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A B S T R A C T

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) is an increasingly popular analytical
technique, that is able to provide spatially resolved, minimally destructive analyses of heterogeneous materials.
The data produced by this technique are inherently complex, and require extensive processing and subjective
expert interpretation to produce useful compositional data. At present, laboratories employ diverse protocols for
data processing, and the reporting of these protocols is usually insufficient to allow data processing to be in-
dependently replicated, rendering the resulting data untraceable. Importantly, different expert users can obtain
significantly different results from the same raw data using nominally identical processing workflows, depending
on how ‘contaminants’ are identified and excluded, and which regions of signal are selected as representative of the
composition of the sample. The irreproducibility of LA-ICPMS is a significant problem for the technique, but the
complexity of the raw data has been a major hindrance to developing traceable data processing workflows. Here,
we present LAtools – a free, open-source Python package for LA-ICPMS data processing designed with reprodu-
cibility at its core. The software performs basic data processing with similar efficacy to existing software, and
brings a number of new data selection algorithms to facilitate reproducible reduction of LA-ICPMS data. We discuss
the key advances of LAtools, and compare its output to trace metal analysis of marine CaCO3 (foraminifera)
processed both manually and with Iolite, and to manually processed trace element data from zircon grains.

1. Introduction

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-
ICPMS) has become an increasingly available and valuable tool for
extracting geochemical information from geological materials.
Researchers are able to perform minimally destructive, micron-scale
spatially-resolved trace chemical and isotopic analyses on solid sam-
ples, often with negligible sample preparation compared to more con-
ventional solution-based techniques. The spatial resolution of LA-
ICPMS allows the targeted analysis of specific regions within a sample,
and its minimally-destructive nature preserves the majority of the bulk
sample, facilitating coupled analyses of a sample by different techni-
ques (e.g. combined trace element and stable isotope analyses; Vetter
et al., 2017). These capabilities have made LA-ICPMS popular across
the Earth and Environmental Sciences, from geochemistry (Jackson

et al., 2004; Burnham and Berry, 2017) to archaeology (Gratuze, 1999),
biomineralization (Eggins et al., 2004; Spero et al., 2015) and paleo-
climate research (Müller and Fietzke, 2016; Gothmann et al., 2015;
Jochum et al., 2012).
The development and adoption of LA-ICPMS has proceeded rapidly

over the last two decades, and has been transformative in a number of
fields. However, LA-ICPMS has developed without common and uni-
versally accepted ‘best practices’ for the reporting of data collection
parameters, and data processing and evaluation protocols. This has led
to several troubling trends in the literature:

1. Studies rarely report analytical parameters in sufficient detail to
allow the data collection procedure to be understood, or repeat
analyses to be conducted under similar conditions.

2. Data processing and reduction protocols tend to be highly variable
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and subjective, and are generally not reported in sufficient detail to
allow them to be quantitatively reproduced by an independent re-
searcher.

3. Researchers rarely provide the raw data required to assess data
processing methods, which is vital given the subjectivity inherent in
data processing.

These trends are particularly problematic, given that many samples
are chemically heterogeneous at the scale of laser ablation analyses,
and the specifics of analysis, data processing and the extraction of
average compositional data can have a profound influence on reported
sample composition. Equally important, the current state of LA-ICPMS
data processing and reporting is insufficient to allow reviewers and
readers to adequately evaluate the quality of data presented in the lit-
erature. These issues must be addressed, if LA-ICPMS data is to persist
as an accepted method for routine analyses of geological materials.
The reporting of instrument operational parameters may be ac-

complished by inclusion of a table in the main manuscript or supple-
ment (e.g. Table 1), and is relatively straightforward. The idiosyncrasies
of IC-PMS will prevent an external user exactly reproducing the ana-
lytical conditions, but these parameters provide important context for
the treatment and interpretation of data during processing, and allow
an external user to attempt analyses under similar conditions. Re-
porting data processing and reduction procedures is more complex, and
will be the main focus of this paper. Various software packages and
approaches currently exist for reducing LA-ICPMS data (Table 2), most
of which involve a degree of subjectivity that is difficult to completely
describe in publications. Here, we introduce LAtools, a Python module
that provides a platform for the semi-automated, reproducible reduc-
tion of complex LA-ICPMS data sets, and describe its new quantitative

Table 1
Analytical parameters that should be included alongside LA-ICPMS data. For examples of completed tables, see
tables provided with the analysis of example data in the electronic supplement. We recognize that many of these
analytical parameters will vary day-to-day in laboratories, but each can have important implications on how the
raw data are interpreted so should be included.

L
R
E S

A Parameter Significance

Instrument type / Beam optics 
description (manufacturer & 
model may suffice, if not 
substantively modified, or a 
custom-built instrument)

Ablation characteristics can vary significantly, depending on 
the specifics of laser focus, wavelength, energy and pulse 
length, and can alter the form of the resulting raw data. 
Knowing these parameters is therefore essential to correctly 
interpreting raw data. Additionally, elemental and isotopic 
fractionation can be introduced by insufficient energy transfer 
to the sample. Regular calibrations of laser focus and energy 
at ablation point are necessary to report these parameters 
accurately.

Laser Wavelength (λ)

Laser pulse length (time) 

Calibrated Laser Energy at 
Ablation Site (J cm-2)

Laser Repetition Rate (Hz) The repetition rate of the laser can influence signal intensity 
and patterns in the raw profiles. For example, if repetition rate 
is too low, it can introduce a periodic aliasing signal in the 
raw data.

Ablation Spot Size (um, 
geometry)

Determines the degree to which spatial information should be 
interpreted, and the strength of measured signals.

Calibrated Ablation Rate 
(distance pulse-1)

Only strictly necessary in depth-profiling studies where 
spatial information is interpreted. Highly material-specific, 
and should be calibrated against microscopy measurements.

I
E
C
A
F
R
E
T
N Extraction Cell Type This determines the washout characteristics of the signal, and 

is important  context for interpreting patterns in the raw data 
(e.g. Helex 2-volume cell).

Gas Flows (l min-1) The types of gasses used to carry sample from the laser to the 
ICP-MS, and their flow rates. This determines sample transfer 
rates and ICP-MS analytical characteristics.

Gas Flow Setup E.g. use of a ‘Squid’, or direct connection. This will influence 
the shape of the raw profiles, and allow better interpretation of 
patterns and trends in the data.

