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Abstract

The complex multifactorial nature of polygenic Alzheimer’s disease (AD) presents significant
challenges for drug development. AD pathophysiology is progressing in a non-linear

dynamic fashion across multiple systems levels — from molecules to organ systems — and

through adaptation, to compensation, and decompensation to systems failure. Adaptation and
compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear
interaction between genome, epigenome, and environment. An individual vulnerability to stressors
exists on the basis of individual triggers, drivers, and thresholds accounting for the initiation

and failure of adaptive and compensatory responses. Consequently, the distinct pattern of AD
pathophysiology in space and time must be investigated on the basis of the individual biological
makeup. This requires the implementation of systems biology and neurophysiology to facilitate
Precision Medicine (PM) and Precision Pharmacology (PP).

The regulation of several processes at multiple levels of complexity from gene expression

to cellular cycle to tissue repair and system-wide network activation has different time

delays (temporal scale) according to the affected systems (spatial scale). The initial failure

might originate and occur at every level potentially affecting the whole dynamic interrelated
systems within an organism. Unraveling the spatial and temporal dynamics of non-linear
pathophysiological mechanisms across the continuum of hierarchical self-organized systems levels
and from systems homeostasis to systems failure is key to understand AD. Measuring and,
possibly, controlling space- and time-scaled adaptive and compensatory responses occurring
during AD will represent a crucial step to achieve the capacity to substantially modify the

disease course and progression at the best suitable timepoints, thus counteracting disrupting
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critical pathophysiological inputs. This approach will provide the conceptual basis for effective
disease-modifying pathway-based targeted therapies.

PP is based on an exploratory and integrative strategy to complex diseases such as brain
proteinopathies including AD, aimed at identifying simultaneous aberrant molecular pathways and
predicting their temporal impact on the systems levels. The depiction of pathway-based molecular
signatures of complex diseases contributes to the accurate and mechanistic stratification of distinct
subcohorts of individuals at the earliest compensatory stage when treatment intervention may
reverse, stop, or delay the disease. In addition, individualized drug selection may optimize
treatment safety by decreasing risk and amplitude of side effects and adverse reactions.

From a methodological point of view, comprehensive “omics”-based biomarkers will guide the
exploration of spatio-temporal systems-wide morpho-functional shifts along the continuum of AD
pathophysiology, from adaptation to irreversible failure.

The Alzheimer Precision Medicine Initiative (APMI) and the APMI cohort program (APMI-CP)
have commenced to facilitate a paradigm shift towards effective drug discovery and development
in AD.

Keywords

Alzheimer’s disease; Precision pharmacology; Precision medicine; Pathway-based therapy;
Pathophysiology; Clinical trials

1. Introduction: precision pharmacology in the context of precision
medicine

Complex chronic diseases with global unmet needs such as cancer, diabetes, immune
diseases, and brain proteinopathies — including Alzheimer’s disease (AD) — primarily
exhibit: I) a multifactorial nature, due to the coexistence of polygenetic/genomic/
epigenomic, interactomic, and environmental susceptibility and I1) altered networks,
affecting relevant modules and interactomes [1,2]. The continuous failure of late stage
clinical drug trials, largely developed following the traditional drug development paradigm
in AD, demonstrates that a conceptual shift in Drug Discovery & Development programs is
required to attain successful breakthrough developments of novel therapies [3,4]. Notably,
a critical step for developing effective drugs is to explore and predict the comprehensive
effect of a compound on four fundamental levels, such as I) hitting the intended target,

I1) altering the intended mechanism, Il1) altering the relevant pathophysiology, and 1V)
impacting clinical outcome [1].

Precision pharmacology (PP) is a novel conceptual paradigm that aims at exploring and
predicting the whole effect of a molecular mechanism of action, i.e. the pharmacodynamic
(PD) [5]. As a result, PP is crucial to operate from the perspective of an innovative
exploratory, integrative, holistic multi-paradigm or systems level concept, at both
experimental and computational level. In order to achieve the full understanding of drug
action at the systems level, it is necessary to combine disease mechanism, PD and
pharmacokinetic (PK) data into a single model, following the systems pharmacology
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paradigm. According to the American Association of Pharmaceutical Scientists (AAPS;
https://www.aaps.org/), systems pharmacology is defined as “the science of advancing
knowledge about drug action at the molecular, cellular, tissue, organ, organism, and
population levels” (available at http://www.aaps.org/Systems_Pharmacology/). Systems
pharmacology is an integrative interdisciplinary model providing the potential to investigate
drug action though networks of biological pathways, thus allowing the development of
predictive models of PD and PK features for a certain molecule [6,7]. Therefore, traditional
PK/PD procedures are integrated into the systems biology paradigm to establish predictive
models of the whole effect (up-downstream regulated processes, feedback loops) of a given
drug, from cell pathways signals to systems outputs [5-7]. This paradigm can lead to

the characterization of pathway-based molecular signatures that will allow a mechanistic
stratification of individuals and patients for a “stratified pathway-based therapy” [6-8].

The existence of high interindividual variability underlying a genetic/epigenetic different
background primarily affects the mechanism of action of the drug under study (Table 1A-
H).This categorization process inside drug development relies on the “omic” sciences and
aims at achieving personalized predictive models of therapeutic effects, side effects, and
adverse [3,9]. Applying PP is assumed to accomplish the following long-term goals: 1)
developing multi-target therapeutic approaches for multifactorial polygenic diseases, such
as AD; and 1) providing predictive models/quantitative frameworks of therapeutic efficacy
and risk of adverse events for individuals, in the context of Precision Medicine (PM) [3,6].
The implementation of PP in AD is anticipated to result into an innovative and original
scientific taxonomy as well as to a distinguished working lexicon and terminology (Table
2). In order to accelerate the development of the PM paradigm in AD, the international
Alzheimer PM Initiative (APMI) and its related Cohort Program (APMI-CP) have been
established by our consortium and conceptually associated to the U.S. Precision Medicine
Initiative (PMI) (available at https://www.whitehouse.gov/precision-medicine) and the U.S.
“All of Us Research Program” — evolved from the U.S. PMI Cohort Program (available

at https://www.nih.gov/research-training/allofus-research-program). The research using the
AMPI cohorts has recently commenced to be facilitated under the structural framework of
the newly established French Sorbonne University — “Clinical Research Group in Alzheimer
Precision Medicine” (Sorbonne Université— *“ Groupe de Recherche Clinique— Alzheimer
Precision Medicine’, [GRC r° 21)).

Combined downstream and upstream effects on different homeostatic key molecules and
pathways are commonly shared on several biological networks which, in turn, underlie
apparently unrelated diseases[10]. Pathway-based therapies are anticipated to support the
development of novel interventions to treat several diseases which can show misleading
clinical divergence. Given the complexity and heterogeneity of many diseases, such as AD,
a multi-target approach needs to be performed; in particular, the main “orchestrator” of
each pathway — ultimately called target — will be identified by an integrative analysis of
comprehensive multi-domain “omic” [2,3,11]. In addition, this advanced holistic systems-
level approach is assumed to facilitate the drug repositioning process — also known as drug
re-profiling or drug repurposing process — indicating that a drug with a recognized biological
effect could be utilized to treat a disease for which it has not been registered [12].
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1.1. The road to precision pharmacology: role and contribution of time and space in
systems biology for research & development programs

The application of systems biology to investigate multifactorial diseases starts from the
elucidation of all gene-interaction networks since complex gene-gene and gene-environment
interactions upstream affect the biochemical pathways underpinning the disease with high
extent of variability across a patient [3,12]. Therefore, the development of advanced
computational/bioinformatic tools made the detection of statistical interactions between
genetic loci possible, when examining the data v/a genome-wide association studies
(GWAS) [3,9]. Exploratory computational platforms will allow quantitative and dynamic
modeling of interacting biological systems active at multiple scales of organization within

a continuum, i.e. from homeostasis to system failure. Currently available biostatistical
approaches facilitate researchers in providing the profile of gene clusters related to

several biological processes. There is a growing number of technologies allowing the
optimization of data collection from a single biofluid or tissue sample by providing a
multimodal profiling, such as genomic/epigenomic, transcriptomic, miRNAomic, proteomic,
and metabolomic/lipidomic [13-16].

Charting the molecular dysregulated pathways should be accomplished using pathway-based
panels that contain multiple combinations of arrays encompassing several genes, in order to
track their direct expression products and the most relevant gene-gene interactions [2,9,17].
This is supposed to substantially transform the Research and Development (R&D) programs,
thus paving the way for developing “molecularly” biomarker-guided targeted therapies[18] —
i.e., treatments specifically adapted (“tailored”) to the individual — within a short time frame
[3,12].

1.1.1. Role of time—The addition of a fourth dimension — time — to the field

of structural biology will allow following-up compensatory mechanisms responsible for
preserving homeostasis and its dynamic changes over time. In this regard, the identification
of transcriptionally active genes and their respective products is a key signature of either
active “stress responses” or dynamic loss of homeostasis. Nowadays, the role of advanced
nanotechnologies able to dynamically track the time/space coordinates of molecules
associated with different pathways is gaining substantial relevance. Expression profiles of
genes and proteins are supposed to provide clear outcome measures, i.e., biomarkers, for
target engagement as well as for predicting the response to treatment. Simultaneous gene
expression and extracellular protein expression profiles can allow exploring a whole cellular
species, for instance, to longitudinally investigate immune responses and cell ultrastructural
alterations over time. In particular, both overactivation and changes in immune cell surface
antigens occur in parallel with the progression of a wide variety of pathophysiological
conditions such as in AD and [13,16,17]. As a result, biomarker-guided pathway-based
therapies shaped on the comprehensive biological profile of a given subject at a given time
point of the disease progression will change according to the evolving biological pattern of
the individual.

1.1.2. Role of space—There is a heterogeneous cross-talk between periphery
and central nervous system (CNS) pathways, based, for instance, on innate-adaptive
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immune system and proteostasis networks. Interestingly, several peripheral and systemic
abnormalities have been found to be associated with impaired amyloid beta (AB) peptides
removal at the level of the CNS. This suggests a crucial role for brain-periphery interaction
in the development and progression of brain proteinopathies, including AD [19,20].
Recently, and even more related to AD, an association between peripherally-derived
neutrophils, T-regulatory lymphocytes, as well as peripheral immunity loss of function and
microglial dysfunction that resulted in protein misfolding has been reported in brain or other
tissues [21,22].

In summary, understanding the dynamic regulation of transcellular signals at a system level
as well as the mechanisms underlying their bi-directional cross-talks is expected to restore
aberrant pathways in pathophysiologically altered tissues/organs by targeting, in turn, other
tissues/organs. These insights will promote the identification of remote (i.e., peripheral)
key modulators of several cerebral functions, thus providing a reliable open-access to the
brain. This step is essential to overcome the high degree of inaccessibility of the brain to
pharmacological therapies.

