
innate understanding of exact quantities even if their perception of numerosity
is only approximate (Gallistel & Gelman, [1992; R. Gelman & Gallistel, [1978]).
On their account, then, learning to count is essentially the process of mapping
one’s non-verbal integer representations to number words. However, subsequent
studies have demonstrated that learning the count list is actually a pre-requisite
to representing and manipulating exact quantities — i.e., an understanding of
integers is constructed from rather than mapped to number words (Cheung et al.,
2017; Le Corre & Carey, 2007, Piantadosi et al., 2012; Sarnecka & Carey, 2008;
Schneider, Feiman, et al., 2021; Schneider, Pankonin, et al., 2021} Wynn, [1992b)).

For instance, it is now well-established that children do not exhibit an under-
standing of the “cardinal principal” — that each successive number in the count
list maps to one more item in a set — until well after they have mastered the
count list (Le Corre & Carey, 2007, Wynn, 1992b). Furthermore, even after a

child achieves an understanding of the cardinal principal — often assessed by

12
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their being able to provide n items when asked for “n” — there will generally be
a long gap before they seem to map larger number words to their innate quantity
representations. A key observation that supports this view is that in number
estimation tasks, younger children who have only recently mastered the “give-n”
task will provide estimates that do not monotonically increase with the number
of objects shown, particularly for larger sets (Le Corre & Carey, |2007). The ev-
idence therefore implicates a limited role, if any, for inexact, non-verbal number
representations in learning to count.

However, confusing matters, Halberda et al. (2008) found that performance in
a non-symbolic number discrimination task correlates strongly with high school
mathematical achievement as measured by a standardized test (the TEMA-2) —
over and above many other factors such as IQ. Some subsequent studies have
replicated the general finding of a positive correlation between estimation acuity
and mathematical achievement (Bonny & Lourenco, 2013} Feigenson et al., [2013;
Halberda et al., 2012} Libertus et al., 2011} 2013; Mazzocco et al., 2011; Starr
et al., |2013b; Wagner & Johnson, 2011)). However, most did not control for the
range of factors that Halberda et al. (2008)) did, leaving the primary determinants
of early mathematics learning unresolved. In fact, a number of studies have found
that the relationship between estimation acuity and math achievement is highly
dependent on whether other number-related abilities and non-numeric cognitive
factors, such as inhibitory control, are controlled (Caviola et al., 2020; Fuhs &
McNeil, 2013} Holloway & Ansari, 2009 Kolkman et al., 2013; Lyons et al., [2014;
Price et al., |2012)). Studies that have controlled for other factors have largely
failed to find any association between mathematical achievement and estimation
acuity (Caviola et al.,[2020; Holloway & Ansari, 2009; Kolkman et al., 2013 Lyons
et al., 2014} Price et al., 2012) or highlighted the importance of additional factors
in addition to non-symbolic numerical acuity, like knowledge of the counting list
and domain-general cognitive factors (Mou et al., [2018]).

Others have reported causal evidence in support of this link from training
studies, with even brief training on a non-symbolic task seemingly improving
arithmetic abilities (DeWind & Brannon, 2012; Hyde et al., 2014; Park & Bran-
non, 2013, 2014; Wang et al., |2016; Wilson et al., 2009). The results from these
studies are mixed, potentially due to weaknesses in the training efficacy (Lind-

13
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skog & Winman, 2016)), and include a recent failure to replicate training effects
(Szkudlarek et al., 2021)). A thorough critique and review of the literature by
Sztics and Myers (2017) found that prior studies often had low power and high
false positive rates, uncritically cited other papers, and did not evaluate strong
alternative hypotheses, concluding that “there is no conclusive evidence that spe-

cific ANS training improves symbolic arithmetic.”

1.2 Scope of this thesis

The literature on numerical cognition in general, and visual numerosity percep-
tion in particular, is quite substantial — and the psychophysics of numerosity
perception are accordingly well-characterized. However, there is still significant
ongoing debate about how to interpret the observed psychophysics and a basic
lack of clarity regarding the underlying mechanisms. There are, in addition, some
widely-held assumptions about the mechanisms supporting numerosity perception
that, on closer examination, are weakly supported or even untested. These include
the ideas that: 1) quantity estimation operates in parallel across an entire scene;
2) people have an intrinsic Weber fraction which is a static measure and reflective
of their intrinsic “number sense”; 3) perception of small quantities is always exact;
4) underestimation is driven by mis-calibration of one’s response scale; 5) a dis-
continuity in estimation error implies multiple mechanisms; 6) the approximate
number system itself, rather than lower-level perceptual uncertainty, accounts for
the psychophysics of estimation; and 7) numerosity must be represented as an
analog magnitude on a continuous scale because numerical discrimination follows
Weber’s law. This thesis contains experiments, models, and analyses that are cen-
tered on understanding the visual mechanisms supporting numerosity perception.
The findings presented here challenge some widely held assumptions, including
all of the ones listed above, and offer new ways of understanding some of the
most puzzling aspects of numerosity perception.

Chapter 2 examines the visual mechanisms of large-number estimation] We

4This work was published in PNAS, as Cheyette and Piantadosi (2019)), and can be found
at |https://www.pnas.org/content,/116,/36/17729.short.
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ask how people’s perception of numerosity changes over time and as a function
of what they view. We present data from an estimation task where participants’
visual fixations were recorded with an eye-tracker and test how participants’
visual attention mediates their estimates in a model-driven data analysis. We
find that perception of quantity is the result of a serial accumulation process
operating over saccades: as participants fixate on more objects, their quantity
estimates increase and the variance of their estimates decreases. This finding
contrasts with the standard picture of estimation as a static process, as embodied
in myriad feedforward neural network models of numerosity perception, and of
Weber fractions as a simple index of a person’s number sense.

Chapter 3 addresses the origins of small- and large-number psychophysics,
centering on the curious discontinuity in estimation error between four and five
objectsﬂ Using information-theoretic methods, we derive the optimal way to rep-
resent numerosity given their natural “need frequency” distribution, along with
an informational capacity limit. We show that differential patterns of errors for
large and small numbers (including exactness in the subitizing range and We-
ber’s law for high numbers), an underestimation bias in mean estimates, and
approximately Gaussian-shaped response distributions all arise from this opti-
mization. We present data from four numerical estimation tasks that support
key predictions of the model, such as a gradient shrinkage of the subitizing range
and concurrent decrease in precision of large number estimates as exposure time
is decreased or the color contrast of the objects is lowered.

Chapter 4 investigates whether number psychophysics arise from one or more
“number systems,” as is commonly believed, or if they have their origins in lower-
level perceptual processing E] We propose an adaptation of the model developed
in Chapter 3, which optimally represents objects in space (rather than quantities)
subject to an information capacity constraint. Quantities are only implicitly rep-
resented in this model, unlike in the direct optimization of numerosity perception
in Chapter 3. However, we show that many of the important psychophysical phe-

5This work was published in Nature Human Behaviour, as Cheyette and Piantadosi (2020),
and can be found at https://www.nature.com/articles/s41562-020-00946-0.

SA paper containing an early version of this work won the modeling prize in Perception
and Action at the Cognitive Science Conference, where it was published in the proceedings as
Cheyette et al. (2021), and can be found at |https://escholarship.org/uc/item/9hk7s32c.
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nomena associated with numerical cognition — including subitizing and Weber’s
law — can be derived as downstream consequences. We report the results of
two experiments — a non-numerical spatial memory task and a numerical esti-
mation task — which show that participants’ beliefs about numerosity are con-
strained and ultimately determined by their ability to locate and track objects,
consistent with predictions of the model. This work casts doubt on prominent
theories regarding the role of domain-specific number systems in determining the
psychophysics of estimation and suggests a re-interpretation of the notion that

number itself is a primary perceptual attribute.
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The visual mechanisms of
numerical estimation

2.1 Introduction

From infancy, humans are able to estimate and compare quantities (e.g. Dehaene,
2011; Hyde et al., |[2010; McCrink & Wynn, [2007; Xu & Spelke, [2000), an ability
shared with our close and distant evolutionary relatives (e.g. Cantlon, 2012; Meck
& Church, 1983 Yang & Chiao, 2016). There is ongoing debate over whether and
how innate numerical abilities underpin the development of symbolic mathemat-
ical reasoning in humans (Dehaene, 2011; Feigenson et al., [2004; Halberda et al.,
2008; Starr et al., 2017)); however, the defining feature of innate numerical estima-
tion is that it is inezract, providing approximate representations of numerosities
which are likely useful in a variety of evolutionary contexts (e.g. Cantlon, [2012;
Gross et al., 2009; Piantadosi & Cantlon, 2017; Yang & Chiao, |2016|). The preci-
sion of numerical estimation and discrimination is often quantified in terms of a
Weber fraction, w, which is a real number denoting how the noise in a represen-
tation scales with numerosity. Specifically, one popular psychophysical model of
estimation assumes that a number n is represented by a Gaussian with mean n
and standard deviation w - n, so that a lower w implies a higher fidelity system.

The mechanisms supporting innate numerical estimation are often contrasted
with other mechanisms for computing numerosity, such as counting and subitiz-
ing (Anobile et al., 2014; Burr et al., 2010; Revkin et al., 2008). Counting, for
instance, is dependent on intentional, serial enumeration of a set; approximate

estimation, in contrast, is often viewed as parallel, rapid, and automatic. This
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view is supported by response times, where counting takes around 300ms per enu-
merated item but approximate number computations can take as little as 16ms
independent of the number of objects (Inglis & Gilmore, [2013). Additionally,
researchers have identified populations of neurons that respond similarly for se-
quentially and simultaneously-presented numerosities in monkeys (Nieder et al.,
2006)), which has been taken as evidence that approximate number representa-
tions are not the result of sequential processing.

However, recent evidence has muddied the simple picture of numerical esti-
mation. Several studies have shown that individuals’ Weber fractions are highly
task-dependent, differing between estimation and discrimination tasks (e.g. Guil-
laume & Gevers, 2016; Price et al., 2012). In fact, Weber fractions have poor re-
test reliability even when measured using the same task (Inglis & Gilmore, [2014]).
Numerical estimates have also been found to be influenced by non-numerical fea-
tures of stimuli, such as the degree of clustering in a scene (Im et al., [2016]).
Finally, the precision of numerical estimates is known to improve as stimuli are
presented for a longer duration (Inglis & Gilmore, 2013)), suggesting that estima-
tion may involve some type of temporal process.

Despite this, prior computational models of estimation have built speed and
parallelism into their architecture. For instance, many of the dominant mod-
els of the so-called “approximate number system” (ANS) are feedforward neural
network models where input is processed in parallel and instantaneously (e.g.
Dehaene & Changeux, 1993} Stoianov & Zorzi, 2012} Testolin, Dolfi, et al., [2020;
Verguts & Fias, 2004; Zorzi & Testolin, [2018)). The objective of the present study
is to critically evaluate the simple picture of numerical estimation as a rapid and
entirely parallel process. In particular, we aim to capture the possible sequen-
tial mechanisms involved in numerical estimation using behavioral experiments
and model-driven analysis. We present a new model and behavioral data from
two experiments that challenge the standard parallel perception theory. Our re-
sults lend support instead to an account of estimation that involves sequential
integration across visual fixations.

We ran estimation (Experiment 1) and discrimination (Experiment 2) tasks
in which participants made non-symbolic numerosity judgments at different ex-
posure durations. Critically, we collected visual fixation data using an eye-tracker
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so that we could measure how participants’ ANS estimation was influenced by
their path of visual fixations. We show that ANS estimates are the result of
a serial accumulation process (Gallistel & Gelman, 2000), such that estimates
increase as a function of foveation. We present an analysis that quantifies the
contribution of foveal, peripheral, and multiply-fixated dots in an array which
supports this interpretation. Our results suggest that individual differences in
estimation acuity may reflect differences in cognitive processes that are not di-
rectly related to number, including attention and visual processing speed. This
dependence on non-numerical factors may explain why studies that train people’s
ANS yield mixed results in transferring to mathematical knowledge (Hyde et al.,
2014; Lindskog & Winman, 2016; Park et al., 2016; Park & Brannon, 2013).

2.2 Experiment 1

Since the visual mechanisms supporting the ANS have not been explored in de-
tail, we first used the simplest paradigm possible in order to understand ANS
estimation. Figure illustrates the sequence of displays shown on each trial.
After viewing a fixation cross, participants were shown an array of randomly
placed dots on a screen which were noise-masked after a short time. They were
then prompted to enter an estimate in Arabic numerals. Subjects were not given
feedback and thus had no push to re-calibrate their response scale.

Methods

Participants

27 adult subjects (15 female, 12 male) from the University of Rochester commu-
nity were recruited to participate in the task. The participants’ ages ranged from
18-29 (M = 21.4).

Materials

The screen subtended approximately 38° of participants’ visual field left-to-right
and 26° top-to-bottom. The eye-tracker was a Tobii T60XL model, providing a
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1. Center fixation (1500 ms) 2. Dots appear (100 - 3000 ms)
e T,

3. Noise mask (500 ms) 4. Enter guess (unlimited time)
(e T —"

How many dots did you see?

)
[—_ﬂ

Figure 2.1: Each of the four panels represents one stage of a trial in the estimation task in their
order. Panel 1: A fixation cross appears for 1500 milliseconds. Panel 2: The fixation cross is
removed and dots appear on the screen for between 100 milliseconds and 3 seconds depending
on the condition. Panel 3: The display is masked by noise for 500 milliseconds. Panel 4: A
prompt appears asking for an estimate of the number of dots shown.

readout of 60 samples per second. We used built-in Tobii software to calibrate
participants to the eye-tracker. The computer screen was 24 inches, with an
aspect ratio of 16:10 and screen resolution of 1920x1200 pixels. Each dot had a
radius of 10 pixels. The density of the dots in the images ranged from 0.01 —
0.07 dots/deg?. The dots were placed on the screen at random locations, only
constrained to be non-overlapping. Participants entered their numerical estimates
using a keyboard attached to the computer. The experiment was designed using
the Python library Kelpy (Piantadosi, 2012).

Design

The experiment consisted of 64 total trials, with four blocks of 16 trials each,
in which participants viewed arrays of dots and estimated their quantity. Each
16-trial block contained one of the four different time conditions each subject
underwent: 100ms, 333ms, 1000ms, and 3000ms (together comprising all 64
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trials); the order of the blocks was randomized across participants. The number
of dots displayed on each trial varied between 10 and 90 dots, inclusive. To
determine the numerosities shown to a given subject, 16 numbers were chosen
randomly from within that range. The same 16 numbers were shown to the
participant in each 4 time conditions, with presentation order randomized across
the conditions. The median range size across participants was 71 (minimum 54,
maximum 79). The median lowest number shown was 14 and the median highest
number shown was 86.

Procedure

All study procedures were approved by the University of Rochester IRB. After
providing consent, participants were placed directly in front of a computer, with
the eye-tracker mounted on top. The screen sat on an adjustable desk, which
was vertically re-aligned for each participant to ensure that that the center of
the screen was level with their eyes. The participants were fixed to a distance
such that their eyes were 26 inches away from the screen, which was ensured by
measurement with a yardstick. On each trial, dots were displayed, followed by a
noise mask. Subjects then typed their responses into a text box using a keyboard
and pressed the enter key to move onto the next trial.

Results

Replication of basic number psychophysics

Figure shows how the mean estimate (y-axis) varied as a function of the
quantity displayed (x-axis), collapsing over all time conditions. There are two as-
pects of this graph worth highlighting: first, mean estimates vary approximately
linearly as a function of quantity, exactly as should be found in Weber models of
the number system. Second, this shows a strong tendency to increasingly under-
estimate larger numbers, as shown by the fact that the slope of the line is less
than 1, which would have corresponded to perfectly veridical estimation (assum-
ing an intercept of 0). Both effects have been found robustly in the literature
previously (e.g. Izard & Dehaene, 2008)). Figure shows that Experiment 1
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Figure 2.2: Panel (a): Estimates as a function of the number of dots presented, collapsing
across time conditions. Points are binned means, with errors representing bootstrapped 95%
confidence interval. Panel (b): The standard deviation of participant’s estimates as a function
of the number of dots displayed, collapsing across time conditions. Panel (c): Participant
(black) and group-level (blue) slopes in each time condition of the estimation task are shown.
Slopes represent the way the mean estimate scales as a function of quantity shown. Panel
(d): Participant (black) and group-level (red) Weber fractions in each time condition of the
estimation task are shown.
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replicates the second traditional property of ANS estimation: scalar variability,

wherein the error in estimation increases linearly in magnitude.