M
SS

A
S

C
E
P

Mass Spectrometer Parameters The exact parameters here will vary depending on instrument 
type, but sufficient detail should be provided to allow the 
analytical conditions to be understood, and potentially 
replicated. In particular, dwell time for each mass and total 
cycle time are essential, as interaction between laser repetition 
rate and cycle time can lead to aliasing and spectral skew in 
the data.

Table 2
Available software for processing LA-ICPMS data.

Software Platform Cost Link/reference

Iolite Igor Pro 1740 AUD https://iolite-software.com
Glitter Windows 4400 USD http://www.glitter-gemoc.com/
SILLS Matlab Free Guillong et al., 2008
AMS Windows Free Mutchler et al., 2008
Pepita Windows Free http://www.sediment.uni-goettingen.de/

staff/dunkl/software/pepita.html
LARS-C Excel Free http://www.immr.tu-clausthal.de/geoch/

labs/icp-ms/laplot/lars-c.shtml
ComPbCorr Excel Free http://gemoc.mq.edu.au/comPbcorrect/

practical.htm
LamDate Excel Free https://web.natur.cuni.cz/ugmnz/icplab/

lamd1.html
TERMITE R Free Mischel et al., 2017
LAtools Python Free This paper
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data selection capabilities. We show that LAtools performs similarly to
more established data reduction methods, and allows a user to exactly
reproduce and evaluate the processing methodologies applied to a data
set.

2. LA-ICPMS data reduction

Raw LA-ICPMS data are time-resolved measurements of specified
analytes while the laser is toggled on and off. Normal operation pro-
duces an alternation between background (laser-off) and signal (laser-
on) regions in the resulting time series (Fig. 1). The ablation beam may
be rastered across a sample surface to produce horizontally resolved
analyses, or remain in the same location for an extended period, ab-
lating into the sample surface to produce a vertically resolved analysis
(depth profile). The resulting data may be used to investigate surface or
sub-surface chemical heterogeneity, or can be integrated to provide
average chemical compositions of a sample, or regions of a sample. In
the former, heterogeneity in the sample is the target of the analysis and
spatially resolved data are presented. In the case of integrated data, the
analysis is reduced to a single data point representing the average
composition of a sample, with an error estimate reflecting either the
sample heterogeneity, or the variability between repeat measurements.
Data reduction can be divided into ‘basic processing’, which must be
applied to all LA-ICPMS data to convert the laser-on regions of the
profiles to calibrated compositional profiles, and ‘selection and in-
tegration’ stages, required to extract integrated compositional data.

2.1. Basic processing

Basic data processing steps typically include:

1. ‘Despiking’ to remove instrumental artifacts from the data, for ex-
ample excluding detector errors that return physically impossible
low or high values at single time points.

2. Data separation to identify ‘signal’ (laser-on) and ‘background’
(laser-off) regions within the profiles and exclude the ‘transition’
regions between these states. The ‘background’ region corresponds
to the baseline detector signal at a particular mass, and the ‘signal’
region contains the additional counts from the ablated sample ma-
terial.

3. Background correction, where identified ‘background’ regions are
interpolated and subtracted from the ‘signal’ regions, to provide a
baseline-corrected signal.

4. Standardization to an internally homogeneous element (e.g. Ca in
the case of carbonate minerals) to account for variations in ablation
efficiency both within samples, and between standards and samples.

5. Conversion of count ratios to compositional ratios by calibration to
one or more external standards including drift correction of cali-
bration parameters, particularly if the data were collected over an
extended period. Commonly NIST glasses are used as reference
materials, although matrix-matched standards with well-docu-
mented, homogeneous compositions can improve accuracy (Garbe-
Schönberg and Müller, 2014; Jochum et al., 2016; Evans and Müller,
2018).

These steps are relatively straightforward, are well-described (e.g.
Longerich et al., 1996), and are accomplished equally well by the ma-
jority of existing data processing packages (e.g. Iolite™, GLITTER™),
although the ability to calibrate against multiple reference materials is
absent from the most widely used commercial packages.

2.2. Selection and integration

In samples that are homogeneous on the scale of LA-ICPMS ana-
lyses, the entire ‘signal’ (laser on) region of the data can be integrated to
calculate a robust compositional value. In heterogeneous samples the
choice of region over which to calculate the integral is more complex
and subjective, and can vary significantly depending on the type of
samples under consideration. In many materials, heterogeneity is at-
tributable to micro-domains of a contaminant phase, a secondary non-
target material, or even the region of interest itself. In heterogeneous
samples, subsections of the ablation profile that are characteristic of the
material of interest must be identified to attain a representative in-
tegrated composition. The criteria used to select or remove regions from
integration must be based on knowledge of the sample and the com-
positions of likely contaminant phases. Some materials have known,
systematic heterogeneities which should be included in the data pro-
cessing (e.g. Mg in foraminifera shells; Eggins et al., 2004). In such
cases, the analyst must be sure that the laser analysis has collected
sufficient data to yield a robust ‘bulk’ compositional estimate, despite
the heterogeneity.
The method by which contaminant regions are identified and re-

moved, or regions of interest are identified and selected, can have a
significant effect on the integrated composition of a heterogeneous
sample (Fig. 2; Section 4). At present, data selection and integration
approaches range from fully manual (i.e. spreadsheets) to more so-
phisticated semi-automated scripts (AMS, SILLS, TERMITE; Table 2)
and software packages (Iolite™, GLITTER™). There are also a range of
in-house, unpublished data processing scripts employed by various la-
boratories. Fully manual approaches have the benefit of intimately in-
volving the analyst with all steps of data processing, but are inherently
slow, non-systematic, and create significant problems in reporting data

Fig. 1. An example LA-ICPMS depth profile, collected from a NIST610 standard reference glass, and produced by the LAtools ‘trace_plots’ command. Gray regions
contain instrumental background (laser off), pink region contains the measured signal (laser on). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

O. Branson et al. Chemical Geology 504 (2019) 83–95

85



processing procedures. Semi-automated techniques save time and are
more systematic, but distance the analyst from the raw data, thereby
increasing the risks of inappropriate processing, particularly in complex
heterogeneous samples. In all existing software packages, data selection
for integration is either conducted manually, or via simple threshold- or
time-based selection criteria. The former is difficult to report, and the
latter tends to be inadequate for processing complex materials. For
materials where concentration thresholds are insufficient, no existing
method offers a robust, traceable and reproducible approach to redu-
cing data that can be quantitatively reported and evaluated by an in-
dependent user.

