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Abstract Elucidating climatic impacts on stream

nutrient export and stoichiometry will improve the

understanding of forest carbon (C) storage in a warmer

world. We analyzed C, nitrogen (N), and phosphorus

(P) cycles in four watersheds within a rain-snow

transition site and another four within a higher-

elevation, snow-dominated site, in California’s

mixed-conifer zone. We used these two sites in a

space-for-time substitution to assess the potential

warming impacts on nutrient cycles in currently

snow-dominated areas that will become more rain-

dominated. During a non-drought period (water year

(WY) 2004–2011), mean annual stream exports of C

and N in particulate forms at the transition site were

twice that at the snow-dominated site, suggesting

sediment-associated nutrient losses may increase with

warming. The transition site had 12% lower N but

twice P content in mineral horizons, lower N:P mass

ratios in organic horizons, and lower stream export of

dissolved inorganic N than the snow-dominated site.

These differences suggest montane forests may have

lower inputs of available N relative to P with warming.

In addition, given strong interests in forest thinning to
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increase drought resiliency, we examined changes in

stream nutrient export after thinning and during a

major drought period (WY 2013–2015). Stream

exports of C, N, and P were similar between unthinned

and thinned watersheds during drought, suggesting

negligible thinning impacts on stream nutrient export

during excessively dry periods. Taken together, our

results suggest that as the climate warms, California’s

montane forests may lose more nutrients through

erosion and increase their N-P nutritional imbalance.

Keywords Critical zone � Elemental stoichiometry �
Global warming � Sierra Nevada � Soil erosion � Space-

for-time substitution

Introduction

Carbon (C) exchange between the atmosphere and

forest ecosystems has long been measured to evaluate

changes in ecosystem C storage with climate warming

(Ballantyne et al. 2017; Fernández-Martı́nez et al.

2019; Pilegaard and Ibrom 2020). However, forest C

storage does not always follow changes in net

ecosystem C exchange due to other sources of C loss,

such as stream export, that are not accounted for in

these measurements (Lovett et al. 2006). In moun-

tainous areas, warming is known to decrease the

fraction of precipitation as snow and increase input of

energy to the soil surface (Klos et al. 2014; Goulden

and Bales 2014; Dutta and Dutta 2016). Those

warming-induced changes in hydro-meteorological

conditions are expected to alter stream C export by

influencing both water yield and soil C inputs and

mobilization (Meingast et al. 2020). Hence, evaluating

the climatic controls on stream C export in the context

of net ecosystem C exchange is central for improving

our understanding of C storage as the climate contin-

ues to warm in montane forests.

Studies have observed greater annual stream export

of dissolved C in warmer years, driven by increases in

both dissolved C concentration and annual water yield

(e.g., Sebestyen et al. 2009; Leach et al. 2016).

Increased dissolved C concentrations with warming

has been attributed to increased rates of soil organic

matter decomposition (Wang et al. 2013; Ritson et al.

2014; Velthuis et al. 2018). However, changes in

stream export of dissolved C do not always mirror

changes in their concentrations within the stream. For

example, increases in volume-weighted concentra-

tions of dissolved organic C (DOC) between 1980 and

2001 have been observed in boreal forests but

accompanied by unchanged rates of stream C export

(Eimers et al. 2008). This has been attributed to the

predominant influence of unchanged annual water

yield on DOC export. Given inconsistent changes in

annual water yield with warming among sites within a

climatic region (e.g., Null et al. 2010) and across

climatic regions (Creed et al. 2014), it is important to

examine the impact of warming on water yields and

dissolved C concentrations together to help understand

changes in stream C export with warming. Addition-

ally, streams can export C in suspended and bedload

sediments that are naturally derived from bank, splash,

and hillslope erosion, and mass movement from

adjacent upland soils (Leonard et al. 1979; Gomi

et al. 2005). The impact of warming on the export of

sediment-associated C (alternatively called particulate

C) is relatively less studied even though particulate C

export can be greater than dissolved C export (Arg-

erich et al. 2016; Turowski et al. 2016). To gain a more

comprehensive understanding of stream C export with

warming, both particulate and dissolved C export must

be considered.

Change in forest C storage with warming will likely

be constrained by the availability of soil nitrogen

(N) and phosphorus (P; Hungate et al. 2003; Tang et al.

2018; Terrer et al. 2019). A global meta-analysis of

long-term trends in foliar N suggests that terrestrial

rooted plants are experiencing N ‘‘oligotrophication’’

with warming (Craine et al. 2018). For example, based

on long-term measurements in northern hardwood

forests of the United States, lower rates of soil net N

mineralization, soil net nitrification, and dissolved

inorganic N (DIN) export from streams were observed

in warmer years, suggesting N oligotrophication

(Bernal et al. 2012; Durán et al. 2016; Groffman

et al. 2018). Meanwhile, soil P availability is also

expected to change with warming. For instance, in a

global analysis of the impact of mean annual air

temperature, mean annual precipitation, and soil

texture on soil available P pools, Hou et al. (2018)

reported that soil P availability decreased with

increasing temperature in finer textured soils, but

increased with increasing temperature and decreased

with increasing precipitation in coarser textured soil

(sand content[ 50% by weight). Thus, climate
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warming will potentially alter the availability of N and

P in forest soils, indirectly influencing the forest C

cycle.

Montane forests are experiencing more severe and

frequent droughts with increasingly warmer temper-

atures, particularly in the western United States

(Diffenbaugh et al. 2015; Williams et al.

2015, 2020). Stream export of nutrients commonly

decreases under drought due to low water yield and

lower transfer rates of dissolved organic matter and

sediments from forest soils to streams (Stacy et al.

2015; Szkokan-Emilson et al. 2017). However, the

relative degree by which C, N, and P stream exports

change under drought conditions, and the relative role

of different forms (dissolved vs. particulate) of these

nutrients as mechanisms of nutrient export from

forests, are unknown.

In many forests of the western United States, forest

thinning has been implemented to increase the forest

resilience to drought (Agee and Skinner 2005;

D’Amato et al. 2013), which may influence nutrient

losses in streamflow. In years with near-average

precipitation, stream export of dissolved C and N

can be greater in thinned than unthinned watersheds

due to increases in concentrations and runoff (Dung

et al. 2012; Bäumler and Zech 1999; Wang et al.

2006). However, in drought years, influences of

thinning on water yields are often negligible (Saksa

et al. 2017; Bart et al. 2021), which may result in

similar rates of stream export of nutrients between the

thinned and unthinned watersheds. With frequent

drought conditions and increasing forest thinning

(Graham et al. 1999; Agee and Skinner 2005), an

improved understanding of how thinning impacts

stream nutrient export in drought years is essential.