2. Homeostasis and pathway-based therapy

Loss of homeostasis, ultimately leading to a dynamic pathophysiological state, consists

of the breakdown of one or more homeodynamic pathways — namely the “stress

responses” — originating first of all from maladaptive responses and then from failure

of compensatory mechanisms (i.e. decompensation). Compensation is a self-regulatory
dynamic counterbalance between regulatory defense mechanisms and disrupting stress-
induced signals [23-25]. Compensation occurs through both structural and functional
changes and is hierarchically organized from subcellular to cellular level, organs, and,
eventually, systems. Compensatory mechanisms aim primarily at protecting the core
biosynthetic processes necessary to survival. There is a continuum between homeostasis,
metastability that precedes adaptation — compensation with an higher risk of failure of
compensatory mechanisms over time — finally leading to loss of homeostasis [25-27]. In

this scenario, disease is designated as a theoretical construct exhibiting successive and
progressive failures (decompensation) in complex interconnected systems or brain networks,
according to the notion of “systems failure” [3,9,11]. The primary descriptive concept of this
model is that this construct is mostly not the linear result of a unitary etiologic factor; rather,
it evolves in time in a non-linear dynamic progressive fashion across physiological and, then,
pathophysiological stages — from initial adaptation to compensation and after thresholds

to decompensation (leading to failure of homeostatic mechanisms) — and the convergence

of failures in several networks/systems, or pathophysiological processes along a continuum

(Fig. 1).

All living organisms, from nematodes to human beings, are continuously exposed to stress-
associated signals triggered by a wide range of endogenous and external stimuli, including
physical activity, temperature, UV rays, cosmic radiation, oxidants, bioenergetic restrictions,
chronic cellular exposure to impaired metastable proteome and/or conformational [28,29].
Interestingly, the degree of the cellular homeodynamic “stress response” differs in terms of
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amplitude and time (short-term/long-term) according to the extent of the stressful stimuli
[28,29].

Cellular homeostasis represents the critical point of the individual’s health span and

refers to all molecular machineries needed at multiple cellular-subcellular compartments
to compensate for stress-induced damage, thus finally preserving the cellular functional
and metabolic stability. The existence of cellular homeostasis is ensured by “stress
responses”, including: 1) proteostasis networks (exerting mechanisms quality control, from
protein synthesis to protein degradation [30,31], I) highly conserved pro-survival and pro-
apoptotic gene expression pathways (responsible for multiple level regulation, i.e., from
pre-transcriptional to cell trafficking level [23,24,32].

Several studies have shown that preserving cellular homeostasis generally affects the
individual’s life span while its deterioration over time underlies aging in a bidirectional

way [33]. Age-related alterations affecting “stress responses” mainly occur at molecular
level: glucose transport, DNA surveillance mechanisms (ensuring repair of DNA lesions),
and mitochondrial electron transport play a crucial role to support pro-survival signaling as
well as cell development/differentiation, apoptosis, endocytosis, microtubule stability, lipid
membrane dynamics, and other key molecular processes [34-36]. As a result, DNA damage,
overexpressed oxidative stress, and telomere shortening are typical patterns of aged cells
displaying functional decline. This, in turn, has a significant impact on proteostasis leading
to a fatal accumulation of misfolded proteins over nucleic acids, lipids, and other molecules.
Notably, it is fully acknowledged — also in humans — that the uncontrolled activation

of “stress response” pathways is expected to determine loss of homeostasis via several
mechanisms, in particular through down-regulation performed by negative auto-feedback
and bioenergetic depletion due to hyperactivated pathways [29,37,38].

At present, the homeostatic mechanisms have not been completely elucidated. However, it
is clear that there is a complex bi-directional crosstalk among numerous anti-stress outputs
(Natarajan M et al., 2006) intensifying the presence of intricate networks, where different
pathways constitute central hubs coordinating various modules. As a result, the dysfunction
of a single component of the network may appear as both the cause and the consequence

of the dysfunction of other components, hence substantially and dynamically impacting the
whole network [28,38] (Fig. 1).

The comprehensive assessment of the dynamic and mutual interplay among the various
cellular “stress response” pathways modulating the individual’s life span and aging, will
allow disclosing novel insights on aberrant biological conditions. This, in turn, will represent
a critical step for developing drugs with efficacy for unresolved medical challenges such as
cancer, immune diseases, diabetes, AD (and other brain proteinopathies).

Therefore, a systems biology-based biomarker-guided multi-target therapy relies on a multi-
pathway- or multi-network-based approach, which, in the case of AD, should engage
selected molecular targets concerning: proteostasis network, immune response (both innate
and adaptive) and endothelial dysfunction. In the perspective of a pathway-/network-based
drug development strategy, similar systems failures sharing common pathophysiological

Pharmacol Res. Author manuscript; available in PMC 2021 October 11.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Hampel et al.

Page 8

pathways appearing as “different diseases” are potentially supposed to be treated with the
same molecule [38-41].

Big “omic” data need to be generated from multiple systems levels and integrated to achieve
reliable information about the dynamic failures to compensate for complex disruptive
signaling that can lead to the disease. Given the partly undiscovered substantial cross-talk
between CNS and peripheral systems, it is acknowledged that longitudinal trajectories

of blood biomarkers reflect the changes over-time in the interaction between aberrant
cerebral networks and peripheral networks. For instance, blood-based inflammatory and
metabolomic markers allow to /in vivo track crucial mechanisms accounting for the
pathophysiological evolution of AD along the continuum, from adaptation, compensation

to decompensation and systems failure and from the earliest preclinical stages to late stage
clinical dementia[42].

3. Current status of blood-based biomarkers — inflammatory and

metabolomic — for preclinical Alzheimer’s disease

Detailed pathological analyses at autopsy, with the addition of surgical pathology

and biochemical studies, have evolved to provide a basis for detecting many human
diseases, especially when combined with precise clinical assessments, as in the traditional
clinicopathological correlations (CPC) [43]. The traditional conception of modern AD began
with such a CPC, provided in the early 20th century, by the German neuroscientist Alois
Alzheimer [44]. Since his initial descriptions, the medical and research fields have primarily
focused on two of his seminal neuropathological findings, the senile plaques, primarily
composed of extracellular AB protein fibrils, and the intracellular neurofibrillary tangles,
made up of phosphorylated tau protein species [45-47] Not until recently, a key pathological
hallmark has gained attention, i.e. the proposed “adipose inclusions” or “lipoid granules”
that suggested the existence of dysregulated lipid metabolism [48,49]

Early biomarker investigations related to preclinical AD individuals featured those
presenting with an autosomal dominant or familial condition (familial AD, fAD), confirmed
via genetic testing and allowed the definition of associated cerebrospinal fluid (CSF), blood,
and/or brain (v/a neurcimaging) abnormalities [50]. In such presymptomatic (preclinical)
fAD gene mutation carriers, abnormalities in AP and tau species concentrations were
confirmed compared to controls in each of the matrices, providing a time-dependent

course for each protein [50,51], and suggesting different phenoconversion predictive
capacity for each protein and combination analyzed. Although these preliminary biomarker
investigations correlated between human fAD and certain transgenic rodent models,

similar investigations of the vastly more common, late-onset polygenic form of AD
(LOAD), remained incomplete. The major limitation in studying LOAD individuals was
the absence of an easily attainable preclinical molecular signature that would allow accurate
selection and monitoring of disease progression during the preclinical stages. Without such
molecular signature for LOAD, and given the shared late neuropathological stage with

fAD, a conventional partly reductionistic assumption was generated [52], hypothesizing
close links between the pathophysiology of fAD and LOAD [53]. Given the lack of
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a holistic understanding for the true basis and unique evolution of LOAD, therapeutic
interventions based on fAD and transgenic animal model findings provided no significant
evidence of clinical efficacy when tested in LOAD individuals [54]. As a result, in light
of the continuous failures of late-stage clinical AD drug trials, there has been a more
exploratory, integrative, and holistic reevaluation of additional factors contributing 1) to
AD pathophysiology, especially related to membrane damage [55], and I1) in moving
therapeutic interventions into the preclinical stages [56]. Both of the latter require the
development of relevant biomarkers for the preclinical stages of AD, particularly targeting
other pathophysiological pathways apart from the amyloidogenic one.

Neuroinflammation is such a broad pathophysiological field and has evolved by providing
an etiologic explanation for brain membrane injury in AD and in a variety of neurological
diseases [57-64]. As a result, the depiction of currently developed blood-based approaches
needed to explore the preclinical manifestations of neuroinflammation using both direct

— viainflammatory biomarkers — and indirect — v/a metabolomic biomarkers — measures
seems to be crucial.

3.1. Inflammatory biomarkers

Even though inflammation might not classically considered an initiating factor in ND, there
is emerging evidence in animal models that sustained inflammatory responses — involving
microglia, the major resident immune cells in the brain, and astrocytes, glial cells with
support functions — contribute to disease progression. Sustained inflammation leading to
tissue pathology involves the persistence of an inflammatory stimulus or a failure in normal
resolution mechanisms. A persistent stimulus may be the result of 1) the presence of
environmental factors and 1) the formation of endogenous factors (for instance, protein
aggregates) that are interpreted by the immune system as “unfamiliar” or even dangerous
signals. Although some inflammatory stimuli generate positive effects for the organism,
such as phagocytosis of debris and apoptotic cells, and inflammation is associated with
mechanisms of tissue repair, uncontrolled/uninhibited inflammation may result in production
and release of neurotoxic factors intensifying the disease states [65].

At present, the primary role of neuroinflammation in AD is unquestionable. In particular,
inflammation occurs in pathologically vulnerable regions of the AD brain and it acts in this
way using a plethora of local peripheral inflammatory responses. At the peripheral level,
the deposition of highly insoluble abnormal materials, together with degenerating tissue, is
a critical factor inducing inflammation. Similarly, at the level of the AD brain, damaged
neurons and neurites as well as highly insoluble deposits of Ap peptide and neurofibrillary
tangles provide evident stimuli to trigger inflammation [66]. In this regard, the analysis

of post-morterm AD brains has provided evidence for inflammatory factors and activated
cell types in association with common end-stage pathophysiological features, including
amyloid plaques and neurofibrillary tangles [67—69]. The primary cellular sources in the
brain responsible for cytokine production are perivascular and meningeal macrophages and
microglia [70] (26). Considered uniquely important to AD pathophysiology — especially

in context of genetic variants of 7REMZ (encoding the triggering receptor expressed on
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myeloid cells 2) gene[71,72] — microglia are known to release various soluble factors and
assist in extracellular Ap clearance.

Genetic factors are fully acknowledged to play a key role in AD. Notably, the search

for genes involved in AD has been revolutionized by the application of GWAS, the most
common approach to assess genetic variants in the genome using arrays of single nucleotide
polymorphism (SNPs) to investigate the potential association with AD[73]. Interestingly,
several genetic variants are involved in immune and inflammatory processes, as deeply
reviewed [71,74,75]. In particular, two groups of investigators [76,77] independently
identified and characterized a rare variant in the 7TREMZ2 gene — a major microglia-specific
gene in the CNS — that causes an increased susceptibility to LOAD [78].