3. The LAtools software

LAtools is an open-source, cross-platform Python module, designed
to address shortfalls in the traceability of LA-ICPMS data reduction. It is
an open-source project hosted on GitHub (https://github.com/
oscarbranson/latools), with a substantial body of online documenta-
tion (http://latools.readthedocs.io). Because it is open source, it the
software can be examined and modified by its users, and can evolve
with the needs of the community and the development of LA-ICPMS
techniques (e.g. the incorporation of 2D imaging capabilities). For this
reason, minimal explanations of the specific capabilities of LAtools are
provided in this manuscript, as they are likely to evolve in future. To
find out more about the capabilities of the current version of LAtools,
and examples of their use, we direct the reader to the online manual

(http://latools.readthedocs.io). To assist a new user in trying LAtools,
we highlight key sections of the online manual in Box 1.
Data processing in LAtools is handled semi-automatically, where the

analyst must review the results of each processing step, and adjust re-
duction parameters to achieve the desired result. An example LAtools
workflow, showing plots produced at each stage of analysis is shown in
Fig. 3. Basic data processing tasks (despiking, signal and background
detection, background correction, interference corrections, internal
standardization and calibration, drift-correction) are handled similarly
to other software packages, with the addition of the ability to calibrate
samples against multiple reference materials. GeoREM compositions for
NIST610, 612 and 614 glasses (Jochum et al., 2011) are included in the
default reference database, which can be expanded by the user to in-
clude additional standards. The use of multiple reference materials
provides better statistics in calibrations, and offers resilience against
problems that might arise from individual SRM measurements, such as
heterogeneity, contamination, or matrix effects. The most significant
advance over existing software is a comprehensive ‘data selection’
toolbox, which allows the quantifiable and reproducible integration of
data.
Data selection tools (Box 2) include concentration, gradient and

correlation threshold filters, multi-element Naïve Clustering algorithms
(meanshift and k-means) available through the scikit-learn Python li-
brary (Pedregosa et al., 2011), and algorithms for identifying and ex-
cluding inclusions within homogeneous samples. Full technical details
and example usage of these filters is available in the online manual

Fig. 2. An example LA-ICPMS analysis containing three depth profiles collected from the CaCO3 test of the planktic foraminifera Orbulina universa taken from marine
sediments. This plot is generated by the ‘trace_plots’ function of LAtools, after applying all basic processing and calibration steps (Section 2.1). In these samples Al, Mn
and Ba are prone to contamination by clay minerals, regions where they are enriched should be excluded from integrations. However, these elements are highly
heterogeneous, and the precise criteria selected to remove ‘contaminated’ data could have a significant influence on which specific regions are selected. In het-
erogeneous specimens like these, it is vital to have a record of data selection choices that completely describes the regions used to calculate integrated compositions.
LAtools is designed to provide this capability, and makes data selection traceable.

Box 1
Try LAtools. LAtools is accompanied by extensive online documentation. Here, we highlight key sections of the documentation that will be parti-
cularly useful for getting up and running.

Installation https://latools.readthedocs.io/en/latest/users/installing.html
Some basic instructions for installing Python and LAtools on your computer.

First steps https://latools.readthedocs.io/en/latest/users/beginners/index.html
The ‘Beginners Guide’ covers all the basics you'll need to start LAtools, followed by a step-by-step walk-through analysis of some example data.

Filtering https://latools.readthedocs.io/en/latest/users/filters/index.html
The ‘Filtering’ section contains an in-depth explanation of how filters work, and the tools you can use to help design them effectively for your data.

Example work-
flows

https://latools.readthedocs.io/en/latest/users/examples.html
Once you've come to grips with the basics, there are four example work-flows, which we used to process the data presented in the comparison examples
presented below. This will provide some insight into using LAtools beyond the basics, and for different types of data.

Configuration https://latools.readthedocs.io/en/latest/users/configuration/index.html
If you want to use LAtools regularly, it's worth spending a little time configuring it for your specific system. This section contains some advice on defining data
formats, editing the SRM database, and more.
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(https://latools.readthedocs.io/en/latest/users/filters/index.html).
Once created, filters can be turned on or off independently for subsets of
samples and individual analytes, to facilitate fine control over data
selection. As with the manual selection of integration regions, the
choice and application of data filters remains subjective, and should be
accomplished with in-depth knowledge of the samples. However, filters
offer a significant advantage over manual integration as the parameters
used to identify the filtered data can be recorded and reported, thereby
permitting another researcher to obtain identical results from the same
raw data set.
After data processing is complete, the parameters used in the LAtools

analysis can be exported to a file, along with the raw data for all ana-
lytes required to reproduce the analysis, as well as the SRM con-
centration values used for calibration. These data are designed to be
included with publications, thereby allowing other researchers and
reviewers to examine the raw data and reduction methods used to
produce the published data set.
A full description of LAtools with application examples is available

in the online manual (http://latools.readthedocs.io).

4. Comparison of processing methods

To highlight the current problems in the reproducible reduction of
LA-ICPMS data, and demonstrate the capabilities of LAtools, we com-
pare four separate datasets collected from complex, heterogeneous
materials, that were processed using multiple methods by different
expert users in our research groups. We compare three separate sets of
analyses of foraminifera (CaCO3) from both sediment cores and live
culture, and one set of Hadean zircon analyses. The raw data, alongside
the full LAtools workflows applied to the data can be examined in the
‘Example Analyses’ section of the online documentation (https://
latools.readthedocs.io/en/latest/users/examples.html).
In each comparison reduced compositional data from the different

processing techniques are compared graphically and statistically.