Elevational changes in forest nutrient cycles cap-

ture the climatic effects over decadal to centennial

time scales. They also reflect an integrated response to

a changing climate because air and soil temperatures,

annual precipitation amount, vegetation composition,

and soil properties typically covary along the eleva-

tional gradient (Körner 2007). The Kings River

Experimental Watersheds in California’s Southern

Sierra Nevada consists of two sites in close proximity

along an elevation gradient: a lower-elevation rain-

snow transition site and a higher-elevation snow-

dominated site. Because of the observed shift from

snow-dominated to rain-dominated regimes with

warming (Clifton et al. 2018), comparing these two

sites can provide insights into long-term warming

effects on nutrient cycles (Williams et al. 2011).

Watersheds in those two sites were also selectively

thinned in 2012. This occurrence coincided with the

onset of a severe drought in California (2012–2016),

providing an opportunity to study the impact of

drought and forest thinning on stream nutrient export.

Our research questions were:

1. What is the proportion of stream nutrient export in

particulate versus dissolved form, and does this

vary between the two sites prior to drought and

thinning?

2. How different are nutrient pools in plants and

soils, and stoichiometric ratios in soils and stream

water between the two sites prior to drought and

thinning?

3. How does stream export of nutrients change under

drought alone (in unthinned watersheds) and with

drought combined with thinning (in thinned

watersheds)?

Materials and methods

Site description

The Kings River Experimental Watersheds (KREW)

is a long-term research area established by the United

States Department of Agriculture, Forest Service. It

consists of two sites, each with four watersheds (zero-

and first-order), and both located on the western slope

of the southern Sierra Nevada, California: a rain-snow

transition site (37� 3.1200 N, 119� 12.1960 W, 35–60%

of precipitation as snow) and a snow-dominated site

(36� 58.6310 N, 119� 4.9170 W, 75–90% of precipi-

tation as snow, Fig. 1). The rain-snow transition site

has an elevation of 1485–2115 m, and the snow-

dominated site has an elevation of 2050–2490 m

(Table 1). Both sites experience a Mediterranean-type

climate, with an average of 90% of the annual

precipitation occurring between October and June

(Safeeq and Hunsaker 2016). Soils at both sites are

derived primarily from granitoid parent materials.

They are classified as coarse-loamy, mixed, superac-

tive, mesic Humic Dystroxerepts at the transition site

and mixed, frigid Dystric Xeropsamments at the snow-

dominated site (Johnson et al. 2011). Overstory

vegetation at the transition site is dominated by white
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fir (Abies concolor (Gordon) Lindl. ex Hildebr.) and

incense cedar (Calocedrus decurrens (Torr.) Florin)

based on the proportion of the total stand basal area

(Table 1). Overstory vegetation at the snow-domi-

nated site is dominated by red fir (Abies magnifica A.

Murray bis) and white fir (Lydersen et al. 2019).

In summer and fall 2012, thinning treatments were

applied in two watersheds each at the transition (P301,

D102) and snow-dominated sites (B201, B204).

Prescribed burns were applied to two watersheds at

the transition site in 2016 (P301 and P303) and two

watersheds at the snow-dominated site in 2013 (B203

and B204) to ultimately generate a thin only, burn

only, thin and burn, and control watershed at each site.

The burned watersheds were excluded from this study

because stream nutrient concentrations were not

measured after water year (WY) 2015; however, the

delayed application of the prescribed burns at the

transition site allowed us to include the P301 water-

shed as an additional thin only treatment, and the P303

watershed as an additional control during the study

period of WY 2004–2015 (Table 1). The snow-

dominated site had one watershed as a control

(T003). Experimental treatments were assigned based

Fig. 1 Location of eight watersheds at the rain-snow transition

and snow-dominated sites at the Kings River Experimental

Watersheds. The map shows the elevation designated by green

to orange colors, denoting low to high elevations, respectively.

Atmospheric nitrogen deposition (star symbol; National Atmo-

spheric Deposition Program) and ecosystem carbon exchange

rates (tree symbol; eddy flux) were measured at the rain-snow

transition site. Forest thinning was applied in 2012 to two

watersheds at each site (B201 and B204 at the snow-dominated

site and P301 and D102 at the transition site). Prescribed burns

were applied to two watersheds at the snow-dominated site

(B203 and B204) in 2013 and two watersheds at the transition

site (P301 and P303) in 2016. The delayed application of the

prescribed burns within the ‘‘thin and burn’’ and ‘‘burn only’’

treatments at the transition site allowed us to include the P301

watershed as an additional ‘‘thin only’’ treatment and the P303

watershed as an additional control in the analysis of data from

water year 2003–2015
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on forest conditions and habitat for wildlife species of

concern (Lydersen et al. 2019). Thinning treatments in

mature stands were conventional timber harvest (i.e.,

chainsaw-felling, slash left in the stand, logs skidded

to a landing) that removed trees across all diameter

classes to a target basal area of 27–55 m2 ha-1 (target

basal areas varied by predetermined aspect and

topographic position classes; Lydersen et al. 2019).

California black oak (Quercus kelloggii Newb.), sugar

pine (Pinus lambertiana Douglas), and ponderosa pine

were retained preferentially. Trees removed from US

National Forest land had a maximum Diameter at

Breast Height (DBH, * 1.4 m) of 76 cm, but some

trees up to a DBH of 117 cm were cut on a portion of

privately owned land within the thinned watersheds at

the transition site. Thinning treatments in young (\ 30

years old) and even-aged stands were precommercial,

and shrub cover was reduced to below 10% by

mastication in stands with shrub cover[ 50%.

Approximately 10–25% of the area planned for

thinning (or mastication) within thinned watersheds

was excluded from operation due to slope steepness

(generally[ 30% slope) and lack of existing roads

(especially in D102).

From 2012 to 2016, California experienced a

historic multi-year drought, with near-record low

precipitation combined with above-average tempera-

tures (Diaz and Wahl 2015; Robeson 2015). Compar-

ing the climatic conditions during the drought period

(WY 2013–2015) to the non-drought period (WY

2004–2011) at KREW, mean annual temperature

(± standard deviation, SD) increased from 9.4 ± 0.7

to 10.6 ± 0.6 �C at the transition site, and from

7.1 ± 0.6 to 8.1 ± 0.5 �C at the snow-dominated site

(Hunsaker and Safeeq 2018; Yang et al. 2021). Mean

annual precipitation decreased from 1438 ± 516 to

755 ± 192 mm year-1 at the transition site, and from

1450 ± 510 to 809 ± 189 mm year-1 at the snow-

dominated site (Hunsaker and Safeeq 2018; Yang et al.

2021). The drought also contributed to extensive forest

mortality at KREW, ranging from a 12–44% reduction

in tree basal area observed across the eight watersheds

(Lydersen et al. 2019).

