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ABSTRACT OF THE DISSERTATION

Positivity and vanishing theorems in complex and algebraic
geometry

by

Xiaokui Yang
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2012
Professor Kefeng Liu, Chair

In this thesis, we consider geometric properties of vector bundles arising from algebraic and

Hermitian geometry.

On vector bundles in algebraic geometry, such as ample, nef and globally generated vector bun-
dles, we are able to construct positive Hermitian metrics in different senses(e.g. Griffiths-positive,
Nakano-positive and dual-Nakano-positive) by L?-method and deduce many new vanishing theo-

rems for them by analytic method instead of the Le Potier-Leray spectral sequence method.

On Hermitian manifolds, we find that the second Ricci curvature tensors of various metric con-
nections are closely related to the geometry of Hermitian manifolds. We can derive various van-
ishing theorems for Hermitian manifolds and also for complex vector bundles over Hermitian
manifolds by their second Ricci curvature tensors. We also introduce a natural geometric flow on

Hermitian manifolds by using the second Ricci curvature tensor.
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CHAPTER 1

Positivity and vanishing theorems for vector bundles over

Kahler manifolds

1.1 Introduction

Let E be a holomorphic vector bundle with a Hermitian metric A. In [ ], Nakano intro-
duced an analytic notion of positivity by using the curvature of (F, k), and now it is called Nakano
positivity. Griffiths defined in [ ] Griffiths positivity of (E,h). On a Hermitian line
bundle, these two concepts are the same. In general, Griffiths positivity is weaker than Nakano
positivity. On the other hand, Hartshorne defined in [ ] the ampleness of a vector bun-
dle over a projective manifold. A vector bundle £ is said to be ample if the tautological line bundle
Op(g+)(1) is ample over P(E*). For a line bundle, it is well-known that the ampleness of the bundle
is equivalent to its Griffiths positivity. In [ ], Griffiths conjectured that this equivalence
is also valid for vector bundles, i.e. E is an ample vector bundle if and only if £ carries a Griffiths-
positive metric. As is well-known if £ admits a Griffiths-positive metric, then Op(z+)(1) has a
Griffiths-positive metric(see Proposition 1.2.11). Finding a Griffiths-positive metric on an ample
vector bundle seems to be very difficult but is worth being investigated. In [ 1,
Campana and Flenner gave an affirmative answer to the Griffiths conjecture when the base S is
a projective curve, see also [ ]. In [ ], Siu and Yau proved the Frankel con-
jecture that every compact Kdhler manifold with positive holomorphic bisectional curvature is
biholomorphic to the projective space. The positivity of holomorphic bisectional curvature is the
same as Griffiths positivity of the holomorphic tangent bundle. On the other hand, Mori([ i)
proved the Hartshorne conjecture that any algebraic manifold with ample tangent vector bundle is

biholomorphic to the projective space.



In this chapter, we consider the existence of positive Hermitian metrics on various vector bun-
dles. It is well-known that metrics with good curvature properties are bridges between complex
algebraic geometry and complex analytic geometry. We will construct Nakano-positive and dual-

Nakano-positive metrics on various vector bundles associated to ample vector bundles.

Let £ be a holomorphic vector bundle over a compact Kédhler manifold S and F' a line bundle
over S. Let r be the rank of £ and n be the complex dimension of S. In the following we briefly

describe the main results in this chapter.

Theorem 1.1.1. For any integer k > 0, if S"™*E ® det E* @ F is ample over S, then S*E @ F is

both Nakano-positive and dual-Nakano-positive.

Here we make no assumption on £ and we allow £’ to be negative. For definitions about Nakano-
positivity, dual-Nakano-positivity and ampleness, see Section 1.2. As pointed out by Berndtsson
the Nakano positive part of Theorem 1.1.1 is a special case of [ ] where he proves
it in the case of a general holomorphic fibration, but his method can not derive the dual-Nakano-
positive part of Theorem 1.1.1. Note that Nakano-positive vector bundles are not necessarily dual-
Nakano-positive and vice versa. For example, for any n > 2, the Fubini-Study metric hpg on the
holomorphic tangent bundle TP" of P" is semi-Nakano-positive and dual-Nakano-positive. It is
well-known that 7" does not admit a smooth Hermitian metric with Nakano-positive curvature
for any n > 2. Itis also easy to see that the holomorphic cotangent bundle of a complex hyperbolic
space form is Nakano-positive and is not dual-Nakano-positive. On the other hand, by the dual
Nakano-positivity, we can get various new vanishing theorems of type H?". For more details, see

Section 1.6.

As applications of Theorem 1.1.1, we get the following results:

Theorem 1.1.2. Let E be an ample vector bundle over S.

(1) If F is a nef line bundle, then there exists kg = ko(S, E) such that S*E ® F is Nakano-
positive and dual-Nakano-positive for any k > ko. In particular, S*E is Nakano-positive and

dual-Nakano-positive for any k > k.



(2) If F is an arbitrary vector bundle, then there exists ko = ko(S, E, F') such that for any k > k,

SkE ® F is Nakano-positive and dual-Nakano-positive.

Moreover, if the Hermitian vector bundle (E, h) is Griffiths-positive, then for large k, (S*E, S*h)

is both Nakano-positive and dual-Nakano-positive.

The following results follow immediately from Theorem 1.1.1 and Theorem 1.1.2:

Corollary 1.1.3. Let E be a holomorphic vector bundle over S.

(1) If E is ample, S*E ® det E is both Nakano-positive and dual-Nakano-positive for any k > 0.

(2) If E is ample and its rank r is greater than 1, then S™ E* @ (det E)" is both Nakano-positive

and dual-Nakano-positive for anyt > r +m — 1.

(3) If STT'E ® det E* is ample, then E is both Nakano-positive and dual-Nakano-positive. In

particular, E is Griffiths-positive.

If (E,h) is a Griffiths-positive vector bundle, Demailly-Skoda proved that £ ® det E' and EF* ®
(det E)" are Nakano-positive if r > 1([ 1). Berndtsson proved in [ ]
that S*F @ det E is Nakano-positive as soon as £ is ample. For more related results, we refer the
reader to recent works [ LI LI LI I,

[ ] and [ ] and references therein.

Let hps be the Fubini-Study metric on TP" and S*hpg the induced metric on S*TP" by
Veronese mapping. Let n > 2. It is easy to see that TP" does not admit a Nakano-positive
metric. In particular (TP", hps) is not Nakano-positive. However, (S*TP", S¥hg) is Nakano-
positive and dual-Nakano-positive for any k > 2 since (S*"TP" @ Kpn, S¥hps @ det(hps)~!) is
Griffiths-positive. This can be viewed as an evidence of positivity of some adjoint vector bundles,

namely, vector bundles of type S*F ® (det F)* ® K.

Theorem 1.1.4. Let E be an ample vector bundle over S. Let r be the rank of E and n the

dimension of S. If r > 1, then



(1) S*E®(det E)?® K g is Nakano-positive and dual-Nakano-positive for any k > max{n—r, 0}.

Moreover; the lower bound is sharp.

(2) E®(det E)*®K g is Nakano-positive and dual-Nakano-positive for any k > max{n-+1—r,2}.

Moreover, the lower bound is sharp.

In general, det ¥ ® K is not an ample line bundle, for example, (S, E) = (P2, Ops(1) © Ops(1)).
Similarly, in the case n + 1 —r > 2,i.e. 1 < r < n — 1, the vector bundle Kg ® (det E)"™"
can be a negative line bundle, for example (S, E) = (P*, Ops(1) @ Ops(1)). So Theorem 1.1.4 is
independent of the (dual-)Nakano-positivity of S*E ® det F.

The first application of Nakano-positivity and dual-Nakano-positivity for vector bundles are van-
ishing theorems. In this chapter, we obtain many vanishing theorems for various vector bundles
which can also be viewed as generalizations of many classical vanishing theorems. In the litera-
tures, many vanishing theorems have been obtained for the Dolbeault cohomology of ample and
globally generated vector bundles on smooth projective manifolds, mainly due to the efforts of Le
Potier, Schneider, Peternell, Sommese, Shiffman Demailly, Ein and Lazasfeld, Manivel, Layatini
and Nahm([ L1 L1 L1 L1 LI I,
[ 1, [ 1, [ ). The Le Potier vanishing theorem
says that if F' is an ample vector bundle over a smooth projective manifold X, then H?4(X, E) = 0
for any p + ¢ > n + r where n = dim¢ X and r = rank(FE). When r < n, the vanishing pairs
(p, q) are contained in a triangle enclosed by three lines p+q = n+r, p = n and ¢ = n. By using
the Le Potier-Borel spectral sequence, many interesting generalizations are obtained for products
of symmetric and skew-symmetric powers of an ample vector bundle, twisted by a suitable power
of its determinant line bundle, see for examples, [ 11 1, 1 1,
[ ] and [ ]. The common feature of their results is that the van-

ishing theorems hold for (p, ¢) lying inside or on certain triangles.

As is well-known, except Nakano’s vanishing theorem, few vanishing theorems for vector bun-
dles are proved by analytic method. In this chapter, we use analytic method to prove vanishing
theorems for certain Dolbeault cohomology groups of the bounded vector bundles. The new van-
ishing theorems have quite different feature and they hold for (p,¢) lying inside or on certain

4



quadrilaterals. In order to describe the vanishing theorems much more effectively, we introduce

Definition 1.1.5. Let F be an arbitrary holomorphic vector bundle with rank r, L an ample line
bundle and 1,5, € R. E is said to be (£1,£2)-bounded by L if there exists a Hermitian metric
h on E and a positive Hermitian metric h* on L such that the curvature of F is bounded by the

curvatures of L°! and L°2, i.e.
cwr @ Idg < 08" < cqwy, @ Idg (1.1.1)

in the sense of Griffiths. F is called strictly (g1, €5)-bounded by L if at least one of OFh —ciw; ®

Idg and ©F" — cow; ® Idg is not identically zero.

As is well-known, if det £/ is ample, we can choose L. = det £ as a natural bound. Hence,
Definition 1.1.5 works naturally for many vector bundles in algebraic geometry. We list some

examples as follows. See also Proposition 1.6.10.:

(1) If E is globally generated, £ is (0, 1)-bounded by det £ and strictly (0, 1)-bounded by L ®

det E' for any ample line bundle L;
(2) If E' is an ample vector bundle with rank r, then E is strictly (—1, 7)-bounded by det F

(3) If E is nef with rank r, then F is strictly (—1,7)-bounded by L ® det E for arbitrary ample
line bundle L;

(4) If E is Griffiths-positive, E is strictly (0, 1)-bounded by det E.
Theorem 1.1.6. If E is strictly (g1, 2)-bounded by L and m + (r + k)e; > 0, then
HP(X,S*E®@det E® L™) = H"(X,S*E @ det E® L™) = 0, (1.1.2)

ifp>1,q > 1satisfy

(1.1.3)
p q

In particular, S*E ® det E ® L™ is Nakano-positive and dual-Nakano-positive and

m+ (r+ ke, . {n—q n—p}
————————— > min , .
m+ (r+ k)eq

H™(X,S*E®@det E® L™) = H*"(X,S*E®@det E® L™) = 0

forq > 1.



AU /41 AO Al

P+ q=mn-+ Sy

Figure 1 Figure 2

Remark 1.1.7. (1) (p,q) satisfies condition (1.1.3) if only if it lies inside or on the following

2)

3)

“4)

quadrilateral () = AgA;AsAs. See Figure 1 with Ay and A, removed. Here
AO = (07n)7A1 = (nan)aAQ = (n,O),Ag = (00760)

and
n

= R
L+ m+(r+k)5;

co (1.1.4)

It is obvious that () is symmetric with respect to the line p = q.

The condition m + (r + k)e; > 0 is necessary, which guarantees that the vector bundle S*E ®

det F ® L™ is Griffiths-positive. In fact, in terms of Hermitian metrics,
SPFE@det E@ L™ = SH(E® L") @ det(E @ L) @ L™k > pmtrtha

and similarly S*F ® det E @ L™ < L™+(+k)=2 On the other hand, we will see that S*F ®
det £ ® L™ has a nice metric h such that (S*F @ det E @ L™, h) behaves very similarly to
a positive Hermitian “line bundle” (L, hgy). Moreover, m + (r + k), and m + (r + k)eq are
the minimal and maximal eigenvalues of the curvature of (L, hg) respectively. From these one

can see that Theorem 1.1.6 is optimal.

When ¢, is close enough to €5, F is semi-stable with respect to L ([ ]). Moreover,

HP(X,S*E @ det E® L™) = 0 forany p+q > n + 1.

If e; <0, ey > 0, and F is an arbitrary nef line bundle, Theorem 1.1.6 also holds for S*E ®

det E®@ L™ ® F.



As applications, we obtain

Theorem 1.1.8. If E is globally generated and L is an ample line bundle, then for any k > 1, m >
L,
HP(X,S"E® (det EY" ® L) = HI?(X,S*E @ (det EY" ® L) = 0

ifp>1,q > 1satisfy

m—1 . [n—q n—p
> —_— 1.1.5
m—1+(r+k)_mm{ p 1 q } ( )

In particular, S*E @ (det E)™ ® L is both Nakano-positive and dual-Nakano-positive and
H™(X,S*E® (det E)" ® L) = H*(X,S*E ® (det EY" ® L) = 0
forany q > 1.

The right hand side of (1.1.5) depends only on the ratios and it makes Theorem 1.1.8 quite different
from the results of [ 1,1 L1 ]and [ ]. More
precisely, for some specific vanishing pair (p, ¢), the power of det £ may be independent on the

dimension of X. For example, for n = 3ng + 2, by (1.1.5),
H*" 1 X, E® (det B)""?®@ L) = 0= H*™ 1?0t (X E® (det E)" " ® L) (1.1.6)

for any globally generated E and ample L. In general, we do not have H?4(X, E ® (det F)" ™ ®
L)y=0forallp+q¢>n+1,ifl <r < n(cf. [ ], Corollary B and [ 1,
Corollary 1.5). On the other hand, for fixed (k, m), the quadrilateral () contains a triangle p + ¢ >
n + s for some sy € (0,n]. See Figure 2. Moreover, if the power m of det E is large enough,
we obtain HP4(X, S*E @ (det E)Y™ @ L) = 0 for p + ¢ > n + 1. Examples in [ ] and
[ ] indicate that a sufficient large power of det £ is necessary in this case. For more

details, see Corollary 1.6.14, Corollary 1.6.16 and Example 1.7.8.

Theorem 1.1.9. If E is ample (resp. nef) and L is nef (resp. ample), then for any k > 1 and
m>k+r+1,

HPY(X,S*E @ (det B)™ ® L) = H?(X,S*E @ (det E)" ® L) = 0,

ifp>1,q > 1 satisfy

(1.1.7)

(m—1)+r(r+k) —
7

oDt (1m0 )



By a similar setting as (1.1.6), it is easy to see that the result in Theorem 1.1.9 is different from the

results in [ L1 L1 ] and [ ].

Remark: Our method is a generalization of the analytic proof of the Kodaira-Akizuki-Nakano
vanishing Theorem for line bundles. We have obtained similar results for “partially” positive

vector bundles.

1.2 Background materials

1.2.1 Various positivity and relations

Let £ be a holomorphic vector bundle over a compact Kéhler manifold S and & a Hermitian metric
on E. There exists a unique connection V which is compatible with the metric h and complex
structure on F. It is called the Chern connection of (E, h). Let {2/}, be local holomorphic
coordinates on S and {e,}"_, be a local frame of E. The curvature tensor RV € I'(S, A*T*S ®

E* ® F) has the form

v/ —1 . .
RV ="—R.dNATF R@e"®e, (1.2.1)
27-‘- 1)
where RY. = h"PR-
1)

jo

3 and

_ 82 hOCB h'yg 8h’a3 8h7§
021077 0zt 07

Here and henceforth we sometimes adopt the Einstein convention for summation.

R (1.2.2)

ijof

Definition 1.2.1. A Hermitian vector bundle (E,h) is said to be Griffiths-positive, if for any

nonzero vectors u = u' 32 and v = v%,,
> Rz guw v’ > 0 (1.2.3)
i7j7a75
(E, h) is said to be Nakano-positive, if for any nonzero vector u = u'* ;% ® eq,
> Rypuw® >0 (1.2.4)
i,5,0,0
(E, h) is said to be dual-Nakano-positive, if for any nonzero vector u = u’*3% ® e,
S Rg > 129

1,5,0,0

8



It is easy to see that (F, h) is dual-Nakano-positive if and only if (E*, h*) is Nakano-negative.
The notions of semi-positivity, negativity and semi-negativity can be defined similarly. We say
E is Nakano-positive (resp. Griffiths-positive, dual-Nakano-positive, - - -), if it admits a Nakano-

positive(resp. Griffiths-positive, dual-Nakano-positive, - - - ) metric.

The following geometric definition of nefness is due to [ ].

Definition 1.2.2. Let (S, w) be a compact Kéhler manifold. A line bundle L over S is said to be

nef, if for any € > 0, there exists a smooth Hermitian metric h. on L such that the curvature of

(L, h.) satisfies

V=1 _
R = —2—68 lOg ha Z —EWp (126)
s

This means that the curvature of L can have an arbitrarily small negative part. Clearly a nef line

bundle L satisfies

/Ccl(L) >0

for any irreducible curve C' C S. For projective algebraic S, both notions coincide.

By the Kodaira embedding theorem, we have the following geometric definition of ampleness.

Definition 1.2.3. Let (5, w) be a compact Kéhler manifold. A line bundle L over S is said to be

ample, if there exists a smooth Hermitian metric & on L such that the curvature R of (L, h) satisfies

R= —gaé_ﬂogh> 0 (1.2.7)
For comprehensive descriptions of positivity, nefness, ampleness and related topics, see [ 1,
[ LI LI LI land [ I
In the seminal paper [ ], Siu introduced the following terminology:

Definition 1.2.4. Let (X, g) be a compact Kéhler manifold. (X, ¢) has strongly negative curva-

ture(resp. strongly positive) if

R (4B - D) (AB" = D) <0 (resp. 2 0) (1.2.8)
forany A = A%, B = B2, C = C';%, D = D’ and the identity in the above inequality
holds if and only if

AB — D' =0
9



for any ¢, j.

Remark 1.2.5. Note that if dim¢ X = 2, the strong negativity in the sense of Siu is equivalent to

the dual-Nakano negativity.

Example 1.2.6. The Hermitian holomorphic tangent bundle of (P", wrg) with n > 1 is dual-
Nakano-positive and semi-Nakano-positive. In fact, in the normal coordinates of a given point on

P, the curvature tensor of (TP", wpg) is
Rz‘}kf = 5ij5kl + 51‘16193' (1.2.9)
It is easy to verify the assertion from the following identities

kgl ij 7|2 o il—jk __ ‘ zz‘ 0|2
Rgu"™u” = 5 E [u? + 4| and  Rgputw" = u|T 4y ju”
A

1] i,
Lemma 1.2.7. Letn > 1.
(1) (TP", wrg) is dual-Nakano-positive and semi-Nakano-positive.

(2) Let X be a hyperbolic space form with dimension n. If wg is the canonical metric on X, then

(T'X,wg) is dual-Nakano-negative and semi-Nakano-negative.

(3) For any n-dimensional compact Kdhler manifold X, the holomorphic tangent bundle T X is

neither Nakano-positive nor Nakano-negative.

Proof. The assertion (3) follows from Nakano-vanishing theorem and Serre duality. [

Lemma 1.2.8. Let (E, h) be a Hermitian holomorphic vector bundle over a complex manifold X,

S be a holomorphic subbudle of E and () the corresponding quotient bundle.

0—-S—-F—-Q—0

(1) If E is (semi)-Nakano-negative, then S is also (semi)-Nakano negative.

(2) If E is (semi-)dual-Nakano-positive, then () is also (semi-)dual-Nakano-positive.

10



Proof. This lemma is well-known(e.g. [ ]). For the sake of completeness, we include a
proof here. It is obvious that (2) is the dual of (1). Let r be the rank of F and s the rank of S.
Without loss of generality, we can assume, at a fixed point p € X, there exists a local holomorphic
frame {ej,-- - , e, } of E centered at point p such that {e;, - - - , e} is a local holomorphic frame of

S. Moreover, we can assume that
h(ea,e8)(p) = bap,forl < a,B <r

Hence, the curvature tensor of .S at point p is

0%h = * h.=h =
S af oy "y
S _—__ o ey e 1.2.10
ijof 021077 gt 0zt 077 ( )

where 1 < «, 0 < s. The curvature tensor of £ at point p is

B __Pha  ~heihog
o 021077 gt 0zt 077

(1.2.11)

where 1 < a, 3 < r. By formula (1.2.4), it is easy to see that R¥|g — R® is semi-Nakano-positive.

Hence (1) follows. 0

The following relations are well-known:

Lemma 1.2.9. Let (X, g) be a Kiihler manifold. We have the following relations between various

curvature terminologies

(1) dual-Nakano negativity implies strongly negativity in the sense of Siu,
(2) strongly negativity in the sense of Siu implies negativity of Riemannian sectional curvature;

(3) negativity of Riemannian sectional curvature implies negativity of holomorphic bisectional

curvature.

