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In the high-temperature (Tc) cuprate superconductors, increasing evidence suggests 

that the pseudogap1, existing below the pseudogap temperature T*, has a distinct 

broken electronic symmetry from that of superconductivity.2-20 Particularly, recent 

scattering experiments on the underdoped cuprates have suggested that a charge 

ordering competes with superconductivity.18-20 However, no direct link of this 

physics and the important low-energy excitations has been identified. Here we 

report an antagonistic singularity at Tc in the spectral weight of Bi2Sr2CaCu2O8+δ as 

a compelling evidence for phase competition, which persists up to a high hole 

concentration p ~ 0.22. Comparison with a theoretical calculation confirms that the 

singularity is a signature of competition between the order parameters for the 

pseudogap and superconductivity. The observation of the spectroscopic singularity 

at finite temperatures over a wide doping range provides new insights into the 

nature of the competitive interplay between the two intertwined phases and the 

complex phase diagram near the pseudogap critical point.   

 

If the pseudogap and superconducting order parameters compete within a Ginzburg-

Landau framework, this should be detectable as an abrupt change in the spectral-weight transfer 

at Tc. To search for this signature, we performed measurements of the electronic states in 

Bi2Sr2CaCu2O8+δ (Bi2212) using angle-resolved photoemission spectroscopy (ARPES), which 

directly probes the occupied states of the single-particle spectral function. ARPES is an ideal tool 

for this study because it can resolve the strong momentum anisotropies of the pseudogap and 

superconducting gap, both of which become the largest at the antinode, the Fermi momentum 

(kF) on the Brillouin zone boundary (Fig. 1b).  



We show in Fig. 1a a detailed temperature dependence of the ARPES spectra at the 

antinode of optimally-doped Bi2212 (denoted OP98, p ~ 0.160, Tc = 98 K). Here, all the spectra 

are divided by the resolution-convolved Fermi-Dirac function (FD) to effectively remove the 

Fermi cutoff. At T << Tc, the spectra show a “peak-dip-hump” structure which is typical for the 

cuprates near the antinode. While the peak (blue circles) is a signature of superconductivity, the 

dip (purple down triangles) and hump (red squares) are often associated with strong band 

renormalizations arising from electron-boson coupling.21,22 Above Tc, the spectra show a 

continued suppression of spectral intensity at the Fermi level (EF), defining the pseudogap.1 

Notably, the peak feature becomes weaker but survives above Tc. There is no singular signature 

in the spectral lineshape at Tc over a wide doping range (Supplementary Fig. 1 for complete 

dataset). The non-trivial evolution of the spectral lineshape has been making the interpretation of 

the pseudogap difficult. 

To investigate the nature of the peak, dip and hump, we show in Fig. 1c their energies as 

a function of temperature. The energy scale of the anomalously broad hump feature at Tc < T < 

T* decreases with increasing temperature and hole doping (Supplementary Fig. 1), suggesting 

that it arises from the pseudogap. The hump at T > Tc continuously connects with that at T < Tc 

(Fig. 1c), suggesting that not only the electron-boson coupling but also the pseudogap affects the 

hump energy at T < Tc while simultaneously coexisting with the superconducting peak. Here, a 

simple addition of two gaps in quadrature does not reproduce the data and does not capture the 

mixed nature of the all spectral features as noted earlier.15  

Next, we show in Figs. 1d-1f the spectral weight obtained by analyzing the spectral 

intensity I(ω) at the antinode (Fig. 1a), where ω is energy. Fig. 1d shows the 1st moment defined 

as
0.25eV 0.25eV

0eV 0eV
( ) ( )I d I dω ω ω ω ω∫ ∫ , which gives the spectral-weight center of mass. Figs. 1e and 



1F show spectral weights in the ranges [0, 0.07] and [0.20, 0.25] eV, which we denote by low- 

and high-energy spectral weights, respectively Because the energy scale for superconductivity is 

< 50 meV, the opening of a superconducting gap at kF should push the 1st moment energy away 

from EF in a narrow range, and have almost no effect on the low- and high-energy spectral 

weights.  

In contrast with the behavior expected for homogeneous superconductivity, the most 

striking signature in the current result is the spectral-weight singularity at Tc (Figs. 1d-1f). The 

spectral weight is clearly sensitive to the sharp onset of coherent superconductivity at Tc, 

different from the spectral lineshape (Fig. S1). For T > Tc, the 1st moment moves to a higher 

energy with decreasing temperature, while the low/high-energy spectral weight 

decreases/increases, respectively. This suggests that the opening of the pseudogap involves 

spectral weight reorganization over a wide energy range greater than a few hundred meV. Upon 

lowering the temperature to T < Tc, the 1st moment and the low- and high-energy spectral weights 

all show the opposite trends from those at T > Tc. This “antagonistic” singularity suggests that 

the pseudogap spectral weight at higher energies participates in forming the coherent 

superconducting peak that emerges below Tc. 