Comparisons are made in context of estimates of the reproducibility of
LA-ICPMS analyses for different types of samples (Table 3). Reprodu-
cibility is assessed by computing the difference between all unique pairs
of repeat analyses within the entire data set, which are described by a
half-Cauchy distribution. Fitting the distribution to the data allows the
IQR (equivalent to 1 standard deviation) to be precisely characterized.
This ‘reproducibility’ metric incorporates uncertainties arising from
both sample heterogeneity and the analytical technique, and provides
an overall estimate of the inter-replicate variability associated with an
LA-ICPMS measurement for a specific type of sample. This will be larger
than estimates of uncertainty derived from repeat measurements of
compositionally homogeneous reference materials, which is often re-
ported as ‘analytical precision’. However, as the subject here is the
variance introduced by data reduction methods applied to hetero-
geneous samples, this estimate of the intra-population variability

Fig. 3. A schematic of an LAtools workflow, showing plots produced for a single sample after each stage of processing. After import, data are ‘despiked’, before
‘autorange’ is applied to separate signal and background regions. The background is then calculated (‘bkg_calc’) for the entire dataset, and subtracted from each
sample (‘bkg_sub’). The data are then normalised to an internal standard (43Ca) and calibrated against reference materials. Filtering is conducted on the calibrated
data, using visualisations like the ‘crossplot’ to help aid filter design and selection. After filtering, integrated data can be exported, alongside all raw data and a record
of every action performed on the data during processing, which can be used to quantitatively reproduce the analysis. All plots shown are created directly by LAtools
using one-line commands. This example is taken from fossil foraminifera dataset #1, and the workflow can be viewed in its entirety in the online examples (https://
latools.readthedocs.io/en/latest/users/examples.htmlhttps://nbviewer.jupyter.org/github/oscarbranson/latools/blob/master/Supplement/fossil_foram_manual.
ipynb).

Box 2
Data selection methods currently available in LAtools. For full explanations and example uses, see online manual (https://latools.readthedocs.io/en/
latest/users/filters/index.html).

Thresholds Identify data regions where the concentration or local gradient of a specific analyte is above or below a threshold value. ‘Correlation’-thresholds may
also be used to remove regions where two analytes correlate, for example regions where Al and Mn co-vary in sedimentary carbonates are often
contaminated by Al-Mn-rich clays. Appropriate thresholds may be determined from prior knowledge of the samples, or by examining whole-analysis
level cross-plots of the concentration or local gradients of all pairs of analytes, which reveal relationships within all the ablations, allowing distinct
contaminant compositions to be identified and removed.

Clustering algorithms Identify distinct compositional regions within the samples, using clustering analysis of the concentrations of one or more analytes. This method
identifies distinct compositional regions (clusters) within the data, by defining either the number of expected distinct compositions in the data
(kmeans), or parameters defining the degree of difference between clusters for them to be considered distinct (meanshift). Once calculated, clusters
can be applied to identify regions in the raw data that belong to different compositionally distinct materials. These algorithms can be applied on a per-
sample, per-subset or per-analysis basis.

‘Signal optimization’ algo-
rithm

Identifies the longest contiguous region in the raw data where both the concentration and standard deviation of one or more analytes are minimised.
This is particularly useful for relatively homogeneous materials containing inclusions of a known contaminant.

Defragmentation Can be used to either include or exclude selected data regions that are below a threshold size. For example, if an analyte oscillates around a threshold
value used for filtering, this will result in a ‘fragmented’ filter. Defragmentation consolidates the selection.

Down-hole exclusion. Excludes all data after the first region excluded by other filters. This is relevant to integrating depth-profile data, where there is a degree of signal
mixing from material from above the bottom of the ablation pit. Once a contaminant is encountered, it will be present as a minor component in all
subsequently collected data during an ablation. Depending on the composition of the contaminant, data down-hole of the contaminant may need to be
excluded.

Trimming/expansion Filters may be made more or less conservative by ‘trimming’ or ‘expanding’ the selected data regions.

Table 3
The 1 s.d. inter-replicate reproducibility of LA-ICPMS measurements for dif-
ferent types of sample, determined by fitting a half-Cauchy distribution to all
unique pairs of replicate measurements in the reference dataset. Statistics are
calculated from the reduced data produced either manually, or by Iolite.

mmol/mol Manual (spreadsheet) IoLite

Cultured
foraminifera

Fossil foraminifera
(#1)

Fossil foraminifera
(#2)

Mg/Ca 0.19 0.23 0.29
Sr/Ca 3.0×10−2 1.7×10−2 3.7× 10−2

Ba/Ca 1.8×10−4 1.0×10−4 3.7× 10−2

Al/Ca 1.0×10−2 5.1×10−2 5.7× 10−2

Mn/Ca 3.2×10−2 4.1× 10−3

Fe/Ca 2.4× 10−2

Cu/Ca 5.6× 10−3

Zn/Ca 8.1× 10−3

B/Ca 5.4× 10−3
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provides a more useful comparison point.
The population-level similarity of data produced by different re-

duction methods is assessed using a 2-sample Kolmogorov-Smirnov test,
which evaluates whether the data produced by the reduction techni-
ques are distinguishable, given their variance. Additional insights can
be gained by considering the median and inter-quartile range (IQR) of
the residual between the two reduction methods (Method A–Method B).
The IQR provides a metric to assess the variance introduced by data
reduction methods. If the residual IQR is greater than the 1 s.d. inter-
replicate reproducibility of the technique (Table 3), the choice of data
reduction methods introduces more uncertainty than is inherent in the
analytical technique for that type of sample. The mean and IQR of the
residuals may be considered in tandem to assess whether differences
between reduction methods would be detectable under normal oper-
ating conditions. If the median residual is greater than the 1 s.d. inter-
replicate reproducibility, this suggests that the choice of reduction
method can cause a significant shift in the population composition.
However, if the difference between the median residual and the 1 s.d.
reproducibility is less than the residual IQR, the variance introduced by
data reduction methods renders the population-level difference un-
detectable, and the reduction methods may be treated as substantively
identical.
Within-population pair-wise differences between the data resulting

from different reduction methods are presented using Bland-Altman
plots (Altman and Bland, 1983) and assessed by regression analyses of
the residuals. Bland-Altman plots are designed to compare reduction
methods where both contain a degree of uncertainty, by plotting the
residual (Data A–Data B) against the mean of (Data A, Data B) pairs.
Thus, differences in the results of the techniques may be gauged as
scatter in the y-axis, while not having to make assumptions about the
‘true’ composition of the sample. In regression analyses, slope and in-
tercept significance is assessed by one-sample t-tests. Significant slopes
in the residuals imply a systematic bias between the two reduction
methods, which will introduce trends within the data. All statistical
analyses are conducted in Python 3.6, using the ‘stats’ module of SciPy
(0.19.1; Jones et al., 2001) for Kolmogorov-Smirnov tests, and the OLS
module of statsmodels (0.8.0; Seabold and Perktold, 2010) for regres-
sion analysis.

