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ABSTRACT OF THE DISSERTATION

Positivity and vanishing theorems in complex and algebraic
geometry

by

Xiaokui Yang
Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor Kefeng Liu, Chair

In this thesis, we consider geometric properties of vector bundles arising from algebraic and

Hermitian geometry.

On vector bundles in algebraic geometry, such as ample, nef and globally generated vector bun-

dles, we are able to construct positive Hermitian metrics in different senses(e.g. Griffiths-positive,

Nakano-positive and dual-Nakano-positive) by L2-method and deduce many new vanishing theo-

rems for them by analytic method instead of the Le Potier-Leray spectral sequence method.

On Hermitian manifolds, we find that the second Ricci curvature tensors of various metric con-

nections are closely related to the geometry of Hermitian manifolds. We can derive various van-

ishing theorems for Hermitian manifolds and also for complex vector bundles over Hermitian

manifolds by their second Ricci curvature tensors. We also introduce a natural geometric flow on

Hermitian manifolds by using the second Ricci curvature tensor.
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CHAPTER 1

Positivity and vanishing theorems for vector bundles over

Kähler manifolds

1.1 Introduction

Let E be a holomorphic vector bundle with a Hermitian metric h. In [Nakano55], Nakano intro-

duced an analytic notion of positivity by using the curvature of (E, h), and now it is called Nakano

positivity. Griffiths defined in [Griffiths69] Griffiths positivity of (E, h). On a Hermitian line

bundle, these two concepts are the same. In general, Griffiths positivity is weaker than Nakano

positivity. On the other hand, Hartshorne defined in [Hartshorne66] the ampleness of a vector bun-

dle over a projective manifold. A vector bundle E is said to be ample if the tautological line bundle

OP(E∗)(1) is ample over P(E∗). For a line bundle, it is well-known that the ampleness of the bundle

is equivalent to its Griffiths positivity. In [Griffiths69], Griffiths conjectured that this equivalence

is also valid for vector bundles, i.e. E is an ample vector bundle if and only if E carries a Griffiths-

positive metric. As is well-known if E admits a Griffiths-positive metric, then OP(E∗)(1) has a

Griffiths-positive metric(see Proposition 1.2.11). Finding a Griffiths-positive metric on an ample

vector bundle seems to be very difficult but is worth being investigated. In [Campana-Flenner90],

Campana and Flenner gave an affirmative answer to the Griffiths conjecture when the base S is

a projective curve, see also [Umemura73]. In [Siu-Yau80], Siu and Yau proved the Frankel con-

jecture that every compact Kähler manifold with positive holomorphic bisectional curvature is

biholomorphic to the projective space. The positivity of holomorphic bisectional curvature is the

same as Griffiths positivity of the holomorphic tangent bundle. On the other hand, Mori([Mori79])

proved the Hartshorne conjecture that any algebraic manifold with ample tangent vector bundle is

biholomorphic to the projective space.
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In this chapter, we consider the existence of positive Hermitian metrics on various vector bun-

dles. It is well-known that metrics with good curvature properties are bridges between complex

algebraic geometry and complex analytic geometry. We will construct Nakano-positive and dual-

Nakano-positive metrics on various vector bundles associated to ample vector bundles.

Let E be a holomorphic vector bundle over a compact Kähler manifold S and F a line bundle

over S. Let r be the rank of E and n be the complex dimension of S. In the following we briefly

describe the main results in this chapter.

Theorem 1.1.1. For any integer k ≥ 0, if Sr+kE ⊗ detE∗ ⊗ F is ample over S, then SkE ⊗ F is

both Nakano-positive and dual-Nakano-positive.

Here we make no assumption on E and we allow E to be negative. For definitions about Nakano-

positivity, dual-Nakano-positivity and ampleness, see Section 1.2. As pointed out by Berndtsson

the Nakano positive part of Theorem 1.1.1 is a special case of [Berndtsson09a] where he proves

it in the case of a general holomorphic fibration, but his method can not derive the dual-Nakano-

positive part of Theorem 1.1.1. Note that Nakano-positive vector bundles are not necessarily dual-

Nakano-positive and vice versa. For example, for any n ≥ 2, the Fubini-Study metric hFS on the

holomorphic tangent bundle TPn of Pn is semi-Nakano-positive and dual-Nakano-positive. It is

well-known that TPn does not admit a smooth Hermitian metric with Nakano-positive curvature

for any n ≥ 2. It is also easy to see that the holomorphic cotangent bundle of a complex hyperbolic

space form is Nakano-positive and is not dual-Nakano-positive. On the other hand, by the dual

Nakano-positivity, we can get various new vanishing theorems of type Hq,n. For more details, see

Section 1.6.

As applications of Theorem 1.1.1, we get the following results:

Theorem 1.1.2. Let E be an ample vector bundle over S.

(1) If F is a nef line bundle, then there exists k0 = k0(S,E) such that SkE ⊗ F is Nakano-

positive and dual-Nakano-positive for any k ≥ k0. In particular, SkE is Nakano-positive and

dual-Nakano-positive for any k ≥ k0.
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(2) If F is an arbitrary vector bundle, then there exists k0 = k0(S,E, F ) such that for any k ≥ k0,

SkE ⊗ F is Nakano-positive and dual-Nakano-positive.

Moreover, if the Hermitian vector bundle (E, h) is Griffiths-positive, then for large k, (SkE, Skh)

is both Nakano-positive and dual-Nakano-positive.

The following results follow immediately from Theorem 1.1.1 and Theorem 1.1.2:

Corollary 1.1.3. Let E be a holomorphic vector bundle over S.

(1) If E is ample, SkE ⊗ detE is both Nakano-positive and dual-Nakano-positive for any k ≥ 0.

(2) If E is ample and its rank r is greater than 1, then SmE∗ ⊗ (detE)t is both Nakano-positive

and dual-Nakano-positive for any t ≥ r +m− 1.

(3) If Sr+1E ⊗ detE∗ is ample, then E is both Nakano-positive and dual-Nakano-positive. In

particular, E is Griffiths-positive.

If (E, h) is a Griffiths-positive vector bundle, Demailly-Skoda proved that E ⊗ detE and E∗ ⊗

(detE)r are Nakano-positive if r > 1([Demailly-Skoda80]). Berndtsson proved in [Berndtsson09a]

that SkE ⊗ detE is Nakano-positive as soon as E is ample. For more related results, we refer the

reader to recent works [Berndtsson09a], [Berndtsson09b], [Berndtsson], [Mourougane-Takayama07],

[Mourougane-Takayama08] and [Schumacher] and references therein.

Let hFS be the Fubini-Study metric on TPn and SkhFS the induced metric on SkTPn by

Veronese mapping. Let n ≥ 2. It is easy to see that TPn does not admit a Nakano-positive

metric. In particular (TPn, hFS) is not Nakano-positive. However, (SkTPn, SkhFS) is Nakano-

positive and dual-Nakano-positive for any k ≥ 2 since (Sk+nTPn⊗KPn , SkhFS ⊗ det(hFS)−1) is

Griffiths-positive. This can be viewed as an evidence of positivity of some adjoint vector bundles,

namely, vector bundles of type SkE ⊗ (detE)` ⊗KS .

Theorem 1.1.4. Let E be an ample vector bundle over S. Let r be the rank of E and n the

dimension of S. If r > 1, then

3



(1) SkE⊗(detE)2⊗KS is Nakano-positive and dual-Nakano-positive for any k ≥ max{n−r, 0}.

Moreover, the lower bound is sharp.

(2) E⊗(detE)k⊗KS is Nakano-positive and dual-Nakano-positive for any k ≥ max{n+1−r, 2}.

Moreover, the lower bound is sharp.

In general, detE⊗KS is not an ample line bundle, for example, (S,E) = (P3,OP3(1)⊕OP3(1)).

Similarly, in the case n + 1 − r > 2, i.e. 1 < r < n − 1, the vector bundle KS ⊗ (detE)n−r

can be a negative line bundle, for example (S,E) = (P4,OP4(1) ⊕ OP4(1)). So Theorem 1.1.4 is

independent of the (dual-)Nakano-positivity of SkE ⊗ detE.

The first application of Nakano-positivity and dual-Nakano-positivity for vector bundles are van-

ishing theorems. In this chapter, we obtain many vanishing theorems for various vector bundles

which can also be viewed as generalizations of many classical vanishing theorems. In the litera-

tures, many vanishing theorems have been obtained for the Dolbeault cohomology of ample and

globally generated vector bundles on smooth projective manifolds, mainly due to the efforts of Le

Potier, Schneider, Peternell, Sommese, Shiffman Demailly, Ein and Lazasfeld, Manivel, Layatini

and Nahm([LePotier75], [Sommese78], [PLS87], [Demailly88], [Ein-Lazasfeld93], [Manivel97],

[Laytimi-Nahm04], [Laytimi-Nahm05a], [Laytimi-Nahm05b]). The Le Potier vanishing theorem

says that ifE is an ample vector bundle over a smooth projective manifoldX , thenHp,q(X,E) = 0

for any p + q ≥ n + r where n = dimCX and r = rank(E). When r ≤ n, the vanishing pairs

(p, q) are contained in a triangle enclosed by three lines p+ q = n+ r, p = n and q = n. By using

the Le Potier-Borel spectral sequence, many interesting generalizations are obtained for products

of symmetric and skew-symmetric powers of an ample vector bundle, twisted by a suitable power

of its determinant line bundle, see for examples, [Demailly88], [Manivel97], [Laytimi-Nahm04],

[Laytimi-Nahm05a] and [Laytimi-Nahm05b]. The common feature of their results is that the van-

ishing theorems hold for (p, q) lying inside or on certain triangles.

As is well-known, except Nakano’s vanishing theorem, few vanishing theorems for vector bun-

dles are proved by analytic method. In this chapter, we use analytic method to prove vanishing

theorems for certain Dolbeault cohomology groups of the bounded vector bundles. The new van-

ishing theorems have quite different feature and they hold for (p, q) lying inside or on certain
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quadrilaterals. In order to describe the vanishing theorems much more effectively, we introduce

Definition 1.1.5. Let E be an arbitrary holomorphic vector bundle with rank r, L an ample line

bundle and ε1, ε2 ∈ R. E is said to be (ε1, ε2)-bounded by L if there exists a Hermitian metric

h on E and a positive Hermitian metric hL on L such that the curvature of E is bounded by the

curvatures of Lε1 and Lε2 , i.e.

ε1ωL ⊗ IdE ≤ ΘE,h ≤ ε2ωL ⊗ IdE (1.1.1)

in the sense of Griffiths. E is called strictly (ε1, ε2)-bounded by L if at least one of ΘE,h− ε1ωL⊗

IdE and ΘE,h − ε2ωL ⊗ IdE is not identically zero.

As is well-known, if detE is ample, we can choose L = detE as a natural bound. Hence,

Definition 1.1.5 works naturally for many vector bundles in algebraic geometry. We list some

examples as follows. See also Proposition 1.6.10.:

(1) If E is globally generated, E is (0, 1)-bounded by detE and strictly (0, 1)-bounded by L ⊗

detE for any ample line bundle L;

(2) If E is an ample vector bundle with rank r, then E is strictly (−1, r)-bounded by detE;

(3) If E is nef with rank r, then E is strictly (−1, r)-bounded by L ⊗ detE for arbitrary ample

line bundle L;

(4) If E is Griffiths-positive, E is strictly (0, 1)-bounded by detE.

Theorem 1.1.6. If E is strictly (ε1, ε2)-bounded by L and m+ (r + k)ε1 > 0, then

Hp,q(X,SkE ⊗ detE ⊗ Lm) = Hq,p(X,SkE ⊗ detE ⊗ Lm) = 0, (1.1.2)

if p ≥ 1, q ≥ 1 satisfy
m+ (r + k)ε1

m+ (r + k)ε2

≥ min

{
n− q

p
,
n− p

q

}
. (1.1.3)

In particular, SkE ⊗ detE ⊗ Lm is Nakano-positive and dual-Nakano-positive and

Hn,q(X,SkE ⊗ detE ⊗ Lm) = Hq,n(X,SkE ⊗ detE ⊗ Lm) = 0

for q ≥ 1.

5
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p+ q = n+ s0

Remark 1.1.7. (1) (p, q) satisfies condition (1.1.3) if only if it lies inside or on the following

quadrilateral Q = A0A1A2A3. See Figure 1 with A0 and A2 removed. Here

A0 = (0, n), A1 = (n, n), A2 = (n, 0), A3 = (c0, c0)

and

c0 =
n

1 + m+(r+k)ε1

m+(r+k)ε2

, (1.1.4)

It is obvious that Q is symmetric with respect to the line p = q.

(2) The condition m+(r+ k)ε1 > 0 is necessary, which guarantees that the vector bundle SkE⊗

detE ⊗ Lm is Griffiths-positive. In fact, in terms of Hermitian metrics,

SkE ⊗ detE ⊗ Lm = Sk(E ⊗ L−ε1)⊗ det(E ⊗ L−ε1)⊗ Lm+(r+k)ε1 ≥ Lm+(r+k)ε1

and similarly SkE ⊗ detE ⊗ Lm ≤ Lm+(r+k)ε2 . On the other hand, we will see that SkE ⊗

detE ⊗ Lm has a nice metric h such that (SkE ⊗ detE ⊗ Lm, h) behaves very similarly to

a positive Hermitian “line bundle” (L, h0). Moreover, m + (r + k)ε1 and m + (r + k)ε2 are

the minimal and maximal eigenvalues of the curvature of (L, h0) respectively. From these one

can see that Theorem 1.1.6 is optimal.

(3) When ε1 is close enough to ε2, E is semi-stable with respect to L ([Kobayashi87]). Moreover,

Hp,q(X,SkE ⊗ detE ⊗ Lm) = 0 for any p+ q ≥ n+ 1.

(4) If ε1 ≤ 0, ε2 ≥ 0, and F is an arbitrary nef line bundle, Theorem 1.1.6 also holds for SkE ⊗

detE ⊗ Lm ⊗ F .
6



As applications, we obtain

Theorem 1.1.8. If E is globally generated and L is an ample line bundle, then for any k ≥ 1,m ≥

1,

Hp,q(X,SkE ⊗ (detE)m ⊗ L) = Hq,p(X,SkE ⊗ (detE)m ⊗ L) = 0

if p ≥ 1, q ≥ 1 satisfy
m− 1

m− 1 + (r + k)
≥ min

{
n− q

p
,
n− p

q

}
(1.1.5)

In particular, SkE ⊗ (detE)m ⊗ L is both Nakano-positive and dual-Nakano-positive and

Hn,q(X,SkE ⊗ (detE)m ⊗ L) = Hq,n(X,SkE ⊗ (detE)m ⊗ L) = 0

for any q ≥ 1.

The right hand side of (1.1.5) depends only on the ratios and it makes Theorem 1.1.8 quite different

from the results of [Demailly88], [Manivel97], [Laytimi-Nahm04] and [Laytimi-Nahm05a]. More

precisely, for some specific vanishing pair (p, q), the power of detE may be independent on the

dimension of X . For example, for n = 3n0 + 2, by (1.1.5),

H2,n−1(X,E ⊗ (detE)r+2 ⊗ L) = 0 = H2n0+2,2n0+1(X,E ⊗ (detE)r+2 ⊗ L) (1.1.6)

for any globally generated E and ample L. In general, we do not have Hp,q(X,E ⊗ (detE)r+2 ⊗

L) = 0 for all p+q ≥ n+1, if 1 < r � n( cf. [Manivel97], Corollary B and [Laytimi-Nahm05a],

Corollary 1.5). On the other hand, for fixed (k,m), the quadrilateral Q contains a triangle p+ q ≥

n + s0 for some s0 ∈ (0, n]. See Figure 2. Moreover, if the power m of detE is large enough,

we obtain Hp,q(X,SkE ⊗ (detE)m ⊗ L) = 0 for p + q ≥ n + 1. Examples in [PLS87] and

[Demailly88] indicate that a sufficient large power of detE is necessary in this case. For more

details, see Corollary 1.6.14, Corollary 1.6.16 and Example 1.7.8.

Theorem 1.1.9. If E is ample (resp. nef) and L is nef (resp. ample), then for any k ≥ 1 and

m ≥ k + r + 1,

Hp,q(X,SkE ⊗ (detE)m ⊗ L) = Hq,p(X,SkE ⊗ (detE)m ⊗ L) = 0,

if p ≥ 1, q ≥ 1 satisfy

(m− 1)− (r + k)

(m− 1) + r(r + k)
≥ min

{
n− q

p
,
n− p

q

}
(1.1.7)

7



By a similar setting as (1.1.6), it is easy to see that the result in Theorem 1.1.9 is different from the

results in [Demailly88], [Manivel97], [Laytimi-Nahm04] and [Laytimi-Nahm05a].

Remark: Our method is a generalization of the analytic proof of the Kodaira-Akizuki-Nakano

vanishing Theorem for line bundles. We have obtained similar results for “partially” positive

vector bundles.

1.2 Background materials

1.2.1 Various positivity and relations

Let E be a holomorphic vector bundle over a compact Kähler manifold S and h a Hermitian metric

on E. There exists a unique connection ∇ which is compatible with the metric h and complex

structure on E. It is called the Chern connection of (E, h). Let {zi}n
i=1 be local holomorphic

coordinates on S and {eα}r
α=1 be a local frame of E. The curvature tensor R∇ ∈ Γ(S,Λ2T ∗S ⊗

E∗ ⊗ E) has the form

R∇ =

√
−1

2π
Rγ

ijα
dzi ∧ dzj ⊗ eα ⊗ eγ (1.2.1)

where Rγ

ijα
= hγβRijαβ and

Rijαβ = −
∂2hαβ

∂zi∂zj + hγδ ∂hαδ

∂zi

∂hγβ

∂zj (1.2.2)

Here and henceforth we sometimes adopt the Einstein convention for summation.

Definition 1.2.1. A Hermitian vector bundle (E, h) is said to be Griffiths-positive, if for any

nonzero vectors u = ui ∂
∂zi and v = vαeα,∑

i,j,α,β

Rijαβu
iujvαvβ > 0 (1.2.3)

(E, h) is said to be Nakano-positive, if for any nonzero vector u = uiα ∂
∂zi ⊗ eα,∑

i,j,α,β

Rijαβu
iαujβ > 0 (1.2.4)

(E, h) is said to be dual-Nakano-positive, if for any nonzero vector u = uiα ∂
∂zi ⊗ eα,∑

i,j,α,β

Rijαβu
iβujα > 0 (1.2.5)

8



It is easy to see that (E, h) is dual-Nakano-positive if and only if (E∗, h∗) is Nakano-negative.

The notions of semi-positivity, negativity and semi-negativity can be defined similarly. We say

E is Nakano-positive (resp. Griffiths-positive, dual-Nakano-positive, · · · ), if it admits a Nakano-

positive(resp. Griffiths-positive, dual-Nakano-positive, · · · ) metric.

The following geometric definition of nefness is due to [DPS94].

Definition 1.2.2. Let (S, ω0) be a compact Kähler manifold. A line bundle L over S is said to be

nef, if for any ε > 0, there exists a smooth Hermitian metric hε on L such that the curvature of

(L, hε) satisfies

R = −
√
−1

2π
∂∂ log hε ≥ −εω0 (1.2.6)

This means that the curvature of L can have an arbitrarily small negative part. Clearly a nef line

bundle L satisfies ∫
C

c1(L) ≥ 0

for any irreducible curve C ⊂ S. For projective algebraic S, both notions coincide.

By the Kodaira embedding theorem, we have the following geometric definition of ampleness.

Definition 1.2.3. Let (S, ω0) be a compact Kähler manifold. A line bundle L over S is said to be

ample, if there exists a smooth Hermitian metric h on L such that the curvatureR of (L, h) satisfies

R = −
√
−1

2π
∂∂ log h > 0 (1.2.7)

For comprehensive descriptions of positivity, nefness, ampleness and related topics, see [Demailly],

[DPS94], [Lazasfeld04], [Griffiths69], [Shiffman-Sommese85] and [Umemura73].

In the seminal paper [Siu80], Siu introduced the following terminology:

Definition 1.2.4. Let (X, g) be a compact Kähler manifold. (X, g) has strongly negative curva-

ture(resp. strongly positive) if

Rijk`

(
AiB

j − CiD
j
)(

A`B
k − C`D

k
)
≤ 0 (resp. ≥ 0) (1.2.8)

for any A = Ai ∂
∂zi , B = Bj ∂

∂zj , C = Ci ∂
∂zi , D = Dj ∂

∂zj and the identity in the above inequality

holds if and only if

AiB
j − CiD

j
= 0

9



for any i, j.

Remark 1.2.5. Note that if dimCX = 2, the strong negativity in the sense of Siu is equivalent to

the dual-Nakano negativity.

Example 1.2.6. The Hermitian holomorphic tangent bundle of (Pn, ωFS) with n > 1 is dual-

Nakano-positive and semi-Nakano-positive. In fact, in the normal coordinates of a given point on

Pn, the curvature tensor of (TPn, ωFS) is

Rijk` = δijδkl + δilδkj (1.2.9)

It is easy to verify the assertion from the following identities

Rijk`u
ikuj` =

1

2

∑
i,j

|uij + uji|2 and Rijk`u
i`ujk =

∣∣∑
i

uii
∣∣2 +

∑
i,`

|ui`|2

Lemma 1.2.7. Let n > 1.

(1) (TPn, ωFS) is dual-Nakano-positive and semi-Nakano-positive.

(2) Let X be a hyperbolic space form with dimension n. If ωB is the canonical metric on X , then

(TX, ωB) is dual-Nakano-negative and semi-Nakano-negative.

(3) For any n-dimensional compact Kähler manifold X , the holomorphic tangent bundle TX is

neither Nakano-positive nor Nakano-negative.

Proof. The assertion (3) follows from Nakano-vanishing theorem and Serre duality.

Lemma 1.2.8. Let (E, h) be a Hermitian holomorphic vector bundle over a complex manifold X ,

S be a holomorphic subbudle of E and Q the corresponding quotient bundle.

0 → S → E → Q→ 0

(1) If E is (semi)-Nakano-negative, then S is also (semi)-Nakano negative.

(2) If E is (semi-)dual-Nakano-positive, then Q is also (semi-)dual-Nakano-positive.

10



Proof. This lemma is well-known(e.g. [Demailly]). For the sake of completeness, we include a

proof here. It is obvious that (2) is the dual of (1). Let r be the rank of E and s the rank of S.

Without loss of generality, we can assume, at a fixed point p ∈ X , there exists a local holomorphic

frame {e1, · · · , er} of E centered at point p such that {e1, · · · , es} is a local holomorphic frame of

S. Moreover, we can assume that

h(eα, eβ)(p) = δαβ, for 1 ≤ α, β ≤ r

Hence, the curvature tensor of S at point p is

RS
ijαβ

= −
∂2hαβ

∂zi∂zj +
s∑

γ=1

hαγ

∂zi

hγβ

∂zj (1.2.10)

where 1 ≤ α, β ≤ s. The curvature tensor of E at point p is

RE
ijαβ

= −
∂2hαβ

∂zi∂zj +
r∑

γ=1

hαγ

∂zi

hγβ

∂zj (1.2.11)

where 1 ≤ α, β ≤ r. By formula (1.2.4), it is easy to see that RE|S −RS is semi-Nakano-positive.

Hence (1) follows.

The following relations are well-known:

Lemma 1.2.9. Let (X, g) be a Kähler manifold. We have the following relations between various

curvature terminologies

(1) dual-Nakano negativity implies strongly negativity in the sense of Siu;

(2) strongly negativity in the sense of Siu implies negativity of Riemannian sectional curvature;

(3) negativity of Riemannian sectional curvature implies negativity of holomorphic bisectional

curvature.

1.2.2 Ampleness and Griffiths positivity for vector bundles

LetE be a Hermitian vector bundle of rank r over a compact Kähler manifold S, L = OP(E∗)(1) be

the tautological line bundle of the projective bundle P(E∗) and π the canonical projection P(E∗) →
11



S. By definition([Hartshorne66]), E is an ample vector bundle over S ifOP(E∗)(1) is an ample line

bundle over P(E∗). E is said to be nef, ifOP(E∗)(1) is nef. To simplify the notations we will denote

P(E∗) by X and the fiber π−1({s}) by Xs.

Let (e1, · · · , er) be the local holomorphic frame with respect to a given trivialization on E and

the dual frame on E∗ is denoted by (e1, · · · , er). The corresponding holomorphic coordinates on

E∗ are denoted by (W1, · · · ,Wr). There is a local section eL∗ of L∗ defined by

eL∗ =
r∑

α=1

Wαe
α (1.2.12)

Its dual section is denoted by eL. Let hE be a fixed Hermitian metric on E and hL the induced

quotient metric by the morphism (π∗E, π∗hE) → L.

If
(
hαβ

)
is the matrix representation of hE with respect to the basis {eα}r

α=1, then hL can be

written as

hL =
1

hL∗(eL∗ , eL∗)
=

1∑
hαβWαW β

(1.2.13)

Proposition 1.2.10. The curvature of (L, hL) is

RhL

= −
√
−1

2π
∂∂ log hL =

√
−1

2π
∂∂ log

(∑
hαβWαW β

)
(1.2.14)

where ∂ and ∂ are operators on the total space P(E∗).

Although the following result is well-known([Demailly], [Griffiths69]), we include a proof here

for the sake of completeness.

Proposition 1.2.11. If (E, hE) is a Griffiths-positive vector bundle, then E is ample.