More time improves estimation mean and variance

To evaluate whether timing influenced participants’ ANS, we ran a hierarchical
regression to estimate the effect of time on both the mean estimate and We-
ber fraction, including participant- and group-level regression effects fit jointly.
The model assumes that each individual’s mean estimate and standard deviation
about that estimate vary linearly as a function of the quantity displayed and loga-
rithmically as a function of time. We will call participants’ baseline (independent
of time) slopes and Weber fractions [y and wp; we will denote time t; and we
will call the effect of time on slopes §; and Weber fractions w;. In order to keep
slopes and Weber fractions positive, we assume an exponential linking function
between slope and the predictors. Specifically, Equations and show how
the slope and Weber fractions for each participant are calculated:

8= eBotBi-log(t) (2.1)
w = ewotwelog(t) (2.2)

Then, each participant’s mean estimate is drawn from a Gaussian centered around
B - n with standard deviation w - g - n.

Figure shows the mean slope and Figure shows the mean Weber frac-
tion in each time condition extracted from this model. The group-level means are
shown in blue and each participant is shown by a line in black. If participants’
estimates were unbiased (e.g veridical estimation as opposed to under-estimation)
then the group mean slopes would be 1 (black dotted line) and if time did not
have an effect, the group mean slopes and Weber fractions (y-axis) would remain
constant across time (z-axis). In contrast, Figure shows that subjects consis-
tently underestimate with slopes less than 1, but that this underestimation effect
decreases with increasing time. Participants’ average slope increases by about
17% (0.71 to 0.83) from the shortest to the longest time condition. This is what
would be expected by quantity accumulation over time: more time increases re-

ported quantities. Additionally, their average Weber fraction decreases by about
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21% (0.28 to 0.22). Correspondingly, Figure shows that Weber fractions

improve (decrease) with more time.

Var | Value | 2.5% | 97.5%
B | 2024 [-028 | -0.19
o 0.05 0.03 0.09
Wo -1.42 -1.59 -1.21
w, | 011 | -0.12 | -0.09

Table 2.1: Group-level regression weights and their 95% credible intervals for each condition.
For the mean slope, the inferred weights include the intercept (fp), the effect of time (5;). For
Weber fractions, the inferred values are analogous, with the intercept (wy), the effect of time

(wt).

Table provides the inferred group-level regression weights and the uncer-
tainty of the estimate. The fact that the intercept is negative (5y = —0.24;CI =
[—0.28,—0.19]) indicates a baseline tendency to underestimate. Most signifi-
cantly, the effect of time on both mean slopes and Weber fractions is signifi-
cantly different than 0: time increases the group mean slope (5, = 0.05; C1 =
0.03,0.09] ] and it decreases the group mean Weber fraction (w; = —0.11;
CI = [-0.12,—0.09]). Participants’ average slope increases by about 17% (0.71
to 0.83) from the shortest to the longest time condition; and their average Weber
fraction decreases by about 21% (0.28 to 0.22).

Foveation, not time, is what matters for estimation

If ANS estimation is driven by accumulation of quantity across saccades, we
should first expect that mean estimates increase with foveation. We should also
expect that time has no effect when jointly considering foveation — i.e., that time
simply allows for more saccades and nothing more. To evaluate this, we summed
the number of dots that fell within 5° (often called the “para-foveal region”) of
the center of participants’ fixation paths for more than 50ms on a triall] We

denote the dots that are seen for at least this amount of time as “foveated.”

LCT here indicates the credible interval, not the confidence interval.
2We also tested 16ms, 100ms as possible thresholds; and 2° and 10° as possible visual
degrees thresholds. These differences did not affect the qualitative pattern of results.
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Figure 2.3: Example fixation paths of one subject in the 3-second time condition, with each
panel representing a single trial. The points represent the dots displayed on their screen, where
filled dots represent the ones that were foveated. At the bottom of each panel, a label N/F/E
shows how many dots were shown (N), how many were foveated (F) and what quantity the
participant actually estimated (E).

Figure provides four example trials, depicting a participant’s gaze path
across the screen while the stimulus is being shown. The filled points represent
“foveated” dots and the unfilled points represent those that were notﬂ At the
bottom of each display, the number of dots shown, the number foveated, and the
participant’s estimate is shown. We provide a more rigorous formalization and
test of this idea in Section 2.4l

Figure shows the percent of dots that are foveated for each time condition.
As should be expected, more dots are foveated with longer exposure duration.
The average proportion of dots foveated more than triples from the shortest to
longest time condition (18% to 64%). Consistent with the hypothesis that effects

3This is for illustrative purposes only — stimuli were entirely static during a trial.
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Figure 2.4: Panel (a): The proportion of dots foveated (y-axis) as a function of time (x-axis),
at the group-level (red) and for each participant (black). Panel (b): The percent deviation of
estimates from the true number of dots (y-axis) as a function of the percent of dots foveated
(x-axis). Each time condition is grouped by color. Panel (¢): The slope of participants’ mean
estimates (y-axis) as a function of the percent of dots foveated (x-axis). Panel (d): Weber
fractions (y-axis) as a function of the percent of dots foveated.
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of time are due to accumulation of foveated dots, the effects of time on estimation
disappear when the effect proportion of dots foveated is jointly taken into account.
Figure shows the percent deviation of estimates from the true quantity as a
function of dots foveated, colored by time. That the lines overlap suggests that
there is no effect of time when both foveation and time are taken into account.

To quantify whether the effect of time was explained by eye movement pat-
terns, we ran another Bayesian regression that was identical to the one reported
above, with the addition of random variables for the effect of the proportion of
dots foveated on the mean and variance of each participant’s estimate. That is,
we used the same terms as in equations and [2.2], but added terms 5 and w;
to the way slope and Weber fraction are computed — each term is multiplied by
s, representing the proportion of dots foveated. Equations and show the
calculation of # and w in full.

8= ePotBe-log(t)+Ps-s (2.3)

w = ew0+wt-log(t)+ws~s (24)

Table shows the results of this analysis in full. Two findings are worth
highlighting. First, the proportion of dots foveated significantly affects the mean
and variance of participants’ estimates. Second, time no longer has a significant
effect on either. The effect of foveation on the mean can be seen in Figure [2.4k:
as the proportion of dots foveated increases, so do participants’ mean estimatesﬁ
Congruently, the regression shows that the group-level mean (, is significantly
above 0 (8s; = 0.43;CI = [0.26,0.59]). There is also an effect of foveation on
the variance of estimates. Figure shows that as foveation increases, Weber
fractions tend to decrease. The group-level regression revealed that the effect of
foveation is significant (ws = —0.67,CI = [—0.95,—0.27]). Finally, consistent
with our hypothesis, the effects of time were no longer significantly different
than 0 when accounting for the visual samples. The lack of a time effect on
the mean (when conditioning on percent of dots foveated) can be seen clearly
in Figure 2.4b which shows the average deviation as a function of dots foveated

4Note that the lines are non-linear in Figures and because the y-axis measures
are collapsed over other predictors.
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and colored by time: if there were a significant effect of time over-and-above the
differences driven by fixations, the regression lines for each time condition would

be non-overlapping.

Var | Value | 2.5% | 97.5%
5o -0.74 | -0.87 -0.65
By -0.00 | -0.02 0.03
3. | 043 | 026 | 0.59
wWo -0.98 | -0.74 -1.21
Wy 0.05 -0.03 0.12
Wy -0.67 | -0.95 -0.27

Table 2.2: Group-level regression weights and their 95% confidence intervals for each condition.
For the mean slope, the inferred weights include the intercept (8y), the effect of time (5:),
and the effect of the percent of dots seen (fs). For Weber fractions, the inferred values are
analogous, with the intercept (wg), the effect of time (w;), and the effect of the percent of dots
seen (ws).

Thus, these results provide an alternative account of prior findings of (i) under-
estimation and (ii) effects of time. Indeed, both are unified into an account where
serial accumulation of foveated dots drives numerical quantity estimates. This
finding calls into question the construct validity of Weber ratios as a measure of
an individual’s innate “number sense,” since numerical estimates depend on how

many dots happen to be foveated, a capacity which is non-numerical.

Exploratory analyses

Foveation analysis

It will be important for future research to better determine how saccades are
programmed, since this may explain some influence of the properties of visual
displays on numerical estimation (Burr & Ross, [2008; Dakin et al., [2011)), includ-
ing biases introduced by object clustering (Im et al., 2016|). Research has shown
that a pre-saccadic selection process takes place over competing regions in the
visual periphery (Fischer & Weber, 1993). Indeed, in our tasks, there is likely a

non-random nature to participants’ saccades — this is suggested by the fixation
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paths in Figure[2.3] After starting at center fixation, participants tended to fixate
regions of the screen that had higher density; and their gaze remained in higher
density regions for longer. We computed the mean x- and y- coordinates of the dis-
played dots for each trial in the 3-second time condition (where participants could
saccade freely). We found that the mean x-coordinate of the dots significantly
correlated with the participant’s mean x-coordinate gaze (r = 0.27,p < 0.001);
this is likewise true for the y-coordinates (r = 0.34,p < 0.001). This is consistent
with previous results showing that people tend to look towards the greater of two
quantities first and for longer in a quantity discrimination task (Odic & Halberda,
2015).

Analysis using cortical magnification factor

Time
75% 0.1
50% : 2.33
o 25% 3
thJ 0% = = = s s s s s = = s = s ¢ s ® = = _;moW'®s = &=
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Figure 2.5: The percent deviation of estimates from the true number of dots (y-axis) as a
function of the percent of the average cortical magnification (x-axis) of each dot displayed in a
trial. Each time condition is grouped by color.

In our primary analysis, we considered a dot “foveated” if it fell within a 5°
window around someone’s gaze for more than 50ms. While this measure has the
benefit of simplicity, the exact values are somewhat arbitrary. A somewhat more
complicated, but less ad hoc approach, would be to use the cortical magnification
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factor, which is known to predict visual acuity (e.g. Cowey & Rolls, 1974). The
cortical magnification factor (CMF) is inversely proportional to the eccentricity
of an object from someone’s gaze. For each trial, we calculated the CMF for
each dot based on the minimum distance between each dot and the participants’
gaze (in terms of visual degrees). We took the mean CMF over all dots and
used that as a predictor of the mean and variance of estimates. The results
revealed no substantial differences between this metric and the one used in the
main text. Figure shows, for example, the relationship between the CMF and
participants’ errors, which follows the same qualitative pattern as Figure 2.4b.

Analysis using convex hull

There is an ongoing debate about the importance of continuous variables such as
area, density, and convex hull on number estimation (e.g. Ferrigno et al., 2017}
Gebuis & Reynvoet, 2012a) 2012b; Starr et al., [2017). Our experimental design
was not suited to testing whether people were using these types of heuristics
(nor was it intended to). In particular, total area was perfectly correlated with
number since the size of the dots was constant across trials. Convex hull was also
strongly correlated with the total number of dots displayed, however there was
enough random variation to allow us to test its influence on numerical estimation.
Given the dependence of estimates on eye movements, one might expect greater
underestimation from displays with greater convex hull. To evaluate this, we ran
a regression to predict percent estimation error (signed, so not absolute error)
from the number of dots shown, the proportion of dots foveated, and the convex
hull of the dots. There was a significant effect of the number of dots on estimation
error, such that participants’ bias to under-estimate increased with the number
of dots (f = —0.24;t = —6.43; p < 0.001), even controlling for convex hull. The
effect of convex hull trended in the same direction, but 1/4th the size and was
only marginally significant (5 = —0.06;¢ = —1.74;p = 0.08). Consistent with
previous analyses, foveating a greater proportion of the dots has the opposite
effect, pushing estimates higher (5 = 0.14;¢ = 6.14;p < 0.001). These results
therefore indicate that there are strong effects of number over and above convex
hull, and weak-to-nonexistent effects of convex hull controlling for number and

30



THE VISUAL MECHANISMS OF ESTIMATION

foveation. Interestingly, the influence of convex hull (to the extent it is present)
is in the opposite direction as has been found previously (Gebuis & Reynvoet,
2012b)).

2.3 Experiment 2

Because there is evidence that Weber fractions may differ between estimation and
discrimination tasks (Guillaume & Gevers, 2016), it is important to replicate these
patterns in a discrimination task. We ran a second experiment with the same
participants as Experiment 1, again recording participants’ gaze. Participants
saw two stimuli of dot arrays (as in Figure sequentially and were then asked
to indicate which had a greater quantity. The properties of the stimuli were
identical to those in Experiment 1. We manipulated timing in four conditions,
which determined whether the first or second array of dots was visible for longer.
Specifically, we crossed long and short durations to give presentation times of
100:100ms, 1000:100ms, 100:1000ms, and 1000:1000ms for the two displays. We
predicted that, if ANS estimation relied on foveal accumulation in this task as
well, timing would bias participants towards whichever display was presented for
longer.

Results
Replication of basic psychophysics

Participants’ responses as a function of ratio collapsed across time conditions can
be seen in Figures and [2.6b. Figure shows the proportion of partici-
pants who responded that the second display had more dots than the first as a
function of the ratio of dots in the second display relative to the first. The pro-
portion participants who responded that the second display was more numerous
increased monotonically with the ratio. Participants reported that the second
display was more numerous on average (56% of the time), possibly suggesting
an effect of memory. This is consistent with studies finding effects of recency in
non-symbolic magnitude comparison (Van den Berg et al., 2017). Figure
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shows participants’ accuracy as a function of the absolute magnitude ratio, or
the minimum magnitude over the maximum. Participants were able to discrim-
inate ratios of 5 : 6 with roughly 75% accuracy. This again replicates known

psychophysics of large-number discrimination.

Effects of time

Figure shows response curves for the critical conditions where the first and
second displays were shown for different amounts of time but the total presenta-
tion time is controlled (Long-Short versus Short-Long). The difference between
the curves indicates a bias to choose the second display when it was long com-
pared to when it was short, as predicted. Figure shows response curves
for the conditions where the first and second displays are shown for the same
amount of time but overall presentation time differs (Short-Short versus Long-
Long). The observed difference between the response curves in Figure indi-
cates that responses in the Long-Long condition were more accurate than those in
the Short-Short condition. Collapsing across ratios, participants chose the second
display 62% of the time in the Short-Long condition and 45% of the time in the
Long-Short condition, as predicted. Participants chose the second display at in-
termediate (though above-chance) rates in the Short-Short (56%) and Long-Long
(57%) conditions.

Var | Value | 2.5% | 97.5%
Bo | -1.22 [ -1.53 | -0.99
By 0.05 0.04 0.07
Wo -1.73 | -1.14 -2.31
Wy -0.07 | -0.12 -0.02

Table 2.3: Group-level regression weights and their 95% credible intervals for each condi-
tion in the discrimination task using only time as a predictor for the mean and variance.
For the mean slope, the inferred weights include the intercept (fy), the effect of time
(B¢). For Weber fractions, the inferred values are analogous, with the intercept (wy),
the effect of time (wy).
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Figure 2.6: Panel (a): The probability that participants responded that the second display had
more dots as a function of the ratio Ny /N2, where N7 and Ny are the number of dots in the first
and second display, respectively, collapsed across conditions. The fit curve (as well as all other
fits in this display) is from a probit regression. Panel (b): Accuracy as a function of the absolute
ratio (Min(N1, N2)/Maxz (N7, N3). Panel (c): The probability participants responded that the
second display had more dots in the Long-Short (blue) and Short-Long (green) conditions as
a function of ratio. Panel (d): Accuracy as a function of the absolute ratio in the Long-Long
(Yellow) and Short-Short (Red) conditions.
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Recency bias cannot explain effects of time

An alternative account of our finding that people respond that the second stimulus
is more numerous than the first in the Short-Long condition than the Long-Short
condition is that it is a mere effect of recency (Van den Berg et al., [2017). We can
test this possibility in our design by comparing responses across the conditions
where the second stimulus’ duration is held constant. That is, comparing re-
sponses in the Short-Long to the Long-Long condition; and comparing responses
in the Long-Short condition to the Short-Short condition. In both cases, recency
could not explain differences in perceived numerosity. If longer duration does, in
fact, increase perceived numerosity, then participants should rate the first stim-
ulus in the Short-Long as less numerous than the second relative to the first
stimulus in the Long-Long condition.