Table 1 Mean elevation, watershed area, and tree composition in the eight watersheds at the Kings River Experimental Watersheds

(watersheds ordered from the highest to the lowest elevation)

Site Watershed Mean

elevation,

m

Area,

ha

Species composition prior to drought

and thinning, % basal area

Treatment assignment during a drought

period (water year 2013–2015)

Snow-

dominated

B203 2373 138 78% ABMA, 15% ABCO, 3% PICO,

3% PIJE and PIPO, 1% PILA

Not used due to a burn treatment in

2013

B204 2365 167 93% ABMA, 6% ABCO, 1% PILA Not used due to a burn treatment in

2013

T003 2289 228 52% ABCO, 42% ABMA, 3% PILA,

2% CADE

Control

B201 2257 53 57% ABMA, 22% ABCO, 11% PILA,

10% PICO

Thinned

Rain-snow

transition

P301 1979 99 46% ABCO, 29% CADE, 23% PILA,

2% PIJE and PIPO

Thinned

P303 1905 132 51% ABCO, 42% CADE, 7% PILA Control

P304 1899 49 49% ABCO, 33% CADE, 18% PILA Control

D102 1782 121 33% CADE, 30% ABCO, 22% PILA,

13% PIJE and PIPO, 2% QUKE

Thinned

Percent species composition by basal area represented the pretreatment conditions for trees C 1 cm diameter at breast height

(* 1.4 m). Species codes are ABCO, white fir (Abies concolor (Gordon) Lindl. ex Hildebr.); ABMA, red fir (Abies magnifica A.

Murray bis); CADE, incense cedar (Calocedrus decurrens (Torr.) Florin); PICO, lodgepole pine (Pinus contorta Loudon ssp.

murrayana (Grev. & Balf.) Critchf.); PILA, sugar pine (Pinus lambertiana Douglas); PIJE, Jeffrey pine (Pinus jeffreyi Balf.); PIPO,

ponderosa pine (Pinus ponderosa Douglas ex C. Lawson); QUKE, black oak (Quercus velutina Lam.). Treatment assignment is

shown for the six of the eight watersheds used to examine the impact of drought and thinning on stream nutrient export
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Atmospheric nutrient inputs

We acquired the net ecosystem C exchange (NEE)

measured every half hour in years prior to drought and

thinning (WY 2010–2012) from the eddy covariance

flux tower at the transition site (https://www.ess.uci.

edu/*california/; Fig. 1). Ecosystem respiration (ER)

was determined as the y-intercept of a linear fit to the

half-hour NEEs during turbulent periods where

incoming solar radiation was less than 200 W m-2.

The half-hour gross ecosystem C exchange (GEE) was

calculated as the difference between observed NEE

and ER. Gross primary production (GPP) and net

ecosystem production (NEP) were the annual cumu-

lative GEE and NEE, respectively (Goulden et al.

2012; Kelly 2014). We reported the pre-drought GPP

and NEP by averaging annual values in WY

2010–2012. Net ecosystem C exchange was not

measured at the snow-dominated site. However,

annual rates of GPP and ER were correlated to ele-

vation based on the eddy covariance measurements at

the transition site and three additional elevation sites

on the same western slope of southern Sierra Nevada

(Supplementary Fig. S1). Hence, we estimated the

annual rates of GPP and ER at the snow-dominated

site based on regression equations between these

variables as a function of elevation and the mean

elevation of that site (2320 m). At the snow-domi-

nated site in years prior to drought and thinning, the

estimated mean annual GPP and ER were 9452 and

2631 kg ha-1 year-1, respectively, resulting in a

mean annual NEP of 6821 kg ha-1 year-1.

The annual rate of total atmospheric N deposition in

years before drought and thinning (WY 2009–2012)

was acquired from the National Atmospheric Depo-

sition Program (http://nadp.slh.wisc.edu/committees/

tdep/tdepmaps/) using coordinates of the two sites.

Atmospheric dry deposition of P was measured by

collecting dust samples at the transition site in summer

2014 using passive collectors (Aciego et al. 2017).

Annual rate of total P deposition was then calculated

as 1.6 times the dry deposition rate based on mea-

surements at a similar elevation in the Sierra Nevada,

68 km away (i.e., the Lower Kaweah monitoring sta-

tion at 1905 m, Vicars and Sickman 2011). We

assumed the snow-dominated site and the transition

site had similar rates of atmospheric P deposition, as

atmospheric P deposition was similar at another two

mixed-conifer sites along the western slopes of the

Sierra Nevada (approximately 0.15 kg ha-1 year-1,

Jassby et al. 1994; Vicars and Sickman 2011).

Stream nutrient export in dissolved forms

Stream water grab samples were collected manually

every two weeks in each watershed from the two sites

in years prior to drought and thinning (WY

2004–2011) and in years during drought and after

thinning (WY 2013–2015), with one sample from each

month used for chemical analyses and the other for

archiving. Concentrations of dissolved inorganic N

(DIN) and dissolved inorganic P (DIP, orthophos-

phate) were determined for samples collected in all

watersheds at the Forest Service’s Riverside Fire

Sciences Laboratory, Riverside, California. We

acquired concentrations of DIN and DIP in those

years from Hunsaker and Padgett (2019). Concentra-

tions of total dissolved N (TDN) and DOC were

determined for samples collected in all watersheds in

WY 2009 and 2010, and six watersheds in WY

2013–2015 (Table 1). We acquired these datasets from

Yang et al. (2021), and calculated DON concentration

by subtracting DIN from TDN.

Concentrations of dissolved inorganic C (DIC)

were not measured. We estimated DIC concentrations

using measured DOC concentrations and the equation:

[DIC mg L-1] = - 0.38*[DOC mg L-1] ? 10.03

(n = 740, p\ 0.01, R2 = 0.15). We developed this

equation based on the measured concentrations of

stream DIC and DOC in Santa Catalina Mountains in

Arizona, USA from WY 2010–2017 (Chorover et al.

2020), where the streams drained granitoid watersheds

similar to those within the KREW. From the Santa

Catalina dataset, we chose 740 observations with DOC

concentrations ranging from 1 to 10 mg L-1, similar

to the range of DOC concentrations from our sites

(Yang et al. 2021). Concentrations of DOP were not

measured; hence, we estimated DOP to be one-third of

DIP concentrations, based on a study of 20 streams

(second- and third-order streams) in California’s

Central Valley derived from the headwater basins

(zero- and first-order streams) in the Sierra (Sobota

et al. 2011). Stream discharge rates (L s-1) were

measured in all watersheds, using a combination of

nested flumes and weirs (Hunsaker et al. 2012; Safeeq

and Hunsaker 2016). We calculated the annual stream

export of each dissolved solute by multiplying the

concentration by the monthly discharge rate (weighted
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by watershed area, mm year-1), and then summed

these values for each water year, for each watershed.