Proof. We will show that the induced metric hL in (1.2.13) is positive. We fix a point p ∈ P(E∗),

then there exist local holomorphic coordinates (z1, · · · , zn) centered at point s = π(p) and local

holomorphic basis {e1, · · · , er} of E around s such that

hαβ = δαβ −Rijαβz
izj +O(|z|3) (1.2.15)

Without loss of generality, we assume p is the point (0, · · · , 0, [a1, · · · , ar]) with ar = 1. On the

chart U = {Wr = 1} of the fiber Pr−1, we set wA = WA for A = 1, · · · , r − 1. By formula
12



(1.2.14) and (1.2.15)

RhL

(p) =

√
−1

2π

(∑
Rijαβ

aβaα

|a|2
dzi ∧ dzj +

r−1∑
A,B=1

(
δAB −

aBaA

|a|2

)
dwA ∧ dwB

)
(1.2.16)

where |a|2 =
r∑

α=1

|aα|2. If RE is Griffith positive,(
r∑

α,β=1

Rijαβ

aβaα

|a|2

)

is a Hermitian positive n× n matrix. Consequently, RhL
(p) is a Hermitian positive (1, 1) form on

P(E∗), i.e. hL is a positive Hermitian metric.

The following linear algebraic lemma will be used in Theorem 1.3.7.

Lemma 1.2.12. If the matrix

T =

 A B

C D


is invertible and D is invertible, then (A−BD−1C)−1 exists and

T−1 =

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1C(A−BD−1C)−1BD−1 +D−1


Moreover, if T is positive definite, then A−BD−1C is positive definite.

1.2.3 Classical vanishing theorems

In the following, we will describe the idea of proving vanishing theorems by using an analytic

method and the similar methods will be used in proving Theorem 1.1.6.

At first, we briefly describe the analytic proof of vanishing theorems for line bundles. Let

(ϕij)n×n be a Hermitian positive matrix with eigenvalues

λ1 ≤ · · · ≤ λn (1.2.17)

Let u =
∑
uIJdz

I ∧ dzJ be a (p, q) form on Cn where uIJ is alternate in the indices I =

(i1, · · · , ip) and J = (j1, · · · , jq). We define
13



T (u, u) = 〈[ϕ,Λω]u, u〉 (1.2.18)

where ϕ =
√
−1ϕijdz

i ∧ dzj and Λω is the contraction operator of the standard Kähler metric on

Cn. The following linear algebraic result is well-known([Demailly]):

Lemma 1.2.13. We have the following estimate

T (u, u) ≥ max{pλ1 − (n− q)λn, qλ1 − (n− p)λn}|u|2 (1.2.19)

Corollary 1.2.14. Let (L, h) be a Hermitian line bundle over a compact Kähler manifold (X,ω0).

Let λ1 and λn be the smallest and largest eigenvalue functions ofRL with respect to ω0 respectively.

Suppose λn > 0. If

max{pλ1 − (n− q)λn, qλ1 − (n− p)λn}

is positive everywhere, or equivalently

λ1

λn

> max

{
n− q

p
,
n− p

q

}
(1.2.20)

then

Hp,q(M,L) = Hq,p(M,L) = 0 (1.2.21)

Proof. By a well-known Bochner formula for L,

∆′′ = ∆′ + [RL,Λω]

for any u ∈ Ωp,q(M,L),

〈∆′′u, u〉 = 〈∆′u, u〉+ T (u, u) (1.2.22)

If ∆′′u = 0, by the condition, we get u = 0.

Remark 1.2.15. The condition in Corollary 1.2.14 can be satisfied if and only if (L, h) is Griffiths

positive or Griffiths-negative. If (L, h) is a positive line bundle over a compact complex manifold

X , we can define a Kähler metric on X

ω0 = RL = −
√
−1

2π
∂∂ log h (1.2.23)

In this case, ϕ = RL in Lemma 1.2.14 and λ1 = λn = 1. Hence, if p+ q ≥ n+1, Hp,q(X,L) = 0.

This is the Kodaira-Akizuki-Nakano vanishing theorem.
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Corollary 1.2.16 (Kodaira-Akizuki-Nakano). LetX be a compact complex manifold with complex

dimension n. If L is an ample line bundle over X , then

Hp,q(X,L) = 0 for p+ q ≥ n+ 1 (1.2.24)

For ample vector bundles, Le Potier generalized Kodaira-Akizuki-Nakano vanishing theorem and

obtained the famous Le Potier vanishing theorem

Theorem 1.2.17 (Le Potier). Let X be a compact complex manifold with complex dimension n

and E be an ample vector bundle over X with rank r.

Hp,q(X,E) = 0 for p+ q ≥ n+ r (1.2.25)

However, when the rank r of E is very large, more precisely, when r > n, Le Potier’s vanishing

theorem can not provide any information. But the following result holds for any ample vector

bundle

Proposition 1.2.18. Let X be a compact complex manifold with complex dimension n and E be

an ample vector bundle over X . Then

Hn,n(X,E) = 0 (1.2.26)

It is easy to see from the following example that Proposition 1.2.18 is optimal.

Example 1.2.19. It is well known that, for any n ≥ 2, E = T 1,0Pn is ample, but

Hn,n−1(Pn, E) = C 6= 0 (1.2.27)

The following vanishing theorem is due to Nakano([Nakano55])(see also ([Demailly])):

Lemma 1.2.20. Let E be a holomorphic vector bundle over a compact Kähler manifold M . If

E is Nakano-positive, then Hn,q(M,E) = 0 for any q ≥ 1. If E is dual-Nakano-positive, then

Hq,n(M,E) = 0 for any q ≥ 1.
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The proof of Lemma 1.2.20 follows from formula (1.2.29) easily. Let (E, h) be a Hermitian

holomorphic vector bundle with rank r over a compact Kähler manifold (X,ωg). For any fixed

point p ∈ X , there exists a local holomorphic coordinates system {zi}n
i=1 and local holomorphic

frames {eα}r
α=1 such that

gij(p) = δij, hαβ(p) = δαβ (1.2.28)

The curvature term

T (u, u) = 〈[RE,Λg]u, u〉

=
∑

RijαβuI,iS,αuI,jSβ +
∑

RijαβujR,J,αuiR,J,β −
∑

RiiαβuIJαuIJβ(1.2.29)

for any u =
∑
uIJαdz

I ∧ dzJ ⊗ eα. For more details, see ([Demailly], p. 341). From formula

(1.2.29), it is very difficult to obtain vanishing theorems for vector bundles. If the curvature RE

has a nice expression, for example

Rijαβ = ϕijτατβ (1.2.30)

then E behaviors as a line bundle with curvature (ϕij). Unfortunately, few examples with property

(1.2.30) can be found. However, an integral version of (1.2.30) exists on vector bundles of type

E ⊗ detE,

RE⊗det E

ijαβ
(s) = Rijαβ(s) + δαβ ·

∑
γ

Rijγγ(s) = r! ·
∫

Pr−1

ϕijWαW β

|W |2
ωr−1

FS

(r − 1)!
(1.2.31)

where [W1, · · · ,Wr] are the homogeneous coordinates on Pr−1, ωFS is the Fubini-Study metric

and

ϕij = (r + 1)
∑
γ,δ

Rijγδ(s)
WδW γ

|W |2
(1.2.32)

It is obvious that if E is Griffiths-positive, then E ⊗ detE is both Nakano-positive and dual-

Nakano-positive. With the help of the nice formulation (1.2.31), we obtain vanishing theorem

1.1.8, Theorem 1.1.6 and Theorem 1.1.9 which are similar to Corollary 1.2.14.
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1.3 Construction of Hermitian metrics on SkE ⊗ F

1.3.1 Curvature formulas

Let F be a holomorphic line bundle over S, L = OP(E∗)(1) and π : P(E∗) → S. For simplicity

of notations, we set L̃ = Lk ⊗ π∗(F ) for k ≥ 0 and X = P(E∗). Let h0 be a Hermitian metric

on L̃ and {ωs}s∈S a smooth family of Kähler metrics on the fibers Xs = P(E∗
s ) of X which are

induced by the curvature form of some metric onOP(E∗)(1). Let {wA}r−1
A=1 be the local holomorphic

coordinates on the fiber Xs which are induced by the homogeneous coordinates [W1, · · · ,Wr] on

a trivialization chart. Using these notations, we can write ωs as

ωs =

√
−1

2π

r−1∑
A,B=1

gAB(s, w)dwA ∧ dwB (1.3.1)

It is well-known H0(Pr−1,OPr−1(k)) can be identified as the space of homogeneous polynomials

of degree k in r variables. Therefore, the sections ofH0(Xs, L̃|Xs) are of the form Vαe
⊗k
L ⊗ewhere

Vα are homogenous polynomials in {W1, · · · ,Wr} of degree k and e the base of π∗(F ) induced by

a base e of F . For example, if α = (α1, · · · , αr) with α1 + · · · + αr = k and αj are nonnegative

integers,

Vα = Wα1
1 · · ·Wαr

r . (1.3.2)

Now we set

Eα = e⊗α1
1 ⊗ · · · ⊗ e⊗αr

r ⊗ e and eeL = e⊗k
L ⊗ e

which are bases of SkE ⊗ F and L̃ respectively. We obtain a vector bundle whose fibers are

H0(Xs, L̃|Xs). In fact, this vector bundle is Ẽ = SkE⊗F . Now we can define a smooth Hermitian

metric f on SkE ⊗ F by (L̃, h0) and (Xs, ωs), locally it is

fαβ := f(Eα, Eβ) =

∫
Xs

〈VαeeL, VβeeL〉h0

ωr−1
s

(r − 1)!

=

∫
Xs

h0VαV β
ωr−1

s

(r − 1)!
(1.3.3)

Here we regard h0 locally as a positive function. In this general setting, the Hermitian metric h0

on L̃ and Kähler metrics ωs on the fibers are independent.
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Let (z1, · · · , zn) be local holomorphic coordinates on S. By definition, the curvature tensor of

f is

Rijαβ = −
∂2fαβ

∂zi∂zj +
∑
γ,δ

fγδ ∂fαδ

∂zi

∂fγβ

∂zj (1.3.4)

In the following, we will compute the curvature of f . Let TX/S be the relative tangent bundle of

the fibration P(E∗) → S, then gAB is a metric on TX/S and det(gAB) is a metric on det(TX/S).

Let ϕ = − log(h0 det(gAB)) be the local weight of induced Hermitian metric h0 det(gAB) on

L̃⊗ det(TX/S). In the sequel, we will use the following notations

ϕi =
∂ϕ

∂zi
, ϕij =

∂2ϕ

∂zi∂zj , ϕAB =
∂2ϕ

∂wA∂wB
, ϕiB =

∂2ϕ

∂zi∂wB
, ϕAj =

∂2ϕ

∂zj∂wA

and (ϕAB) is the transpose inverse of the (r − 1)× (r − 1) matrix (ϕAB),
r−1∑
B=1

ϕABϕCB = δA
C

The following lemma can be deduced from the formulas in [Schumacher85], [Wolpert86] and

[Siu86]. In the case of holomorphic fibration P(E∗) → S, it follows by straightforward computa-

tions.

Lemma 1.3.1. The first order derivative of fαβ is

∂fαβ

∂zi
= −

∫
Xs

h0VαV βϕi
ωr−1

s

(r − 1)!
=

∫
Xs

〈−VαϕieeL, VβeeL〉h0

ωr−1
s

(r − 1)!
(1.3.5)

Proof. By the local expression (1.3.1) of ωs,

ωr−1
s

(r − 1)!
= det(gAB)dVCr−1

where dVCr−1 is standard volume on Cr−1. Therefore

fαβ =

∫
Xs

e−ϕVαV βdVCr−1

and the first order derivative is

∂fαβ

∂zi
=

∫
Xs

∂e−ϕ

∂zi
VαV βdVCr−1

= −
∫

Xs

ϕie
−ϕVαV βdVCr−1

= −
∫

Xs

h0VαV βϕi
ωr−1

s

(r − 1)!
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Theorem 1.3.2. The curvature tensor of the Hermitian metric f on SkE ⊗ F is

Rijαβ =

∫
Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
−
∫

Xs

h0PiαP jβ
ωr−1

s

(r − 1)!
(1.3.6)

where

Piα = −Vαϕi −
∑

γ

Vγ

(∑
δ

fγδ ∂fαδ

∂zi

)
(1.3.7)

Proof. The idea we use is due to Berndtsson([Berndtsson09a], Section 2). For simplicity of no-

tations, we set Aiα = −Vαϕi. The Hermitian metric (1.3.3) is also a norm on the smooth section

space Γ(Xs, L̃|Xs), and it induces an orthogonal projection

π̃s : Γ(Xs, L̃|Xs) → H0(Xs, L̃|Xs)

Using this projection, we can rewrite the first order derivative as

∂fαβ

∂zi
=

∫
Xs

〈AiαeeL, VβeeL〉h0

ωr−1
s

(r − 1)!

=

∫
Xs

〈π̃s(AiαeeL) + (AiαeeL − π̃s(AiαeeL)), VβeeL〉h0

ωr−1
s

(r − 1)!

=

∫
Xs

〈π̃s(AiαeeL), VβeeL〉h0

ωr−1
s

(r − 1)!

since (AiαeeL− π̃s(AiαeeL)) is in the orthogonal complement of H0(Xs, L̃|Xs). By this relation, we

can write π̃s(AiαeeL) in the basis {VαeeL} of H0(Xs, L̃|Xs),

π̃s(AiαeeL) =
∑

γ

(∑
δ

fγδ ∂fαδ

∂zi

)(
VγeeL) (1.3.8)

From this identity, we obtain∫
Xs

〈
π̃s(AiαeeL), π̃s(AjβeeL)

〉
h0

ωr−1
s

(r − 1)!
=
∑
γ,δ

fγδ ∂fαδ

∂zi

∂fγβ

∂zj (1.3.9)

Suppose

Piα = Aiα −
∑

γ

Vγ

(∑
δ

fγδ ∂fαδ

∂zi

)
(1.3.10)

then AiαeeL = π̃s(AiαeeL) + PiαeeL, that is,

π̃s(PiαeeL) = 0 (1.3.11)
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Similar to Lemma 1.3.1, we obtain the second order derivative

∂2fαβ

∂zi∂zj = −
∫

Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
+

∫
Xs

〈VαϕieeL, VβϕjeeL〉h0

ωr−1
s

(r − 1)!

= −
∫

Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
+

∫
Xs

〈AiαeeL, AjβeeL〉h0

ωr−1
s

(r − 1)!

= −
∫

Xs

h0VαV βϕij

ωr−1
s

(r − 1)!

+

∫
Xs

〈
PiαeeL + π̃s(AiαeeL), PjβeeL + π̃s(AjβeeL)

〉
h0

ωr−1
s

(r − 1)!

= −
∫

Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
+

∫
Xs

h0PiαP jβ
ωr−1

s

(r − 1)!
+∫

Xs

〈
π̃s(AiαeeL), π̃s(AjβeeL)

〉
h0

ωr−1
s

(r − 1)!

= −
∫

Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
+

∫
Xs

h0PiαP jβ
ωr−1

s

(r − 1)!

+fγδ ∂fαδ

∂zi

∂fγβ

∂zj

By formula (1.3.4), we get the curvature formula (1.3.6).

1.3.2 Positivity of Hermitian metrics on SkE ⊗ F

If (E, h) is a Griffiths-positive, Demailly-Skoda([Demailly-Skoda80]) showed that (E⊗detE, h⊗

deth) is Nakano-positive. They proved it by using a discrete Fourier transformation method. Here,

we use a linear algebraic argument to show (E ⊗ detE, h ⊗ deth) is both Nakano-positive and

dual-Nakano-positive.

Let ωFS be the standard Fubini-Study metric on Pr−1 and [W1, · · ·Wr] the homogeneous co-

ordinates on Pr−1. If A = (α1, · · · , αk) and B = (β1, β2, · · · , βk), we define the generalized

Kronecker-δ for multi-index by the following formula

δAB =
∑
σ∈Sk

k∏
j=1

δασ(j)βσ(j)
(1.3.12)

where Sk is the permutation group in k symbols.
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Lemma 1.3.3. If VA = Wα1 · · ·Wαk
and VB = Wβ1 · · ·Wβk

, then∫
Pr−1

VAV B

|W |2k

ωr−1
FS

(r − 1)!
=

δAB

(r + k − 1)!
(1.3.13)

For simple-index notations,∫
Pr−1

WαW β

|W |2
ωr−1

FS

(r − 1)!
=
δαβ

r!
,

∫
Pr−1

WαWβWγWδ

|W |4
ωr−1

FS

(r − 1)!
=
δαβδγδ + δαδδβγ

(r + 1)!
(1.3.14)

Without loss of generality we can assume, at a fixed s ∈ S, hαβ(s) = δαβ . The curvature of

(E ⊗ detE, h⊗ deth) is

RE⊗det E

ijαβ
(s) = Rijαβ(s) + δαβ ·

∑
γ

Rijγγ(s) (1.3.15)

By Lemma 1.3.3, we obtain

Rijαβ(s) + δαβ ·
∑

γ

Rijγγ(s) = r! ·
∫

Pr−1

WαW β

|W |2
ϕij

ωr−1
FS

(r − 1)!
(1.3.16)

where

ϕij = (r + 1)
∑
γ,δ

Rijγδ(s)
WδW γ

|W |2
(1.3.17)

If (E, h) is Griffiths-positive, then (ϕij) is Hermitian positive. For any nonzero u = (uiα)

RE⊗det E

ijαβ
uiβujα = (r + 1)

∫
Pr−1

ϕij

(uiβW β) ·
(
ujαW α

)
|W |2

ωr−1
FS

(r − 1)!
> 0 (1.3.18)

Therefore, (E ⊗ detE, h ⊗ deth) is dual-Nakano-positive. By a similar formulation, we know

(E ⊗ detE, h⊗ deth) is Nakano-positive.

In the following, we will prove similar results for ample vector bundles.

1.3.2.1 Nakano-positivity

In this subsection, we will use ∂-estimate on a compact Kähler manifold to analyze the curvature

formula in Theorem 1.3.2,

Rijαβ =

∫
Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
−
∫

Xs

h0PiαP jβ
ωr−1

s

(r − 1)!
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The first term on the right hand side involves the horizontal direction curvature ϕij of the line bun-

dle L̃⊗ det(TX/S). If the line bundle L̃⊗ det(TX/S) is positive in the horizontal direction, we can

choose (h0, ωs) such that ϕ is positive in the horizontal direction, i.e. (ϕij) is Hermitian positive.

We will get a lower bound of the second term by using Hörmander’s L2-estimate, following an

idea of Berndtsson([Berndtsson09a]).

Lemma 1.3.4. Let (Mn, ωg) be a compact Kähler manifold and (L, h) a Hermitian line bundle

over M . If there exists a positive constant c such that

Ric(ωg) +Rh ≥ cωg (1.3.19)

then for anyw ∈ Γ(M,T ∗0,1M⊗L) such that ∂w = 0, there exists a unique u ∈ Γ(M,L) such that

∂u = w and π̃(u) = 0 where π̃ : Γ(M,L) → H0(M,L) is the orthogonal projection. Moreover,∫
M

|u|2h
ωn

g

n!
≤ 1

c

∫
M

|w|2g∗⊗h

ωn
g

n!
(1.3.20)

We refer the reader to [Demailly] and [Hormander66] for the proof of Lemma 1.3.4.

Now we apply Lemma 1.3.4 to each fiber (Xs, ωs) and (L̃|Xs , h0|Xs). At a fixed point s ∈ S,

the fiber direction curvature of the induced metric on L̃⊗ det(TX/S) is

−
√
−1

2π
∂s∂s log(h0 det(gAB)) = R

eLh0
s +RicF (ωs) (1.3.21)

On the other hand

−
√
−1

2π
∂s∂s log(h0 det(gAB)) =

√
−1

2π
∂s∂sϕ

where ϕ = − log(h0 det(gAB)). So condition (1.3.19) turns out to be

(ϕAB) ≥ cs(gAB) (1.3.22)

for some positive constant cs = c(s).

Theorem 1.3.5. If (ϕAB) ≥ cs(gAB) at point s ∈ S, then for any

u =
∑
i,α

uiα ∂

∂zi
⊗ Eα ∈ Γ(S, T 1,0S ⊗ Ẽ)

with Ẽ = SkE ⊗ F , we have the following estimate at point s,

Rijαβu
iαujβ ≥

∫
Xs

h0(Vαu
iα)(Vβujβ)

(
ϕij −

gABϕiBϕAj

cs

)
ωr−1

s

(r − 1)!
(1.3.23)
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Proof. At point s ∈ S, we set

P =
∑
i,α

Piαu
iαeeL ∈ Γ(Xs, L̃s), K = −

∑
i,α

Vαϕiu
iαeeL ∈ Γ(Xs, L̃s)

It is obvious that ∂sP = ∂sK where ∂s is ∂ on the fiber direction. On the other hand, by (1.3.11),

π̃s(P ) = 0. So we can apply Lemma 1.3.4 and get∫
Xs

|P |2h0

ωr−1
s

(r − 1)!
≤ 1

cs

∫
Xs

|∂sK|2g∗s⊗h0

ωr−1
s

(r − 1)!
(1.3.24)

Since ∂sK = −
∑

i,α,B

VαϕiBu
iαdzB ⊗ eeL,

|∂sK|2g∗s⊗h0
=
∑
i,j

∑
α,β

h0(Vαu
iα)(Vβujβ)gABϕiBϕAj

By inequality (1.3.24) and Theorem 1.3.2, we get the estimate (1.3.23).

Before proving the main theorems, we need the following lemma:

Lemma 1.3.6. If E is a holomorphic vector bundle with rank r over a compact Kähler manifold

S and F is a line bundle over S such that Sk+rE ⊗ detE∗ ⊗ F is ample over S, then there exists

a positive Hermitian metric λ0 on OP(E∗)(k)⊗ π∗(F )⊗ det(TX/S).

Proof. Let Ê be Sk+rE ⊗ det(E∗)⊗ F . It is obvious that P(Sk+rE∗) = P(Ê∗). The tautological

line bundles of them are related by the following formula

OP( bE∗)(1) = OP(Sk+rE∗)(1)⊗ π∗k+r(detE∗)⊗ π∗k+r(F ) (1.3.25)

where πk+r : P(Sk+rE∗) → S is the canonical projection. Let vk+r : P(E∗) → P(Sk+rE∗) be the

standard Veronese embedding, then

OP(E∗)(k + r) = v∗k+r

(
OP(Sk+rE∗)(1)

)
(1.3.26)

Similarly, let µk+r be the induced mapping µk+r : P(E∗) → P(Ê∗), then

µ∗k+r

(
OP( bE∗)(1)

)
= OP(E∗)(k + r)⊗ π∗(F ⊗ detE∗) (1.3.27)

By the identity

KX = π∗(KS)⊗OP(E∗)(−r)⊗ π∗(detE), (1.3.28)
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we obtain

µ∗k+r

(
OP( bE∗)(1)

)
= OP(E∗)(k)⊗ π∗(F )⊗ det(TX/S) = L̃⊗ det(TX/S) (1.3.29)

If Ê is ample, thenOP( bE∗)(1) is ample and so is L̃⊗det(TX/S). So there exists a positive Hermitian

metric λ0 on L̃⊗ det(TX/S).

Theorem 1.3.7. Let E be a holomorphic vector bundle over a compact Kähler manifold S and F

a line bundle over S. Let r be the rank of E and k ≥ 0 an arbitrary integer. If Sk+rE⊗detE∗⊗F

is ample over S, then there exists a smooth Hermitian metric f on SkE⊗F such that (SkE⊗F, f)

is Nakano-positive.

Proof. By Lemma 1.3.6, there exists a positive Hermitian metric λ0 on the ample line bundle

L̃⊗ det(TX/S). We set

ωs = −
√
−1

2π
∂s∂s log λ0 =

√
−1

2π

r−1∑
A,B=1

gAB(s, w)dwA ∧ dwB

which is a smooth family of Kähler metrics on the fibers Xs. We get an induced Hermitian metric

on L̃, namely,

h0 =
λ0

det(gAB)
(1.3.30)

Let f be the Hermitian metric on the vector bundle SkE ⊗ detF induced by (L̃, h0) and

(Xs, ωs)(see (1.3.3)). In this setting, the weight ϕ of induced metric on L̃⊗ det(TX/S) is

ϕ = − log (h0 det(gAB)) = − log λ0

Hence

(ϕAB) = (gAB) (1.3.31)

and in Theorem 1.3.5, cs = 1 for any s ∈ S. Therefore

R
eE(u, u) = Rijαβu

iαujβ

≥
∫

Xs

h0(Vαu
iα)(Vβujβ)

(
ϕij −

r−1∑
A,B=1

gABϕiBϕAj

)
ωr−1

s

(r − 1)!

=

∫
Xs

h0(Vαu
iα)(Vβujβ)

(
ϕij −

r−1∑
A,B=1

ϕABϕiBϕAj

)
ωr−1

s

(r − 1)!

24



for any u =
∑
i,α

uiα ∂
∂zi ⊗ Eα ∈ Γ(S, T 1,0S ⊗ Ẽ).

On the other hand λ0 is a positive Hermitian metric on the line bundle L̃ ⊗ det(TX/S). The

curvature form of λ0 can be represented by a Hermitian positive matrix, namely, the coefficients

matrix of Hermitian positive (1, 1) form
√
−1∂∂ϕ on X . By Lemma 1.2.12,(

ϕij −
r−1∑

A,B=1

ϕABϕiBϕAj

)

is a Hermitian positive n× n matrix. Since the integrand is nonnegative, R eE(u, u) = 0 if and only

if ∑
i,j

∑
α,β

h0(Vαu
iα)(Vβujβ)

(
ϕij −

r−1∑
A,B=1

ϕABϕiBϕAj

)
≡ 0 (1.3.32)

on Xs which means (uiα) is a zero matrix. In summary, we obtain

R
eE(u, u) > 0

for nonzero u, i.e. the induced metric f on Ẽ = SkE ⊗ F is Nakano-positive.

Corollary 1.3.8. If E is ample, then for large k, SkE is Griffiths positive, i.e. there exists a

Hermitian metric hk on SkE such that hk is Griffiths-positive.