We ran two logistic regressions to determine the effect of increasing the first
stimulus’ duration. The first regression was run on only the conditions where the
second stimulus was 0.1s (short) and the second regression was run on only the
conditions where the second stimulus was 1s (long). The ratio of the numerosities
presented was also entered as a predictor. Responding that the first stimulus was
greater numerosity than the second was coded as 0 and responding that the
second was greater than the first was coded as 1.

The results of this analysis revealed effects of stimulus duration in the pre-
dicted direction. The first regression — looking at the conditions when the second
stimulus was short — showed a significant effect of the first stimulus’ duration
(B =—0.32; z=—4.04; p < 0.001), such that increasing the presentation dura-
tion of the first stimulus increased participants’ likelihood of reporting that the
first stimulus was of greater numerosity. Likewise, the same effect was revealed in
the second regression (f = —0.19; z = —2.22 p = 0.03), looking at the conditions
when the second stimulus was long. Taken together, these findings effectively rule
out the possibility that a recency bias explains the patterns in our data; instead,

longer duration of presentation itself seems to increase perceived numerosity.
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Effects of foveation

To determine whether participants’ visual samples mediate the observed effect of
time, we ran a regression analogous to the one used for the estimation task, but
predicting the probability of guessing the second array given the participant’s
mean slope (), mean Weber fraction (wy), and the effect of the duration of the
stimuli on the mean (f3;) and the Weber fraction (w). If ny is the number of dots
in the first display and n, is the number of dots in the second display, then the

(n1—n2)
(n3+n3)

second stimulus, then the probability a participant chooses the second screen is
given below in Equation [2.5]

ratio is defined as . If t; and ty are the display times of the first and

1 ( ngy - ePotBi-log(ta) _ ny - ePotBi-log(t1) ) (2‘5)

(choose 2) Lyl
croose = — —€r
p 2 2 \/éewo-i—wrlog(tl)+wt'log(t2) (n% + TL%)

Var | Value | 2.5% | 97.5%
B | 020 | 094 | 041
By -0.01 | -0.07 0.03
B 2.93 0.24 4.01
wo -0.96 | -0.61 -1.36
Wy -0.07 | -0.14 -0.02
w, | -0.14 | -021 | -0.05

Table 2.4: Group-level regression weights and their 95% credible intervals for each con-
dition in the discrimination task. For the mean slope, the inferred weights include the
intercept (fp), the effect of time (f;), and the effect of the percent of dots seen (fs).
For Weber fractions, the inferred values are analogous, with the intercept (wg), the
effect of time (w;), and the effect of the percent of dots seen (wy).

The results of the regression are shown in Table 2.4 Most importantly, the
effect of the percent of dots foveated on the mean is positive (5, = 2.93;CI =
[0.24,4.01]); and the effect on the Weber fraction is negative (ws, = —0.14; CI =
[—0.21, —0.05]). The effect of time on the slope is negligible (8, = —0.01;CI =
[—0.07,0.03]); but there is still an effect of time on the Weber fraction (w; =
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—0.07;CI = [-0.14,—-0.02]), indicating that the percent of dots foveated proba-

bly does not entirely mediate the effect of time on accuracy.

2.4 The mechanics of ANS estimation

We next developed a statistical model that allowed us to use people’s behavioral
data in order to quantify how different components of visual input contributed to
numerical estimates. This model was parameterized in a way that allowed us to
test a variety of a priori plausible hypotheses about how ANS accumulation might
relate to visual behavior. Primarily, this allowed us to test separable contributions
of several behaviorally-measured factors to an estimated quantity p. The weight
of each factor was inferred by the model. Figure shows all of these terms
in the full equation for u, with the fit parameters in color and the behaviorally-
measured variables on each trial in black.

The model assumed that there were five components that contributed to .
First, the number of dots foveated (Njoeq) and the number of dots not foveated
(Nperipherar), Which were each weighted by their corresponding regression param-
eters (Brovear and Bperipherar). In addition, we tested the contribution of dots
that were fixated more than once after first saccading away (Ngoupe Weighted by
the parameter Sioupe). Finally, the proportion of area that has been foveated
(Afoveatea)—which we measured as percent of the screen within the 5° window
used above—and the area not foveated (Aperipherar) Were allowed as scaling factors.

The full model is given below. The subscripts for each variable denote whether
that variable applies to foveal (F) or peripheral (P) dots; and whether that vari-
able is at the group-level (G) or at the subject-level (S). All variables that have
only one subscript apply to both foveal and peripheral dots, so the subscript
denotes only whether it is a group- or subject-level variable. The mean of a par-
ticipant’s estimate, u, is a function of five quantities: the number of foveated
(Ng) and peripheral (Np) dots; the proportion of screen area foveated (Ag) and
peripheral (Ap); and the total number of times all the dots were re-fixated (Np).
Each of these parameters has a corresponding inferred weight in the regression.
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Bra, Bra, Bna, Bp.a ~ N(0,100)
OrG, OPG, ON.GyODG ~ |N(0,100)]
Yra, vpc ~ Beta(l,1)

Ag ~ Exp(1)

Brs ~ N(Bra, o)
Bps ~N
Bns ~N
Bp,s ~N(Bpc,05c)

ﬁP,G'a 0123,G)

6N,G7O-]2V,G)

(
(
(
(

Trs ~ Beta(Mrg, A1 —7rc))
Vs ~ Beta(Mpa, M1 —7pc))

ps =1+ Bps-Np) (Brs - Np-(1/Ap)™5) + PBps-Np-(1/Ap)'Ps

os = Bn,s - s
ﬁ NN(MS7U§)

To fit this model to behavioral data, we again used a hierarchical Bayesian
model which allowed partial pooling of parameters. Examination of the inferred
parameters allows us to characterize the mechanisms of ANS estimation in three
critical ways: first, comparison of Bperipherar a0d Bropeqr Will show if the accumula-
tion mechanism relies more, less, or equally on foveal and peripherally observed
dots. This, in turn, tells us whether the ANS is primarily parallel or whether
foveated dots contribute more to the observed estimates. Second, examination of
Baoubie Will tell us whether participants “double count” dots that are re-foveated
(Baouble = 1) or not (Baounie =~ 0). This will answer a basic question about ANS

accumulation: is it based on mere retinal input or on a spatially-based picture
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of the world that is built up across saccades (e.g. Farah et al., |1988). Third, do
participants re-scale their input by the area they have foveated (Yfopeatea = 1) in
order to correct for their limited visual sample? Or, is estimation a more simple
accumulator (Yioveateda = 0) that does not take into account how much of the
scene has been viewed? Note that our formalization does not test whether area,
density, convex-hull or some other continuous quantity is the basis of numeri-
cal estimation (Anobile et al., 2014; Odic & Halberda, 2015; Starr et al., [2017).
Rather, this tests if the ANS relies preferentially on foveated objects and whether
it adjusts for the proportion of screen area that has been foveated.

Figure shows the inferred group-level and subject-level means for Bfopea
(x-axis) and Speripherar (y-axis). This shows that foveated dots contribute about
twice as much as peripheral dots to estimates. Moreover, the value of Bfopear 1S
approximately 1, meaning that people veridically count one foveated dot as one
more in their estimateﬂ Interestingly, however, the peripheral dots do provide a
non-zero contribution, explaining why ANS estimation is possible with very fast
presentation times, albeit with a lower precision (Inglis & Gilmore, 2013)). Fig-
ure shows that both vtopear a0d Yperipherar are near zero, indicating little area
re-normalization. This finding supports our primary claim that the estimation is
based on accumulation rather than inference using the density of dots observed
in part of the scene. Finally, B4oune is near 0 for all participants, indicating there
is almost no effect of seeing the same dot multiple times in the same display. This
would happen, for instance, if people build up a mental image of the dot array
that is fed to the accumulator.

Figure visualizes the relative contribution of each factor to mean esti-
mates (y-axis) across time conditions (x-axis), as inferred by the model. The
color of each bar corresponds to the factor it represents in Figure 2.7h. At 0.1
seconds, peripheral and foveated dots contribute roughly equal amounts to esti-
mates, accounting for the significant degree of underestimation given such a short
exposure. However, as the exposure time increases foveated dots contribute in-

creasing amounts to the estimate, such that peripheral dots barely play a role in

5This does not mean that they were actually counting, as the short display times precluded
that. Rather, it means that if all dots in a scene were foveated, estimates would be un-biased
in expectation, though not error-free.
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Figure 2.7: Panel (a): The mean estimate, u, given as a function of the number of dots
foveated, Nyovear; the number of dots not foveated, Nperipherar; the percent of screen area
foveated, Afoveqr; the percent of screen area not foveated, Aperipherar; and the number of dots
foveated more than once, Ngyoupe- Each of these has a corresponding parameter quantifying
its contribution to the estimate p. Panel (b): Parameters Bropear and Bperipheral capture the
foveal and peripheral contribution to the accumulated count. Panel (c): Parameters ysopeal
and Yperipheral capture the degree to which the accumulated count is normalized by the percent
of screen for area foveated (Ajopeqr) Or peripheral (Aperipherar). Panel (d): A visualization of
how each factor contributes to u over time. As exposure time increases, the average proportion
of dots foveated increases, leading to differences in the expected contribution of each factor to
the mean estimate.

estimation at 3 seconds. Re-scaling and double-counting play almost no role at

any amount of time. The important group-level parameters are given in Table[2.5]

2.5 Discussion

ANS estimation is typically thought to operate rapidly and in parallel. There is
evidence to support this view. For instance, people can discriminate quantities
at above-chance levels given only 16ms of exposure (Inglis & Gilmore, 2013).
Studies have also demonstrated that reaction times are roughly constant across

numerosities in humans and monkeys performing approximate numerical estima-
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Var Value | 2.5% | 97.5%
Broveal 0.88 | 0.79 0.96
Bperipheral | 0.47 | 0.36 0.55
Y foveal 0.11 | 0.04 0.18
Yoeripherat | 011 | 0.01 0.23
Baoubie 0.01 | 0.00 0.05

Table 2.5: Group-level regression weights and their 95% credible intervals for the effect
of dots foveated (Bfovear) and not foveated (Bperipherar) On the mean estimate; for the
effect of re-foveating on the mean (Bgoupe) and for the foveal re-scaling factor (7vtoveat)
and the peripheral re-scaling factor (Yperipherat)-

tion and discrimination tasks Mandler and Shebo, [1982; Nieder et al., 2002. The
latency of number-sensitive neurons tends to be independent of numerosity in
monkeys performing numerical discrimination tasks as well (Nieder et al., 2006}
Nieder et al., 2002). However, the results and analysis we present support an al-
ternative theory: that ANS estimation relies on a serial accumulation mechanism
that integrates information—either numerical quantity itself or lower-level visual
content—across eye fixations.

Our experiments first replicate two prior behavioral findings: an underestima-
tion bias (Izard & Dehaene, 2008) and a dependence of ANS acuity on time (Inglis
& Gilmore, 2013]). We then showed that the underestimation bias decreases with
time, such that participants estimated higher numbers as the stimulus’ duration
increased. Such an influence of time is predicted by an accumulation model,
but not by prior accounts that attribute underestimation to miscalibration of
response scales (Izard & Dehaene, 2008). Finally, we showed that the effect of
time is almost entirely mediated by visual fixations, suggesting that time matters
because with more time, subjects are able to fixate more of the display. Freely
fit parameters from our model indicate that foveated points contribute twice as
much to a numerical estimate as peripheral ones. This analysis also revealed
that the accumulation likely does not adjust for area nor does it double-count
re-fixated dots. Together, these results suggest that a primarily foveal, serial ac-
cumulation mechanism is at the heart of ANS estimation rather than the rapid,

parallel mechanism previously proposed and commonly imagined.
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A serial accumulator is similar to ANS models that perform temporal inte-
gration of, for instance, sequences of clicks (Meck & Church, |1983), as well as
an approximate version of counting logic observed in sequential presentation of
quantities to primates (Cantlon et al., [2015). Thus, visual ANS estimation may
share resources and processes with non-visual quantity estimation, as experiments
on cross-modal matching would suggest (Starkey et al., 1990)). Specifically, vi-
sual fixations may be a proxy for attention, which would be consistent with the
finding that the numerosity of auditory and tactile stimuli are increasingly under-
estimated as their presentation rate increases (Forsyth & Chapanis, 1958; Lechelt,
1975). Still, it is surprising to see such serial effects in visual displays since vi-
sion could in principle support parallel processes (as in, e.g., “pop out” (A. M.
Treisman & Gelade, 1980))).

We note that our proposed accumulation mechanism is interestingly different
from a statistical sampler which has been used, for example, to model incremental
changes-of-mind in ANS finger pointing tasks (Alonso-Diaz et al., 2018} Dotan &
Dehaene, 2016]). Those models assumed that subjects accumulated samples from
a Gaussian in order to estimate a mean number of dots, and used this informa-
tion in an optimal motor plan. However, they did not tie the samples to visual
fixations, which appear to be the key mechanism at play in our experiments.
The finding that mean estimates increased with greater foveation — even for the
two participants who tended to overestimate — is not necessarily expected from
a sampling account. In addition, many natural ways of formalizing sampling
accounts would adjust for the amount of area sampled to correct the underesti-
mation bias, but our analysis shows that people are probably not adjusting for
area.

One limitation of the current work is that our results do not address the speci-
ficity of the accumulation mechanism. In particular, our results are consistent
with at least two possibilities: either numerical quantities themselves are being
integrated across visual fixations; or people build up an increasingly precise im-
age of the visual scene as they saccade, from which numerical information is later
extracted. In either case, our results do show that performance in ANS tasks is
largely determined by the serial component of this process — in particular how
many dots are foveated.
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Regardless of the ultimate mechanisms, our results raise an important method-
ological point for both basic cognitive research on the ANS and applied education
research which relies on it. In light of our findings it is difficult to interpret results
from studies that compare participants’ performance across ANS tasks which use
different display sizes or stimulus exposure durations (e.g. Guillaume & Gevers,
2016; Halberda & Feigenson, 2008; Revkin et al., 2008). More broadly, our re-
sults suggest that the nearly universal use of ANS tasks to index a “pure” sense
of number may be misguided. A full picture of ANS estimation will require inte-
grating aspects of visual cognition such as attention, occular-motor control, and
saccade selection in order to understand the cognitive mechanisms that translate

visual scenes into abstract numerosities.
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A shared functional origin
of subitizing and estimation

3.1 Introduction

People estimate small numerosities much more rapidly and accurately than large
numerosities (Jevons, 1871; Mandler & Shebo, |1982; Revkin et al., 2008), sug-
gesting that we posses two separate representational systems (Dehaene, 2011}
Feigenson et al., [2004): a precise small number system, which allows for rapid
identification of quantities up to around four objects with little error (Feigenson
et al., 2004, Jevons, 1871; Kaufman et al., [1949; Mandler & Shebo, [1982; Revkin
et al., |2008)); and an imprecise large number system where the standard deviation
of estimates increases linearly with numerosity (Burr et al., 2010; Dehaene, [2011;
Gallistel & Gelman, |1992; Pica et al.,[2004; Xu & Spelke, 2000). This hallmark of
large number estimation is known as scalar variability, and can be found in many
species across the animal kingdom (Cantlon, 2012; Cantlon & Brannon, 2007;
Gallistel, [1990; McComb et al., [1994; Meck & Church, 1983} Piantadosi & Cant-
lon, 2017, Platt & Johnson, 1971} Uller et al., 2003; Xu & Spelke, 2000; Yang
& Chiao, 2016). However, the reason why two qualitatively different patterns
of representation would arise in evolution remains obscure. Here we show that
the distinct behavior on small and large numerosities is actually expected from a
single system which optimally represents quantity under a resource constraint.
Building on recent information-theoretic approaches to visual perception (Brady

et al., 2016; Brady & Tenenbaum, 2013; Sims, 2016; Sims et al.,[2012) and studies
showing the adaptation of perceptual systems to environmental statistics (Geisler,
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2011; Olshausen & Field, 1996| 2004; Simoncelli & Olshausen, [2001)), we assume
that the goal of a numerical processing system is to minimize estimation error.
We further assume that there is a time-dependent constraint on the numerical
system’s ability to process information. Under these assumptions, we present
a derivation that recovers the core properties of number psychophysics, includ-
ing (i) nearly exact representations for small sets (Burr et al., 2010; Choo &
Franconeri, 2014; Feigenson et al., 2004; Revkin et al., [2008); (ii) scalar vari-
ability in estimation for larger numbers (Dehaene, 2011; Xu & Spelke, 2000));
(iii) an underestimation bias (Izard & Dehaene, 2008; Mandler & Shebo, |1982))
that diminishes with exposure time (see Chapter 2); (iv) large number estimation
acuity that is modulated by time (Inglis & Gilmore, [2013)) and display contrast;
(v) a subitizing range that is moderated by time (Mandler & Shebo, |1982) and
contrast (Melcher & Piazza, [2011)); and (vi) roughly normally-shaped response
distributions for estimation (Nieder & Dehaene, [2009; Pica et al., 2004). Beyond
these general properties, we test the quantitative predictions of the model about
how subitizing range, estimation acuity, and response distribution shape should
change as a function of the amount of information perceptually available. Our
results show a close agreement between human participants and bounded-optimal
numerosity perception.