Despite the description of the CNS components of neuroinflammation, their putative
peripheral manifestations in blood have sometimes provided inconsistent results [79-84],
even when comparisons between control subjects and AD patients have been performed. In
particular, it has been challenging to develop informative peripheral inflammatory molecular
signatures for preclinical AD. Various studies have explored biomarkers potentially
associated with inflammatory processes. Cytokines — including tumor necrosis factor-alpha
(TNF-a), interleukin-6 (IL-6), transforming growth factor-beta (TGF-), and interleukin-1-
beta (IL-1B) — have been measured in CSF of AD patients, but in one /meta-analysis the only
consistent finding was the increased CSF concentrations of TGF-B in AD patients versus
control groups [85]. TNF-a., expressed by neurons and glia, stimulates the inflammatory
responses by recruiting microglia or astrocytes to lesion sites, thus leading to glial cell
activation. The TNF receptor complex and its related functional proteins are supposed

to be actively involved in AD pathophysiology, thus strictly associating inflammation
signaling pathways with the amyloid deposition cycle in a self-propagating and destructive
dynamic [86]. TNF-a binds to specific membrane glycoprotein receptors — TNF receptors
(TNFRs [TNFR1 and TNFR2]) — that activate signal transduction pathways converging to a
common mechanism of neuronal death. The definite function of TNFR1 as crucial mediator
of inflammation, apoptosis, and amyloidogenic pathology has been scrutinized [87,88].
Remarkably, since TNFR1 and TNFR2 are both expressed and triggered differentially

in AD brains versus non-demented brains, distinct pathophysiological mechanisms of
neurodegeneration in AD brains have been proposed [89]. In addition, expression levels

of TNFR1 and TNFR2 have been documented to be altered in the brains and CSF of
subjects with mild cognitive impairment (MCI) and AD patients. The activity of the TNF-a
converting enzyme (TACE), cleaving both pro-TNF-a and TNF receptors, is substantially
increased in the CSF of AD patients and MCI subjects versus healthy controls. Moreover,
CSF concentrations of TACE-cleaved soluble forms of TNFR1 (STNFR1) and TNFR2
(STNFR2) appear more elevated in AD patients versus healthy controls and correlated with
TACE activity. Finally, greater levels of TACE activity and soluble TNFRs are present in
MCI subjects versus AD patients, thus emphasizing an early role of TACE activity and
soluble TNFRs during AD pathophysiology and a their potential usefulness as diagnostic
markers in MCI and AD dementia stages [90]. In addition, the integrated CSF examination
of tau protein with the constituents of the soluble IL-6 receptor complex (sIL-6RC), assumed
to be a marker of neuromodulatory and brain inflammatory processes, is assumed to
increase the certainty of AD detection/diagnosis [91,92]. Interestingly, peripheral blood
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mononuclear cells may provide actionable longitudinal risk information [93] through
increased spontaneous production of IL-1 and TNF-a associated with cognitively normal
individuals with an increased risk of phenoconversion to AD. Finally, CSF YKL-40-an
indicator of microglial activation — has been designated as a pathophysiological biomarker
indicating immune/inflammatory mechanisms in AD and other ND, associated with tau
protein pathology [64,94].

3.2. Metabolomic biomarkers

The human blood metabolome consists of thousands of small molecular species, typically
less than 1500 Da (Daltons; 1.7 x 10727 kg) in molecular weight and primarily

featuring monosaccharides, acylcarnitines, biogenic amines, amino acids, fatty acids, and
complex lipids. By far, lipid species make up the largest fraction (45%) of the ~50,000
metabolites currently detectable [95]. Identifiable metabolomic species, including human,
pharmacologic, animal, plant, or bacterial, are currently curated in one or more of

the following databases: the Human Metabolome Database (HMDB) (available at http://
www.hmdb.ca), the METLIN database (available at http://metlin.scripps.edu), and the LIPID
MAPS Lipidomics Gateway (available at http://www.lipidmaps.org). A significant number
of metabolic species are yet to be annotated, with recent estimates of the total approaching
1 million [95]. Using standard reductionistic approaches, the metabolome is considered

a downstream linear reflection of the genome/epigenome, transcriptome, and proteome,
sequentially, and in close proximity to the clinical phenotype. Using a systems biology-
based perspective, although the aforementioned might be true, complex interrelationships
exist between the various “omic” layers [96], that, if properly integrated, are expected to
provide an improved understanding of a complex disease state or human health.

Early metabolomic approaches to biomarker development in blood and CSF have

featured either nuclear magnetic resonance-based analyses [97,98] or those utilizing

mass spectrometry (MS)-based technologies[99,100]. More recent reports of metabolomic
biomarkers for AD have been developed using specimens from cross-sectional investigations
analyzed with MS platforms, typically comparing metabolite abundances between control
subjects and individuals with either prodromal or manifest AD[ 101-105]. Although
consensus is lacking regarding specific metabolites discovered between studies, there is a
substantial preponderance for alterations in certain lipid species in blood. Analyses[106,107]
from a longitudinal observational study — specifically evaluating preclinical subjects
observed to phenoconvert from cognitive normality to either prodromal or manifest AD

— reported significant reductions in certain plasma lipid species. Notably, reductions of some
of the same species were observed in early AD subjects in an independent therapeutic trial
[108].

3.3. Biomarker perspectives

3.3.1. Biomarkers as diagnostics—While there is no unanimously established
consensus regarding the selection(s) of molecular biomarker panels that are most
informative regarding the preclinical stages of AD, there is growing support for the use
of blood-based biomarkers in helping define this crucial therapeutic window. Thanks
to their classification sensitivity and specificity comparable to that provided by CSF
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and neuroimaging markers, their decreased associated risk, increased patient comfort,
and reduced associated cost, blood-based biomarkers are gaining momentum as potential
screening and prediction tools and for enhanced selection, subject enrichment, and
stratification of disease subsets in AD disease-modifying trials [109].

3.3.2. Biomarkers as guides to therapeutics—The ultimate objective is to develop
biomarker-guided targeted therapy in AD. The potential utility of certain biomarkers as
outcomes and surrogate outcomes during the preclinical stages of AD should will be

a development focus. In this specific circumstance, biomarkers indicating the existence

of neuroinflammatory and membrane lipid dysregulation processes may be substantially
informative.

4. Cns inflammation in Alzheimer’s disease stages biomarkers and

therapeutic targets

The role of CNS inflammation in the development and progression of AD has

been a controversial issue, more specifically whether plaque-related inflammatory and
immune processes are disease-aggravating or neuroprotective [64,110-112]. The most
significant advance in understanding the role of inflammation in the evolution of the

AD pathophysiology is based on the observation that long-term use of non-steroidal
anti-inflammatory drugs (NSAIDs) in patients with rheumatoid arthritis reduces the risk
of developing AD when compared to the general population [113,114]. These findings
originally supported the idea that neuroinflammation represents a key pathophysiological
feature in the AD cascade, prompting the pharmaceutical industry to launch several large
clinical trials on the use of classic NSAIDs, such as ibuprofen, rofecoxib, celecoxib, and
R-flurbiprofen, and other anti-inflammatories, including pioglitazone, steroids, and aspirin,
in symptomatic patients diagnosed with AD. Published results from these trials have been
the subject of several meta-analyses, all of which have concluded that treatment with anti-
inflammatories lacks efficacy in symptomatic, already clinically diagnosed AD dementia
patients [115-117]. Only one trial, the Alzheimer’s Disease Anti-Inflammatory Prevention
Trial (ADAPT), has reported a beneficial clinical outcome when naproxen is administered
before the onset of subjective cognitive impairment [118]. These findings indicate that the
critical therapeutic window to target neuroinflammation is likely at preclinical AD stages
[112].

Although these clinical trials have not yet produced a viable therapeutic option for the
treatment or prevention of AD, they have provided insight into the dichotomous function of
neuroinflammation in the progression of AD: early inflammation is likely pathogenic and
disease-aggravating, whereas late inflammation appears to be dominated by tissue-resolution
and phagocytic processes [112]. The idea that inflammation adopts a protective role as

the disease progresses through the AD continuum is supported by GWAS-based analyses
that have identified SNPs in the CD33and TREMZ2 genes that are associated with an
increased risk of developing AD [76,77,119-121]. Disease-relevant variants in both genes,
which are primarily expressed by immune cells, result in blunted phagocytic capacity by
brain macrophages, thus suggesting that clearance mechanisms likely serve to counteract

Pharmacol Res. Author manuscript; available in PMC 2021 October 11.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Hampel et al.

Page 13

late neurodegenerative mechanisms. Inhibiting these protective inflammatory mechanisms,
would theoretically exacerbate or, in the least, fail to decelerate the neurodegenerative
cascade. As a result, anti-inflammatory therapy is unlikely to be disease-modifying if
administered during late symptomatic stages, when the fundamental neuronal networks
responsible for higher CNS functions have already been destroyed. Applying an anti-
inflammatory therapy earlier in the disease process is the most promising strategy to
mitigate the development of the underlying AD pathophysiology.

Recent studies in transgenic animal models of AD have revealed the presence of an

early pro-inflammatory process before the development of Ap plagues. For example,
pre-plague 3xTg mice exhibit increased levels of TNF-a associated with intraneuronal-

AP pathophysiology in the entorhinal cortex [122]. Inhibiting TNF-a signaling prevents
intraneuronal-Af accumulation and corrects pre-plague synaptic deficits and cognitive
function in the TGCRNDS8 and 3xTg mouse models, respectively [123,124]. The McGill-R-
Thy1-APP transgenic rat model also exhibits an upregulation of pro-inflammatory molecules
at the pre-plaque stage of the amyloid pathology, predominantly in neuronal cells [125,126].
Importantly, treatment with minocycline at the pre-plaque stage restores the balance of
inflammatory factors and rescues cognitive deficits in a mouse model of the amyloid
pathology [127,128]. Taken together, evidence in animal models suggests that early, plaque-
independent inflammation contributes to the progression of the early AD-like amyloid
pathology and associated cognitive deficits.

Translating these observations to the human AD pathophysiology has proven to be a

major challenge. It is now understood that the underlying AD pathophysiology begins
20-30 years before the first clinical symptoms [129,130]. However, given that current
technologies are not sensitive enough to detect the earliest subtle AD pathophysiological
features and accompanying CNS inflammation, identifying the initial disease trajectory
remains elusive. Positron emission tomography (PET)-scan technology used to measure Af
plaques, tau pathology, and microglial-TSPO signaling, as well as currently-available CSF
and blood biomarkers, only detect advanced AD pathophysiology with a reasonable level
of certitude. The critical mass of inflammatory molecules present within the CNS during
the long pre-symptomatic phase likely falls below the detection-threshold of current brain
imaging techniques. In the absence of reliable early biomarkers, it is virtually unrealistic

to unequivocally identify the patient population within the preclinical-AD phase that may
be most amenable to anti-inflammatory therapy. It is encouraging that increased astroglial
activation was observed by PET imaging 20-years before expected disease onset in patients
with autosomal dominant mutations leading to fAD, suggesting that initial detection of
astrogliosis may allow clinicians to flag the emergence of the asymptomatic disease phase
[131]. Furthermore, a recent report indicates an association between midlife peripheral
inflammation and reduction in late-life brain volume in individuals without dementia [ 132].
These findings suggest that early inflammatory processes could have a detrimental effect in
the CNS and this might contribute to the development and progress of the pathophysiology.