1.3.2.2 Dual-Nakano-positivity

By the curvature identity on SkE ⊗ F ,

Rijαβ =

∫
Xs

h0VαV βϕij

ωr−1
s

(r − 1)!
−
∫

Xs

h0PiαP jβ
ωr−1

s

(r − 1)!

where ϕ is a weight of the line bundle OP(E∗)(k + r) ⊗ π∗(detE∗) ⊗ π∗(F ). Although this line

bundle can not be negative, it is still possible that it is negative in the local horizontal direction, i.e.

(ϕij) is a Hermitian negative matrix. For example, F is a “ very negative” line bundle over S. If
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(ϕij) is Hermitian negative, then for any nonzero u = (uiα),

Rijαβu
iαujβ =

∫
Xs

h0ϕij(Vαu
iα)(Vβujβ)

ωr−1
s

(r − 1)!

−
∫

Xs

h0PiαP jβu
iαujβ ωr−1

s

(r − 1)!

≤
∫

Xs

h0ϕij(Vαu
iα)(Vβujβ)

ωr−1
s

(r − 1)!

< 0

Hence SkE⊗F is Nakano-negative. In the following, we will prove that if (Sk+rE⊗detE∗⊗F )∗ is

ample, then SkE⊗F is Nakano-negative which is equivalent to the statement: if Sk+rE⊗detE∗⊗

F is ample, then SkE ⊗ F is dual-Nakano-positive. Here we use a well-known fact ([Demailly]):

E is dual-Nakano-positive if and only if E∗ is Nakano-negative.

For simplicity, we assume k = 1 and F = detE. In the following we will show, if E∗ is ample,

then E ⊗ detE is Nakano-negative.

As similar as the quotient metric onOP(E∗)(1)(see Proposition 1.2.10 ) induced by the morphism

(π∗E, π∗h) → OP(E∗)(1), there is an induced metric onOP(E)(1) by the morphism (π∗(E∗), π∗h∗) →

OP(E)(1). For a fixed point s ∈ S, we can choose a local coordinate system (z1, · · · , zn) and a

local normal frame (e1, · · · , er) of E centered at point s. With respect to this trivialization, we

obtain:

Proposition 1.3.9. If (E, h) is Griffiths-positive, then the quotient metric hL on L := OP(E)(1)

induced by (π∗E∗, π∗h∗) → OP(E)(1) is negative in the local horizontal direction, i.e.(
−∂

2 log hL

∂zi∂zj

)
(1.3.33)

is Hermitian negative on the fiber Xs = π−1(s) where π : P(E) → S.

Proof. Let hαβ = h(eα, eβ) and Rijαβ be the curvature components of h, then the quotient metric

on OP(E)(1) is,

hL =
1∑

hαβWαW β

=
1∑

(δαβ −Rijαβz
izj +O(|z|3))WαW β

(1.3.34)
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It is obvious that

− ∂2 log hL

∂zi∂zj = −
∑
α,β

Rijαβ(s)
WαW β

|W |2
(1.3.35)

which is Hermitian negative on Xs if (E, h) is Griffiths-positive.

Let vk : E → SkE be the standard Veronese map which induces a map

vk : P(E) → P(SkE) (1.3.36)

Let π : P(E) → S and πk : P(SkE) → S, then πk ◦ vk = π. Now we fix a local holomorphic

coordinate system (z1, · · · , zn) centered at point s ∈ S and a local trivialization of E and SkE. It

is obivous that the map vk sends (z,W ) to (z, SkW ) where SkW is the k-th symmetric power of

homogeneous vector W = [W1, · · · ,Wr], and so the horizontal part of vk is identity. With respect

to this trivialization, we obtain

Theorem 1.3.10. If E is ample, then there exists a Hermitian metric hL on L = OP(E)(1) such

that hL is negative in the horizontal direction, i.e.(
−∂

2 log hL

∂zi∂zj

)
(1.3.37)

is Hermitian negative on the fiber Xs = π−1(s) where π : P(E) → S.

Proof. By Corollary 1.3.8, for large k, SkE is Griffiths-positive. By Proposition 1.3.9, there exists

a Hermitian metric ĥk on OP(SkE)(1), such that ĥk is Hermitian negative along the horizontal

direction. By the relation

OP(E)(k) = v∗k
(
OP(SkE)(1)

)
(1.3.38)

there is an induced metric hL on OP(E)(1)

hL :=
(
v∗k(ĥk)

) 1
k

(1.3.39)

Hence, we obtain

− ∂2 log hL

∂zi∂zj = −1

k

∂2 log ĥk

∂zi∂zj (1.3.40)

since the horizontal direction of vk is identity with respect to that trivialization.
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Theorem 1.3.11. If E∗ is ample, then there exists a Hermitian metric on E ⊗ detE which is

Nakano-negative.

Proof. By Theorem 1.3.10, if E∗ is ample, then there exists a Hermitian metric hL on L :=

OP(E∗)(1) such that (
−∂

2 log hL

∂zi∂zj

)
(1.3.41)

is Hermitian negative. Let {ωs}s∈S be a smooth family of Hermitian metric of the fiber Xs. We

can set

h0 =
(hL)r+1

det(ωs)

and let

ϕ = − log(h0 det(ωs)) = −(r + 1) log hL (1.3.42)

Hence, we obtain

ϕij = −(r + 1)
∂2 log hL

∂zi∂zj (1.3.43)

Therefore (ϕij) is Hermitian negative. On the other hand, the metric induced by h0 and {ωs}s∈S

on E ⊗ detE has curvature components

Rijαβ =

∫
Xs

h0WαW βϕij

ωr−1
s

(r − 1)!
−
∫

Xs

h0PiαP jβ
ωr−1

s

(r − 1)!
(1.3.44)

Therefore, for any nonzero u = (uiα),

Rijαβu
iαujβ ≤

∫
Xs

h0ϕij(Wαu
iα)(Wβujβ)

ωr−1
s

(r − 1)!

< 0

The proof of Nakano-negativity of E ⊗ detE is completed.

Combined with Theorem 1.3.7, Lemma 1.3.6 and Theorem 1.3.11 we obtain,

Theorem 1.3.12. Let E be a holomorphic vector bundle over a compact Kähler manifold S and F

a line bundle over S. Let r be the rank of E and k ≥ 0 an arbitrary integer. If Sk+rE⊗detE∗⊗F

is ample over S, then SkE ⊗ F is both Nakano-positive and dual-Nakano-positive.

28



1.3.2.3 Applications

Corollary 1.3.13. If E is an ample vector bundle and F is a nef line bundle, then there exists

k0 = k0(S,E) such that SkE ⊗ F is Nakano-positive and dual-Nakano-positive for any k ≥ k0.

In particular, SkE is Nakano-positive and dual-Nakano-positive for k ≥ k0.

Proof. It is easy to see that there exists k0 = k0(S,E) such that for any k ≥ k0, Sk+rE⊗detE∗ is

ample, and so is Sk+rE⊗detE∗⊗F . By Theorem 1.3.12, SkE⊗F is Nakano-positive and dual-

Nakano-positive. In particular, SkE is Nakano-positive and dual-Nakano-positive for k ≥ k0.

Corollary 1.3.14. If E is an ample vector bundle and F is a nef line bundle, or E is a nef vector

bundle and F is an ample line bundle,

(1) SkE ⊗ detE ⊗ F is Nakano-positive and dual-Nakano-positive for any k ≥ 0.

(2) If the rank r of E is greater than 1, then SmE∗ ⊗ (detE)t ⊗ F is Nakano-positive and dual-

Nakano-positive if t ≥ r +m− 1.

Proof. (1) It follows by the ampleness of Sk+rE ⊗ F = Sk+rE ⊗ detE∗ ⊗ (detE ⊗ F ).

(2) If r > 1, it is easy to see E∗ ⊗ detE = ∧r−1E. By the relation

Sr+m(E∗ ⊗ detE)⊗ (detE)t−r−m+1 ⊗ F = Sr+mE∗ ⊗ detE ⊗ (detE)t ⊗ F

we can apply Theorem 1.3.12 to the pair (E∗, (detE)t ⊗ F ) and obtain the Nakano-positivity

and dual-Nakano-positivity of SmE∗ ⊗ (detE)t ⊗ F when t ≥ r + m − 1. Let E = TP2, then

E = E∗⊗detE is Griffiths-positive but not Nakano-positive. So we can not remove the restriction

t ≥ r +m− 1.

Corollary 1.3.15. If Sr+1E ⊗ detE∗ is ample, then E is Nakano-positive and dual-Nakano-

positive and so E is Griffiths-positive.

Remark 1.3.16. By Corollary 1.3.15, the ampleness of OP(E∗)(r + 1) ⊗ π∗(detE∗) implies the

ampleness of OP(E∗)(1). But in general, the ampleness of OP(E∗)(1) can not imply the ampleness

of OP(E∗)(r + 1)⊗ π∗(detE∗).
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1.4 Nakano-positivity and dual-Nakano-positivity of adjoint vector bundles

The following lemma is due to Fujita ([Fujita91]) and [Ye-Zhang90].

Lemma 1.4.1. LetE be an ample vector bundle over S. Let r be the rank ofE and n the dimension

of S. If r ≥ n+ 1, then detE ⊗KS is ample except (S,E) ∼= (Pn,OPn(1)⊕n+1).

Theorem 1.4.2. Let E be an ample vector bundle over S. Let r be the rank of E and n the

dimension of S.

(1) If r > 1, then SkE ⊗ (detE)2 ⊗ KS is Nakano-positive and dual-Nakano-positive for any

k ≥ max{n− r, 0}.

(2) If r = 1, then the line bundle E⊗(n+2) ⊗KS is Nakano-positive.

Moreover, the lower bound on k is sharp.

Proof. (1) If r > 1, then X = P(E∗) is a Pr−1 bundle which is not isomorphic to any projective

space. By Lemma 1.4.1, OP(E∗)(n+ r)⊗KX is ample. So

OP(E∗)(n)⊗ π∗ (KS ⊗ detE)

is ample and it is equivalent to the ampleness of SnE ⊗ (detE∗) ⊗ (detE)2 ⊗ KS . If k ≥

max{n− r, 0}, Sr+kE⊗detE∗⊗ (detE)2⊗KS is also ample, hence by Theorem 1.3.12, SkE⊗

(detE)2 ⊗KS is Nakano-positive and dual-Nakano-positive.

(2) It follows from Lemma 1.4.1. In fact, the vector bundle Ẽ = E⊕(n+2) is an ample vector bundle

of rank n+ 2 and det Ẽ = E⊗(n+2). By Lemma 1.4.1, det Ẽ ⊗KS = E⊗(n+2) ⊗KS is ample.

Here the lower bound n− r is sharp. For any integer k0 < n− r, there exists some ample vector

E such that E ⊗ (detE)k0 ⊗ KS is not Nakano-positive, for example (S,E) = (P4,OP4(1) ⊕

OP4(1)).

Theorem 1.4.3. Let E be an ample vector bundle over S. Let r be the rank of E and n the

dimension of S. If r > 1, then E ⊗ (detE)k ⊗KS is Nakano-positive and dual-Nakano-positive

for any k ≥ max{n+ 1− r, 2}. Moreover, the lower bound is sharp.
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Proof. If r ≥ n− 1, by Theorem 1.4.2, E ⊗ (detE)2 ⊗KS is Nakano-positive and dual-Nakano-

positive. Now we consider 1 < r < n − 1. By ([Ishihara01, Theorem 2.5]), KS ⊗ (detE)n−r is

nef except the case (S,E) = (P4,OP4(1)⊕OP4(1)). It is easy to check

Sr+1E ⊗KS ⊗ (detE)n−r

is also ample in that case. By Theorem 1.3.12, E ⊗ (detE)n+1−r ⊗ KS is Nakano-positive and

dual-Nakano-positive. Here the lower bound n + 1 − r is sharp. For any integer k0 < n + 1 − r,

there exists an ample vector bundle E such that E ⊗ (detE)k0 ⊗ KS is not Nakano-positive, for

example (S,E) = (P4,OP4(1)⊕OP4(1)).

Remark 1.4.4. In Theorem 1.4.2 and 1.4.3, if r ≥ n, E ⊗ (detE)2 ⊗KS is Nakano-positive and

dual-Nakano-positive. IfE = TPn, then S2E⊗detE⊗KPn is Nakano-positive and dual-Nakano-

positive.

Problem: Is S2E ⊗ detE ⊗KS Nakano-positive and dual-Nakano-positive when E is ample and

r ≥ n? If one can show Sn+2E ⊗KS is ample, or equivalently, OP(E∗)(n+ 2)⊗ π∗(KS) is ample,

by Theorem 1.3.12, S2E ⊗ detE ⊗KS is Nakano-positive and dual-Nakano-positive.

1.5 Comparison of Griffiths-positive and Nakano-positive metrics

Let (E, h) be a Hermitian vector bundle. In general, it is not so easy to write down the exact

curvature formula of (SkE, Skh). In this section, we give an algorithm to compute the curvature

of (SkE, Skh). As applications, we can disprove the Griffiths-positivity and Nakano-positivity of

a given metric on Pn.

Let h be a Hermitian metric on E, hL be the induced metric in (1.2.13) on L = OP(E∗)(1). Let

F be a line bundle with Hermitian metric hF . Naturally, there is an induced metric Skh ⊗ hF on

the vector bundle SkE ⊗ F . On the other hand, we can construct a new metric f on SkE ⊗ F

by formula (1.3.3). There is a canonical way to do it. Let L̃ = Lk ⊗ π∗(F ). The induced

metric on L̃ is h0 = (hL)k ⊗ π∗(hF ) and the induced metric on det(TX/S) = Lr ⊗ π∗(detE∗) is

(hL)r ⊗ π∗(det(h)−1). These two metrics induce a metric λ0 = (hL)k+r ⊗ π∗
(
hF · det(h)−1

)
on

31



L̃⊗ det(TX/S). Now we can polarize each fiber Xs by the curvature of λ0. By formula (1.2.14),

ωs = −
√
−1

2π
∂s∂s log λ0 =

(k + r)
√
−1

2π
∂s∂s log

(∑
hαβWαW β

)
= (k + r)ωFS (1.5.1)

By a simple linear algebraic argument, we obtain

λ0

det(ωs)
=

(hL)k ⊗ π∗(hF )

(k + r)r−1
=

h0

(k + r)r−1
(1.5.2)

Now we can use (L̃, h0) and (Xs, ωs) to construct a “new” metric f on SkE⊗F by formula (1.3.3).

Theorem 1.5.1. The metric f has the form

f =
(r + k)r−1

(r + k − 1)!
· Skh⊗ hF (1.5.3)

Moreover, f is a constant multiple of the metric constructed in Theorem 1.3.12.

Proof. Without loss of generality, we can choose normal coordinates for the metric h at a fix point

s ∈ S. By formula (1.2.14), the metric h0 = (hL)k⊗hF on Lk⊗F induced by (E, h) and (F, hF )

can be written as hF

|W |2k locally on the fiber Xs
∼= Pr−1. By formula (1.5.1), the metric f defined by

(1.3.3) has the following form

fαβ =

∫
Xs

h0VαV β
ωr−1

s

(r − 1)!
= (k + r)r−1hF

∫
Pr−1

VαV β

|W |2k

ωr−1
FS

(r − 1)!

Here Vα, Vβ are homogeneous monomials of degree k in W1, · · · ,Wr. By Lemma 1.3.3,

fαβ =
(r + k)r−1

(r + k − 1)!
δαβh

F

that is f = (r+k)r−1

(r+k−1)!
· Skh ⊗ hF . By formulas (1.5.2) and (1.3.30), f is a constant multiple of the

metric constructed in Theorem 1.3.12.

Theorem 1.5.2. If (E, h) is a Griffiths-positive vector bundle, then

(1) (SkE⊗ (detE)`, Skh⊗ (deth)`) is Nakano-positive and dual-Nakano-positive for any k ≥ 0

and ` ≥ 1.

(2) There exists k0 = k0(M,E) such that (SkE, Skh) is Nakano-positive and dual-Nakano-

positive for any k ≥ k0.
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Proof. These follow by Theorem 1.3.12 and Theorem 1.5.1.

Proposition 1.5.3. (1) (E, h) is Griffiths-positive if and only if (SkE, Skh) is Griffiths-positive

for some k ≥ 1.

(2) If (E, h) is (dual-)Nakano-positive, then (SkE, Skh) is (dual-)Nakano-positive for any k ≥ 1.

Proof. By Theorem 1.5.1, Skh is a constant multiple of the metric constructed by formula (1.3.3).

So by Theorem 1.3.2, we can write down the curvature formula of Skh explicitly. In a normal

coordinates of h at a fixed point, the curvature formula (1.3.6) can be simplified by Lemma 1.3.3.

We obtain curvature formulas (1.5.4) and (1.5.6).

For the convenience of the reader, we assume k = 2 at first. We can choose normal coordinates

at a fixed point. Let {e1, · · · , er} be the local basis at that point. The ordered basis of S2E at that

point are {e1 ⊗ e1, e1 ⊗ e2, · · · , er ⊗ er−1, er ⊗ er}. We denote them by e(α,β) = eα ⊗ eβ with

α ≤ β. The curvature tensor S2h is

Rij(α,γ)(β,δ) = Rijαβδγδ +Rijγδδαβ +Rijγβδαδ +Rijαδδγβ (1.5.4)

where Rijαβ is the curvature tensor of E. Let u =
∑
i

∑
α≤γ

ui(α,γ)e(α,γ) ∈ Γ(M,T 1,0M ⊗ S2E). For

simplicity of notations, we extend the values of ui(α,γ) to all indices (α, γ) by setting ui(α,γ) = 0 if

γ < α. Therefore

∑
i,j

∑
α≤γ

β≤δ

Rij(α,γ)(β,δ)ui(α,γ)uj(β,δ)

=
∑
i,j

∑
α,γ,β,δ

Rij(α,γ)(β,δ)ui(α,γ)uj(β,δ)

=
∑

i,j,α,β,γ,δ

(
Rijαβui(α,γ)uj(β,γ) +Rijγδui(α,γ)uj(α,δ)

+Rijγβui(α,γ)uj(β,α) +Rijαδui(α,γ)uj(γ,δ)

)
(1.5.5)

=
∑

γ

∑
i,j,α,β

Rijαβ

(
ui(α,γ) + ui(γ,α)

) (
uj(β,γ) + uj(γ,β)

)
Hence (S2E, S2h) is Nakano-positive if (E, h) is Nakano-positive. For the general case, we set

A = (α1, · · · , αk) and B = (β1, · · · , βk) with α1 ≤ · · · ≤ αk and β1 ≤ · · · ≤ βk. The basis of
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SkE are {eA = eα1 ⊗ · · · ⊗ eαk
}. The curvature tensor of (SkE, Skh) is

RijAB =
r∑

α,β=1

k∑
s,t=1

RijαβδααsδββtδAsBt (1.5.6)

where As = (α1, · · · , αs−1, αs+1, · · · , αk), Bt = (β1, · · · , βt−1, βt+1, · · · , βk) and δAsBt is the

multi-index delta function( see formula (1.3.12)). We have the curvature formula,

∑
i,j,A,B

RijABuiAujB

=
∑

α1,··· ,αk−1

∑
σ∈Sk−1

∑
i,j,α,β

RijαβViαασ(1)···ασ(k−1)
V jβασ(1)···ασ(k−1)

(1.5.7)

where Sk−1 is the permutation group in (k − 1) symbols and

Viαα1···αk−1
=

k∑
s=1

uiAs , As = (α1, · · · , αs−1, α, αs+1, · · · , αk)

The Nakano-positivity of (SkE, Skh) follows immediately from the Nakano-positivity of (E, h)

by formula (1.5.7). With the help of curvature formula (1.5.6), we can prove Griffiths-positivity

and dual-Nakano-positivity of SkE in a similar way. Here, we use another way to show it. SkE can

be viewed as a quotient bundle of E⊗k. If (E, h) is Griffiths-positive(resp. dual-Nakano-positive),

(E⊗k, h⊗k) is Griffiths-positive(resp. dual-Nakano-positive) and so the quotient bundle SkE is

Griffiths-positive(resp. dual-Nakano-positive)([Demailly]). The induced metrics on quotient bun-

dles are exactly the given ones.

Remark 1.5.4. Part (1) is an analogue of ampleness: E is ample if and only if SkE is ample

for some k ≥ 1. The converse of part (2) is not valid in general. We know (S2TPn, S2hFS) is

Nakano-positive, but (TPn, hFS) is not Nakano-positive as shown in the following.

1.6 Vanishing theorems

1.6.1 Vanishing theorems for adjoint vector bundles

Theorem 1.6.1. LetE,E1, · · · , E` be vector bundles over an n-dimensional compact Kähler man-

ifold M . Their ranks are r, r1, · · · , r` respectively. Let L be a line bundle on M .
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(1) If E is ample, L is nef and r > 1, then

Hn,q(M,SkE ⊗ (detE)2 ⊗KM ⊗ L) = Hq,n(M,SkE ⊗ (detE)2 ⊗KM ⊗ L) = 0

for any q ≥ 1 and k ≥ max{n− r, 0}.

(2) If E is ample, L is nef and r > 1, then

Hn,q(M,E ⊗ (detE)k ⊗KM ⊗ L) = Hq,n(M,E ⊗ (detE)k ⊗KM ⊗ L) = 0

for any q ≥ 1 and k ≥ max{n+ 1− r, 2}.

(3) Let r > 1. If E is ample and L is nef, or E is nef and L is ample, then

Hn,q(M,SmE∗ ⊗ (detE)t ⊗ L) = Hq,n(M,SmE∗ ⊗ (detE)t ⊗ L) = 0

for any q ≥ 1 and t ≥ r +m− 1.

(4) If allEi are ample and L is nef, or, allEi are nef and L is ample, then for any k1 ≥ 0, · · · , k` ≥

0,

Hn,q(M,Sk1E1 ⊗ · · · ⊗ Sk`E` ⊗ detE1 ⊗ · · · ⊗ detE` ⊗ L)

= Hq,n(M,Sk1E1 ⊗ · · · ⊗ Sk`E` ⊗ detE1 ⊗ · · · ⊗ detE` ⊗ L) = 0

for q ≥ 1.

Proof. By Theorem 1.4.2, Theorem 1.4.3 and Corollary 1.3.14, the vector bundles in consideration

are all Nakano-positive and dual-Nakano-positive. The results follow from Lemma 1.2.20.

Remark 1.6.2. Part (4) can be regarded as a generalization of Griffiths ([Griffiths69], Theorem G)

and Demailly([Demailly88], Theorem 0.2).

The following results generalize Griffiths’ vanishing theorem( see also [Laytimi-Nahm05a],

Corollary 1.5):

Proposition 1.6.3. Let r be the rank of E and k ≥ 1. For any t ≥ 0, if St+krE ⊗ L is ample,

Hn,q(M,StE ⊗ (detE)k ⊗ L) = Hq,n(M,StE ⊗ (detE)k ⊗ L) = 0

for any q ≥ 1.
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Proof. By Theorem 1.3.12, StE ⊗ (detE)k ⊗ L is Nakano-positive and dual-Nakano-positive.

The results follow by Nakano’s vanishing theorem.

Remark 1.6.4. Theorem 1.1.1 allows us to do induction to deduce more positivity results. For

example, if SmE ⊗ L is ample, then Sm−rE ⊗ detE ⊗ L is (dual-)Nakano-positive and so it is

ample. Using Theorem 1.1.1 again, we get Sm−2r ⊗ (detE)2 ⊗ L is Nakano-positive and dual-

Nakano-positive. Finally, we get StE⊗(detE)k⊗L is Nakano-positive and dual-Nakano-positive,

if m = t + kr for some 0 ≤ t < r. It is obvious that the (dual-)Nakano-positivity turns stronger

and stronger under induction. This explains why a lot of vanishing theorems involve a power of

detE.

If L is an ample line bundle over a compact Kähler manifoldM and F is an arbitrary line bundle

over M . By comparing the Chern classes, there exists a constant m0 such that Lm0 ⊗ F is ample

and so it is positive. If E is an ample vector bundle and F is an arbitrary vector bundle, it is easy

to see SkE ⊗ F is ample for large k. But, in general, we don’t know whether an ample vector

bundle carries a Griffiths-positive or Nakano-positive metric. In the following, we will construct

Nakano-positive and dual-Nakano-positive metrics on various ample vector bundles.

Lemma 1.6.5. If L is an ample line bundle over M and F is an arbitrary vector bundle. There

exists an integer m0 such that Lm0 ⊗ F is Nakano-positive and dual-Nakano-positive.

Proof. Let h0 be a positive metric on L and ω be the curvature of h0 which is also the Kähler

metric fixed on M . For any metric g on F , the curvature Rg has a lower bound in the sense

min
x∈M

inf
u 6=0

Rg(u(x), u(x))

|u(x)|2
≥ −(m0 − 1) (1.6.1)

where u ∈ Γ(M,T 1,0M ⊗ F ). The curvature of metric hm0 ⊗ g on Lm0 ⊗ F is given by

R̂ = m0ω · g + hm
0 ·Rg (1.6.2)

Therefore

R̂(v ⊗ u, v ⊗ u) ≥ |u|2hm0
0 (v, v)

for any v ∈ Γ(M,Lm0) and u ∈ Γ(M,T 1,0M ⊗ F ).
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Lemma 1.6.6. If E is (dual-)Nakano-positive and F is a nef line bundle, then E ⊗ F is (dual-

)Nakano-positive.

Proof. Fix a Kähler metric onM . Let g be a Nakano-positive metric onE, then there exists 2ε > 0

such that

Rg(u(x), u(x)) ≥ 2ε|u(x)|2

for any u ∈ Γ(M,T 1,0M ⊗ E). On the other hand, by a result of [DPS94], there exists a smooth

metric h0 on the nef line bundle F such that

Rh0 ≥ −εωh0 (1.6.3)

The curvature of g ⊗ h0 on E ⊗ F is

R̂ = Rg · h0 + g ·Rh0

For any u ∈ Γ(M,T 1,0M ⊗ E) and v ∈ Γ(M,F )

R̂(u⊗ v, u⊗ v) ≥
(
Rg(u, u)− ε|u|2

)
h0(v, v) ≥ ε|u|2h0(v, v) (1.6.4)

For dual-Nakano-positivity, the proof is similar.