1.2.2 Ampleness and Griffiths positivity for vector bundles

Let E be a Hermitian vector bundle of rank r over a compact Kéhler manifold S, L = Op(+)(1) be

the tautological line bundle of the projective bundle P(E£*) and 7 the canonical projection P(E*) —
11



S. By definition([ 1), E'is an ample vector bundle over S if Op(g+) (1) is an ample line
bundle over P(£*). E is said to be nef, if Op(z+)(1) is nef. To simplify the notations we will denote
P(E*) by X and the fiber 7! ({s}) by X,.

Let (eq,- - ,e,.) be the local holomorphic frame with respect to a given trivialization on £ and
the dual frame on E* is denoted by (e!,--- ,e"). The corresponding holomorphic coordinates on

E* are denoted by (W7, --- , W,). There is a local section ey« of L* defined by
er =Y Wae® (1.2.12)
a=1

Its dual section is denoted by e;. Let h” be a fixed Hermitian metric on £ and h” the induced

quotient metric by the morphism (7*E, m*h¥) — L.

If (h,j5) is the matrix representation of h* with respect to the basis {e4},,_;, then h" can be

written as
1 1
I = = S (1.2.13)
ht (ep- er) S hPW, Wy
Proposition 1.2.10. The curvature of (L, h) is
V=1 .= V-1 _— -
R = =X —0log ht = *—~0010g (>~ h*W, TV ) 1.2.14
2m ©8 2m ©8 Z g ( )
where O and O are operators on the total space P(E*).
Although the following result is well-known([ 11 1), we include a proof here

for the sake of completeness.

Proposition 1.2.11. If (E, h¥) is a Griffiths-positive vector bundle, then E is ample.

Proof. We will show that the induced metric h* in (1.2.13) is positive. We fix a point p € P(E*),

then there exist local holomorphic coordinates (2, - - , 2") centered at point s = 7(p) and local
holomorphic basis {ej, - - - , e, } of E around s such that

hog = 045 — Ria57'7 + O(J2") (1.2.15)
Without loss of generality, we assume p is the point (0,--- ,0, [ay,--- ,a,]) with a, = 1. On the

chart U = {W, = 1} of the fiber P"!, we set w* = W, for A = 1,--- ,r — 1. By formula
12



(1.2.14) and (1.2.15)

r—1
R (p (Z Rwﬂaﬁjdz =R <5AB “|BC’L2A) dw? A dw3> (1.2.16)

AB=1
.
where |a]? = Y |aq|?. If RE is Griffith positive,
a=1
- aﬁﬁa
Z R05 a2
a,B=1

is a Hermitian positive n x n matrix. Consequently, R"" (p) is a Hermitian positive (1, 1) form on

P(E*), i.e. hl is a positive Hermitian metric. ]

The following linear algebraic lemma will be used in Theorem 1.3.7.

Lemma 1.2.12. If the matrix

A B
C D

is invertible and D is invertible, then (A — BD~'C)™! exists and

(A— BD1C)! —(A— BD™'C)"'BD"!
—D-'C(A— BD-'C)"' D-'C(A- BD-'C)"'BD~' + D!

T =

Moreover, if T is positive definite, then A — BD~'C is positive definite.

1.2.3 Classical vanishing theorems

In the following, we will describe the idea of proving vanishing theorems by using an analytic

method and the similar methods will be used in proving Theorem 1.1.6.
At first, we briefly describe the analytic proof of vanishing theorems for line bundles. Let
(¢:7)nxn be a Hermitian positive matrix with eigenvalues

M <<, (1.2.17)

Let u = Y u;5dz! A dz’ be a (p,q) form on C" where u 7 is alternate in the indices I =

(i1, ,ip) and J = (j1,- -+ ,7j,). We define
13



T(u,u) = ([, Ao]u, u) (1.2.18)

where ¢ = / —1goi3dzi A dz’ and A, is the contraction operator of the standard Kihler metric on

C". The following linear algebraic result is well-known([ 1):

Lemma 1.2.13. We have the following estimate
T(u,u) > max{pA; — (n — @) An, gM — (n — p)A, Hul? (1.2.19)

Corollary 1.2.14. Let (L, h) be a Hermitian line bundle over a compact Kéiihler manifold (X, wy).
Let \; and \,, be the smallest and largest eigenvalue functions of R* with respect to wy respectively.
Suppose A\, > 0. If

max{pA; — (n — @) An, g 1 — (n —p) A, }

is positive everywhere, or equivalently

ﬁ>max{”_q,”_p} (1.2.20)
An D q
then

HP4(M,L) = H"(M,L) =0 (1.2.21)

Proof. By a well-known Bochner formula for L,
A" = A+ [R¥ A

for any u € QP9(M, L),
(A"u,u) = (Au,u) + T(u, u) (1.2.22)

If A”u = 0, by the condition, we get u = 0. O

Remark 1.2.15. The condition in Corollary 1.2.14 can be satisfied if and only if (L, h) is Griffiths
positive or Griffiths-negative. If (L, k) is a positive line bundle over a compact complex manifold

X, we can define a Kdhler metric on X

J-1 _
wo = RE = —2—88 log h (1.2.23)

T
In this case, ¢ = R* in Lemma 1.2.14 and \; = \,, = 1. Hence, if p+¢q > n+1, H?4(X,L) = 0.

This is the Kodaira-Akizuki-Nakano vanishing theorem.
14



Corollary 1.2.16 (Kodaira-Akizuki-Nakano). Let X be a compact complex manifold with complex

dimension n. If L is an ample line bundle over X, then

HP(X,L)=0 for p+q>n+1 (1.2.24)

For ample vector bundles, Le Potier generalized Kodaira-Akizuki-Nakano vanishing theorem and

obtained the famous Le Potier vanishing theorem

Theorem 1.2.17 (Le Potier). Let X be a compact complex manifold with complex dimension n

and E be an ample vector bundle over X with rank r.

HP(X E)=0 for p+q>n+r (1.2.25)

However, when the rank r of £ is very large, more precisely, when » > n, Le Potier’s vanishing
theorem can not provide any information. But the following result holds for any ample vector

bundle

Proposition 1.2.18. Let X be a compact complex manifold with complex dimension n and E be

an ample vector bundle over X. Then

H"™(X,E)=0 (1.2.26)
It is easy to see from the following example that Proposition 1.2.18 is optimal.
Example 1.2.19. It is well known that, for any n > 2, E = T1°P" is ample, but

H"" 1 (P" E)=C #0 (1.2.27)

The following vanishing theorem is due to Nakano(][ D(see also ([ D):

Lemma 1.2.20. Let E be a holomorphic vector bundle over a compact Kdihler manifold M. If
E is Nakano-positive, then H™1 (M, E) = 0 for any ¢ > 1. If E is dual-Nakano-positive, then
HY"(M, E) =0 forany q¢ > 1.

15



The proof of Lemma 1.2.20 follows from formula (1.2.29) easily. Let (F,h) be a Hermitian
holomorphic vector bundle with rank r over a compact Kahler manifold (X,w,). For any fixed
point p € X, there exists a local holomorphic coordinates system {2}, and local holomorphic

frames {e, }%_, such that
95(p) = dijs ho5(p) = d5 (1.2.28)

The curvature term

T(u,u) = <[RE,Ag]u,u>

- Z Rﬁaﬁul Babrss t Z Rijaﬁ“j}%j,aﬂm,j,ﬁ - Z Rz’iaﬁuﬁaaﬁélz-”)

for any u = Y u;7,dz" A dz’ @ e,. For more details, see ([ 1, p. 341). From formula
(1.2.29), it is very difficult to obtain vanishing theorems for vector bundles. If the curvature R”
has a nice expression, for example

Rz.5 = $ijTaTs (1.2.30)

then E behaviors as a line bundle with curvature (;;). Unfortunately, few examples with property
(1.2.30) can be found. However, an integral version of (1.2.30) exists on vector bundles of type

E ®det F,

W W Wi
E®detE(_\ _ ~ ~ _ PijWaWWp Wpg
REZSE(5) = Rigop(s) +0ap - ) Rigps(s) =11 /PM WE o) (1.2.31)
v
where [Wy, -+, W,] are the homogeneous coordinates on P"~1, wpg is the Fubini-Study metric
and
WsW.
p=+1)Y Rigs(S) iy (1.2.32)
7,6

It is obvious that if E is Griffiths-positive, then £ ® det E is both Nakano-positive and dual-
Nakano-positive. With the help of the nice formulation (1.2.31), we obtain vanishing theorem

1.1.8, Theorem 1.1.6 and Theorem 1.1.9 which are similar to Corollary 1.2.14.

16



1.3 Construction of Hermitian metrics on S*F @ F

1.3.1 Curvature formulas

Let F' be a holomorphic line bundle over S, L = Op(g+)(1) and w : P(E*) — S. For simplicity
of notations, we set L = L¥ @ 7*(F) for k > 0 and X = P(E*). Let hy be a Hermitian metric
on L and {w,},cs a smooth family of Kihler metrics on the fibers X, = P(E?) of X which are
induced by the curvature form of some metric on Op(g-(1). Let {wA}",_| be the local holomorphic
coordinates on the fiber X which are induced by the homogeneous coordinates [W7, - -, W,] on

a trivialization chart. Using these notations, we can write w, as

Wy = Z gap(s L w)dw? A dw? (1.3.1)

A,B=1

It is well-known H®(P"~!, Op,—1(k)) can be identified as the space of homogeneous polynomials

of degree k in r variables. Therefore, the sections of H®(X, L x, ) are of the form Vae%k ®e where

V,, are homogenous polynomials in {W7y,--- , W, } of degree k and e the base of 7*(F') induced by

a base e of F. For example, if « = (o, -+ , ;) with oy + - -+ + @, = k and «; are nonnegative
integers,

Vo = Wit o, (1.3.2)
Now we set

E,=ef"® @ ®e and e =cf®e
which are bases of S¥E ® F and L respectively. We obtain a vector bundle whose fibers are
HY(X,, L
metric f on S*E ® F by (L, ho) and (X, w,), locally it is

x, ). In fact, this vector bundle is E = S*E®F. Now we can define a smooth Hermitian

faﬁ = f(Ea, Eg) = / <Va€Z7 Vﬁef>hom
r—1

—  w

Here we regard hg locally as a positive function. In this general setting, the Hermitian metric hg

on L and Kihler metrics w, on the fibers are independent.

17



Let (2',--- ,2") be local holomorphic coordinates on S. By definition, the curvature tensor of

fis

*f.3 ~0f <0f 3
- JaB 1621 ad 708 1.3.4
Rigab = ~ 57027 +;f 0z 0% (1.34)

In the following, we will compute the curvature of f. Let Ty, be the relative tangent bundle of
the fibration P(E*) — S, then g,5 is a metric on Ty and det(g,5) is a metric on det(7’x/s).
Let ¢ = —log(hodet(g,z)) be the local weight of induced Hermitian metric hy det(g,5) on
L @ det(Tx /s). In the sequel, we will use the following notations

O D*p D%y D?p D?p

i 0.0 T ghigz YAB T gudgwB Y8 T gLiowP YA T gmigwA

and (©*P) is the transpose inverse of the (r — 1) x (r — 1) matrix (¢ 43),

r—1

> oo =10¢

B=1
The following lemma can be deduced from the formulas in [ 1,1 ] and
[ ]. In the case of holomorphic fibration P(E*) — S, it follows by straightforward computa-

tions.

Lemma 1.3.1. The first order derivative of [ is
r—1

afaﬁ — (Ugil Wy
—821 = —/S h()vavﬁgoi (T — 1)' = /S<—Vaipiez,v13€z>hom (1.3.5)

Proof. By the local expression (1.3.1) of wy,

wr—l

(7’ i 1)' = det(gAg)dV@T_l

where dVr-1 is standard volume on C"~'. Therefore

faﬂ:/ €_¢VQV6dVCr71
Xs

and the first order derivative is

8f B Oe % __
;.é. - - Vav dV r—1
0z x, 0% prre

= - / (,Die_(pVaVﬁdV(cr—l
Xs

wrfl

- - h a_ i =
o 1oV

18



Theorem 1.3.2. The curvature tensor of the Hermitian metric f on SKE ® F is

r—1 r—1

_ w — w
R- == hoV,V 30 ——- — hoPio Pig——— 1.3.6
= JoTota gy = poneP 10
where

Pio = —Vagpi — ZV (wa(g;é) (1.3.7)

Proof. The idea we use is due to Berndtsson([ ], Section 2). For simplicity of no-
tations, we set A;, = —V, ;. The Hermitian metric (1.3.3) is also a norm on the smooth section

space I'(X,, L|y. ), and it induces an orthogonal projection

I'(X,,L|x.) — H(X,, L

x.)

Using this projection, we can rewrite the first order derivative as
r—1

afaB ws
0 /Xs<Aia€LaVﬂeL>hom

= / <%3(Aiaez> + (Aiaez - %S(Aiaez»? Vﬁef%@m

S

wr—l

_ / (F(Aiaer), Vaern 7y,

S

since (Ajne; — Ts(Ainez)) is in the orthogonal complement of H°(Xj, L x.)- By this relation, we

can write 7, (A;qe7) in the basis {V, ez} of HY(X, L

x,),

7s(Ainer) Z(waafaé) ez) (1.3.8)

From this identity, we obtain

of50f
/ <7T8(A10<€L) 7s(Ajsez) >h0 wa afzza (f);]ﬂ (1.3.9)

s

Suppose
Po=Ain— YV, (Z f75%> (1.3.10)
> > 0z
then A;ne; = Ts(Aine;) + Piaeg, that s,

Ts(Piaez) =0 (1.3.11)
19



Similar to Lemma 1.3.1, we obtain the second order derivative

a2f _ o Wl w1
af s s
— = - hoVaV gp.= Vawier, Vapieing———
92105 /Xs 0 BPij (r—1)! + /Xs< iz, Vapieq)n r—1)
— Wit Wit
= —/shoVaVﬁ%jm+/S<Amez>Ajﬁ€Z>hom
o wr—l
= — hoVaV gp7—2
/S 0 ﬁ@zg (7,_1)'
_ _ wrt
[ (Pt + FulAuaer). Prveg + FlAiper))y, s
o wr—l _ wr—l
= — | hV Vot hoPuPig—s
J 1oVeToes gy PP
wr—l
Ns Aioc L 7~s Ajger e
N <7T (Aiaeg), ms( JﬂeL)>h0 (r—1)!
o wrfl _ wrfl
= — [ hoVaVsps5—"— hoPiaPjg7——=7
/5 ' W%J(r—l)!*/s BRI
—l—fﬁ afag afVB
0zt 07’
By formula (1.3.4), we get the curvature formula (1.3.6). [
1.3.2 Positivity of Hermitian metrics on S*F @ F
If (E, h) is a Griffiths-positive, Demailly-Skoda([ 1) showed that (F®det E, h®

det h) is Nakano-positive. They proved it by using a discrete Fourier transformation method. Here,
we use a linear algebraic argument to show (£ ® det £, h ® det h) is both Nakano-positive and

dual-Nakano-positive.

Let wrg be the standard Fubini-Study metric on P"~! and [W, - - - W,| the homogeneous co-
ordinates on P"7'. If A = (ay, -+ ,az) and B = (81,3, -+, B), we define the generalized

Kronecker-0 for multi-index by the following formula

k
0= Y T e (ER

geSy j=1

where S}, is the permutation group in k& symbols.

20



Lemma 1.3.3. If Vy = W,, --- Wy, and Vg = Wy, --- Wp,, then

VaVp wig 0B
= 1.3.13
/EM WP -1 (rtk—1) (1.3.13)
For simple-index notations,
WQW5 w;—gl _ (Sa_g WanW.ng w’]}gl _ (Sagd’yg + 5045557 (1.3.14)
pr—1 W2 (r—1)! R I - |W |4 (r—1)! (r+1)! o

Without loss of generality we can assume, at a fixed s € .5, hag(s) = 0qp. The curvature of

(E®det E,h ®deth)is

ijaf

RESItE () _ Ri5() + das ZRﬁW(S) (1.3.15)
B!

By Lemma 1.3.3, we obtain

Wan w;:;
R5,5(8) + 0agp - ; Ry ~(s) =7 TR e ST (1.3.16)
where
WsW
pg=+1)) Rma(s>|v‘sv—|j (1.3.17)
¥,0

If (E, h) is Griffiths-positive, then (y,5) is Hermitian positive. For any nonzero u = (u')

(W Wp) - (W Wa) wig

Tk = 1)1 >0 (1.3.18)

RS ul = (r 4 1) / 7
pr—1

Therefore, (F ® det E/, h ® det h) is dual-Nakano-positive. By a similar formulation, we know
(E ® det E, h ® det h) is Nakano-positive.

In the following, we will prove similar results for ample vector bundles.

1.3.2.1 Nakano-positivity

In this subsection, we will use O-estimate on a compact Kihler manifold to analyze the curvature
formula in Theorem 1.3.2,

wr—l wr—l

- = Vap-~—5 P Pia—s
R’L]Oéﬁ /X hoVan(,OU (74 — 1)‘ [XS hO (16 ]ﬁ (7’ _ 1)'

S
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The first term on the right hand side involves the horizontal direction curvature ;7 of the line bun-
dle L @ det(Tx /s). If the line bundle L @ det(Tx /) is positive in the horizontal direction, we can
choose (hg,w;) such that ¢ is positive in the horizontal direction, i.e. (¢;7) is Hermitian positive.
We will get a lower bound of the second term by using Hormander’s L2-estimate, following an

idea of Berndtsson([ D.

Lemma 1.3.4. Let (M"™,w,) be a compact Kiihler manifold and (L, h) a Hermitian line bundle

over M. If there exists a positive constant c such that
Ric(w,) + R" > cw, (1.3.19)

then for any w € T'(M, T**'* M ® L) such that 0w = 0, there exists a unique u € I'(M, L) such that
Ou = w and 7(u) = 0 where 7 : I'(M, L) — H°(M, L) is the orthogonal projection. Moreover,

/| = /|w|g ‘ah Ty (1.3.20)

We refer the reader to [ ]and [ ] for the proof of Lemma 1.3.4.

Now we apply Lemma 1.3.4 to each fiber (X,,w,) and (L|x., ho|x.). At a fixed point s € S,
the fiber direction curvature of the induced metric on L ® det(Tx/g) is
v—1 _ ~
— 2—8585 log(ho det(g5)) = RE ¢ Ricp(ws) (1.3.21)
T
On the other hand
V-1, V-1,
—78588 log(ho det(gAg)) = ?83(98@
where ¢ = — log(ho det(g,45))- So condition (1.3.19) turns out to be
(pam) = cs(94B) (1.3.22)
for some positive constant ¢, = ¢(s).

Theorem 1.3.5. If (p 45) > cs(g45) at point s € S, then for any

u—Zuw‘ @ B, € (S, TS @ E)

with E = S¥E @ F, we have the following estimate at point s,

AB,, _ — r—1
0773 i\ 78 9 PiBPAj | _Ws
Rﬁaau uiB > / hO(VaU )(Vﬁujﬁ> <90ij - Cs ) (’I“ — 1)' (1323)

K]
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Proof. Atpoint s € S, we set

P =Y Poue; €T(X,, L), K== Vapu'e; € I(X,, L)

It is obvious that 9,P = 9,K where O, is O on the fiber direction. On the other hand, by (1.3.11),

7s(P) = 0. So we can apply Lemma 1.3.4 and get

w'r—l 1 _ wr—l

PP = <= 0K |2 p — 1.3.24
Jo P = 4, Pron (1329

Since O, K = — Y Voppudz? ® ez,

i,a,B
0K oy = D > ho(Varu'™) (Vau?)g* P oz 45
uj B

By inequality (1.3.24) and Theorem 1.3.2, we get the estimate (1.3.23). ]

Before proving the main theorems, we need the following lemma:

Lemma 1.3.6. If E is a holomorphic vector bundle with rank r over a compact Kdhler manifold
S and F is a line bundle over S such that S**"E @ det E* ® F is ample over S, then there exists

a positive Hermitian metric Ay on Op(g+ (k) @ 7 (F) ® det(T'x/s).