To further understand this result, we have considered a competition between the 

pseudogap and superconducting order parameters within a Ginzburg-Landau treatment 

(Supplementary Information for calculation detail). We show in Fig. 2a the temperature 

dependence of the calculated antinodal spectra across Tc. Here, the pseudogap order parameter, 

which we model as fluctuating density-wave order, starts to decrease once the superconducting 

order parameter becomes non-zero below Tc (Fig. 2c). The anomalously broad spectral lineshape 

in the pseudogap state and the spectral weight redistribution over the wide energy range are 



captured by inputting a short correlation length of the pseudogap order. The temperature 

dependence of the 1st moment and the low- and high-energy spectral weights in the calculation 

(open markers in Figs. 2e-2g, respectively) shows a singularity at Tc, consistent with the ARPES 

results (Fig. 1d-1f). Although the exact form of the pseudogap needs to be further investigated, 

this phenomenology strongly supports the picture that the pseudogap and superconducting orders 

compete in the superconducting state, and therefore Tc is suppressed by the pseudogap order.  

Our result may be reconciled with other observations of the existence of a distinct order.  

A similar spectral weight transfer between low- and high-energies with a clear signature at Tc has 

been observed in the c-axis conductivity of underdoped NdBa2Cu3O6.9.23 In support of our choice 

of model for the pseudogap, we note that a density-wave-like order with short coherence length 

that breaks translational symmetry may be consistent with the antinodal dispersion observed in 

the pseudogap state of Bi1.5Pb0.55Sr1.6La0.4CuO6+δ,12,15 and translational symmetry breaking 

observed at the surface3,5,10,11 and in the bulk states in the underdoped regime.17-20 In particular, 

the characteristic wave vectors for the charge ordering have been observed recently in the Bi-

based cuprates, which is consistent between scattering and STM measurements19,20 and 

suppressed below Tc.19 The spectral-weight singularity at Tc in the present result suggests a close 

relationship between the charge ordering and the ARPES pseudogap in the antinodal region, and 

provides information about its momentum structure. However, the observation of the charge 

modulation in the bulk states has been limited in a narrow doing range in the underdoped regime 

so far, and whether the charge ordering observed by scattering experiments is directly tied to the 

pseudogap physics remains an open question. Further exploration is needed to understand the 

relationship between the present result, other symmetry breaking2,4,6-9,13,14,16 and the Fermi 

surface reconstruction.24  



 

Another important piece of the antinodal physics is the electron-boson coupling, which 

may manifest itself as the dip and hump.21,22 As shown in Fig. 1c, the hump is pushed further 

away from EF below Tc. This temperature dependence cannot be modeled if one considers only a 

competition between the pseudogap and superconductivity (blue open circles in Fig. 2d). To 

address this discrepancy, we consider a coupling of electrons to the B1g ‘buckling’ phonons (35 

meV),22 in combination with superconductivity and the pseudogap. This qualitatively reproduces 

the anomalous temperature dependence of the hump across Tc (filled red squares in Fig. 2d), in 

addition to producing singularities at Tc in the 1st moment and the low- and high-energy spectral 

weights (filled markers in Figs. 2e-2g, respectively). The result supports the idea that electron-

boson coupling is essential to understand the antinodal spectral lineshape and its spectroscopic 

signature is intimately tied to the underlying quantum phases. Further, the simulation suggests 

that the suppression of the pseudogap below Tc is key for understanding the emergence of the 

superconducting peak and the enhancement of the peak-dip-hump structure (Supplementary 

Information). 

Figure 3 summarizes the temperature dependence of the spectral weight for underdoped p 

= 0.132 to overdoped p = 0.224 samples. As the doping increases, the 1st moment moves towards 

lower energies and low/high-energy spectral weights increase/decrease, similar to the B1g Raman 

spectra of La2-xSrxCuO4 and other cuprates.25 The spectral-weight singularity at Tc persists up to 

p = 0.207 (OD80, Fig. 3d) and possibly p = 0.218 (OD71, Fig. 3e). However, at p = 0.224 

(OD65, Fig. 3f), the singularity becomes undetectable, and the result can be understood by the 

opening of a superconducting gap alone with a diminished or absent pseudogap. The slight 



decrease/increase of the low/high-energy spectral weight below Tc may be due to the effects of 

electron-boson coupling and/or the tail of the superconducting peak.  