Theorem 1.6.7. If E is an ample vector bundle and F is an arbitrary vector bundle over M , then

there exists k0 = k0(M,E, F ) such that SkE ⊗ F is Nakano-positive and dual-Nakano-positive

for any k ≥ k0.

Proof. By Lemma 1.6.5, there exists m0 such that (detE)m0 ⊗ F is Nakano-positive and dual-

Nakano-positive. On the other hand, there exists k0 = k0(E,m0,M) such that OP(E∗)(r +

k) ⊗ π∗(detE∗)m0+1 is ample for k ≥ k0. It is equivalent to the ampleness of vector bundle

Sr+kE ⊗ (detE∗)m0+1. By Theorem 1.3.12, SkE ⊗ (detE∗)m0 is Nakano-positive and dual-

Nakano-positive. Since the tensor product of two (dual-)Nakano-positive vector bundles is (dual-

)Nakano-positive, SkE ⊗ F = (SkE ⊗ (detE∗)m0) ⊗ ((detE)m0 ⊗ F ) is Nakano-positive and

dual-Nakano-positive for k ≥ k0.

The following results are well-known in algebraic geometry, but merit a proof in our setting.
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Corollary 1.6.8. If E is ample over M , L is a nef line bundle and F is an arbitrary vector bundle,

(1) there exists k0 = k0(M,E, F ) such that for any k ≥ k0.

Hp,q(M,SkE ⊗ F ) = 0

for q ≥ 1 and p ≥ 0.

(2) there exists k0 = k0(M,E) such that for any k ≥ k0,

Hp,q(M,SkE ⊗ L) = 0

for any q ≥ 1 and p ≥ 0.

Proof. (1) By Theorem 1.6.7, there exists k0 = k0(M,E, F ) such that SkE ⊗ F ⊗ Λn−pT 1,0M is

Nakano-positive for any p. On the other hand

Hp,q(M,SkE ⊗ F ) = Hn,q(M,SkE ⊗ F ⊗ Λn−pT 1,0M)

By Nakano vanishing theorem, Hp,q(M,SkE ⊗ F ) = 0 for q ≥ 1 and p ≥ 0 if k ≥ k0. The proof

of part (2) is similar.

1.6.2 Vanishing theorems for bounded vector bundles

Firstly, we would like to introduce the following

Definition 1.6.9. Let E be an arbitrary holomorphic vector bundle with rank r, L an ample line

bundle and ε1, ε2 ∈ R. E is said to be (ε1, ε2)-bounded by L if there exists a Hermitian metric

h on E and a positive Hermitian metric hL on L such that the curvature of E is bounded by the

curvatures of Lε1 and Lε2 , i.e.

ε1ωL ⊗ IdE ≤ ΘE,h ≤ ε2ωL ⊗ IdE (1.6.5)

in the sense of Griffiths. E is called strictly (ε1, ε2)-bounded by L if at least one of ΘE,h− ε1ωL⊗

IdE and ΘE,h − ε2ωL ⊗ IdE is not identically zero.
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It is easy to see that E is (ε1, ε2)-bounded by L if and only if E ⊗ L−ε1 and E∗ ⊗ Lε2 are semi-

Griffiths positive. Similarly, if E is strictly (ε1, ε2)-bounded by L, then at least one of the semi-

Griffiths positive vector bundles E ⊗ L−ε1 and E∗ ⊗ Lε2 is not trivial.

Proposition 1.6.10. Let E be a holomorphic vector bundle with rank r over a projective manifold.

(1) If E is globally generated, E is strictly (0, 1)-bounded by L⊗detE for any ample line bundle

L;

(2) If E ample, E is strictly (−1, r)-bounded by detE;

(3) If E is nef, E is strictly (−1, r)-bounded by L⊗ detE for any ample line bundle L;

(4) If E is Griffiths-positive, E is strictly (0, 1)-bounded by detE.

Proof. (1) As is well-known, if E is globally generated, there exists a Hermitian metric h on E

such that ΘE,h is semi-Griffiths-positive and E ⊗ detE∗ = Λr−1E∗ is semi-Griffiths-negative. If

L is an ample line bundle, E ⊗ detE∗ ⊗ L∗ is Griffiths-negative and

ΘE,h < ωL⊗det E ⊗ IdE

Hence, E is strictly (0, 1)-bounded by L⊗ detE.

(2) We assume r > 1. By a result of [Berndtsson09a] and [Mourougane-Takayama07], if E is

ample, E⊗detE is Griffiths-positive. On the other hand, E∗⊗detE = Λr−1E is ample and so is

Sr+1(E∗⊗detE). By a result of [Liu-Sun-Yang], (E∗⊗detE)⊗det(E∗⊗detE) = E∗⊗(detE)r

is Griffiths-positive.

(3) If E is nef, Sr+1E⊗L is ample and by a result of [Liu-Sun-Yang], E⊗ detE⊗L is Griffiths-

positive. Similarly, we know Sr+1(E∗⊗detE)⊗L is ample and so E∗⊗(detE)r⊗L is Griffiths-

positive.

(4) It is obvious.

Remark 1.6.11. In general, if E is (−1, r)-bounded by detE, E is not necessarily ample. For

example, E = L3 ⊕ L−1 for some ample line bundle L.
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Let h be a Hermitian metric on the vector bundle E. At a fixed point p ∈ X , if we assume hαβ =

δαβ , then the naturally induced bundle (E ⊗ (detE)m, h⊗ (deth)m) has curvature component

R
E⊗(det E)m

ijαβ
= Rijαβ +m

∑
δ

Rijδδ (1.6.6)

where Rijαβ is the curvature component of (E, h). It is obvious that SkE has basis

{eA = eα1
1 ⊗ · · · ⊗ eαr

r } (1.6.7)

ifA = (α1, · · · , αr) with α1+ · · ·+αr = k and αj are nonnegative integers. The naturally induced

bundle (SkE ⊗ (detE)m, Skh⊗ (deth)m) has curvature components

R
SkE⊗(det E)m

ijAB
= RijAB +m

∑
δ

Rijδδ. (1.6.8)

Lemma 1.6.12. If (E, h) is a Hermitian vector bundle, the curvature of (SkE ⊗ (detE)m, Skh⊗

(deth)m can be written as

R
SkE⊗(det E)m

ijAB
(p) = (r + k − 1)! ·

∫
Pr−1

VAV B

|W |2k
ϕij

ωr−1
FS

(r − 1)!
(1.6.9)

where

ϕij = (r + k)
∑
γ,δ

Rijγδ(p)
WδW γ

|W |2
+ (m− 1)

∑
δ

Rijδδ. (1.6.10)

Proof. This follows from Lemma 1.3.3.

Theorem 1.6.13. If E is strictly (ε1, ε2)-bounded by L and m+ (r + k)ε1 > 0, then

Hp,q(X,SkE ⊗ detE ⊗ Lm) = Hq,p(X,SkE ⊗ detE ⊗ Lm) = 0 (1.6.11)

if p ≥ 1, q ≥ 1 satisfy
m+ (r + k)ε1

m+ (r + k)ε2

≥ min

{
n− q

p
,
n− p

q

}
. (1.6.12)

In particular, ifm+(r+k)ε1 > 0, SkE⊗detE⊗Lm is Nakano-positive and dual-Nakano-positive

and

Hn,q(X,SkE ⊗ detE ⊗ Lm) = Hq,n(X,SkE ⊗ detE ⊗ Lm) = 0

for q ≥ 1.
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Proof. Let h be a Hermitian metric on E and hL a positive Hermitian metric on L such that

ε1ωL ⊗ IdE ≤ ΘE,h ≤ ε2ωL ⊗ IdE.

We can polarize X by

ωg = ωL = −
√
−1

2π
∂∂ log hL. (1.6.13)

At the fixed point p ∈ X , we can assume

gij(p) = δij and hαβ(p) = δαβ.

Therefore,

gij(p) = RhL

ij
(p) = δij. (1.6.14)

Let

ϕij = (r + k)

(∑
γ,δ

Rh
ijγδ

(p)
WδW γ

|W |2

)
+mRhL

ij
. (1.6.15)

then the curvature of SkE ⊗ detE ⊗ Lm is

RSkE⊗det E⊗Lm

ijAB
(p) = (r + k − 1)! ·

∫
Pr−1

VAV B

|W |2k
ϕij

ωr−1
FS

(r − 1)!
. (1.6.16)

By formula (1.6.15), it is easy to see that, at point p, for any v = (v1, · · · , vn) ∈ Cn \ {0},

(m+ (r + k)ε1) |v|2 ≤ ϕijv
ivj ≤ (m+ (r + k)ε2) |v|2 (1.6.17)

Since m + (r + k)ε1 > 0, it is obvious that SkE ⊗ detE ⊗ Lm is both Nakano-positive and

dual-Nakano-positive by (1.6.16). Let λ1 be the smallest eigenvalue of (ϕij) and λn the largest

one, then

m+ (r + k)ε1 ≤ λ1 ≤ λn ≤ m+ (r + k)ε2 (1.6.18)

Let ϕ =
√
−1
2π
ϕijdz

i ∧ dzj , we obtain the curvature term of SkE ⊗ detE ⊗ Lm

T (u, u) = 〈[R,Λg]u, u〉

= (r + k − 1)!

∫
Pr−1

〈[ϕ,Λg]U,U〉 ·
1

|W |2k
· ωr−1

FS

(r − 1)!

≥ (r + k − 1)!

∫
Pr−1

max{pλ1 − (n− q)λn, qλ1 − (n− p)λn}|U |2 ·
1

|W |2k
· ωr−1

FS

(r − 1)!

= max{pK1 − (n− q)Kn, qK1 − (n− p)Kn}
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for any nonzero u = uIJAdz
I ∧ dzJ ⊗ eA ∈ Ωp,q(X,SkE ⊗ detE ⊗ Lm) where

U =
∑

A

uIJAVAdz
I ∧ dzJ , and Ki = (r + k − 1)! ·

∫
Pr−1

|U |2

|W |2k
λi

ωr−1
FS

(r − 1)!
, i = 1, n,

By (1.6.18), if m+ (r + k)ε1 > 0,

K1

Kn

>
m+ (r + k)ε1

m+ (r + k)ε2

(1.6.19)

since E is strictly (ε1, ε2)-bounded by L. If p ≥ 1, q ≥ 1 satisfy

m+ (r + k)ε1

m+ (r + k)ε2

≥ min

{
n− q

p
,
n− p

q

}
(1.6.20)

we obtain
K1

Kn

> min

{
n− q

p
,
n− p

q

}
(1.6.21)

By standard Bochner formulas, we deduce that Hp,q(X,SkE ⊗ (detE)m ⊗ L) = Hp,q(X,SkE ⊗

(detE)m ⊗ L) = 0.

Theorem 1.1.8 and Theorem 1.1.9 follow immediately from Theorem 1.6.13 and Proposition

1.6.10.

Now we want to analyze the condition

λ0 ≥ min

{
n− q

p
,
n− p

q

}
(1.6.22)

for some λ0 ∈ [0, 1). Without loss of generality, we assume p ≥ q ≥ 1, then that is a linear

cindition

p+ λ0q ≥ n. (1.6.23)

When p = q, we obtain

c0 =
n

1 + λ0

, (1.6.24)

(p, q) satisfies (1.6.22) if and only if (p, q) lies in the quadrilateral Q = A0A1A2A3 where

A0 = (0, n), A1 = (n, n), A2 = (n, 0), A3 = (c0, c0) (1.6.25)

Corollary 1.6.14. Let E be globally generated and L be ample.
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(1) If the pair (k,m, s) satisfies

m ≥ 1

s

[
n− s

2

]
(r + k) + 1 (1.6.26)

where [•] is the integer part of •, then

Hp,q(X,SkE ⊗ (detE)m ⊗ L) = 0

for any p+ q ≥ n+ s.

(2) For fixed (k,m), we have

Hp,q(X,SkE ⊗ (detE)m ⊗ L) = 0

for any (p, q) satisfies

p+ q ≥ n+

(
2n

1 + m−1
r+k+m−1

− n

)
. (1.6.27)

Proof. If m ≥ 1
s

[
n−s

2

]
(r + k) + 1, we get

m− 1

r + k +m− 1
≥

[
n−s

2

][
n−s

2

]
+ s

. (1.6.28)

If p+ q ≥ n+ s,

max
p+q≥n+s

min

{
n− q

p
,
n− p

q

}
=

[
n−s

2

][
n−s

2

]
+ s

. (1.6.29)

Part (1) is proved. For part (2), if

p+ q ≥ n+

(
2n

1 + m−1
r+k+m−1

− n

)
=

2n

1 + m−1
r+k+m−1

then

max{p, q} ≥ n

1 + m−1
r+k+m−1

. (1.6.30)

That is
m− 1

r + k +m− 1
≥ min

{
n− q

p
,
n− p

q

}
.

So the vanishing result holds.
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Remark 1.6.15. Theorem 1.1.8 and Corollary 1.6.14 are also valid for semi-Griffiths positive E.

Consider the example E = TP2 ⊗ OP2(−1) with the canonical metric. Since r = n = 2, by

Corollary 1.6.14, we obtain

Hp,q(X,E ⊗ (detE)m ⊗ L) = 0 (1.6.31)

for any p+ q ≥ n+ 1 if m ≥ 1. It is obvious that the lower bound 1 is sharp since

Hn,n−1(X,E ⊗ L) ∼= H1,1(Pn,C) = C (1.6.32)

if we choose L = OPn(1) and m = 1. So the lower bound

1

s

[
n− s

2

]
(r + k) + 1

can not be improved by a universal constant, i.e., a constant independent of r, s, n, k. Hence the

lower bound is optimal in that sense.

Similarly, we obtain

Corollary 1.6.16. Let E be ample (resp.) and L be nef (resp. ample). Suppose k ≥ 1 and

m ≥ r + k + 1.

(1) If the pair (k,m, s) satisfies

m ≥ 1

s

[
n− s

2

]
(r + k)(r + 1) + (r + 1) + k,

then

Hp,q(X,SkE ⊗ (detE)m) = 0

for any p+ q ≥ n+ s.

(2) For fixed (k,m), we have

Hp,q(X,SkE ⊗ (detE)m ⊗ L) = 0

for any (p, q) satisfies

p+ q ≥ n+

(
2n

1 + (m−1)−(r+k)
(m−1)+r(r+k)

− n

)
.

44



1.7 Examples

1.7.1 Positivity of TPn

It is well-known that the holomorphic tangent bundle TPn of Pn is ample and also Griffiths posi-

tive.

Corollary 1.7.1. Let hFS be the Fubini-Study metric on TPn with n ≥ 2, then

(1) (Sn+1TPn ⊗KPn , Sn+1hFS ⊗ det(hFS)−1) is semi-Griffiths-positive. Moreover, Sn+1TPn ⊗

KPn can not admit a Griffiths-positive metric.

(2) (TPn, hFS) is dual-Nakano-positive and semi-Nakano-positive.

(3) (SkTPn ⊗KPn , SkhFS ⊗ det(hFS)−1) is Griffiths-positive for any k ≥ n+ 2.

(4) (SkTPn, SkhFS) is Nakano-positive and dual-Nakano-positive for any k ≥ 2.

Proof. (1) By the Euler sequence

0 → C → TPn → OPn(1)⊕(n+1) → 0 (1.7.1)

we know TPn ⊗OPn(−1) is the quotient bundle of trivial bundle C⊕(n+1). Hence

Sn+1TPn ⊗KPn = Sn+1 (TPn ⊗OPn(−1))

with the canonical metric is semi-Griffiths-positive. However, if Sn+1TPn⊗KPn admits a Griffiths-

positive metric, by Corollary 1.3.15, TPn is Nakano-positive which is impossible for n ≥ 2. (2)

The curvature of E = TPn with respect to the standard Fubini-Study metric hFS is

Rijk` = hijhk` + hi`hkj (1.7.2)

Without loss of generality, we assume hij = δij at a fixed point, then

Rijk`u
ikuj` =

1

2

∑
j,k

|ujk + ukj|2 (1.7.3)

which means that (E, hFS) is semi-Nakano-positive but not Nakano-positive. For the dual-Nakano-

positivity of (TPn, hFS) we can check that by definition. We can also show it by the monotone
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property of dual-Nakano-positivity of quotient bundles. By the Euler sequence (1.7.1), TPn is the

quotient bundle of dual-Nakano-positive bundleOPn(1)⊕(n+1) and so TPn is dual-Nakano-positive.

(3) It follows by the identity

SkTPn ⊗KPn = Sk(TPn ⊗OPn(−1))⊗OPn(k − n− 1)

and semi-Griffiths positivity of TPn ⊗OPn(−1).

(4) By Theorem 1.3.12, the canonically induced metric f is Nakano-positive and dual-Nakano-

positive. On the other hand, by Theorem 1.5.1, f is a constant multiple of SkhFS . The lower

bound of k follows from (1) and (2).

Example 1.7.2. In this example, we will show the Nakano-positivity of (S2TP2, S2hFS) in local

coordinates. At a fixed point, we choose normal coordinates of TP2. Let {e1, e2} be the ordered

basis of TP2 at that point. The ordered basis of S2TP2 are e(1,1) = e1 ⊗ e1, e(1,2) = e1 ⊗ e2 and

e(2,2) = e2⊗e2. Using the same notation as Proposition 1.5.3, we set Viαγ = ui(α,γ) +ui(γ,α) where

u =
∑
i

∑
α≤γ

ui(α,γ)
∂

∂zi ⊗ e(α,γ) ∈ Γ(P2, T 1,0P2 ⊗ S2TP2). For γ = 1, the 2 × 2 matrix (Viα1) has

the form

T1 =

 2u1(1,1) u1(1,2)

2u2(1,1) u2(1,2)


For γ = 2, the 2× 2 matrix (Viα2) is

T2 =

 u1(1,2) 2u1(2,2)

u2(1,2) 2u2(2,2)


The total 2× 3 matrix

(
ui(α,β)

)
is

T =

 u1(1,1) u1(1,2) u1(2,2)

u2(1,1) u2(1,2) u2(2,2)


By formulas (1.5.5) and (1.7.3),∑

i,j,α,γ,β,δ

Rij(α,γ)(β,δ)ui(α,γ)uj(β,δ) =
∑

i,j,α,β

(
RijαβViα1V jβ1 +RijαβViα2V jβ2

)
=

1

2

∑
i,α

|Viα1 + Vαi1|2 +
1

2

∑
i,α

|Viα2 + Vαi2|2

It equals zero if and only if T1 and T2 are skew-symmetric which means T ≡ 0. The Nakano-

positivity of (S2TP2, S2hFS) is proved.
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1.7.2 Curvature properties of Kodaira sufaces

In this subsection we will investigate various curvature properties on Kodaira surfaces. By def-

inition, a Kodaira surface X corresponds to a non-trivial deformation of complex structures of

Riemann surfaces of genus ≥ 2. Naturally, we can identify a point x ∈ X on the fiber Xt with the

punctured Riemann surface Xt \ {x}, and we get a map from X to the moduli space Mg,1. This

map lifts to local immersions to the Teichmuller space Tg,1. So there is a naturally induced metric

on the Kodaira surface.

Let f : Tg,n → Mg,n be the universal curve. The Poincaré metric on each fiber of Tg,n, which

is a complete metric on the n-punctured Riemann surface with constant curvature −1, patches

together to give a smooth metric on the relative cotangent bundle KTg,n/Mg,n . It is well-known that

f∗(K
⊗2
Tg,n/Mg,n

) is isomorphic to the cotangent bundle T ∗1,0Mg,n of the moduli space Mg,n. For a

given point z ∈Mg,n, the fiber of the bundle f∗(K⊗2
Tg,n/Mg,n

) is

H0(Cz, K
⊗2
Cz

) ∼=
(
H1(Cz, TCz)

)∗
where Cz = f−1(z) is a Riemann surface of genus g with n punctures. The space H1(Cz, TCz)

can be identified as the space H0,1
(2)(Cz, TCz) of L2(dAz)-integrable harmonic Beltrami differentials

where dAz is the Poincaré metric on Cz. Let µ1, µ2 be two such Beltrami differentials, the Weil-

Petersson metric on the holomorphic tangent bundle of Mg,n is defined by

(µ1, µ2)z =

∫
Cz

µ1 · µ2dAz (1.7.4)

The following result can be deduced from the similar methods as in [Liu-Sun-Yau08]. For more

details, we refer to [Liu-Yang2].

Proposition 1.7.3. The curvature of Weil-Petersson metric gWP,g,n on the Teichmüller space Tg,n

of Riemann surfaces of genus g ≥ 2 is dual-Nakano-negative and semi-Nakano-negative.

Lemma 1.7.4 ([To-Yeung11]). Let X be a Kodaira surface. There exists a holomorphic map Φ

from X to Tg,1 such that Φ is a local holomorphic immersion.

Proposition 1.7.5. Let X be a Kodaira surface. Let h be the naturally induced metric from the

Teichmüller space (Tg,1, ωWP,g,1) with g ≥ 2.
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(1) (X, h) is Griffiths-negative, i.e. (X, h) has negative holomorphic bisectional curvature;

(2) (X, h) is semi-Nakano-negative but it can not be quasi-Nakano-negative;

(3) X can not admit a Kähler metric with non-positive Riemannian sectional curvature;

(4) X can not admit a Kähler metric with semi-dual-Nakano negative curvature.

Proof. By Lemma 1.7.4, T 1,0X is a holomorphic subbundle of the tangent bundle Tg,1. Hence, (1)

follows from the decreasing property of subbundles (i.e. Lemma 1.2.8 ) and Proposition 1.3.2.

For (2), as similar as (1), (T 1,0X, h) is semi-Nakano-negative. On the other hand,

H0(X,End(T 1,0X)) ∼= H0(X,T ∗1,0X ⊗ T 1,0X) ∼= H1,0(X,T 1,0X)

Hence, if (T 1,0X, h) is quasi-Nakano-negative, then H1,0(X,T 1,0X) = 0 by Nakano vanishing

theorem which is a contradiction.

(3) Suppose X admits a Kähler metric with non-positive Riemannian sectional curvature. It is

well-known that every Kodaira surface is algebraic and of general type. Moreover, c21 > 2c2 and

so by [Zheng95, Proposition 3], the Kodaira surface X is strongly rigid which is a contradiction.

(4) As an analog of Lemma 1.2.9, we know that if X has a Kähler metric with semi-dual-

Nakano negative curvature, that metric has non-positive Riemannian sectional curvature. However,

in virtue of part (3), it is impossible.

Remark 1.7.6. The property (3) in Proposition 1.7.5 answers a question of [To-Yeung11] in a

negative way. That is, Kodaira surface can not carry a Kähler metric with non-positive Rieman-

nian sectional curvature, although it admits a Kähler metric with negative holomorphic bisectional

curvature.

1.7.3 Examples of bounded vector bundles

It is well-known that globally generated vector bundles are semi-Griffiths positive. On the other

hand, any globally generated vector bundle has a quotient metric induced from the trivial vector

bundle and so it is semi-dual-Nakano-positive([Demailly]).
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Corollary 1.7.7. Let E be a globally generated vector bundle and L an ample line bundle over a

projective manifold X , then SkE ⊗ L is dual-Nakano-positive for any k ≥ 1. Moreover,

Hp,n(X,SkE ⊗ L) = 0 (1.7.5)

for any p ≥ 1.

We can not obtain a vanishing quadrilateral for SkE⊗L as Figure 1. It is easy to see that the result

in Corollary 1.7.7 is a vertical line of the quadrilateral in Figure 1. In [PLS87], the authors found

more vanishing elements close to that vertical line. More precisely, they proved that

Hp,n−1(X,SkE ⊗ L) = 0, for any p ≥ r + 1 (1.7.6)

But in general, there exists some 1 ≤ q ≤ n such that Hn,q(X,SkE ⊗ L) 6= 0. In particular,

SkE⊗L is not necessarily Nakano-positive. For example, E = TPn⊗OPn(−1) and L = OPn(1).

It is obvious E is globally generated. When n ≥ 2, E ⊗ L = TPn is dual-Nakano-positive but not

Nakano-positive. More generally, we have

Example 1.7.8 ([Demailly88]). Let X = G(r, V ) be the Grassmannian of subspaces of codimen-

sion r of a vector space V , dimC V = d, and E the tautological quotient vector bundle of rank r

over X . Then E is globally generated and L = detE is very ample.

Hn,q(X,SkE ⊗ detE) =


0, q 6= (r − 1)(d− r);

Sk+r−dV ⊗ detV, q = (r − 1)(d− r)

(1.7.7)

where n = dimCX = r(d − r). If r = d − 1, then X = Pn = Pd−1 and E = TPn ⊗ OPn(−1),

detE = OPn(1). That is

Hn,q(Pn, SkTPn ⊗OPn(1− k)) =


0, q 6= n− 1;

Sk−1V ⊗ detV, q = n− 1

(1.7.8)

Therefore, if n ≥ 2, SkTPn ⊗OPn(1− k) can not be Nakano-positive. However, we will see that

for any ` ≥ 2− k, SkTPn⊗OPn(`) is both Nakano-positive and dual-Nakano-positive. Moreover,

we can obtain more vanishing results about it.
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Let hFS be the Fubini-Study metric on Pn and it also induces a metric on L = OPn(1). It is easy

to see that

ωL ⊗ Id ≤ ΘTPn ≤ 2ωL ⊗ Id. (1.7.9)

So TPn is strictly (1, 2)-bounded by L. Similarly, H = TPn ⊗OPn(−1) is strictly (0, 1)-bounded

by L.

