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Fluid Effects on Seismic Waves in Hard Rocks
with Fractures and in Soft Granular Media

J. G. Berryman

Earth Sciences Division, Lawrence Berkeley National Laboratory

ABSTRACT

When fractures in otherwise hard rocks are filled with fluids (oil, gas, water, CO5),
the type and physical state of the fluid (liquid or gas) can make a large difference in the
wave speeds and attenuation properties of seismic waves. The present work summarizes
methods of deconstructing theses effects of fractures, together with any fluids contained
within them, on wave propagation as observed in reflection seismic data. Additional
studies of waves in fluid-saturated granular media show that the behavior can be quite
different from that for fractured media, since these materials are typically much softer
mechanically than are the fractured rocks (i.e., having a very small drained moduli).
Important fluid effects in such media are often governed as much by fluid viscosity as by
fluid bulk modulus.

INTRODUCTION

Detection and resource management of fluid reservoirs are commonly performed
using seismic reflection surveys. When reservoirs contain fractures or cracks, these
sources of high permeability and fluid-saturated porosity have a strong impact on the
seismic wave analysis. Of special significance to seismic waves is the fact that aligned
fractures result in seismic wave anisotropy [1]. We can also understand very directly the
sources of the anisotropy due to fractures by considering a method introduced by Sayers
and Kachanov [2]. Elastic constants, and therefore the Thomsen [3] parameters, can be
conveniently expressed in terms of the Sayers and Kachanov [2] formalism. Furthermore,
in the low crack density limit (which is also consistent with the weak anisotropy approach
of Thomsen [3]), we obtain direct links between the Thomsen parameters and the fracture
properties. These links suggest a method of inverting for fracture density from wave
speed data.

THOMSEN’S SEISMIC WEAK ANISOTROPY FORMALISM

Thomsen’s weak anisotropy formalism [3], being an approximation designed
specifically for use in short offset velocity analysis for exploration geophysics, is clearly
not exact. Approximations incorporated into the formulas become most apparent for
angles 0 greater than 15 degrees from the vertical, especially for compressional velocities
v,(0) and vertically polarized shear velocities vy,(0). Angle 0 in seismic exploration is
typically measured from the spatial z-vector pointing directly down into the earth.



Exact velocity formulas for P, SV, and SH seismic waves at all angles in a VI7
(vertically transverse isotropic) elastic medium are known and available in many places
[4,5]. so they will not be listed here. Expressions for phase velocities in Thomsen's weak
anisotropy limit can also be found in many places, including [3] and [4]. The pertinent
expressions for phase velocities in VIT media as a function of angle € are:
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In our present context, v,(0) = /%‘i, and v,(0) = ’C:—a, where ¢33, Cuq, and p, are two
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stiffnesses of the cracked medium and the inertial density of the isotropic host elastic

medium. We assume that the cracks have insufficient volume to affect the overall mass

density significantly. In each formula, Thomsen's approximations have included a step that

removes the square on the left-hand side of the exact equation, by then expanding a square

root on the right hand side. This step introduces a factor of -21- multiplying the sin%6 terms

on the right hand side, and --- for example --- immediately explains how equation (3) is
obtained from the exact result. The other two equations for v,(6) and v, (6), i.e., (1) and
(2), involve additional approximations we will not attempt to explain in the space available.

The three Thomsen [3] seismic parameters for weak anisotropy with VII symmetry are

y=Ett =215 ang 5, which is determined by 2cs3(cas — €ae)8 = [(cyg +
44 33 .

€24)? — (€33 — Caq)?]. All three of these parameters can play important roles in the
velocities given by (1)-(3) when the crack densities are high enough. If crack densities are
very low, then the SV shear wave will actually have no dependence on angle of wave
propagation. Note that the so-called anellipticity parameter A = € — &, vanishes when
€ = ¢, which does happen as a rule for very low crack/fracture densities.

HORIZONTAL FRACTURES, CRACK-INFLUENCE PARAMETERS, AND VTI
SYMMETRY

To illustrate the Sayers and Kachanov [2] crack-influence parameter method, consider
the situation in which all the cracks in the system have the same vertical (or z-)axis of
Symmeiry. (We use 1,2,3 and x,y,z notation interchangeably for the axes.) Then, the
cracked/fractured system is not isotropic, and we have the first-order compliance correction
matrix for horizontal fractures, which — in Voigt 6x6 mairix notation -- is:
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where i,j = 1,2,3. The two lowest order crack-influence parameters from the Sayers and
Kachanov [2] approach are 17; and 17,. The scalar crack density parameter is defined -- for

) . N L
* penny-shaped cracks having number density n = 5 and radius in the plane of the crack

. . b .
equal to a -- to be p, = 4wna®/3. The aspect ratio of these cracks is @ = = Considering

orientational averages of (4) provides a direct connection to the isotropic case, which is of
great practical importance, because it permits us to estimate the parameters 77, and 77, by
studying isotropic cracked/fractured systems, using well-understood effective medium
theories [6, 7].