It is expected that in the coming years, considerable research efforts will be focused
on developing diagnostic methods able of detecting AD progression during preclinical
stages, or at least early enough to substantially impact the disease with anti-inflammatory
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agents, either as a single or combined therapy. Biologicals, specifically cytokine-directed
monoclonal antibodies, are a particularly attractive therapeutic option given that targeting
just one cytokine is often sufficient to disrupt the broader molecular cascade that culminates
in chronic inflammation [133]. Several TNF-a inhibitors, including TNF-a.-directed
monoclonal antibodies and recombinant fusion proteins, have already been approved by
the Food and Drug Administration (FDA) for the treatment of several inflammatory

and auto-immune diseases, including Crohn’s disease, ulcerative colitis, and rheumatoid
arthritis. In one pilot study, 6-month perispinal extrathecal administration of etanercept (a
decoy receptor for TNF-a) in AD patients resulted in an improvement in a variety of
cognitive measures [134]; however, these results have yet to be replicated. In another trial,
6-month subcutaneous administration of etanercept in patients with mild-to-moderate AD
dementia did not improve cognitive outcomes [135]. In a recent case report, infliximab, a
TNF-a-directed monoclonal antibody, administered to a patient with AD led to cognitive
improvement along with a decrease in AD pathophysiological biomarkers [136]. Despite
these results, exploring the effects of anti-TNF-a therapy in patients with early preclinical
AD are still lacking.

Besides its role as lipid sensor and involvement in metabolic pathways, peroxisome
proliferator-activated receptor-y (PPAR-vy) activation leads to the blockage of the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB)-dependent gene expression,
thus inhibiting multiple inflammatory pathways [137]. PPAR-y agonists have been shown
to be beneficial when administered to AD mouse models by decreasing inflammation and
AD-related pathophysiological markers [138]. Moreover, clinical trials with rosiglitazone
had positive outcomes in mild-to-moderate AD patients [139,140].The PPAR-y agonist,
pioglitazone, an approved treatment for type Il diabetes, is currently under a phase 3
clinical trial being conducted in MCI individuals and AD patients (NCT02284906). Further
exploration of the therapeutic effects of PPAR-+y activation is needed in early AD stages.

Inhibition of IL-1B signaling represents another promising therapeutic option in treating
preclinical AD. Currently-available IL-1p-targeted anti-inflammatory therapies include
canakinumab, an IL-1p-directed monoclonal antibody, and anakinra, an IL-1 receptor
antagonist [133,141,142]. The potential of anti-IL-1p therapy has yet to be investigated for
the treatment of early preclinical AD, either in humans or animal models. Given that IL-B
processing and maturation is largely controlled by the multiprotein inflammasome complex
[143-146], treatments targeting the assembly and function of the inflammasome may also
lead to a reduction in IL-1p signaling in early AD stages. Inflammasome complex activation
has been reported in post-mortem brains of MCI individuals and AD patients as well as in
AD mouse models [147-149]. Moreover, inhibiting the inflammasome in transgenic rodent
models of AD leads to a reduction in AD-related pathophysiology and associated cognitive
deficits [150]. Proper characterization of inflammasome activation and potential therapeutics
at early stages of AD has yet to be explored.

In the absence of early biomarkers and effective therapies to diagnose and treat preclinical
AD, the development of compounds targeting CD33 and TREM2 may prove effective

in slowing disease progression and symptom severity in already-diagnosed patients with
mild-to-moderate AD. Recent studies indicate that disease-relevant variants in CD33 lead
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to increased CD33 expression and impaired phagocytic activity of brain macrophages
[151,152], whereas variants in 7REMZ leads to decreased surface cell expression or
impaired functioning, also resulting in reduced macrophage phagocytosis [153,154]. The
development of small compounds that either inhibit CD33 or promote TREM2 activity may
represent a promising therapeutic option to promote phagocytic and clearance mechanisms
within the CNS in intermediate-late AD stages. Several monoclonal antibodies targeting
CD33 do in fact exist and are in development for the treatment of myeloid leukemia;
however, they are currently being evaluated in clinical trials and have not been tested for
the treatment of AD, either in humans or animal models [155]. Similarly, the development
of a small-compound modulator enhancing TREM2 activity or prolonging its cell-surface
expression may promote clearance mechanisms that are likely to be effective in decelerating
late neurodegenerative mechanisms.

5. Anti-amyloid beta and anti-tau therapeutic strategies

The clearance of the A peptide, in particular the extracellular overproduction and
deposition of the 42-amino acid-long Ap peptide (AB1-42), and the intracellular expression
of tau protein, characterized by post-transcriptional phosphorylation, are recognized as
critical pathophysiological mechanisms leading to AD. As a result, positivity to amyloid
and tau biomarkers is mandatory to establish an effective /n vivo diagnosis of AD [156]; for
this reason, most of the currently developed disease-modifying therapies for AD are targeted
on the amyloidogenic and tau pathways.

The conventional hypothesis on AD pathophysiology states that the initial neurodegenerative
processes are associated with the imbalance between production and clearance of Ap1.42
peptides resulting in cerebral accumulation of insoluble and toxic forms of aggregates

of misfolded proteins [157]. In this regard, an early, fast, and efficient biomarker-guided
screening of individuals during the pre-symptomatic phase might support the development
of effective disease-modifying trials before the amyloid-related neurodegenerative processes
become irreversible. Indeed, several longitudinal studies clearly indicated that reduced CSF
APB1-42 concentrations combined with increased cerebral amyloid PET signal currently
represent the earliest asymptomatic indicators of AD onset [129,158]. Interestingly, the
early pre-symptomatic decrease of CSF AB;.4» concentrations or the increase of amyloid
PET signal are followed by a “plateau” phase before the individuals become symptomatic
(i.e., MCI and dementia stages of AD). Hence, starting an anti-amyloid trial during the
dementia or even the MCI stages is predestined to fail. This is supposed to be the

key reason accounting for the failure of over 100 anti-amyloid monotherapeutic trials
conducted to demonstrate a benefit in slowing the progression of cognitive impairment
[159]. Pharmacological anti-amyloid strategy essentially relies on modifying the dynamic
balance among Ap monomers, AR oligomers, and fibrils, being Ap oligomers the most toxic
species [160].

Modulation of AP secretase enzymes aims at I) increasing a.-secretase activity by converting
APP into harmless sub-metabolites as well as I1) inhibiting p- and -y-secretases activity,

to halt the amyloidogenic pathophysiological pathway[161,162]. However, caution should
be taken when drug interventions target y-secretase activity since this enzyme is involved
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in various key physiological signaling pathways of proteins modulating cellular trafficking,
apoptosis, cholesterol homeostasis, neurogenesis, and angiogenesis [163]. In particular, the
amyloid precursor protein (APP) proteolytic processing generates several truncated forms of
AP which have intrinsic properties providing an essential role for physiological cellular
signaling mostly involved in synaptic activity-dependent modulation. Endogenous AB
monomers show a potential role in the regulation of synaptic vesicles trafficking, thus finally
acting as a key electrophysiological modulators of the synaptic firing [164]. Moreover, it has
been reported that some AP fragments can initiate CREB-mediated cytoprotective pathways
[165]. Therefore, an excessive removal of some AP monomers by a poorly calibrated
pharmacological intervention may prevent hippocampal neurons from surviving aberrant
pathways upstream to AP deposition.

Interestingly, an alternative option is represented by interfering with APP expression, as
previously suggested in AD trials reporting the use of antidiabetic PPAR-y agonists,
including the thiazolidinediones [166]. Another potentially relevant anti-amyloid strategy
is stimulating the clearance of amyloid species in the brain by increasing the activity

of different proteases including angiotensin and endothelin converting enzymes, insulin
degrading enzyme, metalloprotease-9, neprilysin, and plasmin [167]. The aim is to degrade
amyloid metabolism byproducts by hindering their oligomerization and aggregation.
Interestingly, the concentrations of amyloid degrading enzymes decrease in AD, thus
possibly facilitating the deposition of toxic Ap peptides. However, the modulation of
amyloid proteases activity needs further assessment since it may appear as a non-specific
and detrimental strategy [168]. In addition, acting on the amyloid transport modulation
represents another potential approach. In particular, the multi-ligand receptor for advanced
glycation end products (RAGE) efficiently binds Ap in the blood and promotes its entry into
the CNS through the blood brain barrier [2,161]. Finally, the apolipoprotein E, binding the
AP peptides, allows their entry in the CSF circulation by the lipoprotein receptor related
protein-1 and the very-low density lipoprotein receptor mediated transport [169-171].

Currently, anti-amyloid immunotherapies represent the most precisely targeted anti-amyloid
treatments. The suggested therapeutic mechanism is that anti-amyloid antibodies may
promote the removal of AP peptides and AP aggregates from the CNS to blood via

a sort of “peripheral sink” [172]. Passive immunotherapy — based on the intravenous
injection of anti-amyloid targeted antibodies — may induce a dosage-dependent increase of
both blood and CSF AP concentrations. The use of anti-amyloid active immunotherapies
has been recently proposed to design next-generation vaccines against small epitopes,
instead of developing full length peptides that may generate harmful non-specific immune
responses [173]. Unfortunately, the most recently published phase 111 trials using intravenous
immunoglobulin in AD patients did not provide any clinically relevant benefit, in spite

of the promising results obtained in preliminary studies [166,174]. Actually, the exact
mechanisms of action of these therapies and the origin of their most common side effects,
such as cerebral microbleeds, is still unexplored [175]. The ultimate response of an existing
proof-of-concept in the anti-amyloid treatment strategies might come from the results of
ongoing trials recruiting exclusively AD patients carrying presenilin mutations [176].
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Although there is a general consensus that Ap accumulation represents the initial trigger

of AD pathophysiology, the continuous failures of disease-modifying anti-amyloid phase 111
trials encouraged the design of anti-tau therapeutic strategies. Notably, a robust correlation
of tau brain pathology with the severity of the cognitive impairment in AD was reported in
several longitudinal studies, thus supporting the interest on anti-tau therapies [129,177,178].

Tau is a microtubule-associated protein involved in axonal stability. It is
hyperphosphorylated, separated from microtubules, and then accumulated as a misfolded
protein within neurons, in tau-associated neurodegenerative diseases, including AD [179].
Tau targeted treatments can be specifically directed to the phosphorylation process, resulting
in the disassembly of microtubules and, consequently, into reduced microtubule stability
[180]. One strategy involves acting on the various post-transcriptional modifications
monitoring tau intracellular physiological activity [179]. For instance, the up-regulation of
tau O-linked glycosylation seems to decrease tau oligomerization process and leads to the
deposition of toxic insoluble fibrils. Moreover, the inhibition of tau acetylation may promote
tau clearance wviathe ubiquitin/proteasome system (UPS) [181]. Notably, the stimulation

of the intracellular autophagy/lysosomal system may represent a way to eliminate the
deposition of misfolded tau proteins in the advanced AD stages. Another possible approach
includes the down-regulation of tau proteolysis mediated by distinct subtypes of cysteine
proteases, namely caspases, calpains, and cathepsins [179,182]. The potential development
of active or passive tau immunotherapies appears controversial, given that tau and its toxic
brain inclusions have an intracellular position obstructing the tau sinking process mediated
by specific anti-tau antibodies [183]. In summary, the development of tau targeted therapies
is still in its infancy and, therefore, a further assessment of tau-associated pathophysiological
mechanisms (also linked to other neurodegenerative diseases) is mandatory.