Proposition 1.7.9. If ` ≥ 2 − k, SkTPn ⊗ OPn(`) is Nakano-positive and dual-Nakano-positive

and

Hp,q(Pn, SkTPn ⊗OPn(`)) = Hq,p(Pn, SkTPn ⊗OPn(`)) = 0 (1.7.10)

for any p ≥ 1, q ≥ 1 satisfy

`+ k − 1

`+ n+ 2k − 1
≥ min

{
n− p

q
,
n− q

p

}
. (1.7.11)

Proof. It follows from the relation

SkH ⊗ detH ⊗OPn(`+ k − 1) = SkTPn ⊗OPn(`) (1.7.12)

and Theorem 1.1.6. Here `+ k − 1 ≥ 1, i.e., ` ≥ 2− k is necessary by Example 1.7.8.

Remark 1.7.10. Although TPn is not Nakano-positive when n ≥ 2, SkTPn is both Nakano-

positive and dual-Nakano-positive for any k ≥ 2.

50



CHAPTER 2

Geometry of Hermitian manifolds

2.1 Introduction

It is well-known([Bochner46]) that on a compact Kähler manifold, if the Ricci curvature is positive,

then the first Betti number is zero; if the Ricci curvature is negative, then there is no holomorphic

vector field. The key ingredient for the proofs of such results is the Kähler symmetry. On the

other hand, on a Hermitian manifold, we don’t have such symmetry and there are several different

Ricci curvatures. While on a Kähler manifold, all these Ricci curvatures coincide, since the Chern

curvature on a Kähler manifold coincides with the curvature of the (complexified) Levi-Civita

connection. We can see this more clearly on an abstract Hermitian holomorphic bundle (E, h). The

Chern connection ∇CH on E is the unique connection which is compatible with the holomorphic

structure and the Hermitian metric h on E. Hence, the Chern curvature ΘE ∈ Γ(M,Λ1,1T ∗M ⊗

E∗ ⊗ E). There are two ways to take trace of ΘE . If we take trace of ΘE with respect to the

Hermitian metric h on E, we get a (1, 1)-form TrhΘ
E ∈ Γ(M,Λ1,1T ∗M) on M which is called

the first Ricci-Chern curvature of (E, h). It is well-known that the first Ricci-Chern curvature

represents the first Chern class of the bundle. On the other hand, if we take trace on the (1, 1)-part

by using the metric of the manifold, we obtain an endomorphism ofE, TrωΘE ∈ Γ(M,E∗⊗E). It

is called the second Ricci-Chern curvature of (E, h). The first and second Ricci-Chern curvatures

have different geometric meanings, which were not clearly studied in some earlier literatures. We

should point out that the nonexistence of holomorphic sections of a Hermitian holomorphic vector

bundle E is characterized by the second Ricci-Chern curvature of E. Let E be the holomorphic

tangent bundle T 1,0M . If M is Kähler, the first and second Ricci-Chern curvatures are the same

by the Kähler symmetry. Unfortunately, on a Hermitian manifold, the Chern curvature is not
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symmetric, i.e., the first and second Ricci-Chern curvatures are different. Moreover, in general they

can not be compared. An interesting example is the Hopf manifold S2n+1 × S1. As is well-known

the Hopf manifold is non-Kähler and has vanishing first Chern class. However, the canonical

metric on it has strictly positive second Ricci-Chern curvature! Moreover, the first Ricci-Chern

curvature is nonnegative and not identically zero, whereas it represents the zero first Chern class!

For more details, see Proposition 2.6.4.

In this chapter, we study the nonexistence of holomorphic and harmonic sections of an abstract

vector bundle over a compact Hermitian manifold. Let E be a holomorphic vector bundle over

a compact Hermitian manifold (M,ω). Since the holomorphic section space H0(M,E) is inde-

pendent on the connections on E, we can choose any connection on E to detect H0(M,E). As

mentioned above, the key part, is the second Ricci curvature of that given connection. For exam-

ple, on the holomorphic tangent bundle T 1,0M of a Hermitian manifold M , there are three typical

connections

(1) the complexified Levi-Civita connection ∇ on T 1,0M ;

(2) the Chern connection ∇CH on T 1,0M ;

(3) the Bismut connection ∇B on T 1,0M .

It is well-known that if M is Kähler, all three connections are the same. However, in general, the

relations among them are somewhat mysterious. In this chapter, we derive certain relations about

their curvatures on certain Hermitian manifolds.

Let E be a Hermitian complex (possibly non-holomorphic) vector bundle or a Riemannian real

vector bundle over a compact Hermitian manifold (M,ω). Let ∇E be an arbitrary connection on

E and ∂E, ∂E the (1, 0), (0, 1) part of ∇E respectively. The (1, 1)-curvature of ∇E is denoted by

RE ∈ Γ(M,Λ1,1T ∗M⊗E∗⊗E). It can be viewed as a representation of the operator ∂E∂E+∂E∂E .

We can define harmonic section spaces associated to (E,∇E) by

Hp,q

∂E
(M,E) = {ϕ ∈ Ωp,q(M,E) | ∂Eϕ = ∂

∗
Eϕ = 0} (2.1.1)

In general, on a complex vector bundle E, there is no terminology such as “holomorphic section

of E”. However, if the vector bundle E is holomorphic and ∇E is the Chern connection on E,
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i.e., ∂E = ∂, then Hp,q

∂E
(M,E) is isomorphic to the Dolbeault cohomology group Hp,q

∂
(M,E) and

H0
∂
(M,E) is the holomorphic section space H0(M,E) of E.

If (E, h,∇E) is a Hermitian complex vector bundle with a fixed connection ∇E over a compact

Hermitian manifold (M,ω), we will call TrhR
E ∈ Γ(M,Λ1,1T ∗M) the first Hermitian-Ricci

curvature of (E, h,∇E) and TrωR
E ∈ Γ(M,E∗ ⊗ E) the second Hermitian-Ricci curvature. If

∇E is the Chern connection of a Hermitian holomorphic vector bundle (E, h), they are called the

first and second Ricci-Chern curvatures of (E, h) respectively.

Theorem 2.1.1. Let E be a Hermitian complex vector bundle or a Riemannian real vector bundle

over a compact Hermitian manifold (M,ω) and ∇E be any metric connection on E.

(1) If the second Hermitian-Ricci curvature TrωR
E is nonpositive everywhere, then every ∂E-

closed section of E is parallel, i.e. ∇Es = 0;

(2) If the second Hermitian-Ricci curvature TrωR
E is nonpositive everywhere and negative at

some point, then H0
∂E

(M,E) = 0;

(3) If the second Hermitian-Ricci curvature TrωR
E is p-nonpositive everywhere and p-negative

at some point, then H0
∂E

(M,ΛqE) = 0 for any p ≤ q ≤ rank(E).

The proof of this theorem is based on generalized Bochner-Kodaira identities on vector bundles

over Hermitian manifolds (Theorem 2.4.5). We prove that (Theorem 2.4.8) the torsion integral

of the Hermitian manifold can be killed if the background Hermitian metric ω on M is Gaudu-

chon, i.e. ∂∂ωn−1 = 0. On the other hand, in the conformal class of any Hermitian metric, the

Gauduchon metric always exists ([Gauduchon84]). So we can change the background metric in

the conformal way. It is obvious that the positivity of the second Hermitian-Ricci curvature is

preserved under conformal transformations. This method is very useful on Hermitian manifolds.

Kobayashi-Wu([Kobayashi-Wu70]) and Gauduchon([Gauduchon77b]) obtained similar result in

the special case when ∇E is the Chern connection of the Hermitian holomorphic vector bundle E.

Now we go back to the Hermitian manifold (M,ω).

Corollary 2.1.2. Let (M,ω) be a compact Hermitian manifold and Θ is the Chern curvature of

(T 1,0M,ω).

53



(1) if the second Ricci-Chern curvature TrωΘ is nonnegative everywhere and positive at some

point, thenHp,0

∂
(M) = 0 for any 1 ≤ p ≤ n. In particular, the arithmetic genus χ(M,O) = 1;

(2) if the second Ricci-Chern curvature TrωΘ is nonpositive everywhere and negative at some

point, then the holomorphic vector bundle ΛpT 1,0M has no holomorphic vector field for any

1 ≤ p ≤ n.

As is well-known, if a Hermitian manifold has positive first Ricci-Chern curvature, it must be

Kähler. However, we can not draw the same conclusion if the second Ricci-Chern curvature is

positive, since the first and second Ricci-Chern curvatures of a Hermitian manifold can not be

compared. In fact, the first Ricci-Chern curvature is d-closed, but in general the second Ricci-

Chern curvature is not d-closed and they are in the different (d, ∂, ∂)-cohomology classes. For

example, the Hopf manifold S2n+1×S1 with standard Hermitian metric has strictly positive second

Ricci-Chern curvature and nonnegative first Ricci-Chern curvature, but it is non-Kähler. For more

details, see Proposition 2.6.4.

Now we consider several special Hermitian manifolds. An interesting class of Hermitian mani-

folds is the balanced Hermitian manifolds, i.e., Hermitian manifolds with coclosed Kähler forms.

It is well-known that every Kähler manifold is balanced. In some literatures, they are also called

semi-Kähler manifolds. In complex dimension 1 and 2, every balanced Hermitian manifold is

Kähler. However, in higher dimensions, there exist non-Kähler manifolds which admit balanced

Hermitian metrics. Such examples were constructed by E. Calabi([Calabi-Eckmann53]), see also

[Gray66] and [Michelson83]. There are also some other important classes of non-Kähler bal-

anced manifolds, such as: complex solvmanifolds, 1-dimensional families of Kähler manifolds

([Michelson83]) and compact complex parallelizable manifolds (except complex torus) ([Urakawa81]).

On the other hand, Alessandrini-Bassanelli([Alessandrini-Bassanelli93]) proved that every Moishe-

zon manifold is balanced and so balanced manifolds can be constructed from Kähler manifolds by

modification. For more examples, we refer the reader to [Alessandrini-Bassanelli04], [Michelson83],

[Ganchev-Ivanov01], [Ganchev-Ivanov00], [Fu-Yau08], [Fu-Li-Yau], [Fu-Wang-Wu] and refer-

ences therein.

Every balanced metric ω is Gauduchon. In fact, d∗ω = 0 is equivalent to dωn−1 = 0 and so
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∂∂ωn−1 = 0. By [Gauduchon84], every Hermitian manifold has a Gauduchon metric. However,

there are many manifolds which can not support balanced metrics. For example, the Hopf surface

S3 × S1 is non-Kähler, so it has no balanced metric. For more discussions, we refer the reader

to [Calabi-Eckmann53], [Michelson83],[Tosatti-Weinkove10b], [Alessandrini-Bassanelli93] and

references therein.

On a compact balanced Hermitian manifold M , we can also detect the holomorphic section

spaces H0(M,T 1,0M) and Hp,0

∂
(M) by the Levi-Civita connection on (M,ωh). Let ∇ be the

complexified Levi-Civita connection on M and R the complexified Riemannian curvature. It is

easy to see that R(X,Y, Z,W ) = R(Z,W,X, Y ) for any X, Y, Z,W ∈ Γ(M,TCM). In the local

holomorphic coodinates (z1, · · · , zn) of M , we set

Rijk` = R

(
∂

∂zi
,
∂

∂zj ,
∂

∂zk
,
∂

∂z`

)
, Rij = hk`Rijk`

(
= hk`Rk`ij

)
and call

(
Rij

)
the Hermitian-Ricci curvature of (M,h). Since ∇ is a connection on the complex

vector bundle TCM , there is an induced connection on the Hermitian holomorphic vector bundle

(T 1,0M,h) and we denote it still by∇. The curvature of (T 1,0M,h,∇) is denoted by R̂. In general,

the first and second Hermitian-Ricci curvatures of R̂ are different. Moreover, R̂ andR are different

but they can be compared(see Proposition 2.2.12). This property can be viewed as a connection

between Riemannian geometry and Hermitian geometry(or Symplectic geometry). For example,

we can use it to study the non-existence of certain complex structures on complete Riemannian

manifolds. In particular,

Corollary 2.1.3. Let (M,h) be a compact Hermitian manifold. If the Hermitian-Ricci curvature

(Rij) is quasi-positive, then H2
dR(M,C) 6= 0.

As applications, I can deduce that S2n+1×S1 can not admit a Hermitian metric with quasi-positive

Hermitian-Ricci curvature and also Lebrun’s result that there is no complex structure on S6 which

is compatible with the round metric.

Theorem 2.1.4. Let (M,ω) be a compact balanced Hermitian manifold. Suppose the Hermitian-

Ricci curvature (Rij) of M is nonnegative everywhere.
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(1) If ϕ is a holomorphic p-form, then ∆∂ϕ = 0 and so dimCH
p,0

∂
(M) ≤ dimCH

0,p

∂
(M) for any

1 ≤ p ≤ n;

(2) If the Hermitian-Ricci curvature (Rij) is positive at some point, then Hp,0

∂
(M) = 0 for any

1 ≤ p ≤ n. In particular, the arithmetic genus χ(M,O) = 1.

Let R̂(2)

ij
be the components of the second Hermitian-Ricci curvature of R̂. The dual of Theorem

2.1.4 is

Theorem 2.1.5. Let (M,ω) be a compact balanced Hermitian manifold. If 2R̂
(2)

ij
−Rij is nonpos-

itive everywhere and negative at some point, there is no holomorphic vector field on M.

Remark 2.1.6. It is easy to see that the Hermitian-Ricci curvature tensor (Rij) and second Ricci-

Chern curvature tensor Θ(2) := TrωΘ can not be compared. Therefore, Theorem 2.1.4 and Corol-

lary 2.1.2 are independent of each other. For the same reason, Theorem 2.1.5 and Corollary 2.1.2

are independent. Balanced Hermitian manifolds with nonnegative Hermitian-Ricci curvatures are

discussed in Proposition 2.3.5.

As we discuss in the above, on Hermitian manifolds, the second Hermitian-Ricci curvature

tensors of various metric connections are closely related to the geometry of Hermitian manifolds.

A natural idea is to define a flow by using second Hermitian-Ricci curvature tensors of various

metric connections. For example,

∂h

∂t
= −Θ(2) + µh, µ ∈ R (2.1.2)

on a general Hermitian manifold (M,h) by using the second Ricci-Chern curvature. This flow

preserves the Kähler and the Hermitian structures and has short time solution on any compact

Hermitian manifold. It is very similar to and closely related to the Hermitian Yang-Mills flow, the

Kähler-Ricci flow and the harmonic map heat flow. It may be a bridge to connect them.
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2.2 Various connections and curvatures on Hermitian manifolds

2.2.1 Complexified Riemannian curvature

Let (M, g) be a Riemannian manifold with Levi-Civita connection∇, the curvatureR of (M, g,∇)

is defined as

R(X,Y, Z,W ) = g
((
∇X∇Y −∇Y∇X −∇[X,Y ]

)
Z,W

)
(2.2.1)

On a Hermitian manifold (M,h), let ∇ be the complexified Levi-Civita connection and g the

background Riemannian metric. Two metrics g and h are related by

ds2
h = ds2

g −
√
−1ωh (2.2.2)

where ωh is the fundamental (1, 1)-form (or Kähler form) associated to h. For any two holomorphic

vector fields X, Y ∈ Γ(M,T 1,0M),

h(X, Y ) = 2g(X,Y ) (2.2.3)

This formula will be used in several definitions. In the local holomorphic coordinates {z1, · · · , zn}

on M , the complexified Christoffel symbols are given by

ΓC
AB =

∑
E

1

2
gCE

(∂gAE

∂zB
+
∂gBE

∂zA
− ∂gAB

∂zE

)
=
∑

E

1

2
hCE

(∂hAE

∂zB
+
∂hBE

∂zA
− ∂hAB

∂zE

)
(2.2.4)

where A,B,C,E ∈ {1, · · · , n, 1, · · · , n} and zA = zi if A = i, zA = zi if A = i. For example

Γk
ij =

1

2
hk`

(
∂hj`

∂zi
+
∂hi`

∂zj

)
, Γk

ij
=

1

2
hk`

(
∂hj`

∂zi −
∂hji

∂z`

)
(2.2.5)

The complexified curvature components are

RABCD : = 2g
((
∇ ∂

∂zA
∇ ∂

∂zB
−∇ ∂

∂zB
∇ ∂

∂zA

) ∂

∂zC
,
∂

∂zD

)
= h

((
∇ ∂

∂zA
∇ ∂

∂zB
−∇ ∂

∂zB
∇ ∂

∂zA

) ∂

∂zC
,
∂

∂zD

)
(2.2.6)

Hence

RD
ABC =

∑
E

RABCEh
ED = −

(
∂ΓD

AC

∂zB
− ∂ΓD

BC

∂zA
+ ΓF

ACΓD
FB − ΓF

BCΓD
AF

)
(2.2.7)
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By the Hermitian property, we have, for example

Rl
ijk

= −

(
∂Γl

ik

∂zj −
∂Γl

jk

∂zi
+ Γs

ikΓ
l
js
− Γs

jk
Γl

is − Γs
jk

Γl
is

)
(2.2.8)

Remark 2.2.1. We have RABCD = RCDAB. In particular,

Rijk` = Rk`ij (2.2.9)

Unlike the Kähler case, we can define several Ricci curvatures:

Definition 2.2.2. (1) The complexified Ricci curvature on (M,h) is defined by

Rk` := hij
(
Rkji` +Rkij`

)
(2.2.10)

The complexified scalar curvature of h is defined as

sh := hk`Rk` (2.2.11)

(2) The Hermitian-Ricci curvature is

Rk` := hijRijk` (2.2.12)

The Hermitian-scalar curvature of h is given by

S := hk`Rk` (2.2.13)

Lemma 2.2.3. On a Hermitian manifold,

RABCD = RABCD, Rk` = R`k, Rk` = R`k (2.2.14)

and

Rk` = hij
(
2Rkji` −Rk`ij

)
(2.2.15)

Proof. The Hermitian property of curvature tensors is obvious. By first Bianchi identity, we have

Rkij` +Rkj`i +Rk`ij = 0

That is Rkij` = Rkji` −Rk`ij . The curvature formula (2.2.10) turns out to be

Rk` = hij
(
2Rkji` −Rk`ij

)
(2.2.16)
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Definition 2.2.4. The Ricci curvatures are called positive ( resp. nonnegative, negative, non-

positive) if the corresponding Hermitian matrices are positive ( resp. nonnegative, negative, non-

positive).

The following three formulas are used frequently in the sequel.

Lemma 2.2.5. Assume hij = δij at a fixed point p ∈M , we have the following formula

Rijk` = −1

2

(
∂2hi`

∂zk∂zj +
∂2hkj

∂zi∂z`

)
+

1

4

(
∂hkq

∂zi

∂hq`

∂zj +
∂hiq

∂zk

∂hqj

∂z`

)
+

1

4

(
∂hiq

∂zk

∂hq`

∂zj +
∂hkq

∂zi

∂hqj

∂z`

)
+

1

4

(
∂hq`

∂zi

∂hkj

∂zq +
∂hqj

∂zk

∂hi`

∂zq

)
+

1

4

(
∂hi`

∂zq

∂hkq

∂zj +
∂hkj

∂zq

∂hiq

∂z`

)
(2.2.17)

−1

4

(
∂hq`

∂zi

∂hkq

∂zj +
∂hqj

∂zk

∂hiq

∂z`

)
− 1

4

(
∂hi`

∂zq

∂hkj

∂zq +
∂hkj

∂zq

∂hi`

∂zq

)
By a linear transformation on the local holomorphic coordinates, one can get the following

Lemma. For more details, we refer the reader to [Street-Tian2].

Lemma 2.2.6. Let (M,h, ω) be a Hermitian manifold. For any p ∈M , there exist local holomor-

phic coordinates {zi} centered at a point p such that

hij(p) = δij and Γk
ij(p) = 0 (2.2.18)

By Lemma 2.2.6, we have a simplified version of curvatures:

Lemma 2.2.7. Assume hij(p) = δij and Γk
ij(p) = 0 at a fixed point p ∈M ,

Rijk` = −1

2

(
∂2hi`

∂zk∂zj +
∂2hkj

∂zi∂z`

)
−
∑

q

(
∂hq`

∂zi

∂hkq

∂zj +
∂hqj

∂zk

∂hiq

∂z`

)
(2.2.19)

For Hermitian-Ricci curvatures

Rk` = hijRijk` = −1

2

∑
s

(
∂2hs`

∂zk∂zs +
∂2hks

∂zs∂z`

)
−
∑
q,s

(
∂hq`

∂zs

∂hkq

∂zs +
∂hkq

∂zs

∂hq`

∂zs

)
(2.2.20)

and

hijRkji` = hijRi`kj = −1

2

∑
s

(
∂2hk`

∂zs∂zs +
∂2hss

∂zk∂z`

)
−
∑
q,s

(
∂hq`

∂zk

∂hsq

∂zs +
∂hqs

∂zs

∂hkq

∂z`

)
(2.2.21)
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For complexified Ricci curvature,

Rk` =
1

2

∑
s

(
∂2hs`

∂zk∂zs +
∂2hks

∂zs∂z`

)
−
∑

s

(
∂2hk`

∂zs∂zs +
∂2hss

∂zk∂z`

)
+

∑
q,s

(
∂hq`

∂zs

∂hkq

∂zs +
∂hkq

∂zs

∂hq`

∂zs

)
− 2

∑
q,s

(
∂hq`

∂zk

∂hsq

∂zs +
∂hqs

∂zs

∂hkq

∂z`

)
(2.2.22)

2.2.2 Curvature of complexified Levi-Civita connection on T 1,0M

Since T 1,0M is a subbundle of TCM , there is an induced connection ∇̂ on T 1,0M given by

∇̂ = π ◦ ∇ : T 1,0M
∇→ Γ(M,TCM ⊗ TCM)

π→ Γ(M,TCM ⊗ T 1,0M) (2.2.23)

The curvature R̂ ∈ Γ(M,Λ2TCM ⊗ T ∗1,0M ⊗ T 1,0M) of ∇̂ is given by

R̂(X, Y )s = ∇̂X∇̂Y s− ∇̂Y ∇̂Xs− ∇̂[X,Y ]s (2.2.24)

for any X, Y ∈ TCM and s ∈ T 1,0M . It has components

R̂l
ABk =

∂Γl
Bk

∂zA
− ∂Γl

Ak

∂zB
− Γs

AkΓ
l
Bs + Γs

BkΓ
l
As (2.2.25)

where

R̂

(
∂

∂zA
,
∂

∂zB

)
∂

∂zk
=
∑

l

R̂l
ABk

∂

∂z`
(2.2.26)

For example,

R̂l
ijk

= −

(
∂Γl

ik

∂zj −
∂Γl

jk

∂zi
+ Γs

ikΓ
l
js
− Γs

jk
Γl

si

)
(2.2.27)

With respect to the Hermitian metric h on T 1,0M , we can define

R̂ABkl =
n∑

s=1

R̂s
ABkhs` (2.2.28)

Definition 2.2.8. The first Hermitian-Ricci curvature of the Hermitian vector bundle
(
T 1,0M, ∇̂

)
is defined by

R̂
(1)

ij
= hk`R̂ijk` (2.2.29)

The second Hermitian-Ricci curvature of it is

R̂
(2)

k`
= hijR̂ijk` (2.2.30)
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The scalar curvature of ∇̂ on T 1,0M is denoted by

SLC = hijhk`R̂ijk` (2.2.31)

By Lemma 2.2.6, we have the following formulas

Lemma 2.2.9. On a Hermitian manifold (M,h), on a point p with hij(p) = δij and Γk
ij(p) = 0,

R̂ijk` = −1

2

(
∂2hi`

∂zk∂zj +
∂2hkj

∂zi∂z`

)
−
∑

q

∂hq`

∂zi

∂hkq

∂zj (2.2.32)

For the first and second Hermitian-Ricci curvatures,

R̂
(1)

ij
= −1

2

∑
k

(
∂2hik

∂zk∂zj +
∂2hkj

∂zi∂zk

)
−
∑
k,q

∂hqk

∂zi

∂hkq

∂zj (2.2.33)

and

R̂
(2)

ij
= −1

2

∑
k

(
∂2hik

∂zk∂zj +
∂2hkj

∂zi∂zk

)
−
∑
k,q

∂hiq

∂zk

∂hqj

∂zk
(2.2.34)

Moreover,

R̂
(1)

ij
− R̂

(2)

ij
= hmjh

`kΓq

ki
Γm

`q − Γq

kj
Γk

iq =
∑
k,q

(
∂hiq

∂zk

∂hqj

∂zk
− ∂hiq

∂zk

∂hqj

∂zk

)
(2.2.35)

2.2.3 Curvature of Chern connection on T 1,0M

On the Hermitian holomorphic vector bundle (T 1,0M,h), the Chern connection∇CH is the unique

connection which is compatible with the complex structure and the Hermitian metric. Its curvature

components are

Θijk` = − ∂2hk`

∂zi∂zj + hpq
∂hp`

∂zj

∂hkq

∂zi
(2.2.36)

It is well-known that the first Ricci-Chern curvature

Θ(1) :=

√
−1

2π
Θ

(1)

ij
dzi ∧ dzj (2.2.37)

represents the first Chern class of M where

Θ
(1)

ij
= hk`Θijk` = −∂

2 log det(hk`)

∂zi∂zj (2.2.38)
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The second Ricci-Chern curvature components are

Θ
(2)

ij
= hk`Θk`ij (2.2.39)

The scalar curvature of the Chern connection is defined by

SCH = hijhk`Θijk` (2.2.40)

2.2.4 Curvature of Bismut connection on T 1,0M

In [Bismut89], Bismut defined a class of connections on Hermitian manifolds. In this subsec-

tion, we choose one of them (see [Ma-Marinescu07], p. 21). The Bismut connection ∇B on the

holomorphic tangent bundle (T 1,0M,h) is characterized by

∇B = ∇+ SB (2.2.41)

where ∇ is the Levi-Civita connection and SB is a 1-form with values in End(T 1,0M) defined by

h(SB(X)Y, Z) = 2g(SB(X)Y, Z) =
√
−1(∂ − ∂)ωh(X, Y, Z) (2.2.42)

for any Y, Z ∈ T 1,0M and X ∈ TCM . Let Γ̃β
iα and Γ̃β

jα
be the Christoffel symbols of the Bis-

mut connection where i, j, α, β ∈ {1, · · · , n}. We use different types of letters since the Bismut

connection is not torsion free.