3.2 Model setup and assumptions

The consensus view among cognitive psychologists is that at least two different
systems support numerical cognition, giving rise to veridical representations of
small numerosities and approximate representations of large numerosities. How-
ever, an alternative possibility is that different performance characteristics on
large and small numbers is the result of a single psychophysical function which
itself reflects a trade-off between the benefits of veridical perception and the cost
of processing sensory input. To intuitively understand this alternative, note first
that most decisions which depend on numerosity involve only a small number of
objects. In fact, the “need probability” (Anderson & Schooler, [1991) of number
— how often a numerosity n is encountered and represented — robustly follows
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a P(n) < 1/n? law.
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Figure 3.1: The frequency that baboons encountered subgroups of each numerosity in the
wild, with a best-fitting power-law of n~1-%5. Figure from Piantadosi and Cantlon (2017), with
baboon troop data collected by Strandburg-Peshkin et al. (2015)).

Empirically, the need probability is reflected both in the frequency of number
words (Dehaene & Mehler, [1992; Piantadosi, 2016) and how often numerosities
are encountered and used for decision making in the wild (Piantadosi & Cant-
lon, [2017; Strandburg-Peshkin et al., [2015) (see Figure [3.1). This means, for
instance, that we should expect that organisms need to represent seven about
1/7% = 1/49th as often as they need to represent one. Efficient representational
systems will take advantage of this non-uniformity and be better at representing
the more frequently encountered numerosities. Second, universally in information
theory, rare events require more bits of information to represent or communicate
(Shannon, 1948; Stone, 2018)), meaning that high and low numbers will natu-
rally place differing information processing demands in virtue of their different
probabilities. Third, any organism will have a finite amount of information pro-
cessing capability. This is a physical necessity and also a consequence of limited
perceptual systems: the amount of internal precision reserved for representations
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should not in general exceed the amount of information provided by perception
(Gallistel, 2018).

Taken together, these facts mean that we should expect different behavior
from high and low numbers since they differ in probability; and moreover, we
might expect a relatively sharp behavioral discontinuity between them if we as-
sume a hard bound on information processing ability, with low numbers operating
below the bound and high numbers operating above (and indeed, what is consid-
ered “low” vs. “high” is determined by the information processing bound). We
formalize these intuitions by applying standard measures from information the-
ory and analytically computing the optimal representation given an information
processing bound. These standard assumptions give rise to the details of number
psychophysics as previously determined in behavioral experiments. As we show,
the representation that minimizes mean squared error subject to a bounded in-
formation capacity transitions from exactness to approximation above and below
the capacity bound, even though what is being optimized is a single objective
function, itself representing a single “system.”
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Figure 3.2: Response distributions for two possible forms of ) are shown, with probabilities
(y-axis) of estimates (x-axis) shown for numerosities 1-6 (colors). Panel (a) shows the form of
a precise estimation system and panel (b) shows the form of a scale variable estimation system.

Consider a psychophysical function () that maps from an observed quantity

to a subjective estimate. Specifically, let Q(k | n) give the probability that an
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observed numerosity n is represented internally with quantity £. Thus, maximally

precise, veridical representations have the form,

1, ifk=n
Qk | n) = . (3.1)
0, otherwise.
In general, any @) that puts high probability on k& close to n will have low error
rates. Models of large-number estimation typically assume that estimates are

drawn from a Gaussian, i.e.,
Q(k [ n) =N(k|n,w-n), (3.2)

for some constant w, corresponding to scalar variability (linear increase in the
standard deviation of @) with n). Response distributions for numerosities 1-6
under these two possible forms of ) are shown in Figure |3.2

In principle, many forms of ) are logically possible including, for example,
agents who precisely represent numbers in some intermediate range, or who fail
completely above a given cardinality. However, we will show that the optimal
@ transitions from exact solutions (as in Figure [3.2h) to scalar variability (as
in Figure [3.2b) under some basic assumptions. First, we assume that Q(k | n)
is chosen to minimize the expected squared error between an input n and its
representation k,

E[(n—k)?* =3 Pn) > Q| n)- (n— k) (3.3)

n

Here, P(n) denotes the need probability of number which follows a P(n) o 1/n?
power law. Note, however, that this particular power law is not necessary to
recover the key properties of the model — other need distributions exhibit similar
behavior (see Figure . Note that here we using P to denote the true need
frequency and @) to denote the organism’s beliefs.

If an organism had unlimited neural resources at their disposal, then the
optimal @ would be given in (4.3) — i.e., they would perfectly encode the nu-
merosity of every set. But neural resources are not unlimited. Just as scientists

do not usually attain measurements to more than a few digits of precision, an
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organism’s information processing systems cannot extract arbitrary amounts of
information from the world. We can formalize this constraint using a funda-
mental information-theoretic measure called Kullback-Leibler divergence (KL-
divergence) (Cover & Thomas, 2012). KL-divergence intuitively measures how
far one distribution differs from another in terms of bits of information. For
instance, two overlapping distributions will have small KL-divergence, and two
distributions that put most of their probability mass on different outcomes will
have high KL-divergence.

For our purposes, KL-divergence quantifies how many bits of information it
takes to represent the distribution Q(- | n) starting with the distribution Q(-), or
equivalently how much information processing an organism must do to change its
beliefs from Q() to Q(- | n)f} It is natural, therefore, to assume that organisms
with limited information processing ability will only be able to form Q(- | n) that
are boundedly far away from Q(-) as measured by KL-divergence. In general,
this bound should depend on the amount of time that an organism has to process
a stimulus since perceptual systems provide a limited bandwidth. Specifically,
we assume that perception extracts information linearly in time at rate R until
an overall capacity bound B is reached. Using Dk [Q(-|n) || Q(-)] to denote
the KL-divergence between () and any hypothetical Q(- | n), the definition of
KL-divergence therefore yields the bound,

D [Q(- ) | Q(-)] =§@<k'">'10gQg<i|c>m

Since @ is a distribution, we also have a constraints that Y-, Q(k | n) = 1 for all

< min(B, R -t) Vn. (3.4)

n.

To summarize, we are seeking a function Q(k | n) which gives the probability
that an organism represents n with an internal quantity k. Equation defines
an objective function saying how accurate any hypothesized @ is in terms of
representing the world. Equation says how costly any hypothesized (@) is in
terms of information processing. To apply the method of Lagrange multipliers,

'Note here that we are assuming that the organism’s prior matches the true frequency, i.e,
for all n, Q(n) = P(n).
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we encode the objective function and constraints into a single equation,
N
QUk | n) ZP )X Qk [ m)(n

+Z)\ (mlnBRt ZQk|nlog g(lL;l)>

+n§%- (1—’;Q(k‘|n)>- (3.5)

We then solve for the of the zeroes of the derivative of F with respect to Q(k | n)
(i.e. treating “Q(k | n)” as a separate variable for each n and k). These zeros

occur when

Pn)-(n—k)*+ X\, - (1 + log W) +9, =0 (3.6)
Ok | n) x Q(k) - exp (— 2 o - @2) . (3.7

for A\, chosen to satisfy the bound in . This solution has a form of a weighted
Gaussian with variance \,,/2P(n), though in our formulation this distribution is
discretizedﬂ We solve for A, using numerical methods. Specifically, given a
bound, rate, and time, we use a Monte-Carlo search algorithm on A, to find the
maximum Dy, [Q(-|n) || P(-)] that satisfies the constraints. This optimizer is
run for 5,000 steps for each A, for all numbers up to 100, which was sufficient to
find KL-divergences within 0.0001 bits of the bound.

Figure shows the value of Q( - | n) (y-axis) across possible numerical
estimates k (x-axis) and the presented numerosity n (color), for various infor-
mation capacity bounds B (faceted). The derived equation captures properties
commonly reported in the literature on the psychophysics of number, including
(i) estimation error is almost zero for small sets because they are high proba-
bility in P(n) and thus require little information to specify exactly; (ii) large
sets exhibit scalar variability since the Gaussian component of has a stan-
dard deviation proportional to 1/ W o n for need distribution P(n) o< 1/n?

2The Euler-Lagrange equations of the calculus of variations can derive an analogous equa-
tion for continuous Q.
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k (estimated number)

Figure 3.3: The model’s posterior probability (y-axis) over numerosities (x-axis), when shown
1 to 15 objects (color). The top panel shows predictions when it has 2 bits of information; the
middle panel shows predictions when it has 4 bits; and the bottom panel shows predictions
when it has 6 bits.
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(iii) an underestimation bias at low information bounds (e.g. 2 bits) due to the
skew caused by the Q(k) term; (iv) estimation acuity (the standard deviation
of Q(k | n)) varies with the information bound and thus presentation time; (v)
subitizing range varies with the information bound; and (vi) response distribu-
tions for large numerosities are roughly normally-distributed, as a result of the
form of .

It is important to emphasize that the roughly Gaussian tuning curves, ex-
act representations for small sets, and scalar variability are not “built in” as
representational assumptions, but rather arise solely as a solution to the above
optimization problem. The model does not even assume that Q(k | n) is centered
on n and, in fact, this property only approximately holds. Note, though, that
while this model shares many properties with existing psychophysical theories,
is neither an exact system nor merely an implementation of Weber’s law.
Instead, this equation recovers the expected behavior of both systems in specific

regimes.

3.3 Experiments

The model makes testable predictions about how estimation acuity, subitizing
range, and underestimation bias should depend on the amount of information
available to participants. We evaluated these predictions against human behav-
ior in four online numerical estimation experimentsﬂ (N = 100 per experiment),
which reflect different ways of manipulating available information (variable expo-
sure time versus display contrast) and different ways of controlling non-numerical
properties of the stimuli (the average dot size, surface area, or density of the dots).
We first varied the presentation time of the dot arrays (Mandler & Shebo, |1982)),
holding the mean dot size constant (Experiment 1). Varying the exposure time
affects the time ¢ in (3.4)—longer presentation times allow more information to
be gathered, until the bound B is met. The dots were presented for either 40ms,
80ms, 160ms, 320ms, or 640ms. We then ran three replications (Experiments

3We pre-registered the experiment and analysis with the Open Science Foundation, which
can be found at https://osf.io/svcy5/.
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2-4), two of which also varied the exposure time but held the density and area
of the dots constant, and one which varied the color contrast of the dots rather
than the exposure time as a means of varying the amount of available informa-
tion. Table lists the pairs of these variables and controls that comprise the

four experiments.

Variable | Controlled
Experiment 1 | Duration Dot size
Experiment 2 | Duration | Surface area
Experiment 3 | Duration Density
Experiment 4 | Contrast Dot size

Table 3.1: Each row shows the manipulated variable (duration/contrast) and the way the stimuli
were controlled (size/area/density) for each of the four experiments.

3.4 Experiment 1

Methods

Participants

We recruited 110 US adults from Amazon Mechanical Turk, who were paid $2.50
to participate. We only allowed Mechanical Turk users who had above 95%
acceptance rates for their work to participate. Following our pre-registration
plan, we removed the 10 subjects in each experiment whose mean absolute error
was highest, leaving N = 100.

Design

On each trial, an array of between 1-15 dots were presented for either 40ms, 80ms,
160ms, 320ms, or 640ms. Participants saw each cardinality in this range twice
within each of the five exposure times or contrasts (depending on the experiment).
This means that, in total, participants each completed 150 trials total. The
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order of the stimuli was randomized over number-duration (or number-contrast

in Experiment 4) pairs.

Materials

The background was gray (hex value #B4B4B4). The dots were darker gray,
with constant Weber contrast of 200%. The experimental window was fixed to
500 x 500 pixels in any browser. However, because this was an online experiment,
there were likely a range of monitor sizes and screen resolutions. We had access
only to data on any browser size changes in pixels, and so we can only confirm
that all browsers allowed participants to see the full experiment, but not the
physical size of the display. There was a range of window sizes, from 820 x 524
pixels at the smallest end and 2,560 x 1349 at the largest end. The median width
was 1,280 pixels and the median height was 768 pixels. The dots were presented
in a 200 pixel radius around the center of the screen.

Procedure

After providing consent and reading the instructions, participants were taken to
the main experiment. On every trial in each experiment, a fixation cross was
displayed for 750 milliseconds, after which a number of dots were flashed on the
screen within a radius of up to 2 inches around the center of the screen. A
noise mask was then applied to the screen for 250 milliseconds and subjects were
presented with a text box in which they typed their guess of how many dots were
displayed. No feedback was given. Participants were given the opportunity to
take a break every 10 trials.

Model fitting

We ran a hierarchical regression to infer participants’ information rates R, bounds
B, and guessing (inattention) rates G based on their performance. We assume
that on some proportion G of trials, participants guessed randomly, here meaning
that they sampled from their prior. So each participant’s probability of making
an estimate k given a number n was modeled as (1 — G) - Q(k | n) + G - P(k).
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Instead of fitting G directly, we fit a transformed variable G’, where G = 1/(1 +
exp(—G')). Parameter estimates were partially pooled (A. Gelman & Hill, 2006)),
meaning inference was run jointly on the subject- and group-level rates, bounds,
and guessing rates. We note also that while the model fitting here assumes a prior
Q(k) o< 1/k* for a = 2, the model’s qualitative behavior is robust to changes in
a and can be fit with subject effects to yield similar results (see Section .
We used flat priorﬁ for the group-level mean, p, and variance UZ of R,
B, and G'. Bounds and rates for individual subjects were then drawn from
Gaussian(jg,o;). We used the Metropolis-Hastings algorithm to jointly infer
posterior distributions over each parameter at the group- and subject-level. Pa-
rameter estimates were averaged over runs from two chains, each with 50,000

steps and 5,000 steps of burn-in.

Results

Figure shows the inferred subject bit capacity at different times according to
(3.4), in the experiment with variable duration and size-controlled stimuli. The
model infers that people’s information accumulation saturates at around 100-
150ms. The maximum amount of information most people take in is just over
4 bits, which is close to previous, independent estimates of information capacity
on similar tasks (Sims, [2016; Verghese & Pelli, [1992)). Figure shows the
probability the model assigns to each possible response k as n varies versus the
proportion of humans who gave that response. This overall summary illustrates
that over 92% of the variability in human average responses are explained by the
model.