Proof. Let E be S**"E @ det(E*) ® F. It is obvious that P(S**" E*) = P(E*). The tautological

line bundles of them are related by the following formula
O]P’(E*)(:U = OP(S’CJFTE*)(:[) &® 7TZ+T(det E*) &® WZ—H‘(F) (1325)

where 73, : P(S¥*"E*) — S is the canonical projection. Let vy, : P(E*) — P(S*"E*) be the

standard Veronese embedding, then
Opp) (k + 1) = Vi, (Op(ssra (1)) (1.3.26)
Similarly, let 1, be the induced mapping pix, : P(E*) — IP’(E*), then
e (Opz (1)) = Oopny i + 1) @ 7" (F & det EY) (1.3.27)

By the identity

Kx = m(Kg) ® Opg+)(—r) @ 7" (det E), (1.3.28)
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we obtain
. <OP( E*)(l)) = Oppy (k) ® T(F) @ det(Ty/s) = L @ det(Tx/s) (13.29)

If £ is ample, then Op(5-(1) is ample and so is z®det(TX/ s). So there exists a positive Hermitian

metric Ao on L ® det(Tx/s). O

Theorem 1.3.7. Let E be a holomorphic vector bundle over a compact Kdihler manifold S and F
a line bundle over S. Let r be the rank of E and k > 0 an arbitrary integer. If S*t"E @ det E* @ F
is ample over S, then there exists a smooth Hermitian metric f on S*E® F such that (S*EQF, f)

is Nakano-positive.

Proof. By Lemma 1.3.6, there exists a positive Hermitian metric Ay on the ample line bundle

L® det(Tx/g). We set

V1, V1 P
Wy = —78585 log A\g = WA;IQAB(S,w)dw A dw

which is a smooth family of Kéhler metrics on the fibers X;. We get an induced Hermitian metric

on Z namely,
Ao

N det (QAE)

Let f be the Hermitian metric on the vector bundle S*E ® det F' induced by (Z, hg) and

ho (1.3.30)

(X5, ws)(see (1.3.3)). In this setting, the weight ¢ of induced metric on L® det(Tx/g) is

o = —log (ho det(gAE)) = —log Ao

Hence
(Paz) = (9aB) (1.3.31)

and in Theorem 1.3.5, ¢, = 1 for any s € S. Therefore

RE(U,U) = Rﬁagumm
r—1 r—1
N\TT7 78 B Ws
> / ho(Vau'®) (Vsu'?) (%‘ 2. QAB%B*‘)AJ) (r—1)!
s A,B=1 '
. - r—1 AE wr—l
s A,B=1 '
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forany u = Y u®2 ® E, € I'(5, TS ® E).

On the other hand ) is a positive Hermitian metric on the line bundle L® det(Tx/s). The
curvature form of A\ can be represented by a Hermitian positive matrix, namely, the coefficients
matrix of Hermitian positive (1, 1) form v/—199¢ on X. By Lemma 1.2.12,

r—1
(%’j_ Z SOAB%'BSOAj)

A,B=1

is a Hermitian positive n x n matrix. Since the integrand is nonnegative, R (u,u) = 0 if and only
if

r—1
SN ho(Vau) (VauiP) (so,j— > soABsoiBsoAj> =0 (13.32)

L a,B A,B=1

on X, which means (u’®) is a zero matrix. In summary, we obtain
RE(u,u) > 0
for nonzero u, i.e. the induced metric f on E=S"E®Fis Nakano-positive. U

Corollary 1.3.8. If E is ample, then for large k, S*E is Griffiths positive, i.e. there exists a

Hermitian metric hy, on S*E such that hy, is Griffiths-positive.

1.3.2.2 Dual-Nakano-positivity

By the curvature identity on S*F @ F,

r—1 wrfl

— w —
- = hoVi, s hoPio Pig—t——
= [ BV gy = [, PPy

E]

where ¢ is a weight of the line bundle Op(g-+)(k + ) ® 7*(det £*) ® 7*(F). Although this line
bundle can not be negative, it is still possible that it is negative in the local horizontal direction, i.e.

(¢;7) is a Hermitian negative matrix. For example, ' is a ** very negative” line bundle over S. If
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(¢,7) is Hermitian negative, then for any nonzero u = (u**),

wr—l

r—1

— . . w
_ h PioaP‘ ia=—7j0 S
L“ ]

(r—1)!

E]

r—1
St/%%MMW%W)%
X
0

<

Hence S* E® F is Nakano-negative. In the following, we will prove that if (S**" E®@det E*®@F)* is
ample, then S* E® F is Nakano-negative which is equivalent to the statement: if S**" E®@det F*®

F is ample, then S*E ® F is dual-Nakano-positive. Here we use a well-known fact ([ 1):
E is dual-Nakano-positive if and only if E* is Nakano-negative.

For simplicity, we assume k£ = 1 and F' = det E. In the following we will show, if £* is ample,

then £ ® det F is Nakano-negative.

As similar as the quotient metric on Op(z+)(1)(see Proposition 1.2.10 ) induced by the morphism

(m*E,7*h) — Opg+(1), there is an induced metric on Op(g) (1) by the morphism (7*(E*), 7*h*) —

Opg)(1). For a fixed point s € S, we can choose a local coordinate system (z',---,2") and a
local normal frame (eq,--- ,e,.) of E centered at point s. With respect to this trivialization, we
obtain:

Proposition 1.3.9. If (E, h) is Griffiths-positive, then the quotient metric h* on L := Op(1)
induced by (m* E*, m*h*) — Op(g)(1) is negative in the local horizontal direction, i.e.
0% log h*
_ O logh™ 1.3.33
( 0207 ) ( )

is Hermitian negative on the fiber X, = 7~ (s) where 7 : P(E) — S.
Proof. Let h,5 = h(eq, eg) and R;;,7 be the curvature components of /, then the quotient metric
on Op(gy(1) is,
Y hagWeWs 30005 — Rizap2'? + O(|2)) WalW s
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It is obvious that

9*log h* hL W WolW s
— —— R 1.3.35
0405 Z @Jocﬁ |W]2 ( )
which is Hermitian negative on X if (£, h) is Grlfﬁths-posmve. O

Let v, : E — S*E be the standard Veronese map which induces a map
Ty : P(E) — P(S*E) (1.3.36)

Let7 : P(E) — S and 7, : P(S*E) — S, then 7, o U, = 7. Now we fix a local holomorphic

1 ... 2™) centered at point s € S and a local trivialization of E and S*E. It

coordinate system (z
is obivous that the map vy, sends (z, W) to (z, S¥W) where S¥WV is the k-th symmetric power of
homogeneous vector W = [y, --- | WW,], and so the horizontal part of Ty, is identity. With respect

to this trivialization, we obtain

Theorem 1.3.10. If E is ample, then there exists a Hermitian metric h* on L = Op(g)(1) such
that h" is negative in the horizontal direction, i.e.
02 log h*
=R 1.3.37
( 0207 ) ( )

is Hermitian negative on the fiber X, = w=(s) where 7w : P(E) — S.

Proof. By Corollary 1.3.8, for large k, S*E is Griffiths-positive. By Proposition 1.3.9, there exists
a Hermitian metric /f\Lk on Op(gkp (1), such that /f\Lk is Hermitian negative along the horizontal

direction. By the relation
Op)(k) = 1}, (Op(sr (1)) (1.3.38)

there is an induced metric h* on Op(z)(1)
L= (U}’;(ﬁ@) ' (1.3.39)

Hence, we obtain

d%logh*  10%log I
- = —_ 1.3.40
021077 k0207 ( )

since the horizontal direction of Uy, is identity with respect to that trivialization. [
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Theorem 1.3.11. If E* is ample, then there exists a Hermitian metric on E ® det E which is

Nakano-negative.

Proof. By Theorem 1.3.10, if E* is ample, then there exists a Hermitian metric h on L :=

Op(+)(1) such that

0?log h*
- 1.3.41
( 02107 ) ( )
is Hermitian negative. Let {ws}scs be a smooth family of Hermitian metric of the fiber X,. We
can set
pLyr+
e (1)
det(ws)
and let
¢ = —log(hgdet(w,)) = —(r + 1) log h* (1.3.42)
Hence, we obtain
02 log h*
- = _ 1)—=— 1.3.43
i (r+1) 0207 ( )

Therefore (i,;) is Hermitian negative. On the other hand, the metric induced by ho and {w;}ses
on F ® det F has curvature components

wr—l wr—l

R~ — = hoWo W 5007 —= — | hoPoPig—— 1.3.44
ijof /);S 0 ﬁ(pu(r_l)! /Xs 0 Jﬁ(r_1>! ( )

Therefore, for any nonzero u = (u'®),

r—1
Wy

(r—1)!

Rigogu'u? < /X hoig (Wau'™) (Wu?)

< 0
The proof of Nakano-negativity of £ ® det F is completed. 0

Combined with Theorem 1.3.7, Lemma 1.3.6 and Theorem 1.3.11 we obtain,

Theorem 1.3.12. Let E be a holomorphic vector bundle over a compact Kihler manifold S and F
a line bundle over S. Let r be the rank of E and k > 0 an arbitrary integer. If S**"E @ det E* @ F

is ample over S, then S*E ® F is both Nakano-positive and dual-Nakano-positive.
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1.3.2.3 Applications

Corollary 1.3.13. If E is an ample vector bundle and F is a nef line bundle, then there exists
ko = ko(S, E) such that S*E ® F is Nakano-positive and dual-Nakano-positive for any k > k.

In particular, S*E is Nakano-positive and dual-Nakano-positive for k > k.

Proof. Itis easy to see that there exists kg = ko(S, E) such that for any k > ko, S**"E @ det E* is
ample, and so is S**"E @ det E* ® F. By Theorem 1.3.12, S* E ® F is Nakano-positive and dual-

Nakano-positive. In particular, S*E is Nakano-positive and dual-Nakano-positive for k& > ky. [

Corollary 1.3.14. If E is an ample vector bundle and F is a nef line bundle, or F is a nef vector

bundle and F' is an ample line bundle,

(1) S*E @ det E ® F is Nakano-positive and dual-Nakano-positive for any k > 0.

(2) If the rank r of E is greater than 1, then S™E* ® (det E)! ® F' is Nakano-positive and dual-

Nakano-positive if t > r +m — 1.

Proof. (1) It follows by the ampleness of S¥""E @ F' = SM"E @ det B* ® (det E @ F).

2)If r > 1, itis easy to see B* @ det E = A"~ E. By the relation
y y
SHTE*@det B) @ (det B) " "M @ F = S E* @ det E® (det B)' @ F

we can apply Theorem 1.3.12 to the pair (E*, (det F)' ® F') and obtain the Nakano-positivity
and dual-Nakano-positivity of S™E* ® (det E)' ® F whent > r +m — 1. Let E = TP?, then
E = E*®det E is Griffiths-positive but not Nakano-positive. So we can not remove the restriction

t>r+m—1. U]

Corollary 1.3.15. If S"™'E @ det E* is ample, then E is Nakano-positive and dual-Nakano-

positive and so E is Griffiths-positive.

Remark 1.3.16. By Corollary 1.3.15, the ampleness of Opg-)(r + 1) ® 7*(det £*) implies the
ampleness of Op(g+)(1). But in general, the ampleness of Op(+)(1) can not imply the ampleness
of Op(g+)(r + 1) ® 7*(det £*).
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1.4 Nakano-positivity and dual-Nakano-positivity of adjoint vector bundles

The following lemma is due to Fujita ([ ]) and [ ].

Lemma 1.4.1. Let E be an ample vector bundle over S. Let r be the rank of E and n the dimension

of S. If r > n + 1, then det E @ Kg is ample except (S, E) = (P", Opa(1)®7 1),

Theorem 1.4.2. Let E be an ample vector bundle over S. Let r be the rank of E and n the

dimension of S.

(1) If r > 1, then S*E @ (det E)? ® Kg is Nakano-positive and dual-Nakano-positive for any

k > max{n —r,0}.

(2) If r = 1, then the line bundle E*"+?) @ Kg is Nakano-positive.
Moreover, the lower bound on k is sharp.

Proof. (1) If r > 1, then X = P(E*) is a P"~! bundle which is not isomorphic to any projective
space. By Lemma 1.4.1, Op(g+)(n + 1) ® Kx is ample. So

O[[»(E*)(n) ® 71'>|< (KS ® det E)

is ample and it is equivalent to the ampleness of S"E ® (det E*) ® (det E)? @ Kg. If k >
max{n —r,0}, S"T*EF @ det E* ® (det E)?> ® K is also ample, hence by Theorem 1.3.12, S*E' @

(det F)? @ Kg is Nakano-positive and dual-Nakano-positive.

(2) It follows from Lemma 1.4.1. In fact, the vector bundle E = E®(+2) jgan ample vector bundle

of rank n + 2 and det E = E®"*2)_ By Lemma 1.4.1, det E ® Kg = E®"*2 @ Kg is ample.

Here the lower bound n — r is sharp. For any integer ky < n — r, there exists some ample vector
E such that £ ® (det E)* @ Ky is not Nakano-positive, for example (S, E) = (P*, Ops(1) &
Opa(1)). O]

Theorem 1.4.3. Let E be an ample vector bundle over S. Let r be the rank of E and n the
dimension of S. If v > 1, then E ® (det E)* ® Kg is Nakano-positive and dual-Nakano-positive

for any k > max{n + 1 — r,2}. Moreover, the lower bound is sharp.
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Proof. If r > n — 1, by Theorem 1.4.2, F ® (det E)2 ® K g 1s Nakano-positive and dual-Nakano-
positive. Now we consider 1 < r < n — 1. By ([ , Theorem 2.3]), Ks ® (det E)""" is
nef except the case (S, ) = (P4, Ops(1) ® Opa(1)). It is easy to check

STME® Ks® (det B)" ™"

is also ample in that case. By Theorem 1.3.12, E ® (det E)"™~"

® Kg is Nakano-positive and
dual-Nakano-positive. Here the lower bound n 4+ 1 — 7 is sharp. For any integer kg < n + 1 — 1,
there exists an ample vector bundle E such that £ ® (det E)* ® K is not Nakano-positive, for

example (S, F) = (P, Ops (1) & Opa(1)). O

Remark 1.4.4. In Theorem 1.4.2 and 1.4.3,if r > n, £ ® (det E)2 ® K is Nakano-positive and
dual-Nakano-positive. If £ = TP", then S? E @ det E ® Kp» is Nakano-positive and dual-Nakano-

positive.

Problem: Is S?F ® det E ® K g Nakano-positive and dual-Nakano-positive when F is ample and
r > n? If one can show S""?E ® K is ample, or equivalently, Op(g+)(n + 2) @ 7*(Kg) is ample,

by Theorem 1.3.12, S?E ® det E ® K is Nakano-positive and dual-Nakano-positive.

1.5 Comparison of Griffiths-positive and Nakano-positive metrics

Let (E,h) be a Hermitian vector bundle. In general, it is not so easy to write down the exact
curvature formula of (S*E, S*h). In this section, we give an algorithm to compute the curvature
of (S*E, S*h). As applications, we can disprove the Griffiths-positivity and Nakano-positivity of

a given metric on P".

Let h be a Hermitian metric on E, h” be the induced metric in (1.2.13) on L = Opg+)(1). Let
F be a line bundle with Hermitian metric h*". Naturally, there is an induced metric S kh ® h' on
the vector bundle S*F ® F. On the other hand, we can construct a new metric fonS FE @ F
by formula (1.3.3). There is a canonical way to do it. Let L = L* @ 7*(F). The induced
metric on L is by = (h*)* @ 7*(h¥) and the induced metric on det(Tx/s) = L™ @ 7*(det E*) is
(h")" @ 7*(det(h)~"). These two metrics induce a metric Ao = (h*)*™" @ 7 (A" - det(h)™") on
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L® det(TX/S). Now we can polarize each fiber X by the curvature of \y. By formula (1.2.14),

Wy = ——Vz_laﬁs log Ao = % ”_18555 log (Z h"‘BWan> = (k+7)wrs  (1.5.1)

s s
By a simple linear algebraic argument, we obtain

Ao (BDrPea(hF)  hy
det(ws) (K47t  (k4+7r)-! (1.5.2)

Now we can use (L, h) and (X, w,) to construct a “new” metric f on S* E® F by formula (1.3.3).

Theorem 1.5.1. The metric f has the form

(r+k)~—1!

TRk F
k-1 S*h® h (1.5.3)

Moreover, f is a constant multiple of the metric constructed in Theorem 1.3.12.

Proof. Without loss of generality, we can choose normal coordinates for the metric / at a fix point
s € S. By formula (1.2.14), the metric hy = (h*)* ® h¥ on L* @ F induced by (E, h) and (F, h")
can be written as % locally on the fiber X, = P"~!. By formula (1.5.1), the metric f defined by

(1.3.3) has the following form

— wil ViVs whia
5= [ hoVaVs—— = (k T—th/ o b LS
fia = J WP gy = e [
Here V,,, V3 are homogeneous monomials of degree & in Wy, --- | IW,.. By Lemma 1.3.3,
(r+ k)t F
w3 = ——————0u8h
Jas (r+k—1)"°

that is f = E:f,?:;, - S¥h @ h¥. By formulas (1.5.2) and (1.3.30), f is a constant multiple of the

metric constructed in Theorem 1.3.12. [

Theorem 1.5.2. If (E, h) is a Griffiths-positive vector bundle, then

(1) (S*E ® (det E)*, S*h @ (det h)*) is Nakano-positive and dual-Nakano-positive for any k > 0
and ¢ > 1.

(2) There exists kg = ko(M, E) such that (S*E,S*h) is Nakano-positive and dual-Nakano-
positive for any k > k.
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Proof. These follow by Theorem 1.3.12 and Theorem 1.5.1. [

Proposition 1.5.3. (1) (E, h) is Griffiths-positive if and only if (S*E, S*h) is Griffiths-positive

for some k > 1.

(2) If (E, h) is (dual-)Nakano-positive, then (S*E, S*h) is (dual-)Nakano-positive for any k > 1.

Proof. By Theorem 1.5.1, S*h is a constant multiple of the metric constructed by formula (1.3.3).
So by Theorem 1.3.2, we can write down the curvature formula of S*h explicitly. In a normal
coordinates of / at a fixed point, the curvature formula (1.3.6) can be simplified by Lemma 1.3.3.

We obtain curvature formulas (1.5.4) and (1.5.6).

For the convenience of the reader, we assume k& = 2 at first. We can choose normal coordinates
at a fixed point. Let {e1,- - - , e, } be the local basis at that point. The ordered basis of S*F at that
point are {e; ® e1,e1 ® €9, , €, ® €,_1,¢, @ €, }. We denote them by e, 3) = e, ® eg with

a < 3. The curvature tensor S2h is

Riwnas =1

Gam@0) = Lijapdys + 1

19755 B + RZ]Wﬁé g + lead(S (154)

where R;,7 is the curvature tensor of £. Let u = Z ; Ui(a)€(am) € (M, T M @ S*E). For
i aly
simplicity of notations, we extend the values of ;) to all indices (c,y) by setting w;(q,) = 0 if

v < «. Therefore

ZZ 5 (a,y)( ﬁ&ul(aﬂuﬂ(ﬂé)

7,] a<’y
= Z Z Rz 7 (a,y)( ,85”7'04’)’ 3(8,6)

1,7 a,y,03,0
= Z (Rja5%itom @57 + Rigy5titan) Ui(as)

1,5,0,8,7,0

+R 55 T (.00 T Rigastitan) Tjtr0) (1.53)
= Z Z szaﬁ i(a,y) + U’Z(V O‘)) (uj(ﬁﬁ) + uj(%ﬂ))

Y hdanB

Hence (S?E, S?h) is Nakano-positive if (F, h) is Nakano-positive. For the general case, we set

A= (oq, - ,ar)and B = (fy, -+, 0k) withag < -+ < ag and f; < --- < ;. The basis of
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SFE are {ea = €4, ® -+ - @ €, }. The curvature tensor of (S*E, S*h) is

r k
Rijap = Z Z Rz.5000,088,04,B, (1.5.6)
a,B=1 s,t=1
where A, = (ay, -+ ,Qs_1,0501, - s ), By = (Br, , Bie1, Bis1, -+, Bi) and 04, p, is the

multi-index delta function( see formula (1.3.12)). We have the curvature formula,

> Ryapuials
ij,A,B

= Z Z Z R@]aﬁ‘/;ozoz (1) o (k— 1>V]/6a0,(1 Qg (k—1) (157)

,op—1 0€SK_1 1,7,a,3

where Sy is the permutation group in (kK — 1) symbols and

E s
V;aocyuak_l = UiAs, A = (ala HRREPN O P PO P 6 PHE P 70%)

The Nakano-positivity of (S*E, S*h) follows immediately from the Nakano-positivity of (£, h)
by formula (1.5.7). With the help of curvature formula (1.5.6), we can prove Griffiths-positivity
and dual-Nakano-positivity of S* E in a similar way. Here, we use another way to show it. S* EJ can
be viewed as a quotient bundle of E®*. If (E, h) is Griffiths-positive(resp. dual-Nakano-positive),
(E®* h®*) is Griffiths-positive(resp. dual-Nakano-positive) and so the quotient bundle S*F is
Griffiths-positive(resp. dual-Nakano-positive)([ ]). The induced metrics on quotient bun-

dles are exactly the given ones. 0

Remark 1.5.4. Part (1) is an analogue of ampleness: E is ample if and only if S¥E is ample
for some k£ > 1. The converse of part (2) is not valid in general. We know (S*TP", S?hpg) is

Nakano-positive, but (TP", hrg) is not Nakano-positive as shown in the following.

