UC Irvine

SSOE Research Symposium Dean's Awards

Title

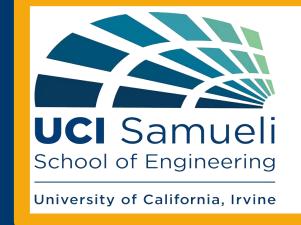
Agitation and Temperature Control Agitation and Temperature Control of Sample Wells in Bio-Layer Interferometry

Permalink

https://escholarship.org/uc/item/5bj9c9cb

Authors

Muskat, Heath Lawson, Kelsey Mejia, Adriana et al.


Publication Date

2021-03-09

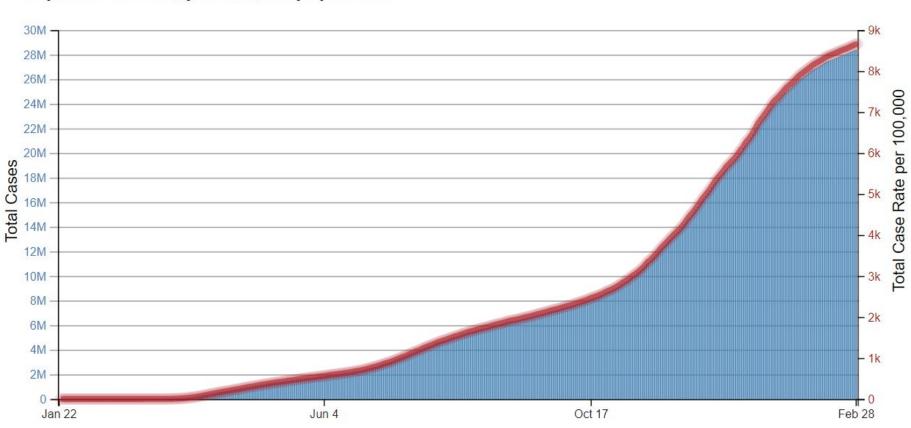
Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Agitation and Temperature Control of Sample Wells in Bio-Layer Interferometry

Inkiad Ahmed¹, Sherwin Pasha Eftekharian², Kelsey Lawson¹, Adriana Mejia¹, Heath Muskat¹ Mentors: Michael Dubrovsky³, Dr. Michelle Khine², Dr. Christine King², Dr. Chris Hoo¹

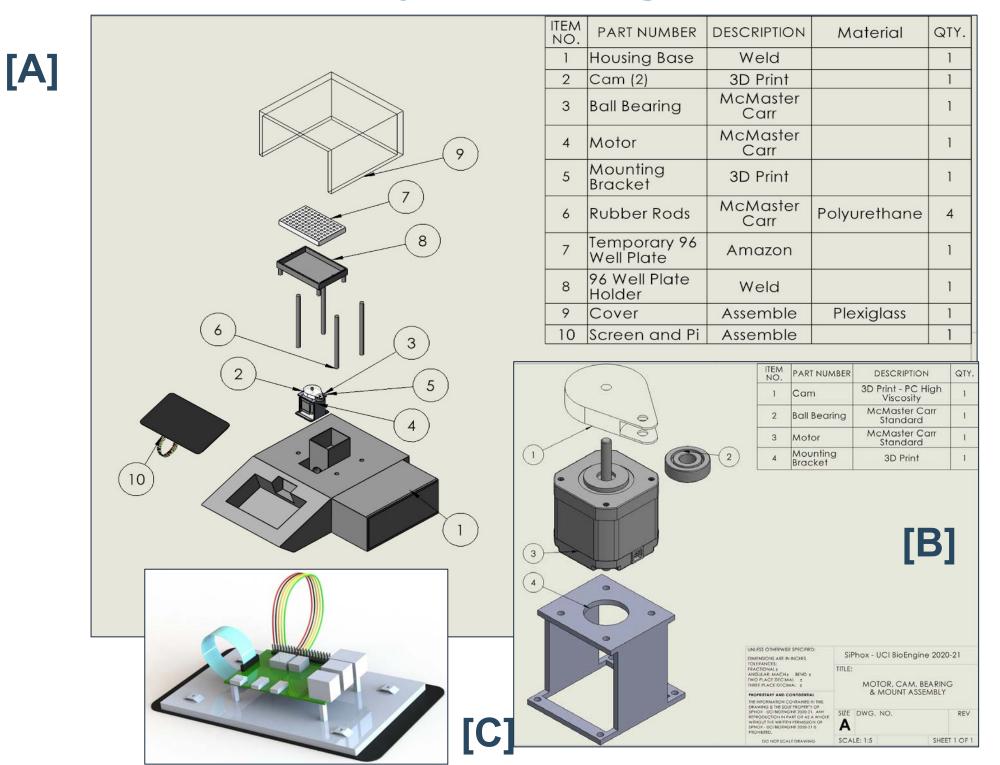

1. Department of Materials Science & Engineering, 2. Department of Biomedical Engineering, 3. Co-Founder and CCO, SiPhox Inc.