Figure [3.5h-d shows model posterior predictive fits including subject effects
(left) and human data (right) for absolute estimation error (top), mean estimates
(middle), and the shape of the response distributions (bottom). Critically, Fig-
ure shows that the model predicts that the error of Q( - | n) should also
vary with presentation time, an effect found in human behavior in Figure [3.5pb.

4This choice has little influence on the results. To ensure robustness, several other priors
were tested, including a Normal distribution for the means and an inverse gamma for the
variances, using a wide-ranging set of parameters. There was almost no effect on the posterior,
which was expected given the large amount of data.
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Figure 3.4: The left panel (a) shows the amount of information (y-axis) available to each
participants (black) and on average (red) across presentation times (x-axis), as inferred by
the model. The right panel (b) shows correlation between model probabilities of responses
(x-axis) and average human responses (y-axis), where each point represents responses to one
number/estimate pair.

Near-zero estimation error is found for low numbers—“subitizing”—in both the
model and human subjects at long display times. However, error increases even
for small quantities at short presentation times both for the model and for hu-
man subjects, reverting instead to scalar variability (linear relationship) when the
amount of available information is low. Intuitively this is because less informa-
tion in the input reduces the allowable KL-divergence in 7 which forces the
model to begin to approximate lower numerosities — even those in the typical
subitizing range. Thus, in both people and the model, subitizing is not driven by
a fixed object capacity, but rather flexibly responds to the amount of information
that is visually available.

Figure [3.5c shows that the model predicts an underestimation bias in mean
responses that diminishes at longer exposures, which is also found in human
behavior in Figure [3.5d. Note that even at the shortest durations, estimates
are not random — mean estimates still monotonically increase with the number

shown in both the model and people. As predicted by the model, participants’
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Figure 3.5: The top two panels (a and b) show model predictions (a) and human data (b) for the
absolute error of estimates (y-axis) as a function of the number displayed (x-axis). The middle
two panels (¢ and d) show model predictions (¢) and human data (d) for mean estimates (y-
axis) as a function of the number of dots displayed (x-axis) and time (color) for the experiment
with variable duration and size-controlled stimuli. All errorbars represent standard error.

o6



A SHARED ORIGIN OF SUBITIZING AND ESTIMATION

_l
o

[N=3)(N=6](N=9

LA

Probability
o

g
=}

1357911 1357911 1357911
Estimate

Figure 3.6: The probability (y-axis) of numeric responses (x-axis) over presentation times
(faceted) for N=3, N=6, and N=9. Bars are shown for the human data and lines are shown for
the model predictions.

mean estimates become increasingly unbiased at longer durations, such that the
average estimate converges on the veridical number after around 160ms. This plot
shows that the model is less gradiently sensitive to time than people, and this is
likely due to our assumption of strictly linear accumulation in (3.4). Figure
shows the shape of the model (line) and human (bar) response distributions for
N = 3,6,9. These make it clear that it is not just the means and standard
deviations which match closely, but rather the shape of the entire distribution
derived in Equation [3.7

3.5 Replications

To ensure that participants are actually using number rather than a correlated
dimension, we had two groups of subjects perform the same task as above but
with either the total surface area or the average density of the dots controlled.
Second, because other manipulations of information should have similar effects
as time, we varied the display contrast (Melcher & Piazza, of the dot
arrays, which affects the rate R at which information about numerosity could be
extracted from the scene. In the variable-contrast experiment, the color of the
dots varied between the background (gray) and pitch black, by Weber contrasts
of 10%, 20%, 40%, 80%, and 160%, at a constant presentation time of 200ms.
All other aspects of the design, procedure, materials, and number of participants
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Figure 3.7: Mean estimates and absolute error of estimates as a function of number shown in
the three replication experiments (compare to the model in Figure 2a,c).
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were identical to Experiment 1.

Results

The inferred group-level rates and bounds were similar to first experiment, sim-
ilarly corresponding to an average subitizing range of about 4. As shown in the
left panels of Figure (a,c,e), participants tended to underestimate larger num-
bers for short exposure times and low levels of contrast, matching predictions
of the model (e.g. Figure ) Likewise, the panels on the right of Figure
(b,d,f) show that in each experiment, absolute error is scale-variable at low levels
of information and then becomes precise for small numbers at higher levels of

information.

3.6 Model comparisons

One popular alternative to a two-systems theory is that number representations
are scale variable even throughout the “subitizing range” (Barnard et al., 2013;
Gallistel & Gelman, |1991, 1992; Piazza et al., 2011; Trick & Pylyshyn, [1994)):
the error in this range under scalar variability may be small enough to yield
essentially perfect accuracy. We first compared the performance of the model to
an implementation of this theory, which assumes that a subject’s estimate of a
number n is drawn from Gaussian(n,w - n), where w is a constant fit for each
subject. To compare models, we use the Akaike Information Criterion (AIC),
which gives better (lower) scores for models that fit data well and have few free
parameters. Using maximum likelihood fits for each model, the difference in
AIC scores was over 3,000 in each experiment (duration/size difference: 3,076;
duration/density difference: 4,902; duration/area difference: 3,454; contrast/size
condition difference: 4,014) in support of our model.

Second, we fit a Weber model with time or contrast effects to each experiment,
assuming estimates of a number n are drawn from a Gaussian(n,e*0t*tt) . n).
With this model, there were AIC differences of over 750 in favor of our model
(duration/size difference: 768; duration/density difference: 2,838; duration/area
difference: 1,084; contrast/size difference: 924). Together, these results indicate
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that human behavior cannot be explained by assuming only scalar variability,
nor with ad hoc modifications to scalar variability that allow acuity to vary with

time and contrast.

3.7 Inferring prior distributions
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Figure 3.8: Each facet shows model predictions about mean estimates (a) and absolute errors
(b) for different prior distributions, when different amounts of information is available (color).
The facets on the left show predictions for Q(k) o 1/k; the facets in the middle show predictions
for Q(k) o< 1/k'5 and the facets on the right show predictions for Q(k) o< 1/k>.
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While the primary analyses assume that people’s prior distribution over num-
bers reflects the natural frequency of number words, this is likely an over-simplication
and is not necessary to recover the model’s primary qualitative properties. In
fact, because we sampled numbers uniformly in the range 1-15 in the experi-
ments, people’s number perception systems might have adapted to the statistics
of the experiment. So, following the pre-registration plan, we re-ran the model
to jointly participants’ priors along with the other variables (rate, bound, and
guessing rate). More specifically, we assume priors have the form Q(k) oc 1/k%,
where « is a random variable. Figure|3.8|shows predictions about mean estimates
(top) and absolute errors (bottom) for different o (1, 1.5, and 2). In every case,
the model predicts underestimation of larger numbers when less information is
available, which diminishes with increasing information. The model also predicts
roughly scale variable error across numbers given low information and, given more
information, zero error for small quantities and less error (but still scale variable)
for large quantities. This illustrates that the key effects of our model are robust
to a.

By inferring «, we found that subjects’ value tended to be closer to 1 than
2 in each experiment. In the experiment with variable duration and with size-
controlled stimuli, the MAP inferred group-mean a was 1.30. In the experiment
with variable duration and density-controlled stimuli, the inferred group-mean «
was 1.37. In the experiment with variable duration and area-controlled stimuli,
the inferred group-mean « was 1.29. In the experiment with variable contrast
condition and size-controlled stimuli, the inferred group-mean o was 1.11. More-
over, the model with inferred priors provides significantly better fits to the data
in each experiment than the model with the fixed 1/k* prior (AIC differences
each over 1000). Generally, this shows that the results do not hinge critically on

assuming a particular value of the exponent in the need distribution Q(k).

3.8 Discussion

Empirical studies dating back more than a century have charted many robust

characteristics of numerosity perception in humans and other animals. However,
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most of these properties are treated as separate phenomena without a common
explanation. For instance, the finding that people are able to exactly represent
small sets (Burr et al., 2010; Choo & Franconeri, 2014; Feigenson et al., 2004}
Jevons, [1871; Revkin et al., [2008) and show scalar variability in estimation for
larger sets (Dehaene, 2011; Xu & Spelke, 2000) has been explained in terms of two
different representational systems (Dehaene, 2011; Feigenson et al., 2004). The
tendency to underestimate larger quantities (Jevons, [1871; Mandler & Shebo,
1982)) has been explained in terms of a miscalibration of response scales (Izard
& Dehaene, [2008). The sensitivity of numerical acuity to display time (Cheyette
& Piantadosi, [2019; Inglis & Gilmore, 2013; Mandler & Shebo, |1982) seemingly
requires ad hoc modifications to processing theories. Our derivation, however,
shows that these phenomena—underestimation, distinctive behavior on large and
small sets, sensitivity to timing and contrast, and even the shape of response
distributions—can be explained as natural consequences of optimal representation
under a resource constraint.

The sensitivity of numerosity judgments to certain non-numeric properties of
the visual scene, such as object spacing (Atkinson et al., [1976)) and arrangement
(Ginsburg, 1976; Mandler & Shebo, [1982)), also fit naturally in this framework
if they are considered as manipulations of information in the visual scene. For
instance, regularly spaced objects appear more numerous than randomly spaced
objects (Ginsburg, [1976)). Likewise, objects with similar orientations appear more
numerous than objects with randomly distributed orientations (DeWind et al.,
2020). These effects are predicted under our model since regularities should
decrease the information processing demands on the visual system.

An information-theoretic approach connects number psychophysics to the
broader emerging picture of visual working memory. Contrary to a once domi-
nant conception of visual working memory as discrete and “slot-like” (Awh et al.,
2007; Luck & Vogel, [1997)), recent behavioral and neural evidence suggests instead
that visual memory flexibly allocates limited resources in a continuous manner
(Brady et al., [2016; Brady & Tenenbaum, 2013; Keshvari et al., [2013; Ma et al.,
2014; Van den Berg et al., 2012). Like such accounts, our model assumes that
bits of information are the common currency that limit numerosity perception
(Gallistel, [2018)). While others have hypothesized that subitizing is driven by a
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capacity limit (Trick & Pylyshyn, |1994), no work has formally derived how such
a limit gives rise to the psychophysics of both subitizing and estimation.

Prior accounts of numerosity perception have also not explained why infants
(Starr et al., 2013al), some primates (Barnard et al., 2013; Piantadosi & Cant-
lon, 2017), and other animals (Agrillo et al., 2014; Petrazzini et al., n.d.)), may
have a smaller subitizing range than human adults. A two-systems theory would
require a separate small number system to suddenly arise either in evolution or
development. However, the model we describe suggests a simple alternative: in-
fants and many animals may have a lower visual memory capacity (Elmore et al.,
2011)), leading the model to predict numerical approximation and scalar variabil-
ity even throughout the small number range. Conversely, chimpanzees may have
a subitizing range up to 4 or 5 (Tomonaga & Matsuzawa, [2002)), exceeding that
of humans, because they have a greater visual memory capacity (Inoue & Mat-
suzawa, 2007)). Similarly, an information-theoretic perspective predicts that the
point at which a person transitions from subitizing to estimation should depend
their visual memory capacity, which it does (Green & Bavelier, 2003, 2006; Piazza
et al., 2011)).

More generally, this work highlights that behavioral discontinuities are not
always good markers of distinct systems. Discontinuities often arise in biology
when single systems face constraints—for instance, when an animal’s gait varies
discontinuously with its speed (Alexander, [1984) or a neuron spikes when its
input exceeds a threshold. Our results illustrate that optimization of a single
objective function may in fact show starkly different behavior above and below a
capacity bound, thus providing a resource-rational (Griffiths et al., [2015]) account
of qualitatively different patterns of numerical perception.

In sum, the theory we present relies on combining an a priori biological con-
sideration (bounded informational capacity) with an environmental input distri-
bution P(n) and analytically computing the optimal internal representation. The
resulting representational system replicates all of the standard properties of num-
ber psychophysics and explains them with a simple, resource-rational model. Our
experiment has also shown that human numerical cognition quantitatively tracks
this bounded optimal solution as the amount of information available varies, a
fact not explainable in existing psychophysical theories. Together, these results
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suggest that the core properties of numerical cognition arose as efficient solu-
tions to the problem of representing the world with finite cognitive and neural

resources.
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Limitations in spatial
memory explain number
psychophysics

4.1 Introduction

A key unresolved question is whether the behavioral patterns found in the do-
main of number result from numerical processing itself or from some of the per-
ceptual processes that feed into numerical perception. In the first case, people
may posses a “number system” that itself is the origin of phenomena seen in be-
havioral tasks involving number, such as Weber’s law and underestimation. For
instance, the noise and bias observed in numerical estimation might arise from a
sampling process in which numerical information is extracted from visual repre-
sentations, rather than from noise inherent to visual representations themselves
(Dehaene & Changeux, |1993; Heng et al., 2020; Woodford, 2020). Alternatively,
such phenomena may emerge as a consequence of more general visual processes
which precede numerical estimation and indeed feed into it (Anobile et al., [2020;
Stoianov & Zorzi, 2012} Testolin, Dolfi, et al., [2020; Trick & Enns, 1997} Zorzi
& Testolin, |2018)). Under this latter hypothesis, the psychophysics of estimation
in vision could result from constraints inherent to visuospatial memory, and then
we would expect that people’s behavior in visual tasks not involving number to
show equivalent hallmarks to those seen in estimation.

The model presented in Chapter 3 demonstrates that principles of efficient

representations can explain many features of number psychophysics, including
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the discontinuity from exactness to scalar variability. The key idea there was
that an efficient encoding of number, using at maximum some number of bits
of information, will prioritize representations of small numbers at the expense
of large numbers because people tend to need to represent small numbers more
frequently (Dehaene & Mehler, [1992; Piantadosi & Cantlon, 2017)). That work
therefore derived exactness for small numbers (e.g. subitizing) and approxima-
tion for large numbers by solving a single, unifying optimization. However, the
model did not explain the key step of how numerosities are actually computed
from visual input, and therefore does not explain where noise in representations of
numerosities comes from. Furthermore, that model made the unrealistic assump-
tion that, all else being equal, small and large numerosities are equally easy to
perceive—their differing behavioral signatures being solely a matter of frequency
of use.

Our goal in this chapter is to formalize and test the relationship between
number perception and visuospatial memory in order to determine whether the
properties observed in the number literature—including subitizing, approxima-
tion, and sensitivity to presentation time—result from more general mechanisms
of the visual system. If a model of basic visual processing fit to a non-numerical
task still shows the hallmarks observed in number psychophysics, this would sug-
gest that features of number perception should really be considered artefacts of
basic vision rather than number itself. Conversely, if features of numerical per-
ception are not latent in a non-numerical visual memory task, they have to be
the result of specifically numerical processes.

We develop a computational model of bandwidth-limited scene memory which
forms beliefs about where individual objects exist in space; these beliefs can then
be straightforwardly converted into beliefs about the number of objects in that
scene. This approach builds on recent neural network models that exhibit ap-
proximate numerical representations as a consequence of imperfectly representing
a scene (Kim et al., 2021; Stoianov & Zorzi, 2012, Testolin, Dolfi, et al., 2020;
Testolin, Zou, et al., 2020; Zorzi & Testolin, 2018)). We show that even though
the model is explicitly optimized only to detect and remember the presence of ob-
jects in various locations, the resulting probability distributions over numerosities
closely match known properties of number psychophysics, including both subitiz-
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ing and Weber’s law. Notably, although the model represents a probability dis-
tribution over discrete individuals, it behaves like an “analog magnitude system”
(Carey, 2009; Gebuis & Reynvoet, [2012a; Lourenco & Longo, 2010) when its
information capacity is exceeded.

The model makes predictions about the psychophysics of spatial memory and
numerosity perception, and how they should co-vary over time. Specifically, the
model predicts that people’s ability to remember the locations of objects in space
will be near-perfect for small groups — since smaller groups of objects are less
informationally demanding to represent — but that spatial memory will degrade
proportionally with the number of objects in the scene for larger groups. The
model additionally predicts that at shorter exposure times, people will become
increasingly unable to precisely remember the locations of even small groups of
objects. We can likewise derive predictions about the psychophysics of numerical
estimation as a function of cardinality and exposure time, when the output of
this bandwidth limited system is used as input for numerosity estimation.