The increase in the low-energy spectral weight below Tc (dashed arrow in Fig. 1e for 

OP98) provides us with an estimate of how much pseudogap spectral weight at higher energies 

contributes to the superconducting peak, and its doping dependence is plotted in Fig. 4a. This 

increase rapidly becomes smaller with doping and non-detectable at p = 0.224. This suggests that 

the competition between the pseudogap and superconducting orders becomes weaker with 

doping, but the pseudogap as a competing order persists at finite temperatures and coexists with 

superconductivity below Tc up to at least p ~ 0.22. We emphasize that the spectral weigh analysis 

enabled us to detect such a clear feature for the competition and its disappearance at finite 

temperatures especially in the overdoped regime, which cannot be easily addressed by the 

spectral lineshape analysis.  

We show in Fig. 4b the antinodal spectra at T << Tc for different dopings, and in Fig. 4c 

their peak, dip and hump energies as a function of doping. At p > 0.19, all the energies show 

similar doping dependence. The constant offset of -35 meV for the dip energy can be understood 

as arising from the mode energy of ~35 meV. In contrast, at p < 0.19, the peak, dip and hump 

energies do not show strong doping dependences. These abrupt changes at p ~ 0.19 in the ground 

state suggest a potential critical point, which could be consistent with the recently reported 

doping dependence of the near-nodal gap slope 26 (v∆ in Fig. 4c) and the anomalies observed by 

ARPES,27,28 NMR,29 ultrasound,16 and transport30,31 studies. Moreover, a signature of the 

pseudogap at finite temperature is observed at higher doping levels than the ground state 

pseudogap critical point at p~0.19. This is consistent with and solidifies the recently proposed 

phase diagram,26,32 where that the pseudogap line bends back in the superconducting dome due 



to phase competition, separating the coexisting/competing phase and the purely superconducting 

phase. Finally, the most striking finding in Figs. 4b and c is the sudden jump of the hump energy 

across p ~ 0.19. This doping dependent hump energy discontinuity suggests that the pseudogap 

effect on the hump comes into play only at p < 0.19 for low temperatures. This result strongly 

supports our interpretation gained from the temperature dependence (Fig. 1) and the simulation 

(Fig. 2) that the hump is strongly affected by the pseudogap.   

We showed an unforeseen antagonistic singularity at Tc in the spectral weight as a direct 

spectroscopic evidence for the competition between the pseudogap and superconducting orders. 

The observation of such a signature for the competition over a wide doping range suggests that 

the phase competition recently observed in the underdoped regime by scattering experiments18-20 

may not be limited to the underdoped regime, but extends to the overdoped regime as a universal 

and intrinsic aspect of the interplay between the pseudogap and superconductivity. Further 

scattering studies are desired to pin down the exact relationship between the charge ordering and 

the pseudogap. Because such a clear onset at Tc is not present in the spectral lineshape 

(Supplementary Fig. 1), our finding of the singularity in the low-energy spectral weight provides 

a crucial piece of information about the nature of the pseudogap and the competitive interplay 

between the pseudogap and superconductivity, providing us with a foundation for a holistic 

understanding of the phase diagram and mechanism of high-Tc. 

Methods 

Samples High-quality single crystals of Bi1.54Pb0.6Sr1.88CaCu2O8+δ, Bi2Sr2CaCu2O8+δ, Bi2-

xSr2+xCaCu2O8+δ, and Bi2Sr2(Ca,Dy)Cu2O8+δ, which are various families of 

Bi2Sr2CaCu2O8+δ (Bi2212), were grown by the floating-zone method. The hole concentration p 

was controlled by annealing the samples in N2 or O2 flow. Detailed experimental conditions for 



each sample are summarized in Table. S1. We determined p from Tc via an empirical curve, Tc = 

Tc,max[1-82.6(p-0.16)2], taking 98K as the optimum Tc for Bi2212.33 Pb doping significantly 

suppresses the BiO superlattice modulation, which allows us to discuss more quantitatively the 

electronic structure, particularly around the antinode.12,15 

 

Measurements  ARPES measurements were performed at beamline 5-4 of SSRL, SLAC 

National Accelerator Laboratory using a Scienta R4000 electron analyzer. Photon energy was 

tuned to highlight either the antibonding band or bonding band at the antinode.34 In the main text, 

focus is mostly placed on the antibonding band taken with photon energy of 18.4 eV. The photon 

polarization was fixed parallel to the Cu-O bonding direction and perpendicular to the measured 

cuts. The energy resolution and the angular resolution along the analyzer slit were set at ~10 

meV and ~0.13°, respectively. The samples were cleaved in-situ and the sample temperature was 

varied from 7 K to 240 K. The vacuum was kept better than 4.0x10-11 Torr throughout the 

measurement. EF was calibrated using a gold sample electronically connected to the measured 

sample. Measurements were performed on several samples with consistent results. 
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Figure Legends 