1.6 Vanishing theorems

1.6.1 Vanishing theorems for adjoint vector bundles

Theorem 1.6.1. Let &/, Iy, - - - , By be vector bundles over an n-dimensional compact Kdhler man-

ifold M. Their ranks are r,r1, - - - , 1y respectively. Let L be a line bundle on M.
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(1) If E is ample, L is nefand r > 1, then
H™(M,S*E ® (det B)? @ Kpy ® L) = H"(M,S*E @ (det E)* ® Kjy ® L) = 0
forany q > 1 and k > max{n — r,0}.
(2) If E is ample, L is nef and r > 1, then
H™(M,E® (det E)}* ® Kjy @ L) = H*"(M,E® (det E)* ® Kjy @ L) = 0
forany g > 1 and k > max{n + 1 —r,2}.
(3) Letr > 1. If E is ample and L is nef, or E is nef and L is ample, then
H™(M,S"E*® (det E) ® L) = H""(M,S™E* ® (det E)! ® L) =0
foranyq > landt>r+m — 1.

(4) If all E; are ample and L is nef, or, all E; are nef and L is ample, then for any ky > 0, - - -
0,

ke
vV

H™(M,S"E, ® - @ S*E,@det B, ® -~ @ det B, ® L)

= H"(M,S"E, ®-- - ®SM"E,®det B, ® - @det B, @ L) =0

forq > 1.

Proof. By Theorem 1.4.2, Theorem 1.4.3 and Corollary 1.3.14, the vector bundles in consideration

are all Nakano-positive and dual-Nakano-positive. The results follow from Lemma 1.2.20. 0
Remark 1.6.2. Part (4) can be regarded as a generalization of Griffiths ([ ], Theorem G)
and Demailly([ ], Theorem 0.2).

The following results generalize Griffiths’ vanishing theorem( see also [ 1,

Corollary 1.5):
Proposition 1.6.3. Let r be the rank of E and k > 1. For anyt > 0, if S"**" E ® L is ample,
H™(M,S'"E® (det E)* ® L) = H*"(M,S'E ® (det E)*® L) =0

forany q > 1.
35



Proof. By Theorem 1.3.12, S'FE ® (det E)* ® L is Nakano-positive and dual-Nakano-positive.

The results follow by Nakano’s vanishing theorem. [

Remark 1.6.4. Theorem 1.1.1 allows us to do induction to deduce more positivity results. For
example, if S"E ® L is ample, then S™"F ® det £ ® L is (dual-)Nakano-positive and so it is
ample. Using Theorem 1.1.1 again, we get S™ 2" ® (det £')*> ® L is Nakano-positive and dual-
Nakano-positive. Finally, we get S' E® (det E)*® L is Nakano-positive and dual-Nakano-positive,
if m = ¢+ kr for some 0 < ¢ < r. It is obvious that the (dual-)Nakano-positivity turns stronger
and stronger under induction. This explains why a lot of vanishing theorems involve a power of

det E.

If L is an ample line bundle over a compact Kidhler manifold M and F'is an arbitrary line bundle
over M. By comparing the Chern classes, there exists a constant mg such that L™ @ F' is ample
and so it is positive. If £ is an ample vector bundle and F' is an arbitrary vector bundle, it is easy
to see S*E ® F is ample for large k. But, in general, we don’t know whether an ample vector
bundle carries a Griffiths-positive or Nakano-positive metric. In the following, we will construct

Nakano-positive and dual-Nakano-positive metrics on various ample vector bundles.

Lemma 1.6.5. If L is an ample line bundle over M and F' is an arbitrary vector bundle. There

exists an integer mg such that L° ® F' is Nakano-positive and dual-Nakano-positive.

Proof. Let hy be a positive metric on L and w be the curvature of hy which is also the Kéhler

metric fixed on M. For any metric g on F', the curvature 1?9 has a lower bound in the sense

min inf R (u(z), u(z))
T e

> —(mg—1) (1.6.1)

where v € T'(M, T*°M ® F). The curvature of metric A™ ® g on L™ @ F is given by

R=mow-g+hD R (1.6.2)
Therefore
Rv @ u,v®u) > [u]*hy* (v, v)
forany v € I'(M,L™) and u € T(M,T*°M @ F). O
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Lemma 1.6.6. If E is (dual-)Nakano-positive and F' is a nef line bundle, then £ ® F' is (dual-

)Nakano-positive.

Proof. Fix a Kihler metric on M. Let g be a Nakano-positive metric on £, then there exists 2 > 0
such that

R?(u(z), u(z)) = 2elu(z)|”
for any u € I'(M, TYM ® E). On the other hand, by a result of [ ], there exists a smooth
metric hg on the nef line bundle F’ such that
R" > —zwhy (1.6.3)
The curvature of g ® hgon £ ® F'is
R=R" hy+g- R"

Forany u € I'(M,T'*°M @ E)and v € T'(M, F)

Rlu@v,u®wv) > (RI(u,u) — elul?) ho(v,v) > e|ul®ho(v, ) (1.6.4)
For dual-Nakano-positivity, the proof is similar. U

Theorem 1.6.7. If E is an ample vector bundle and F' is an arbitrary vector bundle over M, then
there exists ko = ko(M, E, F) such that S*E @ F is Nakano-positive and dual-Nakano-positive
for any k > k.

Proof. By Lemma 1.6.5, there exists mg such that (det £)™ ® F' is Nakano-positive and dual-
Nakano-positive. On the other hand, there exists kg = ko(E,mq, M) such that Opg(r +
k) @ m*(det E*)™*! is ample for k > ko. It is equivalent to the ampleness of vector bundle
S™FE @ (det E*)™o*l. By Theorem 1.3.12, S*E ® (det E*)™ is Nakano-positive and dual-
Nakano-positive. Since the tensor product of two (dual-)Nakano-positive vector bundles is (dual-
)Nakano-positive, S*FE ®@ F = (S*E @ (det E*)™) ® ((det F)™ ® F) is Nakano-positive and

dual-Nakano-positive for £ > k. O]

The following results are well-known in algebraic geometry, but merit a proof in our setting.
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Corollary 1.6.8. If £/ is ample over M, L is a nef line bundle and F' is an arbitrary vector bundle,
(1) there exists ko = ko(M, E, F) such that for any k > k.
H"(M,S*E® F) =0
forq>1andp > 0.
(2) there exists ko = ko(M, E) such that for any k > k,
H"(M,S*E® L) =0
forany q > 1 andp > 0.

Proof. (1) By Theorem 1.6.7, there exists ko = ko(M, E, F') such that S*F @ F' @ A" PTHOM is

Nakano-positive for any p. On the other hand
HP(M,S*E® F) = H"(M,S*E® F @ A" PT*° M)
By Nakano vanishing theorem, H?(M, S*E @ F) = 0 for ¢ > 1 and p > 0 if k > kq. The proof

of part (2) is similar. ]

1.6.2 Vanishing theorems for bounded vector bundles

Firstly, we would like to introduce the following

Definition 1.6.9. Let E be an arbitrary holomorphic vector bundle with rank r, L an ample line
bundle and €1,e5 € R. E is said to be (¢, e5)-bounded by L if there exists a Hermitian metric
h on E and a positive Hermitian metric 2” on L such that the curvature of E is bounded by the

curvatures of L' and L*2, i.e.
cwr, ® Idg < 0F" < eqwp @ Idg (1.6.5)

in the sense of Griffiths. E is called strictly (£1, £2)-bounded by L if at least one of OF" — ¢,w; ®

Idg and ©F" — cow; ® Idg is not identically zero.

38



It is easy to see that £ is (1, 3)-bounded by L if and only if £ ® L= and E* ® L° are semi-
Griffiths positive. Similarly, if E is strictly (1, e2)-bounded by L, then at least one of the semi-

Griffiths positive vector bundles £ ® L™°! and E* ® L*? is not trivial.

Proposition 1.6.10. Let E be a holomorphic vector bundle with rank r over a projective manifold.

(1) If E is globally generated, E is strictly (0, 1)-bounded by L @ det E for any ample line bundle
L;

(2) If E ample, E is strictly (—1,r)-bounded by det E;
(3) If E is nef, E is strictly (—1,r)-bounded by L & det E for any ample line bundle L;

(4) If E is Griffiths-positive, E is strictly (0, 1)-bounded by det E.

Proof. (1) As is well-known, if E is globally generated, there exists a Hermitian metric h on F
such that ©%" is semi-Griffiths-positive and F ® det E* = A"~ E* is semi-Griffiths-negative. If

L is an ample line bundle, £ ® det E* ® L* is Griffiths-negative and
O < wrgdetr @ Idp

Hence, F is strictly (0, 1)-bounded by L ® det E.

(2) We assume r > 1. By a result of [ ] and [ ], if E is
ample, E ® det F is Griffiths-positive. On the other hand, £* ® det £ = A"~'E is ample and so is
S™T(E*®det E). By aresult of [ ], (E*®det E)®@det( E*®@det F) = E*®(det E)"
is Griffiths-positive.

(3) If Eis nef, S""' E ® L is ample and by a result of [ 1, E®det E® L is Griffiths-
positive. Similarly, we know S"*!(E* @ det E) ® L is ample and so E* ® (det E)" ® L is Griffiths-

positive.

(4) It is obvious. L

Remark 1.6.11. In general, if £ is (—1,7)-bounded by det E, E' is not necessarily ample. For

example, £ = L3 @ L~! for some ample line bundle L.
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Let h be a Hermitian metric on the vector bundle £. At a fixed point p € X, if we assume haﬁ =

0,5 then the naturally induced bundle (£ ® (det £)™, h @ (det h)™) has curvature component

ijof

E®(det E)™
RESWE — R 54+ m R (1.6.6)
s
where R 5 is the curvature component of (E, ). It is obvious that S*E' has basis
{ea=el"® - ®ei} (1.6.7)

if A= (ay, - ,q,) witha;+---+«a, = kand «a; are nonnegative integers. The naturally induced

bundle (S*E ® (det E)™, S*h ® (det h)™) has curvature components

Sk E®(det E)™
Rz‘EAE e = Rijag +m Z Rss. (1.6.8)
§

Lemma 1.6.12. If (E, h) is a Hermitian vector bundle, the curvature of (S*E ® (det E)™, S*h @

(det h)™ can be written as

I/ r—1
Sk E®(det E)™ . IENE VaVp _ Wpg
RSSO () — (1 4 — 1) /P T (1.6.9)
where o
WsW
pg=0+k)> Rijys(P)W +(m—=1)Y R (1.6.10)
V56 s
Proof. This follows from Lemma 1.3.3. 0

Theorem 1.6.13. If E is strictly (g1, e2)-bounded by L and m + (r + k)e; > 0, then
HP(X,S"E@det E® L™) = H(X,S*E®@det E® L™) =0 (1.6.11)

ifp>1,q > 1satisfy

m+ (r+ ke . {n—q n—p}
— < >min , )
m+ (r + k)eg D q

In particular, if m+(r+k)e; > 0, S*E®@det E® L™ is Nakano-positive and dual-Nakano-positive

(1.6.12)

and

H™(X,S*E®@det E®@ L™) = H*"(X,S*E®@det E® L™) = 0

forq > 1.
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Proof. Let h be a Hermitian metric on £ and h” a positive Hermitian metric on L such that
Ele®]dE @E <62wL®]dE

We can polarize X by

=1 —
wy = wp = —=5—0dlog ht. (1.6.13)

At the fixed point p € X, we can assume

gz‘j(p) = 5i§ and haB(P) = 5(13-

Therefore,
95(p) = RY (p) = 5. (1.6.14)
Let o
k) R W R 1.6.15
o5 =(r+ Z "5 +mR. (1.6.15)
then the curvature of S*E @ det E @ L™ is
RSFE®det EQL — E—1)- / __Wrs , 1.6.16
iJAB (p) = (r+ ) pro1 |W|2k i T(r—1)! ( )
By formula (1.6.15), it is easy to see that, at point p, for any v = (v',--- ,v™) € C"\ {0},
(m+ (r+k)e1) [vf* < o500 < (m+ (r + k)ea) [v]? (1.6.17)

Since m + (r + k)e; > 0, it is obvious that S*F ® det E ® L™ is both Nakano-positive and
dual-Nakano-positive by (1.6.16). Let \; be the smallest eigenvalue of (gpﬁ) and )\, the largest
one, then

+(r+k)eg <A <A\, <m+ (r+k)eg (1.6.18)

Let p = %gogdzi A dz’, we obtain the curvature term of S¥E @ det £ @ L™

T(ua u) = <[R7 Ag]u> u)

1 wr—l
_ k—1)! AJU,UY - . L8
k=0 [ ( AJUD) -
1 Wi 1
> (r+ ) Pr_lmax{pl (n = @)An, g1 — (n = p)A}HU| W2k (r—1)!

= maX{pKl - (n - q)Km qu - (n - p)Kn}
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for any nonzero u = u;5,dz! N dz’ @ ey € OP4(X, S*E ® det F ® L™) where

_ I A 3=J _ UJ? W;“Ts*l C
U= ;uUAVAdz Adz’, and  K;=(r+k-—1)- /P WENG o 1,n,
By (1.6.18), if m + (1 + k), > 0,
Kl m —+ (7‘ + ]{3)51
B omA It e 1.6.19
K, m+(r+k)es ( )
since F is strictly (g1, £9)-bounded by L. If p > 1,q > 1 satisfy
w > min n—q’n—p (1.6.20)
m+ (r+ k)eg P q
we obtain
K _ _
?1>min{npq,nqp} (1.6.21)
By standard Bochner formulas, we deduce that HP4(X, S*E @ (det E)™ ® L) = HP(X,S*E ®
(det E)" ® L) = 0. O

Theorem 1.1.8 and Theorem 1.1.9 follow immediately from Theorem 1.6.13 and Proposition

1.6.10.

Now we want to analyze the condition

Aozmin{"_q,"_p} (1.6.22)
p | q

for some \g € [0,1). Without loss of generality, we assume p > ¢ > 1, then that is a linear

cindition
P+ Aog > n. (1.6.23)
When p = ¢, we obtain
n
= — 1.6.24
Co 1 T+ )\07 ( )

(p, q) satisfies (1.6.22) if and only if (p, ¢) lies in the quadrilateral ) = AygA; Ay A3 where
Ay =(0,n), Ay = (n,n), Ay = (n,0), A3 = (co, co) (1.6.25)

Corollary 1.6.14. Let E be globally generated and L be ample.
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(1) If the pair (k,m, s) satisfies

m >

» |

[n_s] (r+k)+1
2
where || is the integer part of e, then

HP(X,S*E® (det EY" ® L) = 0
foranyp+q>n+s.

(2) For fixed (k, m), we have

HP(X,S*E® (det EY" ® L) = 0

fo> a4 2n
n —_— —n|.
p—r4q 1 e

Proof. It m > 1 [222] (r + k) + 1, we get

for any (p, q) satisfies

Ifp+qg>n+s,

. Jn—q n—p| 2
max min , = —=
p+g>n+s P q ["_S] + s

Part (1) is proved. For part (2), if

+qg=>2n+ 2n 2n
n —_— N =

then

That is

So the vanishing result holds.
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Remark 1.6.15. Theorem 1.1.8 and Corollary 1.6.14 are also valid for semi-Griffiths positive £.
Consider the example E = TP? @ Opz2(—1) with the canonical metric. Since r = n = 2, by

Corollary 1.6.14, we obtain
HMM(X,E® (det EY"® L) =0 (1.6.31)
forany p+q > n+ 1if m > 1. It is obvious that the lower bound 1 is sharp since
H" Y X, E® L)~ H"(P",C)=C (1.6.32)

if we choose L = Opx (1) and m = 1. So the lower bound

H”;S] (r+k)+1

can not be improved by a universal constant, i.e., a constant independent of r, s, n, k. Hence the

lower bound is optimal in that sense.

Similarly, we obtain

Corollary 1.6.16. Let E be ample (resp.) and L be nef (resp. ample). Suppose k > 1 and
m>r+k+ 1.

(1) If the pair (k,m, s) satisfies

mzé{ngs} (r+k)(r+1)+(r+1)+k,

then

HP(X,S*E ® (det E)™) = 0
foranyp+q>n—+s.
(2) For fixed (k,m), we have

HP(X,S*E® (det EY" ® L) = 0

for any (p, q) satisfies

o> nat < 2n )
Pprgqg="n —-n|.
(m—1)—(r+k)
L+ (m—=1)4r(r+k)
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1.7 Examples

1.7.1 Positivity of TP"

It is well-known that the holomorphic tangent bundle 7" of P" is ample and also Griffiths posi-

tive.

Corollary 1.7.1. Let hpg be the Fubini-Study metric on TP" withn > 2, then

(1) (S"MTP" @ Kpn, S" " hpg @ det(hps) ™) is semi-Griffiths-positive. Moreover, S"T'TP" &

Kpn can not admit a Griffiths-positive metric.

(2) (TP", hgg) is dual-Nakano-positive and semi-Nakano-positive.

(3) (S*TP" @ Kpn, S*hps ® det(hps) 1) is Griffiths-positive for any k > n + 2.

(4) (S*TP", S*hps) is Nakano-positive and dual-Nakano-positive for any k > 2.

Proof. (1) By the Euler sequence

0— C — TP" — Opn(1)®H) — (1.7.1)
we know TP" ® Opn (—1) is the quotient bundle of trivial bundle C®"*+1), Hence
S"HTP" @ Kpn = S™H (TP" ® Opn(—1))

with the canonical metric is semi-Griffiths-positive. However, if S "HITPr @ Kpn admits a Griffiths-
positive metric, by Corollary 1.3.15, TTP" is Nakano-positive which is impossible for n > 2. (2)

The curvature of £/ = TTP" with respect to the standard Fubini-Study metric hpg is
Without loss of generality, we assume h;; = d;; at a fixed point, then
. 1 ) .
Rggu™w' = 23 Ju" + (1.7.3)
j.k

which means that (£, hpg) is semi-Nakano-positive but not Nakano-positive. For the dual-Nakano-

positivity of (TP", hrg) we can check that by definition. We can also show it by the monotone
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property of dual-Nakano-positivity of quotient bundles. By the Euler sequence (1.7.1), TTP" is the

quotient bundle of dual-Nakano-positive bundle O~ (1)®™+1) and so TP" is dual-Nakano-positive.

(3) It follows by the identity
S*TP" @ Kpn = S*(TP" @ Opn(—1)) @ Opn(k —n — 1)
and semi-Griffiths positivity of TP" @ Opn(—1).

(4) By Theorem 1.3.12, the canonically induced metric f is Nakano-positive and dual-Nakano-
positive. On the other hand, by Theorem 1.5.1, f is a constant multiple of S*hrg. The lower

bound of £ follows from (1) and (2). O

Example 1.7.2. In this example, we will show the Nakano-positivity of (S?TP?, S?hprg) in local
coordinates. At a fixed point, we choose normal coordinates of TP2. Let {e;, e2} be the ordered
basis of TP* at that point. The ordered basis of S*TP? are e(1) = €1 ® €1, €e(12) = €1 @ eo and
€(2,2) = €2 ® eo. Using the same notation as Proposition 1.5.3, we set Vi, = Uj(a,) + Ui(y,o) Where

U= Uan) sz ® €y € T(P2,THP? ® S?TP?). For v = 1, the 2 x 2 matrix (Vjs1) has
1 aly
the form

T, — 2U1(1,1) U1(1,2)
2U2(1,1) U2(1,2)

For v = 2, the 2 x 2 matrix (Vj,0) is
T, — U1(1,2) 2U1(2,2)

U2(1,2) 2“2(2,2)

The total 2 x 3 matrix (uj(a,g)) is

Ui(1,1) Ui(1,2) U1(2,2)

T =
U(1,1) U2(1,2) U2(2,2)
By formulas (1.5.5) and (1.7.3),
Z R 5 0m)58) Yilam) Uj(8,0) = Z (RijupVier Vit + Riza5Via2V )
1,7,0,77,3,0 1,7,0,3

1 9, 1 2
= §Z|Via1+vm‘1\ +§Z|V;a2+voci2|

It equals zero if and only if 77 and 75 are skew-symmetric which means 7" = 0. The Nakano-
positivity of (S*TP?, S?hpg) is proved.
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1.7.2 Curvature properties of Kodaira sufaces

In this subsection we will investigate various curvature properties on Kodaira surfaces. By def-
inition, a Kodaira surface X corresponds to a non-trivial deformation of complex structures of
Riemann surfaces of genus > 2. Naturally, we can identify a point z € X on the fiber X; with the
punctured Riemann surface X; \ {z}, and we get a map from X to the moduli space M, ;. This
map lifts to local immersions to the Teichmuller space 7, ;. So there is a naturally induced metric

on the Kodaira surface.