Lemma 2.2.10. We have the following relations between Γ̃ and Γ,

Γ̃iαβ(:= hβγΓ̃
γ
iα) = Γiαβ + Γαβi =

∂hiβ

∂zα
, Γ̃jαβ = 2Γjαβ (2.2.43)

Proof. Let X = ∂
∂zi , Y = ∂

∂zj , Z = ∂
∂zk . Since ωh =

√
−1
2
hmndz

m ∧ dzn, we obtain

√
−1(∂ − ∂)ωh(X,Y, Z) = −1

2

∂hmn

∂zp
dzpdzmdzn

(
∂

∂zi
,
∂

∂zj
,
∂

∂zk

)
=

1

2

(
∂hik

∂zj
−
∂hjk

∂zi

)
= Γs

jk
his = Γjki

On the other hand

h

(
∇B

∂

∂zi

∂

∂zj
,
∂

∂zk

)
= Γ̃ijk (2.2.44)

62



By the definition (2.2.41) of Bismut connection, we get

Γ̃iαβ = h

(
∇B

∂

∂zi

∂

∂zα
,
∂

∂zβ

)
= h

(
∇ ∂

∂zi

∂

∂zα
,
∂

∂zβ

)
+ h

(
SB

(
∂

∂zi

)
∂

∂zα
,
∂

∂zβ

)
= Γiαβ + Γαβi =

∂hiβ

∂zα

The proof of the other one is similar.

The Bismut curvature B ∈ Γ (M,Λ1,1T ∗M ⊗ End(T 1,0M)) is given by

Bβ

ijα
= −∂Γ̃β

iα

∂zj +
∂Γ̃β

jα

∂zi
− Γ̃γ

iαΓ̃β

jγ
+ Γ̃γ

jα
Γ̃β

iγ (2.2.45)

Lemma 2.2.11. Assume hij(p) = δij and Γk
ij(p) = 0 at a fixed point p ∈M ,

Bijαβ = −
(
∂2hiβ

∂zj∂zα
+

∂2hαj

∂zi∂zβ
−
∂2hαβ

∂zi∂zj

)
+
∑

γ

∂hαγ

∂zi

∂hγβ

∂zj − 4
∑

γ

∂hαγ

∂zj

∂hγβ

∂zi
(2.2.46)

Proof. It follows by (2.2.43) and (2.2.45).

We can define the first Ricci-Bismut curvature B(1)

ij
, the second Ricci-Bismut curvature B(2)

ij
and

scalar curvature SBM similarly.

2.2.5 Relations among four curvatures on Hermitian manifolds

Proposition 2.2.12. On a Hermitian manifold (M,h), we have

Rijkl = R̂ijk`, Rijk` = R̂ijk` (2.2.47)

and for any u, v ∈ Cn, (
Rijk` − R̂ijk`

)
uiujvkv` ≤ 0 (2.2.48)

In particular, Rij ≤ R̂
(1)

ij
and Rij ≤ R̂

(2)

ij
in the sense of Hermitian matrices.

Proof. By formulas (2.2.8) and (2.2.27), we can set

Tijk` := Rijk` − R̂ijk` = Γs
jk

Γt
isht` (2.2.49)
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Without loss generality, we assume hij = δij at a fixed point, then

Tijk` =
∑

s

ΓjksΓis` = −
∑

s

Γis`Γjsk (2.2.50)

where

Γis` =
1

2

(
∂hi`

∂zs −
∂his

∂z`

)
= −Γi`s (2.2.51)

and so

Tijk`u
iujvkv` = −

∑
s

(∑
i,`

Γis`u
iv`

)(∑
k,j

Γjsku
jvk

)
≤ 0

Remark 2.2.13. (1) Because of the second order terms in R, R̂, Θ and B, we can not compare

R, R̂ with Θ, B.

(2) Since the third order terms of ∂Θ(2) are not zero in general, it is possible that Θ(1) and Θ(2) are

not in the same (d, ∂, ∂)-cohomology class. For the same reason B(1) and B(2) are not in the

same (d, ∂, ∂)-cohomology class.

(3) If the manifold (M,h) is Kähler, all curvatures are the same.

2.3 Curvature relations on special Hermitian manifolds

2.3.1 Curvatures relations on balanced Hermitian manifolds

The following lemma is well-known( for example [Gauduchon77b]), and we include a proof here

in our setting.

Lemma 2.3.1. Let (M,ω) be a compact Hermitian manifold. The following conditions are equiv-

alent:

(1) d∗ω = 0;

(2) dωn−1 = 0;
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(3) For any smooth function f ∈ C∞(M),

1

2
∆df = ∆∂f = ∆∂f = −hij ∂2f

∂zi∂zj (2.3.1)

(4) Γ`
i`

= 0 for any 1 ≤ i ≤ n.

Proof. On a compact Hermitian manifold, d∗ω = − ∗ d ∗ ω = −cn ∗ dωn−1 where cn is a con-

stant depending only on the complex dimension n of M . On the other hand, the Hodge ∗ is an

isomorphism, and so (1) and (2) are equivalent. If f is a smooth function on M ,
∆∂f = −hij ∂2f

∂zi∂zj + 2hijΓ`
ij

∂f
∂z`

∆∂f = −hij ∂2f
∂zi∂zj + 2hijΓk

ji
∂f
∂zk

(2.3.2)

On the other hand,

hijΓ`
ij

= −Γj

kj
hk` and hijΓk

ji
= −Γi

`i
hk` (2.3.3)

Therefore (3) and (4) are equivalent. For the equivalence of (1) and (4), see Lemma 2.9.8.

Definition 2.3.2. A Hermitian manifold (M,ω) is called balanced if it satisfies one of the condi-

tions in Lemma 2.3.1.

On a balanced Hermitian manifold, there are more symmetries on the second derivatives of the

metric.

Lemma 2.3.3. Let (M,h) be a balanced Hermitian manifold. On a point p with hij(p) = δij and

Γk
ij(p) = 0, we have ∑

s

∂hsi

∂zs =
∑

s

∂hss

∂zi = 0 (2.3.4)

and ∑
i

∂2hi`

∂zk∂zi =
∑

i

∂2hki

∂zi∂z`
=
∑

i

∂2hii

∂zk∂z`
− 2

∑
i,q

∂hq`

∂zi

∂hkq

∂zi
(2.3.5)

Proof. At a fixed point p, if hij = 0 and Γk
ij = 0, then

∂hij

∂zk
= −∂hik

∂zj (2.3.6)
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The balanced condition
∑

s Γs
is

= 0 is reduced to∑
s

∂hss

∂zi =
∑

s

∂hsi

∂zs = 0

by formula (2.3.6). By the balanced condition, we get

0 =
∂Γi

`i

∂zk
=

∂

∂zk

(
1

2
hiq

(
∂hiq

∂z`
− ∂hi`

∂zq

))
=

1

2

∑
i

(
∂2hii

∂zk∂z`
− ∂2hi`

∂zk∂zi

)
−
∑
i,q

∂hq`

∂zi

∂hkq

∂zi

Hence, we obtain formula (2.3.5).

Proposition 2.3.4. Let (M,h) be a balanced Hermitian manifold. At a point p with hij(p) = δij

and Γk
ij(p) = 0, we have following formulas about various Ricci curvatures:

Θ
(1)

k`
= R̂

(1)

k`
= B

(1)

k`
= −

∑
i

∂2hii

∂zk∂z`
+
∑
q,i

∂hq`

∂zi

∂hkq

∂zi
(2.3.7)

Θ
(2)

k`
= −

∑
i

∂2hk`

∂zi∂zi +
∑
i,q

∂hq`

∂zi

∂hkq

∂zi
(2.3.8)

R̂
(2)

k`
= −

∑
i

∂2hii

∂zk∂z`
+
∑
i,q

(
2
∂hq`

∂zi

∂hkq

∂zi
− ∂hkq

∂zi

∂hq`

∂zi

)
(2.3.9)

B
(2)

k`
= −

∑
i

∂2hii

∂zk∂z`
+
∑
i,q

(
5
∂hq`

∂zi

∂hkq

∂zi
− 4

∂hkq

∂zi

∂hq`

∂zi

)
(2.3.10)

Rk` = −
∑

i

∂2hii

∂zk∂z`
+
∑
i,q

(
∂hq`

∂zi

∂hkq

∂zi
− ∂hkq

∂zi

∂hq`

∂zi

)
(2.3.11)

Rk` = −
∑

i

∂2hk`

∂zi∂zi −
∑
i,q

(
∂hq`

∂zi

∂hkq

∂zi
− ∂hkq

∂zi

∂hq`

∂zi

)
(2.3.12)

Proof. In (2.2.33), (2.2.34), (2.2.38), (2.2.39), (2.2.20), (2.2.22), we get expressions for all Ricci

curvatures on Hermitian manifolds. By balanced relations (2.3.4) and (2.3.5), we get simplified

versions of all Ricci curvatures.

Proposition 2.3.5. (1) A balanced Hermitian manifold with positive Hermitian-Ricci curvature(
Rij

)
is Kähler.

(2) Let (M,h) be a compact balanced Hermitian manifold. If the Hermitian-Ricci curvature
(
Rij

)
is nonnegative everywhere and positive at some point, then M is Moishezon.
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Proof. (1) On a balanced Hermitian manifold, we have(
Θ

(1)

ij

)
=
(
R̂

(1)

ij

)
≥
(
Rij

)
(2.3.13)

by Proposition 2.2.12 and Proposition 2.3.4. If
(
Rij

)
is Hermitian positive, then Θ

(1)

ij
is Hermitian

positive, and so

Ω = −
√
−1

2π
∂∂ log det(hk`) (2.3.14)

is a Kähler metric.

(2) If the Hermitian-Ricci curvature is nonnegative everywhere and positive at some point, so is(
Θ

(1)

ij

)
. The Hermitian line bundle L = det(T 1,0M) satisfies∫

M

c1(L)n > 0 (2.3.15)

By Siu-Demailly’s solution of Grauert-Riemenschneider conjecture ([Siu84], [Demailly87]), M is

Moishezon.

2.3.2 Curvature relations on Hermitian manifolds with Λ(∂∂ω) = 0

Now we consider a compact Hermitian manifold (M,ω) with Λ(∂∂ω) = 0. The condition

Λ(∂∂ω) = 0 is equivalent to

∑
k

(
∂hij

∂zk∂zk
+

∂hkk

∂zi∂zj

)
=
∑

k

(
∂hik

∂zk∂zj +
∂2hkj

∂zi∂zk

)
(2.3.16)

for any i, j. Similar to Proposition 2.3.4, we can use (2.3.16) to simplify Ricci curvatures and get

relations among them.

Proposition 2.3.6. Let (M,h) be a compact Hermitian manifold with Λ(∂∂ω) = 0. At a point p
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with hij(p) = δij and Γk
ij(p) = 0, the following identities about Ricci curvatures hold:

Θ
(1)

k`
= −

∑
i

∂2hii

∂zk∂z`
+
∑
q,i

∂hq`

∂zi

∂hkq

∂zi
(2.3.17)

Θ
(2)

k`
= −

∑
i

∂2hk`

∂zi∂zi +
∑
i,q

∂hq`

∂zi

∂hkq

∂zi
(2.3.18)

R̂
(1)

k`
= −1

2

∑
i

(
∂2hk`

∂zi∂zi +
∂2hii

∂zk∂z`

)
−
∑
i,q

∂hq`

∂zi

∂hkq

∂zi
(2.3.19)

R̂
(2)

k`
= −1

2

∑
i

(
∂2hk`

∂zi∂zi +
∂2hii

∂zk∂z`

)
−
∑
i,q

∂hkq

∂zi

∂hq`

∂zi
(2.3.20)

B
(1)

k`
= −

∑
i

∂2hk`

∂zi∂zi +
∑
i,q

(
∂hq`

∂zi

∂hkq

∂zi
− 4

∂hq`

∂zi

∂hkq

∂zi

)
(2.3.21)

B
(2)

k`
= −

∑
i

∂2hii

∂zk∂z`
+
∑
i,q

(
∂hq`

∂zi

∂hkq

∂zi
− 4

∂hkq

∂zi

∂hq`

∂zi

)
(2.3.22)

Rk` = −1

2

∑
i

(
∂2hk`

∂zi∂zi +
∂2hii

∂zk∂z`

)
−
∑
i,q

(
∂hq`

∂zi

∂hkq

∂zi
+
∂hkq

∂zi

∂hq`

∂zi

)
(2.3.23)

Rk` = −1

2

∑
i

(
∂2hk`

∂zi∂zi +
∂2hii

∂zk∂z`

)
+
∑
i,q

(
∂hq`

∂zi

∂hkq

∂zi
+
∂hkq

∂zi

∂hq`

∂zi

)
(2.3.24)

−2
∑
q,i

(
∂hq`

∂zk

∂hiq

∂zi +
∂hqi

∂zi

∂hkq

∂z`

)

Proposition 2.3.7. If (M,ω) is a compact Hermitian manifold with Λ(∂∂ω) = 0, then

B(2) ≤ Θ(1) and B(1) ≤ Θ(2) (2.3.25)

in the sense of Hermitian matrices and identities hold if and only if (M,ω) is Kähler. Moreover,

Θ(2) +B(2) = Θ(1) +R(1) (2.3.26)

Finally, we would like to discuss the relations of special metrics on Hermitian manifolds. By

[Alessandrini-Bassanelli93], every Moishezon manifold is balanced, i.e., there exists a smooth

Hermitian metric ω such that d∗ω = 0. On the other hand, by [Demailly-Paun04]( see also

[Ji-Shiffman93]), on each Moishezon manifold, there exists a singular Hermitian metric ω such

that ∂∂ω = 0 in the sense of current. However, these two conditions can not be satisfied simulta-

neously in the smooth sense on a Hermitian non-Kähler manifold.
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Proposition 2.3.8. Let (M,ω) be a compact Hermitian manifold. If d∗ω = 0 and Λ(∂∂ω) = 0,

then dω = 0, i.e. (M,ω) is Kähler. In particular, if a compact Hermitian manifold admits a smooth

metric ω such that d∗ω = 0 and ∂∂ω = 0, then it is Kähler.

Proof. Let (M,ω) be a balanced Hermitian manifold with Λ(∂∂ω) = 0. The condition Λ(∂∂ω) =

0 is equivalent to ∑
i

∂hii

∂zk∂z`
+
∑

i

∂2hk`

∂zi∂zi =
∑

i

∂hi`

∂zk∂zi +
∑

i

∂2hki

∂zi∂z`
(2.3.27)

By formula 2.3.5, at a point p with hij = δij and Γk
ij(p) = 0, we have∑

i

∂hii

∂zk∂z`
+
∑

i

∂2hk`

∂zi∂zi =
∑

i

∂hi`

∂zk∂zi +
∑

i

∂2hki

∂zi∂z`

= 2
∑

i

∂hii

∂zk∂z`
− 4

∑
q,i

∂hq`

∂zi

∂hkq

∂zi

That is ∑
i

∂hii

∂zk∂z`
=
∑

i

∂2hk`

∂zi∂zi + 4
∑
q,i

∂hq`

∂zi

∂hkq

∂zi
(2.3.28)

By taking trace of it, we obtain

4
∑
q,i,k

∂hqk

∂zi

∂hkq

∂zi
= 0 ⇐⇒ ∂hkq

∂zi
= 0 (2.3.29)

at point p. Since p is arbitrary, we have dω ≡ 0, therefore, (M,ω) is Kähler.

Remark 2.3.9. This result is known in [Alexandrov-Ivanov01] and also [Fino-Parton-Salamon04]

in the conditions of d∗ω = 0 and ∂∂ω = 0. By carefully computations, we find that their method

works also for d∗ω = 0 and Λ
(
∂∂ω

)
= 0. Our method is quite different from theirs.

2.4 Bochner formulas on Hermitian complex and Riemannian real vector

bundles over compact Hermitian manifolds

Let (M,h, ω) be a compact Hermitian manifold. The complexified Levi-Civita connection ∇ on

TCM induces a linear connection on Ωp,q(M):

∇ : Ωp,q(M) → Ω1(M)⊗
(
Ωp,q(M)⊕ Ωp−1,q+1(M)⊕ Ωp+1,q−1(M)

)
(2.4.1)
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We consider the following two canonical components of ∇,
∇′ : Ωp,q(M) → Ω1,0(M)⊗ Ωp,q(M)

∇′′ : Ωp,q(M) → Ω0,1(M)⊗ Ωp,q(M)

(2.4.2)

Note that ∇ 6= ∇′ +∇′′ if (M,h, ω) is not Kähler. The following calculation rule follows imme-

diately

∇′(ϕ ∧ ψ) = (∇′ϕ) ∧ ψ + ϕ ∧∇′ψ (2.4.3)

for any ϕ, ψ ∈ Ω•(M).

Lemma 2.4.1. On a Hermitian manifold (M,h), we have
∂h(ϕ, ψ) = h(∇′ϕ, ψ) + h(ϕ,∇′′ψ)

∂h(ϕ, ψ) = h(∇′′ϕ, ψ) + h(ϕ,∇′ψ)

⇐⇒


∂

∂zih(ϕ, ψ) = h(∇′
iϕ, ψ) + h(ϕ,∇′′

i
ψ)

∂
∂zj h(ϕ, ψ) = h(∇′′

j
ϕ, ψ) + h(ϕ,∇′

jψ)

for any ϕ, ψ ∈ Ωp,q(M).

Remark 2.4.2. (1) Here we use the compact notations

∇′
i = ∇′

∂

∂zi
, ∇′′

j
= ∇′′

∂

∂zj

Note that ∇′
j
= ∇′′

i = 0 and ∇i 6= ∇′
i, ∇j 6= ∇′

j
.

(2) If we regard Λp,qT ∗M as an abstract vector bundle E, the above lemma says that ∇′ and ∇′′

are compatible with the Hermitian metric on E.

Now we go to an abstract setting. Let (E, h) be a Hermitian complex (possibly non-holomorphic)

vector bundle or a Riemannian real vector bundle over a compact Hermitian manifold (M,ω). Let

∇E be an arbitrary metric connection on (E, h), i.e.,

dh(s, t) = h(∇Es, t) + h(s,∇Et) (2.4.4)

for any s, t ∈ Γ(M,E). There is a natural decomposition

∇E = ∇′E +∇′′E (2.4.5)
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where 
∇′E : Γ(M,E) → Ω1,0(M,E)

∇′′E : Γ(M,E) → Ω0,1(M,E)

(2.4.6)

∇′E and ∇′′E induce two differential operators. The first one is ∂E : Ωp,q(M,E) → Ωp+1,q(M,E)

defined by

∂E(ϕ⊗ s) = (∂ϕ)⊗ s+ (−1)p+qϕ ∧∇′Es (2.4.7)

for any ϕ ∈ Ωp,q(M) and s ∈ Γ(M,E). The other one is ∂E : Ωp,q(M,E) → Ωp,q+1(M,E)

defined by

∂E(ϕ⊗ s) =
(
∂ϕ
)
⊗ s+ (−1)p+qϕ ∧∇′′Es (2.4.8)

for any ϕ ∈ Ωp,q(M) and s ∈ Γ(M,E). The following formula is well-known(
∂E∂E + ∂E∂E

)
(ϕ⊗ s) = ϕ ∧

(
∂E∂E + ∂E∂E

)
s (2.4.9)

for any ϕ ∈ Ωp,q(M) and s ∈ Γ(M,E). The operator ∂E∂E + ∂E∂E is represented by its (1, 1)

curvature tensor RE ∈ Γ(M,Λ1,1T ∗M ⊗ E). For any ϕ, ψ ∈ Ω•,•(M,E), there is a sesquilinear

pairing

{ϕ, ψ} = ϕα ∧ ψβ〈eα, eβ〉 (2.4.10)

if ϕ = ϕαeα and ψ = ψβeβ in the local frame {eα} of E. By the metric compatible property of

∇E ,

∂{ϕ, ψ} = {∂Eϕ, ψ}+ (−1)p+q{ϕ, ∂Eψ} (2.4.11)

if ϕ ∈ Ωp,q(M,E).

Let ω be the Kähler form of the Hermitian metric h, i.e.,

ω =

√
−1

2
hijdz

i ∧ dzj (2.4.12)

On the Hermitian manifold (M,h, ω), the norm on Ωp,q(M) is defined by

(ϕ, ψ) =

∫
M

〈ϕ, ψ〉ω
n

n!
=

2n

(p+ q)!

∫
M

h(ϕ, ψ)
ωn

n!
=

∫
M

ϕ ∧ ∗ψ (2.4.13)

The norm on Ωp,q(M,E) is defined by

(ϕ, ψ) =

∫
M

{ϕ, ∗ψ} =

∫
M

(
ϕα ∧ ∗ψβ

)
〈eα, eβ〉 (2.4.14)
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for ϕ, ψ ∈ Ωp,q(M,E). The dual operators of ∂, ∂, ∂E and ∂
∗
E are denoted by ∂∗, ∂

∗
, ∂E and ∂

∗
E

respectively.

The following lemma was firstly shown by Demailly using Taylor expansion method( e.g.

[Demailly]). For the convenience of the reader, we will take another approach which seems to

be useful in local computations.

Lemma 2.4.3. Let (M,h, ω) be a compact Hermitian manifold. If τ is the operator of type (1, 0)

defined by τ = [Λ, 2∂ω] on Ω•(M,E),
[Λ, ∂] =

√
−1
(
∂
∗
+ τ ∗

)
[
Λ, ∂

]
= −

√
−1(∂∗ + τ ∗)

(2.4.15)

For the dual equation, it is 
[∂
∗
, L] =

√
−1(∂ + τ)

[∂∗, L] = −
√
−1(∂ + τ)

(2.4.16)

where L is the operator Lϕ = 2ω ∧ ϕ and Λ is the adjoint operator of L.

Proof. See Lemma 2.9.7 of the Appendix.

In the rest of this sectionE is assumed to be a Hermitian complex vector bundle or a Riemannian

real vector bundle over a compact Hermitian manifold M .

Lemma 2.4.4. Let ∇E be a metric connection on E over a compact Hermitian manifold (M,ω).

If τ is the operator of type (1, 0) defined by τ = [Λ, 2∂ω] on Ω•(M,E), then

(1) [∂
∗
E, L] =

√
−1(∂E + τ);

(2) [∂∗E, L] = −
√
−1(∂E + τ);

(3) [Λ, ∂E] =
√
−1(∂

∗
E + τ ∗) ;

(4) [Λ, ∂E] = −
√
−1(∂∗E + τ ∗).

Proof. See Lemma 2.9.10 of the Appendix.
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Theorem 2.4.5. Let ∇E be a metric connection E over a compact Hermitian manifold (M,ω).

∆∂E
= ∆∂E

+
√
−1
[
∂E∂E + ∂E∂E,Λ

]
+ (∂Eτ

∗ + τ ∗∂E)− (∂Eτ
∗ + τ ∗∂E) (2.4.17)

where 
∆∂E

= ∂E∂
∗
E + ∂

∗
E∂E

∆∂E
= ∂E∂

∗
E + ∂∗E∂E

(2.4.18)

Proof. It follows from Lemma 2.4.4.

We make a useful observation on the torsion τ :

Lemma 2.4.6. For any s ∈ Γ(M,E), we have

τ(s) = −2
√
−1
(
∂
∗
ω
)
· s, τ(s) = 2

√
−1 (∂∗ω) · s (2.4.19)

Proof. By definition

([Λ, 2∂ω]) s = 2Λ ((∂ω) · s)

= 2 (Λ(∂ω)) · s

= −2
√
−1
(
∂
∗
ω
)
· s

Here we use the identity

∂
∗
ω =

√
−1Λ(∂ω) (2.4.20)

where the proof of it is contained in Lemma 2.9.8 of the Appendix.

Corollary 2.4.7. If (M,ω) is a compact balanced Hermitian manifold, and ∇E a metric connec-

tion on E over M , then

‖∂Es‖2 = ‖∂Es‖2 +
(√
−1
[
∂E∂E + ∂E∂E,Λ

]
s, s
)

(2.4.21)

for any s ∈ Γ(M,E).

Proof. Since for any s ∈ Γ(M,E), τs = τs = 0 and τ ∗s = τ ∗s = 0 on a balanced Hermitian

manifold, the result follows from formula (2.4.17).
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Theorem 2.4.8. Let (M,ω) be a compact Hermitian manifold with ∂∂ωn−1 = 0. If∇E is a metric

connection on E over M , then

0 = ‖∂Es‖2 = ‖∂Es‖2 +
(√
−1
[
∂E∂E + ∂E∂E,Λ

]
s, s
)

(2.4.22)

for any s ∈ Γ(M,E) with ∂Es = 0.