Notably, a novel unexplored field in the development of AD therapeutics is to investigate
the relationship between the CNS — including the macromolecule circulation and removal
within the glymphatyc system — and the periphery [21 ]. The latter is involved in the
clearance of potentially harmful protein byproducts, produced in the brain, that are involved
in the pathogenesis of AD and other neurodegenerative diseases. In this regard, emerging
data revealed that brain pathophysiological processes are reflected into the periphery;
moreover, some CSF biomarkers such as neurofilament light chain [184,185], tau [185],
and B-site amyloid precursor protein cleaving enzyme (BACE1) enzyme [86] are reliable
blood surrogate proxies of underlying cerebral neurodegenerative mechanisms [86,186—
188]. In addition, the AP species generated in the CNS can cross the brain blood barrier
and be removed by peripheral organs. Actually, systemic diseases may interfere with
amyloid clearance, thus contributing to AD development and progression [157]. In this
regard, kidney dysfunction might be associated with the amyloidogenic pathophysiological
mechanisms leading to AD and is responsible for an increased risk of cognitive/psychiatric
alterations and dementia [189]. Interestingly, renal transplantation is assumed to decrease
plasma AP concentrations and hemodialytic procedures reduce brain Ap accumulation

in subjects suffering from chronic kidney disease [190]. Another interesting observation

is that AP load in liver tissue is decreased in AD versus healthy subjects, hence

suggesting the existence of a hepatic Ap-clearance dysfunction in AD [191]. Notably,
epidemiological bidirectional association is evident between diabetes, pure cerebrovascular
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cognitive impairment, neurodegenerative diseases such as AD, and mixed forms of dementia
[192-198]. In particular, recent studies indicate that Ap may have detrimental peripheral
effects resulting in its atypical accumulation in pancreatic cells [191,199]. In addition,
attention should be given to the impaired N-terminal processing of amylin precursor, also
called islet amyloid polypeptide (IAPP), an early factor inducing the toxic accumulation and
deposition of amyloid in pancreatic -cells [200].

In conclusion, there is emerging evidence for a bidirectional interplay between brain and
peripheral organs in regulating AR metabolism and other protein byproducts associated with
neurodegenerative pathways. This emphasizes the need for a comprehensive and precise
strategy — directed on both CNS and peripheral dysfunctions — based on the systems
biology and systems neurophysiology paradigms [157,201]. The traditional “one-drug-fits-
all” concept seems to be obsolete and does not reflect the heterogeneity and complexity of
neurodegenerative diseases, including potential therapeutic interventions combining precise
multi-target drug administrations with lifestyle changes such as diet modifications [202,203]
as well as specific and “tailored” cognitive training [204]. These belong to a spectrum

of diseases caused by the deposition of multiple misfolded proteins and cerebrovascular
damage, and are unavoidably affected by systemic diseases [205]. A more flexible and
adaptive multi-target strategy, taking into account the complexity of AD pathophysiology, is
needed in the upcoming drug development programs.

6. Rethinking and optimizing the design of clinical trials from the

precision medicine perspective

PM demands precision drug development. One cannot apply PM concepts of the right drug,
in the right dose, for the right patient, without these aspects of drug treatment having been
thoroughly tested in clinical trials. Although daunting, the PM approach may be precisely
what is needed to resolve the current challenges facing AD drug development. No new
treatments have been approved for AD since 2003 and the field has a drug development
failure rate in excess of 99% [54]. All drug development programs aimed at developing
disease-modifying treatments for AD or any other neurodegenerative disorder have failed
[206]. PM offers a means of conceptualizing a resolution to this crisis.

The basic tenet of PM is that humans are biologically heterogeneous and that these
differences express themselves in differences in the characteristics of the disease they
develop, the stage and rate of progression of the disorder, and the dose needed to abrogate
progression or restore function [3,4]. Conduct of clinical trials to meet the demands of

PM will require different recruitment approaches, biomarker characterization of participants,
dosing strategies, and data analytic approaches. A fundamental need is to better comprehend
the basic biology of AD, the druggable aspects of the pathology, the heterogeneity of the
disease, and the biomarkers that reveal this heterogeneity to the clinician. These are the
building blocks on which precision trials and PM will be built.
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6.1. Theright drug

The right drug in the PM schema addresses the basic biology of AD. This requires

an understanding of the heterogeneous pathology of AD and how it can be addressed
pharmacologically. In a recent autopsy study of patients clinically diagnosed with AD

and meeting pathologic criteria for AD, 32% of patients had AD pathology only

while 68% had combinations of AD pathology, alpha-synuclein/Lewy pathology, and
ischemic injury secondary to cerebrovascular disease [207]. In addition to the vascular

and degenerative changes, the brains of AD patients exhibit inflammatory, oxidative,
mitochondrial, transactive response DNA-binding protein 43 (TDP-43), heavy metal, and
epigenetic changes that may contribute to the disease pathophysiological processes and offer
opportunities of intervention [208]. The “right drug” for AD will likely be a combination
regimen of agents addressing multiple types of pathology. The “right drug” may also
evolve over time as the process evolves, changes become more advanced, and new elements
participate in the pathophysiological cascade of AD. Clinical trials constructed around PM
approach will use biomarkers (discussed below) to link the right drug/combination to the
right patient.

6.2. Theright dose

Dose exploration is a critical aspect of drug development and clinical trials for AD. Phase
1 should include identification of a maximum tolerated dose (MTD). Without knowledge
of the MTD, later efficacy failures will inevitably raise the question of dose adequacy. In
some cases, a MTD can be defined by PET occupancy studies showing target saturation
thus implying that increased doses will not produce greater effects. Physical limitations,
including solubility and acceptable rate of infusion, impose a maximum plausible does for
some agents. In all other cases, a MTD should be established and formulation issues should
be solved prior to the Phase 1 trial if they may artificially limit the ability to define a MTD.

Dose-response characteristics will also be established in precision clinical trials. Doses
that are too low to produce benefit, near the upper limit of tolerability and in the optimal
range (minimal 3 doses), should be studied in early phase trials. Adaptive designs may
facilitate the elimination of ineffective or toxic doses [209]. Individualization of doses, as
required for PM, can be advanced through knowledge of the drug metabolism patterns

of the individual, including fast and slow metabolizers and toxic response. In this regard,
pharmacogenomics will play a critical role in precision trials and in the PM paradigm
[210]. Pharmacogenomics can be broadly defined as the use of genomic and other “omic”
information to individualize drug selection, optimize drug efficacy, and reduce adverse
drug reactions. In this context, pharmacogenomic information relies on biological markers
that label individuals as more or less responsive to specific medications and/or more or
less susceptible to experience adverse effects. Moreover, pharmacogenomics can determine
treatment response based on disease-causing variants of heterogeneous clinical conditions.
Ultimately, pharmacogenomics is expected to remove the traditional “one-size-fits-all”
clinical trial methodology in developing and prescribing therapeutic drugs. Hopefully, PM
research and interventions will avoid this “trial and error” approach and predict who will
respond to a medication and who — in turn — should avoid the same medication. Research
in pharmacogenomics is also expected to provide critical information about the genomic
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variations that affect response to currently recommended pharmacological treatments and
future interventions. Understanding the individual variation and the implications for drug
response, metabolism, and drug elimination will allow PM physicians to implement
healthcare based on the individual’s “omic” biomarker data.

6.3. The right patient

Different therapeutic regimens will likely be required for individuals in different phases

of AD. Individuals in preclinical and prodromal AD as well as in mild, moderate, and
severe forms of AD exhibit different phenotypes and different underlying “pathologies” that
need to be addressed using different drugs/combinations of drugs. Cognitive enhancers are
indicated in individuals with cognitive symptoms and psychotropics are indicated in those
with neuropsychiatric symptoms. Different drugs/combinations of drugs will be required for
those with simple versus complex pathology (Fig. 2) and this may evolve as the disease
progresses.

The right drug will require use of biomarkers in clinical trials. Biomarkers will define the
patient population for which a given therapy or combination is indicated and will link the
basic pathophysiology of AD to the proper therapy. Biomarkers of alpha-synuclein, TDP-43,
vascular pathology inflammation, and other CNS changes are needed to allow both the
trialist and the clinician to construct treatment regimens reflective of the pathology of the
individual patient. Experience in the trial will anticipate the needs of the clinician and
biomarkers used in trials may evolve to companion biomarkers approved in concert with
new therapies and informing their use.

Precision prevention is required for primary prevention of AD in individuals without

state or trait biomarkers of the disease or for secondary prevention of those with genetic
factors (presenilin-1 [ PSEN-1], presenilin-2 [ PSEN-Z], amyloid precursor protein [APF]
mutations or apolipoprotein E [APOE] homozygous state) or state biomarkers (positive
amyloid PET or CSF signature of AD) indicative of impending AD. Primary prevention
trials will focus on life style interventions constructed to match the genomic profile

of the individual including risk for diabetes or hypercholesterolemia and other AD risk
factors. Primary prevention will involve amyloid prevention agents such as BACE inhibitors.
Secondary prevention trials will include lifestyle factors in combination with agents related
to tau progression, inflammation, mitochondrial function, and other biological factors. Thus,
precision prevention will lead eventually to “precision health”.

6.4. Conduct of precision medicine trials for Alzheimer’s disease

Precision trials will be structured differently from those currently conducted [211]:
substantially extended biological characterization of the population using biomarkers will be
required. Biological profiles will be matched to treatment/treatment combinations. Severity
may represent an important parameter in selecting the right drug for the right patient. Precise
matching of some AD populations to evolving therapies may allow these agents to be
developed as orphan drugs for rare diseases [212]. PM trials will be more patient-centric and
biomarker-guided than currently conducted trials. Large populations of well-characterized
individuals will be required to allow precision trials to be performed. This will require novel
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innovative strategies such as mass advertising, enlistment of large populations (e.g., those
applying for retirement benefits), on-line testing, mass biomarker collection at convenient
locations (such as shopping malls), development of large databases of trial-ready persons,
and testing using remote assessments and virtual visits in tele-trials.

Trial analytic strategies will need to evolve to accommodate to PM requirements.

PM and precision clinical trial outcomes will address individual responses in more

detail. Current analytic approaches provide group data, however, little information about
individual responders or non-responders is delivered. Robust analytic techniques applicable
to individuals/small groups of individuals will be necessary. This might involve more
dependence on well validated biomarkers than previously. Table 3 summarizes how clinical
trials will be constructed in the age of PM. The time is now: PM requires precision trials
and we should be pursuing these trials now. The trends are already evident with definition of
different disease phases and evolution of new biomarkers. These trends need to be validated
and accelerated as well as married to aggressive trial methodologies.