Let f : 7,,, — M,, be the universal curve. The Poincaré metric on each fiber of 7, ,,, which
is a complete metric on the n-punctured Riemann surface with constant curvature —1, patches
together to give a smooth metric on the relative cotangent bundle K7, , /4, ,,- It is well-known that
f- (K%2 /M, ) is isomorphic to the cotangent bundle 7*'° M, of the moduli space M. For a
given point z € M, ,, the fiber of the bundle f, (K. %2 / ngn) is

H(C,,Kg?) = (H(C.,TC.))"

where C, = f~!(z) is a Riemann surface of genus g with n punctures. The space H'(C,,TC.)
can be identified as the space Hg (C,,TC,) of L*(dA,)-integrable harmonic Beltrami differentials
where dA, is the Poincaré metric on C,. Let p, 1o be two such Beltrami differentials, the Weil-

Petersson metric on the holomorphic tangent bundle of M, ,, is defined by

(1, o) Z/ p - fadA, (1.7.4)

The following result can be deduced from the similar methods as in [ ]. For more

details, we refer to [ ].

Proposition 1.7.3. The curvature of Weil-Petersson metric gy p,g,, on the Teichmiiller space T, ,,

of Riemann surfaces of genus g > 2 is dual-Nakano-negative and semi-Nakano-negative.

Lemma 1.7.4 ([ 1). Let X be a Kodaira surface. There exists a holomorphic map ®

from X to 1, such that ® is a local holomorphic immersion.

Proposition 1.7.5. Let X be a Kodaira surface. Let h be the naturally induced metric from the

Teichmiiller space (1,1, wwpg1) with g > 2.
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(1) (X, h) is Griffiths-negative, i.e. (X, h) has negative holomorphic bisectional curvature,
(2) (X, h) is semi-Nakano-negative but it can not be quasi-Nakano-negative;
(3) X can not admit a Kdhler metric with non-positive Riemannian sectional curvature;

(4) X can not admit a Kdhler metric with semi-dual-Nakano negative curvature.

Proof. By Lemma 1.7.4, T* X is a holomorphic subbundle of the tangent bundle 7 ;. Hence, (1)

follows from the decreasing property of subbundles (i.e. Lemma 1.2.8 ) and Proposition 1.3.2.

For (2), as similar as (1), (T"°X, h) is semi-Nakano-negative. On the other hand,
HY(X,End(TY°X)) =2 HO(X, T*""°X @ TY'X) = H"(X, T"°X)

Hence, if (TH°X, h) is quasi-Nakano-negative, then H'(X, T'9X) = ( by Nakano vanishing

theorem which is a contradiction.

(3) Suppose X admits a Kéhler metric with non-positive Riemannian sectional curvature. It is
well-known that every Kodaira surface is algebraic and of general type. Moreover, ¢? > 2c¢, and

so by [ , Proposition 3], the Kodaira surface X is strongly rigid which is a contradiction.

(4) As an analog of Lemma 1.2.9, we know that if X has a Kéhler metric with semi-dual-
Nakano negative curvature, that metric has non-positive Riemannian sectional curvature. However,

in virtue of part (3), it is impossible. O

Remark 1.7.6. The property (3) in Proposition 1.7.5 answers a question of [ ]ina
negative way. That is, Kodaira surface can not carry a Kéhler metric with non-positive Rieman-
nian sectional curvature, although it admits a Kihler metric with negative holomorphic bisectional

curvature.

1.7.3 Examples of bounded vector bundles

It is well-known that globally generated vector bundles are semi-Griffiths positive. On the other
hand, any globally generated vector bundle has a quotient metric induced from the trivial vector

bundle and so it is semi-dual-Nakano-positive([ D.
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Corollary 1.7.7. Let E be a globally generated vector bundle and L an ample line bundle over a

projective manifold X, then S*E ® L is dual-Nakano-positive for any k > 1. Moreover,
HP™(X,S*E® L) =0 (1.7.5)
foranyp > 1.

We can not obtain a vanishing quadrilateral for S* £ ® L as Figure 1. It is easy to see that the result
in Corollary 1.7.7 is a vertical line of the quadrilateral in Figure 1. In [ ], the authors found

more vanishing elements close to that vertical line. More precisely, they proved that
HP" Y X, S*E® L) =0, forany p>r+1 (1.7.6)

But in general, there exists some 1 < ¢ < n such that H™4(X,S*E ® L) # 0. In particular,
S*E @ L is not necessarily Nakano-positive. For example, £ = TP" ® Opn(—1) and L = Opn(1).
It is obvious F is globally generated. Whenn > 2, ¥ ® L = TP" is dual-Nakano-positive but not

Nakano-positive. More generally, we have

Example 1.7.8 ([ D). Let X = G(r, V) be the Grassmannian of subspaces of codimen-
sion r of a vector space V, dim¢ V' = d, and E the tautological quotient vector bundle of rank r
over X. Then F is globally generated and L. = det E is very ample.

0, —1)(d —r);
H™(X,S*E® det E) = 7 (r=1)d=r) (1.7.7)

Sktr=dy @ detV, q= (r—1)(d—r)
where n = dime X = r(d — 7). If r =d — 1, then X = P"* = P4 L and £ = TP" @ Opn(—1),
det ' = Opn(1). That is

H™(P", S*TP" @ Opn(1 — k)) = (1.7.8)

SV @detV, qg=n-—1
Therefore, if n > 2, S*TP" ® Opn (1 — k) can not be Nakano-positive. However, we will see that
forany £ > 2 — k, S*TP" @ Opx (¢) is both Nakano-positive and dual-Nakano-positive. Moreover,

we can obtain more vanishing results about it.
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Let hrg be the Fubini-Study metric on P” and it also induces a metric on L = Opx (1). It is easy
to see that

wp ®I1d < O™ < 2wy ® Id. (1.7.9)
So TP is strictly (1,2)-bounded by L. Similarly, H = TP" ® Opn(—1) is strictly (0, 1)-bounded

by L.

Proposition 1.7.9. If { > 2 — k, S*TP" @ Opn({) is Nakano-positive and dual-Nakano-positive
and

HPA(P" SFTP" @ Opn(£)) = HYP (P, S*TP" ® Opx (£)) = 0 (1.7.10)

foranyp > 1,q > 1 satisfy

(+k—1 - -
+ >mind P P74l (1.7.11)
(+n+2k—1 q P
Proof. 1t follows from the relation
S*H @ det H @ Opn (0 + k — 1) = S*TP" ® Opn (¢) (1.7.12)
and Theorem 1.1.6. Here / + k — 1 > 1,i.e., ¢/ > 2 — k is necessary by Example 1.7.8. O]

Remark 1.7.10. Although TP" is not Nakano-positive when n > 2, S*TP"™ is both Nakano-

positive and dual-Nakano-positive for any k > 2.
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CHAPTER 2

Geometry of Hermitian manifolds

2.1 Introduction

It is well-known([ ]) that on a compact Kéhler manifold, if the Ricci curvature is positive,
then the first Betti number is zero; if the Ricci curvature is negative, then there is no holomorphic
vector field. The key ingredient for the proofs of such results is the Kdhler symmetry. On the
other hand, on a Hermitian manifold, we don’t have such symmetry and there are several different
Ricci curvatures. While on a Kidhler manifold, all these Ricci curvatures coincide, since the Chern
curvature on a Kihler manifold coincides with the curvature of the (complexified) Levi-Civita
connection. We can see this more clearly on an abstract Hermitian holomorphic bundle (£, h). The
Chern connection VE on FE is the unique connection which is compatible with the holomorphic
structure and the Hermitian metric » on E. Hence, the Chern curvature ©F € I'(M, AV T*M ®
E* ® E). There are two ways to take trace of ©F. If we take trace of ©F with respect to the
Hermitian metric h on E, we get a (1,1)-form Tr,©F € T'(M, A" T*M) on M which is called
the first Ricci-Chern curvature of (E, h). It is well-known that the first Ricci-Chern curvature
represents the first Chern class of the bundle. On the other hand, if we take trace on the (1, 1)-part
by using the metric of the manifold, we obtain an endomorphism of F, Tr,,0F € T'(M, E*® E). It
is called the second Ricci-Chern curvature of (E, k). The first and second Ricci-Chern curvatures
have different geometric meanings, which were not clearly studied in some earlier literatures. We
should point out that the nonexistence of holomorphic sections of a Hermitian holomorphic vector
bundle E is characterized by the second Ricci-Chern curvature of E. Let F be the holomorphic
tangent bundle T1°M. If M is Kihler, the first and second Ricci-Chern curvatures are the same

by the Kéhler symmetry. Unfortunately, on a Hermitian manifold, the Chern curvature is not
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symmetric, i.e., the first and second Ricci-Chern curvatures are different. Moreover, in general they
can not be compared. An interesting example is the Hopf manifold S?**! x S!. As is well-known
the Hopf manifold is non-Kéhler and has vanishing first Chern class. However, the canonical
metric on it has strictly positive second Ricci-Chern curvature! Moreover, the first Ricci-Chern
curvature is nonnegative and not identically zero, whereas it represents the zero first Chern class!

For more details, see Proposition 2.6.4.

In this chapter, we study the nonexistence of holomorphic and harmonic sections of an abstract
vector bundle over a compact Hermitian manifold. Let £ be a holomorphic vector bundle over
a compact Hermitian manifold (M, w). Since the holomorphic section space H°(M, E) is inde-
pendent on the connections on FE, we can choose any connection on E to detect H°(M, E). As
mentioned above, the key part, is the second Ricci curvature of that given connection. For exam-
ple, on the holomorphic tangent bundle 7'° M of a Hermitian manifold M, there are three typical

connections

(1) the complexified Levi-Civita connection V on TH0M;
(2) the Chern connection V¢ on TH0M;

(3) the Bismut connection VZ on 710 M.

It is well-known that if M is Kéhler, all three connections are the same. However, in general, the
relations among them are somewhat mysterious. In this chapter, we derive certain relations about

their curvatures on certain Hermitian manifolds.

Let E be a Hermitian complex (possibly non-holomorphic) vector bundle or a Riemannian real
vector bundle over a compact Hermitian manifold (M, w). Let V¥ be an arbitrary connection on
E and 0, 0 the (1,0), (0,1) part of V¥ respectively. The (1, 1)-curvature of V¥ is denoted by
RF € (M, AVIT*M @ E* ®FE). It can be viewed as a representation of the operator 0p0p+0r0p.

We can define harmonic section spaces associated to (F, vVE ) by
HEA(M, E) = {p € (M, E) | 5 = Opp = 0} @2.1.1)

In general, on a complex vector bundle E, there is no terminology such as “holomorphic section

of E”. However, if the vector bundle £ is holomorphic and V¥ is the Chern connection on E,
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ie., Op = 0, then H%’;I(M , ) is isomorphic to the Dolbeault cohomology group Hg’q(M , ) and
H3(M, E) is the holomorphic section space H°(M, E) of E.

If (£, h, VF) is a Hermitian complex vector bundle with a fixed connection V¥ over a compact
Hermitian manifold (M,w), we will call Tr,R¥ € T'(M,AYT*M) the first Hermitian-Ricci
curvature of (E,h,V¥) and Tr,RF € T'(M,E* ® E) the second Hermitian-Ricci curvature. If
VE is the Chern connection of a Hermitian holomorphic vector bundle (£, h), they are called the

first and second Ricci-Chern curvatures of (), h) respectively.

Theorem 2.1.1. Let E be a Hermitian complex vector bundle or a Riemannian real vector bundle

over a compact Hermitian manifold (M, w) and V¥ be any metric connection on E.

(1) If the second Hermitian-Ricci curvature Tr,RF is nonpositive everywhere, then every Op-

closed section of E is parallel, i.e. VEs = 0;

(2) If the second Hermitian-Ricci curvature Tr,RE is nonpositive everywhere and negative at

some point, then H%E(M L E)=0;

(3) If the second Hermitian-Ricci curvature Tr,RY is p-nonpositive everywhere and p-negative

at some point, then H%E(]W7 AE) = 0 forany p < q < rank(FE).

The proof of this theorem is based on generalized Bochner-Kodaira identities on vector bundles
over Hermitian manifolds (Theorem 2.4.5). We prove that (Theorem 2.4.8) the torsion integral
of the Hermitian manifold can be killed if the background Hermitian metric w on M is Gaudu-
chon, i.e. 90w™ ' = 0. On the other hand, in the conformal class of any Hermitian metric, the
Gauduchon metric always exists ([ ]). So we can change the background metric in
the conformal way. It is obvious that the positivity of the second Hermitian-Ricci curvature is
preserved under conformal transformations. This method is very useful on Hermitian manifolds.
Kobayashi-Wu([ 1) and Gauduchon([ ]) obtained similar result in
the special case when V¥ is the Chern connection of the Hermitian holomorphic vector bundle E.

Now we go back to the Hermitian manifold (M, w).

Corollary 2.1.2. Let (M,w) be a compact Hermitian manifold and © is the Chern curvature of

(TYYM,w).
53



(1) if the second Ricci-Chern curvature Tr,0 is nonnegative everywhere and positive at some

point, then Hg’o(]\/[) = 0forany 1 < p < n. In particular, the arithmetic genus x(M,O) = 1;

(2) if the second Ricci-Chern curvature T'r,0© is nonpositive everywhere and negative at some
point, then the holomorphic vector bundle APT'° M has no holomorphic vector field for any

I<p<n.

As 1s well-known, if a Hermitian manifold has positive first Ricci-Chern curvature, it must be
Kiahler. However, we can not draw the same conclusion if the second Ricci-Chern curvature is
positive, since the first and second Ricci-Chern curvatures of a Hermitian manifold can not be
compared. In fact, the first Ricci-Chern curvature is d-closed, but in general the second Ricci-
Chern curvature is not d-closed and they are in the different (d, 9, )-cohomology classes. For
example, the Hopf manifold S***! x S! with standard Hermitian metric has strictly positive second
Ricci-Chern curvature and nonnegative first Ricci-Chern curvature, but it is non-Kihler. For more

details, see Proposition 2.6.4.

Now we consider several special Hermitian manifolds. An interesting class of Hermitian mani-
folds is the balanced Hermitian manifolds, i.e., Hermitian manifolds with coclosed Kihler forms.
It is well-known that every Kihler manifold is balanced. In some literatures, they are also called
semi-Kéhler manifolds. In complex dimension 1 and 2, every balanced Hermitian manifold is
Kidhler. However, in higher dimensions, there exist non-Kéhler manifolds which admit balanced
Hermitian metrics. Such examples were constructed by E. Calabi([ 1), see also
[ ] and [ ]. There are also some other important classes of non-Kéhler bal-
anced manifolds, such as: complex solvmanifolds, 1-dimensional families of Kihler manifolds
(0 ]) and compact complex parallelizable manifolds (except complex torus) ([

On the other hand, Alessandrini-Bassanelli([ ]) proved that every Moishe-
zon manifold is balanced and so balanced manifolds can be constructed from Kéhler manifolds by
modification. For more examples, we refer the reader to [ 1, [ 1,

[ L0 LI L0 L1 | and refer-

ences therein.

Every balanced metric w is Gauduchon. In fact, d*w = 0 is equivalent to dw™ ! = 0 and so
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Aot = 0. By [ ], every Hermitian manifold has a Gauduchon metric. However,
there are many manifolds which can not support balanced metrics. For example, the Hopf surface
S3® x S' is non-Kibhler, so it has no balanced metric. For more discussions, we refer the reader

to [ LI LI L1 | and

references therein.

On a compact balanced Hermitian manifold )/, we can also detect the holomorphic section
spaces HO(M, T*°M) and Hg’O(M ) by the Levi-Civita connection on (M,w;,). Let V be the
complexified Levi-Civita connection on M and R the complexified Riemannian curvature. It is
easy to see that R(X,Y, Z, W) = R(Z, W, X,Y) forany X, Y, Z, W € T'(M,TcM). In the local

holomorphic coodinates (z', - -+, 2™) of M, we set

o o0 0 0 ] ke
RIR(a—aTa—a——> Rij = W R (= W)

and call (Rﬁ) the Hermitian-Ricci curvature of (M, h). Since V is a connection on the complex
vector bundle 7= M, there is an induced connection on the Hermitian holomorphic vector bundle
(T™OM, h) and we denote it still by V. The curvature of (T"° M, h, V) is denoted by R. In general,
the first and second Hermitian-Ricci curvatures of R are different. Moreover, R and R are different
but they can be compared(see Proposition 2.2.12). This property can be viewed as a connection
between Riemannian geometry and Hermitian geometry(or Symplectic geometry). For example,
we can use it to study the non-existence of certain complex structures on complete Riemannian

manifolds. In particular,

Corollary 2.1.3. Let (M, h) be a compact Hermitian manifold. If the Hermitian-Ricci curvature
(Ry;) is quasi-positive, then Hyp(M, C) # 0.

As applications, I can deduce that S>*™! x S' can not admit a Hermitian metric with quasi-positive
Hermitian-Ricci curvature and also Lebrun’s result that there is no complex structure on S® which

is compatible with the round metric.

Theorem 2.1.4. Let (M, w) be a compact balanced Hermitian manifold. Suppose the Hermitian-

Ricci curvature (R 3) of M is nonnegative everywhere.
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(1) If ¢ is a holomorphic p-form, then Agp = 0 and so dim¢ Hg’O(M) < dimg¢ Hg’p(M)for any

1<p<n

(2) If the Hermitian-Ricci curvature (R;3) is positive at some point, then Hg’o(]\/[ ) = 0 for any

1 < p < n. In particular, the arithmetic genus x(M,O) = 1.

Let ﬁg) be the components of the second Hermitian-Ricci curvature of R. The dual of Theorem

2.141s

Theorem 2.1.5. Let (M, w) be a compact balanced Hermitian manifold. If 2R® _ R is nonpos-
i [

itive everywhere and negative at some point, there is no holomorphic vector field on M.

Remark 2.1.6. It is easy to see that the Hermitian-Ricci curvature tensor (R;7) and second Ricci-
Chern curvature tensor ©?) := Tr,0 can not be compared. Therefore, Theorem 2.1.4 and Corol-
lary 2.1.2 are independent of each other. For the same reason, Theorem 2.1.5 and Corollary 2.1.2
are independent. Balanced Hermitian manifolds with nonnegative Hermitian-Ricci curvatures are

discussed in Proposition 2.3.5.

As we discuss in the above, on Hermitian manifolds, the second Hermitian-Ricci curvature
tensors of various metric connections are closely related to the geometry of Hermitian manifolds.
A natural idea is to define a flow by using second Hermitian-Ricci curvature tensors of various

metric connections. For example,

oh
— =-0@ 4 puh, peR (2.1.2)
ot

on a general Hermitian manifold (M, h) by using the second Ricci-Chern curvature. This flow
preserves the Kéhler and the Hermitian structures and has short time solution on any compact

Hermitian manifold. It is very similar to and closely related to the Hermitian Yang-Mills flow, the

Kihler-Ricci flow and the harmonic map heat flow. It may be a bridge to connect them.
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2.2 Various connections and curvatures on Hermitian manifolds

2.2.1 Complexified Riemannian curvature

Let (M, g) be a Riemannian manifold with Levi-Civita connection V, the curvature R of (M, g, V)
is defined as

R(X,Y,Z,W) =g ((VxVy — VyVx = Vixy]) Z,W) (2.2.1)

On a Hermitian manifold (M, h), let V be the complexified Levi-Civita connection and g the

background Riemannian metric. Two metrics g and h are related by
dsy = ds} — V—1wy, 222

where wy, is the fundamental (1, 1)-form (or Kdhler form) associated to . For any two holomorphic

vector fields X, Y € T'(M, TOM),

h(X,Y) =2g(X,Y) (2.2.3)
This formula will be used in several definitions. In the local holomorphic coordinates {z', - -- , 2"}
on M, the complexified Christoffel symbols are given by

FgB:Zl CE(agAE 09BE 09,43 Z hCE Ohag 3hBE 3hAB) (2.2.4)

- 2 028 0zA 82E 623 8zA 02E

where A, B,C,E € {1,--- ,n,1,--- , 7} and 24 = 2'if A =4, 24 = 7' if A = 7. For example

Oh;z  Ohy 1 ., (0h; Ohg
Tk = ~ph E), Tk = —pht (20 0 2.2.
i 2h (azz+az>’ i = M (57 azf> (2.2:3)

The complexified curvature components are

o 0
fapen s = Qg((mva; _vavaria>a7’az_D)
o 0
= 0((Va Y Vs ) g 5n) (220
Hence
orf ory
Flc = 3 Rancoh™ = — (20~ H e hergy —therte) @29



By the Hermitian property, we have, for example

o ! st —Ie ! —T5T) 228
gk =\ o gm iiktis T Laktis T Gl (2.2.8)
Remark 2.2.1. We have R pcp = Ropap. In particular,

Ri}ki = szZz‘j (2.2.9)

Unlike the Kihler case, we can define several Ricci curvatures:
Definition 2.2.2. (1) The complexified Ricci curvature on (M, h) is defined by
Rz =17 (R + Rit) (2.2.10)
The complexified scalar curvature of h is defined as

s = hMR 5 (2.2.11)

(2) The Hermitian-Ricci curvature is

Ry = h" Rz (2.2.12)
The Hermitian-scalar curvature of h is given by
S :=h"R (2.2.13)

Lemma 2.2.3. On a Hermitian manifold,

=
I

=

S

Rapcp = Ragep: R = R (2.2.14)

and
Rz = h7 (2Ri57 — Rig) (2.2.15)
Proof. The Hermitian property of curvature tensors is obvious. By first Bianchi identity, we have
Ry75+ Rygo + Rigiz = 0
That is Ry;7; = Ry5; — Ryy;- The curvature formula (2.2.10) turns out to be
Rz = h (2Ry57 — Ru) (2.2.16)

O
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Definition 2.2.4. The Ricci curvatures are called positive ( resp. nonnegative, negative, non-

positive) if the corresponding Hermitian matrices are positive ( resp. nonnegative, negative, non-

positive).