Fig. 1. Temperature dependence of the antinodal electronic states in optimally-doped Bi2212. a 

FD-divided spectra at AN+. b Schematic Fermi surface. Two antinodal momenta for the 

antibonding band, AN- and AN+, are indicated. c Peak, dip, and hump energies as a function of 



temperature. d-f 1st moment in the range [0, 0.25] eV, the spectral weights in the ranges [0, 0.07] 

and [0.20, 0.25] eV, respectively. Error bars are estimated to be smaller than the symbol sizes. 

The dashed arrow in panel e indicates the increase in the low-energy spectral weight below Tc. 

For the detail of the spectral weight analysis, see Supplementary Information. 

Fig. 2. Simulated temperature dependence of the antinodal spectra with the pseudogap, electron-

phonon coupling, and superconductivity. a,b Spectra across Tc without and with coupling to 35 

meV phonons, respectively. c Pseudogap (PG) and superconducting (SC) order parameters. d 

Hump and peak energies. e-g 1st moment in the range [0, 0.20] eV, spectral weights in the ranges 

[0, 0.07] and [0.15, 0.20] eV, respectively. See Supplementary Information for the detail of the 

calculation.  

Fig. 3. Doping dependence of competition between the pseudogap and superconductivity. a-f 

Antinodal spectral weights in the ranges [0, 0.07] and [0.20, 0.25] eV (left axis) and the 1st 

moment in the range [0, 0.25] eV (right axis) for underdoped to overdoped Bi2212. Error bars 

are estimated to be smaller than the symbol sizes. Tc and TAN, the temperature at which the 

antinodal gap closes (Supplementary Fig. 1), are indicated by dashed lines. 

 

Fig. 4 Pseudogap critical point in Bi2212. a Magnitude of the increase in the low-energy spectral 

weight below Tc (see main text and Fig. 1e) as a function of doping as an estimate . The 

magnitudes are normalized to those at p = 0.132. Error bars are estimated to be ±0.1. b Doping 

dependence of the antinodal spectra at T << Tc. c Peak, dip, and hump energies as a function of 

doping. The black arrow indicates the possible pseudogap critical point in the ground state at 



p=0.19±0.01.The near-nodal gap slope v∆ is reproduced from Ref. 26. Red and black dashed lines 

are guide for eyes. 
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Table S1. Samples and experimental conditions 

Sample Tc (K) Composition Measurement 
Temperature (K) 

Photon energy (eV) 

OD65 65 Bi1.54Pb0.6Sr1.88CaCu2O8+δ 30 – 140 18.4 
OD71 71 Bi1.54Pb0.6Sr1.88CaCu2O8+δ 30 – 140 18.4 
OD80 80 Bi1.54Pb0.6Sr1.88CaCu2O8+δ 30 – 170 18.4 
OD92 92 Bi1.54Pb0.6Sr1.88CaCu2O8+δ 30 – 240 18.4 
OP98 98 Bi1.54Pb0.6Sr1.88CaCu2O8+δ 30 – 240 18.4 
OP98 98 Bi1.54Pb0.6Sr1.88CaCu2O8+δ 30 – 140 21.0 (Fig. S3) 
UD92 92 Bi1.54Pb0.6Sr1.88CaCu2O8+δ 30 – 240 18.4 
UD75 75 Bi2Sr2CaCu2O8+δ 10 22.7 
UD65 65 Bi2-xSr2+xCaCu2O8+δ 12 22.7 
UD55 55 Bi2Sr2(Ca,Dy)Cu2O8+δ 7 21.0 

 

 

Fermi momentum kF 

For OD65, OD71, OD85 and OD92, T* is within the measurement temperature window (Table 

S1). Above T*, the peak position of the FD-divided spectra shows a parabolic dispersion. kF is 

defined as the Femi crossing of the dispersion, similar to previous reports.1,2 For other samples, 

T* is out of the measurement temperature window and kF is defined as the momentum where the 

momentum distribution curve (MDC) at EF shows a peak at temperatures closest to T*, which 

has been shown to give a good estimate of kF
1,3,4 and often used to determine kF in ARPES 

studies. We have checked that small differences in kF estimation do not affect our conclusion. 

Note that the detector nonlinearity of the Scienta electron analyzer5-7 is calibrated and corrected. 

The summary of the doping and temperature dependence of the antinodal spectra in Bi2212 is 

shown in Fig. S1. 