Stream nutrient export in particulate forms

Particulate materials (i.e., suspended and bedload

sediments) were collected in each watershed from the

two sites in years prior to drought and thinning (WY

2005–2011) and in years during drought and after

thinning (WY 2013–2015). Suspended sediments

were measured using a combination of bi-weekly

manual and automated sampling methods (Teledyne

ISCO, Lincoln, NE, USA), with the latter triggered by

a combination of stage and turbidity thresholds

periodically adjusted to account for seasonal variation

of the water table; thresholds were higher in winter and

lower in summer. Water samples were processed for

suspended sediment concentration (mg L-1) using

vacuum filtration with 1 lm glass fiber filters (Hun-

saker 2007). Bedload sediments, including coarse

mineral material ([ 2 mm) and fine organic matter

(\ 2 mm), were captured in settling ponds constructed

downstream from the water discharge measurements

once a year. Bulk bedload sediments were then dried

and weighed in the laboratory. Multivariate suspended

sediment concentration–discharge rating curves for

each watershed (adjusted R2 between 0.53, [n = 71,

watershed P301] and 0.75 [n = 86, watershed T003])

were applied to create a continuous record of sediment

flux to calculate annual sediment yields (Safeeq et al.

2018).

We acquired concentrations of particulate C (PC)

and particulate N (PN) in years prior to drought and

thinning (WY 2005–2011) using the measurements of

bedload sediments from Stacy et al. (2015). Concen-

trations of PC and PN were not measured in years

during drought and after thinning (WY 2013–2015).

We estimated concentrations (%) in unthinned water-

sheds in years during the drought period using the

measured annual discharge rate (mm year-1) and the

linear relationships between discharge rate and con-

centrations based on the pre-disturbance dataset

(n = 7 water years) for each site (the transition site:

[PC] = - 0.0106*[annual discharge] ? 12.7780

(p\ 0.01, R2 = 0.78), [PN] = - 0.0004*[annual

discharge] ? 0.5157 (p = 0.02, R2 = 0.71); the

snow-dominated site: [PC] = - 0.0067*[annual dis-

charge] ? 12.1730 (p = 0.04, R2 = 0.62),

[PN] = - 0.0003*[annual discharge] ? 0.5290

(p = 0.08, R2 = 0.48)). Concentrations of particulate

P (PP) were not measured in this study and were

estimated as two times the DIP concentrations on a

volumetric basis (mg L-1; based on the study of 20

streams in California’s Central Valley, Sobota et al.

2011). We calculated the annual stream exports for PC

and PN by multiplying concentration by the annual

sediment yield (kg ha-1 year-1) in the eight water-

sheds in those years. Annual stream export of PP was

calculated using the estimated concentrations (mg

L-1) multiplied by annual discharge rate (weighted by

watershed area, mm year-1) in years prior to drought

and thinning (WY 2004–2011).

Nutrient concentrations and pools in tree biomass

Tree survey plots (10 m 9 20 m) were established in

the upland of each watershed within the two sites

based on the stream length and watershed size,

resulting in 10–20 plots per watershed (Dolanc and

Hunsaker 2017). Within each plot, all live trees with

diameters[ 1 cm at DBH were measured and iden-

tified for species annually from 2003 to 2006 prior to

drought and thinning (Dolanc and Hunsaker 2017).

Total aboveground biomass (AGB) was calculated

using species-specific allometric equations (Matchett

et al. 2015) based on the DBH measured for the eight

main species (Table 1). Biomass of foliage, branches,

stem bark, stem wood, coarse roots, and fine roots

were then calculated based on their proportions to

AGB developed for each species (Jenkins et al. 2003

for aboveground components and Chojnacky et al.

2014 for coarse and fine roots).

We collected fully developed leaves from 6 to 12

individuals (i.e.,field replicates)of fourspecies foundat

our research sites (i.e., black oak, Jeffrey pine, pon-

derosa pine, and lodgepole pine; Barnes 2020). Green

leaves were collected from the outer, sunlit portion of

theupper thirdcrownofeachindividualandcomposited

to measure C concentration using dry combustion in an

elemental analyzer (Costech Analytical ECS 4010

Elemental Analyzer, Costech Analytical Technologies,

Inc., Valencia, CA). Concentrations of N and P in

composite samples were measured using the Kjeldahl

digestion with a Lachat AE Flow Injection Auto

Analyzer (Methods 13-107-06-2-D and 13-115-01-1-

B, Lachat Instruments, Inc., Milwaukee, WI, USA). We

did not sample green leaves for incense cedar, sugar

pine, white fir and red fir. Hence, we used foliar
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concentrations of C, N, and P reported from the

literature for theseunmeasuredspecies (Supplementary

Table S1). Woody components were not sampled for

determining nutrient concentrations. We considered C

concentrations tobe50%inallwoodycomponentsofall

tree species (Fahey et al. 2005), and used N and P

concentrations in these tree components from the

literature (Supplementary Table S1). Nitrogen and P

concentrations in woody components without actual

measurements or that were unavailable from the

literature were estimated as the mean value of available

conifer species for each component. Nutrient pools in

tree biomass were estimated by multiplying nutrient

concentrations of biomass components by the mass of

these components. We summed the nutrient content of

all trees within a plot, and averaged plots for each

watershed (kg ha-1). Mean annual nutrient pool in tree

biomass was reported as the average value of four

watersheds over the four years for each site.

Nutrient concentrations and pools in soils

Quantitative soil pits (7–12 per watershed based on

area) were excavated at the two sites in 2004 prior to

drought and thinning. At each soil pit, surficial organic

horizons (i.e., O) were collected in paper bags using a

ring (0.0638 m2), and mineral horizons were sampled

down to 1 m depth. Soils in organic horizons were

measured for mass and concentrations of total N and

total P. Soils in mineral horizons\ 2 mm were

measured for mass, concentrations of total C, total

N, and Bray-extractable P (2 g soil in 20 mL of 0.5 M

HCl plus 1 M NH4F, Johnson et al. 2011). Concen-

trations of total C and total N were analyzed using a

dry combustion C and N analyzer (LECO, St. Joseph,

MI). Bray-P concentrations were analyzed colorimet-

rically on a Gilford Stasar III, Visible Spectropho-

tometer. We did not measure total C concentrations in

organic horizons from the soil pits; instead, we used

concentrations measured in 2011 for pool calculations

(Stacy et al. 2015), where total C concentrations in

organic horizons were measured in one watershed at

the transition site (P303) and one watershed at the

snow-dominated site (B203).