Now consider horizontal fractures, as just illustrated by the correction matrix ASi(jl), The
axis of fracture symmetry is uniformly vertical, and so such a reservoir would exhibit V77
symmetry. The resulting expressions for the Thomsen parameters in terms of the Sayers
and Kachanov parameters 17y and 77, are given by

Vi =2t = poaG, (5)
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Background shear modulus is Gp, with corresponding Poisson ratio is v5. Young's modulus
is Eg = 2(1 +vg)Gy. Also § =€ to the lowest order in crack density parameters. We
chose to neglect the term 7, in the final expression of (6), as this is on the order of a 1%
correction to the term retained. Values of n, and 1, can be determined from simulations
and/or effective medium theories [6, 7]. They depend on the elastic constants of the
background medium, and on the shape of the cracks (assumed to be penny-shaped in these
examples). General formulas are available for computing the coefficients for any model of
the crack microstructure, but the most common model is penny-shaped cracks. Formulas
defined in terms of the results of particular models or measurements of E and n at finite
crack density are:
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as can be found for example in [9].
INCORPORATING FLUID EFFECTS

Recall that Gassmann’s formula [10-12] for fluid-substitution in an isotropic porous

medium can be written in the form:

1 1B , \1—1_ BB
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where K, is the undrained modulus, Kj; is the drained modulus, K, is the mineral or solid
modulus, Ky is the bulk modulus of the pore fluid, ¢ is the porosity, and B = 1-K;/K,,, is the
Biot-Willis or effective-stress coefficient [11]).  For an isotropic distribution of cracks, the
Sayers-Kachanov correction matrix for compliance is
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where the influence factors 7, and 77, are fixed numbers (having units of compliance, since
the crack density is dimensionless) for a particular type of crack shape (say penny-shaped,
for example) and isotropic background elastic medium. Then, it is not hard to show that
“these combinations are also related to Sayers-Kachanov crack-influence parameters
according to

== = & = 260+ npcb. 10

This equation shows explicitly how the undrained modulus deviates from the drained
modulus as the Skempton coefficient B [whose definition is given implicitly by (8)] varies
from zero to unity (that is to say, K,, approaches K;;;). Another useful form of the equation
presenting the same information is '

%u—rl- = 2(3n; + n2)pc(1 - B). (11)

This alternative equation shows how the undrained modulus varies for very high pore-fluid
bulk modulus Ky, as it approaches the bulk modulus value K, for the surrounding rock.
Equations (8) and (10) show that all appearances of the Sayers-Kachanov parameters in the
upper left corner of the matrix in (9) should be modified by multiplying them by the factor
(1 —B), while the parameters in the lower right corner remain unaffected by the presence
of the fluid. This procedure gives a prescription for making the crack-influence parameter
approach rigorously consistent with the results of both Biot and Gassmann [10-12].
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Figure 11 For aligned horizontal cracks, examples of anisotropic compressional (P) wave speed and shear (SV) wave speed for host
medium (before addition of cracks) having Poisson’s ratio; ve = 0.4375.  Velocities near the top are those for liquid saturated cracks (S)
for which Skempton’s coefficient is B = 0.85; those below having the same type of line marking are for B = (.00 (D = dry cracks).
Caleulations are based on the exact VTI formulas for anisotropic velocity (not for the Thomsen weak anisotropy approximation).



EXAMPLES

Figure 1 illustrates the results obtained from the theory described previously. A system
of aligned horizontal cracks will display vertical transverse isotropy (VTI), just as in the
case of randomly oriented vertical cracks., But the effects of the cracks on the velocities for
the different geometries are not the same. Also, because the horizontally polarized shear
wave (SH) depends only on the stiffnesses cyy, and cgg, and furthermore since these
coefficients depend on the crack density but not at all on fluid content, we will not consider
the SH waves further in our examples. For the quasi-compressional (qP) waves and the
quasi-shear (qSV) waves, the behavior does depend the crack density, both when the cracks
are dry and when they are liquid saturated. Liquid saturation always stiffens the medium,
both in compression and in shear (except for the SH shear waves already excluded from
consideration because then there is no mechanical effect, only a uniform increase in density
and therefore a uniform, but small, decrease in these velocities). So we expect to see media
having dry cracks with lower wave speeds in both quasi-P and quasi-SV waves. This is
exactly what can be observed in the two examples in Figure 1. For the dry case, we use B =
0.0, and for the liquid-saturated case we use B = 0.85, for our purposes of illustration. For
both types of waves, we see that the effects of the liquid on the wave speeds are substantial.
Furthermore, since the SH shear waves do not depend on the fluid content, there will be a
very easy to detect difference in the observed behavior due to the shear wave birefringence
in these anisotropic cracked media. ‘

To implement the methods described here, we have made use of earlier results of
Berryman and Grechka [7] for the values of crack-influence parameters 77; and 17, (as well
as some higher order corrections), for a background medium having Poisson’s ratio equal to
0.4375 (which is reasonably consistent with some types of sandstone reservoirs). The
assumed background values of the wave speeds are ¥, = 3.0 km/s, V; = 1.0 km/s. Inertial
density is py = 2200.0 kg/m?. Results obtained, based on earlier computational work of
Grechka, were 7, = —0.0192 , 1, = 0.3994, and the higher order crack-influence
parameters needed for crack densities greater than p, = 0.05 (dimensionless) were found to
be 77, = -1.3750 and ng = 0.5500. All the crack-influence parameters have units of

compliance.

CONCLUSIONS

The Sayers and Kachanov [2] crack-influence parameters are ideally suited to analyzing
mechanics in reservoirs having aligned fractures and exhibiting V7! or HT/ symmelry.
Detailed discussion of results obtained for the higher crack density examples presented in
Figure 1 will be provided in the oral presentation, but the main ideas are all contained in
references [7] and [8]. Additional modeling [13] shows that Thomsen’s weak anisotropy
formalism (3] is valid for crack densities up lo about p. = 0.05, but should be replaced by
more exact calculations if the crack density is p, = 0.1 or higher.

A very similar analysis can be carried through for fluid-saturated granular media [14],
but space limitations preclude us from discussing the details of this work any further here.
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