4.1. Comparison of manual reduction and LAtools

Two data sets were collected from the individually analyzed CaCO3
tests of cultured (33 specimens) and fossil (fossil foraminifera dataset
#1, 53 specimens) planktic foraminifera. The cultured dataset contains
two species of foraminifera, Orbulina universa and Neogloboquadrina
dutertrei cultured on Santa Catalina Island, CA USA. The fossil dataset

Fig. 4. Bland-Altman plots comparing data from
cultured foraminifera reduced manually and using
LAtools. Residuals (reference minus alternate) are
plotted against mean (reference and alternate) ra-
tios, providing a way of visualizing the similarity of
two techniques, without requiring one to be an ab-
solute reference. The similarity of the techniques
can be visually assessed as scatter in the residual (y
axis). If the techniques give identical results, all
points should fall along the zero (dashed) line. On
both sides of the zero line, a gray shaded region
shows the 1 s.d. inter-replicate reproducibility for
each analyte (Table 2). In the case of Sr/Ca and Ba/
Ca, this envelope is much smaller than the scatter in
the data, and is almost invisible. The residual
median and IQR are shown as a colored dashed line
and shaded envelope, respectively. For all elements,
the residual median is within the inter-replicate re-
producibility, but the residual IQR is considerably
larger than inter-replicate reproducibility. This in-
dicates that while the population mean is in-
dependent of data reduction method, considerable
inter-replicate variability is introduced by data re-
duction choices. The kernel density plots on the
right show the distribution of the residuals for each
element (darker= LAtools, lighter=Test User).
Note that Al/Ca values below zero are observed in
these data, relating to problems with Al/Ca back-
ground subtraction. This issue does not preclude
analysis of the data, as Al/Ca is used as a qualitative
contaminant indicator in these samples.

O. Branson et al. Chemical Geology 504 (2019) 83–95

89



from Vetter et al. (2017), and contains solely O. universa. Before ana-
lysis both sets of cultured specimens were oxidatively cleaned to re-
move residual organic material, and the fossil foraminifera were re-
ductively cleaned to remove sedimentary contaminants, following
standard protocols (e.g. Vetter et al., 2017). Data were collected from
test fragments, ablating from the inside to the outside of the test. In the
LA-ICPM-MS analysis of foraminifera it is common practice to generate
multiple ablation pits through the chamber wall of the same specimen,

and combine them to attain an average bulk composition. Thus, the
similarity of multiple ablations from the same specimen (Table 3)
provides an estimate of the precision of the technique, incorporating
both analytical and sample heterogeneity factors. The variance in-
troduced by data reduction techniques will be assessed relative to this
estimate of analytical precision.
Data were reduced independently by three expert users: two

manually using custom spreadsheets, and one using LAtools. For each

Fig. 5. Bland-Altman plots comparing data from fossil foraminifera (#1) reduced manually and using LAtools. For interpretation of the plot and annotations, see
Fig. 3. There are numerous significant differences between both techniques and the reference data (Table 5). In general, the choice of processing technique has a
greater influence on the compositional data in these fossil samples than in the cultured foraminifera data (Fig. 4). The marked trend in the Al/Ca residuals is
attributable to the use of Al/Ca as a contaminant indicator when filtering the data in LAtools, leading to the exclusion of high Al/Ca regions.

O. Branson et al. Chemical Geology 504 (2019) 83–95

90



data set, a ‘reference’ user with intimate knowledge of the samples and
analyses reduced the data manually, and passed the raw LA-ICPMS data
and a publication-style description of the data reduction methods to
two independent expert ‘test’ users, one who reduced the data manually
and one who used LAtools. The reduced compositional values produced
by the test-manual and test-LAtools users are compared to the data
produced by the reference user (Figs. 4 and 5, Tables 4 and 5). For
elemental ratio analyses of foraminifera CaCO3 shells, ratios of Mg/Ca,
Sr/Ca, and Ba/Ca are of interest as proxies for environmental condi-
tions whereas Al/Ca ratios are typically interpreted as an indicator of a
contaminated or altered domain. In the fossil foraminifera, we expect
Ba/Ca, Al/Ca and Mn/Ca to be prone to contamination by marine clay,
whereas Mg/Ca and Sr/Ca should be more resistant to such con-
tamination.
In the cultured samples (Fig. 4, Table 4), the median residual was

within the 1 s.d. reproducibility of the reference data for all analytes.
However, the IQR of the residuals was substantially larger than the 1
s.d. reproducibility for all except Ba/Ca in the LAtools case, indicating
that considerable variance is introduced by choice of reduction method.
The residual IQR in the Test User case was always larger than the LA-
tools case by up to a factor of ~6, indicating the LAtools values diverged
less from the reference data than the test-manual values. Regression
analyses revealed no significant slopes or intercepts in the residuals of
the Test User data, but showed numerous significant trends in the LA-
tools residuals. This likely reflects the use of an Al/Ca concentration
threshold in LAtools processing to remove sections of the raw data
where the underlying Al-rich carbon tape was being ablated. In the
clean, live-cultured foraminifera that comprise this dataset, high Al/Ca

is unlikely to represent contamination from sedimentary processes. The
application of the Al concentration filter in LAtools appears to have
removed regions that were also high in other elements. This suggests
that manual processing in which these high Al/Ca regions were not
removed may be including contaminant-rich regions within the com-
positional data. At the population level, only Al/Ca data were sig-
nificantly different from the reference data in both the Test User and
LAtools cases, as indicated by Kolmogorov-Smirnov tests. This suggests
that population-level statistics of paleoceanographic relevant elemental
ratios should be relatively insensitive to the data reduction method,
whereas intra-population trends may be more affected.
In fossil samples (Fig. 5, Table 5), the median residual was within

the 1 s.d. reproducibility of the reference data for all analytes except
Mg/Ca in both the Test User and LAtools cases. In both cases, the re-
sidual IQR was considerably larger than inter-replicate reproducibility
for multiple analytes, with no clear difference in magnitude between
the Test User and LAtools cases. There were also significant differences
in both the slope and intercept of residuals in both the Test User and
LAtools cases across multiple analytes, suggesting that choice of data
reduction methods will introduce significant systematic variance at the
intra-population level. At the population level, all analytes except Sr/Ca
and Ba/Ca were significantly different from the reference data in both
the manual and LAtools comparison cases. In general, there were many
more significant differences between the data reduction techniques in
the fossil samples than with the live-cultured foraminifera. This reflects
the relative chemical complexity in fossil shells that arises from de-
positional and sedimentary processes, where these complex con-
taminant phases are removed to varying degrees by different processing

Table 4
Comparison of LA-ICPMS data from cultured foraminifera processed manually and with LAtools. In the Residual Summary, bold values are greater than the inter-
replicate reproducibility (1 s.d.) determined from the reference data. In the Residual Regression and Kolmogorov Smirnov sections, bold values are significant at the
p < 0.05 level. All units are mmol/mol, except Ba/Ca which is μmol/mol. N refers to the number of pair-wise ablation comparisons, and varies between techniques
because of differences in criteria applied to exclude analyses. Statistical quantities: LQ= lower quartile, UQ=upper quartile, regression t/p= t statistic and
significance level of one-sample t-test.