To test the model’s predictions about both spatial memory and numerical
perception, we ran two pre-registered experimentd'} a change-localization task to
probe participants’ memory for the locations of objects (Experiment 1); and a
numerical estimation task (Experiment 2). In both experiments, we manipulated
the amount of information available to participants by varying the exposure time
of the presented objects. We find that participants’ ability to remember the loca-
tions of objects — both for different exposure times and for different numbers of
objects present — predicts the observed psychophysics of number under analogous
conditions. In other words, the patterns of bias and noise observed in numerical
estimation precisely matches the amount of uncertainty observed in visual rep-
resentations of scenes, indicating that the psychophysics of number are governed

by a domain general, rather than number-specific, information bottleneck.

!The pre-registration of the model and both experiments can be found at https://osf.io/
vgm65/.
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4.2 Model

The model aims to capture how an idealized, information-limited perceptual
system would perform if its only aim was to accurately store the presence or
absence of objects in various locations. Although this formalizes the idea of
object memory—not specifically numerical estimation—its output nonetheless
yields psychophysical properties seen in number. For a given, observed scene
containing objects s, we will consider the probability distribution Q(s’ | s), giv-
ing the system’s belief that s’ was observed instead of s. We analytically derive
an optimal form of @), by specifying three components: (i) a prior distribution
representing how likely the model is to encounter a given scene a priori, (ii) a
loss function representing how good or bad a given representation of the scene
is, and (iii) an information capacity bound, representing the maximum allowable
information processing. These three elements define a constrained optimization
problem, which can be solved to determine the optimal psychophysical distribu-
tion Q(- | s), corresponding to the optimal perceptual system. This process is
not identical with, but is somewhat analogous to, Bayesian inference that begins
with a prior distribution and combines it with evidence to produce a “posterior”
distribution; the key difference is that the shape of the “posterior” Q( - | s) is not
derived from Bayes rule, but rather from minimizing the loss function (ii) subject
to an information bound (iii).

Figure[d.1]illustrates the basic setup, assuming for the sake of clarity that there
are only 4 possible object locations (or pixels). When a person sees a particular
scene, they encode a probability distribution over each possible arrangement of
objects, which is a weighted combination of a prior for small numbers and how
well the representation matches their observation (akin to a likelihood). This
probability distribution in turn can be converted into a probability distribution
over numerosities by summing the probabilities of each scene with a given number
of objects. One key simplifying assumption we make in modeling this setup is that
spatial memory encodes the presence or absence of objects in various locations as
a discrete matrix. In other words, we assume that visuospatial memory represents
a matrix with M black and white pixels to specify where there are objects (and
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Figure 4.1: This figure conceptually illustrates how the model works, simplifying it to assume
that there are only 4 pixels for clarity. In this example, a person sees a scene with 3 objects,
which is represented as a probability distribution over all possibilities of what she saw. Possible
arrangements of objects are grouped by numerosity, shown as different colors. To get the
probability of a numerosity k, the model simply sums the probability of all possible scenes with
numerosity k, highlighted at the bottom.

where there aren’t).

We further assume a prior on binary matrices where the number of 1’s in
a matrix matches the naturalistic frequency of a given number. Specifically,
the naturalistic frequency of a number n follows a # law, where n represents
cardinality (Dehaene & Mehler, [1992; Piantadosi & Cantlon, [2017). There are

(]\f ) matrices with cardinality n, so a given matrix s with cardinality n has prior

P(s) < 1/ <n2 : (]\f)) We emphasize that this choice of prior does not play a
determining role in governing the model’s psychophysics, unlike in the model
presented in the previous chapter. It is a reasonable choice, however, as a #
need frequency for number occurs in naturalistic settings (Piantadosi & Cantlon,

2017) as well as in word counts (Dehaene & Mehler, 1992).

Derivation

Given a matrix s, the goal is to represent s with as high fidelity as possible,
remembering whether an object was present at each row ¢ and column j, s;;. We
define a loss function L(s, s’) specifying how closely a matrix s’ matches s, or how
costly it would be to represent s with s’. We will assume that the loss function
L(s, s") is proportional to some (perhaps unequal) combination of the proportion
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of false negatives, P(s;; = 0 | s;; = 1), and the proportion of false positives,
P(s;j =1]|s;=0):

L(s,s') = Q- P(s;j =0]s;=1) + (4.1)

(1—a) P(sj; =11 sy =0),

with o as a weighting parameter, where 0 < a < 1. The reason we separate
the contribution of false negatives and false positives here is simply that it is
natural to think that the visual system might care about one more than the
other. There are, of course, other plausible loss functions, which in fact give
qualitatively similar results (see SI) — though we note that the form of this loss
function was pre-registered.

Given a loss function and prior, we now seck a function (- | s) that minimizes
the expected loss between possible inputs s and representations s, corresponding
to the “best” representation possible. If the set of possible scenes is S, the
expected loss is

E[L(s,s)]) =D P(s) > Qs | s)- L(s,5). (4.2)
seS s'es

Unconstrained, the function Q(- | s) that minimizes the expected loss would

simply correctly encode the scene,

3 [
CIDES (4.3
0, otherwise.

However, cognitive systems are constrained by the amount of information they
can process over a given span of time. We incorporate this constraint into the
model as a bound on the maximum allowable Kullback-Leibler divergence (KL-
divergence) between the prior distribution P(-) and resultant distribution Q( - | s)
over displays. The KIL-divergence here represents the amount of information in
bits needed to represent the resultant distribution Q(- | s) starting with the
distribution P(-), which is equivalent to the total amount of information process-
ing required. Given a information bound B we then have the constraint on the

KL-divergence from P(-) to Q(- | s), often notated Dgp [Q(- | s) || P(-)],
S%{Q(S' | s) ~logw <B VseR. (4.4)
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To apply the method of Lagrange multipliers, we encode the objective function

and constraints into a single equation,

FlQ(s" | )] =D P(s) > Q(s' | s)- L(s, )

sER s'eR

—l—Z)\s-(B > Q"] s)log ](D(,|)S))

sER s'eR

+) - 1= Qs |s) ).
SER s'eR

We then solve for the of the zeroes of the derivative of F with respect to Q(s" | s)
(i.e. treating “Q(s’ | s)” as a separate variable for each s and s’). These zeros

occur when

P(s)-L(s,s) + As - (1 + log %) +79 =0 (4.5)
Q(s' | s) x P(s') - exp (— P;j) - L(s, s’)) : (4.6)

Here, A is chosen to satisfy the bound in (4.4).

Finding )\; using numerical approximation

We solve for \; using numerical methods. Specifically, given a bound, we use
gradient descent to find As that allows the maximum Dy, [Q(-]|s) || P(-)] that
satisfies the constraint. This optimizer was run for 5,000 steps for each A, which
is sufficient to find KL-divergences within a millionth of a bit of the bound.

One complication is that the representational space in our experiments was

very large — there are 49 grid cells so there are 24

possible grid states (= 10'%).
Memory and runtime constraints therefore make it impossible to represent the
prior and posterior of each possible grid state independently. Luckily, for every
scene s, there are many representations that are “equivalent” in that they have
equal prior probabilities and losses. For a given representation s’, we define
the loss as a function of the number (or proportion) of false positives and false
negatives between s and s’. To get the number of false negatives f,(s" | s) and

false positives f,(s' | s), we can write,
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fu(s' | s) = ZZS” — 53;) (4.7)

and

s'| s) ZZ — Sij) i' (4.8)

where ¢ and j are the rows and columns of the grid.

We can count the number of representations that have f,(- | s) = r, and
fp(+ | s) = rp. This is the product of all the ways to make n —r, true positives in
given that s in n on cells and k£ — r,, true negatives in M — n off cells, where n
is again the cardinality of the scene s, k is the cardinality of the representation
s', and M is the total number of grid cells. So we therefore can write the total
number of equivalent states S as,

= ()60 4

In this way, we can collapse the representational space into only individual in-
stances of each equivalence class and when calculating the KL-divergence multiply
each term by S.

Modeling change-localization

We assume that subjects choose in the change-localization task proportionally
to their belief that a cell has changed. In disappearing trials, subjects are only
allowed to respond with a zero cells, and in this case the probability that the cell
changed is the belief that the cell was initially 1. This means that the probability
of responding 75 out of only the other zeros is,

P(choose ij) o< > Q(s" ] s) - Ly 1. (4.10)

s'eR

To compute the probability that subjects answer accurately, P(choose ij) is com-
puted for the correct disappearing cell relative to all of the other zero cells in the
final display. Appearing trials are defined analogously.
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Modeling numerical estimation

To compute the probability the model believes that the scene contained &’ objects,
we can sum across the model’s posterior for all scenes containing &’ objects. More
formally,

plk=k1]s)=> Q'|5) Lyw (4.11)

s'€R
where |s| represents the cardinality of representation s’ (i.e. the number of objects
in '), and 1,—, is 1 when z =y and 0 otherwise.

To illustrate the model, we generated predictions assuming a 7x7 grid of pos-
sible object locations, as will be used in the eventual experiments. We first
simulated the model’s predicted performance on a change localization task in
which the model has to guess which location on the grid has changed — with an
object either appearing or disappearing — between two subsequent presentations
(see Experiment 1). Figure shows the model’s predicted accuracy (y-axis) on
this task as a function of the number of objects in the scene (x-axis), at different
information bounds (color). At each information bound, performance decreases
as a function of the number of objects, reflecting both the decreasing prior over
numerosities and the fact that there are more ways to arrange more numerous sets
in the range shown. Also apparent is that as the information bound increases,
the model saturates in performance for small numbers, meaning it can veridically
recall the scene it viewed when there are a few objects.

Critically, the model’s probability distribution over possible object arrange-
ments s’ can be converted into a probability distribution over the total number of
objects. Figure shows the implicit distribution (y-axis) of numerical estimates
(x-axis) for each number 1-15 (lines), at the same information bounds given in
Figure This visual memory model exhibits several key properties of number
psychophysics, most notably a transition from exactness to scalar variability. The
precise point of transition, as well as the acuity of estimation, are determined by
the information bound, as in the model of Chapter 3. We show in Section
that the model transitions from subitizing to Weber’s law specifically.

73



LIMITED SPATIAL MEMORY EXPLAINS NUMBER PSYCHOPHYSICS

1.00 Bits
12

0.75 18
. — 24
(5] — 30
o
S 0.50
)
o

0.25

0.00

4 8 12

Number shown

Figure 4.2: The model’s predicted accuracy in a change localization task at information bounds
ranging from 12-30 bits, assuming a 7x7 grid size and loss function parameter o = 1/3 (as
derived from model fitting).

Alternative loss functions

In the analyses of the experiments below, we use a loss function that combined a
weighted proportion of false negatives and false positives relative to the number
of locations with objects and locations without objects respectively. We had
pre-registered this choice, however, it is not the only plausible loss function. One
alternative choice would be the total number of places the representation s’ differs
from the scene a; another would be a possibly weighted combination of the number
rather than proportion of false negatives and false positives. Here we show that
while the choice of loss function somewhat influences the form of the resulting
psychophysics, the outcomes are qualitatively very similar and preserve the core
properties of the model in the paper.

For a given scene s and representation s’ we will define a function for the

number of false negatives f,(s’ | s) and false positives f,(s" | s). We can write,

(s']s)= ZZSU — 53;) (4.12)
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Figure 4.3: The implied psychophysics of number from the model of spatial memory, assuming
a 7x7 grid size and loss function parameter o« = 1/3 (as derived from model fitting). Each
line shows beliefs (Q(k|n)) over estimates (k) given numbers n = 1...15. Each facet shows the
results of the optimization at various information bounds.

and

Fols' | 8) =223 (1 = siy) - s (4.13)
i
Then we can write the loss function assumed in the paper (using proportions) as,

fu(s" | 5) fo(s" [ ')

The loss function that is a weighted combination of the number, rather than

Eproportion(57 S/) =a-

proportion, can be written as,

Labsolute(sa 5/> = fn(S/ ’ 8) + (1 - Oé) : fp(sl | S)' (415)

Figure [4.4] shows predicted number psychophysics using both loss functions
under different values of «, with Figure [£.4a] showing the proportional loss func-
tion used in the primary analyses and Figure [£.45] showing the absolute numeric
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Figure 4.4: These two plots illustrate the number psychophysics produced by various formu-
lations of the loss function. Each line shows the estimates produced for a different number
n = 1...20. We assume an information bound of 25 bits. (a) These panels illustrate the psy-
chophysics produced by different parameterizations of the loss function assumed in the main
analyses, weighting the proportion of false negatives out of true positives by alpha and weight-
ing the proportion of false positives out of the true negatives by one minus alpha. Each panel
shows a different possible weighting, with @ = 0.3, « = 0.5, and a = 0.7. (b) These panels
illustrate the psychophysics assuming a loss function that is an analogous weighted combination
of the number rather than proportion of false negatives and false positives.

loss function. At a = 0.5 (middle panels), the weighting of both false nega-
tives and false positives (either by proportion or absolute value) is equal; false
negatives are under-weighted on the left panels and over-weighted on the right
panels. Comparing the loss functions at each value of «, the psychophysics look
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very similar, particularly for low values of a. At higher values of «, the propor-
tional loss function over-weights false negatives more strongly than the numeric

counterparts for large numbers, and so ends up over-estimating.

The effect of the prior

In the model presented in the previous chapter, the decreasing prior over nu-
merosities plays the central role in determining the noise and bias of estimates
as a function of magnitude. That model would therefore predict that if a large
number, say 75, happened to be high in the prior, people should be able to ac-
curately represent sets of 75 items. But this seems perceptually implausible —
could people really represent 75 items with higher fidelity than 2 items? One
possible way of understanding the intuition that large groups of objects are in-
trinsically more difficult to represent precisely than smaller groups is that there
is a lot more spatial information to represent about large groups.

If we take the simple method used here of dividing the world up into a grid
with M possible locations, then there are (ZI) ways to represent n objects in
space. There are M places to put a single object, meaning it takes only log M
bits to represent scenes when n = 1. However, there are many more ways to
place n items when n grows larger (as it approaches its zenith at %) Using
Stirling’s approximation of the Binomial, it takes about log % bits to represent
% objects. To put this in perspective, if M = 50, it would take log 50 ~ 5.6 bits
to represent n = 1 object’s location but about log \j‘% ~ 47 bits to represent the
location of n = 25 objects.

Unlike in the model we presented in the previous chapter, the model here
accords with the intuition that more numerous sets are intrinsically more difficult
to process perceptually. Even if there were a uniform prior over numerosities,
small numerosities would be represented with significantly higher fidelity. In fact,
the shape of the prior has much less of an impact on either mean estimates or
the standard deviation of estimates relative to the loss function. We demonstrate
this property in Figures [4.5H4.7]

Suppose the prior on a scene s with n objects is given by the function,
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Figure 4.5: Predicted mean estimates as a function of the number of objects shown (x-axis)
and the information bound (color). The columns give predictions under different loss function
parameters (a) and the rows show predictions for a uniform prior distribution (5 = 0) and
naturalistic need frequency (5 = 2) used in the main text.

Ps | 15| = n) = nﬁl<M) (4.16)

n
where [ is a free parameter controlling the numerical bias. So § = 2 here is the
naturalistic need frequency of number used in the main analyses (P(n) oc 1/n?)
and 8 = 0 corresponds to a uniform prior over numerosities. Figures
give the model’s predictions for mean estimates and standard deviations under
these two distributions (8 = 0 and = 2), at different values of the loss function
parameter « (controlling how much the model cares about false positives versus
false negatives).

Figure[4.5|demonstrates that the bias in the model’s mean estimates is affected
much more strongly by a than by § — i.e., the loss function, rather than the
prior, mostly determines the patterns of under- or over-estimation. Figure [4.0]
shows, analogously, the model’s predictions for the coefficient of variation (CV)
as a function of numerosity (C'V = %) Crucially, Figure [4.6|illustrates that even
with a uniform prior (8 = 0), the model precisely represents small numerosities
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Figure 4.6: Predicted coefficient of variation (CV = <) as a function of the number of objects
shown (x-axis) and the information bound (color). The columns give predictions under different
loss function parameters («) and the rows show predictions for a uniform prior distribution
(8 = 0) and naturalistic need frequency (8 = 2) used in the primary analyses.

but not larger ones. In fact, the point of transition from subitizing to estimation
is essentially entirely determined by the information bound, with o and 5 only
having any significant influence on the standard deviation of estimates beyond
the subitizing range.