The following three formulas are used frequently in the sequel.

Lemma 2.2.5. Assume h;; = 0;; at a fixed point p € M, we have the following formula

R 1 ( 0%hy 32% )
ikt 2 \ 0zF07 8213

L1 (ahkq Ohyi | Ohq Ol ) L1 (ahiq Ohg Oy ahqj)
4\ 0z 82'] zk ozt 4\ 9z 97 0zt 9zt
(OO O Ohg) 1 (OhgOhig Oy O

1 ( ER I 8zq> 4 (82‘1 9z | Dz az€> (2217
1 (ahqe Ohiq Ohg; 3hz’q> 1 (3’%@ Ohyg | Oy 3hw>
4\ 0z¢ 9z = 0zF 0z° 024 0z = 0z4 071

By a linear transformation on the local holomorphic coordinates, one can get the following

Lemma. For more details, we refer the reader to [ ].

Lemma 2.2.6. Let (M, h,w) be a Hermitian manifold. For any p € M, there exist local holomor-

phic coordinates {z'} centered at a point p such that
hiz(p) =8 and T3(p) =0 (2.2.18)

By Lemma 2.2.6, we have a simplified version of curvatures:

Lemma 2.2.7. Assume h;(p) = 0;; and I'};(p) = 0 at a fixed point p € M,
1 [ 9*h; Oy Ohgz Ohyg  Ohgs Ohyg
R —_1t i i) - al O, = aj Clig 22.19
ikt 2 <8z’“82] + 821'82@) ; < 0zt 07’ * 0zF 0?8) ( )
For Hermitian-Ricci curvatures
= 1 Phg  Phs Ohg Ohye  Ohyz Oh
R-—hIR- - — = st 5 ) 4 d 4__ 14 2.2.20
H ih = Ty Z (azkazs * azsazf> qZ ( 0z 07 | 0w 07 ) (2.2.20)
and
1 0?h,; 0?hgs Oh 0hg  Ohgs Ohyg
hWiR, -5 =hVRg- = —= ke =) - = 1) (2.2.21
kjit — itkj 2 Zs: (02’5823 + 82’“824) ; (8zk 0z° + dzs 0z ) ( )
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For complexified Ricci curvature,
1 0?h ; 0?hys 0?h,; 0?hgs
R = = sl S _ kt SS
oS5 Z (azkazs * azsazf) Z (825823 * azkazf)

5 (ahqg Ohig | Oy the) oy (3%@ Ohsg | Ohgs ah’ﬂf) (2.2.22)
q,8

0z 0z° 0z 0z° 0zF 0z° 0z5 07t

0
2.2.2 Curvature of complexified Levi-Civita connection on 7"'° \/
Since T M is a subbundle of T M, there is an induced connection V on T given by
V=roV:TYM Y% D(M,TeM @ TeM) 5 T(M, TeM @ TYOM) (2.2.23)
The curvature R € T'(M, A2Te M @ T*OM @ T*OM) of V is given by
R(X,Y)s =VxVys — VyVxs — Vixys (2.2.24)

forany X,Y € TcM and s € TH°M. It has components

O, AT,

Ry = S o I, Il + 5, Th, (2.2.25)
where
R < af —, a§B> afv'f = ;EQB,C% (2.2.26)
For example, l
R, =- (%1;%“ - aal;ji’“ + T30k — rj.krgi> (2.2.27)

With respect to the Hermitian metric » on T%°M, we can define
Rup = Ripihg (2.2.28)
s=1

Definition 2.2.8. The first Hermitian-Ricci curvature of the Hermitian vector bundle <T1’0M , @)
is defined by

~ o

RY = W Ry (2.2.29)

The second Hermitian-Ricci curvature of it is

~

R = 1Ry, (2.2.30)
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The scalar curvature of ¥V on T“°M is denoted by
SEC = RIRMR ) (2.2.31)
By Lemma 2.2.6, we have the following formulas

Lemma 2.2.9. On a Hermitian manifold (M, h), on a point p with h;;(p) = d;; and Ffj (p) =0,

o= o : — , : 2.2.32
ikt 2 (62’“0? 8228#) - 0zt 0z ( )
For the first and second Hermitian-Ricci curvatures,
~ 1 0%h 0?h,= Oh i Ohyg
PO _ _2 ik ki) ak — ke 2.2.33
i 2 zk: (32’“82] P ET = 020 07 ( )
and
. 1 9%h.~ 0%*h, - Oh,- Oh, =
R® = 2 ik T I e 2.2.34
i 2 ; (62’“823 * 02i0zF o ozk 0zF ( )
Moreover,
) _ p@) _p  ptkpd pm q Tk Ohig Ohg; — Ohig Ohyj
RY — R = h,sh"TETp TG = ( el i = (2.2.35)

k,q
2.2.3 Curvature of Chern connection on 71° )/

On the Hermitian holomorphic vector bundle (7V° M, h), the Chern connection V¥ is the unique
connection which is compatible with the complex structure and the Hermitian metric. Its curvature

components are

O-7;=———— : , 2.2.36
ikt 021077 0z) 0z ( )

It is well-known that the first Ricci-Chern curvature

v/ —1 ) .

W .= Y —qWgi A dz7 (2.2.37)

2r Y

represents the first Chern class of M where
2
1) ki O%logdet(hyy)

@ﬁ = h"O57 = B (2.2.38)
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The second Ricci-Chern curvature components are
(2 ke
0% = h¥0,5; (2.2.39)
The scalar curvature of the Chern connection is defined by

SCH = KM 5 (2.2.40)

2.2.4 Curvature of Bismut connection on 7'° )M/

In [ ], Bismut defined a class of connections on Hermitian manifolds. In this subsec-
tion, we choose one of them (see [ ], p- 21). The Bismut connection V2 on the

holomorphic tangent bundle (71, h) is characterized by
VP =v+5° (2.2.41)
where V is the Levi-Civita connection and S® is a 1-form with values in End(T*° M) defined by
h(SE(X)Y, Z) = 2g(SB(X)Y,Z) = V—1(0 — 0)wn(X,Y, Z) (2.2.42)

forany Y,Z € T*°M and X € TcM. Let I'? and fga be the Christoffel symbols of the Bis-
mut connection where i, j,«, 5 € {1,--- ,n}. We use different types of letters since the Bismut

connection is not torsion free.

Lemma 2.2.10. We have the following relations between T andT,

~ ~ oh= ~
o 7T _ _ 2B _ _
PiCMB(’_ hﬁr"/r;}la) - Fiaﬂ + Fa,@’i - 57 Fjaﬂ - 2F3aﬂ (2243)
Proof. Let X = %, Y = %, 7 = %. Since wy, = @hmﬁdzm A dZzZ"™, we obtain
3 = 1 Ohmm o 0 0
v—=1(0—0 X,Y,Z) = —=—"2dPd2"dz" - — —
( )Wh( y Ly ) 2 9P zraz" dz (8217 927 agk)
_ 1 (0hg  Ohg
2\ 077 07
= ighis =T
On the other hand
n(ve, 2 9 F,, 2.2.44
50 9k ) T (2249
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By the definition (2.2.41) of Bismut connection, we get

~ o 0 o 0 0 o 0
o B 9 9\ _ 9 9 B g 9
Fiaﬁ h (Va,aziaza, 825) h (Vaziﬁza’ 82/8) +h (S <azz> 820" 82’6)

Ohg
oz«

- Fiaﬁ + Faﬁi =
The proof of the other one is similar. 0

The Bismut curvature B € T' (M, AY"'T*M ® End(T'YM)) is given by

~ =g
ore ort. o
B _Ylhia . —ja T8 v T8
ija o7 + Ozt Fiozl—‘j7 + F;arm (2.2.45)

Lemma 2.2.11. Assume h;;(p) = 6;; and T'};(p) = 0 at a fixed point p € M,

0*h. 0?h -  0*h 5 Oh.~ Oh. 3 Oh,~Oh_
B == — 8 o _ _ Taf B _y T8 (2.2.46
ijafp (623820‘ MEEDE: azzazf) — 0z 07 — 07 0 ( )
Proof. Tt follows by (2.2.43) and (2.2.45). O

M

We can define the first Ricci-Bismut curvature Bz‘j , the second Ricci-Bismut curvature Bg) and

scalar curvature SPM similarly.
2.2.5 Relations among four curvatures on Hermitian manifolds
Proposition 2.2.12. On a Hermitian manifold (M, h), we have

Rijki = Rijkia RTij = RTij (2.2.47)

and for any u,v € C",

(RW - ﬁm) ) (2.2.48)
In particular, RZ-; < }AES) and Rﬁ < ﬁg) in the sense of Hermitian matrices.
Proof. By formulas (2.2.8) and (2.2.27), we can set

K3

Trg = R — Rijig = T, Thyg (2.2.49)
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Without loss generality, we assume h; = 0;; at a fixed point, then

T = Z Uspslise = — Z Lyl st (2.2.50)
where
1 /0hs; Ohs
N-— = it TS ) - 2.2.51
1S 2 (azs azg ) ils ( )
and so

T”Mu Wt = Z (ZFMui)) (Z Jskqu ) 0

k
]

Remark 2.2.13. (1) Because of the second order terms in R, E, © and B, we can not compare

R, R with ©, B.

(2) Since the third order terms of 9O are not zero in general, it is possible that ©()) and ©?) are
not in the same (d, 9, 3)-cohomology class. For the same reason B") and B are not in the

same (d, 9, d)-cohomology class.

(3) If the manifold (M, h) is Kédhler, all curvatures are the same.

2.3 Curvature relations on special Hermitian manifolds

2.3.1 Curvatures relations on balanced Hermitian manifolds

The following lemma is well-known( for example [ 1), and we include a proof here

in our setting.

Lemma 2.3.1. Let (M,w) be a compact Hermitian manifold. The following conditions are equiv-

alent:

(1) d'w = 0;

(2) dw" ! =0;
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(3) For any smooth function f € C*(M),

1 = 32f
—Ngf = Asf = Ayf = —hY 2.3.1
5Raf = A5f = Dof 505 (2.3.1)
Z o .
(4) FM Oforany1 <1 <n.
Proof. On a compact Hermitian manifold, d*w = — * d * w = —¢, * dw™ ' where ¢, is a con-

stant depending only on the complex dimension n of M. On the other hand, the Hodge * is an

isomorphism, and so (1) and (2) are equivalent. If f is a smooth function on M,

Apf = —hii 2L, + 2piTe o

02102 ij 0= (2.3.2)
Dof = —h7 55k + 20T 2%
On the other hand,
WITG = —Th* and AT = —T hM (23.3)

Therefore (3) and (4) are equivalent. For the equivalence of (1) and (4), see Lemma 2.9.8. O

Definition 2.3.2. A Hermitian manifold (M, w) is called balanced if it satisfies one of the condi-

tions in Lemma 2.3.1.

On a balanced Hermitian manifold, there are more symmetries on the second derivatives of the

metric.

Lemma 2.3.3. Let (M, h) be a balanced Hermitian manifold. On a point p with h;;(p) = d;; and
k() —
['%(p) = 0, we have

Oh - Ohgs
2= 2 =0 234
0z° . 0z" ( )
and
0%h; 0%hy; 8?h; Ohyz Ohug
o — —nt = —2_ _92 4 kl 2.3.5
0zkoz Z 0710z" Z 0zk97" o 0zt 0z° ( )

Proof. Ata fixed point p, if h; = 0 and T'}; = 0, then

Ohg — Ohg

o = o (2.3.6)
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The balanced condition )  I'* = 0 is reduced to

Ohss _ N~ 0Ohg _
oz — 0z° N

by formula (2.3.6). By the balanced condition, we get

o o (1 h Ohg  Ohg
0zk 02k ozt o
_ _Z Ohg — hg \ _ — Ohg Olug
) - 0zk0z"  0zF07 ” 0z' 0z

Hence, we obtain formula (2.3.5). ]

Proposition 2.3.4. Let (M, h) be a balanced Hermitian manifold. At a point p with hz(p) = d;;

and Ffj (p) = 0, we have following formulas about various Ricci curvatures:

oy = Ry =Bl =3 gt X g g ean

U - T T

R T I

B = S D (G ) e
1,9

e TSET(E ) en

Proof. In (2.2.33), (2.2.34), (2.2.38), (2.2.39), (2.2.20), (2.2.22), we get expressions for all Ricci
curvatures on Hermitian manifolds. By balanced relations (2.3.4) and (2.3.5), we get simplified

versions of all Ricci curvatures. L]

Proposition 2.3.5. (1) A balanced Hermitian manifold with positive Hermitian-Ricci curvature

(Rg) is Kdhler.

(2) Let (M, h) be a compact balanced Hermitian manifold. If the Hermitian-Ricci curvature (RZ;)

is nonnegative everywhere and positive at some point, then M is Moishezon.
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Proof. (1) On a balanced Hermitian manifold, we have

(62) = (RY) = (ry) (2.3.13)

ij

by Proposition 2.2.12 and Proposition 2.3.4. If (Rﬁ) is Hermitian positive, then @Z%l,) is Hermitian
positive, and so

Q= ——“’2_185 log det () (2.3.14)
s

is a K&hler metric.

(2) If the Hermitian-Ricci curvature is nonnegative everywhere and positive at some point, So is

<@2)> The Hermitian line bundle L = det(7"°M) satisfies

/ a (L) >0 (2.3.15)
M

By Siu-Demailly’s solution of Grauert-Riemenschneider conjecture ([ 1,1 D, M is
Moishezon. O

2.3.2 Curvature relations on Hermitian manifolds with A(90w) = 0

Now we consider a compact Hermitian manifold (M,w) with A(90w) = 0. The condition

A(9dw) = 0 is equivalent to

Oh.~ Oh,~ Oh.+ 0%h,~

ij kk ik kj
E — | = E - ; 2.3.16
<8zk(9§k * 82’8?) (82’“0? * 82182’“) ( )

k k

for any ¢, 5. Similar to Proposition 2.3.4, we can use (2.3.16) to simplify Ricci curvatures and get

relations among them.

Proposition 2.3.6. Let (M, h) be a compact Hermitian manifold with A(00w) = 0. At a point p
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with h;;(p) = 0i; and T};(p) = 0, the following identities about Ricci curvatures hold:

A - —52(;%’“%*@2?52@)3
R R N
B e L e
%= Y 2 ()
e = = Z (gj%k; aa;g;ﬁ) - Zq (aa};qf aaf;iq " 8;;(1 %}?) (2323
M= g Z ( a;akj aa;}g;f) i Z; (%};g T Egy) (2324

B Z (8hf (WL ahq? 8h2q>
0zF 0z 0zt 0z
Proposition 2.3.7. If (M, w) is a compact Hermitian manifold with A(00w) = 0, then
B® <eW and BY <e® (2.3.25)
in the sense of Hermitian matrices and identities hold if and only if (M, w) is Kdhler. Moreover,

0@ 4 p@ — g L R (2.3.26)

Finally, we would like to discuss the relations of special metrics on Hermitian manifolds. By

[ ], every Moishezon manifold is balanced, i.e., there exists a smooth
Hermitian metric w such that d*w = 0. On the other hand, by [ ]( see also
[ ]), on each Moishezon manifold, there exists a singular Hermitian metric w such

that 90w = 0 in the sense of current. However, these two conditions can not be satisfied simulta-
neously in the smooth sense on a Hermitian non-Kihler manifold.
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Proposition 2.3.8. Let (M,w) be a compact Hermitian manifold. If d*w = 0 and A(00w) = 0,
then dw = 0, i.e. (M,w) is Kdihler. In particular, if a compact Hermitian manifold admits a smooth

metric w such that d*w = 0 and 90w = 0, then it is Kiihler:

Proof. Let (M, w) be a balanced Hermitian manifold with A(9dw) = 0. The condition A(00w) =

0 is equivalent to

i - S e 2327
2 st ¥ 2 gags ~ 2 gon 2 g (232D

By formula 2.3.5, at a point p with h; = d;; and T'};(p) = 0, we have
Oh; 0*hyz Ohy 0?*hy;
Z ue_}_ Akﬁ_ _ kz€_+z -Ifg
— 0zF0z — 0207 — 02F0z" 0207

8hﬁ 4 5hq28h;@
0zkoz = 0z' 0z

That is )
L
By taking trace of it, we obtain |
42 %};’“ aa};’jq =0 — aa}l’j’ =0 (2.3.29)
at point p. Since p is arbitrary, we have dw = 0, therefore, (M, w) is Kihler. H
Remark 2.3.9. This result is known in [ ] and also [ ]

in the conditions of d*w = 0 and 90w = 0. By carefully computations, we find that their method

works also for d*w = 0 and A (85w) = (. Our method is quite different from theirs.

2.4 Bochner formulas on Hermitian complex and Riemannian real vector

bundles over compact Hermitian manifolds
Let (M, h,w) be a compact Hermitian manifold. The complexified Levi-Civita connection V on
TcM induces a linear connection on QP4(M):

Vo QPI(M) — QY (M) @ (QP9(M) @ QPR (M) @ QrHLaL(M) 2.4.1)
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We consider the following two canonical components of V,

V' QM) — QY (M) @ QPa(M
(M) (M) (M) 042)
V" QPa(M) — QYY (M) @ QP4(M)

Note that V # V' + V" if (M, h,w) is not Kihler. The following calculation rule follows imme-

diately
V'iieAY)= (Vo) AN+ oAV (2.4.3)

for any o, € Q*(M).

Lemma 2.4.1. On a Hermitian manifold (M, h), we have

Oh(p, ) = h(V'p, 1) + h(p, V")) . a1, ) = h(Vip, ¥) + h(, Vi)
(i, 1) = h(V"p, ) + h(sp, V'{)) a5 1@, ¥) = W(Vip, ¥) + h(ep, Vi)

for any ¢, € QPI(M).

Remark 2.4.2. (1) Here we use the compact notations

/ / " I
V=V, V=V,
ozt oz

Note that V% =Vi{=0and V; # V|, V; # V%.

(2) If we regard AP9T*M as an abstract vector bundle F, the above lemma says that V' and V"

are compatible with the Hermitian metric on E.

Now we go to an abstract setting. Let (£, h) be a Hermitian complex (possibly non-holomorphic)
vector bundle or a Riemannian real vector bundle over a compact Hermitian manifold (M, w). Let

V¥ be an arbitrary metric connection on (E, h), i.e.,
dh(s,t) = h(VEs,t) + h(s, V) (2.4.4)
for any s,t € I'(M, E). There is a natural decomposition

VE=V'FE 4 y'E (2.4.5)
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where
V'F:I'(M,E)— QY (M,E)

V. T(M,E) — Q" (M, E)

V'F and V"¥ induce two differential operators. The first one is 0 : QP9(M, E) —

defined by
Op(p ® 5) = (0p) @ s + (1) AV Ps

for any ¢ € QP9(M) and s € I'(M, E). The other one is 0y : QP9(M, E) —

defined by
Ip(p®s) = (0p) @ s+ (1)1 AV Fs

for any ¢ € QP%(M) and s € T'(M, E). The following formula is well-known

(2.4.6)

Qp+1,q(M7 E)

(2.4.7)

QP+ (M, E)

(2.4.8)

(2.4.9)

for any ¢ € QP4(M) and s € I'(M, E). The operator g0 + 0p0Jg is represented by its (1, 1)

curvature tensor R¥ € T'(M, AV T*M ® E). For any ¢, € Q**(M, E), there is a sesquilinear

pairing

{SO>¢} = SOO[ /\W<eaa €ﬁ>

(2.4.10)

if ¢ = ¢, and ¢ = 1)7ep in the local frame {e,} of E. By the metric compatible property of

VE,
Mo, v} = {0pp, v} + (—1)"T{p, 0pv}
if p € QP4(M, E).

Let w be the Kihler form of the Hermitian metric h, i.e.,

e

w= Thﬁdzi A dZ

On the Hermitian manifold (M, h, w), the norm on Q™9( M) is defined by

)= [ (%= oo [ e = [ onst

The norm on Q4(M, F) is defined by

(e = [ Lot} = [ (" A7) emes
71

(2.4.11)

(2.4.12)

(2.4.13)
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for ,1 € QP9(M, E). The dual operators of 9, 0, Jr and 52 are denoted by 9%, ,0p and 52

respectively.