 



  

Fig. S1. Doping and temperature dependence of the antinodal spectra in Bi2212. a-f 

Temperature dependence of the FD-divided spectra at AN+. Peak, dip, and hump features are 

indicated by markers. g-l Peak, dip, and hump energies as a function of temperature. Panels b 

and h are reproduced from main text Fig. 1a and 1c. TAN is the temperature where the spectra 

show a peak at EF. 

 

Spectral weight analysis 

Figure S2a shows the temperature dependence of the low-energy spectral weight obtained from 

two different normalizations of the ARPES intensity. The spectral weights in red circles are 

normalized to the intensity at energies well above EF where the spectra have background signal 

from the synchrotron light of higher orders. Because the intensity ratio between the higher order 

light and the main first order light is stable and constant with time owing to the stable 



synchrotron operation in top-off (top-up) mode, this procedure effectively normalizes the 

intensity to the photon flux at the sample with high accuracy. We have checked that the 

normalization of the ARPES intensity to the photocurrent measured at a refocusing mirror just 

before the ARPES endstation shows consistent results. The good agreement between the 

normalization to the intensity well above EF (red) and to the total spectral weight (blue)

0.07eV 0.25eV

0eV 0eV
( ) ( )I d I dω ω ω ω∫ ∫ , which are reproduced from main text Fig. 1, ensures that our 

conclusions do not change with normalization of the ARPES intensity. The temperature 

dependence of the high-energy spectral weight also shows consistent results between the two 

normalizations (Fig. S2b). In addition, the 1st moment is complementary analysis to the low- and 

high-energy spectral weights because it is independent from the normalization of the ARPES 

intensity. The consistency between the spectral weights and 1st moment also supports our 

conclusions. In Figs. S2c and S2d, we show the energy-window dependence of the spectral 

weight near EF and at higher energies, respectively. The spectral-weight singularity at Tc is 

clearly visible over different energy windows, confirming that our conclusion is robust against 

the integration energy window.   



 

Fig. S2. Normalization and integration-window dependences of the spectral weight in 

OP98. a,b Normalization dependence of the low- and high-energy spectral weights in the ranges 

[0, 0.07] and [0.20, 0.25] eV, respectively. Red dots: spectral weight at each temperature is 

normalized to the total spectral weight over [0, 0.25] eV. Blue squares: spectral weight at each 

temperature is normalized to the background intensity well above EF, which is proportional to the 

incident photon intensity on the sample surface. Obtained curves are normalized to the total area 

[30, 240] K for comparison. c,d Integration window dependence of the low- and high-energy 

spectral weights, respectively. Spectral weight at each temperature is normalized to the total 

spectral weight in the range [-0.25, 0] eV. Obtained curves are normalized to the spectral weight 

at 240 K for comparison. 

 

 

 



Bonding band 

The data shown in the main text Figs. 1-3 are for the antibonding band measured with 18.4 eV 

photons. We chose to focus on the antibonding band because the antibonding band can be well 

separated from the bonding band in the ARPES signal at 18.4 eV. At T > T*, the MDC at EF 

does not show any signature of the bonding band in the underdoped regime. We estimate from 

fitting to four Lorentzians that the intensity for the bonding band is much less than 1 % of the 

total intensity for the underdoped and optimally-doped samples. With hole doping, the bonding 

band signal becomes gradually stronger and becomes ~3 % of the total intensity for OD65  

Although the effect of the antibonding band may not be negligible in the ARPES spectra 

measured with 21 eV photons, one may be able to discuss the antinodal kF spectra for the 

bonding band because the antibonding band at T > T* is located above EF. We show in Fig. S3 

the ARPES spectra highlighting the bonding band at the antinode for OP98 by choosing a proper 

photon energy (21 eV).8 The temperature dependence of the peak, dip, and hump energies at the 

bonding band antinode (indicated in Fig. S4b) are shown in Fig. S4c, which will be discussed in 

the next section. The temperature dependences of the 1st moment, low- and high-energy spectral 

weights are plotted in Fig. 4d. Consistent with the antibonding band (Fig. 1 in the main text), the 

temperature dependence of the low- and high-energy spectral weights and the 1st moment show 

an abrupt sign change at Tc, indicating that our conclusion holds not only for the antibonding 

band but also for the bonding band. In addition, similar temperature dependences have been 

observed for the spectral lineshape and the spectral weight at momenta between the two 

antinodal kF’s both for the bonding band (21 eV) and antibonding band (18.4 eV), suggesting 

that the entire spectral function shows a consistent temperature dependence and the separation of 

the bonding band and the antibonding band does not affect our conclusion. 