Project Goal and Background

• Over 28M COVID-19 cases and 511K deaths in U.S. [1]

Trends in Total and Cumulative Incidence Rate of COVID-19 Cases in the United States Reported to CDC, per 100,000 population

- Polymerase Chain Reaction (PCR) Test: sensitive and accurate, but has a result turnaround time as long as a few days [2]
- Antigen Test: inexpensive, rapid turnaround time (15 -60 min), but less sensitive and accurate [2]


Goal: Develop agitation and temperature control system to cool samples for use in bio-layer interferometry based testing system.

Projected Timeline

Q1			Q2			Q3		
Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
	Contact Sil	Phox						
	UROP							
		Specific	catior	15				
	Con	cept De	sign					
Sup	plementa	l Resear	ch					
		CAD D) esig	n				
			Pro	ototype A				
				Alt	ernate S	Solution	•	
					*	Finalize	2	
						Rev	riew	
						Do	cument	
							^P resenta	tion

*At this time, our team is set to proceed on the progress for our prototype in Quarter 3

Project Design

Prototype Concept: Create an easily alterable plate system to test various parameters including thermal cooling maintained below 20 degrees Celsius, fluid agitation from vibration, and temperature sensor accuracy.

Multiple thermocouples are applied under the well plate (A8) to measure the temperature at various points on the block (2), our team will be able to determine a sufficient time needed for the liquid in the vials (1) to reach optimum temperature. A feedback loop to control the heating elements (6) output will be used as well to regulate the vials optimum temperature.

Contact Information & References

Name	Major	Responsibility	Email/Contact			
Heath Muskat	MSE	Team Lead & Coding/Design	hmuskat@uci.edu			
Inkiad Ahmed	MSE	Prototyping	ijahmed@uci.edu			
Kelsey Lawson	MSE	3D Modelling	kplawson@uci.edu			
Adriana Mejia	MSE	Research	mejiaa5@uci.edu			
Sherwin Pasha Eftekharian	ВМЕ	Testing	speftekh@uci.edu			

References

[1] CDC, "CDC COVID Data Tracker," *Centers for Disease Control and Prevention*, Mar. 28, 2020. https://covid.cdc.gov/covid-data-tracker (accessed Mar. 01, 2021).

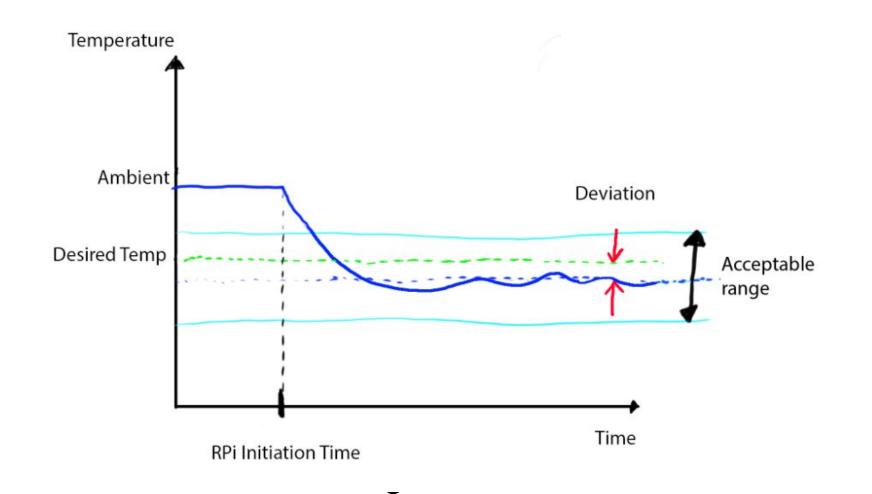
[2] "How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case | ACS Sensors." https://pubs.acs.org/doi/full/10.1021/acssensors.0c01180 (accessed Nov. 29, 2020).

[3] "U.S. coronavirus cases: Tracking deaths, confirmed cases by state," *Washington Post*.

ttps://www.washingtonpost.com/graphics/2020/national/coronavirus-us-cases-deaths/ (accessed Nov. 30, 2020).

Design Parameters

Regulations:


FDA Class I - Immunology and Microbiology Device

IEC 60529 - Degrees of Protection Provided by

Enclosures - Applies to our device because it contains electronics and involves the use of liquids such as organic solvents

IEC 60601-1-6 & ISO 14971 - Risk Management of Medical Devices - Addresses the risks of device malfunction or using the device incorrectly

ASTM C680 - Standard Practice for Estimating Heat Loss of Surface Temperatures - Recognizes the design for insulating the designated surface area, then using algorithms to adjust heat transfer to maintain the intended temperature

- Ingress Protection Rating IPX4 Water resistance to 10psi streams
- Support Flexibility Allow for cyclic loadings without failure of support members
- Over-Power Protection (IEC) appropriately fuse the electronics in case of water damage
- Continuously Variable Temperature Control ability to autonomously monitor and adjust temperature to fit a time-temperature curve
- Complete Agitation Time and Rate analyze the time it takes for homogeneous mixing at giving motor RPM rates