Analyses of datasets prior to drought and thinning

We compared stream nutrient export, nutrient pools in

tree biomass and soils, and nutrient stoichiometric

ratios between the two sites to provide insights of

potential warming effects, using measurements in

years prior to drought and thinning (WY 2004–2011).

We calculated the mean and SD of annual stream

export for nutrients in dissolved and particulate forms

(i.e., DOC, DIC, PC, DON, DIN, PN, DOP, DIP, PP)

using a Monte Carlo simulation. Briefly, at each site,

we randomly sampled one value of annual stream

export across four watersheds and in different years

for 1000 iterations, and then calculated the mean and

SD. The mean annual export of total C, N, and P were

calculated as the sum of its components (i.e., dissolved

organic, dissolved inorganic, particulate), and errors

were propagated assuming that they were independent

and normally distributed (Taylor 1997). Next, we

calculated the stoichiometric mass ratios of C, N, and

P in organic horizons, mineral horizons, and stream

water in each watershed. We compared these values

between the two sites using two-sample t-tests, with

watersheds serving as replicates.

Data analyses for studying the impact of drought

and forest thinning

We examined the impacts of drought alone and

drought combined with thinning on stream export of

measured nutrients, including DOC, DON, DIN, DIP,

PC, and PN. We grouped the two sites for these

analyses because of the limited replicates: one control

and one thinned watersheds at the snow-dominated

site and two control and two thinned watersheds at the

transition site. To examine the impact of drought

alone, we compared annual stream export of nutrients

in control watersheds (i.e., P303, P304, T003) in years

prior to drought (WY 2004–2011) to those during the

drought period (WY 2013–2015). We used two-

sample t-tests to identify the differences in annual

export between pre-drought and drought periods, with

watersheds across years within each period serving as

replicates. To examine the impact of drought com-

bined with thinning on stream nutrient export, we used

a Before-After-Control-Impact framework in linear

mixed-effects models (BACI; Smith 2014). This

framework compared differences between the control

and thinned watersheds during the drought period after

‘‘normalizing’’ these differences prior to drought and

thinning. Briefly, the class variables CI (Control for

three control watersheds and Impact for three thinned

watersheds, Table 1) and BA (Before for WY
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2004–2011 and After for WY 2013–2015) and their

interaction term (CI 9 BA) were included as fixed

effects, while the actual watersheds and water years

were random effects. A significant interaction term

implies changes in stream export of nutrients occur in

the thinned watersheds but not in the control

watersheds.

For statistical comparisons above, all values were

log-transformed to meet the assumption of normality

and homoscedasticity of the residuals. All statistical

analyses were conducted in SAS 9.4 (SAS Institute,

Inc. 2013). We used an a priori alpha level of 0.10 to

evaluate statistical significance because of the great

variation typically found in field studies (Amrhein

et al. 2019).

Results

Stream export of C, N, and P prior to drought

and thinning

Stream export of total C was similar at the transition

and snow-dominated sites, with respective fluxes of

89 ± 32 and 98 ± 11 kg ha-1 year-1 (mean and SD

of Monte Carlo simulation) corresponding to 1% of

the NEP at each site (Fig. 2a). The proportion of PC to

total C stream export at the transition site was twice

that at the snow-dominated site, with respective fluxes

of 52 ± 31 and 26 ± 9 kg ha-1 year-1 (58% and

27%) as PC, 23 ± 4 and 52 ± 5 kg ha-1 year-1

(26% and 53%) as DIC, and 14 ± 3 and

20 ± 3 kg ha-1 year-1 (16% and 20%) as DOC.

Stream export of total N was greater at the

transition site than the snow-dominated site, with

respective fluxes of 3.2 ± 1.5 and

1.6 ± 0.4 kg ha-1 year-1 corresponding to 40% and

21% of atmospheric N deposition, respectively

(Fig. 2b). At both sites, approximately two-thirds of

total N stream export was as PN. Fluxes for the

transition and snow-dominated sites were 2.1 ± 1.4

and 1.0 ± 0.3 kg ha-1 year-1 (66% and 63%) as PN,

1.0 ± 0.5 and 0.4 ± 0.1 kg ha-1 year-1 (31% and

25%) as DON, and 0.1 ± 0.0 and 0.2 ± 0.1 kg ha-1 -

year-1 (3% and 12%) as DIN.

Stream export of total P was similar at the transition

and snow-dominated sites, with respective fluxes of

0.22 ± 0.06 and 0.19 ± 0.03 kg ha-1 year-1, com-

parable to atmospheric P deposition (0.17 kg ha-1 -

year-1 at both sites; Fig. 2c). At both sites,

approximately 60% of total P stream export was as

PP. Fluxes for the transition and snow-dominated sites

were 0.13 ± 0.05 and 0.11 ± 0.03 kg ha-1 year-1

(60% and 58%) as PP, 0.07 ± 0.03 and

0.06 ± 0.01 kg ha-1 yr-1 (32% at both sites) as

DIP, and 0.02 ± 0.01 and 0.02 ± 0.00 kg ha-1 -

year-1 (8% and 10%) as DOP.

Nutrient pools and stoichiometric ratios prior to

drought and thinning.

Fig. 2 Potential climatic impact (comparison of snow-domi-

nated site vs. rain-snow transition site) on atmospheric input and

stream export for a carbon (C), b nitrogen (N), and c phosphorus

(P) at the Kings River Experimental Watersheds. Stream export

of nutrients were reported in forms of dissolved organic,

dissolved inorganic, and particulate. Based on Monte Carlo

simulations, the transition site had similar export of total C and P

but twice the export of total N in stream water compared to the

snow-dominated site. Error bars for stream nutrient export were

standard deviations of 1000 iterations of annual export

averaging four watersheds at each site using Monte Carlo

simulations. Error bars for net ecosystem C exchange and

atmospheric N deposition were standard deviations of three

water years (WY 2010–2012, see methods for details).

Atmospheric P deposition was only available in one water year

(WY 2014)
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The tree biomass C pool was 39% less at the

transition versus snow-dominated site, with respective

values of 100.4 ± 20.9 and 160.8 ± 56.5 Mg ha-1

(mean annual value and SD of four years, Fig. 3a,

p = 0.09). Tree biomass N pool was similar between

the two sites (p = 0.22), and tree biomass P pool was

50% lower at the transition versus snow-dominated

site (p = 0.01; Fig. 3b and c). The total N pool in

mineral horizons was 12% lower at the transition than

snow-dominated site, with respective values of

5.77 ± 0.61 and 6.57 ± 0.53 Mg ha-1 (mean value

and SD of four watersheds, p = 0.09, Fig. 3b). Bray-P

pool in mineral horizons was 103% greater at the

transition site than at the snow-dominated site, with

respective values of 0.27 ± 0.03 and

0.11 ± 0.03 Mg ha-1 (p = 0.01, Fig. 3c). The two

sites had similar amounts of total C, total N, and total P

in organic horizons and similar amounts of total C in

mineral horizons (p C 0.11, Fig. 3).