  

Fig. S3. Temperature dependence of the ARPES spectra at the bonding-band antinode in 

OP98 taken with 21 eV photon energy. a FD-divided spectra at bonding-band AN across Tc. 

Peak, dip, and hump features are indicated by markers. b Schematic Fermi surface. Bonding-

band antinode (AN) is indicated. c Peak, dip, and hump energies as a function of temperature. d 

Temperature dependence of the 1st moment in the range [0, 0.25] eV, the spectral weights in the 

ranges [0, 0.07] and [0.20, 0.25] eV. Error bars are estimated to be smaller than the symbol sizes.  

 

Emergence of the superconducting peak below Tc 

We showed in the main text that the pseudogap, superconductivity, and electron-boson coupling 

all leave distinct fingerprints in the spectral lineshape. Our observation of competition between 

the pseudogap and superconducting order parameters provides us with an explanation for the 

long standing puzzle in the emergence of the superconducting peak at the antinode. The peak 

(blue dots in main text Fig. 1a) emerges below ~Tc without well-defined quasi-particle peak 

above Tc in the underdoped and optimally-doped regime following the temperature dependence 



of the superfluid density, consistent with previous reports 9,10. This suggests that the peak is 

closely related with superconductivity in an unconventional manner, because in conventional 

superconductors, a well-defined quasi-particle peak exists above Tc. The simulated spectra (main 

text Fig. 2b) demonstrate how the superconducting peak below ~Tc can emerge in the 

underdoped and optimally-doped regime. As suggested by the temperature dependence of the 

spectral weight (main text Fig. 3), coherent superconductivity transfers high-energy spectral 

weight for the pseudogap to low energy, dramatically enhancing the superconducting peak. This 

consequently emphasizes the dip by a pile-up of the spectral intensity around the 

superconducting peak energy,11 which becomes available for electron-boson couplings below Tc. 

This suggests that the sharp bosonic mode does not need to form at ~Tc, but rather it can exist 

above Tc. The competition between the pseudogap and superconducting order parameters 

becomes key to understanding the emergence and enhancement of the peak-dip-hump structure 

in the superconducting state.  

 

Although the pseudogap (hump) and superconducting (peak) features are well separated in the 

spectral lineshape at the antinode for the antibonding band in the underdoped and optimally-

doped regimes (Fig. 1 and Fig. S1), they are not well distinguished around Tc in the overdoped 

regime because of their closer energy scales (Fig. S1). In the overdoped regime, slightly above Tc, 

the intensity for the superconducting feature rapidly becomes small, and the dominant character 

of the peak is gradually taken over by the pseudogap energy feature that has similar energy scale 

to the superconductivity with increasing temperature. This may explain the peculiar temperature 

dependence of the peak for OD92 (Fig. S1i). The peak energy becomes smaller with increasing 

temperature at T < Tc, shows the opposite temperature dependence at Tc < T < 130 K, and 



becomes smaller again at T > 130 K until it becomes a quati-particle peak for the states at T > T*. 

This non-monotonic temperature dependence of the peak cannot be explained by a single order 

parameter. Rather, the pseudogap and superconducting features slightly above Tc are strongly 

mixed in the spectral lineshape, whereas the peak at T < Tc and that at 130 K < T < T* may be 

dominantly associated with superconductivity and the pseudogap, respectively. This 

interpretation is supported by the coexistence of the pseudogap and superconductivity in the 

overdoped regime (p < 0.22), which is suggested by the spectral weight analysis in the main text. 

 

This picture may also explain the contrast between the temperature dependences of the bonding 

and antibonding band spectra for OP98. While the hump survives at T > Tc for the antibonding 

band (Fig. 1a), it disappears at T > Tc for the bonding band (Fig. S3a) with a non-monotonic 

temperature dependence of the hump (Fig. S3b) similar to OD92 antibonding band (Fig. S1i). 

This suggests that the hump and peak features coexist slightly above Tc both for the both bonding 

and antibonding bands, but cannot be disentangled in the spectral lineshape for the bonding band 

because the two energies are closer than those for the antibonding band. This can happen if the 

pseudogap is density-wave-like gap which is discussed in the main text because it opens the 

pseudogap in a momentum dependent manner. 