Residual Summary Residual Regression Kolmogorov-Smirnov

N Median LQ IQR UQ Slope Slope t Slope p Intercept Intercept t Intercept p KS p

Manual test user Mg/Ca 58 0.11 −0.21 0.59 0.38 0.03 0.76 0.45 0.01 0.05 0.96 0.138 0.61
Sr/Ca 58 0.01 −0.13 0.19 0.06 −0.01 −0.06 0.95 0.00 −0.01 0.99 0.190 0.22
Ba/Ca 58 0.00 −0.17 0.24 0.06 0.04 0.36 0.72 0.05 0.19 0.85 0.138 0.61
Al/Ca 58 −0.01 −0.02 0.01 −0.01 −0.35 −6.10 <0.01 −0.01 −2.25 0.03 0.517 0.00

LAtools test user Mg/Ca 59 0.11 −0.11 0.38 0.27 −0.07 −2.67 0.01 0.32 3.17 0.00 0.136 0.62
Sr/Ca 59 0.02 0.00 0.04 0.04 −0.35 −5.74 <0.01 0.47 6.11 0.00 0.220 0.10
Ba/Ca 59 0.03 −0.04 0.14 0.10 −0.19 −5.47 <0.01 0.38 4.23 0.00 0.119 0.77
Al/Ca 59 0.00 −0.01 0.01 0.00 −0.48 −12.0 <0.01 0.00 0.33 0.74 0.237 0.06

Table 5
Comparison of LA-ICPMS data from fossil foraminifera (#1) processed manually and with LAtools. In the Residual Summary, bold values are greater than the inter-
replicate reproducibility (1 s.d.) determined from the reference data. In the Residual Regression and Kolmogorov Smirnov sections, bold values are significant at the
p < 0.05 level. All units are mmol/mol, except Ba/Ca which is μmol/mol. Note that the N refers to the number of pair-wise ablation comparisons, and varies
between techniques because of differences in criteria applied to exclude analyses. In the LAtools case N also varies between elements, as different critera were applied
to contaminant-prone (Ba/Ca, Mn/Ca, Al/Ca) and contaminant-resistant (Mg/Ca, Sr/Ca) elements. Statistical quantities: LQ= lower quartile, UQ=upper quartile,
regression t/p= t statistic and significance level of one-sample t-test.

Residual Summary Residual Regression Kolmogorov-Smirnov

N Median LQ IQR UQ Slope Slope t Slope p Intercept Intercept t Intercept p KS p

Manual test user Mg/Ca 149 0.28 0.09 0.50 0.59 0.03 1.20 0.23 0.26 1.88 0.06 0.17 0.03
Sr/Ca 149 −0.01 −0.02 0.03 0.01 −0.12 −3.39 <0.01 0.16 3.28 <0.01 0.13 0.16
Ba/Ca 149 −0.07 −0.11 0.19 0.08 0.38 2.07 0.04 −0.47 −1.50 0.14 0.09 0.51
Al/Ca 149 0.03 0.01 0.11 0.12 0.41 4.55 <0.01 0.06 3.41 <0.01 0.25 <0.01
Mn/Ca 149 0.01 0.00 0.04 0.04 −0.06 −3.14 <0.01 0.03 5.34 <0.01 0.23 <0.01

LAtools test user Mg/Ca 140 0.04 −0.27 0.55 0.28 −0.07 −1.61 0.11 0.43 1.55 0.12 0.05 0.99
Sr/Ca 140 −0.01 −0.04 0.05 0.00 −0.07 −1.07 0.29 0.07 0.78 0.43 0.19 0.01
Ba/Ca 122 −0.05 −0.26 0.30 0.04 −0.25 −5.20 <0.01 0.28 3.54 <0.01 0.14 0.17
Al/Ca 133 0.00 −0.04 0.04 0.01 −0.89 −58.0 <0.01 0.04 14.0 <0.01 0.23 <0.01
Mn/Ca 133 −0.01 −0.03 0.03 0.00 −0.57 −12.2 <0.01 0.03 6.08 <0.01 0.28 <0.01
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techniques. This shows that data reduction choices in complex samples
from sedimentary environments can have significant impacts on both
population-level compositions and intra-population trends. This is
fundamental to all applications of LA-ICPMS to fossil foraminifera
seeking to create paleoceanographic reconstructions, and highlights the
necessity of improving user reporting of data reduction methods in this
field.

4.2. Comparison of Iolite and LAtools

Data from a second set of fossil foraminifera tests (fossil for-
aminifera dataset #2, 89 specimens) of the species Globigerina bulloides

were processed using Iolite and LAtools (Fig. 6, Table 6). In Iolite, data
were processed using the ‘trace element’ data reduction scheme, with
43Ca as an internal standard. Regions for signal integration were se-
lected manually, because the complexity of the data rendered the use of
threshold selection criteria insufficient. These data are from a test of
reductive cleaning methods, and contain samples with a variety of le-
vels of contamination. Samples were ablated in a range of orientations.
As in the manual comparison, the influence of data reduction techni-
ques is assessed relative to the inter-ablation precision of analyses
(Table 3). In all cases, the median and IQR of the residual was within
the inter-replicate reproducibility (1 s.d.) of the reference (Iolite) data.
At the population level, the compositions calculated by Iolite and

Fig. 6. Bland-Altman plots comparing data from
fossil foraminifera reduced using Iolite and LAtools.
Overall layout is modified from Figs. 3 and 4 be-
cause only two reduction techniques are compared,
but the information presented is similar. Each axis
contains a Bland-Altman plot (annotated after
Fig. 4) for a different analyte, with a conjoined re-
sidual density plot (arbitrary units). The key fea-
tures of these plots are that both the median con-
centration (colored line) and IQR (colored band) are
within the inter-replicate reproducibility for all
analytes. Thus, data reduced by Iolite and LAtools
are similar within the inter-replicate reproducibility
of the technique for all elements considered. All
units are mmol/mol Ca.