Nutrient stoichiometric mass ratio in soils and

stream water varied between the two sites. The

transition site had lower ratios of total N:total P in

organic horizons, total C:Bray-P, and total N:Bray-P

in mineral horizons, and DIN:DIP in stream water than

the snow-dominated site (p B 0.03, Table 2). The two

sites had similar ratios of total C:total N in mineral

horizons, and DOC:DON, TDN:TDP, and PC: PN in

stream water (p C 0.17).

Nutrient fluxes under drought and after thinning

Comparing a drought with a non-drought period,

stream export in control (not thinned) was approxi-

mately 89% lower for DOC, PC, and PN (, p\ 0.01

for all three nutrients), and 78% lower for DON and

DIN (p = 0.07 for DON and p\ 0.01 for DIN, Fig. 4).

However, stream export of DIP was similar prior to

and during the drought period in control watersheds

(p = 0.15, Fig. 4d). During drought, stream exports of

DOC, DON, DIN, DIP, PC, and PN from control

watersheds were similar to those observed from the

thinned watershed, based on the BACI analysis

(p C 0.43, Supplementary Fig. S2).

Discussion

Importance of sediment export to stream nutrient

losses

Large fractions of total C, total N, and total P in stream

export were in particulate forms prior to drought and

thinning (43%, 65%, and 58% averaging two sites,

respectively), suggesting that sediment export con-

tributes significant amounts to forest nutrient losses.

The mixed-conifer forests in the Sierra Nevada

experience a Mediterranean-type climate with little

Fig. 3 Potential climatic impact (comparison of snow-domi-

nated site vs. rain-snow transition site) on tree biomass and soil

contents of a carbon (C), b nitrogen (N), and c phosphorus (P) at

the Kings River Experimental Watersheds. Based on two-

sample t-tests with watersheds serving as replicates, the

transition site had lower biomass contents of total C

(p = 0.09) and P (p = 0.01), lower mineral soil contents of total

N (p = 0.09), and greater mineral soil contents of Bray-P

(p = 0.01) compared to the snow-dominated site. Error bars for

tree nutrient contents were standard deviations of four

watersheds and four sampling years (year 2003–2006) at each

site. Error bars for soil nutrient contents were standard

deviations of four watersheds at each site; soil measurements

only occurred in year 2004. Phosphorus concentration was

measured as total P in the organic horizon and Bray-extractable P

in the mineral horizons (2 g soil in 20 mL of 0.5 M HCl plus

1 M NH4F, Johnson et al. 2011)
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precipitation during the summer months, resulting in

warm and dry soils. This antecedent dry condition

before infrequent and often intense precipitation

events during the winter season pose a high risk of

erosive events and flooding (Zuazo et al. 2006;

Panagos et al. 2015). However, in the subalpine/alpine

forests in the Sierra (Sickman et al. 2001), stream

export of PN was\ 15% of total N export, much

lower than proportions at our sites (66% at the

transition site and 63% at the snow-dominated site).

The lower amount of PN in stream water reported by

Sickman et al. (2001) compared to our values can be

attributed to lower erosion rates at higher elevations

with bare-rock landscapes (Aciego et al. 2017). In

most mature and intact temperate forests, particulate

nutrients are commonly a small fraction of the total

stream export (e.g., 30% for C, Argerich et al. 2016;

36% for N, Vanderbilt et al. 2003; 33% for P,

Kunimatsu et al. 2001). Bormann et al. (1974)

concluded that sediment export is negligible in intact

and mature humid forests mainly because of the biotic

protection during water flows. Unlike temperate

forests in relatively humid regions, soil erosion has

long been recognized as an important issue in forests

in Mediterranean-climate regions (Ruiz et al. 2021).

Our study emphasizes that nutrient loss by soil erosion

may exceed that in water-soluble forms in mountain

forests with a Mediterranean-type climate.

Stream export of particulate and dissolved

nutrients with warming

We observed stream export of PC and PN at the

transition site to be twice that at the snow-dominated

site prior to drought and thinning (Fig. 2), suggesting

that C and N losses through sediment export may be

amplified with warming. The greater exports of PC

and PN at our warmer, transition site were driven by

the higher annual sediment yield (Supplementary

Fig. S3b, c); concentrations of PC and PN in stream

Fig. 4 Drought impact on annual stream exports of a DOC

(dissolved organic carbon), b DON (dissolved organic nitro-

gen), c DIN (dissolved inorganic nitrogen), d DIP (dissolved

inorganic phosphorus), e PC (particulate carbon), and f PN

(particulate nitrogen) in control watersheds (unthinned) at the

Kings River Experimental Watersheds. Differences in annual

stream export of nutrients between pre-drought (water year

(WY) 2004–2011) and drought periods (WY 2013–2015) were

examined using two-sample t-tests with measurements in

control watersheds (i.e., P303, P304, T003) across water years

within each period serving as replicates (indicated by p values

and percent change, if significant, within each panel). Error bars

were standard errors of three watersheds within each water year
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water were similar between the two sites (Supple-

mentary Fig. S3h, i). In subalpine forests in Switzer-

land, warming-induced increases in annual sediment

yield have been attributed to increases in both water

yield and sediment availability (Micheletti and Lane

2016), and increases in sediment availability alone

(Costa et al. 2018). In the Sierra Nevada, the annual

water yield was lower at the warmer, transition site in

all water years (Supplementary Fig. S3a), likely due to

reduced snowpack and higher evapotranspiration rates

under a warmer condition (Berghuijs et al. 2014;

Goulden and Bales 2014). Thus, the higher sediment

yield at our warmer, transition site, mainly in wet

years, was driven by increases in sediment availability

alone (Supplementary Fig. S4c, S4d); Warming will

likely enhance erosion rates by amplifying wet-dry

cycles and flooding events (Goudie 2006; Rodeghiero

et al. 2011; Swain et al. 2018). In relatively humid

forests, increases in sediment export of nutrients with

warming have also been projected to accompany

increases in the frequency and magnitude of large

storm events, which transport disproportionate

amounts of sediments into streams (e.g., the Catskill

Mountains in New York, Mukundan et al. 2020).

Whether the forest is limited by moisture seasonally or

not, sediment availability and sediment-associated

nutrient losses will likely increase with warmer

temperatures and similar annual precipitations.