7. How can drug discovery programs in Alzheimer’s disease accomplish a
good level of translational quality to reduce the rate of failures?

7.1. Drug discovery translational for Alzheimer’s disease therapeutics

In terms of drug discovery, translation is the process by which non-clinical research is
performed that will give insights into the likely behavior of a therapeutic intervention in the
individuals. The lack of success in demonstrating efficacy in AD patients of a very wide
range of approaches may indicate that translational science is woefully inadequate in the
field [54,213]. However, a more considered appraisal suggests a range of reasons for failure
that can be grouped into four main — and sometimes overlapping — categories: |) inadequate
drug discovery process; Il) inadequate target engagement to test the therapeutic hypothesis;
I11) changing the therapeutic hypothesis to accommodate the compound properties; 1V)
acceptance of the “null hypothesis.”

7.2. Inadequate drug discovery process

In many, but not all, drug discovery programs, work is conducted as reported in Fig. 3.
While this is shown as a linear process for simplicity, often steps may be omitted, feedback
loops are common, and ideally human data on PK and PD properties of the therapeutic can
be fed back to the non-clinical phase to inform the drug discovery program. Moving from
in vitroto in vivo assays, the complexity of the assays increases, as does their relevance to
human disease. While an element of this stepwise approach is to filter the large number of
test compounds that may need to be synthesized, screened, and assayed in order to find those
showing the appropriate potency and selectivity, there is also significant translational value
in each step. Notably, biomarkers qualified for use in clinical trials to facilitate marketing
authorization and regulatory decision-making should also be available as diagnostic agents.
Thus, each biomarker will be useful at one stage or another stage of medical product
development, i.e., from discovery to adoption in clinical practice (Fig. 4).
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It is a mistake to assume that the /7 vivo model to human transition is the only important
translational step: confidence in the therapeutic approach is built throughout the drug
discovery process. For instance, if the potency of the potential therapeutic on the isolated
target is very significantly reduced (e.g., by >30 fold) when the therapeutic is tested

versus intact cells, the finding should be investigated and resolved. This may mean that

the compound fails to enter cells if the target is intracellular, or that the cell response
measured does not solely reflect target activity, and so on. Normally, the pattern of activity
of multiple compounds enables trends to be delineated and understood: this is referred to as
the structure-activity relationship. If the free drug level (unbound to matrix and, therefore,
available to interact with the target) required for a therapeutic response in the target tissue —
in this case the brain — is very different from that required for activity in cell culture assays,
then this discrepancy needs to be investigated before further advance is considered.

The development and subsequent failure of tarenflurbil reveals several opportunities for
significant improvement in the drug discovery process and translation into clinical studies.
Tarenflurbil is the R-diasterioisomer of the racemate flurbiprofen, a non-steroidal anti-
inflammatory drug approved for human use. The original preclinical data on tarenflurbil
showed a dose related decrease in AB1.42 production from human embryonic kidney

293 (HEK293) cell line stably transfected with human Swedish mutant APP but with an
incomplete dose response curve: the half maximal effective concentration (EC50) being

in excess of 250 uM [214]. Additional studies also demonstrated a reduction in AP1.42
production from H4 neuroglioma cells expressing Swedish mutant APP695NL but, again,
the dose response was incomplete with an EC50 in excess of 250 pM [215]. In the same
study, tarenflurbil was administered to Tg2576 Swedish APP transgenic mice, for three
days, at three doses: 50, 25, and 10 mg/kg od. All doses reduced AB1.42 in brain by a
maximum of ~60% but in a non-dose related manner. The group sizes used were small (N =
4-7) and without evidence of a power calculation being employed to guide robust statistical
analysis. Crucially, at the top dose of 50 mg/kg, the brain concentration of tarenflurbil

was 2.5 pM, a dose more than 100-fold lower than the EC50 in cell culture studies. This
significant discrepancy should have been investigated further. In fact, subsequent studies
failed to replicate the /n vivo AB1.42 lowering effects of tarenflurbil.

In phase 1 human studies, the highest dose of tarenflurbil administered, 800 mg bid,
produced a CSF concentration of approximately 1.2 pM: some 200-fold lower than the
EC50 concentration and without any effect on CSF AB1.42 concentrations [216]. After the
phase 2 study [217] in which target engagement was not assessed and CSF Ap metabolites
were likewise not measured, a phase 3 trial enrolled 1646 mild AD patients in a randomized,
double-blind, multisite, placebo controlled trial. Tarenflurbil was administered at 800 mg/kg
bid in the active treatment arm for 18 months. The trial failed to meet its coprimary outcome
measures of Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) and
Alzheimer’s Disease Cooperative Study Activities of Daily Living (ADCS-ADL) [218], as
did a companion phase 3 trial that was discontinued early. The development of tarenflurbil
clearly demonstrates an inadequate translational process during the in vitroto in vivo phase,
coupled then to a likely Type 1 error in /n vivo efficacy studies that was incorrectly used to
support the clinical program.
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7.3. Inadequate target engagement to test the therapeutic hypothesis

AB is released from the APP holoprotein by the sequential action of BACE and y-secretase:
inhibition of either enzyme is able to reduce the production of the Ap peptide. Inhibitors

of both enzymes have been tested in phase 3 clinical trials in AD patients. Semagacestat

is a yy-secretase non-competitive inhibitor, binding at an allosteric site and with a complex
mechanism of action [219-221].

Semagacestat inhibited Ap peptide production in HEK293 cells stably expressing Swedish
APPNL with an EC50 of 15 nM [222]. In PDAPP transgenic mice that overexpress the
hAPP717 mutant protein, dose related inhibition of brain Ap production was demonstrated
both acutely, and after 7 days’ dosing [223]. In a 5-month chronic study, semagacestat

was able to lower insoluble AB concentrations in a dose-related manner at 3, 10, and 30
mg/kg od [224]. Since this study did not incorporate a baseline group (analyzed at the
commencement of dosing), it was not possible to determine whether semagacestat delayed
the onset of amyloid deposition or reduced the rate of amyloid deposition, which is critically
important with respect to the compound’s use in AD patients [213]. In this mouse study, the
30 mg/kg dose reduced plasma Ap concentrations by approximately 60%.

In a phase 1 study in humans, doses of 60, 100, and 140 mg semagacestat were administered
with the peak plasma reduction in Ap being ~50% at the 60 mg dose and 73% at the

140 mg dose. In this sense, there was evidence for an acceptable nonclinical to clinical
translation. However, CSF samples taken 4 h after dosing in humans did not reveal a
reduction of Ap peptide [225]. To investigate this further, the effects of semagacestat on

AP production were assessed in humans using the stable isotope labelling kinetics (SILK)
protocol, which measures the production and clearance of newly synthesized proteins [226].
The oral administration of semagacestat at a single 100, 140, and 280 mg dose was able to
inhibit brain Ap production by 47%, 52%, and 84%, respectively, over a 12 h period, thus
confirming semagacestat target engagement [227].

Subsequently, semagacestat was tested at 100 mg and 140 mg in two, Phase 3 trials —
Identity 1 and Identity 2—enrolling 2600 mild-to-moderate AD patients in 76 week, placebo-
controlled, double blind, randomized, multi-site trials with ADAS-Cog and ADCS-ADL as
co-primary outcome measures. Both trials, however, were discontinued following an interim
analysis of Identity 1 that revealed a significant worsening of the Clinical Dementia Rating
Scale Sum of Boxes (CDR-SB) and the Mini-Mental State Examination (MMSE) scores,
together with an increased incidence of skin cancer as well as other adverse events [228].

There has been much discussion about the extent and time duration of Ap production
inhibition at the top 140 mg semagacestat dose [229]. While the plasma half-life of
semagacestat is only 2.5 h, there was evidence that the PD effect of the compound

exceeded this value in the brain [230]. It is likely that the adverse events, and most
probably the worsening of cognition, were caused by an inhibition of y-secretase mediated
notch cleavage and, potentially, other substrates as well. It is very clear, however, that

— irrespective of the unfavorable side effect profile of semagacestat — the extent of Ap
inhibition at the top dose of 140 mg was unlikely to have produced an inhibition higher than
25% over a 24 h period, constrained as it was by a combination of short compound half-life
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and dose limitation due to preclinical toxicology findings. Thus, the potential efficacy to be
derived by robust suppression of Ap production was not tested because of inadequate target
engagement.

7.4. Therapeutic hypothesis is changed to accommodate the compound properties

Solanezumab is a humanized 1gG1 antibody derived from m266, a mouse monoclonal
antibody that recognizes the mid-domain region (aal6-22) of the Ap peptide with picomolar
(10712) affinity [231,232]. Nonclinical in vitroand in vivo studies demonstrated that m266
was able to complex with AP so as to deplete Ap from plasma. Experiments in the

PDAPP transgenic mouse model demonstrated that the peripheral AB compartment was

in communication with AP deposited in the brain when m266 was administered, in such a
way that the amount of Ap complexed by m266 in the plasma correlated with the amount of
AP deposited in the hippocampus [233]. This finding gave rise to the therapeutic rationale
for solanezumab for AD — a “peripheral sink hypothesis” — where capturing A in the
periphery would alter the soluble to insoluble Ap equilibrium in the brain thus leading

to the dissolution of amyloid plaque [232]. Nonclinical evidence for this hypothesis was,
however, rather weak: in fact, it has was not demonstrated that m266 actually cleared
amyloid plaque if administered after the beginning of plaque deposition [234]. In addition,
reducing peripheral Ap peptide to undetectable concentrations in plasma of mice using

a neprilysin Fc fusion protein showed no effect on brain A levels in wild-type mice.
Performing a similar experiment in APP23 transgenic mice with existing plaque likewise
was unable to reduce deposited insoluble AB levels in the brain of soluble Ap concentrations
in the CSF [235].

During the development of solanezumab, phase 1 clinical studies established that peripheral
plasma A increased with dose, as expected if Ap was being complexed by the antibody
and thereby assuming the half-life of the antibody, approximately 30 days [236]. In phase

2 studies, CSF concentrations of total Ap1.49 peptide (i.e., antibody-bound plus unbound)
increased, driven by the very small percentage of solanezumab that entered the central
compartment: unbound concentrations of AB1.49 decreased. Total concentrations of AB1.42
peptide (antibody-bound plus unbound) also increased in the CSF, although unbound
concentrations increased: this was taken as evidence of some mobilization of plaque Ap1.42
[237]. In two, randomized, multisite, blinded, placebo-controlled phase 3 trials — Expedition
and Expedition 2 — mild-to-moderate AD patients were administered 400 mg solanezumab
by i.v. infusion every 4 weeks for 80 weeks in the active treatment arm. Expedition failed

its primary outcome measures of change in ADAS-cogl11 and the ADCS-ADL scale from
baseline to week 80. On the basis of secondary analyses performed on Expedition, the
primary outcome measure for Expedition 2 was changed to ADAS-Cog14 in mild AD
patients: Expedition 2 failed this single outcome measure [238]. In secondary analyses of the
two trials combined, solanezumab treatment had no effect on the concentrations of unbound
CSF AB1.42 compared with placebo, unlike that observed in phase 2 studies [239]. More
importantly, the treatment had no effect on brain amyloid as measured in a subset of patients
using florbetapir PET imaging. A pooled analysis of data from Expedition and Expedition 2
including only the mild AD subset and the ADAS-cog14 as the main outcome showed some
evidence for a therapeutic effect of solanezumab. This prompted a previously unplanned,
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very large, third phase 3 trial, Expedition 3, in mild AD patients and with ADAS-Cog14 as
the single primary outcome measure.