Proof. By formula (2.4.17), we only have to prove that

(
(∂Eτ

∗ + τ ∗∂E)s− (∂Eτ
∗ + τ ∗∂E)s, s

)
= 0 (2.4.23)

It is equivalent to (∂Es, τs) = 0 since τ ∗s = τ ∗s = ∂Es = 0. By formula (2.4.19) and Stokes’

Theorem,

(τ ∗∂Es, s) = (∂Es, τs) =

∫
M

{∂Es, ∗(τs)}

= 2
√
−1

∫
M

{
∂Es, ∗

(
∂
∗
ω · s

)}
= 2

√
−1

∫
M

{
∂Es,

(
∗∂∗ω

)
· s
}

= −2
√
−1

∫
M

{
s, ∂E

((
∗∂∗ω

)
· s
)}

= −2
√
−1

∫
M

{
s,
(
∂ ∗ ∂∗ω

)
· s−

(
∗∂∗ω

)
∧ ∂Es

}
It is easy to see that

∂ ∗ ∂∗ω = −∂ ∗ ∗∂ ∗ ω = cn∂∂ω
n−1 = 0 (2.4.24)

since ∗ω = cnω
n−1 where cn is a constant depending only on the complex dimension of M . Hence

(∂Es, τs) = 2
√
−1

∫
M

{
s,
(
∗∂∗ω

)
∧ ∂Es

}
= 0 (2.4.25)

since ∂Es = 0.

Remark 2.4.9. By these formulas, we can obtain classical vanishing theorems on Kähler manifolds

and rigidity of harmonic maps between compact Hermitian and compact Riemannian manifolds.
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2.5 Vanishing theorems on Hermitian manifolds

2.5.1 Vanishing theorems on compact Hermitian manifolds

Let E be a Hermitian complex (possibly non-holomorphic) vector bundle or a Riemannian real

vector bundle over a compact Hermitian manifold (M,ω). Let ∇E be an arbitrary connection on

E and ∂E, ∂E the (1, 0), (0, 1) part of ∇E respectively. The (1, 1)-curvature of ∇E is denoted by

RE ∈ Γ(M,Λ1,1T ∗M⊗E∗⊗E). It can be viewed as a representation of the operator ∂E∂E+∂E∂E .

We can define harmonic section spaces associated to (E,∇E) by

Hp,q

∂E
(M,E) = {ϕ ∈ Ωp,q(M,E) | ∂Eϕ = ∂

∗
Eϕ = 0} (2.5.1)

In general, on a complex vector bundle E, there is no terminology such as “holomorphic section

of E”. However, if the vector bundle E is holomorphic and ∇E is the Chern connection on E,

i.e., ∂E = ∂, then Hp,q

∂E
(M,E) is isomorphic to the Dolbeault cohomology group Hp,q

∂
(M,E) and

H0
∂
(M,E) is the holomorphic section space H0(M,E) of E.

Definition 2.5.1. Let A be an r × r Hermitian matrix and λ1 ≤ · · · ≤ λr be eigenvalues of A. A

is said to be p-nonnegative (resp. positive, negative, nonpositive) for 1 ≤ p ≤ r if

λi1 + · · ·+ λip ≥ 0( resp. > 0, < 0,≤ 0) for any 1 ≤ i1 < i2 < · · · < ip ≤ n (2.5.2)

Theorem 2.5.2. Let E be a Hermitian complex vector bundle or a Riemannian real vector bundle

over a compact Hermitian manifold (M,ω) and ∇E be any metric connection on E.

(1) If the second Hermitian-Ricci curvature TrωR
E is nonpositive everywhere, then every ∂E-

closed section of E is parallel, i.e. ∇Es = 0;

(2) If the second Hermitian-Ricci curvature TrωR
E is nonpositive everywhere and negative at

some point, then H0
∂E

(M,E) = 0;

(3) If the second Hermitian-Ricci curvature TrωR
E is p-nonpositive everywhere and p-negative

at some point, then H0
∂E

(M,ΛqE) = 0 for any p ≤ q ≤ rank(E).
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Proof. By [Gauduchon84], there exists a smooth function u : M → R such that ωG = euω is a

Gauduchon metric, i.e. ∂∂ωn−1
G = 0. Now we replace the metric ω onM by the Gauduchon metric

ωG. By the relation ωG = euω, we get

TrωG
RE = e−uTrωR

E (2.5.3)

Therefore, the positivity conditions in the Theorem are preserved. Let s ∈ Γ(M,E) with ∂Es = 0,

by formula (2.4.22), we obtain

0 = ‖∂Es‖2 +
(√
−1
[
∂E∂E + ∂E∂E,ΛG

]
s, s
)

= ‖∂Es‖2 −
(
TrωG

REs, s
)

(2.5.4)

where

RE = ∂E∂E + ∂E∂E = Rβ

ijα
dzi ∧ dzj ⊗ eα ⊗ eβ (2.5.5)

Since the second Hermitian-Ricci curvature TrωG
RE has components

Rαβ = hij
GRijαβ (2.5.6)

formula (2.5.4) can be written as

0 = ‖∂Es‖2 −
∫

M

Rαβs
αsβ (2.5.7)

Now (1) and (2) follow by identity (2.5.7) with the curvature conditions immediately. For (3), we

set F = ΛqE with p ≤ q ≤ r = rank(E). Let λ1 ≤ · · · ≤ λr be the eigenvalues of −TrωG
RE ,

then we know

λ1 + · · ·+ λp ≥ 0 (2.5.8)

and it is strictly positive at some point. If p ≤ q ≤ r, the smallest eigenvalue of −TrωG
RF is

λ1 + · · ·+ λq ≥ 0 and it is strictly positive at some point. By (2), we know H0
∂E

(M,F ) = 0.

If ∇E is the Chern connection of the Hermitian holomorphic vector bundle E, we know

H0
∂E

(M,E) ∼= H0(M,E)

since ∂E = ∇′′E = ∂ for the Chern connection.
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Corollary 2.5.3 (Kobayashi-Wu[Kobayashi-Wu70], Gauduchon [Gauduchon77b]). Let∇E be the

Chern connection of a Hermitian holomorphic vector bundle E over a compact Hermitian mani-

fold (M,h, ω).

(1) If the second Ricci-Chern curvature TrωR
E is nonpositive everywhere, then every holomor-

phic section of E is parallel, i.e. ∇Es = 0;

(2) If the second Ricci-Chern curvature TrωR
E is nonpositive everywhere and negative at some

point, then E has no holomorphic section, i.e. H0(M,E) = 0;

(3) If the second Ricci-Chern curvature TrωR
E is p-nonpositive everywhere and p-negative at

some point, then ΛqE has no holomorphic section for any p ≤ p ≤ rank(E).

Now we can apply it to the tangent and cotangent bundles of compact Hermitian manifolds.

Corollary 2.5.4. Let (M,ω) be a compact Hermitian manifold and Θ is the Chern curvature of

the Chern connection ∇CH on the holomorphic tangent bundle T 1,0M .

(1) If the second Ricci-Chern curvature Θ(2) is nonpositive everywhere and negative at some point,

then M has no holomorphic vector field, i.e. H0(M,T 1,0M) = 0;

(2) If the second Ricci-Chern curvature Θ(2) is nonnegative everywhere and positive at some point,

then M has no holomorphic p-form for any 1 ≤ p ≤ n, i.e. Hp,0

∂
(M) = 0; In particular, the

arithmetic genus

χ(M,O) =
∑

(−1)php,0(M) = 1 (2.5.9)

(3) If the second Ricci-Chern curvature Θ(2) is p-nonnegative everywhere and p-positive at some

point, then M has no holomorphic q-form for any p ≤ q ≤ n, i.e. Hq,0

∂
(M) = 0. In partic-

ular, if the scalar curvature SCH is nonnegative everywhere and positive at some point, then

H0(M,mKM) = 0 for all m ≥ 1 where KM is the canonical line bundle of M .

Proof. Let E = T 1,0M and h be a Hermitian metric on E such that the second Ricci-Chern curva-

ture Trωh
Θ of (E, h) satisfies the assumption. It is obvious that all section spaces in consideration

are independent of the choice of the metrics and connections.
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The metric on the vector bundle E is fixed. Now we choose a Gauduchon metric ωG = euωh on

M . Then the second Ricci-Chern curvature Θ̃(2) = TrωG
Θ = e−uTrωh

Θ shares the semi-definite

property with Θ(2) = Trωh
Θ. For the safety, we repeat the arguments in Theorem 2.5.2 briefly. If

s is a holomorphic section of E, i.e., ∂Es = ∂s = 0, by formula (2.4.22), we obtain

0 = ‖∂Es‖2 +
(√
−1
[
∂E∂E + ∂E∂E,ΛG

]
s, s
)

= ‖∂Es‖2 − (TrωG
Θs, s) (2.5.10)

If TrωΘ is nonpositive everywhere, then ∂Es = 0 and so ∇Es = 0. If TrωΘ is nonpositive

everywhere and negative at some point, we get s = 0, therefore H0(M,T 1,0M) = 0. The proofs

of (2) and (3) are similar.

Remark 2.5.5. It is well-known that the first Ricci-Chern curvature Θ(1) represents the first Chern

class of M . But on a Hermitian manifold, it is possible that the second Ricci-Chern curvature Θ(2)

is not in the same (d, ∂, ∂)-cohomology class as Θ(1). For example, S3 × S1 with canonical metric

has strictly positive second Ricci-Chern curvature but it is well-known that it has vanishing first

Chern number c21. For more details see Proposition 2.6.4. Therefore, Θ(2) in Proposition 2.5.4 can

NOT be replaced by Θ(1). It seems to be an interesting question: if (M,ω) is a compact Hermitian

manifold and its first Ricci-Chern curvature is nonnegative everywhere and positive at some point,

is the first Betti number of M zero? In particular, is it Kähler in dimension 2?

As special cases of our results, the following results for Kähler manifolds are well-known, and

we list them here for the convenience of the reader. Let (M,h, ω) be a compact Kähler manifold.

(1) If the Ricci curvature is nonnegative everywhere, then any holomorphic (p, 0) form is parallel;

(2) If the Ricci curvature is nonnegative everywhere and positive at some point, then hp,0 = 0 for

p = 1, · · · , n. In particular, the arithmetic genus χ(M,O) = 1 and b1(M) = 0;

(3) If the scalar curvature is nonnegative everywhere and positive at some point, then hn,0 = 0.

(A) If the Ricci curvature is nonpositive everywhere, then any holomorphic vector field is parallel;

(B) If the Ricci curvature is nonpositive everywhere and negative at some point, there is no holo-

morphic vector field.
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2.5.2 Vanishing theorems on special Hermitian manifolds

Let (M,h, ω) be a compact Hermitian manifold and ∇ be the Levi-Civita connection.

Lemma 2.5.6. Let (M,ω) be a compact balanced Hermitian manifold. For any (p, 0)-form ϕ on

M ,

(1) If ϕ is holomorphic, then ∂∗ϕ = 0;

(2) If ∇′ϕ = 0, then ∂ϕ = 0.

Proof. For simplicity, we assume p = 1. For the general case, the proof is the same. By Lemma

2.9.5, we know, for any (1, 0)-form ϕ = ϕidz
i,

∂∗ϕ = −hij ∂ϕi

∂zj (2.5.11)

where we use the balanced condition hijΓs
ij

= 0. If ϕ is holomorphic, then ∂ϕi

∂zj = 0, hence

∂∗ϕ = 0. On the other hand,

∇′ϕ =

(
∂ϕi

∂zj
− Γm

jiϕm

)
dzj ⊗ dzi (2.5.12)

If ∇′ϕ = 0, we obtain

∂ϕ =
∂ϕi

∂zj
dzj ∧ dzi = Γm

jiϕmdz
j ∧ dzi = 0 (2.5.13)

Theorem 2.5.7. Let (M,ω) be a compact balanced Hermitian manifold with Levi-Civita connec-

tion ∇.

(1) If the Hermitian-Ricci curvature (Rij) is p-nonnegative everywhere, then any holomorphic

(q, 0)-form (p ≤ q ≤ n) is ∂-harmonic; in particular, dimCH
q,0

∂
(M) ≤ dimCH

0,q

∂
(M) for

any p ≤ q ≤ n;

(2) If the Hermitian-Ricci curvature (Rij) is p-nonnegative everywhere and p-positive at some

point, Hq,0

∂
(M) = 0 for any p ≤ q ≤ n;
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In particular,

(3) if the Hermitian-Ricci curvature (Rij) is nonnegative everywhere and positive at some point,

then Hp,0

∂
(M) = 0, for p = 1, · · · , n and so the arithmetic genus χ(M,O) = 1 and b1(M) ≤

h0,1(M).

(4) if the Hermitian-scalar curvature S is nonnegative everywhere and positive at some point, then

H0(M,mKM) = 0 for any m ≥ 1

where KM = detT ∗1,0M .

Proof. At first, we assume p = 1 for (1) and (2). Now we consider E = T ∗1,0M with the induced

metric connection ∇E = ∇̂ for h (see (2.2.23)). By formula (2.4.7), we have

‖∂Es‖2 = ‖∂Es‖2 +
√
−1
([
RE,Λ

]
s, s
)

(2.5.14)

where RE is the (1, 1)-part curvature of E with respect to the connection ∇E . More precisely,

RE = ∂E∂E + ∂E∂E = −R̂`
ijk
dzi ∧ dzj ⊗ ∂

∂z`
⊗ dzk (2.5.15)

since E is the dual vector bundle of T 1,0M and the (1, 1)-part of the curvature of T 1,0M is

R̂`
ijk
dzi ∧ dzj ⊗ dzk ⊗ ∂

∂z`
(2.5.16)

If s = fidz
i is a holomorphic 1-form, i.e.

∂s =
∂fi

∂zj dz
j ∧ dzi = 0 (2.5.17)

then

∂Es =

(
∂fi

∂zj − fkΓ
k
ji

)
dzj ⊗ dzi = −fkΓ

k
ji
dzj ⊗ dzi (2.5.18)

Without loss of generality, we assume hij = δij at a given point. By Proposition 2.2.12, the

quantity

|∂Es|2 =
∑
i,j,t,n

fifnΓjtiΓjtn =
∑
i,n

(
R̂

(2)

ni
−Rni

)
fifn (2.5.19)
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On the other hand
√
−1
〈[
RE,Λ

]
s, s
〉

=
∑
i,n

R̂
(2)

ni
fifn (2.5.20)

That is

|∂Es|2 −
√
−1
〈[
RE,Λ

]
s, s
〉

= −
∑
i,n

Rnififn ≤ 0 (2.5.21)

if the Hermitian-Ricci curvature (Rni) of (M,h, ω) is nonnegative everywhere. Then we get

0 ≤ ‖∂Es‖2 = ‖∂Es‖2 −
√
−1
([
RE,Λ

]
s, s
)
≤ 0 (2.5.22)

That is ∂Es = 0. Since

∂Es = ∇′Es = ∇̂′s = ∇′s =

(
∂fi

∂zj
− f`Γ

`
ij

)
dzj ⊗ dzi

we obtain ∇′s = 0. By Lemma 2.5.6, we know ∆∂s = 0. In summary, we get

H1,0

∂
(M) ⊂ H1,0

∂ (M) ∼= H0,1

∂
(M) (2.5.23)

If the Hermitian-Ricci curvature (Rni) is nonnegative everywhere and positive at some point, then

fi = 0 for each i, that is s = 0. Now we obtain H1,0

∂
(M) = 0. The general cases follow by

the same arguments as Theorem 2.5.2 and Theorem 2.5.4. In part (3), b1(M) ≤ dimCH
0,1

∂
(M)

follows form the Frölicher relation b1(M) ≤ h1,0(M) + h0,1(M).

The dual of Theorem 2.5.7 is

Theorem 2.5.8. Let (M,h, ω) be a compact balanced Hermitian manifold.

(1) If 2R̂
(2)

ij
−Rij is nonpositive everywhere, then any holomorphic vector field is ∇′-closed;

(2) If 2R̂
(2)

ij
− Rij is nonpositive everywhere and negative at some point, there is no holomorphic

vector field.

Proof. Let E = T 1,0M and ∇̂ the induced connection on it. If s = f i ∂
∂zi is a holomorphic section,

then

∂Es = f iΓ`
ji
dzj ⊗ ∂

∂z`
∈ Γ(M,Λ0,1T ∗M ⊗ E) (2.5.24)
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Without loss generality, we assume hij = δij at a given point. By Proposition 2.2.12,

|∂Es|2 −
√
−1
〈[
R̂1,1,Λ

]
s, s
〉

=
(
R̂

(2)

ij
−Rij

)
f if

j
+ R̂

(2)

ij
f if

j

=
(
2R̂

(2)

ij
−Rij

)
f if

j

By formula (2.4.17),

0 ≤ ‖∂Es‖2 = ‖∂Es‖2 −
√
−1
([
R̂1,1,Λ

]
s, s
)

(2.5.25)

So if 2R̂
(2)

ij
− Rij is nonpositive everywhere, ∂Es = ∇′s = 0. If 2R̂

(2)

ij
− Rij is nonpositive

everywhere and negative at some point, there is no holomorphic vector field.

Remark 2.5.9. (1) It is obvious that the second Ricci-Chern curvature Θ
(2)

k`
and Hermitian-Ricci

curvatureRk` can not be compared. Therefore, Theorem 2.5.4 and Theorem 2.5.7 are indepen-

dent of each other. For the same reason, Theorem 2.5.4 and Theorem 2.5.8 are independent.

(2) For a special case in Theorem 2.5.7, if the Hermitian-Ricci curvature Rk` is nonnegative ev-

erywhere and positive at some point, by Proposition 2.3.5, the manifold (M,ω) is Moishezon.

It is well-known that every 2-dimensional Moishezon/balanced manifold is Kähler, but there

are many Moishezon non-Kähler manifolds in higher dimension( See [Michelson83]).

The following result was firstly obtained in [Ivanov-Papadopoulos01]:

Corollary 2.5.10. Let (M,ω) be a compact Hermitian manifold with Λ(∂∂ω) = 0. Let ∇B be the

Bismut connection on T 1,0M .

(1) If the first Ricci-Bismut curvature B(1) is nonnegative everywhere, then every holomorphic

(p, 0)-form is parallel with respect to the Chern connection ∇CH;

(2) If the first Ricci-Bismut curvature B(1) is nonnegative everywhere and positive at some point,

then M has no holomorphic (p, 0)-form for any 1 ≤ p ≤ n, i.e. Hp,0

∂
(M) = 0; in particular,

the arithmetic genus χ(M,O) = 1.

(3) If the first Ricci-Bismut curvature B(1) is p-nonnegative everywhere and p-positive at some

point then M has no holomorphic (q, 0)-form for any p ≤ q ≤ n, i.e. Hq,0

∂
(M) = 0. In
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particular, if the scalar curvature SBM of the Bismut connection is nonnegative everywhere

and positive at some point, then H0(M,mKM) = 0 for any m ≥ 1.

Proof. By Proposition 2.3.7, if Λ(∂∂ω) = 0, then

B(1) ≤ Θ(2) (2.5.26)

Now we can apply Corollary 2.5.4 to get (1), (2) and (3).

Remark 2.5.11. For more vanishing theorems on special Hermitian manifolds, one can consult

[Alexandrov-Ivanov01], [Ivanov-Papadopoulos01], [Ganchev-Ivanov01], [Ganchev-Ivanov00] and

references therein.

2.6 Examples of non-Kähler manifolds with nonnegative curvatures

Let M = S2n−1× S1 be the standard n-dimensional (n ≥ 2) Hopf manifold. It is diffeomorphic to

Cn − {0}/G where G is cyclic group generated by the transformation z → 1
2
z. It has an induced

complex structure of Cn − {0}. For more details about such manifolds, we refer the reader to

[Kobayashi-Nomizu69]. On M , there is a natural metric

h =
n∑

i=1

4

|z|2
dzi ⊗ dzi (2.6.1)

The following identities follow immediately

∂hk`

∂zi
= −4δk`z

i

|z|4
,

∂hk`

∂zj = −4δk`z
j

|z|4
(2.6.2)

and
∂2hk`

∂zi∂zj = −4δk`

δij|z|2 − 2zizj

|z|6
(2.6.3)

Example 2.6.1 (Curvatures of Chern connection). Straightforward computations show that, the

Chen curvature components are

Θijk` = − ∂2hk`

∂zi∂zj + hpq ∂hkq

∂zi

∂hp`

∂zj =
4δkl(δij|z|2 − zjzi)

|z|6
(2.6.4)
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and the first and second Ricci-Chern curvatures are

Θ
(1)

k`
=
n
(
δk`|z|2 − z`zk

)
|z|4

, Θ
(2)

k`
=

(n− 1)δk`

|z|2
(2.6.5)

It is easy to see that the eigenvalues of Θ(1) are

λ1 = 0, λ2 = · · · = λn =
n

|z|2
(2.6.6)

Hence, Θ(1) is nonnegative and 2-positive everywhere.

Example 2.6.2 (Curvatures of Levi-Civita connection). Similarly, we have

Γ`
ik = −δi`z

k + δk`z
i

2|z|2
, Γ`

jk
=
δjkz

` − δk`z
j

2|z|2
(2.6.7)

and
∂Γ`

ik

∂zj = −δk`δij + δi`δjk
2|z|2

+
δi`z

jzk + δk`z
jzi

2|z|4
(2.6.8)

∂Γ`
jk

∂zi
=
δjkδi` − δk`δij

2|z|2
− (δjkz

` − δk`z
j)zi

2|z|4
(2.6.9)

The complexified Riemannian curvature components are

R`
ijk

= −

(
∂Γ`

ik

∂zj −
∂Γ`

jk

∂zi
+ Γs

ikΓ
`
js
− Γs

jk
Γ`

is − Γs
jk

Γ`
is

)
=
δi`δjk
2|z|2

− δi`z
jzk + δjkz

`zi

4|z|4
(2.6.10)

and

Rijk` =
2δi`δjk
|z|4

− δi`z
jzk + δjkz

`zi

|z|6
, Rk` =

δk`|z|2 − z`zk

2|z|4
(2.6.11)

Example 2.6.3 ( Curvatures of Bismut connection). By definition (2.2.45) and Lemma 2.2.10, we

obtain

B`
ijk

=
δjkδi` − δk`δij

|z|2
+
δijz

kz` + δk`z
izj − δi`z

kzj − δjkz
iz`

|z|4
(2.6.12)

Two Ricci curvatures are

B
(1)

ij
= B

(2)

ij
=

(2− n)(δij|z|2 − zizj)

4|z|2
(2.6.13)

On the other hand, by formula (2.6.3), it is easy to see ∂∂ω = 0 and B(1) = 0 for n = 2.

Proposition 2.6.4. Let M = S2n−1 × S1 be the standard n-dimensional (n ≥ 2) Hopf manifold

with canonical metric h,
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(1) (M,h) has positive second Ricci-Chern curvature Θ(2);

(2) (M,h) has vanishing first Chern class but has nonnegative first Ricci-Chern curvature Θ(1).

Moreover, ∫
M

(
Θ(1)

)n
= 0 (2.6.14)

(3) (M,h) is semi-positive in the sense of Griffiths, i.e.

Θijk`u
iujvkv` ≥ 0 (2.6.15)

for any u, v ∈ Cn;

(4) The Hermitian-Ricci curvature (Rk`) is nonnegative and 2-positive everywhere;

(5) (M,h) has nonpositive and 2-negative first Ricci-Bismut curvature. In particular, (S3×S1, ω)

satisfies ∂∂ω = 0 and has vanishing first Ricci-Bismut curvature B(1).

Although we know all Betti numbers of Hopf manifold S2n−1 × S1, hp,0 is not so obvious.

Corollary 2.6.5. Let (M,h) be n-dimensional Hopf manifold with n ≥ 2,

(1) hp,0(M) = 0 for p ≥ 1 and χ(M,O) = 1.

(2) dimCH
0(M,mK) = 0 for any m ≥ 1 where K = det(T ∗1,0M).

Remark 2.6.6. By Leray-Borel spectral sequence, one can compute all Hodge numbers of all Hopf

manifolds. For more details, one can see [Hofer93].

2.7 Non-existence of complex structures on Riemannian manifolds

Let ∇E be a connection on the complex vector bundle E. Let r be the rank of E, then there is a

naturally induced connection ∇det(E) on the determine line bundle det(E) = ΛrE,

∇det(E)(s1 ∧ · · · ∧ sr) =
r∑

i=1

s1 ∧ · · · ∧ ∇Esi ∧ · · · ∧ sr
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The curvature tensor of (E,∇E) is denoted by

RE ∈ Γ
(
X,Λ2T ∗X ⊗ End(E)

)
and the curvature tensor of (detE,∇det(E)) is denoted by

Rdet(E) ∈ Γ
(
X,Λ2T ∗X

)
Note that the trace operator is well-defined without using metric.

Lemma 2.7.1. We have the relation that

trRE = Rdet E ∈ Γ(X,Λ2T ∗X)

Note that the trace operator is well-defined without using metrics on the vector bundle E.

Proof. Let {e1, · · · , er} be a local frame of the vector bundle E.

(
∇det(E)

)2
(e1 ∧ · · · ∧ er) =

r∑
i=1

e1 ∧ · · · ∧ (∇E)2ei ∧ · · · ∧ er

+
∑
i6=j

e1 ∧ · · · ∧ (∇Eei) ∧ · · · ∧ (∇Eej) ∧ · · · ∧ er

It is obvious that the second term on the right hand side is zero. Hence, we obtain

(
∇det(E)

)2
(e1 ∧ · · · ∧ er) = (trRE) (e1 ∧ · · · ∧ er)

which finishes the proof of the Lemma.

Corollary 2.7.2. trRE is a d-closed 2-form.

Proof. By Bianchi identity, we know, for any vector bundle (F,∇F )

∇F⊗F ∗
RF = 0

In particular, if F is a line bundle, F ⊗ F ∗ = C and ∇F⊗F ∗
= d. Hence d

(
Rdet E

)
= 0.