The following lemma was firstly shown by Demailly using Taylor expansion method( e.g.
[ ]). For the convenience of the reader, we will take another approach which seems to

be useful in local computations.

Lemma 2.4.3. Let (M, h,w) be a compact Hermitian manifold. If T is the operator of type (1,0)
defined by T = [\, 20w] on Q* (M, E),

A, 0] = v—1 (5* + F*)

(2.4.15)
[A,9] = —V=1(0" +17)
For the dual equation, it is
0, L] = /=10 +7)
(2.4.16)
0%, L] = —/=1(0 +7)
where L is the operator Ly = 2w A @ and A is the adjoint operator of L.
Proof. See Lemma 2.9.7 of the Appendix. [l

In the rest of this section £ is assumed to be a Hermitian complex vector bundle or a Riemannian

real vector bundle over a compact Hermitian manifold M.

Lemma 2.4.4. Let V¥ be a metric connection on E over a compact Hermitian manifold (M, w).

If T is the operator of type (1,0) defined by T = [\, 20w| on Q*(M, E), then

(1) [0, L] = V=1(0p +7);

(2) [0, L] = —/—1(0 +7);

(3) [A, O] = V=10 +7);

(4) [N, 0p] = —V=1(05 + 7).

Proof. See Lemma 2.9.10 of the Appendix. O

72



Theorem 2.4.5. Let V¥ be a metric connection E over a compact Hermitian manifold (M, w).

Ag, = Do, +V—1[050E + 0p0p, A + (0p7" + 7°08) — (07" + T°0p) (2.4.17)

where
Ay =0y + 0,05
o v (2.4.18)
Proof. It follows from Lemma 2.4.4. [
We make a useful observation on the torsion 7:
Lemma 2.4.6. Forany s € I'(M, E), we have
7(s) = —2v—1 (5*w> s, T(s)=2v—-1(0'w)-s (2.4.19)
Proof. By definition
([A,20w])s = 2A((Ow) - s)
= 2(A(0w))-s
= —2v-1 (5*w> .S
Here we use the identity
0w =+v—1A(0w) (2.4.20)
where the proof of it is contained in Lemma 2.9.8 of the Appendix. [

Corollary 2.4.7. If (M,w) is a compact balanced Hermitian manifold, and V¥ a metric connec-

tion on E over M, then
|0ps||” = [|0gs||” + (V=1 [050F + 0rdg, A] s, 5) (2.4.21)
forany s € I'(M, E).

Proof. Since for any s € I'(M, E), 7s = Ts = 0 and 7*s = T*s = 0 on a balanced Hermitian

manifold, the result follows from formula (2.4.17). ]
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Theorem 2.4.8. Let (M, w) be a compact Hermitian manifold with 00w™ ™ = 0. If V¥ is a metric

connection on E over M, then
0= 0ps|* = 0ps|®> + (V-1 [00F + 0rdg, A] s, s) (2.4.22)
forany s € I'(M, E) with Ops = 0.
Proof. By formula (2.4.17), we only have to prove that
((OpT* + 7°08)s — (0T +7*0g)s,s) =0 (2.4.23)

It is equivalent to (Jgs,7s) = 0 since 7*s = 7*s = dgs = 0. By formula (2.4.19) and Stokes’

Theorem,
(r*Ogs,s) = (Ops,7s) = / {Os,+(75)}
M

IR )

- 2\/—_1/M{6Es, (*5*w>-3}

s /M {53 ((F)-5))
W /M [5.(0+00) s — (+0'w) A Dps}

It is easy to see that

*

*0 w=—0%%)*w=c, 00w 1 =0 (2.4.24)

QI

since *w = c,w" ! where ¢, is a constant depending only on the complex dimension of /. Hence
(Ogs,Ts) = 2\/—1/ {s, <*5*w) A 5]53} =0 (2.4.25)

M
since Ogs = 0. L]

Remark 2.4.9. By these formulas, we can obtain classical vanishing theorems on Kihler manifolds

and rigidity of harmonic maps between compact Hermitian and compact Riemannian manifolds.
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2.5 Vanishing theorems on Hermitian manifolds

2.5.1 Vanishing theorems on compact Hermitian manifolds

Let I/ be a Hermitian complex (possibly non-holomorphic) vector bundle or a Riemannian real
vector bundle over a compact Hermitian manifold (M, w). Let V¥ be an arbitrary connection on
E and 0, 0 the (1,0), (0,1) part of V¥ respectively. The (1, 1)-curvature of V¥ is denoted by
RF € (M, AVT*M @ E* ®FE). It can be viewed as a representation of the operator Op0p+0r0p.

We can define harmonic section spaces associated to (E, VF) by
HEA(M, E) = {p € (M, E) | 5 = Opp = 0} 2.5.1)

In general, on a complex vector bundle E, there is no terminology such as “holomorphic section

of . However, if the vector bundle £ is holomorphic and V¥ is the Chern connection on F,

ie., g = 0, then H%;I(M , E) is isomorphic to the Dolbeault cohomology group H2*(M, E) and
O . . . 0

HZ(M, E) is the holomorphic section space H"(M, E) of E.

Definition 2.5.1. Let A be an r x r Hermitian matrix and A\; < --- < ), be eigenvalues of A. A

is said to be p-nonnegative (resp. positive, negative, nonpositive) for 1 < p < rif
Aip +--+ X, >0( resp. >0,<0,<0) forany 1<id; <ipg<---<i<n (25.2)

Theorem 2.5.2. Let E be a Hermitian complex vector bundle or a Riemannian real vector bundle

over a compact Hermitian manifold (M, w) and V¥ be any metric connection on E.

(1) If the second Hermitian-Ricci curvature Tr,R¥ is nonpositive everywhere, then every Op-

closed section of E is parallel, i.e. V¥s = 0;

(2) If the second Hermitian-Ricci curvature Tr,RE is nonpositive everywhere and negative at

some point, then H%E(M ,E)=0;

(3) If the second Hermitian-Ricci curvature Tr,RY is p-nonpositive everywhere and p-negative

at some point, then H%E (M,AE) =0 forany p < q < rank(E).
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Proof. By [ ], there exists a smooth function u : M — R such that wg = e"w is a
Gauduchon metric, i.e. 85@%’1 = 0. Now we replace the metric w on M by the Gauduchon metric

wq- By the relation wg = e"w, we get
Tro.RY = e “Tr,R” (2.5.3)

Therefore, the positivity conditions in the Theorem are preserved. Let s € I'(M, E) with Ogs = 0,

by formula (2.4.22), we obtain
0 = ||0ps||* + (\/—1 [3E5E +5E8E,Ag} s, 5) = ||0gs|* — (TTWGRES,S) (2.5.4)

where

R = 950 + 00 = R dz' NdZ @ ¢ @ ey (2.5.5)

Since the second Hermitian-Ricci curvature 7'r,,, R has components

R,5=hiR; (2.5.6)

ijaB
formula (2.5.4) can be written as
0=|0ps|*> — / R, 3s"5" (2.5.7)
M

Now (1) and (2) follow by identity (2.5.7) with the curvature conditions immediately. For (3), we
set ' = AF with p < g < r = rank(E). Let \; < --- < \, be the eigenvalues of —7Tr,, RE,
then we know

Mot >0 (2.5.8)

and it is strictly positive at some point. If p < ¢ < r, the smallest eigenvalue of —Tr, R’ is

A1+ -+ A; > 0 and it is strictly positive at some point. By (2), we know H%E(M, F)y=0. O

If V¥ is the Chern connection of the Hermitian holomorphic vector bundle E, we know
Hy, (M, E) = H°(M, E)

since Oy = V' £ = 0 for the Chern connection.
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Corollary 2.5.3 (Kobayashi-Wu[ ], Gauduchon [ 1. Let V¥ be the
Chern connection of a Hermitian holomorphic vector bundle E over a compact Hermitian mani-

fold (M, h,w).

(1) If the second Ricci-Chern curvature Tr R is nonpositive everywhere, then every holomor-

phic section of E is parallel, i.e. V¥s = 0;

(2) If the second Ricci-Chern curvature Tr,R¥ is nonpositive everywhere and negative at some

point, then E has no holomorphic section, i.e. H*(M,E) = 0;

(3) If the second Ricci-Chern curvature Tr,RY is p-nonpositive everywhere and p-negative at

some point, then AE has no holomorphic section for any p < p < rank(FE).

Now we can apply it to the tangent and cotangent bundles of compact Hermitian manifolds.

Corollary 2.54. Let (M,w) be a compact Hermitian manifold and © is the Chern curvature of

the Chern connection V! on the holomorphic tangent bundle T*° M.

(1) Ifthe second Ricci-Chern curvature ©?) is nonpositive everywhere and negative at some point,

then M has no holomorphic vector field, i.e. H'(M,T'"°M) = 0;

(2) Ifthe second Ricci-Chern curvature ©'%) is nonnegative everywhere and positive at some point,
then M has no holomorphic p-form for any 1 < p < n, ie. Hg’O(M ) = 0; In particular, the
arithmetic genus

X(M,0) = (=1)"h*°(M) = 1 (2.5.9)

(3) If the second Ricci-Chern curvature ©® is p-nonnegative everywhere and p-positive at some
point, then M has no holomorphic q-form for any p < q < n, i.e. H%’O(M) = 0. In partic-

SCH

ular, if the scalar curvature is nonnegative everywhere and positive at some point, then

H(M,mKy;) = 0 for all m > 1 where Ky is the canonical line bundle of M.

Proof. Let E = T'M and h be a Hermitian metric on £ such that the second Ricci-Chern curva-
ture T'r,, © of (F, h) satisfies the assumption. It is obvious that all section spaces in consideration

are independent of the choice of the metrics and connections.
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The metric on the vector bundle ¥ is fixed. Now we choose a Gauduchon metric wg = e“w;, on
M. Then the second Ricci-Chern curvature 2 = Tr,.© = e “Tr,, © shares the semi-definite
property with 02 = Tr,, ©. For the safety, we repeat the arguments in Theorem 2.5.2 briefly. If

s is a holomorphic section of F, i.e., Ops = 0s = 0, by formula (2.4.22), we obtain
0= ||0gs|> + (V-1[080r + 0505, Ac] 5,5) = ||0ps|]> — (Tru.Os, s) (2.5.10)

If Tr,© is nonpositive everywhere, then dzs = 0 and so V¥s = 0. If 7,0 is nonpositive
everywhere and negative at some point, we get s = 0, therefore H°(M, T*°M) = 0. The proofs

of (2) and (3) are similar. O

Remark 2.5.5. It is well-known that the first Ricci-Chern curvature ©() represents the first Chern
class of M. But on a Hermitian manifold, it is possible that the second Ricci-Chern curvature 0®
is not in the same (d, 9, 9)-cohomology class as ©(), For example, S* x S! with canonical metric
has strictly positive second Ricci-Chern curvature but it is well-known that it has vanishing first
Chern number c?. For more details see Proposition 2.6.4. Therefore, ©?) in Proposition 2.5.4 can
NOT be replaced by OV, It seems to be an interesting question: if (M, w) is a compact Hermitian
manifold and its first Ricci-Chern curvature is nonnegative everywhere and positive at some point,

is the first Betti number of M zero? In particular, is it Kédhler in dimension 2?7

As special cases of our results, the following results for Kihler manifolds are well-known, and

we list them here for the convenience of the reader. Let (M, h,w) be a compact Kihler manifold.

(1) If the Ricci curvature is nonnegative everywhere, then any holomorphic (p, 0) form is parallel;

(2) If the Ricci curvature is nonnegative everywhere and positive at some point, then h#** = ( for

p=1,--- ,n. In particular, the arithmetic genus x(M,O) = 1 and b, (M) = 0;
(3) If the scalar curvature is nonnegative everywhere and positive at some point, then h™? = (.
(A) If the Ricci curvature is nonpositive everywhere, then any holomorphic vector field is parallel;

(B) If the Ricci curvature is nonpositive everywhere and negative at some point, there is no holo-

morphic vector field.
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2.5.2 Vanishing theorems on special Hermitian manifolds

Let (M, h,w) be a compact Hermitian manifold and V be the Levi-Civita connection.

Lemma 2.5.6. Let (M,w) be a compact balanced Hermitian manifold. For any (p,0)-form ¢ on
M,

(1) If @ is holomorphic, then 0*p = 0

(2) If V' =0, then 0p = 0.

Proof. For simplicity, we assume p = 1. For the general case, the proof is the same. By Lemma

2.9.5, we know, for any (1,0)-form ¢ = ¢;dz",

70p;
0*p =—h"— 2.5.11
@ 55 ( )
where we use the balanced condition hﬁf% = (. If ¢ i1s holomorphic, then % = 0, hence
0*¢ = 0. On the other hand,
Vip= - — [, | d27 ® dz (2.5.12)
027 7
If V' = 0, we obtain
Op =—=——dz Ndz' =T"p,,dz? Ndz' =0 (2.5.13)
077 7t
O

Theorem 2.5.7. Let (M,w) be a compact balanced Hermitian manifold with Levi-Civita connec-

tion V.

(1) If the Hermitian-Ricci curvature (Rg) is p-nonnegative everywhere, then any holomorphic
(q,0)-form (p < q < n) is O-harmonic; in particular, dim¢ Hg’O(M) < dimg Hg’q(M) for

anyp < q <n;

(2) If the Hermitian-Ricci curvature (RZ;) is p-nonnegative everywhere and p-positive at some
point, H%’O(M) =0foranyp < q<n;
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In particular,

(3) if the Hermitian-Ricci curvature (Rg) is nonnegative everywhere and positive at some point,
then Hg’O(M) =0, forp=1,--- ,n and so the arithmetic genus x(M,O) = 1 and by (M) <
hOL(M).

(4) if the Hermitian-scalar curvature S is nonnegative everywhere and positive at some point, then
HY(M,mKy)=0 forany m>1
where Ky = det T*2O M.

Proof. At first, we assume p = 1 for (1) and (2). Now we consider £ = T*1° M with the induced

metric connection VZ = V for h (see (2.2.23)). By formula (2.4.7), we have
10Es]]”> = [|0ps|” + V=1 ([R",A] s, 5) (2.5.14)
where R is the (1, 1)-part curvature of E with respect to the connection V. More precisely,
E 35 3 o4 i A 5] 0 k
R® = 00 + 00 = —R.—.kdz ANdZ @ — ®dz (2.5.15)
" 0zt
since F is the dual vector bundle of 7% M and the (1, 1)-part of the curvature of TH°M is
RL dZ AN dF @ db @ 9 (2.5.16)
ijk B -

If s = f;d%" is a holomorphic 1-form, i.e.

—9f .
0s = 8; dz’? Ndz' =0 (2.5.17)
then
3 Afi k j i k =i i
Ops = 5 fkfji dz’ ® dz' = —fkfjidzj ® dz (2.5.18)
Without loss of generality, we assume h;; = 0;; at a given point. By Proposition 2.2.12, the
quantity
Ol = 3 FTu L5l = > (RY = Ry;) i, (2.5.19)
i,4,t,n in
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On the other hand
V=1([R",A] s,5) = Z R? fif, (2.5.20)

That is
Ops> = V=1([R",A]s,s) = =Y R fif, <0 (2.5.21)

if the Hermitian-Ricci curvature (R,;) of (M, h,w) is nonnegative everywhere. Then we get
0 < [|0gs||* = 10ps|* — V-1 ([R",A] s,s) <0 (2.5.22)

That is dgs = 0. Since

Ofi

Ops =V FEs=V's=V's= ( — [l )dzj ® dz"

we obtain V's = 0. By Lemma 2.5.6, we know Ays = 0. In summary, we get

HZ°(M) C Hy®(M) = Hy' (M) (2.5.23)

If the Hermitian-Ricci curvature (R, ;) is nonnegative everywhere and positive at some point, then
fi = 0 for each 7, that is s = 0. Now we obtain H%’O(M ) = 0. The general cases follow by
the same arguments as Theorem 2.5.2 and Theorem 2.5.4. In part (3), b1 (M) < dimc¢ Hg’l(M )
follows form the Frolicher relation by (M) < h'0(M) + h%(M). O

The dual of Theorem 2.5.7 is

Theorem 2.5.8. Let (M, h,w) be a compact balanced Hermitian manifold.

(1) If 2@? — R is nonpositive everywhere, then any holomorphic vector field is \V'-closed;

(2) If 2?%? — Ry is nonpositive everywhere and negative at some point, there is no holomorphic

vector field.

Proof. Let E = T'°M and V the induced connection on it. If s = It 2i 1s a holomorphic section,
then

Ips = fTLd7 @ % e T(M,A"'T*M ® E) (2.5.24)
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Without loss generality, we assume h; = 0;; at a given point. By Proposition 2.2.12,

i

Bt - T([ 4] ) = (RO ) 57+ ROST
~ (2R - Ry) T

By formula (2.4.17),
0 < ||0ps||? = |[Frs|? — v—1 ([EM,A] s, s> (2.5.25)

So if 2@1%2) — Rj is nonpositive everywhere, dgs = V's = 0. If 232%2.) — R,5 is nonpositive

everywhere and negative at some point, there is no holomorphic vector field. [

Remark 2.5.9. (1) It is obvious that the second Ricci-Chern curvature @1(52) and Hermitian-Ricci
curvature 1?,; can not be compared. Therefore, Theorem 2.5.4 and Theorem 2.5.7 are indepen-

dent of each other. For the same reason, Theorem 2.5.4 and Theorem 2.5.8 are independent.

(2) For a special case in Theorem 2.5.7, if the Hermitian-Ricci curvature R,; is nonnegative ev-
erywhere and positive at some point, by Proposition 2.3.5, the manifold (M, w) is Moishezon.
It is well-known that every 2-dimensional Moishezon/balanced manifold is Kéhler, but there

are many Moishezon non-Kihler manifolds in higher dimension( See [ D.

The following result was firstly obtained in [ ]:

Corollary 2.5.10. Let (M, w) be a compact Hermitian manifold with A(00w) = 0. Let V7 be the

Bismut connection on T*OM.

(1) If the first Ricci-Bismut curvature B is nonnegative everywhere, then every holomorphic

(p, 0)-form is parallel with respect to the Chern connection V! ;

(2) If the first Ricci-Bismut curvature BY) is nonnegative everywhere and positive at some point,
then M has no holomorphic (p,0)-form for any 1 < p < n, i.e. Hg’O(M) = 0, in particular
the arithmetic genus x (M, O) = 1.

(3) If the first Ricci-Bismut curvature B is p-nonnegative everywhere and p-positive at some

point then M has no holomorphic (q,0)-form for any p < q < n, ie. Hg’o(l\/[) =0. In
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particular, if the scalar curvature SPM of the Bismut connection is nonnegative everywhere

and positive at some point, then H*(M, mK ) = 0 for any m > 1.
Proof. By Proposition 2.3.7, if A(00w) = 0, then
BY <e® (2.5.26)
Now we can apply Corollary 2.5.4 to get (1), (2) and (3). O

Remark 2.5.11. For more vanishing theorems on special Hermitian manifolds, one can consult

[ LI LI LI land

references therein.

2.6 Examples of non-Kéhler manifolds with nonnegative curvatures

Let M = S?"~1 x S be the standard n-dimensional (n > 2) Hopf manifold. It is diffeomorphic to
C" — {0} /G where G is cyclic group generated by the transformation z — %z. It has an induced

complex structure of C* — {0}. For more details about such manifolds, we refer the reader to

[ ]. On M, there is a natural metric
h—iidzi@@dzi (2.6.1)
=aEk -

The following identities follow immediately

ahkz _45]95? 6th _4(5kgzj

7 _ Iy _ 262
0z |z|* 7 07 | 2|4 ( )
and
thkZ 5-*~’Z|2 — Q?Zj
— = 4y 2.6.3
02107’ K | 2|6 ( )

Example 2.6.1 (Curvatures of Chern connection). Straightforward computations show that, the
Chen curvature components are

. thkZ hpaﬁhkq 67hpz _ 45k‘l(5w|z|2 — Zj?)
02107 ERE] EE

Cr (2.6.4)
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and the first and second Ricci-Chern curvatures are

2 _ b=k
(1) o n (5kg|Z| — 2z ) 2) o (n — 1)5k€
O = EE , Op = T (2.63)
It is easy to see that the eigenvalues of O are
M=0dy ==\ = — (2.6.6)
|22
Hence, ©) is nonnegative and 2-positive everywhere.
Example 2.6.2 (Curvatures of Levi-Civita connection). Similarly, we have
802" + OpiZ Szt — Opp2?
¢ _Zie T Ckee ¢ Zik® T TRCY
and
8ka _ _5k£5ij + cSZ-géjk 5igZ]Ek + (SMZJEZ (2 6 8)
oz 2|z|2 2|24 o
¢ L
oy, _ Ojkdie — Okedij (012" — Ope?? )7 (2.6.9)
Dz 2|z|? 2|24 o
The complexified Riemannian curvature components are
ort, Ors . Sy 022" + 02l
0 ik Jk se _ms1mé _ s 1¢ N L Jk
Rﬁk - < o7 9zt + Fikrjs ijzris ijFiE - EE 4zt (2.6.10)
and
25i€5jk 51[2,]'513 + 5jk2€§i 5kg|z|2 — 2tz
faa=p =7 p 0 T oty

Example 2.6.3 ( Curvatures of Bismut connection). By definition (2.2.45) and Lemma 2.2.10, we

obtain
06050 — OpeOsi 052820 4 07020 — 60,7520 — §..70 20
¢ YjkCil keYiyj i kL il Jk
Bﬁk = e [ (2.6.12)
Two Ricci curvatures are
2 — 8|22 — 227
B — g _ =m0yl = 2 (2.6.13)

ij ij 4\z|2

On the other hand, by formula (2.6.3), it is easy to see 00w = 0 and B = 0 forn = 2.