Finally, Figure [£.7] demonstrates that the change in C'V' converges to 0 for
larger numerosities, across different choices of the prior and loss function. This
indicates that the model recovers Weber’s law in estimation — which predicts a
constant C'V across numerosities above the subtizing range — without requiring
fine-tuning of any parameters. A further demonstration that the model recovers

Weber’s law in estimation is given in the section below.

Weber’s law

In addition to an estimation task, the model can be extended to a numerical
discrimination task. For two numbers n; and ns, we make model predictions

for ny and ny independently and subsequently compute the probability that the
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Figure 4.7: Predicted change in the coefficient of variation (6C'V = CV,, —CV,,_1) as a function
of the number of objects shown (x-axis) and the information bound (color). The columns give
predictions under different loss function parameters («) and the rows show predictions for a
uniform prior distribution (8 = 0) and naturalistic need frequency (5 = 2) used in the primary
analyses.

model believes that ny was greater in magnitude than n,

M-1 M

Plny>ni)= > > P(k|nm) P(j|no). (4.17)

k=1 j=k+1

Figure [4.§ shows model predictions for discrimination performance on 1:2 ratios
for numerosities 1:2 through 10:20 (a) and 2:3 ratios for numerosities 2:3 through
14:21 (b) across information capacity bounds. Weber’s law implies that perfor-
mance should be constant across ratios, which is true for the model somewhat
beyond the subitizing range.

The relationship between subitizing and estimation

Previous work has shown that the relationship between subitizing and estimation
is not straightforward. For instance, subitizing seems to be more greatly affected
by attentional load than estimation (Burr et al., |2010); other studies have found
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Figure 4.8: Model predictions for numerical discrimination on (a) 1:2 ratios and (b) 2:3 ratios.

The model was parameterized with o = 1/3 and the prior used in the primary analyses (P(n)
1/n?).

little or no correlation between one’s subitizing range and their estimation acuity
(Revkin et al., 2008). One possible explanation afforded by the model is that
some small changes in capacity can lead to sharp changes in the subitizing range.
Conversely, other changes in capacity can lead to no changes in the subitizing
range whatsoever. This could lead to puzzling results — subitizing and estimation
will sometimes seem related but sometimes not. But, as we show, the model
actually predicts that large changes in capacity are necessary for the relationship
to become apparent.

We modeled the relationship between estimation acuity and subitizing range
with the range of numerosities (1-8) tested in the studies cited above (2,64). The
subitizing range was calculated as the largest number with € < 0.001 squared
estimation error; and the estimation acuity was calculated as the average coeffi-
cient of variation of numerosities beyond the subitizing range. Figure [£.9] shows
the results of this simulation, with the subitizing range on the x-axis, estimation
acuity acuity on the y-axis, and each point representing the model’s prediction at
a given information capacity. There are sudden changes in the subitizing range
as the information capacity increases; conversely, there are small, less dramatic
effects on estimation acuity.

Because the subitizing range can change dramatically without requiring es-
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Figure 4.9: The relationship between subitizing range (x-axis) and estimation acuity (y-axis)
across information capacities (colors). Changes in capacity always change the observed estima-
tion acuity but only sometimes dramatically change the subitizing range.

sentially any change in estimation acuityEL it may not be altogether surprising
that some studies have found that the subitizing range is affected by an atten-
tional manipulation when estimation acuity is not. The relationship between the
subitizing range and estimation acuity should only become apparent with sub-
stantial changes in capacity — and even then, estimation acuity need not change
by a substantial margin. For instance, to increase the subitizing range from 2 to
4 would only require a decrease of the coefficient of variation in estimation from
0.27 to 0.21 (highlighted in Figure by the dashed lines). This level of change
seems insubstantial relative to the change in subitizing range — and may even

be hard to detect without high statistical power — but does not imply that the

20One curious thing to note is that when the subitizing capacity changes, the observed
estimation acuity actually very slightly decreases. This is because numerosities very near the
subitizing range tend to have slightly higher acuity than larger numerosities, but when the
subitizing range increases to encompass that numerosity, it is no longer counted towards the
average estimation acuity.
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two phenomena are unrelated.

4.3 Experiment 1

In order to understand how visuospatial perception in humans is modulated by
processing time and the number of objects in a scene, we ran a change-localization
task in which items flashed on a screen, disappeared, and then re-appeared with
a single modification (illustrated in Figure . Our visual model predicts that,
given sufficient processing time, participants should be able to remember the
locations of small groups of objects with high fidelity but become increasingly
inaccurate for larger numerosities, which accords with basic intuition and previ-
ous findings (Alvarez & Franconeri, 2007, Vul et al., [2009). With only limited
processing time, however, participants should become increasingly incapable of
remembering the locations of even a small number of objects, and the disparity in
performance between smaller and larger groups should decrease, per Figure 4.2
In addition to testing whether localization is well explained by the model, by
fitting the information bound to mon-numerical human spatial memory, we can

test whether the inferred parameters are consistent with the psychophysics of

number.
1. Fixation cross 2. Cells filled 3. Noise mask 4. Cells changed
(1000ms) (50ms, 150ms, 450ms) (600ms) (until response)
Ooooooo Oo0oOooooo
I o o I o o o
Oo0oOooooo [ o o I
+ I o o o R [ I I I o o
Oooooooag Oooo0ooooo
OoEO0O0O0O0no [ o o O
BEOOOOOO BEO0OROOO

WS
Please click the cell that turned from white to gray.

Figure 4.10: An illustration depicting each step of a trial in Experiment 1. Participants were
first shown a fixation cross, followed by a 7x7 grid with some of the cells (1-15) filled in gray.
A noise mask then appeared after a short time (50ms, 150ms, or 450ms). In the final step,
participants were shown a display identical to the one shown previously except for a single cell
— one of the previously gray cells either turned white (“disappearance”) or one of the previously
white cells turned gray (“appearance”). Participants tried to guess which cell had changed.
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Method

Participants

We recruited 110 registered users of Prolific, an online psychology experiment
platform. Participants were 18 years old or older, fluent English speakers, and
physically present in the United States based on pre-screening questions. Each
participant who completed the task received compensation of $3. Both experi-
ments were approved by the University’s Institutional Review Board and complies
with all relevant ethical regulations. Informed consent was obtained from all par-
ticipants before beginning the study. Following the pre-registration, we removed
the 10 participants with the highest error rate from our analyses. Based on pilot
studies and previous work, we believed the sample size included for analysis (100
participants x 90 trials per participant = 9000 data points) would be sufficient

to determine model parameters within a small interval.

Materials

The experiment was designed in JavaScript using the psiTurk framework (Gureckis
et al., [2016). There were 49 grid cells (7 x 7), with each grid cell 35pz? and an
equal margin separating the cells. Unfilled grid cells were white and filled grid
cells were gray with hex color #A0A0A0. When a cell was clicked in the task, its
border was bolded and turned red. The noise mask was multicolored static and

had a size of 455pz? to cover the entire grid.

Design

There were four within-subject variables manipulated in the study: the number
of cells filled (1-15); the exposure time of the displayed pattern (50ms, 150ms,
450ms); and the direction of the changed cell from the first to second presentation
(white-to-gray or gray-to-white). Each three-tuple of number, time, and direction
was shown exactly once, for a total of 15 x 3 x 2 = 90 trials. The initial direction
of changed cell was randomly chosen and then remained constant for the first
45 trials, with the last 45 trials assigned to the opposite direction. Within that

constraint, the order of the trials was randomized, i.e. number-time pairs were
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assigned randomly within each direction of change. The positions of the filled
cells were chosen randomly on each trial. If the direction of change was white-to-
gray, a random white cell from the initial exposure would turn gray on the second
presentation; conversely, if the direction of change was gray-to-white, a random

gray cell would turn white.

Procedure

After providing consent and reading instructions, participants began the first sec-
tion of the experiment. Both halves of experiment — the white-to-gray section
and gray-to-white section — started with 3 practice trials. Participants were in-
formed in both the practice trials and main task whether a cell would be changing
from white to gray or vice-versa. Each trial started with a fixation cross displayed
on the center for 1000 ms, followed by the grid with some cells filled in (50-450ms)
and then a noise mask for 600 ms. Then, the grid reappeared, with one modified
cell. Subjects then clicked the cell they thought changed color and proceeded to
the next trial. The basic setup is illustrated in Figure 4.2

Model fitting

For both experiments, we used a Markov Chain Monte Carlo (MCMC) algorithm
to fit four parameters to the data: a) power law functions for how the information
capacity changes over time, of the form a-t*, with a and k as free parameters and
t representing time in seconds; b) the loss function parameter «, which weights
the cost of false negatives and false positives; and c) a guessing parameter p,
which captured the rate of choosing randomly. Because o and p, represented
probabilities and thus were constrained to be between 0 and 1, we parameterized
these through transformations o = logit(a’) and p, = logit(p,). We fit these
parameters in a hierarchical Bayesian network, with partial pooling of parameter
estimates across participants. We used uninformative group-level priors for the
means of each parameter, which we believed would not exert a strong influence in
any case given the large amount of data collected. We drew group-level standard
deviations from HalfNormal(oc = 10). Subjects’ parameters were drawn from
the distributions,
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as ~ Normal(fia,g, Tag), (4.18)
ks ~ Normal(fu,g, 0k g), (4.19)
ol ~ Normal(pie g, 0o )5 (4.20)
Py, ~ Normal(fip: g, 0y, g), (4.21)

where group-level parameters are denoted 4 and o, and subject-level parame-
ters are denoted with subscript s.

We used the Metroplolis-Hastings algorithm to jointly fit the posterior dis-
tributions of each group-level and subject-level parameter. Because there is a
high runtime cost to compute the model’s posterior distribution, we rounded the
information bounds given by samples of @ and k to the nearest 0.1, and each «
to the nearest 0.01, and cached the results. This can only have a negative impact
on the fit of the model and so it could not impact (e.g.) model comparisons in
our model’s favor. We ran two chains of Metropolis-Hastings for 50,000 steps,
with 10,000 steps of burn-in, storing every 10th value to avoid auto-correlation
of samples. We checked for convergence of the chains using the Gelman-Rubin
statistic (A. Gelman & Rubin, 1992), and found in both tasks that # < 1.05 for
all group-level parameters and 7 < 1.1 for all subject-level parameters, indicating
that the chains converged.

Results

To fit model parameters, we assumed that the information bound changes as a
function of time according to a power law B = a - t*, where a and k are free
parameters and t is exposure time in seconds. The other key parameter of the
model is the weighting parameter in the loss function «, capturing the extent
to which false negatives (high «) or false positives (low «) are more costly. To
account for attention lapses and mis-presses, we also included a guessing-rate
parameter, p,, which captured the rate participants chose randomly from the set
of valid alternatives (as opposed to via the model). We fit parameters under a
hierarchical Bayesian model using MCMC, assuming partial pooling of parameter
estimates across participants (see SI).
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The Maximum A Posteriori (MAP) estimates for the group-level parame-
ters were, a = 33.5 (CI=[32.2, 34.6]), k¥ = 0.21 (CI=[0.20, 0.22]), p, = 0.16
(CI=[0.12,0.19]), and o = 0.35 (CI=[0.33,0.37]). This entails information bounds
of 17.9, 22.5, and 28.3 bits at 50ms, 150ms, and 450ms, respectively. The rela-
tively high inferred rate of guessing likely reflects the fact that the model does not
account for spatial errors, treating each cell independently. Figure shows
binned model predictions for accuracy (x-axis) against human performance (y-
axis) across all exposure durations (facets). Comparing the points to the dashed
y = x line reveals that the model’s predictions tightly align with human accuracy
across exposure durations, though the model is slightly biased to over-estimate
human performance at short times (left facet). The correlation between model
predictions and human data across trials grouped by numerosity and exposure
duration was 0.96 (R? = 0.93), another indication that the model provides a good
fit to the data.

Turning to the crucial question of how performance on the change-localization
task was affected by the number of filled cells over time, the model predicts near-
veridical memory for visual displays with small numbers of objects, at longer
exposure durations, and sharply increasing noise for larger numbers of objects
and shorter durations. Figure shows human accuracy (points and error
bars) and the model’s predicted accuracy (lines) as a function of the total number
of cells filled in, grouped by the exposure duration (colors). As predicted by the
model, participants’ performance saturates only for small numerosities at longer
durations and quickly degrades as a function of number in each duration. The
one notable discrepancy is that the model predicted better performance on small
numerosities (n < 4) at 50ms than was actually observed. Figure depicts
accuracy grouped by whether a cell appeared or disappeared from the first to
second display, and shows that participants performed substantially better on
“appear” trials than “disappear” trials — a trend the model captures. The model
would capture this trend even if o were fixed to 0.5, and in fact higher values of «
exaggerate rather than reduce the gap between “appear” and “disappear” trials.

To be clear, the fact that human performance on the change-localization task
is strongly affected by numerosity is not an indication that the visual system

is representing or using number — the experiment was explicitly designed so
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Figure 4.11: (a) Binned (25 bins/facet) model predictions (x-axis) and human data (y-axis) of
performance on the change-localization task. Each facet shows predictions at different exposure
durations. In (b) and (c) model predictions are shown as lines and human data from the change-
localization task are shown as points with bootstrapped 95% confidence intervals. (b) Accuracy
(y-axis) in the change-localization task as a function of the number of grid cells filled (x-axis)
at each exposure duration. (c) Accuracy (y-axis) as a function of number (x-axis) grouped by
whether or not a cell appeared or disappeared from first-to-second presentation.

that number cannot be used as a heuristic. Instead, the effect of numerosity
on performance is an indication that spatial memory is making use of limited
information in an efficient way, combining a prior expectation that there will be
fewer gray pixels than white pixels with evidence gathered by observing the scene.
Additionally, the inability to precisely remember scenes with more filled cells is a
reflection of the fact that there are more ways to arrange scenes with more filled

cells (up to half the number of grid cells), meaning that it takes more information
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to represent any one of them precisely.

4.4 Experiment 2

While Experiment 1 showed that the model is able to account for effects of number
and exposure duration in spatial memory, it does not answer the question of
whether human numerical estimation abilities arise from this same system. If the
patterns of noise and bias in estimation derive from limitations in spatial memory,
then the model of spatial memory should be able to explain the psychophysics of
estimation over time; moreover, we should be able to recover similar parameter
values from the model fit to a numerical estimation task as from the model fit
to a spatial memory task. To test this, we ran a number estimation task with a
design matched to Experiment 1.

Method

The procedure and display was identical to Experiment 1 up to the noise mask.
After the noise mask, however, participants were asked to estimate the number
of cells that were filled. 110 adult participants from Prolific again completed 90
trials, with each number (1-15) paired with duration (50ms, 150ms, 450ms) dis-
played twice. Following the pre-registration, we removed the 10 participants with
the highest mean absolute error in estimation from our analyses and windsorized
estimates to the 95% interval for each numerosity.

Results

We fit the same parameters in the model with the estimation data as with
the change localization task. The MAP group-level parameters were a = 32.9
(CI=[30.9,33.8]), k = 0.18 (CI=[0.17,0.20]), p, = 0.03 (CI=[0.02,0.03]) and
a = 0.31 (CI=[0.29,0.32]). The implied average information bounds are there-
fore 19.2, 23.4, and 28.5 bits at 50ms, 150ms, and 450ms respectively. This is
slightly higher than the estimates derived from the change-localization task data,
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but the differences at each exposure duration are small (< 10%) at each expo-
sure duration. Table provides a side-by-side comparison of the inferred MAP
parameters from both experiments. A notable difference between the inferred
parameters between the two tasks is the guessing rate, which is much lower than
in the change-localization task. As noted previously, however, the relatively high
guessing rate in the change-localization task is likely due to the fact that the model
does not account for spatial errors or mis-presses (only completely random guess-
ing) — this would increase the inferred rate of guessing in the change-localization
task but not the estimation task.