 

We show in Fig. S4a the spectra above and well below Tc for UD92 as a typical experimental 

example for the phenomenology described above. Here, at T > Tc, the peak disappears and hump 

is the main spectral feature. In contrast, for a more overdoped sample OD80 (Fig. S4b), the 

superconducting peak is smoothly connected with the quasi-particle peak above Tc and the hump 

disappears above Tc 
11,12 because the pseudogap is weaker and the hump is dominated by 



electron-boson coupling. These spectra are reproduced from the full dataset of the temperature 

and doping dependence of the antinodal spectra shown in Fig. S1. The result suggests that the 

rapidly decreasing pseudogap with doping causes this qualitative difference in the temperature 

dependence of the spectral lineshape between UD92 and OD80 (Figs. S4a and S4b). We note 

that such insights discussed above cannot be gained only from the spectral lineshape without 

knowing the exact form of the pseudogap and its interplay with superconductivity. The spectral 

weight singularity at Tc discussed in the main text provides us with important clues to understand 

these long standing puzzles.  

Additionally, although the spectral-weight singularity suggests that there is no pseudogap 

at p = 0.224 (Fig. 3f), we found that the antinodal gap closes at TAN ~ 90 K, which is ~25 K 

higher than Tc (Figs. 4a and Supplementary Fig. 1). At present, it is unclear whether this gap 

above Tc in the deeply-overdoped regime is due to fluctuating superconductivity13,14 or some 

form of dynamic phase separation.15 This observation adds a new twist to the rich phase diagram 

in the overdoped regime.  

 

 

 

 



 

Fig. S4. Comparison of the temperature dependence of the antinodal spectra between UD92 

and OD80. A,b FD-divided antinodal spectra at T << Tc (black) and T > Tc (red) for UD92 and 

OD80, respectively. These spectra are reproduced from Fig. S1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Calculation details 

Temperature dependence of gaps 

We utilize Ginzburg-Landau theory to derive the temperature dependence of the pseudogap 

∆ ( )PG T  and superconducting gap ∆ ( )SC T .  The Ginzburg-Landau free energy for two coupled 

order parameters, ∆SC  and ∆PG , is given by 

( ) γ∆ ∆ = ∆ + ∆ + ∆ + ∆ + ∆ ∆2 4 2 4 2 2,    | | | | | | | | | | | | ,SC PG SC SC PG PG SC PGA B  

where the two order parameters are repulsive if γ > 0.  In order to complete the square in this 

expression we define 

γ
∆ + ∆=2 2 2| | | | | |

2PG SCM  

The expression for F can then be rewritten as  

( )∆ = ∆ + + ∆ +2 2 4 4,    '| | '| | '| | | |SC SC SCM A B M C M  

where γ= −' / 2A A B , ='B B , and γ= − 2' 1 / 4C . We now minimize F(ΔSC,M) with respect to 

∆*
SC and *M  to obtain the temperature dependence of the order parameters: 

∆ ∆ =
∆
∂

= +
∂ *

2( ' '| | ) 0SC SC
SC

F A C  

and 

∂
= + =

∂
2

*
( ' | | ) 0F M B M

M
 

From this we obtain the solutions = −∆ 2| | '/ 'SC A C  and = −2| | 'M B . These equations are satisfied 

by a BCS form for gap temperature dependence:16 



( ) α
 
 = −
  

0Δ Δ tanh 1c
SC

T
T

T
 

and 

( ) α
 
 = −
  

0Δ tanh 1cPG T
M T

T
 

where ∆0  and ∆0
PG are the temperature-independent parts of '/ 'A C and 'B , respectively, and α is 

an external adjustable parameter that controls how fast the gaps turn on. In principal α in the 

expressions for ∆ ( )SC T and ( )M T can be different, but we choose them to be the same because 

this detail is not important for our results. 

From the definition of M above we know that γ γ∆ − ∆ += ∆2 )| | / 2 / 2( ( )PG SC SCM M , 

and since we are interested in a repulsive solution we choose γ∆ −= ∆/ 2PG SCM . We can then 

obtain an expression for the pseudogap temperature dependence: 

( ) α γ α
  
  = − − −
     

*

0 0Δ Δ tanh 1 /2Δ tanh 1PG SC c
PG

TTT
T T

 

The parameter γ controls how much superconductivity suppresses the pseudogap. 

 The temperature dependence of ∆ ( )SC T  and ∆ ( )PG T are shown in Fig. 3c in the main text. 

Throughout this work, we take T* = 200 K, Tc = 90 K, Δ0
SC = 35 meV, and Δ0

PG = 105 meV.  

 

Spectral function 

The pseudogap and electron-boson coupling are included in self-energy terms in the electronic 

Green’s function. In the normal state (T > Tc) the Green’s function is  



( ) ( ) ( )ω ω ω ω
−

 = − − − 
1

, Σ , Σn n PG n ph nG i i i ikk k  

In the superconducting state, we calculate the (1, 1) component of the matrix Green’s function in 

Nambu notation, which is given by 

( ) ( ) ( ) ( )ω ω ω ω
ω ω

−
 
 = − − − −

+ + −  

1
2Δ

, Σ , Σ
Σ
k

n n PG n ph n
n ph n

G i i i i
i ik

k

k k


 

 

The spectral function is given by the analytic continuation of G: 

( ) ( )ω ω
π

= −
1,  Im  ,A Gk   k   . 