Table 6
Comparison of LA-ICPMS data from down-core foraminifera processed with Iolite and LAtools. In the Residual Summary, bold values are greater than the inter-
replicate reproducibility (1 s.d.) determined from the reference data. N refers to the number of pair-wise ablation comparisons, not the number of foraminifera. In the
Residual Regression and Kolmogorov Smirnov sections, bold values are significant at the p < 0.05 level. All units are mmol/mol. Statistical quantities: LQ= lower
quartile, UQ=upper quartile, regression t/p= t statistic and significance level of one-sample t-test.

Residual Summary Residual Regression Kolmogorov-Smirnov

N Median LQ IQR UQ Slope Slope t Slope p Intercept Intercept t Intercept p KS p

Mg/Ca 162 0.024 −0.012 0.068 0.056 −0.01 −0.91 0.36 0.04 1.33 0.18 0.14 0.09
Sr/Ca 162 0.007 −0.006 0.024 0.018 −0.03 −1.22 0.22 0.05 1.39 0.17 0.07 0.75
Al/Ca 162 0.000 −0.003 0.005 0.003 −0.09 −6.27 <0.01 0.01 4.65 <0.01 0.12 0.20
Mn/Ca 162 −0.001 −0.002 0.003 0.001 −0.10 −3.52 <0.01 0.00 0.59 0.55 0.10 0.39
Fe/Ca 162 0.005 −0.003 0.014 0.012 −0.07 −2.63 0.01 0.05 2.97 <0.01 0.10 0.39
Cu/Ca 162 0.001 0.000 0.002 0.002 0.01 1.62 0.11 <0.01 3.51 <0.01 0.07 0.83
Zn/Ca 162 0.001 −0.001 0.003 0.003 −0.04 −2.65 0.01 <0.01 3.74 <0.01 0.07 0.75
B/Ca 162 0.001 0.000 0.002 0.001 0.00 −0.58 0.56 <0.01 2.16 0.03 0.07 0.75
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LAtools were statistically indistinguishable (Kolmogorov-Smirnov tests).
There were a number of slight but significant non-zero slopes and in-
tercepts in the residuals, although these were all less than the inter-
replicate reproducibility. Data processed using Iolite and LAtools gave
equivalent results, to within the reproducibility of LA-ICPMS for these
samples (Table 2). This is consistent with the more systematic nature of
the processing methods applied to these samples, where elemental
concentration thresholds were applied to all samples, rather than
manually selecting integration regions in individual samples.
For elements of interest in these samples, LAtools is able to produce

quantitatively similar results to Iolite, with the key difference that the
results produced by LAtools are fully traceable. The complexity of these
data precluded the use of systematic data selection tools available in
Iolite, but through the combined use of clustering filters, gradient
threshold filters and our ‘signal optimisation’ algorithm (Box 2), LAtools
is able to systematically identify ‘uncontaminated’ signal regions with
similar efficacy as an expert user.

4.3. Comparison of zircon data reduction

Data from Hadean zircons (26 grains) was reduced manually
(Burnham and Berry, 2017) and using LAtools (Table 7, Fig. 7). Re-
plicate analyses of the same grains were unavailable, so it was not
possible to estimate the inter-replicate reproducibility in these samples.
As with foraminiferal samples, zircon ablation depth profiles exhibit
numerous heterogeneities, many of which are attributable to inclusions
of foreign mineral phases, which must be excluded from analysis. For
all analytes, compositional values produced by LAtools were identical at
the population level to manually reduced data. There were small but
significant trends in the residuals, particularly in elements known to be
associated with contaminant phases (Mg, Al). Overall, LAtools produces
compositional values that are much closer to the manually reduced
zircon data than the manually reduced foraminiferal data. This is be-
cause data reduction in zircons focuses on identifying compositionally
homogeneous regions within the sample, whereas foraminifera exhibit
systematic chemical heterogeneity that is intrinsic to the sample and
cannot be excluded. Thus, the data reduction methodology applied to

zircons will inherently lead to more reproducible compositional values,
which are less sensitive to data reduction methods.

4.4. Influence of choice of processing methodology

The examples above highlight that the choice of data processing
technique can be of varying importance depending on the specifics of
sample type and the reduction method. There is a general trend for
simpler samples with easily identifiable contaminants (e.g. zircons) to
yield more reproducible results between manual and automated pro-
cessing than for more complex, heterogeneous materials (e.g. for-
aminifera). In heterogeneous samples, processing techniques that apply
selection criteria at the population level (e.g. application of an ele-
mental concentration threshold to all samples) will yield more re-
producible results than manually selecting data from individual sam-
ples. These general patterns in reproducibility are intuitive, but it is
impossible to quantify the uncertainty associated with choice of re-
duction technique for a given type of sample without reducing the data
in different ways, and assessing the variability of the reduced values.
LAtools brings two key advances in this regard: (1) allowing multiple
processing approaches to be rapidly applied and compared, and (2)
facilitating the quantitative reporting and reproduction of data pro-
cessing methods. This allows the straightforward assessment of un-
certainty associated with data reduction methodology, the examination
of data processing routines by external users, and the application of
data processing protocols to new sets of samples.

5. Advantages of LAtools

LAtools offers the first LA-ICPMS data processing package designed
to focus on the traceability of analyses. It allows the fully reproducible
reduction of data from complex, heterogeneous samples, increasing the
transparency and reliability of LA-ICPMS data. At the end of analysis,
LAtools allows the export of all raw data and analytical parameters
required to quantitatively reproduce the integrated compositional data.
Beyond traceability, LAtools is fast and flexible, and facilitates the

rapid evaluation of the influence of multiple filtering regimes on LA-

Table 7
Comparison of LA-ICPMS data from zircons processed manually (Burnham and Berry, 2017) and with LAtools. In the Residual Regression and Kolmogorov Smirnov
sections, bold values are significant at the p < 0.05 level. N refers to the number of pair-wise ablation comparisons. All units are ppm, except Al which is in wt%.
Statistical quantities: LQ= lower quartile, UQ=upper quartile, regression t/p= t statistic and significance level of one-sample t-test.