Theorem 2.7.3. Let (M,h) be a compact Hermitian manifold. If the Hermitian-Ricci curvature

(Rij) is quasi-positive, then H2(M) 6= 0.
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Proof. If the Hermitian-Ricci curvature (Rij) is quasi-positive, by Proposition 2.2.12, so is the first

Hermitian-Ricci curvature (R̂
(1)

ij
). Let Rdet be the curvature of (detT 1,0M, ∇̂det T 1,0M) induced by

the Hermitian vector bundle (T 1,0M, ∇̂). By Lemma 2.7.1 and Corollary 2.7.2, Rdet is a d-closed

2-form on M and it has a natural decomposition

Rdet = ω2,0 + ω0,2 + ω1,1

It is obvious that

ω1,1 = R̂
(1)

ij
dzi ∧ dzj

On the other hand, since the connection is metric compatible, we get

ω2,0 = −ω0,2

Hence

(
√
−1)n

∫ (
Rdet

)n
= (

√
−1)n

[n
2 ]∑

`=0

(
n

2`

)(
2`

`

)∫
(−ω2,0 ∧ ω2,0)` ∧

(
ω1,1

)n−2` (2.7.1)

It is obvious that, if ω1,1 is quasi-positive,

(
√
−1)n

∫
(−ω2,0 ∧ ω2,0)` ∧

(
ω1,1

)n−2` ≥ 0

for 1 ≤ ` ≤
[

n
2

]
and (

√
−1)n

∫
(ω1,1)

n
> 0. That is

(
√
−1)n

∫ (
Rdet

)n
> 0

So Rdet is a d-closed but not d-exact 2-form on M , which implies H2(M) 6= 0.

Remark 2.7.4. (1) Similar results were also obtained in [Tang06] and [Bol-Hernadez-Lamoneda99].

(2) It is obvious that, the Hermitian Ricci curvature (Rij) defined in (2.2.12) exists on any Rie-

mannian manifold, i.e., we do not need a complex structure or a compatible Hermitian metric

on M . So it is very natural to ask the following question

Question 2.7.5. On a Riemannian manifold (M, g), which kinds of Riemannian curvature

conditions on g can imply the quasi-positivity of the Hermitian-Ricci curvature?
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The first sufficient curvature condition is the “strictly 1
4
-pinched Riemannian sectional curvature”.

In fact, Yau and Zheng proved in [Yau-Zheng91] that, if (M, g) has strictly 1
4
-pinched Riemannian

sectional curvature, the complexified curvature operator is positive. In particular, the Hermitian-

Ricci curvature is positive. On the other hand, by the celebrated Brendle-Schoen-Hopf differential

sphere theorem ([Brendle-Schoen09]), we know that if (M, g) has strictly 1
4
-pinched Riemannian

sectional curvature, M must be a sphere. In particular, we obtain a generalization of Lebrun’s

result

Corollary 2.7.6. There is no integrable complex structure which is compatible with a strictly 1
4
-

pinched Riemannian metric on S6.

Definition 2.7.7. Let (M, g) be a Riemannian manifold. (M, g) has weakly positive constant

sectional curvature, if there exists a quasi-positive smooth function λ on M such that

R(X, Y, Z,W ) = λ(g(X,W )g(Y, Z)− g(X,Z)g(Y,W )) (2.7.2)

for any real vector fields X, Y, Z,W ∈ Γ(M,TM).

Corollary 2.7.8. Let (M, g) be a Riemannian manifold with weakly positive constant sectional

curvature.

(1) (M, g) has quasi-positive Hermitian-Ricci curvature (Rij).

(2) If the Riemannian metric g is the background metric a Hermitian manifold (M,h), then M

must be Kähler. In particular, H2(M) 6= 0.

Proof. Let {x1, · · · , xn, xn+1, · · · , x2n} be a real local coordinate system onM centered at a point

p and {zi = xi +
√
−1yi}n

i=1 be the complex coordinate system where yi = xn+i, i = 1, · · · , n. If

(M, g) has weakly positive constant sectional curvature, the complexified curvature tensor

Rijk` = R

(
∂

∂zi
,
∂

∂zj
,
∂

∂zk
,
∂

∂z`

)
= 0

In fact, we can verify it by using formula (2.7.2) and the relation

∂

∂zi
=

1

2

(
∂

∂xi
−
√
−1

∂

∂yi

)
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Similarly, we can verify Rijk` = 0. Without loss of generality, we can assume at point p,

g

(
∂

∂xi
,
∂

∂xj

)
= δij, for i, j = 1, · · · , 2n

By formula (2.2.6) and condition (2.7.2),

Rijk` = R

(
∂

∂zi
,
∂

∂zj
,
∂

∂zk
,
∂

∂z`

)
=
λ

2
δi`δjk

Now we obtain the complexified Ricci curvature at point p,

Rij =
λ

2
δij

Hence the Hermitian-Ricci curvature is quasi-positive. If (M,h) is non-Kähler, by Proposition

2.2.12, Lemma 2.7.1 and Corollary 2.7.2, we obtain that

R̂(1) = R̂
(1)

ij
dzi ∧ dzj > Ric = Rijdz

i ∧ dzj =
λ

2
δijdz

i ∧ dzj

That is, the first Hermitian-Ricci curvature is a strictly positive closed (1, 1) form. Since it is the

curvature of the line bundle K∗
M = det(T 1,0M), it can be viewed as a Kähler metric on M .

Corollary 2.7.9. Let (S2n−1 × S1, h) be the Hermitian manifold defined in the last section. The

Hermitian-Ricci curvature (Rk`) is nonnegative everywhere and it can not be strictly positive at

any point.

Since H2(S2n−1 × S1) = 0, we know the quasi-positive curvature condition in Theorem 2.7.3

can not be replaced by nonnegative curvature condition. Moreover,

(1) by Theorem 2.7.3, S2n−1×S1 can not admit a Hermitian metric with quasi-positive Hermitian-

Ricci curvature.

(2) by Corollary 2.7.8, S2n−1 × S1 can not admit a Hermitian metric with positive constant Rie-

mannain sectional curvature.

2.8 A natural geometric flow on Hermitian manifolds

As we discussed in the above sections, on Hermitian manifolds, the second Ricci curvature tensors

of various metric connections are closely related to the geometry of Hermitian manifolds. A natural
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idea is to define a flow by using second Ricci curvature tensors of various metric connections. We

describe it in the following.

Let (M,h) be a compact Hermitian manifold. Let ∇ be an arbitrary metric connection on the

holomorphic tangent bundle (E, h) = (T 1,0M,h).

∇ : E → Ω1(E) (2.8.1)

It has two components ∇′ and ∇′′ ,

∇ = ∇′
+∇′′

(2.8.2)

∇′ and ∇′′ induce two differential operators

∂E : Ωp,q(E) → Ωp+1,q(E) (2.8.3)

∂E : Ωp,q(E) → Ωp,q+1(E) (2.8.4)

Let RE be the (1, 1) curvature of the metric connection ∇. More precisely RE is a representation

of ∂E∂E + ∂E∂E . It is easy to see that

RE ∈ Γ(M,Λ1,1T ∗M ⊗ End(E)) (2.8.5)

and locally, we can write it as

RE = RB
ijA
dzi ∧ dzj ⊗ eA ⊗ eB (2.8.6)

Here we set eA = ∂
∂zA , e

B = dzB where A,B = 1, · · · , n, since the geometric meanings of j

and A are different. It is well-known that a metric connection ∇ is determined by its Christoffel

symbols

∇ ∂

∂zi
eA = ΓB

iAeB, ∇ ∂

∂zj
eA = ΓB

jA
eB (2.8.7)

In particular, we don’t have notations such as ΓB
Ai. It is obvious that

RA
ijB

= −∂ΓB
iA

∂zj +
∂ΓB

jA

∂zi
− ΓC

iAΓB
jC

+ ΓC
jA

ΓB
iC (2.8.8)

We set the second Hermitian-Ricci curvature tensor of (∇, h) as

R(2) = hijRijABe
A ⊗ eB ∈ Γ(M,E∗ ⊗ E

∗
) (2.8.9)
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In general we can study a new class of flows on Hermitian manifolds
∂h
∂t

= F(h) + µh

h(0) = h0

(2.8.10)

where F can be a linear combination of the first and the second Hermitian-Ricci curvature tensors

of different metric connections on (T 1,0M,h). For examples, F(h) = −Θ(2), the second Ricci-

Chern curvature tensor of the Chern connection, and F(h) = −R̂(2), the second Hermitian-Ricci

curvature tensor of the complexified Levi-Civita connection, or the second Ricci curvature of any

other Hermitian connection. Quite interesting is to take F(h) = sΘ(1) + (1− s)Θ(2) as the mixed

Ricci-Chern curvature, or F(h) = B(2) − 2R̂(2) where B(2) is the second Ricci curvature of the

Bismut connection. More generally, we can set F(h) to be certain suitable functions on the metric

h.

The following result holds for quite general F(h), but here for simplicity we will only take

F(h) = −Θ(2) as an example.


∂h
∂t

= −Θ(2) + µh

h(0) = h0

(2.8.11)

where µ is a real parameter. By formula (2.2.39), the second Ricci-Chern curvature tensor has

components

Θ
(2)

k`
= hijΘijk` = −hij ∂

2hk`

∂zi∂zj + hijhpq ∂hkq

∂zi

∂hp`

∂zj (2.8.12)

Theorem 2.8.1. Let (M,h0) be a compact Hermitian manifold.

(1) There exists small ε such that, the solution of flow (2.8.11) exists for |t| < ε, and it preserves

the Hermitian structure;

(2) The flow (2.8.11) preserves the Kähler structure, i.e., if the initial metric h0 is Kähler, then

h(t) are also Kähler.

Proof. (1). Let ∆c be the canonical Laplacian operator on the Hermitian manifold (M,h) defined

by

∆c = hpq ∂2

∂zp∂zq . (2.8.13)
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Therefore, the second Ricci-Chern curvature −Θ
(2)

ij
has leading term ∆chij which is strictly ellip-

tic. The local existence of the flow (2.8.11) follows by general theory of parabolic PDE, and the

solution is a Hermitian metric on M .

(2). The coefficients of the tensor ∂ω are given by

fijk =
∂hij

∂zk
−
∂hkj

∂zi
(2.8.14)

Under the flow (2.8.11), we have
∂fijk

∂t
=

∂Θ
(2)

kj

∂zi −
∂Θ

(2)

ij

∂zk + µfijk

fijk(0) = 0

(2.8.15)

At first, we observe that fijk(t) ≡ 0 is a solution of (2.8.15). In fact, if fijk(t) ≡ 0, then hij(t) are

Kähler metrics, and so

Θ
(2)

ij
= Θ

(1)

ij
= −∂

2 log det(hmn)

∂zi∂zj

Therefore,
∂Θ

(2)

kj

∂zi
−
∂Θ

(2)

ij

∂zk
= −∂

3 log det(hmn)

∂zi∂zk∂zj
+
∂3 log det(hmn)

∂zi∂zk∂zj
= 0 (2.8.16)

On the other hand,

∂Θ
(2)

kj

∂zi
−
∂Θ

(2)

ij

∂zk
= ∆c

(
fijk

)
+ lower order terms (2.8.17)

Hence the solution of (2.8.15) is unique.

Remark 2.8.2. Theorem 2.8.1 holds also for quite general F(h).

The flow (2.8.11) has close connections to several important geometric flows:

1. It is very similar to the Hermitian Yang-Mills flow on holomorphic vector bundles. More

precisely, if the flow (2.8.11) has long time solution and it converges to a Hermitian metric

h∞ such that

Θ
(2)

ij
= µhij (2.8.18)

The Hermitian metric h∞ is Hermitian-Einstein. So, by [Li-Yau87], the holomorphic tangent

bundle T 1,0M is stable. As shown in Example 2.6.1, the Hopf manifold S2n+1 × S1 is stable
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for any n ≥ 1. In fact, in the definition of Θ
(2)

ij
, if we take trace by using the initial metric

h0, then we get the original Hermitian-Yang-Mills flow equation.

2. If the initial metric is Kähler, then this flow is reduced to the usual Kähler-Ricci flow([Cao85]).

3. The flow (2.8.11) is similar to the harmonic map flow equation as shown in Theorem 2.8.1. It

is strictly parabolic, and so the long time existence depends on certain curvature condition of

the target manifold as discussed in the pioneering work of Eells-Sampson in [Eells-Sampson64].

The long time existence of this flow and other geometric properties of our new flow will be

studied in our subsequent work.

Certain geometric flows and related results have been considered on Hermitian manifolds recently,

we refer the reader to [Street-Tian1], [Street-Tian2], [Street-Tian3] and [Gill].

2.9 Appendix: The proof of the refined Bochner formulas

Lemma 2.9.1. On a compact Hermitian manifold (M,h, ω), we have

[Λ, 2∂ω] = A+B + C (2.9.1)

where 
A = −hk`himΓm

s`
dzs ∧ dziIk

A
∗

= −hstΓi
sk
dzkIiIt

(2.9.2)


B = −2Γ`

ij
dzi ∧ dzjI`

B
∗

= 2hpjΓs
`j
dz`IpIs

(2.9.3)


C = Λ(2∂ω) = 2Γ`

j`
dzj

C
∗

= 2hj`Γs
jsI` = −2hjiΓ`

ji
I`

(2.9.4)

Moreover,

(1) [Λ, A] = −
√
−1B

∗
;
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(2) [Λ, B] = −
√
−1(2A

∗
+B

∗
+ C

∗
);

(3) [Λ, C] = −
√
−1C

∗
.

Proof. All formulas follow by straightforward computations.

Definition 2.9.2. With respect to ∇′ and ∇′′, we define
D′ := dzi ∧∇′

i

D′′ := dzj ∧∇′′
j

(2.9.5)

The dual operators of ∂, ∂,D′, D′′ with respect to the norm in (2.4.13) are denoted by ∂∗, ∂
∗
, δ′, δ′′

and define 
δ′0 := −hijIi∇′′

j

δ′′0 := −hjiIi∇′
j

(2.9.6)

where I the contraction operator and Ii = I ∂

∂zi
and Ii = I ∂

∂zi
.

Remark 2.9.3. It is obvious that these first order differential operators D′, D′′, δ′0 and δ′′0 are well-

defined and they don’t depend on the choices of holomorphic frames. If (M,h) is Kähler, D′ = ∂,

D′′ = ∂, δ′0 = δ′ = ∂∗ and δ′′0 = δ′′ = ∂
∗
.

Lemma 2.9.4. In the local holomorphic coordinates,

∂ = D′ − B

2
and ∂ = D′′ − B

2
(2.9.7)

Proof. We only have to check them on functions and 1-forms.

Lemma 2.9.5. On a compact Hermitian manifold (M,h), we have
δ′′ = δ′′0 − C

∗

2

δ′ = δ′0 − C∗

2

(2.9.8)

For ∂ and ∂, we have 
∂∗ = δ′0 − B∗+C∗

2

∂
∗

= δ′′0 − B
∗
+C

∗

2

(2.9.9)
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Proof. For any ϕ ∈ Ωp,q−1(M) and ψ ∈ Ωp,q(M), by Stokes’ theorem

0 =

∫
M

∂(ϕ ∧ ∗ψ)

=

∫
M

∂

∂zj

(
dzj ∧ ϕ ∧ ∗ψ

)
=

∫
M

∂

∂zj

(
〈dzj ∧ ϕ, ψ〉ω

n

n!

)
=

∫
M

∂

∂zj

(〈
ϕ, hjiIiψ

〉 ωn

n!

)
=

∫
M

(〈
∇′′

j
ϕ, hjiIiψ

〉
+
〈
ϕ,∇′

jh
jiIiψ

〉
+
〈
ϕ, hjiIiψ

〉 ∂ log det(hmn)

∂zj

)
ωn

n!

=

∫
M

(〈
dzj ∧∇′′

j
ϕ, ψ

〉
+
〈
ϕ, hji∇′

jIiψ
〉

+

〈
ϕ,
∂hji

∂zj
Iiψ

〉
+
〈
ϕ, hjiIiψ

〉 ∂ log det(hmn)

∂zj

)
ωn

n!

That is

(D′′ϕ, ψ) =
(
dzj ∧∇′′

j
ϕ, ψ

)
= −

(
ϕ, hji∇′

jIiψ
)
−

(
ϕ,

(
∂hji

∂zj
+ hji∂ log det(hmn)

∂zj

)
Iiψ

)
(2.9.10)

Now we will compute the second and third terms on the right hand side.

∂hji

∂zj
+ hji∂ log det(hmn)

∂zj
= hjihst

(
∂hst

∂zj
−
∂hjt

∂zs

)
= 2hjiΓt

jt = −2hj`Γi
j`

(2.9.11)

On the other hand

− hji∇′
jIi = −hjiIi∇′

j − hjiI

(
∇′

j

∂

∂zi

)
= δ′′0 − hjiΓ`

ji
I` (2.9.12)

In summary, by formulas (2.9.10), (2.9.11) and (2.9.12), the adjoint operator δ′′ of D′′ is

δ′′ =
(
δ′′0 − hjiΓ`

ji
I`

)
+ 2hjiΓ`

ji
I` = δ′′0 −

C
∗

2

Since ∂ = D′′ − B
2

, we get

∂
∗

= δ′′ − B
∗

2
= δ′′0 −

B
∗
+ C

∗

2
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Lemma 2.9.6. On a compact Hermitian manifold (M,h), we have
[Λ, D′] =

√
−1
(
δ′′ + C

∗

2

)
[Λ, D′′] = −

√
−1(δ′ + C∗

2
)

and


[δ′′, L] =

√
−1(D′ + C

2
)

[δ′, L] = −
√
−1(D′′ + C

2
)

(2.9.13)

Proof. By definition

(ΛD′)ϕ =
(√

−1hijIiIj

)
(dzk ∧∇′

kϕ)

= −
√
−1hijIi

(
dzk ∧ Ij∇′

kϕ
)

= −
√
−1hijIj∇′

iϕ+
√
−1hijdzkIiIj∇′

kϕ

=
√
−1δ′′0 + dzk ∧∇′

k

(√
−1hijIiIjϕ

)
=

√
−1δ′′0 +D′Λϕ

where we use the metric compatible condition

∇′ω = 0 =⇒ ∇′
k(Λϕ) = Λ(∇′

kϕ) (2.9.14)

Lemma 2.9.7. On a compact Hermitian manifold (M,h), we have
[Λ, ∂] =

√
−1
(
∂
∗
+ τ ∗

)
[
Λ, ∂

]
= −

√
−1(∂∗ + τ ∗)

(2.9.15)

For the dual case, it is 
[∂
∗
, L] =

√
−1(∂ + τ)

[∂∗, L] = −
√
−1(∂ + τ)

(2.9.16)

Proof. By Lemma 2.9.6, 2.9.4 and 2.9.1,

[Λ, ∂] = [Λ, D′]−
[
Λ,
B

2

]
=

√
−1

(
δ′′0 +

2A
∗
+B

∗
+ C

∗

2

)

=
√
−1

(
δ′′ +

C
∗

2
+

2A
∗
+B

∗
+ C

∗

2

)
=

√
−1(∂

∗
+ τ ∗)
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The other relations follow by complex conjugate and adjoint operations.

Lemma 2.9.8. On a Hermitian manifold (M,h, ω),

∂
∗
ω =

√
−1Λ(∂ω) =

√
−1Γj

`j
dz` (2.9.17)

Proof. We have
C

2
= Λ(∂ω) = Γ`

j`
dzj

On the other hand, by Lemma 2.9.5 and δ′′0ω = 0

∂
∗
ω =

(
δ′′0 −

B
∗
+ C

∗

2

)
ω = −B

∗
ω

2
− C

∗

2
ω

=
(
h`kh

pjhisΓk
ij
dz`IpIs

)(√−1

2
hmndz

m ∧ dzn

)
− C

∗

2
ω

= −
√
−1

2
h`kh

ijΓk
ij
dz` − C

∗

2
ω

=

√
−1

2
Γj

`j
dz` − C

∗

2
ω

=
√
−1Γj

`j
dz`

=
√
−1Λ(∂ω)

Now we assume E is a Hermitian complex vector bundle or a Riemannian vector bundle over a

compact Hermitian manifold (M,h, ω) and ∇E is a metric connection on E.

Lemma 2.9.9. We have the following formula:

∂
∗
E(ϕ⊗ s) = (∂

∗
ϕ)⊗ s− hij

(
Ijϕ
)
∧∇E

i s (2.9.18)

for any ϕ ∈ Ωp,q(M) and s ∈ Γ(M,E).

Proof. The proof of it is the same as Lemma 2.9.5.

Lemma 2.9.10. If τ is the operator of type (1, 0) defined by τ = [Λ, 2∂ω] on Ω•(M,E), then

(1) [∂
∗
E, L] =

√
−1(∂E + τ);
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(2) [∂∗E, L] = −
√
−1(∂E + τ);

(3) [Λ, ∂E] =
√
−1(∂

∗
E + τ ∗) ;

(4) [Λ, ∂E] = −
√
−1(∂∗E + τ ∗).

Proof. We only have to prove (3). For any ϕ ∈ Ω•(M) and s ∈ Γ(M,E),

(Λ∂E)(ϕ⊗ s) = Λ
(
∂ϕ⊗ s+ (−1)|ϕ|ϕ ∧ ∂Es

)
= (Λ∂ϕ)⊗ s+ (−1)|ϕ|

√
−1hk`IkI` (ϕ ∧ ∂Es)

= (Λ∂ϕ)⊗ s+ (−1)|ϕ|
√
−1hk`Ik ((I`ϕ) ∧ ∂Es)

= (Λ∂ϕ)⊗ s+ (−1)|ϕ|
√
−1hk` (Ik (I`ϕ)) ∧ ∂Es−

√
−1hk`I`(ϕ) ∧ Ik∂Es

= (Λ∂ϕ)⊗ s+ (−1)|ϕ|(Λϕ) ∧ ∂Es−
√
−1hk`I`(ϕ) ∧∇E

k s

On the other hand

(∂EΛ)(ϕ⊗ s) = ∂E ((Λϕ)⊗ s)

= (∂Λϕ)⊗ s+ (−1)|ϕ|(Λϕ) ∧ ∂Es

Therefore

[Λ, ∂E](ϕ⊗ s) = ([Λ, ∂]ϕ)⊗ s−
√
−1hk`I`(ϕ) ∧∇E

k s

=
√
−1
((
∂
∗
+ τ ∗

)
ϕ
)
⊗ s−

√
−1hk`I`(ϕ) ∧∇E

k s

=
√
−1
(
∂
∗
E + τ ∗

)
(ϕ⊗ s)

where the last step follows by formula (2.9.18).
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Griffiths et de S. Nakano, Séminaire P. Lelong-H. Skoda (Analyse), année 1978/79, Lecture
notes in Math. No. 822, Springer-Verlag, Berlin (1980) 304–309.

100

http://www-fourier.ujf-grenoble.fr/~demailly/books.html
http://www-fourier.ujf-grenoble.fr/~demailly/books.html


[Ein-Lazasfeld93] L. Ein and R. Lazarsfeld, Syzygies and Koszul cohomology of smooth projec-
tive varieties of arbitrary dimension. Invent. Math. 111(1993), no. 1, 51–67.

[Eells-Sampson64] J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds. Amer.
J. Math. 86(1964) 109–160.

[Enrietti] N. Enrietti, Static SKT metrics on Lie groups. arXiv:1009.0620

[Esnault-Viehweg92] H. Esnault and E. Viehweg, Lectures on vanishing theorems, DMV Seminar
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of higher direct images. Ann. Sci. Éc. Norm. Supér. (4) 41 (2008) no. 6, 905–924.

104

http://arxiv.org/abs/1006.1465v3
http://arxiv.org/abs/1011.0207v2


[Mourougane-Takayama09] Ch. Mourougane and S. Takayama, Extension of twisted Hodge met-
rics for Kähler morphisms. J. Differential Geom. 83 (2009), no. 1, 131–161.

[Nadel90] A. Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar cur-
vature. Ann. of Math. (2) 132 (1990), no. 3, 549–596.

[Nakano55] S. Nakano, On complex analytic vector bundles, J. Math. Soc. Japan 7 (1955) 1–12.

[Ohsawa-Takegoshi87] T. Ohsawa; K. Takegoshi, On the extension of L2 holomorphic functions,
Math. Z. 195 (1987) 197–204.

[Peternell90] T. Peternell, A characterisation of Pn by vector bundles. Math. Z. 205(1990), 487–
490.

[Petersen06] P. Petersen, Riemannian geometry. Second edition. Graduate Texts in Mathematics,
171. Springer, New York, 2006.

[PLS87] T. Peternell; J. Le Potier and M. Schneider, Vanishing theorems, linear and quadratic
normality. Invent. Math. 87 (1987), 573–586.

[Schneider86] M. Schneider, Complex surfaces with negative tangent bundle. Lecture Notes in
Math., 1194, 1986, 150–157.

[Schumacher85] G. Schumacher, On the geometry of moduli spaces. Manuscripta Math. 50
(1985), 229–267.

[Schumacher] G. Schumacher, Curvature of higher direct images and applications.
arXiv:1002.4858v2

[Schumacher-Toma92] G. Schumacher and M. Toma, On the Petersson-Weil metric for the moduli
space of Hermitian- Einstein bundles and its curvature. Math. Ann. 293 (1992), 101–107.

[Siu80] Y.-T. Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact
Kähler manifolds. Ann. of Math. (2) 112 (1980), no. 1, 73–111.

[Siu84] Y.-T. Siu, A vanishing theorem for semipositive line bundles over non-Kähler manifolds.
J. Differential Geom. 19 (1984), no. 2, 431–452.

[Siu86] Y.-T. Siu, Curvature of the Weil-Petersson metric in the moduli space of compact Kähler-
Einstein manifolds of negative first Chern class. Contributions to several complex variables,
261–298, Aspects Math., E9, Vieweg, Braunschweig, 1986.

[Siu-Yau80] Y.-T. Siu and S.-T. Yau, Compact Kähler manifolds of positive bisectional curvature.
Invent. Math. 59 (1980), no. 2, 189–204.

[Shiffman-Sommese85] B. Shiffman and A.J. Sommese, Vanishing theorems on complex mani-
folds. Progress in Mathematics, 56. Birkhäuser 1985.
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