Differences in stream export of dissolved nutrients

between our two sites prior to drought and thinning

may indicate a mixed hydrological and biogeochem-

ical processes response to warming. Annual stream

export of DOC was 30% lower at the transition than

snow-dominated site (Fig. 2), which was driven by the

lower annual water yield offsetting higher volume-

weighted DOC concentrations (Supplementary

Fig. S3a and d). The lower annual water yield at the

warmer, transition site also offset the higher volume-

weighted DIP concentrations found at this site (Sup-

plementary Fig. S3g), resulting in similar stream

exports of DIP between the two sites. However, the

lower annual water yield at the transition site accom-

panied 19% lower volume-weighted DIN concentra-

tions, resulted in 50% lower stream DIN export from

the transition site than from the snow-dominated site

(Supplementary Fig. S3c, f). These observations

suggest that stream export of dissolved nutrients may

decrease with warming in Mediterranean-climate

regions mainly because of longer growing seasons

and thus greater evapotranspiration and reduced water

yield. In contrast, in relatively humid forests, increases

in annual stream export of dissolved nutrients are often

observed and projected with warming (Morales-Marı́n

et al. 2018; Mukundan et al. 2020; Shogren et al.

2020). This has been attributed to no change or

moderate increases in annual water yield associated

with marked increases in dissolved nutrient concen-

trations. We observed stream export of DON at the

transition site to be twice that at the snow-dominated

site, which was driven by the substantially higher

volume-weighted DON concentration at the transition

site observed in a single water year (Supplementary

Fig. S3e). Overall, changes in annual water yield and

dissolved nutrient concentrations are both important to

total nutrient export via streamflow with warming.

Based on our study, a climatic impact on total C

losses through stream export is not a major concern

regarding forest C storage in the Sierra Nevada, as

stream export of total C was only approximately 1% of

the NEP at both sites (Fig. 2a). The high NEPs

measured at our mixed-conifer zone were because of

year-round photosynthesis with relatively high nutri-

ent availability and adequate supplies of stored water

in soils (Kelly and Goulden 2016; Klos et al. 2018). A

low proportion of stream C export to NEP has also

been observed at H.J. Andrews Forests in Oregon

(approximately 6%, Argerich et al. 2016); stream C

export at the Andrews was comparable to the values at

the snow-dominated site of our region (114 vs.

98 kg ha-1 year-1, sum of DOC, DIC, and PC). In

contrast, stream export of total C can reach nearly half

of NEP in boreal forests where the cold climate limits

net primary production (18 vs. 41 kg ha-1 year-1,

Leach et al. 2016). Thus, in non temperature-limited

forests (e.g., Mediterranean and temperate), C losses

from stream export are not a major component of the

overall ecosystem C budget. However, it is still

important to characterize stream C export in these

forests to clarify their contributions to the global C

budget, as stream C exports at our sites were more than

half of the global mean terrestrial NEP (143 kg ha-1 -

year-1, Koffi et al. 2012).

Nitrogen-Phosphorus imbalance with warming

Our study suggests that mixed-conifer montane forests

may receive lower inputs of available N relative to P

with warming. We observed higher concentrations and
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amounts of soil available P, and lower soil N:P ratios

at the warmer, transition site than the snow-dominated

site (Table 2, Supplementary Fig. S5g and S5h),

suggesting a potential shift in the relative availability

of N and P in soils with warming. In northern

hardwood forests, lower exports and concentrations

of stream DIN has been observed in warmer years

(Sickman et al. 2001; Groffman et al. 2018), which

was attributed to the observed higher decomposition

rates and lower soil net N mineralization rates with

warming (Durán et al. 2016; Melillo et al. 2017;

Groffman et al. 2018). Similarly, we observed lower

exports and volume-weighted concentrations of

stream DIN at the warmer site, suggesting decreases

in net N mineralization rates and available N in soils

with warming. Thus, ecosystem production in the

mixed-conifer zone of the Sierra Nevada will likely be

influenced by a potential N-P imbalance with warm-

ing, especially if atmospheric inputs of P from the

Central Valley of California and trans-Pacific sources

continue to increase while atmosphere inputs of N

remain stable or decline (Aciego et al. 2017).

The lower storage of N than P in soils at our

transition site compared to the snow-dominated site

may also be attributed to more frequent historical

wildfire events with warmer and drier conditions in

this region (Schwartz et al. 2015). Wildfire has been

estimated to remove substantial amounts of N relative

to P (Johnson and Turner 2014; Johnson et al. 2007).

As climate continues to warm, increases in fire

severity and frequency at higher elevations (Alizadeh

et al. 2021) will likely further enhance the N

deficiency in the higher elevation forests of the Sierra

Nevada. However, this may be offset somewhat

regionally by smaller N deficiencies at lower eleva-

tions due to less frequent and severe fire caused by

reductions in vegetation productivity from water

limitation (Kennedy et al. 2021). Overall, the potential

N-P nutritional imbalance with warming in the Sierra

Nevada will be further enhanced under disturbances

such as wildfire.

Stream nutrient export during drought

and after thinning

Very few studies have evaluated drought impacts on

stream export simultaneously for multiple nutrient

elements and nutrients in different chemical forms in

forested watersheds. We observed that, although

export of dissolved C and N in control watersheds

both decreased during drought (Fig. 4), changes in the

volume-weighted concentrations were different; DOC

concentrations decreased, whereas DON and DIN

concentrations slightly increased during drought

(Supplementary Fig. S6d, S6e, and S6f). Similar

decreases in stream export of dissolved C and N during

drought were driven by the substantial reduction in

annual water yield (Supplementary Fig. S6a). We

observed similar DIP export prior to and during

drought (Fig. 4), driven largely by the increased DIP

concentrations offsetting the reduced annual water

yield (Supplementary Fig. S6g). During non-drought

periods, water often flows through upper soil horizons

and contributes C and N mostly derived from soil

organic matter to streams (Raymond and Saiers 2010;

Vose et al. 2016). During a major drought period, soil–

water interflow is usually limited. Still, groundwater

flow continues to travel in deep regolith and contribute

more nutrients such as P derived from geological

weathering to streams. Thus, decreases in DOC

concentrations and increases in DIP concentrations

in our control watersheds during drought may be

attributed to the switch of hydrologic coupling

between topsoil/subsoil and streams to that between

substratum and streams. We did not observe decreases

in DON and DIN concentrations during drought, likely

due to drought decreasing in-stream metabolism and

dilution capacity to a greater degree than source

supply from soils. Overall, the negative impacts of

drought on nutrient concentrations and total nutrient

export in streamflow may be less significant for P than

for C and N due to the continued supply of P from the

deep regolith.