Residual Summary Residual Regression Kolmogorov-Smirnov

N Median LQ IQR UQ Slope Slope t Slope p Intercept Intercept t Intercept p KS p

Li 24 0.17 −0.01 0.45 0.44 0.04 1.09 0.29 −0.48 −0.97 0.34 0.08 1.00
Mg 13 0.83 −0.33 2.69 2.36 0.08 41.0 <0.01 0.06 0.20 0.85 0.15 0.99
Al 26 0.00 0.00 0.00 0.00 0.05 4.81 <0.01 0.00 0.20 0.84 0.08 1.00
P 26 −22.9 −62.7 86.5 23.8 −0.02 −0.81 0.43 7.94 0.18 0.86 0.08 1.00
Ti 26 −0.43 −1.05 1.43 0.38 0.00 −0.05 0.96 −0.32 −0.81 0.42 0.12 0.99
Y 26 14.3 −92.2 193 100 0.02 0.43 0.67 −48.5 −0.31 0.76 0.08 1.00
La 24 −0.01 −0.04 0.05 0.00 −0.08 −1.93 0.07 −0.03 −0.42 0.68 0.13 0.99
Ce 26 0.07 −0.18 0.40 0.22 −0.04 −3.01 0.01 0.28 1.79 0.09 0.12 0.99
Pr 26 0.00 −0.03 0.04 0.02 −0.07 −1.65 0.11 −0.01 −0.16 0.88 0.12 0.99
Nd 26 0.00 −0.22 0.35 0.12 −0.07 −1.63 0.12 0.05 0.12 0.91 0.15 0.89
Sm 26 0.09 −0.27 0.50 0.23 −0.02 −0.45 0.65 0.17 0.37 0.72 0.12 0.99
Eu 26 −0.02 −0.04 0.07 0.03 −0.06 −1.65 0.11 0.01 0.36 0.72 0.12 0.99
Gd 26 0.13 −0.85 1.99 1.14 0.01 0.15 0.88 −0.03 −0.01 0.99 0.08 1.00
Tb 26 0.08 −0.59 0.94 0.35 0.02 0.34 0.74 −0.26 −0.23 0.82 0.12 0.99
Dy 26 1.12 −7.00 14.60 7.60 0.02 0.56 0.58 −4.09 −0.32 0.75 0.08 1.00
Ho 26 0.83 −2.64 5.56 2.92 0.02 0.45 0.66 −1.56 −0.30 0.76 0.12 0.99
Er 26 5.45 −7.40 21.81 14.41 0.02 0.36 0.72 −4.33 −0.16 0.87 0.12 0.99
Tm 26 0.68 −2.82 5.87 3.05 0.00 0.06 0.95 0.64 0.12 0.91 0.12 0.99
Yb 26 7.07 −20.1 45.7 25.6 0.01 0.24 0.82 −0.28 0.00 1.00 0.12 0.99
Lu 26 0.51 −3.94 9.91 5.98 0.00 −0.14 0.89 2.25 0.25 0.80 0.12 0.99
Hf 26 6.75 −249 491 242 0.01 0.97 0.34 −259 −0.96 0.35 0.12 0.99
Pb 26 0.77 0.06 1.59 1.65 0.02 1.60 0.12 −0.23 −0.24 0.81 0.08 1.00
Th 26 1.46 −1.97 8.68 6.71 0.03 0.83 0.41 1.98 0.24 0.81 0.08 1.00
U 26 9.25 −1.46 22.69 21.23 0.04 1.69 0.10 −20.0 −0.79 0.44 0.08 1.00
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ICPMS data. For typical samples, hundreds of ablations may be pro-
cessed (raw data to filtered integrated compositions) in around half an
hour, where the majority of this time is dedicated to exploring the in-
fluence of different filters on reduced compositional data. The filtering
process is non-destructive, enabling the rapid exploration of multiple
filter types without re-processing data. At any point, filters may be
cleared, and a new filter set created. This allows the influence of data
filtering choices to be easily assessed. Once optimal filters are identi-
fied, total processing time for hundreds of ablations will be on the order
of 1–5min, depending on the complexity of chosen filters. With ex-
perience, users may establish sets of processing ‘rules’ for different
types of samples, reducing the time required to design filters for a da-
taset.

6. Conclusions

LA-ICPMS offers transformative analytical capabilities across the
natural sciences, but the current reporting of data reduction methods is
inadequate, particularly for heterogeneous samples. Our inter-com-
parison of data reduction methods shows that different users can obtain
significantly different results from the same raw data, following

nominally similar data processing workflows. Some types of sample and
reduction methods fared better than others, but the inability of any two
methods to produce quantitatively identical results demonstrate that
current LA-ICPMS data analysis workflows affect the results presented
in publications, and cannot be replicated due to un-traceable user
specific choices made during sample processing. We call on LA-ICPMS
users, journal reviewers and editors to drive improvements in the re-
porting of LA-ICPMS data collection and processing, to keep pace with
the rigorous reproducibility and traceablility standards that are emer-
ging in modern science. Data reporting and traceability may be sig-
nificantly improved through the use of systematic and clearly defined
data reduction schemes in existing software, although existing software
offers a limited range of data selection tools which are often insufficient
when working with complex heterogeneous samples. The LAtools LA-
ICPMS data reduction toolkit we present here is designed to make the
processing and reduction of complex, heterogeneous samples quanti-
tatively reproducible and traceable. At the end of a processing session,
LAtools allows the export of all data and analytical parameters required
to reproduce an analysis, which should accompany reduced composi-
tional values presented in publications. As an open source project,
LAtools provides a robust platform from which to develop new data

Fig. 7. Bland-Altman plots comparing data from zircons reduced manually and using LAtools. Layout as in Fig. 5. It was not possible to estimate the inter-replicate
reproducibility in these samples, owing to a lack of replicate measurements. However, for all analytes the population residuals were statistically indistinguishable
from zero, indicating good overall agreement between the techniques. There is some scatter in individual values, although there are no clear patterns in the residuals.
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processing capabilities to keep pace with developments in new tech-
nologies and applications of LA-ICPMS. The capabilities of the software
can be easily expanded by the community to meet the future needs of its
users.
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