 

Bandstructure 

We use a bandstructure obtained from a tight-binding fit to ARPES data on Bi2201.17 The use of 

this bandstructure for the anti-bonding band in Bi2212 is reasonable because the value of kF is 

similar to that in Bi2201 in the antinodal region. In the simulation, we have assumed a square-

lattice Brillouin zone with momentum measured in units where the square-lattice constant a has 

been set equal to unity.  This bandstructure has a van Hove singularity at ≈ -38 meV. In order to 

minimize its effect on the self-energies, for the case of the electron-boson self-energy, the 

negative frequency self-energy is obtained from the positive frequency part: Σph(-ω) = -Σph’(ω) + 

i Σph”(ω). In the case of the pseudogap self-energy, and the electron-boson self energy in the 

superconducting state, a kz dispersion of the form 𝑡⊥ cos𝒌𝒛 is included in the bandstructure, and 

an integration over kz is performed. 

 

 



Superconductivity 

We take the superconducting gap to have a d-wave form  

( )( )= −0Δ Δ /2 cos cosx yk kk , 

where the gap maximum at temperature T is Δ0 = ΔSC(T), as defined above.  

 

Pseudogap 

The pseudogap is modeled as a fluctuating density wave (DW) order, using the formalism of 

Ref. 18. Treating the pseudogap in this way has successfully reproduced ARPES spectra in the 

pseudogap regime.1,2 Within this framework, the self-energy from the fluctuating DW is 

( )ω
ω +

=
−∫2 ( )Σ , ΔPG n PG

n

Pi d
i k q

qk q


, 

where ΔPG = ΔPG(T) as defined above, and P(q) is a Lorentzian centered at the DW ordering 

vector QDW.  The inverse width of the Lorentzian gives the coherence length of the fluctuating 

DW. We consider a “stripe-like” fluctuating DW with ordering vector QDW  = (±0.2π, 0): 

( )
( ) ( )π ππ π

= +
− + + +

2 22 2

1 Γ 1 Γ

0.2 Γ 0.2 Γx x

P
q q

q  

The coherence length is set to 1/Γ = 20. 

 

Electron-boson coupling 

As discussed in the main text, an inclusion of an electron-boson coupling is necessary to describe 

temperature evolution of the spectral line shape. In particular, we consider a coupling to 

phonons. We compute the electron-phonon self-energy using single iteration expressions from 

Migdal-Eliashberg theory.  A phenomenological treatment using the Migdal-Eliashberg self-



energy has been shown to describe a number of experimental features of the optimally and 

overdoped cuprates.19  

 We assume a momentum independent coupling g to dispersionless phonons with 

frequency Ω = 35 meV. The electron-phonon self-energy is given by 

( ) ( ) ( )ω ω
β

= − −∑
2

0 0
, 

Σ ,
n

ph n n n n
ip

gi D ip G i ip
V k

k  

Here D0 is the non-interacting phonon Green’s function, and G0 is the non-interacting electronic 

Green’s function. In the superconducting state, this self-energy can be written in the form 

Σph(iωn) = iωn(1-Z(iωn)) + χ(iωn), where the imaginary parts of Z and χ are given by 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

πω ω ω δ ω δ ω

ω δ ω δ ω

   = + + − + − +   

   + + − − − + + +   

∑
2

2 Ω Ω
2

Ω Ω

B F k k k
k

B F k k k

gZ n n E E E
N

n n E E E  

and 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

επχ ω ω δ ω δ ω

ε
ω δ ω δ ω

−    = + + − − − +   

   + + − − − − + +   

∑
2

2 Ω Ω
2

Ω Ω

k
B F k k k

k k

k
B F k k k

k

g n n E E E
N E

n n E E E
E

 

Here nB and nF are the Bose and Fermi functions, respectively, and ε= +2 2Δk k kE . The electron-

phonon coupling is chosen consistent with the range of values used in previous studies 20 and 

defined in terms of the mass renormalization through the real-part of the self-energy, or Z, in the 

limit ω  → 0 such that the dimensionless coupling λ ~ 0.3. 

 

 



Marginal Fermi liquid self-energy 

We include a phenomenological broadening due to a marginal Fermi liquid self energy in the 

calculation of all spectra: 

( )ω αω β= +2 2ΣMFL T  

We set α = 0.025 and β = 2.5 and measure frequency ω and temperature T in units of eV. 
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