Proposition 2.6.4. Let M = S?"~! x S! be the standard n-dimensional (n > 2) Hopf manifold

with canonical metric h,
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(1) (M, h) has positive second Ricci-Chern curvature ©3);

(2) (M, h) has vanishing first Chern class but has nonnegative first Ricci-Chern curvature O,

Moreover,

/ (©M)" =0 (2.6.14)
M
(3) (M, h) is semi-positive in the sense of Griffiths, i.e.
O w0 T’ > 0 (2.6.15)
for any u,v € C";
(4) The Hermitian-Ricci curvature (R,;) is nonnegative and 2-positive everywhere;

(5) (M, h) has nonpositive and 2-negative first Ricci-Bismut curvature. In particular, (S* x S, w)

satisfies 00w = 0 and has vanishing first Ricci-Bismut curvature B,

Although we know all Betti numbers of Hopf manifold S?*~! x S!, h??* is not so obvious.

Corollary 2.6.5. Let (M, h) be n-dimensional Hopf manifold with n > 2,

(1) h»®(M) =0 forp > 1and x(M,0) = 1.
(2) dime H*(M,mK) = 0 for any m > 1 where K = det(T*"°M).

Remark 2.6.6. By Leray-Borel spectral sequence, one can compute all Hodge numbers of all Hopf

manifolds. For more details, one can see [ ].

2.7 Non-existence of complex structures on Riemannian manifolds

Let V¥ be a connection on the complex vector bundle . Let 7 be the rank of E, then there is a

naturally induced connection V9°(¥) on the determine line bundle det(E) = A"E,

T

Vdet(E)(Sl/\"'/\Sr):ZSI/\"‘/\VESi/\"'/\ST
=1
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The curvature tensor of (E, V¥) is denoted by

RF €T (X,N°T*X ® End(E))
and the curvature tensor of (det £, V4°*(¥)) is denoted by

R¥ME) e T (X, AT X)

Note that the trace operator is well-defined without using metric.
Lemma 2.7.1. We have the relation that

trRY = R©F € (X, A*T*X)
Note that the trace operator is well-defined without using metrics on the vector bundle E.

Proof. Let{ey,--- ,e,} be alocal frame of the vector bundle E.

It is obvious that the second term on the right hand side is zero. Hence, we obtain
(Vdet(E))Q (esA---Nep) = (trRE) (ey A+ Aey)
which finishes the proof of the Lemma. [
Corollary 2.7.2. trR¥ is a d-closed 2-form.
Proof. By Bianchi identity, we know, for any vector bundle (F, V)
VEFOF RF _
In particular, if F is a line bundle, ' ® F* = C and V*®" = d. Hence d (R*"¥) = 0. ]

Theorem 2.7.3. Let (M, h) be a compact Hermitian manifold. If the Hermitian-Ricci curvature
(Rj;) is quasi-positive, then H*(M) # 0.
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Proof. If the Hermitian-Ricci curvature (Rij) is quasi-positive, by Proposition 2.2.12, so is the first

Hermitian-Ricci curvature (RY). Let R%* be the curvature of (det 7400, V47" °M) induced by

ij

the Hermitian vector bundle (7"°M, V). By Lemma 2.7.1 and Corollary 2.7.2, R%! is a d-closed

2-form on M and it has a natural decomposition
Rlet — y20 1 02 | L1

It is obvious that
whl = fig)dzi A dZ’

On the other hand, since the connection is metric compatible, we get

Hence

[

0|3

)
VD [ ()" = (v

B

=0

It is obvious that, if w!! is quasi-positive,
(\/__1>n /(—w2’0 Aw2,o)é A (wl,l)n—% >0
for1 < ¢ < [2]and (v-1)" [ (w"")" > 0. That is
v [ ()=
So R%t is a d-closed but not d-exact 2-form on M, which implies H*(M) # 0.

Remark 2.7.4. (1) Similar results were also obtained in [ Jand [

(2.7.1)

(2) Itis obvious that, the Hermitian Ricci curvature (R2;;) defined in (2.2.12) exists on any Rie-

mannian manifold, i.e., we do not need a complex structure or a compatible Hermitian metric

on M. So it is very natural to ask the following question

Question 2.7.5. On a Riemannian manifold (), g), which kinds of Riemannian curvature

conditions on g can imply the quasi-positivity of the Hermitian-Ricci curvature?
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The first sufficient curvature condition is the “strictly %—pinched Riemannian sectional curvature”.
In fact, Yau and Zheng proved in [ ] that, if (M, g) has strictly i—pinched Riemannian
sectional curvature, the complexified curvature operator is positive. In particular, the Hermitian-
Ricci curvature is positive. On the other hand, by the celebrated Brendle-Schoen-Hopf differential
sphere theorem ([ 1), we know that if (M, g) has strictly i-pinched Riemannian
sectional curvature, M must be a sphere. In particular, we obtain a generalization of Lebrun’s

result

Corollary 2.7.6. There is no integrable complex structure which is compatible with a strictly i—

pinched Riemannian metric on S°.

Definition 2.7.7. Let (M, g) be a Riemannian manifold. (M, g) has weakly positive constant

sectional curvature, if there exists a quasi-positive smooth function A on M such that
R(X,Y, Z,W) = XNg(X,W)g(Y, Z) = g(X, Z)g(Y,W)) (2.7.2)
for any real vector fields X, Y, Z, W € T'(M,TM).

Corollary 2.7.8. Let (M, g) be a Riemannian manifold with weakly positive constant sectional

curvature.

(1) (M, g) has quasi-positive Hermitian-Ricci curvature (R;3).

(2) If the Riemannian metric g is the background metric a Hermitian manifold (M, h), then M
must be Kéihler. In particular, H*(M) # 0.

Proof. Let{z',--- o™ 2" ... 2"} be areal local coordinate system on M centered at a point
pand {z' = z' + /—1y'}, be the complex coordinate system where y' = "™ i =1,--- n.If

(M, g) has weakly positive constant sectional curvature, the complexified curvature tensor

o o0 0 0
R.i=R|—,—,—,=— /=0
ikt (82“ 0217 0zF’ 8,25)
In fact, we can verify it by using formula (2.7.2) and the relation

0 1/ 0 0

- = — - —/—1—
ozt 2 (8:6Z 8y1>
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Similarly, we can verify R;;; = 0. Without loss of generality, we can assume at point p,

o 0
g< >:5ij) for 27]21,,27'L

D’ dxi

By formula (2.2.6) and condition (2.7.2),

o a9 9 0 A
Rija = R (a— FENG=E a_) = 00

Now we obtain the complexified Ricci curvature at point p,

A

Hence the Hermitian-Ricci curvature is quasi-positive. If (M, h) is non-Kéhler, by Proposition

2.2.12, Lemma 2.7.1 and Corollary 2.7.2, we obtain that

~ ~ , . . A . A
RO = R)dz' ndZ > Ric = Rygde' A\ d= = 26,;dz' A d

That is, the first Hermitian-Ricci curvature is a strictly positive closed (1, 1) form. Since it is the

curvature of the line bundle K3, = det(T?M), it can be viewed as a Kihler metric on M. U

Corollary 2.7.9. Let (S*"~! x S, h) be the Hermitian manifold defined in the last section. The
Hermitian-Ricci curvature (R,;) is nonnegative everywhere and it can not be strictly positive at

any point.

Since H*(S*~1 x S') = 0, we know the quasi-positive curvature condition in Theorem 2.7.3

can not be replaced by nonnegative curvature condition. Moreover,

(1) by Theorem 2.7.3, S?"~! x S! can not admit a Hermitian metric with quasi-positive Hermitian-

Ricci curvature.

(2) by Corollary 2.7.8, S>*~! x S' can not admit a Hermitian metric with positive constant Rie-

mannain sectional curvature.

2.8 A natural geometric flow on Hermitian manifolds

As we discussed in the above sections, on Hermitian manifolds, the second Ricci curvature tensors

of various metric connections are closely related to the geometry of Hermitian manifolds. A natural
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idea is to define a flow by using second Ricci curvature tensors of various metric connections. We

describe it in the following.

Let (M, h) be a compact Hermitian manifold. Let V be an arbitrary metric connection on the

holomorphic tangent bundle (E, h) = (T*°M, h).
V:E— Q\(E) 2.8.1)

It has two components V and V',

V=V +V' (2.8.2)
V' and V" induce two differential operators
Op : PYE) — QPFHI(E) (2.8.3)

Op : QP(E) — QPItY(E) (2.8.4)

Let RE be the (1, 1) curvature of the metric connection V. More precisely R is a representation

of 050p + 0p0g. Itis easy to see that

RE ¢ T(M,AY'T*M ® End(E)) (2.8.5)

and locally, we can write it as
R = RZ,d' Nd @ e’ @ e (2.8.6)
Here we set ey = a%, eP = dzB where A,B = 1,--- ,n, since the geometric meanings of j

and A are different. It is well-known that a metric connection V is determined by its Christoffel
symbols

Voaen= I'Bep, V%eA = r;?AeB (2.8.7)

In particular, we don’t have notations such as I'Z;. Tt is obvious that

ors.~ ors
Rip ==+ 520 =TI + T (2.8.8)

We set the second Hermitian-Ricci curvature tensor of (V, h) as

R® = hiR;,pe’ @ € T(M,E*® E) (2.8.9)
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In general we can study a new class of flows on Hermitian manifolds

9 — F(h) + ph
o (") (2.8.10)

h(0) = hyg
where F can be a linear combination of the first and the second Hermitian-Ricci curvature tensors
of different metric connections on (7%°M, h). For examples, F(h) = —O?), the second Ricci-
Chern curvature tensor of the Chern connection, and F(h) = —R®, the second Hermitian-Ricci
curvature tensor of the complexified Levi-Civita connection, or the second Ricci curvature of any
other Hermitian connection. Quite interesting is to take F(h) = sOW 4 (1 — 5)O® as the mixed
Ricci-Chern curvature, or F(h) = B® — 2R® where B® is the second Ricci curvature of the

Bismut connection. More generally, we can set F(h) to be certain suitable functions on the metric

h.

The following result holds for quite general F(h), but here for simplicity we will only take
F(h) = —0? as an example.

oh __
Bt —@(2) + ,uh

(2.8.11)
where g 1s a real parameter. By formula (2.2.39), the second Ricci-Chern curvature tensor has
components

= = 0?h,5 = Ohyg Ohg
0% = piQ ;= —hT K | ik P 2.8.12
i i ooz " oa 0w (2812

Theorem 2.8.1. Let (M, ho) be a compact Hermitian manifold.

(1) There exists small € such that, the solution of flow (2.8.11) exists for |t| < e, and it preserves

the Hermitian structure;

(2) The flow (2.8.11) preserves the Kdihler structure, i.e., if the initial metric hy is Kdhler, then

h(t) are also Kdihler.

Proof. (1). Let A, be the canonical Laplacian operator on the Hermitian manifold (M, h) defined
by
_ 92
A, = hV :
0zP0zZ4
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Therefore, the second Ricci-Chern curvature —@g) has leading term A h,; which is strictly ellip-
tic. The local existence of the flow (2.8.11) follows by general theory of parabolic PDE, and the

solution is a Hermitian metric on M.

(2). The coefficients of the tensor Ow are given by

fop = i Ol (2.8.14)
kT 9k 0zt e
Under the flow (2.8.11), we have
o _ 02 00
= 2 — 5t Tl
oo " (2.8.15)

fi}k(()) =0
At first, we observe that f;7; () = 0 is a solution of (2.8.15). In fact, if f;5,(t) = 0, then h;(¢) are

Kahler metrics, and so

@(2) _ @(}) _ _82 log det(hmﬁ)

i & 02107
Therefore,
2 (2)
3@k3 B 861‘3 _ _83 log det(hpm) N 92 log det(hym) _0 (2.8.16)
0z 0zF 0202F0% ] 02'0zF0% o
On the other hand,
002 00
821'] - 822 = A, (fj,) + lower order terms (2.8.17)
Hence the solution of (2.8.15) is unique. ]

Remark 2.8.2. Theorem 2.8.1 holds also for quite general F(h).

The flow (2.8.11) has close connections to several important geometric flows:

1. It is very similar to the Hermitian Yang-Mills flow on holomorphic vector bundles. More
precisely, if the flow (2.8.11) has long time solution and it converges to a Hermitian metric

h such that

@ _ 3
@ﬁ = ph;z (2.8.18)
The Hermitian metric A, is Hermitian-Einstein. So, by [ ], the holomorphic tangent

bundle T1°M is stable. As shown in Example 2.6.1, the Hopf manifold S***! x S! is stable
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for any n > 1. In fact, in the definition of @g), if we take trace by using the initial metric

hg, then we get the original Hermitian-Yang-Mills flow equation.
2. If the initial metric is Kdhler, then this flow is reduced to the usual Kédhler-Ricci flow([ D.

3. The flow (2.8.11) is similar to the harmonic map flow equation as shown in Theorem 2.8.1. It
is strictly parabolic, and so the long time existence depends on certain curvature condition of
the target manifold as discussed in the pioneering work of Eells-Sampson in [

The long time existence of this flow and other geometric properties of our new flow will be

studied in our subsequent work.

Certain geometric flows and related results have been considered on Hermitian manifolds recently,

we refer the reader to [ 11 L1 ] and [Gill].

2.9 Appendix: The proof of the refined Bochner formulas

Lemma 2.9.1. On a compact Hermitian manifold (M, h,w), we have

[A,20w] = A+B+C (2.9.1)
where
A= =BT ™dz A d2T),
o (2.9.2)
A = —hTdZ LI
B = —2Ttdz! NdF I
g (2.9.3)
n* _ Vi nripr 4
B" = 2hTdz" 1,15
C = A(20w) = 2T dz
) S (2.9.4)
C =205 = 2T L
Moreover,

(1) [A\,A] = —/=1B;
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(2) [A,B] = —/—1(24" + B+ C");
(3) [A,C] = —v/—=1C".
Proof. All formulas follow by straightforward computations. [

Definition 2.9.2. With respect to V' and V", we define

D' :=dz' NV,
(2.9.5)
D" = dz? ANV
J

The dual operators of 9, 0, D', D" with respect to the norm in (2.4.13) are denoted by 9*, 3,8,

and define

&) = —hiI V"
7 (2.9.6)
8 = —h'I;V

where [ the contraction operatorand I; = [ o and [; =1 o .
o0z ozt

Remark 2.9.3. It is obvious that these first order differential operators D', D", §{, and (] are well-
defined and they don’t depend on the choices of holomorphic frames. If (M, h) is Kihler, D' = 0,

*

D'=08,6y=6=0"and 8| =" =0 .

Lemma 2.9.4. In the local holomorphic coordinates,

B — B
d=D'——= and 0=D"—-— (2.9.7)
2 2
Proof. We only have to check them on functions and 1-forms. 0

Lemma 2.9.5. On a compact Hermitian manifold (M, h), we have

5" =8 — c
o2 (2.9.8)
-
For O and O, we have
o+ — 5 _ B +C”
o2 (2.9.9)

7 _ v B +C”
9 = o —
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Proof. Forany ¢ € QP9 1(M) and ¢y € QP4(M), by Stokes’ theorem

0 = / (i A *1))
M
= / i(d‘ﬂ/\go/\*v,b)
v 077
0 w
= /Mﬁ (dZ A, ¢>—,)
a ’I’L
—= —_— Jt
/M@zf <<90’h I¢> )
- - - Jlog det(hpym) | W™
_ "o pIiT N Jiy 4 i
/M (< Lo W)+ (0, VIR T ) + (i, w} = -
i oh’ ~ dlogdet(hyzm) | W™
— J " jig! Jif gy 22267\ tmn) )
/M <<dz AV]90,1/1>+< WV I;z/1> <tp, 5 w> <<p,h Il¢> = =
That is
» ot -0logdet(hym)
" — ] " —_ Jixg! T . g1 ¥ 105 UL bmn ) '
(D", ) = (42 A Vio,w) = = (0, V)10 (so, ( oo+ WS ) Ly
(2.9.10)
Now we will compute the second and third terms on the right hand side.
OnJt -0 log det(hz) - = (0hg Ohg - o -
Ji jipst [ Z10st J _ Jipt . opili
o T 5 = W (55— 52 ) = 2T = 2T 2.9.11)
On the other hand
WV = iy — i (v 2
B jtio T T iV I 97
= 05— WThL (2.9.12)
In summary, by formulas (2.9.10), (2.9.11) and (2.9.12), the adjoint operator 6" of D" is
5" = (o~ WTLL) + wr g, — 5y - &
- 0 jit el jite — 0 2
Since d = D" — £, we get
= B B +C"
s _ 2 en
g =96 5 9 5
O
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Lemma 2.9.6. On a compact Hermitian manifold (M, h), we have
_ [

A, D] =1 (5" + 7)

A, D" = —V=1(¢' + 5)

and

Proof. By definition
(AD")p = (\/—1hi7lz-];> (dz" A V.. 0)
= —V=1hVI; (d2* A LV )

= —V=1hILVip+ V=10 d [V
= VEI6) +dF AV (\/—mﬁm;gp)

= V=105 + D'Agp
where we use the metric compatible condition

Viw=0= V,(Ap) = A(Vie)

Lemma 2.9.7. On a compact Hermitian manifold (M, h), we have
A, 0] = V=1 (5* + ?*)
(A, 0] = —V/=1(0" + 1)

For the dual case, it is
07, L] = V=10 +7)
(e (GRS

Proof. By Lemma 2.9.6,2.9.4 and 2.9.1,

A8 = [A,D’]—{A,g]
_ \/__1<5,0, 24 +129 +C>
_ \/__1<5,,+g 24"+ B +C
2 2
- VEI@ +7)

0" L) = v=I(D' + <)
8, L) = —v/=I(D" +

c
2

)

(2.9.13)

(2.9.14)

O

(2.9.15)

(2.9.16)



The other relations follow by complex conjugate and adjoint operations. [

Lemma 2.9.8. On a Hermitian manifold (M, h, w),
0w = V=IA(Ow) = V=1T7d2" (2.9.17)

Proof. We have

C 7 4
3 = A(Ow) = T"d2’

On the other hand, by Lemma 2.9.5 and §{w = 0
— B +C" Bw
s <53_L>W:‘Tw—7w

2
o V=1 c"
_ <h£Ethh18F%dz£IpIg> (Thmndzm A dz“) - %w

V=1, s c
— _Th@hjl“fjdze—gw
V=l o c
= Tf‘gdz e
= \/—lFijdzg
= V—1A(Ow)

]

Now we assume F is a Hermitian complex vector bundle or a Riemannian vector bundle over a

compact Hermitian manifold (M, h,w) and V¥ is a metric connection on E.

Lemma 2.9.9. We have the following formula:

Tp(p®s) = (0°p) @s—h (L) ANVEs (2.9.18)
forany p € QP9(M) and s € I'(M, E).
Proof. The proof of it is the same as Lemma 2.9.5. [

Lemma 2.9.10. [f 7 is the operator of type (1,0) defined by T = [\, 20w] on Q°*(M, E), then

(1) [0, L) = v—1(3g + 7);
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(2) [8E7 L] = _\/__1<5E +?);
(3) [N, 0p] = V=105 +7*) ;
(4) [A, 05 = —V/—1(05 + 7).

Proof. We only have to prove (3). For any ¢ € Q*(M)and s € ['(M, E),

(AOp)(p®s) = A(dp®s+ (=)l A Ops)
= (ADp) @ s + (—1)¥IW/ZIRF I I (@ A Ops)
= (Adp) @ s+ (—1)PV=TRM I, (L) A Ops)
= (ADp) ® s + (=1)lPly/=T1hM (1, (1)) N\ Ops — \/—_1hszz(cp) A IyOgs
= (AD) @ s + (—1)¥I(Ap) A Ogs — V=1hM I () A VEs
On the other hand
(M) (p®s) = 05 ((Ap) ® s)
= (0Ap)® s+ (—1)‘¢|(Acp) A Ops
Therefore

N Ogl(p®s) = ([N 0)g)®s—V—IhHI () AVEs
= -1 ((5* +?*> gp) ®s— J—_lhkzlz(gp) AVEs
= \/—_1(5}; +?*> (p®s)

where the last step follows by formula (2.9.18).
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