MAP parameters from both experiments
Experiment a k Q Dy
Localization (E1) 33.5 1 0.21 | 0.35 | 0.16
Estimation (E2) 32.9 | 0.18 | 0.31 | 0.03

Table 4.1

The resulting psychophysical curves from the model (lines), along with the
data from the experiment (points and error-bars), are shown in Figure . The
model captures the key psychophysical trends observed in the data: an underesti-
mation bias that diminishes with exposure time; a subitizing range that increases
with exposure time; scalar variability in estimation; and acuity in estimation that
increases with exposure time. The non-zero but flat standard deviation for small
numerosities in reflects influence of guessing — without the guessing pa-
rameter it would show zero variability. The model predictions diverge somewhat
from human performance on small numerosities (n < 4) at 50ms — the model
predicts better performance than is actually observed. An analogous discrepancy
was observed in the change-localization task (also for n < 4 at 50ms), which
makes this deviation less concerning to the validity of our proposal that the two
abilities are intimately related (in fact, it may even bolster this claim).

Following the pre-registration, we compared the model’s Maximum Likelihood
Estimate (MLE) parameters for each subject to a standard psychophysical model
of numerical estimation as well as a modified one that accounts for the effects of
time. The overall log likelihood of the model using MLE estimates of participants’
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Figure 4.12: Model predictions (lines) and data from the estimation experiment (points and
95% CI). (a) Mean estimates as a function of numerosity, grouped by exposure duration. (b)
Standard deviations as a function of numerosity, grouped by exposure duration.

parameters was -14,129. In the first comparison model, we assume that partici-
pants’ estimates are drawn from a Gaussian centered around the number shown,
n, with mean n and standard deviation w - n, where w is a free parameter (their
“Weber fraction”). We also fit a version of this where the standard deviation
could vary as a function of time, such that w = e“o™¢t where wy and w; are fit
and ¢ is time in seconds. The median MLE w fit in the static (non-time-varying)
version was 0.24, with log likelihood -16,166. In the time-varying version, the
median MLE wy was -1.15 and w; was -1.75, giving w’s of 0.29, 0.24, and 0.15 at
50ms, 150ms, and 450ms respectively, and had log likelihood -15,428. The Weber
models thus did not fit nearly as well as our model, with AIC differences of 3,974
and 2,498 (we pre-registered AIC differences of 10 as “significant”).

4.5 Discussion

This chapter presented a novel model of visuospatial memory that captures both
human performance in both a spatial memory task and in a number estimation
task. Crucially, we are able to recover the key properties of numerical cognition in

an entirely non-numerical visual task using a visual model; moreover, the patterns
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of noise and bias in estimation align precisely with the noise inherent to spatial
memory, indicating that the psychophysics of number are attributable to percep-
tual uncertainty rather than number-specific processing. Our results show that
the defining features of numerical cognition can be understood as downstream
consequences of basic visual processing, posing a challenge to theories that as-
sume the psychophysics observed in estimation are the result of number-specific
processing via one or more “number systems.” While there must exist some
number-specific processing—quantity must be extracted from visual memory—
our findings indicate that Weber’s law, subitizing, under-estimation and other
effects observed in numerical estimation are not the direct result of that process-
ing.

It is worth noting that some studies have found a strong relationship between
object-tracking ability, visual memory capacity, and estimation acuity outside
the subitizing range, as predicted by our model (Bugden & Ansari, |2016; Green
& Bavelier, 2003|, 2006; Passolunghi et al., |2015). However, other studies have
found a stronger link between an individual’s visual working memory capacity
and their subitizing range than with their estimation acuity (Piazza et al., 2011;
Revkin et al., 2008), which might seem to contradict predictions of our theory.
Importantly, though, while the model does link both subitizing range and esti-
mation to visuospatial information capacity, differences in information capacity
do not necessarily cause equally large changes to the subitizing range and esti-
mation acuity. Specifically, modulating the information bound tends to affect the
subitizing range substantially more than the (implicit) Weber fraction.

More speculatively, another issue our model may help address is why, despite
our subjectively rich experience of the world, people have such limited ability
to estimate quantities. Models of numerosity discrimination in neural networks
have essentially had to impose strict information bottlenecks — such as using
unsupervised learning and limiting the number of hidden units — to roughly
reach parity with human levels of performance (Stoianov & Zorzi, 2012; Testolin,
Dolfi, et al., [2020; Testolin, Zou, et al., 2020). It is almost certainly the case
that more powerful networks, like those that have reached near human-level per-
formance on object recognition tasks, would significantly out-perform humans on

numerical estimation and discrimination tasks with enough supervised learning.
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One resolution to this issue suggested by our approach is that people’s ability
to extract numerical information about even large quantities is necessarily tied
to their ability to track objects. This is in a way similar to the implicit solution
provided by the neural network models, which only allow linear classifiers to train
on frozen hidden layer representations of the visual scene.

Finally, it is worth highlighting two important limitations of our model and
experiments that leave room for future work. First, the model and experiments
were only designed to capture numerical perception in the domain of vision.
However, innate numerical abilities have been documented in audition, touch,
and across modalities (Barth et al., [2003; Meck & Church, [1983; Plaisier et al.,
2009). Though the model we presented here was designed to deal with spatial
rather than temporal integration, we believe similar principles of information pro-
cessing apply and hence the methods used in this chapter could be adapted to
capture (e.g.) the processing of auditory sequences. The other main limitation
is our use of simplifying assumptions to model spatial memory — specifically, in
discretizing the space so coarsely and in assuming objects to be identical. The
model would thus likely need to be extended to capture, for instance, the influ-
ences of continuous visual features such as surface area, convex hull, and density
on numerosity perception (e.g. Gebuis et al., |2016; Gebuis & Reynvoet, 2012a;
Lourenco, [2015; Lourenco & Longo, 2010, 2011; Sokolowski et al., 2017). In fact,
the methods we employed here may be useful to understanding some of these
effects: since continuous features like surface area are correlated with numerosity
in the real world, principles of efficient information compression dictate that their

representations will not be independent.
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To conclude, I will briefly summarize each chapter and then highlight the main
takeaways of our work, along with some speculation about the broader impli-
cations of our findings. In Chapter 2, we found that numerical estimates are
driven by a serial accumulation process operating over saccades: as participants
fixate on more points, their mean estimates increase and the variance of their es-
timates decreases. In Chapter 3, we found that the discontinuous psychophysics
of small- and large-number estimation can be understood as an optimal repre-
sentation given an information capacity limit, and that varying the amount of
visually available information modulates key properties of a person’s number psy-
chophysics like their subitizing range in a predictable way. In Chapter 4, we found
that the psychophysics of number are largely driven by domain general percep-
tual processing — specifically, uncertainty about where objects are in space —
and that subitizing, Weber’s law, underestimation, and other effects can all be

understood as consequences of a limited capacity to represent objects in space.

What’s in a Weber fraction?

A key takeaway of our work is that numerosity perception cannot be viewed
separately from general perceptual processing. Although “the approximate num-
ber system” has become common parlance, this term suggests the existence of
an insular mechanism devoted to processing quantity, obfuscating the domain-
general perceptual grounding of innate numerical abilities. Hundreds of papers

in the literature describe participants’ performance on numerical discrimination
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and estimation tasks as reflective of “the precision of their ANS” or “the acuity
of their innate number sense.” However, as Chapter 2 shows, numerical estimates
are driven in large part by where one happens to visually fixate, demonstrating
that Weber fractions are neither a static measure nor a simple reflection of one’s
innate number sense. Furthermore, as Chapter 4 shows, the widespread notion
that Weber fractions index the noise inherent to one’s mental number line seems
to be false: the uncertainty in numerical estimates seems to largely derive from
upstream perceptual uncertainty regarding where objects are in space — i.e., not
from noise added independently to representations of numerosity.

To be clear, our results do not suggest that people don’t represent number
— in fact, they support the opposite — or even that people don’t have an in-
nate “number sense.” Instead, they demonstrate that a person’s performance on
an estimation task cannot be simply interpreted as a pure index of their innate
number sense and that accounting for non-numerical factors, such as display time
(Inglis & Gilmore, [2013)), is critical to understanding performance differences be-
tween individuals within and between tasks. Yet, for instance, in a paper entitled
“Developmental changes in number sense acuity,” a display time of 2,500ms was
used for 3-year-olds, 1,200ms for 4-6 year-olds, and 750ms for adults (Halberda
& Feigenson, 2008) — likely distorting observable changes in “number sense acu-
ity” The magnitude of such a distortion may be significant, as this study with
750ms display time for adults found much greater ANS precision (mean w = 0.1)
than in another study using a 200ms display time (Halberda et al. (2008), mean
w = 0.3).

Similarly, the findings presented in Chapter 2 demonstrating a strong link
between visual fixations and numerical estimates suggest that basic visual acuity,
oculomotor control, and attention may be just as important to performance on a
number estimation task as one’s “innate number sense.” The point that perfor-
mance on a number estimation task does not only reflect innate number abilities,
while obvious sounding, is worth emphasizing because there are a number of
poorly controlled studies aimed at investigating links between innate numeri-
cal abilities and mathematical achievement. However, the entire plausibility of
a causal link between innate numerical abilities, as measured by a scalar value

w, and mathematical achievement derives from the assumption that individual
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differences in w reflect differences in number representations rather than, say,

oculomotor control or visuospatial memory capacity.

Does Weber’s law require continuous, analog representations?

Discrimination of many magnitudes —including number, duration, length, and
luminance, among others — follow Weber’s law (or approximately do so). That
is, the ease of discriminating between any two magnitudes depends on their ratio.
It is widely accepted, to the point of being cited as mere fact in many papers and
books, that this is a hallmark of analog magnitude representations. For instance,
in her book The Origin of Concepts, Susan Carey (2009) writes,

A psychophysical signature of analog magnitude representations is
that the discriminability of any two magnitudes is a function of their
ratio; that is, discriminability is in accordance with Weber’s law.

It is true that, under some conditions, discriminability of sensory stimuli will
vary according to Weber’s law. For instance, if magnitudes are compressed onto
a logarithmic scale with constant internal noise, or represented linearly with scalar
noise, this will result in Weber’s law. A log-compression encoding scheme that
produces Weber’s law is illustrated in Figure [5.1]

) Compressed Internal
Magnitude  ----- Representation + Noise
1 _________ » — /\
2 _________ > [ ——— | /\
3 ————————— > [ ————] /\
4 _________ » | ——] /\
o J > /\
I > /\

Figure 5.1: Log-compression of magnitudes with constant internal noise produces Weber’s law.

However, there are two issues with what Carey wrote: 1) continuous, analog
representations do not always produce Weber’s law; and 2) Weber’s law can arise
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from discrete, non-analog representations. On the first point, Weber’s law is not
a necessary result of analog encoding — it arises only from particular compression
and noise schemes. For instance, the noise in representations of texture-density
scale roughly with the square-root of their magnitude (e.g. Anobile et al., 2014}
2016)), which does not give rise to ratio dependence in discrimination. Yet, human
texture-density representations are still considered “analog.”

The second point, which is more important and a departure from conventional
wisdom, is that Weber’s law does not necessarily result from analog or continuous
representations. In the model presented in Chapter 4, probability distributions
over the number of objects present are induced by uncertainty about objects’ lo-
cations in space. In this model, the representations of both objects’ locations and
the number of objects present are discrete and non—analo@ Yet, as Figures
and show, Weber’s law results from this setup because the uncertainty in rep-
resentations of quantity scales linearly with the number of objects. The model
thus demonstrates how noisy beliefs over discrete representations can give rise to
what appears to be analog behavior. To be clear, the model in Chapter 4 does
not specify how numbers are represented, only that perceptual uncertainty about
objects’ spatial locations has the downstream effect of producing Weber’s law in
quantity discrimination. To conclude, then, Carey (and many others) have over-
interpreted the implications of observing Weber’s law in number discrimination:
this does not imply that numerosity is represented as an analog magnitude on a

continuous scale.

What number of number systems is the right number?

A broad theme of the work presented in this thesis is finding common func-
tional and mechanistic origins of number psychophysics that have historically
been treated as separate phenomena. For instance, people’s exact representation
of small sets (Burr et al., 2010; Choo & Franconeri, [2014; Feigenson et al., 2004;
Jevons, |1871; Revkin et al., 2008) but increasingly imprecise representation of
larger sets (Dehaene, 2011; Xu & Spelke, 2000) has been explained as arising

!The representations of numerosity could be analog but they are not necessarily — the
point is that this doesn’t matter.
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from different representational systems (Dehaene, |2011; Feigenson et al., [2004).
However, the model presented in Chapter 3 demonstrates that this discontinuity
is actually an efficient representation of number given a limited information ca-
pacity, suggesting that the discontinuity need not reflect different representational
systems. In addition to this theoretical argument, the empirical finding that the
amount of visually available information (manipulated by exposure time or color
contrast) alters both the subitizing range and the precision of large number rep-
resentations in predictable ways seems hard to explain in a standard two-system
account of numerosity perception.

However, the model in Chapter 3 is in essence a functional-level account ex-
plaining why number psychophysics looks the way it does, rather than a mecha-
nistic one, and so it cannot be used to directly assess whether there are one or
two (or ten or twenty) systems. On the other hand, the model and empirical
results presented in Chapter 4 do have more direct implications for the num-
ber, and nature, of number systems. While the optimization model in Chapter 3
assumes that the visual system aims to minimize estimation error, the optimiza-
tion in Chapter 4 accounts for the fact that numerosity itself cannot be directly
optimized by perception, since the visual system is not directly presented with
quantities — it is presented with objects in space, which must be represented
before being transformed into a quantity estimate. Surprisingly, it turns out that
optimizing memory to accurately remember objects’ locations results in very sim-
ilar predictions about number psychophysics as directly optimizing for numerical
estimation accuracy. For instance, subitizing, Weber’s law, underestimation, and
the temporal dynamics of number psychophysics remain qualitatively the same
in the two cases. But, importantly, the spatial encoding model additionally pre-
dicts that the capacity to remember the locations of objects should significantly
influence (if not entirely determine) the capacity to estimate quantities.

We found that, indeed, the inferred capacity limit for remembering objects’
spatial locations is nearly identical to the inferred capacity limit for numerical
estimation. Moreover, the two capacity limits track very closely over time for
numerosities in the range 1-15 and the model closely fits human data in both
of these tasks. While this could be a (parsimoniously explained) coincidence,

it seems quite unlikely, especially given how plausible the link between the two
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CONCLUSION

abilities is: representing a topographic map of objects in space would seem to
be a prerequisite for estimating their numerosity. How else could numerosity be
directly (rather than indirectly via continuous features) computed? What these
results imply, then, is that number psychophysics in both the small- and large-
number regimes have a common origin in spatial memory; and, while we cannot
say with certainty if there are one or one-hundred number systems, it seems that
the processing that takes place beyond spatial memory does not determine much,
if any, of the core properties of number psychophysics.

To summarize, we are making two claims. First, the fact that a single opti-
mization produces the discontinuous psychophysics of number estimation implies
that observing a discontinuity cannot be used as evidence of two representational
systems. Second, regardless of how many there are, the number systems them-
selves do not seem to be the basis of number psychophysics — those seem to
arise due to a limited capacity to represent objects’ locations in space. However,
we acknowledge that analysis of behavior alone will probably not be sufficient to
conclusively affirm or deny the existence of two representational systems, and a
careful study of the neural systems involved in processing quantity will probably
have a decisive role in the end. The results of neural studies looking at numerical
representations to this point, unfortunately, are mixed (Cai et al., [2021; Ditz
& Nieder, 2016, Hyde & Mou, 2016; Hyde & Spelke, 2011; Nieder & Merten,
2007). It is worth noting, though, that a recent study using a high-resolution
fMRI scanner failed to find topographic differences in small- and large-number
representations in the brain (Cai et al., 2021)).
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