The dosing for Expedition 3 was the same as in Expedition and Expedition 2, i.v. infusion
at 400 mg, every 4 weeks, in the active treatment arm in an 80 week trial. Thus, at

some point during the clinical development phase, the concept of the “peripheral sink
hypothesis” driving plaque resolution was replaced, presumably, by the hypothesis that
therapeutic benefit would be mediated, in some way, by penetration of solanezumab into the
central compartment and complexing free AB. Expedition 3 failed to meet its primary and
secondary outcome measures: solanezumab was also shown to fail to reduce brain amyloid
in a subset of patients who were assessed using florbetapir PET imaging.

The clinical development of solanezumab continues, however, as the Anti-Amyloid
Treatment in Asymptomatic Alzheimer’s Disease (A4) trial (ClinicalTrials.gov Identifier:
NCT02008357) will now test solanezumab at a dose of 1600 mg, every 4 weeks, for 240
weeks in cognitively normal individuals with evidence of brain amyloid pathology measured
using florbetapir PET imaging. The primary outcome measure is the change from baseline
of the Alzheimer’s Disease Cooperative Study-Preclinical Alzheimer Cognitive Composite
(ADCS-PACC) to week 240. The rationale for quadrupling the dose of solanezumab from
that used in the Expedition trials and lengthening the trial is, presumably, that the trend

for an amelioration of cognitive impairment observed in previous phase 3 trials will reach

a clinically meaningful level in a treated population that is at the earliest stages of the
evolution AD pathophysiology. There are no preclinical or clinical data to support this
rationale with respect to solanezumab. Thus, solanezumab’s “peripheral sink hypothesis”
has clearly been disproven and the current therapeutic hypothesis for solanezumab remains
unclear. One can argue that if a therapeutic benefit is ultimately shown for a drug, then the
absence of a therapeutic hypothesis is somewhat irrelevant (although, in this eventuality,
subsequent therapeutic approaches based on the clinical success would be difficult to enact).
The clear danger of this strategy, however, is the risk of chasing a “chimera”, coupled to an
uninformative clinical experiment should the trial fail.

7.5. What can we do better?

The issues to be surmounted in order to discover and develop a disease-modifying therapy
for AD are clearly challenging. There are many lessons to be learned from prior studies:

1. Ensure that the nonclinical efficacy experiments mirror as far as is possible the
clinical situation.

a. In this regard, according to the British statistician George Box, “the
most that can be expected from any model is that it can supply a
useful approximation to reality: all models are wrong; some models
are useful.” Therefore, it is important to be aware of the differences
between the /nn vivo model utilized to demonstrate therapeutic efficacy
and the human disease. In particular, models can be assessed in terms of

their “face”, “construct”, and “predictive” validity:
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a. “Face validity”: are there elements of the model that
resemble the gross appearance/presentation of the human
disease?

b. “Construct validity”: are there fundamental elements of

model construction that are shared between the animal and
human disease?

c. “Predictive validity”: do results that are derived from the
model replicate in human disease?

It is crucial to be rigorous in avoiding inappropriate validity
assignment. Hence, an APP transgenic mouse model that over-
expresses a mutant form of hAPP may well have A amyloid plaque
deposition that bears very great similarity to amyloid plaques in AD
and also demonstrates learning and memory impairment. While the face
and construct validity for plaque deposition is quite robust, it is absent
for cognitive impairment, as such mice very often do not have neuronal
loss or tau pathology that well correlate with cognitive impairment in
AD, when amyloid deposition does not.

All AD therapeutics that have completed their clinical testing have
been administered to patients with existing disease pathophysiology
(notwithstanding patients misdiagnosed with AD). Thus, for
therapeutics that might, for example, aim to slow or limit the
progression of tau pathology, nonclinical experiments should be
conducted in /n vivo model systems following a therapeutic — dosing
commenced after tau pathology onset — rather than preventative —
dosing commenced before tau pathology onset — protocol.

Concentrations of the therapeutic required for efficacy and or
evidence of pharmacological action should not significantly differ from
nonclinical assay systems through to clinical testing.

c. If possible, to discover translational biomarkers, i.e., to identify
changes that can be measured as a consequence of target engagement in
the nonclinical efficacy or pharmacology model, that can be measured
in humans that will provide confidence that the therapeutic hypothesis
will be adequately tested.

2. Be clear on the therapeutic hypothesis and ensure that the clinical phase 3 trial
will be sufficiently informative to accept the “null hypothesis”.

a.

For instance, if the therapeutic hypothesis is that lowering A
production will provide clinical benefit, then robustly interrogate, plan
for, and provide evidence for I) the extent of AR suppression will be
required and 11) why.

If it is impossible to replicate the conditions of the nonclinical efficacy
data in man, e.g. because of adverse reactions to the therapeutic, then
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there is a significant risk of conducting a clinical trial where it will be
impossible to accept the “null hypothesis” in the event of failure.

c. Ensure that target engagement, or a robust surrogate, has been
demonstrated prior to phase 3 clinical testing and appropriate dose
ranging studies have been completed.

3. Make sure that the patient/subject population is selected as appropriate to the
therapeutic mechanism of action.

a. In this regard, the advent of genetic, imaging, and fluid biomarkers
enables a more accurate selection of the population of individuals. Most
biomarkers are disease state markers, rather than disease progression
markers (e.g., amyloid PET imaging and CSF Ap1.4» concentrations).
Sensitive fluid biomarkers of disease progression might accelerate
decision making in otherwise long phase 3 clinical trials.

4. There is a huge unmet clinical need for effective disease-modifying therapeutics
for the treatment of AD patients and everyone in the field hopes for a
breakthrough. However, “hope” is not a strategy.

8. Perspectives

The development of specific treatment options in biomarker-defined subgroups of patients
offers a promising way to treat different diseases more effectively and the use of stratified
medicine has gained considerable attention in recent years. Assuming that some drugs act
differently in different patients, biomarkers are investigated that are capable to identify
patients in which a specific treatment shows a larger effect size or a better tolerability than
in the complementary group. Referring to an improved superiority to a control group in

the biomarker defined subgroup, these biomarkers are referred to as predictive in contrast
to purely prognostic biomarkers that only forecast the course of the disease. Differential
treatment effect sizes with respect to different groups of patients — i.e. interactions between
subgroup and treatment — are, however, difficult to detect with respect to clinically relevant
endpoints due to limited sample size, absence of between-patient comparisons, and blurring
effect of additional sources of variability. If the resulting groups of patients are small or

if treatment is started in preclinical disease stages, then the development of a confirmatory
proof-of-efficacy trial may become extremely difficult to accomplish. On the other hand,
pathway-based drugs may work for different diseases and, therefore, proposals were made
to investigate these drugs in different diseases simultaneously referring to recently proposed
basket trials.

Resulting from these settings and proposals regulatory challenges are to be discussed. In
case of an unclear differential treatment benefit, the lack of evidence in the non-selected
groups may be an issue and challenge the usefulness of the biomarker-related selection.
Data in both biomarker positive and negative patients are necessary. Much effort is still
required to explore and confirm reasonable predictive biomarkers. Especially in preclinical
AD, early surrogate endpoints able to predict the treatment effect in clinically relevant
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endpoints are needed to determine a successful combination of drug and population and to
reliably confirm truly predictive biomarkers.

Notably, the Center for Drug Evaluation and Research (CDER) at the Food and Drug
Administration (FDA) (CDER/FDA) will soon release a draft guidance on clinical AD
development, encouraging studies in the pre-symptomatic phase [J. Woodcock, personal
communication].1

Several biomarkers are used in AD for enrichment in clinical studies to define a restricted
subpopulation that is expected to profit from treatment. For instance, amyloid PET and CSF
APB1.4 are expected to be useful as predictive biomarkers. Although strongly correlated,
both are measuring different aspects of amyloid pathology, fibrillar aggregates of Ap

for PET and soluble AB1.42 monomer concentrations for CSF AB1.42. Whereas both are
considered acceptable for enrichment, the type of assay and a cut-off needs to be defined
and justified [240]. In addition to CSF APB1.42, total tau (t-tau) or phospho tau (p-tau)
concentrations are considered useful, since the AB1.4o/tau ratio was found to have a higher
positive predictive value than AB1.4, alone [158,241].

Downstream topographical markers of brain regional structural and metabolic changes —
e.g. hippocampal atrophy assessed by magnetic resonance imaging (MRI) and cortical
hypometabolism assessed by 18F-2-fluoro-2-deoxy-D-glucose PET (18F-FDG-PET) — while
having insufficient pathological specificity were found to be better related to cognitive
decline than Ap itself and may be particularly valuable for detection and quantification

of disease progression. Consequently, the combined use of amyloid and more downstream
topographical biomarkers is expected to be more informative [242,243].

Novel biomarkers are currently investigated and may increase the utility of further
stratification, e.g. tau PET imaging, biomarkers for neuroinflammation, blood or metabolic
signatures [10,106,107,244,245]. Apart from that, epigenomics play an important role:

for instance, APOE e4 status may be used as one of the means of enrichment. Indeed,
APOE e4homozygotes constitute 2—-3% of the general Caucasian population and have

a particularly high risk of developing symptoms of LOAD (although there seem to be
substantial sex-risk differences and the presence of protected APOE 4 homozygotes
indicates complex individual genetic risk and protection patterns), especially in the presence
of AD pathophysiology.

Pathway-related biomarkers should be identified in early development to reliably identify
patients groups eligible for specific treatments. Whereas the predictivity of biomarkers
expressed in terms of treatment-by-subgroup or treatment-by-biomarker interaction is
usually suggested by drug action, further investigations in early phase clinical studies
(possibly in surrogate endpoints) would be required to confirm the utility of the biomarker-
related selection, but studies to investigate these interactions in hard clinical outcomes
appear unrealistic with respect to size and duration.

1This reflects the opinion of the author and does not necessarily reflect the position of the Food and Drug Administration.
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In case of simultaneously studied diseases for the same drug, questions of how to deal

with the multiplicity issue in confirmatory trials and whether and how information can be
borrowed from one sub-study to the other arise. The corresponding statistical modeling
usually requires additional assumptions that have to be agreed upon. However, even though
these studies are considered to be explorative, they should certainly be efficient and
informative enough to be justified, especially if long-term outcome is to be measured.

The precision of stratification has greatly improved in recent years, and patient treatment
has significantly changed wherever the stratified medicine model has been introduced.