We did not find significant changes in stream export

of C, N, and P in dissolved and particulate forms in

thinned watersheds compared to control watersheds

during a drought period (Supplementary Fig. S2),

which could be due to the limited hydrologic connec-

tions between soils (as a source) and streams, or the

low-intensity thinning implemented at our sites (re-

moval of * 10% basal area). In contrast, increases in

stream export of dissolved nutrients have been

observed for high-intensity thinning (removal of[
40% basal area) and in years with near-average

annual precipitations (Bäumler and Zech 1999;

Schelker et al. 2016). Under drought combined with

thinning, increases in volume-weighted concentra-

tions of DOC and DIN observed previously at the
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same sites (Yang et al. 2021) did not result in a similar

increase in stream export of DOC and DIN. This is

likely due to the similar annual water yield between

the thinned and control watersheds during drought

(63 mm year-1 vs. 87 mm year-1 averaged over

three watersheds and three water years). Thus, annual

water yield but not nutrient concentrations predomi-

nantly influence the total nutrient export by stream-

flow under disturbance.

Study limitations

Not all nutrient inputs and exports were measured in

this study. For example, N inputs from biological N

fixation (i.e., symbiotic and non-symbiotic) were not

characterized, but these unmeasured inputs may have

been significant at our study sites. At the snow-

dominated site, soil patches with elevated N content

have been observed and attributed to biological N

fixation by actinorhizal shrubs such as Ceanothus

cordulatum and Ceanothus prostratus (Erickson et al.

2005). Our transition site likely has biological N

fixation rates similar to the snow-dominated site

because of their similar percentages of cover and

frequency for Ceanothus species (the dominant sym-

biotic N fixing genus) prior to drought and thinning

(Dolanc and Hunsaker 2017). We estimated the

biological N fixation at our two sites to be approxi-

mately 10.2 kg ha-1 year-1 prior to drought and

8.6 kg ha-1 year-1 following the drought, using an

equation developed from a global synthesis (Cleve-

land et al. 1999) and measurements of ET for the entire

Upper Kings River basin (43 cm year-1 for WY

2004–2011, Goulden et al. 2012 and 36 cm year-1 for

WY 2016, Bales et al. 2018; [biological N fixation, kg

ha-1 year-1] = 0.234 9 [annual evapotranspiration

rate, ET, cm year-1] ? 0.172). These estimated rates

were approximately 30% higher than atmospheric N

deposition at our sites (8.0 and 7.7 kg N ha-1 year-1

at the transition and snow-dominated site, respec-

tively), suggesting that biological N fixation is an

important N input to mixed-conifer forests in the

Sierra Nevada. Soil emission of N2O was measured to

be approximately 0.02 kg N ha-1 year-1 at the two

sites (Blankinship et al. 2018). However, total N losses

from soil emissions (i.e., N2 and NxO) were not

measured at our sites. Assuming emission rates of

gaseous N at our sites were similar to that at the

Sierra’s Emerald Lake basin (0.14 kg N ha-1 year-1,

Williams et al. 1995) that has a comparable soil types

and climate, N emission losses from soils were only

approximately 4% and 9% of the stream N losses at the

transition site and the snow-dominated site, respec-

tively. Thus, N losses via soil emission may not be

important to the overall N balance in these

ecosystems.

We did not measure P inputs to soils from rock

weathering, which are known to be important to the

forest P cycle (Gu et al. 2020). In a previous study at

the Kings River basin, net release of total P from the

regolith was estimated to be ten times higher than

losses of dissolved P from stream export (Uhlig et al.

2017). However, the bedrock P input can be outpaced

by dust deposition of P, at least during drought

(Aciego et al. 2017; Aarons et al. 2019). Thus,

measurements of P input through bedrock weathering

and dust deposition are both important for studying

forest P cycle given increased drought events under

rising temperatures.

We collected stream water samples for chemical

analyses every other week because of the difficult

accessibility of these sites, particularly during winter

and early spring periods with deep snowpacks. This

sampling frequency likely miss some major events

(e.g., storm, snowmelt) and result in biases in our

estimates of stream nutrient export. Stream DIC and

DOP concentrations were estimated based on our

measured DOC and DIP (respectively) and empirical

equations derived from the sites that have similar

climatic and geological conditions. Hence, these

values do not meet accuracy standards from a purely

nutrient budgetary perspective. However, we use these

estimations simply for comparing relative nutrient

fluxes between the two elevation sites to infer the

potential warming impact on these fluxes. Further,

differences in nutrient fluxes and pools between the

two sites may be attributed to the potential differences

in historical management activities and climatic

variation. Compared with the snow-dominated site,

the transition site often receives more human distur-

bance, such as timber harvesting (Martin 2009;

Hunsaker and Neary 2012). Unfortunately, the full

management history in each watershed from the two

sites is not well documented.
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Conclusions

We used space-for-time substitution to examine

warming impacts on C, N, and P cycles in California’s

mixed-conifer montane forests, focusing on stream

nutrient export in particulate and dissolved forms and

nutrient stoichiometry status. During a non-drought

period, stream export of nutrients in particulate forms

at the rain-snow transition site was twice that at the

higher-elevation snow-dominated site despite the

lower annual water yield. This suggests that sediment

availability and sediment-associated nutrient losses

may increase with warming. Compared with the snow-

dominated site, the transition site had lower stream

export of DOC and DIN, greater export of DON, and

similar export of DIP, which was driven by a mixed

response of water yield (hydrological) and nutrient

concentrations (biogeochemical processes) to a war-

mer environment. We further observed higher con-

centrations and contents of soil P, lower mass ratios of

soil N:P, and lower concentrations and total export of

DIN in streams at the transition site than the snow-

dominated site. These observations combined with

recent findings from long-term trends in N cycles

suggest that N storage and availability in temperate

forests will decrease with warming, especially relative

to the availability of P.

Given the strong interests in forest thinning to

increase drought resiliency, we compared stream

export of nutrients during a non-drought period to

that following a forest thinning and during a major

drought period by grouping watersheds from the two

sites. In unthinned watersheds, stream export of C and

N decreased, whereas P export remained similar when

we compared the drought with the non-drought

periods. Stream export of C and N is more sensitive

to drought than P because of the limited source supply

under minimal soil interflow; groundwater continues

to travel in deep regolith during drought and con-

tributes more P derived from geological weathering to

streams. Stream exports of C, N, and P were similar

between thinned and unthinned watersheds during

drought despite differences in volume-weighted nutri-

ent concentrations. Thinning impacts on water yield

and stream nutrient export are negligible during

drought because of the limited flow conditions. Our

study emphasizes the importance of monitoring nutri-

ent losses from streamflow when evaluating the

potential impact of a warmer and drier climate on

ecosystem nutrient cycles, and demonstrates the

potential for a climate-driven N-P nutritional

imbalance.
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