This is due to substantial progresses in understanding the molecular basis of the disease,
aided particularly by the advent of the genomic era and by the development of targeted
therapies to address these new molecular targets. The introduction and refinement of key
technologies has allowed these advances, through the increasingly detailed examination of
the role of genes, RNAs/miRNAs, proteins/peptides, and metabolites/lipids in disease. These
relevant technologies, which are set to further progress, include genomics/epigenomics,
transcriptomics, proteomics/peptidomics, metabolomics/lipidomics investigations [201,246]
and digital pathology analyses on clinical samples, clinical imaging studies, as well as
biomedical and health informatics [247-249]. Standardized protocols for collecting and
recording both types of data will be needed to allow comparing and combining samples

and datasets, which is required to perform the large-sample-size research that will advance
the molecular understanding of the disease. Moreover, recommendations have been recently
released by the Academy of Medical Sciences (AMS) (available at https://acmedsci.ac.uk/
viewFile/51e915f9f09fh.pdf) to safeguard the continuous development and adoption of
stratified medicine products.

In essence, both the exploration and the confirmation of stratified medicine to be

used in biomarker-defined subgroups requires a precise understanding of the underlying
pathways, considerable amount of comparative data, efficient designs, and challenging
integrative statistical modeling (integrative disease modeling, IDM), but also a well-founded
appreciation of the remaining uncertainties and the likelihood of false decisions.
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(A) Trajectory of pathophysiological mechanisms across the continuum of systems multi-
scale hierarchical self-organization, from systems homeostasis to systems failure: conceptual
basis for molecular pathway-based therapies.

The preservation of human organism homeostasis is strictly related to the interactions
between human systems factors, i.e. genome/epigenome and ecosystem factors, i.e.
environment (the circles). Such interactions shows a non-linear fashion with complex
dynamic changes over time that are essential at the individual level for adaptation and
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survival of the single organism to a certain ecosystem and at extra-individual level for
adaptive (genetic) evolutionary transitions finally resulting in the trans-generational process
of natural selection. For instance, the impact of a genetic mutation on a single organism
may lead to wide-ranging severe maladaptive effects even though from an evolutionary
trans-generational perspective this may represent a primary driver for optimized survival
and reproduction. Therefore, adaptive responses are differently distributed in space and time
scales, aimed at different key roles consistently with the individual, extra-individual and the
trans-generational level.

Unrevealing the spatial-temporal coordinates of multilevel adaptive events across human
systems (from molecular level to system level) and between these and ecosystem will
uncover key notions essential for the comprehensive understanding of complex disease and
at an higher level of complexity to achieve a unified theory of genetic adaptation leading to
evolution. Thus, an individual vulnerability to stressors exists with an individual threshold of
anti-stress response activation and failure.

The non-linear orange-shaped line represents the entire spectrum of pathophysiological
mechanisms across all systems levels, during the course and progression of disease. Such
alterations originate from initial adaptation processes leading through triggers, drivers,
thresholds to a point of decompensation at both structural and functional level. The green
circle surrounding the five levels represents the marked interplay among the different
hierarchical self-organized systems levels. Such interactions support the hypothesis that the
initial loss of homeostasis might originate and occur at every level taking into account that a
single level potentially affects the whole dynamic interrelated system and, therefore, initially
or ultimately the entire affected organism.

The molecular level shows aberrant conformational states of proteins and dysregulated
molecular pathways, including: post-translational modifications, inefficient autophagic
mechanisms, dysfunction of membrane dynamics. The cellular level originates from

the sum of a number of distinct and/or interrelated aberrant molecular pathways. This

has a negative impact on anti-stress responses with a subsequent overall impairment of
cytoprotective and homeostatic mechanisms. The tissue level presents a substantial loss of
structural and functional organization induced by certain categories of cells. At brain system
level, aberrant neural oscillatory, altered metabolic, blood-flow and oxygenation activities
might successively or simultaneously occur across different brain system networks, thus
affecting different network integration processes and the whole functioning of the system.
Therefore, brain-wide shifts in large scale network functioning allow a spatial and temporal
processing resources redistribution to cope with stressors. Such hypothetical model can
explain how pathophysiological alterations at the brain system level may precede, support
and impact abnormal upstream to downstream molecular and cellular pathways. The organ
systems level represents an enormous and most complex interplay among several networks
of different body systems including brain. The existence of many cross-links-talks between
CNS and the periphery might account for the hypothesis that brain diseases can originate or
be substantially related to peripheral failure. The idea of an isolated brain disease has to be
critically assessed in view of the organ systems level.

The colored pyramid represents potential outcome of effective treatment, the potential drug
response at each level (from green to red and from the base to the peak there is a decreasing
amplitude of effect). The arrows explain the likelihood to restore compensatory mechanisms
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(i.e. disease-modifying effect) at the single level; the thicker the arrow is, the higher is

the chance that the treatment is effective. The “X” positioned in correspondence of the

organ systems failure indicates a hypothetical “point of no return” (pathophysiological
irreversibility threshold) without any significant possibility for the drug to reverse, stop or
modify the disease dynamic and progression. Abbreviations: CNS, central nervous system.
(B) Hypothetical model of spatio-temporal systems-wide shifts in large scale networks along
the continuum of AD pathophysiological processes: from adaptation to irreversible failure.
Organisms are made of systems which are entities consisting in hierarchically self-organized
levels with increasing structural complexity resulting in different emerging properties.
Multilevel systems are strictly and dynamically interconnected through feedback and cross-
talking mechanisms. As a consequence, spatial selective network activation from molecular
pathways to systems large scale networks as well as time-dependent cascade of activation
can allow to achieve the most effective output to copy with stressors. This, in turn is aimed
to maintain homeostasis a dynamic equilibrium resulting from the dynamic interaction
between genome, epigenome and environment. The regulation of several processes at
multilevel of complexity from gene expression to cellular cycle to tissue repair and system-
wide network activation has different time delays (time scale) according to the system (space
scale). Thus, spatio-temporal systems-wide shifts in large scale network functioning are
essential to reallocate processing resources fundamental for adaptation. The understanding
of how to measure and possibly control space and time scaled adaptive and compensatory
responses occurring during complex polygenic diseases with non-linear pathophysiology, as
AD, will represent a crucial step for achieving the capability to effectively modify disease.
Biomarkers will guide in exploring how the space and time dimensions are mechanistic
involved in complex disease as AD.

Functional Stage — Adaptation Stage — Multilevel Stress Response: from metabolic
reconfiguration to functional switch in cellular/tissue/systems network activity aimed to
copy with different stressors/pathophysiological processes.

Functional-Structural Stage — Compensation Stage — Multilevel Compensatory
Mechanism: structural and functional dynamically balancing one another in order to copy
with different pathophysiological processes.

Early Systems Failure Stage — Decompensation Stage — Multilevel Breakdown/Lack

of Reverse in Compensatory Mechanisms: initial and progressive loss of physiological
interactions and pathophysiological compensations across multilevel systems network.

Late Systems Failure Stage — Decompensation Stage — Multilevel Breakdown/Lack

of Reverse in Compensatory Mechanisms: progressed loss of physiological and
pathophysiological simultaneous interactions between multilevel systems network

From the first stage to the third stage there is a decreasing chance to restore homeostatic
condition (as highlighted by the colors from green to red). No option to recover homeostasis
at the last stage.

Abbreviations: AD, Alzheimer’s disease.
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Fig. 2.
Agents in clinical trials for the treatment of Alzheimer’s disease in 2017 (from

clinicaltrials.gov accessed on 1/5/2017).

Abbreviations: ATP, adenosine triphosphate; BNC, bisnorcymserine; GM-CSF,
granulocyte-macrophage colony-stimulating factor; OAA, oxaloacetate; IVIG, intravenous
immunoglobulin; SLAT, simvastatin 1L-arginine 1 tetrahydrobiopterin.

From Cummings J et al. “Alzheimer’s disease drug development pipeline: 2017.”
Alzheimers Dement (N Y). 2017 May 24;3(3):367-384. doi: 10.1016/j.trci.2017.05.002.
Copyright © 2017 Elsevier. Reprinted with permission from Elsevier.
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Drgug discovery programs workflow. Many drug discovery programs progress through a
logical sequence where the findings from one type of experiment inform the next step.
Significant confidence is generated in programs where the data generated within each phase
are concordant with subsequent phases. Programs that lack this translational quality are
subject to increasing risk of failure.

Abbreviations: MAD, Multiple Ascending Dose; NME, New Molecular Entity; SAD, Single
Ascending Dose.

Adapted from Karran E, Hardy J. “A critique of the drug discovery and phase 3 clinical
programs targeting the amyloid hypothesis for Alzheimer disease.” Ann Neurol. 2014
Aug;76(2):185-205. doi: 10.1002/ana.24188. Copyright © 2014 Wiley. Reprinted with
permission from Wiley.

Pharmacol Res. Author manuscript; available in PMC 2021 October 11.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Hampel et al.

Page 59

« Outcomes
« Surrogate

Clinical
diagnosis

Treatment

Nature Reviews | Drug Discovery

New
candidates | —
No
e Hits target Enhanced
exposure
« Enrich Yes ]‘
— New target
No or indication .
Alters mechanism | <—
« Confirm Yes
« Characterize
No
;ffects
pathophysiology
* Monitor Yes
« Individualize
File dossi N\
e OSSters/‘
Fig. 4.

The four categories of biomarker: target, mechanism, pathophysiological, and diagnostic.
Biomarkers can be categorized into four groups on the basis of their contribution to business,
regulatory and clinical decision-making. Clinical decision-making can be further divided
into clinical research and patient care diagnostic subcategories. The objective is to use

biomarkers as early as possible in the drug development process.

— The initial step is to confirm that a test compound hits the target and to quantify the
extent to which it does so. Next is to test three concepts in logical sequence.
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— First, that hitting this target alters the pathophysiological mechanism.

— Second, that altering this mechanism affects the pathophysiology.

— Third, that affecting pathophysiology predictably improves the clinical status of the
patients.

— Biomarkers qualified to confirm the presence of the target and or extent to which the
drug candidate hits the target may be validated later as diagnostic tests for early detection
or diagnosis of Alzheimer’s disease (when that target is expressed differentially between
healthy and diseased states).

— Biomarkers qualified for confirming and quantifying mechanistic effects may be validated
later as diagnostic tests to inform choice of therapeutic regimen, either in choice of drug or
initial dosing regimen.

— Biomarkers qualified for longitudinal quantification of patient response in terms of
clinically relevant pathophysiology, may be validated later as diagnostic tests for monitoring
and individualization of a therapeutic regimen.

— Biomarkers qualified for either monitoring or individualization of therapy on clinically
relevant pathophysiology may also serve as surrogate end points to support regulatory
decision-making. In addition, they can be used to ensure appropriateness of use, and as
quantifiers of clinical outcomes to support reimbursement decisions.

From Hampel H et al. “Biomarkers for Alzheimer’s disease: academic, industry and
regulatory perspectives.” Nat Rev Drug Discov. 2010 Jul;9(7):560-574. doi: 10.1038/
nrd3115. Copyright © 2010 Springer Nature. Reprinted with permission from Springer
Nature.
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